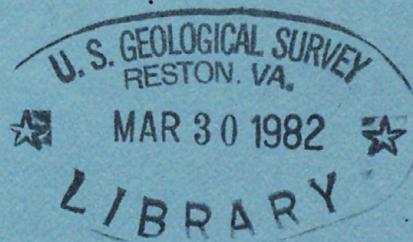


(200)
R290
no. 82-264

USGS LIBRARY-RESTON

3 1818 00070824 6


Form 9-014

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
WASHINGTON, D. C. 20242

AVAILABILITY AND QUALITY OF WATER
FROM THE DAKOTA AQUIFER,
NORTHWEST IOWA

GEOLOGICAL SURVEY OPEN FILE REPORT 82-264

PREPARED IN COOPERATION WITH THE
IOWA GEOLOGICAL SURVEY

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, SECRETARY

GEOLOGICAL SURVEY

DALLAS L. PECK, DIRECTOR

Open-file report
Geological Survey
(U.S.)

Journal ✓

332748

Availability and Quality of Water from the Dakota Aquifer, Northwest Iowa

by M. R. Burkart

GEOLOGICAL SURVEY OPEN FILE REPORT 82-264

Prepared in cooperation with the
Iowa Geological Survey

CONTENTS

	Page
Abstract.....	5
Introduction.....	6
Scope and purpose of project.....	6
Scope and objectives of report.....	6
Acknowledgments.....	6
General hydrologic concepts.....	8
Location-numbering system.....	10
Geologic Description of the Dakota aquifer.....	11
Stratigraphic position.....	11
Distribution of materials	11
Confining materials.....	14
Water availability and movement.....	16
Distribution of potential head and groundwater flow.....	16
Transmissivity.....	19
Discharge and recharge.....	21
Estimated potential yield.....	24
Water quality.....	26
Major dissolved constituents.....	26
Radionuclides.....	27
Quality of water for irrigation.....	28
Summary and conclusions.....	31
References cited.....	33

Illustrations

Plate 1.	Map of the top of the Paleozoic or Precambrian age rocks in northwest Iowa.....	(in pocket)
Plate 2.	Geohydrologic sections through the Dakota aquifer in northwest Iowa.....	(in pocket)
Plate 3.	Map of the total thickness of sandstone in the Dakota aquifer in northwest Iowa.....	(in pocket)
Plate 4.	Map of the bedrock surface in northwest Iowa....	(in pocket)
Plate 5.	Map of the potentiometric surface and municipal withdrawal from the Dakota aquifer in northwest Iowa, 1979.	(in pocket)
Plate 6.	Map of estimated potential yield from the Dakota aquifer in northwest Iowa.....	(in pocket)
Plate 7.	Map of distribution of dissolved sulfate in water from the Dakota aquifer in northwest Iowa.....	(in pocket)
Plate 8.	Map of distribution of total dissolved solids in water from the Dakota aquifer in northwest Iowa.....	(in pocket)
Figure 1.	Map showing location of Cretaceous age rocks in Iowa and location of the study area.....	7
Figure 2.	Chart showing names of geologic units used in this report.....	12
Figure 3.	Hydrographs of selected observation wells in the Dakota aquifer.....	18
Figure 4.	Irrigation classification of water from the Dakota aquifer.....	29

Tables

Table 1.	Major chemical constituents in water, their effects upon usability and their concentration limits.....	35
Table 2.	Logs of selected test holes.....	37
Table 3.	Water levels in observation wells.....	73
Table 4.	Summary of pumping tests.....	20
Table 5.	Selected chemical analyses of water from the Dakota aquifer.....	81

SELECTED FACTORS FOR CONVERTING
INCH-POUND UNITS TO THE INTERNATIONAL

Multiply inch pound unit	By	To obtain SI unit
acre	4047.0	square meter
foot	0.3048	meter
foot per day	0.3048	meter per day
foot squared per day	0.0929	meter squared per day
gallon	0.0038	cubic meter
gallon per day	0.0038	cubic meter per day
gallon per minute	0.0038	cubic meter per minute
gallon per minute per foot	0.0124	meter squared per minute
inch	25.4	millimeter
micromho	1.0	microsiemens

Availability and Quality of Water from the Dakota Aquifer, Northwest Iowa

M. R. Burkart

ABSTRACT

The Dakota aquifer in northwest Iowa consists of sandstones in the Dakota Formation. It underlies most of the study area and is the most extensive source of ground water in the area. Individual sandstone beds are from less than 10 to more than 150 feet thick. The cumulative thickness of sandstone is more than 200 feet throughout much of the area. The aquifer is confined by overlying Cretaceous limestone and shale, Quaternary glacial deposits and loess. The underlying confining material is shale of the Dakota Formation, undifferentiated Paleozoic age rocks, or Precambrian crystalline rock.

Water flows through the aquifer from the north-central part of the study area to the east, south and southwest. Recharge is dominantly by infiltration from the land surface through the confining materials. Discharge is to underlying Paleozoic aquifers and to the alluvium and glacial outwash deposits along the Missouri and Big Sioux Rivers in the southwest part of the area. Flow components toward bedrock valleys may reflect discharge to Quaternary sand and gravel deposits in these valleys.

Pumping tests conducted in the study area indicate a narrow range of hydraulic conductivities of the Dakota aquifer, from 37 to 50 feet per day. Consequently, an average hydraulic conductivity of 40 feet per day was used to estimate the potential yield to wells completed in the aquifer. Yields of more than 250 gallons per minute can be expected throughout much of the study area and more than 1000 gallons per minute could be produced in some areas.

The quality of water from the Dakota is a calcium, magnesium, sulfate type. It is generally suitable for irrigation purposes, based on comparisons of sodium adsorption ratios and electrical conductivities. In some areas the aquifer has water with high salinity hazard that may restrict its use to irrigation of only well drained types of soil. The concentration of radium-226 and other radionuclides exceed recommended limits at several sites.

The quality of water pumped from the aquifer may be altered by induced leakage from the underlying aquifers in Paleozoic age rocks if withdrawals reverse the pattern of natural flow from the Dakota into the Paleozoic aquifers. Evidence for such a reversal exists in the area around the city of LeMars.

INTRODUCTION

Scope and Purpose of Project

This project was a cooperative project between the Iowa Geological Survey and the United States Geological Survey and included 16 counties in northwestern Iowa: Buena Vista, Calhoun, Cherokee, Clay, Dickinson, Emmet, Ida, Lyon, O'Brien, Osceola, Palo Alto, Plymouth, Pocahontas, Sac, Sioux, and Woodbury Counties (figure 1). The project included; (1) a study of the water resources of the Floyd River Basin (Wahl, Meyer and Karsten, 1981); (2) an evaluation of the regional geologic setting (Ludvigson and Bunker, 1979); and (3) an appraisal of the availability and quality of water from the Dakota aquifer, (this report). A report of geologic and pumping test information from the Dakota aquifer is being prepared by the Iowa Geological Survey (Jim Munter, written communication August, 1981).

The purpose of the project was to evaluate the availability and quality of ground-water resources in northwest Iowa. The project was began in August 1976, during a drought, in response to an increase in demand for information on sources of irrigation water in northwestern Iowa. This demand posed questions about the availability and quality of ground water in the area which could not be answered by using available information.

Scope and Objectives of Report

This report is a regional appraisal of the availability and chemical quality of water from the Dakota Formation in the project area. Adjacent geologic units were empirically evaluated to determine their influence on the Dakota aquifer flow system. Hydrologic interpretations in this report are based on data from existing wells and test holes drilled for this project, and include lithologic logs, geophysical logs, drillers logs, water-level measurements in observation wells and chemical analyses of samples of ground water. The objectives of this report are to (1) define and describe the location, extent and characteristics of the Dakota aquifer, (2) evaluate the occurrence, movement, recharge and discharge of water in the aquifer, (3) estimate the potential yields to wells penetrating the aquifer, and (4) describe the chemical quality of the water obtained from the aquifer.

Acknowledgments

Collection of data for this report was made possible by the cooperation of residents of northwest Iowa, municipal water superintendents in the area, the staffs of the Iowa Department of Environmental Quality and the Iowa Natural Resource Council. Darwin Evans of the Iowa Geological Survey drilled and developed the observation wells and provided most of the sample descriptions of the test holes. Jim Munter of the Iowa Geological Survey contributed to the interpretation of the geohydrology of the area and provided a thorough and helpful

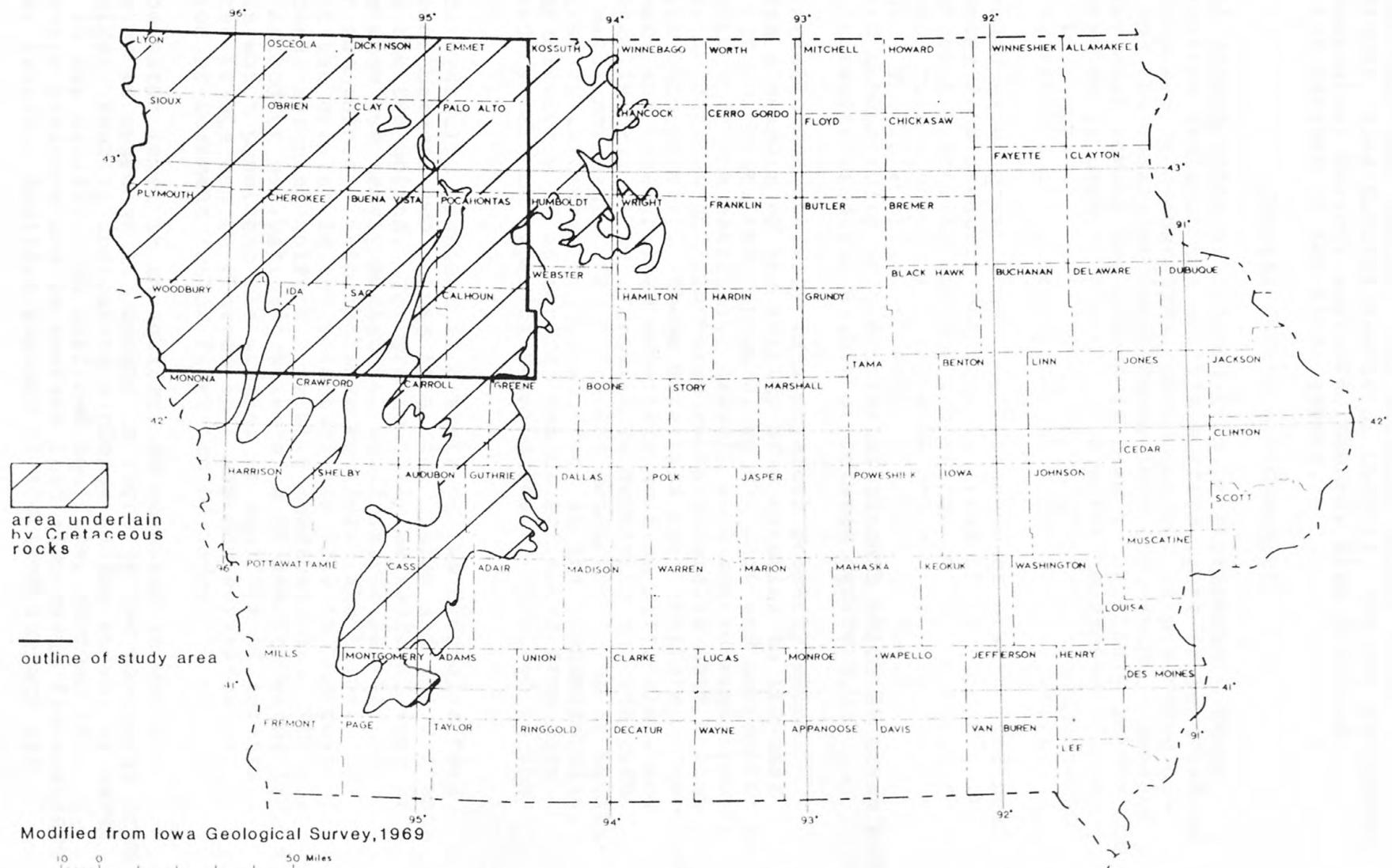


Figure 1. Location of Cretaceous rocks in Iowa and location of the study area.

review of the final report. Jim Wiegand, Deputy Water Commissioner, Iowa Natural Resources Council, and Don Jorgensen, U.S. Geological Survey, Lawrence, Kansas, also provided thoughtful reviews of the final report.

General Hydrologic Concepts

All ground water is derived from precipitation. After precipitation falls on the earth's surface, part is returned to the atmosphere by evaporation, part runs off into streams and lakes, and the remainder infiltrates into the ground. Some of the water that enters the ground is held by capillary action and evaporates or is used by plants. The water in excess of the near-surface demand of soil and plants infiltrates downward to the water table and ultimately becomes available to wells.

Ground water moves under the influence of gravity and head differences from areas of recharge to areas of discharge. It moves through fractures and small openings among grains of soil and rock. This movement is very slow and may be only a few feet per year. The rate of ground-water movement is governed by the hydraulic conductivity of the material through which it moves and by the hydraulic gradient within or between aquifers.

Hydraulic conductivity is a physical property which expresses a measure of the ability of a material to transmit water. It is determined, in part, by the size and connection of the openings in the material. Gravel, well-sorted sand, poorly cemented sandstones and fractured rocks generally have a high hydraulic conductivity. These materials form aquifers. Cemented sandstones and fine-grained materials such as silt, clay, and shale usually have a low hydraulic conductivity and restrict ground-water movement. The hydraulic conductivity of an aquifer multiplied by thickness of the aquifer is the transmissivity. The transmissivity of an aquifer can be estimated from data collected by various types of pumping tests conducted in the field.

The hydraulic gradient is a ratio of the hydraulic head difference between two points in a flow system and the distance between the two points. The gradient may be vertical such as that between two nearly horizontal aquifers, or lateral as between two points within the same aquifer. The higher the gradient the greater is the potential for flow to the point of lower head, assuming uniform hydraulic conductivity. The most common method of evaluating gradients is to measure water levels in wells which penetrate the aquifer or aquifers of interest. The water levels can be plotted on a map and estimates of direction of movement (water flow) can be made.

The water level in an aquifer, as measured in wells, fluctuates in response to changes in recharge and discharge from the aquifer, usually indicating a change in the amount of water stored in the aquifer. In confined aquifers, changes in atmospheric pressure and in surface load also cause fluctuations in water levels. Aquifers exposed at the land surface are

recharged by direct infiltration of precipitation and snow melt. Aquifers that are confined by thick deposits of fine-grained materials are recharged at very slow rates by leakage from above or below through the fine-grained confining materials. The rate of recharge to an aquifer may increase as water levels in the aquifer are lowered by pumping. This induced recharge is a result of increasing the hydraulic gradient toward the pumped aquifer in the area around a well or wells. However, water levels in the aquifer may decline for several years before sufficient recharge is induced to balance the rate of withdrawal. In some places this balance may never be achieved without curtailment of withdrawals.

Throughout much of the project area potholes, lakes or rivers are important sources of recharge to the ground-water system. The retention of rainfall, snowmelt and runoff in potholes and lakes recharges aquifers in which the water level is below the surface water level. In addition, because many of these surface-water features receive water from the local water table during periods of low precipitation, attempts to drain the features will lower the water table in the area. The effects of altering these potholes and lakes may not be seen for many years, but, because seepage from lakes and potholes is a major source of recharge water, the ultimate effect of a reduction in surface-water storage will be a reduction in availability of ground water.

The suitability of water for various uses usually is determined by the kind and amount of dissolved material it contains. The chemical constituents, physical properties and indices most likely to be of concern are: iron, sulfate, nitrate, fluoride, chloride, total dissolved solids, hardness, temperature, odor, taste, specific conductance, sodium-adsorption ratio (SAR), and percent sodium. The major chemical constituents, their effects on usability, and the recommended limits are given in table 1. Additional information regarding drinking-water standards may be found in "Water-Quality Criteria, 1972", published by the U.S. Environmental Protection Agency (National Academy of Sciences-National Academy of Engineering, 1973).

In this report, references are made to ground-water types, such as calcium sulfate and calcium bicarbonate types. These types are derived from inspection of the water analyses and represent the predominant cation (sodium, calcium, or magnesium) and anion (sulfate, bicarbonate, or chloride), expressed as milligrams per liter (mg/L).

The quality of water used for irrigation is an important factor in productivity and in quality of the irrigated crops. Irrigation classifications were determined from selected water samples from the Dakota aquifer in the project area, using a classification system developed by the U.S. Salinity Laboratory Staff (1954). This classification compares the sodium hazard, as measured by the sodium adsorption ratio, and the salinity hazard, as measured by the conductivity. The conductivity is an

electrical property of the water which is approximately proportional to the total dissolved solids content of water. The sodium adsorption ratio (SAR) is a ratio of the sodium concentration to the calcium and magnesium concentrations measured in equivalents per million.

The type of water suitable for irrigation will depend to some degree upon the type of soil and crop to which the water will be applied. However, water with a medium to very high salinity hazard or sodium hazard may be suitable for only a limited range of irrigation uses.

Location-Numbering System

The location-numbering system used in this report is based on the system of land survey used by the U.S. Bureau of Land Management and the Iowa District of the U.S. Geological Survey. The first number indicates the township north of a base line, the second number indicates the range west of the fifth principal meridian, and the third number indicates the section in which the well is located. The letters A, B, C, and D designate the northeast, northwest, southwest and southeast quarters of a section or quarters of any smaller square area of a section. The letters following the section number are in order of decreasing areal size from left to right. The first letter designates the 160 acre quarter, the second designates the 40 acre quarter, the third designates the 10 acre quarter and the fourth designates the 2 1/2 acre quarter. For example, well 87-44-15CBBB is in the SE 1/4 of the NW 1/4 of the NW 1/4 of the SW 1/4 of section 15, in township 87 north and range 44 west. Consecutive sequence numbers are added if more than one well is located in the same tract.

GEOLOGIC DESCRIPTION OF THE DAKOTA AQUIFER

Stratigraphic Position

The Dakota aquifer is defined, for this report, as the saturated sandstone which constitutes part of the Dakota Formation. The Dakota Formation comprises the oldest rocks of Cretaceous-age recognized in northwest Iowa, and lies unconformably on Paleozoic and Precambrian rocks. The relative position of geologic units with the oldest at the bottom is shown in figure 2. In the western part of the study area, the Dakota Formation is conformably overlain (from oldest to youngest) by the Graneros Shale, Greenhorn Limestone, and Carlile Shale all of the Cretaceous age. However, throughout more than 80 percent of the project area the Dakota Formation is overlain by Quaternary deposits consisting of glacial till, loess, sand, and gravel.

The top of the Dakota Formation is generally difficult to determine from drill-hole cuttings. The shale in the upper part of the Dakota Formation is similar to the shale which constitutes the overlying Graneros Shale. It is only where the top of the Dakota Formation consists of sandstone that the top can be picked with reasonable certainty. The Dakota Formation is the only Cretaceous formation in Iowa which includes sandstone. Because the Graneros Shale and shale in the upper part of the Dakota Formation are similar, it is not essential to determine the top of the Dakota for hydrologic purposes where it is a shale.

For this report, the top of the Dakota aquifer is defined in most areas as the first sandstone below the Greenhorn Limestone or, where the Greenhorn is not present, the first sandstone below the bedrock top. Where a Quaternary sand or gravel is in contact with a sandstone in the Dakota aquifer, the top of this sand or gravel is the top of the aquifer and is included in the total thickness of the aquifer.

The base of the Dakota aquifer is the bottom of the lowest sandstone in the Dakota Formation. In many areas the base of the aquifer conforms to the pre-Cretaceous surface shown on plate 1.

Distribution of Materials

Three groups of rock types have been recognized in the Dakota Formation in the study area. These are; (1) sandstone, (2) shale and siltstone, and (3) a group consisting of approximately equal parts of thin-bedded shale, siltstone and sandstone (Whitley, 1980). The sandstone group is commonly found at or near the base of the Dakota Formation whereas the shale and siltstone group is found near the top (Whitley, 1980; Ludvigson and Bunker, 1979). Between the sandstone group and the shale and siltstone group are thin-bedded sandstone, siltstone and shale beds. This intermediate group is both laterally and vertically transitional with the sandstone and shale groups.

The distribution and composition of sandstone bodies in

ERATHEM		SYSTEM	FORMATION	
CENOZOIC	QUATERNARY			
	CRETACEOUS		Carlile Shale	
			Greenhorn Limestone	
			Graneros Shale	
			Dakota Formation	
PALEOZOIC	PENNSYLVANIAN		Undifferentiated	
	MISSISSIPPIAN			
	DEVONIAN			
	SILURIAN			
	ORDOVICIAN			
	CAMBRIAN			
PRECAMBRIAN		Sioux Quartzite		

Figure 2. Geologic units used in this report

the Dakota Formation is of primary concern in this report. The cross sections on plate 2 and the total sandstone-thickness map on plate 3 are included to show the regional distribution and position of major sandstone units. However, significant local variations from the regional trends in total sandstone thickness may exist throughout the study area.

The sandstone comprising the Dakota aquifer occurs in beds which range from less than 10 feet to more than 150 feet thick. Beds less than 5 feet thick were not included in the total thickness of the aquifer. The base of the Dakota Formation is generally sandstone with a basal shale occurring more frequently in the eastern part of the study area than in the west (plate 2). Generally more shale occurs in the upper part of the Formation. Where a complete section of the Dakota Formation exists, particularly along the western part of the study area, the uppermost sequence includes a few sandstones, most of which are very thin or contain significant quantities of material finer than sand size. Because the sandstone units are frequently separated by shale or siltstone, the potential for water exchange among the sandstone bodies is restricted by the thickness, extent and hydraulic properties of the interbedded material. This factor is particularly important when considering local flow systems. However in evaluating the regional flow system, the sandstones are considered as a unit.

The individual sandstone beds are composed of fine to coarse sand, some gravel, and variable amounts of silt and clay. Coarse sand is very common, particularly in the lower part of the formation. Sandstone beds are generally coarser grained near the top than near the base (Whitley, 1980) although some are finer grained upward. Sorting of grain sizes within the sandstone bodies likely results in greater hydraulic conductivity than that expected of poorly sorted sandstones. Sample descriptions indicate very little cementation of the sandstone. The sandstone is occasionally interbedded with siderite (iron carbonate) and contains abundant pyrite (iron sulfide) nodules in some locations. Siderite may be incorrectly described as dolomite in some of the logs in table 2.

The thickness of sandstone in the aquifer appears to be related to the pre-Cretaceous and bedrock topographic surfaces. The surface mapped on plate 1 was drawn to conform with the Precambrian surface in southern Minnesota (Anderson and others, 1976). The bedrock topographic surface on plate 4 was drawn to match the preglacial topography (Anderson, and others, 1976) and the bedrock topography immediately east of the study area (Hansen, 1978).

The thickest (more than 200 feet) sandstone sequences (plate 3) in the Dakota aquifer are associated with the elongate depressions in the pre-Cretaceous surface (plate 1). Major areas of thick sandstone include; north central Plymouth County, central and southern Sioux County, central Woodbury County, west-central Cherokee County and northeastern O'Brien County northeast into Dickinson County. In many of the areas where the bedrock

surface (plate 4) intersects the Dakota aquifer, bedrock valleys coincide with a decrease in total sandstone thickness. For example, plate 4 shows a relatively deep bedrock valley in eastern Woodbury and southeastern Plymouth Counties and plate 3 shows a significant change in sandstone thickness in the same area. The bedrock valley is also shown on section C-C', plate 2, between test wells 88-44-06BAAB and 87-41-05CCCC. Other bedrock depressions and valleys shown in sections A-A' and B-B' illustrate the coincidence in sandstone thickness and bedrock valleys.

The areas on plate 3 outlined by the zero (0) contour line are where the Dakota aquifer does not exist because of non-deposition or lack of sandstone. These areas include the bedrock channel in eastern Woodbury County and the long narrow bedrock channel which extends through much of the eastern third of the study area (plate 4). Also included is the Manson area of anomalous crystallizing rocks (Hoppin and Dryden, 1958 and Holtzman, 1970) in southeastern Pocahontas and northeastern Calhoun Counties and an area in the extreme northwestern part of Lyon County where Precambrian age rocks form the bedrock surface.

The extent and influence of Quaternary sand and gravel deposits on the hydrology of the Dakota aquifer are poorly defined. Data from test holes located at 87-44-15CBBB1 and 96-34-24BBB (table 2) show that these sand and gravel deposits are in direct contact with the Dakota aquifer. Because the bedrock valleys in the area are the result of Quaternary stream activity, there may be significant amounts of sand and gravel in hydrologic communication with the Dakota aquifer. Most test hole sites in the project area were chosen to evaluate only the Cretaceous sequence of rocks. Consequently, sites in areas outside the bedrock channels were given priority. If these channels contain significant amounts of sand and gravel they could provide an additional highly productive source of water.

Confining Materials

The Dakota aquifer is confined throughout most of the study area by overlying shale in the Dakota Formation, other Cretaceous-age shale and limestone and Quaternary clay and till. These materials are distinctly less permeable than the sandstone which comprises the aquifer. Till is poorly sorted glacial sediment composed of clay, silt, sand, gravel, and boulders. The shales overlying the aquifer include the mudrock (claystone, silty clay shale, and clayey siltstone) of the Dakota Formation described by Whitley (1980), and the calcareous clay shales of the Graneros Shale and the Carlile Shale. Some characteristics of the materials overlying the aquifer are described in table 2 and a general description of the Cretaceous materials are presented in Whitley (1980) and Whitley and Brenner (1981). On plate 3, adjacent to each data point is the depth to the first Cretaceous sandstone at the top of the Dakota aquifer. This value can be used to estimate the total thickness of the overlying confining materials in many areas. However, because the Quaternary material has not been fully investigated there are

areas which may have significant deposits of gravel and sand which would act as aquifers above the Dakota aquifer, particularly where the Quaternary materials fill a bedrock valley.

The confining material beneath the Dakota aquifer cannot be adequately evaluated from existing data. However, the underlying material consists of shale or mudrocks in the Dakota Formation and limestone, dolomite, shale and sandstone of Paleozoic age and crystalline rocks of Precambrian age. Cross sections in Ludvigson and Bunker (1979) show a general southeast inclination of the Paleozoic strata. Therefore, the first rock units encountered beneath the Dakota Formation are successively younger toward the southeast. There are several sites where observation wells were initially completed to aquifers (sandstones and carbonates) in the uppermost Paleozoic unit. These wells were later plugged back and perforated in the Dakota aquifer. Also some test hole sites have two wells, one completed in the Dakota aquifer and one completed in an underlying Paleozoic aquifer. With the exception of a site near LeMars, at all these locations the water levels were the same or higher in the Dakota aquifer than in the Paleozoic aquifers. The difference does not exceed 4 or 5 feet at any location but the difference is widely distributed throughout the project area.

WATER AVAILABILITY AND MOVEMENT

Distribution of Potential Head and Ground-water Flow

The areal distribution of the level to which water would rise in a well completed in the Dakota aquifer is shown on the potentiometric map (plate 5). The data used to make this interpretation are water levels measured during the calendar years 1979 and 1980 in observation wells drilled for this project and private wells measured during November, 1979. Representative water levels reported by drillers and pump contractors were also considered, particularly in areas where no other information was available.

The water levels measured in wells drilled for this project are listed in table 3. The records included in this table are not sufficient for an evaluation of long-term changes in the aquifer but they provide the basis for the areal interpretations in this report.

The wells from which data were used to produce the map on plate 5 were completed in various sandstones in the Dakota aquifer. It is probable that all the sandstones are hydraulically related, however the hydraulic head may vary among sandstones at any site. For this reason the potentiometric map presented here may contain some local variations due to the completion of the individual wells. Therefore the map represents an interpretation of the regional flow and not necessarily details of local flow in the aquifer.

Lateral water movement in the aquifer is generally from the north-central part of the area to the southwest, south and east. The higher water levels are in the uplands of the north and lower water levels are mostly near the Big Sioux river along the southwestern border. Stream altitudes, were determined from 7-1/2 minute series topographic maps at several points along the Big and Little Sioux, Rock, Raccoon, Des Moines, and Floyd Rivers (plate 5). These data along the Big Sioux River agree with extrapolated regional ground-water levels in the Dakota aquifer along the western edges of Woodbury and Plymouth Counties. In these areas the ground-water flow is directly toward and possibly into the Big Sioux River. At Sioux City, the aquifer directly underlies river alluvium and is exposed in the bluffs along the Big Sioux River. The flow may be directly into the stream or the surrounding alluvium in this area. The aquifer is under water-table conditions.

In Sioux and southern Lyon Counties the Big Sioux river recharges the aquifer. Water levels presented in this report indicate that the flow in the Dakota aquifer is toward South Dakota along this segment of the Big Sioux River.

On plate 5, upstream deflections in the regional potentiometric surface occur near the mouth of the Floyd and part of the Little Sioux Rivers. These deflections indicate flow toward the streams and bedrock valleys (plate 4). The altitude

of the Little Sioux River through Cherokee County is consistently lower than the potentiometric surface of the Dakota aquifer (plate 5). This is evidence of a potential for ground-water movement upward into overlying aquifers and ultimately into the Little Sioux River. Municipal withdrawal between the 1160 and 1180 foot contours (plate 5) from Marcus to Alta may have some effect on this relationship. However, the amount of withdrawal has apparently not significantly altered the direction of movement and the water-level history is not adequate to determine the magnitude of any effects of withdrawal.

The deflections in regional potentiometric contours along the eastern part of the study area are a result of flow through the aquifer toward the area where the Cretaceous rocks are absent. A ground-water divide exists from western Pocahontas County to western Dickinson County and regional flow is generally east and southwest away from this divide. Water-level data from the eastern tier of counties are not extensive and much of these data are from drillers' reports rather than from measurements collected as part of this project. The extent of the Dakota aquifer is not well known in this area nor are the relationships with Quaternary deposits understood. In this area, the relatively small total thickness of sandstone in the Dakota Formation (plate 3) may result in a more complex potentiometric surface than that shown in plate 5.

It is assumed that there is flow from the upper sandstone beds to the lower ones within the Dakota aquifer throughout much of the study area. One area where this can be documented is in 98-39-26C where a group of observation wells were completed to monitor a pump test. Here the water level in a well completed in a shallow and thin Dakota sandstone (98-39-26CDAD2) is consistently about two feet higher than that in another nearby observation well (98-39-26CDCC) completed in the deeper part of the Dakota aquifer. In addition, there are several locations where water levels have been measured in both the Dakota aquifer and underlying Paleozoic aquifers. With the exception of a site near LeMars, all the water levels in the wells penetrating the Dakota aquifer are higher than the water levels in wells completed in the underlying units. This downward head gradient probably is reversed in discharge areas such as along the Big Sioux River.

Hydrographs of four Dakota aquifer observation wells maintained by the United States Geological Survey are shown in figure 3. With the exception of the well at 89-47-22BADC2, they show an overall decline in water levels during the periods of record. The decline appears to be occurring at a relatively uniform rate indicating that the aquifer has not reached equilibrium with recharge and discharge conditions. The well at 89-47-22BADC2, near Sioux City, shows no regular pattern of decline. This may be a result of the water-table conditions in the aquifer in that area and the changes in pumping patterns at Sioux City.

It is possible that the long-term decline in water levels

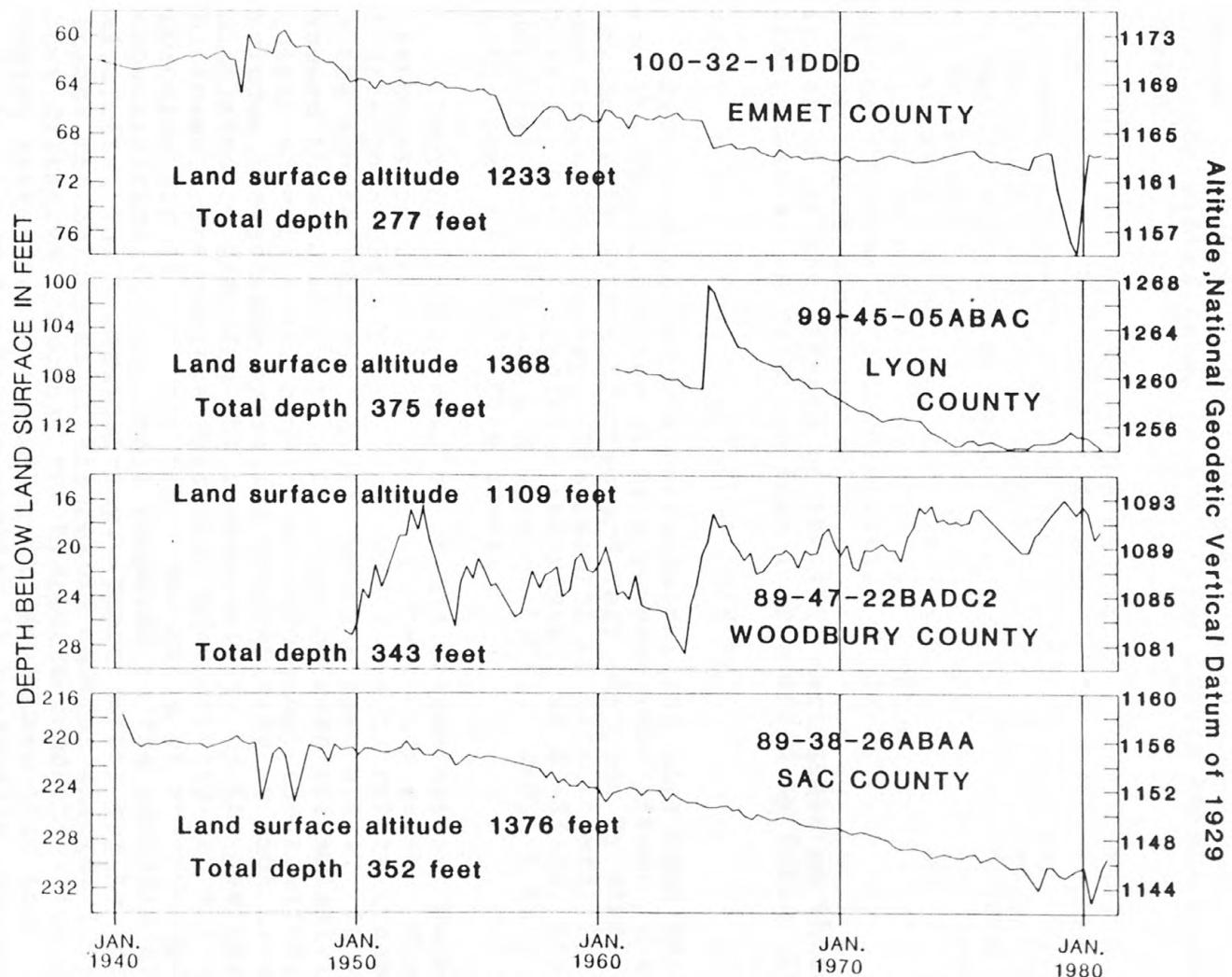


Figure 3. Hydrographs of selected observation wells in the Dakota aquifer

will continue at a reduced rate if the withdrawal from the aquifer remains at the existing level. Theoretically, a balance will be reached when water levels throughout the aquifer are reduced to the point where induced recharge due to pumping or decreased discharge compensates for withdrawal. However, if pumpage increases, water levels will continue to decline, perhaps at an accelerated rate, to even lower levels before a balance results.

Three of the hydrographs on figure 3 show anomalous water level changes during the 1964 record. Two hydrographs, 99-45-05ABAC and 89-47-22BADC2, show a sudden rise and hydrograph 100-32-11DD shows a sudden decline shortly following the time of the March 1964 Alaskan earthquake. The sudden and long lasting change in water levels in these wells may have been caused by reorientation of aquifer materials and confining units, resulting in changes in porosity and hydraulic conductivity. The change was not the same in all observation wells because of variations in textures of sandstone which comprise the aquifer. A discussion of the effects of the 1964 earthquake on these and other observation wells in Iowa is presented by Coble (1965).

Transmissivity

Data used to calculate transmissivity have been collected from the Dakota aquifer at five pumping test sites. These pumping tests were conducted and (or) analysed by staff of the Iowa Geological Survey. The results of three tests, Hanson at 97-46-28; Ritz at 92-47-31; and Hosteng at 87-35-30, are published in Ludvigson and Bunker (1979). Table 4 is a summary of the results of all five tests.

Regional interpretation of the transmissivity depends on interpolation between points where test data exist. The method of interpolation used in this report was to relate transmissivity to the aquifer material at the pumping test sites. It was assumed that observed relationships between transmissivity and aquifer materials are consistent throughout the aquifer. Table 4 includes the average hydraulic conductivity at each site, calculated by dividing the transmissivity by the average thickness. The average hydraulic conductivity for all sites is approximately 40 feet per day. The range of average hydraulic conductivities is very small compared to the possible errors in calculating the transmissivity. These errors may be very large because the thickness of the Dakota aquifer changes locally over short distances. Because the hydraulic conductivities at all the pumping test sites are similar it is assumed that the conductivity of the Dakota aquifer is regionally uniform. To obtain an estimate of the transmissivity of the aquifer in any area, multiply the sandstone thickness shown on plate 3 by the average hydraulic conductivity (40 feet per day). This is an intermediate calculation used to estimate the potential yield discussed later and shown on plate 6. Because this report is a regional appraisal of the Dakota aquifer, only approximate conditions are presented in untested areas. A more detailed analysis may be needed to precede any specific development plans.

Table 4. Summary of pumping test results in the study areas.

Location	Transmissivity (feet squared per day)	Average Thickness of Dakota Aquifer (feet)	Average Hydraulic Conductivity (feet per day)
Hosteng Irrigation Site 87-35-30	4600	124	37
Ritz Irrigation Site 92-47-31	7600	157	48
Southern Sioux County Rural Water System, Inc. 93-45-04	7400	148	50
Hansen Irrigation Site 97-46-28	3900	89	44
Hibbing Irrigation Site 98-39-26	6400	162	40

Discharge and Recharge

Natural recharge to the Dakota occurs where the potentiometric surface is below a surface-water source or an aquifer which has a higher potentiometric surface. This source may be adjacent confined aquifers and overlying water table aquifers or surface-water bodies such as lakes, potholes, and streams. These sources may be positioned above, below or adjacent to the Dakota aquifer. Conversely, natural discharge occurs where the potentiometric surface of the Dakota aquifer is higher than other such surfaces. Exchange of water can occur directly, or through very thick confining layers. Rates of recharge and discharge will vary depending on the permeability and thickness of the confining layers, and the magnitude of the head differences.

Recharge occurs to the Dakota aquifer directly from precipitation where the Dakota aquifer is exposed at the land surface and from leakage from lakes, streams, and overlying aquifers. The potential for direct recharge of the Dakota aquifer from streams in the study area is limited to the area near the Big Sioux River in Plymouth and northern Woodbury counties. The recharge here is limited to areas where sandstone in the Dakota aquifer outcrops and occurs only when stream levels are above the sandstone exposures. However, the regional flow pattern shown on plate 5 indicates potential for discharge to the stream exceeds any local or short-term recharge in that area.

Recharge to most of the Dakota aquifer is indirectly from the water table through confining material or from aquifers overlying the Dakota aquifer. Because the confining materials, mostly shale, till and loess, have a very small hydraulic conductivity, the rate of recharge is very small. The rate at which water enters the Dakota aquifer depends upon; (1) the hydraulic conductivity of the confining material, (2) the thickness of the confining material, and (3) the difference in altitude between the water table and the potentiometric surface of the Dakota aquifer.

In the absence of a detailed analysis of the confining material it is difficult to assess the volume of recharge. However, for a regional analysis a range of recharge volume can be approximated. The rate of flow through the confining layer can be expressed as (Bredehoeft and Pinder, 1970):

$$q = K' (h - h') / l$$

where:

q = rate of flow into the aquifer per unit area, in feet per day

K' = vertical hydraulic conductivity of the confining layer, in feet per day

l = thickness of the confining layer, in feet

h = head in the water table, in feet

h' = head in the confined aquifer, in feet

Assumptions can be made to estimate $(h-h')$ and l in the formula above. The water table throughout most of the study area is within 20 feet of the land surface. The average depth to water in observation wells of the Dakota aquifer shown in table 3 is approximately 150 feet. The difference of 130 feet can be used as an estimate of $h-h'$. The average depth to the Dakota aquifer in the wells shown in table 2 is approximately 275 feet. Because the water must move from the water table to the top of the aquifer the average thickness of the confining layer (l) is estimated to be 255 feet. The errors in estimating these two factors are not significant when compared to the possible error of estimating the vertical hydraulic conductivity of the confining material.

Information regarding the confining material above the Dakota aquifer in the study area is mostly qualitative. Vertical hydraulic conductivity for the confining unit overlying the Dakota aquifer was estimated by comparing the confining materials to published values of conductivity for similar materials. Freeze and Cherry (1979, table 2.2, p. 29) summarize a range of hydraulic conductivity values for materials similar to those which constitute the confining layer. These include: till, 1.3 to 0.0000013 feet per day; loess, 13 to 0.0013 feet per day; and unweathered marine clay (similar to the Cretaceous shales), 0.0013 to 0.0000013 feet per day. For this example it is assumed that the confining unit has an average hydraulic conductivity range of 0.0013 to 0.000013 feet per day. This range is toward the smaller values of the range of conductivities suggested by Freeze and Cherry. This choice of values should produce a relatively low estimate of the recharge potential. Kunkle (1968), determined the leakage rate through till in east-central Iowa to be 0.0005 feet per day. This value supports the approximation of a low estimate for this parameter.

Using the values of $(h-h') = 130$ feet, $l=255$ feet and $K'=0.0013$ and 0.000013 feet per day the range of recharge rate, q , is 0.00067 to 0.0000067 feet per day.

Natural discharge from the Dakota aquifer occurs where the potentiometric surface in the Dakota aquifer is higher than that in nearby aquifers. The aquifers receiving water in such a process may be Quaternary sand and gravel deposits above the Dakota, the bedrock valleys which are laterally adjacent to the Dakota and the Paleozoic rocks underlying the Dakota aquifer. The cross sections on plate 2 show the relative position of the bedrock valleys. However, little is known about the distribution of potential water-bearing material in these valleys. The potentiometric map of the Dakota aquifer, plate 5, shows potential for flow through the Dakota aquifer toward the southeastern part of the study area where a bedrock valley is interpreted and toward the bedrock valley in eastern Woodbury County. The flow toward these valleys is indirect evidence that significant aquifers with lower heads are likely in the materials which fill these valleys. It is not possible to estimate the leakage from the Dakota in these areas without more extensive data than are currently available.

Water levels gathered for this study indicate that, with local exceptions, discussed later, there is leakage from the Dakota aquifer to underlying aquifers in Paleozoic rocks. At several test sites, observation wells were established in aquifers in Paleozoic or Precambrian rocks. After a static water level was measured and a water sample was taken, the wells were plugged at the bottom with cement. After perforation with an explosive wire-line device, an observation well was developed in the Dakota aquifer at most of these sites. These sites, and sites where at least two separate wells in the Dakota and underlying aquifers were completed are as follows:

87-44-15CBBB	91-39-01ADAD	94-47-35AAAB	100-39-17DCCB
89-46-36BBDC	91-42-16DDDD	98-39-26CDAD	100-48-31CCCC
90-38-16DDDD	92-45-02CBCB	98-42-33AABB	

With the exception of three of the sites listed above, the measured values of head in the Dakota aquifer are higher than in the underlying Paleozoic or Precambrian unit, table 3. At two of these sites, 100-39-17DCCB and 100-48-31CCCC, the head in the underlying unit was less than one foot higher than in the Dakota aquifer. A third site, 92-45-02CBCB, is apparently within the area affected by pumpage from the Dakota aquifer in the LeMars area, and consequently water may be moving upward from aquifers in Paleozoic rocks. This represents a reversal of the regional direction of flow.

The wide distribution of heads higher in the Dakota aquifer than those in the aquifers in Paleozoic rocks indicates that these aquifers are recharged in part by the Dakota aquifer. Among the aquifers in Paleozoic rocks are the Ordovician St. Peter and Cambrian Jordan aquifers as well as Devonian carbonate aquifers (Ludvigson and Bunker, 1979). A quantitative estimate of the flow from the Dakota into these units is not possible from available data.

The direction of downward leakage can be reversed by withdrawals from the Dakota, such as the pumping in the LeMars area. At test site 92-45-02CBCB, approximately two miles northeast of the LeMars municipal wells, one observation well is completed to the Dakota aquifer (92-45-02CBCB2) and a second is cased through the Dakota and open to Paleozoic age rocks (92-45-02CBCB1). At this site the head in the Dakota aquifer is consistently lower than the head in the Paleozoic aquifers. Water levels in both wells declined during April through September, table 3, apparently in response to increased pumping during that period. The effects of leakage from the Paleozoic aquifers to the Dakota aquifer are seen in the quality of water pumped from wells in the Dakota aquifer in the area (Plates 7 and 8).

Withdrawal from the Dakota aquifer in the study area is dominantly for municipal water supplies. Several industrial and irrigation wells also use water from the Dakota, but these wells are not metered. The 32 municipalities which use water from the Dakota and the average daily withdrawal are shown on plate 5.

The withdrawal rates were obtained from the Iowa Department of Environmental Quality, Spencer, Iowa. In 1979 the average withdrawal ranged from 9000 gallons per day at Oyens to more than 13,000,000 gallons per day at Sioux City. Excluding Sioux City, the total municipal withdrawal from the Dakota aquifer in the study area in 1979 was 6,500,000 gallons per day, about 52 percent of which was pumped by the cities of LeMars and Cherokee.

Because one of the principal demands for water in the study area is for irrigation, it is interesting to compare the amount of water needed for irrigation with the municipal demands. An irrigation system supplying 160 acres with 12 inches of water annually would withdraw approximately 52,000,000 gallons per year. Of the 32 municipalities shown on plate 5, 22 used less than this amount and 10 used more in 1979. It would take more than 95 such irrigation systems to equal the municipal withdrawal of Sioux City and approximately 140 systems to equal the total 1979 municipal withdrawal from the Dakota aquifer in the study area.

Estimated Potential Yield

One way to demonstrate the regional variations in productivity of an aquifer is to show how much water is potentially available to wells which penetrate the aquifer. The potential yield, as used in this report, is the amount of water which can be pumped from a 100 percent efficient well penetrating the entire aquifer under ideal conditions. The amount which can be pumped will vary with the amount of available drawdown in the pumping well.

The method used in this report to calculate the potential yield determines the specific capacity based on estimates of transmissivity. Specific capacity is a measure of the productivity of a well and is defined as the pumping rate per unit of water level drawdown in the well. Meyer (1963) published a graph relating specific capacity, storage coefficient, and transmissivity. The storage coefficient is a dimensionless property of an aquifer which reflects the amount of water which is released from or added to storage per unit surface area of aquifer, per unit hydraulic head change. The ratio of transmissivity to specific capacity is about 267:1 under the following conditions (Meyer, 1963):

- a. the transmissivity of the aquifer is within the range 270 to 13,400 feet squared per day;
- b. the storage coefficient is less than 0.005; and
- c. the specific capacity is given in gallons per minute per foot of drawdown after 24 hours pumping.

From table 4 it can be seen that all of the transmissivities calculated from the five pumping tests fall in the range of 270 to 13,400 feet squared per day. Estimates of the storage coefficient (Jim Munter, written communication, 1981) are all less than 0.005.

Plate 6 shows regional estimates of potential yield. The transmissivity was determined by the product of sandstone thickness (plate 3) and average hydraulic conductivity, which is assumed to be 40 feet per day. The transmissivity was then divided by 267, resulting in a specific capacity in units of gallons per minute per foot of drawdown. For this report an arbitrary drawdown of 20 feet was multiplied by the specific capacity to determine the potential yield shown on plate 6.

As an example of this method, on plate 3, in Plymouth County T91N R44W the total thickness of sandstone is shown to be about 150 feet. The potential yield of this thickness of sandstone is determined by first multiplying the thickness by 40 feet per day (average hydraulic conductivity). This results in a transmissivity of 6000 feet squared per day. Dividing this transmissivity by 267 (ratio of transmissivity to specific capacity) results in a specific capacity of 22.5 gallons per minute per foot of drawdown. The final step is to multiply the specific capacity by the drawdown (20 feet for this report) giving a potential yield of 450 gallons per minute. On plate 6, the same location shows the area to have a potential yield of 100 to 500 gallons per minute. The area is near the 500 gallons per minute line.

If drawdown of more than 20 feet in the producing well is acceptable, then the potential yield will be greater than that shown on plate 6. Conversely, if 20 feet of drawdown is excessive then the potential yield will be less than that on plate 6. Of course, no well is 100 percent efficient so the actual yield will be reduced by the well efficiency factor. The values shown on figure 6 are to be used as a guide to understanding the regional availability of water from the complete Dakota aquifer.

WATER QUALITY

Major Dissolved Constituents

Water samples from the Dakota aquifer were collected from 28 of the wells drilled for this project. These samples were analysed by the University of Iowa, Hygienic Laboratory. In addition to these analyses, the most recent analyses available from the various municipal wells in the Dakota aquifer in the area are included in table 5.

Water from the Dakota aquifer can be generally characterized as a calcium-magnesium sulfate type. It is very hard (from 180 to 1600 mg/L as calcium carbonate) and has a relatively high dissolved solids content (from 279 to 2820 mg/L). Many samples contain quantities of radionuclides in excess of recommended limits (table 1). Nitrate and fluoride are below the recommended limits and only one sample exceeded the recommended limit for chloride.

The dissolved sulfate content in water from the Dakota aquifer exceeded 1000 mg/L (plate 7) throughout much of the study area. About 20 percent of the samples had more than 1000 milligrams per liter (mg/L) sulfate. Sulfate content is highest in areas of recharge, particularly the north-central part of the study area. Sulfate content is less than 250 mg/L in much of the southern and western parts of the area, down-gradient from the major recharge areas. Approximately 17 percent of the samples have less than 100 mg/L SO₄. The high sulfate content in the recharge areas may result from solution of sulfate minerals such as gypsum (CaSO₄.2H₂O) or anhydrite (CaSO₄) by water as it moves through the Quaternary deposits and Cretaceous rocks which form the confining units and through the Dakota aquifer itself. However, data on rock chemistry is needed to verify the assumption.

Both the dissolved solids (plate 8) and the sulfate distribution (plate 7) show anomalies in the central part of Plymouth county, near LeMars. The concentrations of both TDS and sulfate in this area are much higher than in nearby wells. This anomaly is likely caused by a reversal of the natural flow direction between the Dakota and the underlying aquifer in Paleozoic rocks. At sites where it was possible to analyse water from both aquifers, the samples from aquifers in underlying Paleozoic rocks had higher concentrations of dissolved solids and sulfate than did the samples from the Dakota aquifer. The water levels in observation wells 92-45-02BCB1 and 92-45-02BCB2 indicate there is potential for flow from the aquifers in the Paleozoic rocks to the Dakota aquifer in this area. Therefore, the water sampled in the LeMars area wells probably represents a local change in quality of natural water in the Dakota aquifer by leakage and mixing of water from the underlying Paleozoic rocks.

Thorstenson, Fisher, and Croft (1979) present a process to explain changes in dissolved sulfate in an aquifer comprised of rocks of the Cretaceous Fox Hills Formation of North Dakota and

South Dakota. In this process anaerobic bacterial action reduces the sulfate in the aquifer to sulfide and uses the oxygen for metabolism of organic material such as lignite. Carbon dioxide and hydrocarbons such as methane are produced by decomposition of organic matter in the later phase of the reducing process.

The rocks and water chemistry studied by Thorstenson, Fisher and Croft (1979) are very similar to the Dakota aquifer in this study area. Both involve rocks which include sandstone, shale and lignite. Therefore, the decrease in concentrations of sulfate within the Dakota aquifer could be explained by anaerobic reduction. The conversion of sulfate to sulfide is supported by the occurrence of an iron sulfide mineral, pyrite, in the Dakota Formation and observations of hydrogen sulfide gas in some of the test-wells, particularly in the southern and western parts of the area. Gases, possibly carbon dioxide and methane, have also been reported from wells which penetrate the Dakota Formation. Unfortunately, dissolved gas samples which could help support the reducing conditions hypothesis were not collected.

Iron and manganese are generally present in quantities exceeding the suggested limits shown in table 1. About 80 percent of the samples contained more than 300 ug/L (micrograms per liter) iron and 56 percent contained more than 50 ug/L manganese. An analysis of the distribution of these two cations is difficult because their source and sensitivity to chemical conditions in a well may be affected by well construction and the casing materials used. Because of the rapid precipitation of iron and manganese upon exposure to air, special sampling techniques are necessary to obtain consistently satisfactory samples in the field.

Radionuclides

The data on the radionuclides, radium, gross alpha, and gross beta activity, are significantly fewer than for other constituents because these parameters are analysed using a screening procedure. When gross alpha activity exceeds 5 pCi/L (picocuries per liter), an equivalent sample is analyzed for radium-226. If the concentration of radium-226 exceeds 3 pCi/L, an equivalent sample is analyzed for radium-228. Approximately 75 percent of all the samples were analysed for gross alpha, about 50 percent for radium-226 and about 12 percent for radium-228. The data in table 5 include 4 samples which exceed the recommended limits of 15 pCi/L gross alpha (municipal wells at Arthur, Holstein, Sioux City, Maurice and Primghar); 9 which exceed 5 pCi/L radium-226 (Municipal wells in Arthur, Holstein, Sioux City, Cherokee, LeMars, and West Bend) 4 which exceed 5 pCi/L radium-228, (test wells at 91-42-16DDDD, 92-48-06-DDDA, 95-43-07AAAA and 96-44-08ADAA). Fourteen samples exceed 5 pCi/L radium-226 and radium-228 combined (Municipal wells in Arthur, Holstein, Sioux City, West Bend and Hull, test wells at 94-47-35AAAB, 95-47-05AAAA and the test wells listed above). A statistical summary of radium-226 in water from the Dakota aquifer and other aquifers in Iowa is presented in Mackey, 1976.

Quality of Water for Irrigation

Three important factors with respect to dissolved solids are involved in appraising the useability of water for irrigation; (1) the mineral species in the soil and the drainage properties of the soil, (2) the tolerance of the irrigated crop to the major constituents in the water and (3) the concentration of major constituents in the water. It is not within the scope of this report to evaluate more than the constituents in the water, but it is important to understand that the greater the quantity of dissolved constituents in the water the narrower the range of soils and crops to which the water can successfully be applied.

The method used in this report to classify irrigation water involves the sodium and salinity hazards. This method, developed by the U.S. Salinity Laboratory Staff (1954), uses electrical conductivity (specific conductance) of the water to measure the salinity hazard and the sodium-adsorption-ratio (SAR) to evaluate the sodium hazard. Figure 4 is a graphic form of this classification system.

The electrical conductivity of water is a sufficiently accurate indirect measurement of the total concentration of dissolved salts to estimate the salinity hazard. Because the relationship between dissolved salts and conductivity is more logarithmic than linear, the left-to-right axis in figure 4 is on a logarithmic scale. The divisions of the salinity hazard are based on the following criteria developed by the U.S. Salinity Staff (1954): (1) most water supplies used successfully for irrigation over long periods of time have had conductivities of less than 2250 micromhos, (per centimeter at 25 degrees C) (2) water in the range of 750 to 2250 micromhos has been used but will produce saline soil conditions if adequate drainage and leaching are not provided and, (3) water with conductivity of less than 750 micromhos is considered satisfactory although conductivity values above 250 micromhos may contain dissolved salts in excess of the tolerance of sensitive crops.

The sodium adsorption ratio (SAR) is a measure of the relative concentration of the ions of calcium, magnesium and sodium. The formula for calculating the SAR is:

$$\text{SAR} = \frac{\text{Na}^+}{\sqrt{(\text{Ca}^{++} + \text{Mg}^{++})/2}}$$

where Ca^{++} , Mg^{++} and Na^+ are the concentrations in milliequivalents per liter of the respective ions. To convert values from milligrams per liter, as shown in table 5, to milliequivalents, multiply those of Ca by 0.04990, Mg by 0.08224, and Na by 0.04350. These ions may become attached (adsorbed) to the clay minerals in the soil when chemical and moisture conditions in the soil are favorable. When the proportion of sodium ions is high, sodium will replace the calcium and

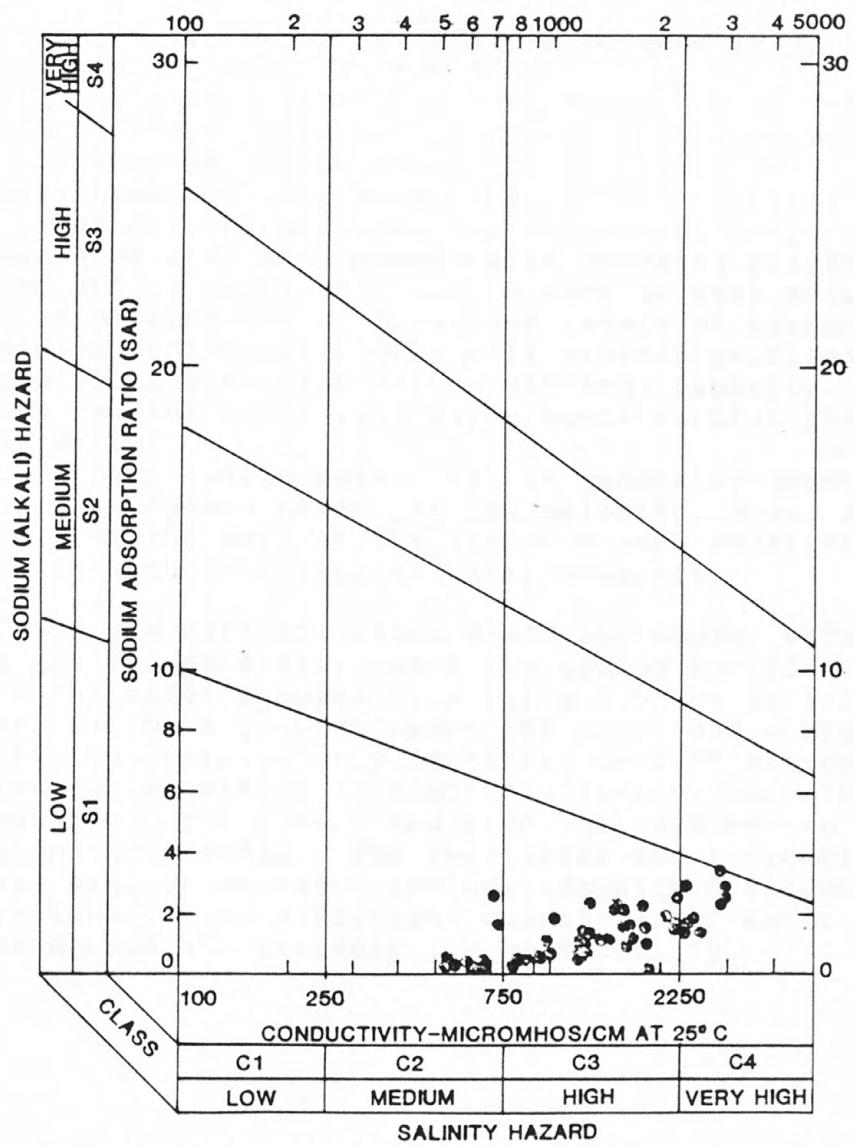


Figure 4. Irrigation classification of water from the Dakota aquifer.

magnesium ions in the clays and the sodium hazard of the soil will rise. When concentrations of calcium and magnesium ions are proportionately high the process will be reversed and the sodium hazard in the soil will be reduced. An alkali-, or sodium-rich soil can be formed by the continuous addition of water with a high SAR.

The following descriptions provide a guide to the use of the diagram on figure 3, summarized from U.S. Salinity Staff, 1954:

Low salinity water (C1) can be used on most crops and soils. Some leaching is necessary, so soils with extremely low permeability may be affected.

Medium salinity water (C2) can be used if soil permeability and drainage are sufficiently high.

High salinity water (C3) should not be used on soils with low permeability. Even with adequate drainage, crops with low salt tolerance may be adversely affected.

Very high salinity water (C4) is not suitable for irrigation water under most conditions. The soils must be permeable, drainage adequate, and considerable leaching provided.

Low sodium water (S1) can be used on most soils with little danger of development of hazardous levels of exchangeable sodium.

Medium sodium water (S2) will present problems in fine-textured soils with high cation exchange capacity.

High sodium water (S3) may produce harmful levels of sodium in most soils.

Very high sodium water (S4) is generally unsatisfactory for irrigation purposes except at low salinity, where solution of calcium from the soil or the use of a soil additive may make irrigation with this type of water possible.

Using the classification described above, water from the Dakota aquifer generally has a low sodium hazard. Figure 3 is a plot of the water samples from table 5. The salinity hazard, however, may be a problem where the water has a high conductivity, particularly in excess of 2250 micromhos/cm. In addition, water with a conductivity greater than 750 micromhos/cm may require specific soil and crop analysis before extensive irrigation is planned. The requisites for irrigation with these marginal classes of water include adequate drainage of the soil and availability of sufficient quantities of water to leach any soil which has a relatively low permeability.

SUMMARY AND CONCLUSIONS

The Dakota aquifer is the most extensive source of large quantities of ground-water in northwestern Iowa. The aquifer is composed of multiple layers of sandstone in the Cretaceous Dakota Formation. For this report Quaternary sand and gravel deposits which are directly in contact with these sandstones are included in the aquifer. Individual sandstone layers are separated by shale and the thickness of the individual sandstone beds varies from a few inches to more than 150 feet. The composite thickness of sandstone is more than 200 feet throughout much of the western and north-central parts of the study area.

The Dakota aquifer is confined by a sequence of overlying Cretaceous shales and limestones and Quaternary till and loess. Beneath the aquifer are shales of the Dakota Formation and Paleozoic shales, carbonate rocks, sandstones and Precambrian crystalline rocks.

Lateral movement of water through the aquifer is from the north-central part of the area to the south, southwest and east. The aquifer is under water-table conditions in the extreme southwestern part of the study area near the Big Sioux and Missouri Rivers. Water recharges the aquifer throughout the study area through overlying confining units. Discharge through the overlying material occurs along the west-central part of the study area beneath the Big Sioux River valley where the potentiometric surface is above the river. Regional gradients indicate flow in the aquifer is toward South Dakota. Discharge from the aquifer occurs along the bluffs of the southern end of the Big Sioux River and along the Missouri River where the Dakota aquifer is exposed at the surface.

The results of pumping tests in the study area indicate the hydraulic conductivity of the Dakota aquifer ranges from 37 to 50 feet per day. For purposes of estimating potential yield throughout the aquifer 40 feet per day was multiplied by the cumulative thickness of sandstone comprising the aquifer. The resulting transmissivity determination was used to estimate the potential yield of the aquifer.

Estimated potential yields to wells completed in the Dakota aquifer exceed 250 gallons per minute throughout much of the study area. The estimates were made assuming only 20 feet of drawdown in pumping wells. Production of greater quantities of water is possible if more than 20 feet of drawdown is acceptable.

The quality of water from the Dakota aquifer is typically a calcium-magnesium sulfate type. Sulfate and dissolved solids are most abundant in the recharge areas. Sulfate concentrations commonly exceed 1000 mg/L and dissolved solids exceed 2000 mg/L in these areas. However, sulfate content is less than 250 mg/L in much of the area with lower hydraulic heads. Evidence, which includes observed hydrogen sulfide gas and pyrite nodules, indicates that the sulfate may be undergoing biochemical reduction within the aquifer.

The quality of water pumped from the Dakota aquifer may be altered by leakage from the underlying Paleozoic aquifers if large withdrawals reverse the natural flow from the Dakota into the Paleozoic aquifers. An example of this reversal may exist near the city of LeMars where water from the Dakota aquifer has a dissolved solids and sulfate content which is abnormally high for the area. This is also the only area where the head in the Dakota aquifer is known to be below that in the aquifers in Paleozoic rocks. In this area, water from aquifers in Paleozoic rocks contains higher concentrations of TDS and sulfate than water from the Dakota aquifer.

There are insufficient data on radionuclides to make a regional interpretation of distribution, but several of the samples indicate radionuclides occur in quantities which exceed the limit for gross alpha activity, radium-226, radium-228, or a combination of these constituents.

The quality of water from the Dakota is generally suitable for irrigation purposes. However, there are areas where the water has a relatively high salinity hazard, as measured by electrical conductivity. In these areas a careful evaluation of soil, drainage, crop tolerances and irrigation rates may be necessary before water from the Dakota aquifer is applied to soils containing a large percentage of clays.

References Cited

Anderson, H. W., Jr., Broussard, W.L., Farrell, D. F., and Felsheim, P. E., 1976, Water resources of the Rock River watershed, southwestern Minnesota: U.S. Geological Survey Hydrologic Investigations Atlas HA-555, 3 plates.

Anderson, H. W., Jr., Broussard, W. L., Farrell, D. F., and Huit, M. F., 1976, Water resources of the Des Moines River watershed, southwestern Minnesota: U.S. Geological Survey Hydrologic Investigations Atlas HA-553, 3 plates.

Bredehoeft, J. D. and Pinder, G. F., 1970, Digital analysis of areal flow in multiaquifer groundwater systems: A quasi three dimensional model: Water Resources Research, v.6 no.3, p. 883-888.

Coble, R. W., 1965, The effects of the Alaskan earthquake of March 27, 1964, on ground water in Iowa: Iowa Academy of Science v. 72, p. 323-332.

Freeze, R. A. and Cherry, J. A., 1979 Groundwater: Englewood Cliffs, N.J., Prentice-Hall, 604 p.

Hansen, R. E., 1978, Bedrock topography of north-central Iowa: U.S. Geological Survey Miscellaneous Investigations Series Map I-1080, 2 plates.

Holtzman, A. F., 1970, Gravity study of the Manson "disturbed area", Calhoun, Pocahontas, Humbolt, and Webster Counties, Iowa: University of Iowa, Unpub. M.S. thesis, 63 p.

Hoppin, R.A. and Dryden, J.E., 1958, An unusual occurrence of Precambrian crystalline rocks beneath glacial drift near Manson, Iowa: Journal of Geology, v.66, no. 6, p 694-699.

Iowa Geological Survey, 1969, Geologic map of Iowa: Iowa Geological Survey, 1:500,000, one sheet.

Kunkle, G. R., 1968, A hydrologic study of the ground-water reservoirs contributing base runoff to Four Mile Creek, east-central Iowa: U.S. Geological Survey Water-Supply Paper 1839-0, 41 p.

Ludvigson, G. A., and Bunker, B. J., 1979, Status of hydrogeologic studies in northwest Iowa: Iowa Geological Survey, Open File Report, September, 1979, 37 p., with Executive Summary, 5 p.

Mackey, Gary W., 1976. Radium-226 and strontium-90 in Iowa groundwater: University of Iowa, Unpub. M.S. thesis, 149 p.

Meyer, R. R., 1963, A chart relating well diameter, specific capacity, and the coefficients of transmissivity and storage, in Bentall, Ray, Methods of determining permeability, transmissibility, and drawdown: U.S. Geological Survey Water-Supply Paper 1536-I, p. 338-340.

National Academy of Sciences-National Academy of Engineering, 1973,[1974], Water quality criteria, 1972: U.S. Environmental Protection Agency, Ecological Research Series, Report EPA R3-73-033, March 1973, 594 p.

Thorstenson, D. C., Fischer, D. W., and Croft, M. G., 1979, The geochemistry of the Fox Hills- Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota: Water Resources Research, v. 15, no. 6, p. 1479-1498.

U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture, Agriculture Handbook no.60, 160 p.

Wahl, K. D., Meyer, M. J. and Karsten, R. A., 1981, Hydrology of the surficial aquifer in the Floyd River basin, Iowa: Iowa Geological Survey Water Supply Bulletin no. 12.

Whitley, D. L., 1980, A stratigraphic and sedimentologic analysis of Cretaceous rocks in northwest Iowa: University of Iowa, Unpub. M.S. thesis, 81 p.

_____ and Brenner, R. L., 1981, Subsurface stratigraphic and sedimentologic analyses of Cretaceous rocks in northwest Iowa, in Cretaceous stratigraphy and sedimentation in northwest Iowa, northeast Nebraska and Southeast South Dakota: Iowa Geological Survey Guidebook Series no. 4, p. 57-75.

Table 1. Major chemical constituents in water, their effects upon usability and their concentration limits

Constituents	Maximum contaminant levels in community water supplies(1)		Effects on usability
	Primary regulations	Proposed secondary regulations	
Iron(Fe)		300 $\mu\text{g/L}$ (2)	If more than 100 $\mu\text{g/L}$ is present, it will precipitate when exposed to air; causes turbidity, stains plumbing fixtures, laundry, and cooking utensils, and imparts tastes and colors to food and drinks. More than 200 $\mu\text{g/L}$ is objectional for most industrial uses.
Manganese(Mn)		50 $\mu\text{g/L}$	More than 200 $\mu\text{g/L}$ precipitates upon oxidation. Causes undesirable taste and dark-brown or black stains on fabrics and porcelain fixtures. Most industrial uses require water containing less than 200 $\mu\text{g/L}$.
Calcium(Ca) and Magnesium(Mg)	Not Applicable		Combine with bicarbonate, carbonate, sulfate and silica to form scale in heating equipment. Retard the suds-forming action of soap and detergent (hardness). High concentration of magnesium has a laxative effect.
Sodium(Na) and Potassium(K)	Not Applicable		More than 50 mg/L sodium and potassium with suspended matter causes foaming, which accelerates scale formation and corrosion in boilers.
Bicarbonate(HCO_3) and Carbonate(CO_3)	Not Applicable		Can combine with calcium and magnesium to form scale.
Sulfate(SO_4)		250 mg/L(3)	Combines with calcium to form scale. More than 500 mg/L tastes bitter and may be a laxative.
Chloride(Cl)		250 mg/L	In excess of 250 mg/L may impart salty taste, greatly in excess may cause physiological distress. Food processing industries usually require less than 250 mg/L.
Fluoride(F)	Limits very from 1.8 to 2.2 mg/L based on average maximum daily air temperatures.		Optimum concentration has a beneficial effect on the structure and resistance to decay of children's teeth. Excess concentrations may cause mottling of children's teeth.
Nitrate(NO_3)	45 mg/L		Concentrations in excess of 45 mg/L are reported to cause methemoglobinemia in infants.
Dissolved solids		500 mg/L	Less than 300 mg/L is desirable for some manufacturing processes. Excessive dissolved solids restrict the use of water for irrigation.

Table 1.--Continued

Constituents	Primary regulations	Proposed secondary regulations	Effects of usability
Radionuclides			
Radium (radium-226 and radium-228 combined)	5 pCi/L(4)		Radionuclides in drinking water are estimated to increase the risk of various forms of cancer. Radioactivity is monitored through a screening process. When gross activity exceeds 5 pCi/L, an equivalent sample is analyzed for radium-226; if the concentration of radium-226 exceeds 3 pCi/L, an equivalent sample is analyzed for radium-228. The combined radium-226 and radium-228 should not exceed 5 pCi/L. The gross alpha activity (including radium-226, but excluding radon and uranium) should not exceed 15 pCi/L.
Gross alpha activity	15 pCi/L		

(1)-National Interim Primary Drinking Regulations (Federal Register, v. 40, no. 248 and v. 41, no. 133) and Proposed Secondary Drinking Water Regulations (Federal Register, v. 42, no. 62).

(2)- μ g/L-micrograms per liter.

(3)-mg/L-milligrams per liter.

(4)-The State may require annual monitoring of supplies that exceed 3 pCi/L radium-226. (pCi/L-picocuries per liter).

Table 2. Logs of selected test holes

Included is a representative selection of test holes drilled for this project. All test holes which are specifically referred to in the text or used in cross sections have been included. Descriptions of materials are field observations provided by the Iowa Geological Survey.

At the top of each log is the identification used by the Iowa Geological Survey.

Altitude datum is the National Geodetic Vertical Datum of 1929 (NGVD, 1929)

Depths are shown in feet below land surface.

Natural gamma radiation logs are uncalibrated.

LOCATION: 87-41-05CCCC1

ALTITUDE: 1344
(FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: November 23, 1977

DEPTH: 510
(FEET)

DESCRIPTION OF MATERIALS

	QUATERNARY
0-13	Loess, yellow-brown
13-15	Gumbo, brown and gray
15-16	Till, dark yellow-brown
16-26	Clay, silty, yellow-brown
26-31	Clay, silty, yellow-gray
31-40	Till, light yellow-brown with some gray
40-68	Till, yellow-brown with boulders and gravel
68-73	Sand and gravel, fine grained, yellow-brown
73-76	Till, yellow-brown
76-137	Till, blue-gray
137-155	Clay, some sand, gray with some gray-green clay
155-195	Clay or till, yellow-gray
195-241	Clay or till, blue-gray
241-273	Clay or till, silty, blue-gray
	CRETACEOUS
273-280	DAKOTA FORMATION Sandstone, very fine, silty, tan to gray
280-312	Sandstone, fine to coarse grained, cemented, gray-green
312-341	Shale, interbedded sandstone, gray to gray-green
341-355	Shale, maroon
355-401	Shale, maroon and light-gray
401-427	Shale, maroon, lignite, and sandstone
427-435	Sandstone
435-442	Shale, maroon and gray
442-452	Sandstone, fine to coarse grained
452-470	Shale, maroon, some very thin sandstones
470-494	Sandstone, fine to medium grained
	PALEOZOIC UNDIFFERENTIATED
494-510	Limestone, light tan and light gray

LOCATION: 087-44-15GBBB1
 ALTITUDE: 1165
 (FEET, NGVD 1929)

DATE COMPLETED: October 26, 1979
 DEPTH: 281
 (FEET)

INCREASING NATURAL GAMMA RADIATION

DESCRIPTION OF MATERIALS

QUATERNARY

0-30 Loess, brown and tan
 30-35 Clay, sandy, brown and tan
 35-38 Clay, sandy, gray
 38-49 Sand and gravel, fine sand, fine to coarse gravel, slightly oxidized
 49-50 Clay, sandy, hard, yellow and tan
 50-60 Clay, sandy, silty, hard, tan
 60-66 Clay, silty, gray to light-gray
 66-82 Sand and gravel, fine-grained, yellow-brown
 - 100 82-84 Clay, sandy, gray
 84-120 Sand and gravel, fine-grained, some clay layers, yellow-brown

CRETACEOUS

DAKOTA FORMATION

120-142 Sandstone, fine to medium grained at top to medium to coarse at base, oxidized, brown
 142-160 Shale, silty, thin layers of sandstone, gray
 160-170 Sandstone, fine-grained, interbedded shale and lignite
 170-195 Sandstone, medium to coarse grained, tan
 195-196 Dolomite, brown
 196-198 Shale, light gray
 198-204 Shale, reddish-brown
 204-221 Shale, gray to black at base, some lignite
 221-226 Shale, light gray
 226-228 Shale, yellow-gray to reddish-brown
 228-231 Shale, light gray
 231-235 Shale, yellow-brown
 235-245 Shale, silty, sandy, interbedded very fine sandstone, gray
 245-259 Shale, silty, sandy, lignite, interbedded sandstone, gray and brown
 - 350 259-262 Shale, reddish-brown
 262-265 Shale, maroon
 265-268 Shale, reddish-brown at top, grading to light gray
 268-273 Shale, very sandy, limestone layers, very light-gray
 - 400 273-275 Shale, red and yellow-brown
 275-276 Shale, light gray

PALEOZOIC UNDIFFERENTIATED

276-278 Limestone, tan and brown
 278-281 Limestone, light colored, losing fluid

- 450

- 500

- 550

- 600

LOCATION: 088-37-22CCCD

ALTITUDE: 1320
(FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION


DATE COMPLETED: July 10, 1978

DEPTH: 435
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY	
0-5	Top soil and loess
50	5-48 Till, yellow-brown
100	48-66 Till, blue-gray and olive, with fine sand layers at base (Boulder at 55 feet)
150	66-95 Till, silty, sandy, blue-gray
150	95-120 Sand, fine to coarse, some blue-gray till and wood, trace of gravel at base
150	120-132 Sand and gravel, fine to medium, occasional boulder
150	132-135 Till, blue-gray
150	135-140 Till, yellow-brown, occasional boulder
150	140-163 Till, blue-gray, occasional boulder, layer of sand at 155 ft
200	163-166 Sand and gravel, fine, some till
200	166-174 Till, blue-gray, occasional boulder
200	174-183 Sand and gravel, fine to coarse
250	
300	183-315 Till, blue-gray, in places silty, sandy and gravelly
350	
390	315-390 Till, yellow-gray and blue-gray
400	CRETACEOUS
400	DAKOTA FORMATION
390	390-399 Shale, gray, silty
399	399-428 Sandstone, tan, medium to coarse
428	PALEOZOIC UNDIFFERENTIATED
428	428-435 Limestone, brown and gray, some pyrite and chert
450	
500	
550	
600	

LOCATION: 088-44-06BAAB

ALTITUDE: 1340
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: October 8, 1979

DEPTH: 521
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-4 Loess, yellow-brown
 4-15 Loess, dark brown to brown
 15-40 Till, yellow-brown to yellow-gray
 with thin sand
 40-47 Till, gray
 47-53 Till, yellow-brown
 53-61 Sand and gravel, fine to medium,
 yellow-brown
 61-67 Sand, fine with till layers
 - 100 67-131 Till, gray with yellow, blue and
 olive
 131-135 Sand and gravel, fine to coarse,
 gray
 135-140 Till, gray with sand and gravel
 layers
 140-148 Sand and gravel, fine to coarse
 with till layers
 148-168 Till, gravelly, blue-gray with
 sand and gravel layers
 168-178 Sand and gravel, fine to coarse,
 gray
 - 200 178-210 Till, blue-gray
 210-221 Sand, fine to coarse, cemented,
 gray

CRETACEOUS
DAKOTA FORMATION

- 250 221-285 Sandstone, fine to medium, gray,
 some shale streaks
 285-286 Dolomite or limestone
 286-303 Sandstone, fine to medium, gray
 303-320 Sandstone, fine to medium, tan
 - 300 320-379 Sandstone, fine to coarse, tan
 - 350 379-381 Shale, silty, gray
 381-401 Sandstone, fine to medium, tan
 401-409 Shale, silty, gray
 409-415 Sandstone, coarse, brown, some
 shale
 415-423 Sandstone, very coarse
 423-425 Sandstone, coarse, hard, brown
 425-430 Sandstone, coarse to medium, tan
 - 400 430-432 Sandstone, medium, hard, brown
 432-445 Sandstone, coarse, tan, gray
 shale at base
 445-452 Sandstone, fine to medium with
 some shale, dolomite at base
 452-455 Shale, very light gray with sand-
 stone layers
 455-470 Shale, silty, gray
 470-471 Dolomite or limestone, brown
 471-498 Sandstone, fine and shaly at top
 to fine to medium at base, tan
 498-499 Shale, silty and sandy, light
 gray
 499-506 Shale, sandy and silty, gray to
 reddish-brown
 506-512 Shale, silty, sandy, very light
 gray
 - 550 PALEOZOIC UNDIFFERENTIATED
 512-516 Limestone, fractured with some
 shale and sandstone
 516-521 Limestone, fractured, coarse
 grained

600

LOCATION: 089-38-36 CBCC

ALTITUDE: 1445
(FEET, NGVD 1929)

DATE COMPLETED: July 18, 1978

DEPTH: 521
(FEET)INCREASING NATURAL GAMMA RADIATION

DESCRIPTION OF MATERIALS

QUATERNARY

0-4 Topsil, dark
4-8 Loess, sandy, yellow-tan
8-24 Till, yellow-brown to yellow-gray
24-37 Till, blue-gray
- 50
37-88 Till, yellow-brown to olive, boulder at 74 feet
- 100
88-104 Till, blue-gray
104-108 Till, sandy, yellow-brown to olive
108-113 Till, blue-gray
113-120 Till, sandy, olive
- 150
120-153 Till, blue-gray
153-154 Clay, silty, dark brown
154-160 Clay, blue-gray, few sand grains
160-170 Till, light blue-gray to yellow-brown
170-195 Till, yellow-brown, boulder at 189 feet
- 200
195-200 Sand, fine to medium, some till
200-206 Till, yellow-brown
206-220 Till, blue-gray

- 250

220-305 Till, some gravel, blue-gray
305-335 Clay, silty, sandy, hard, light gray to yellow-brown at base

CRETACEOUS
DAKOTA FORMATION

335-341 Shale, silty, gray

- 350

341-390 Sandstone, fine to medium, yellow-brown
- 400

390-430 Sandstone, fine, tan grading to brown

- 450

430-452 Sandstone, fine grading to medium, tan
452-456 Shale, sandy, silty, gray
456-460 Shale, gray and maroon

- 500

460-490 Shale, gray to light gray
490-510 Shale, silty, sandy, gray
PALEOZOIC UNDIFFERENTIATED
510-518 Limestone, shaly, brown
518-521 Dolomite, coarse, dark brown

- 550

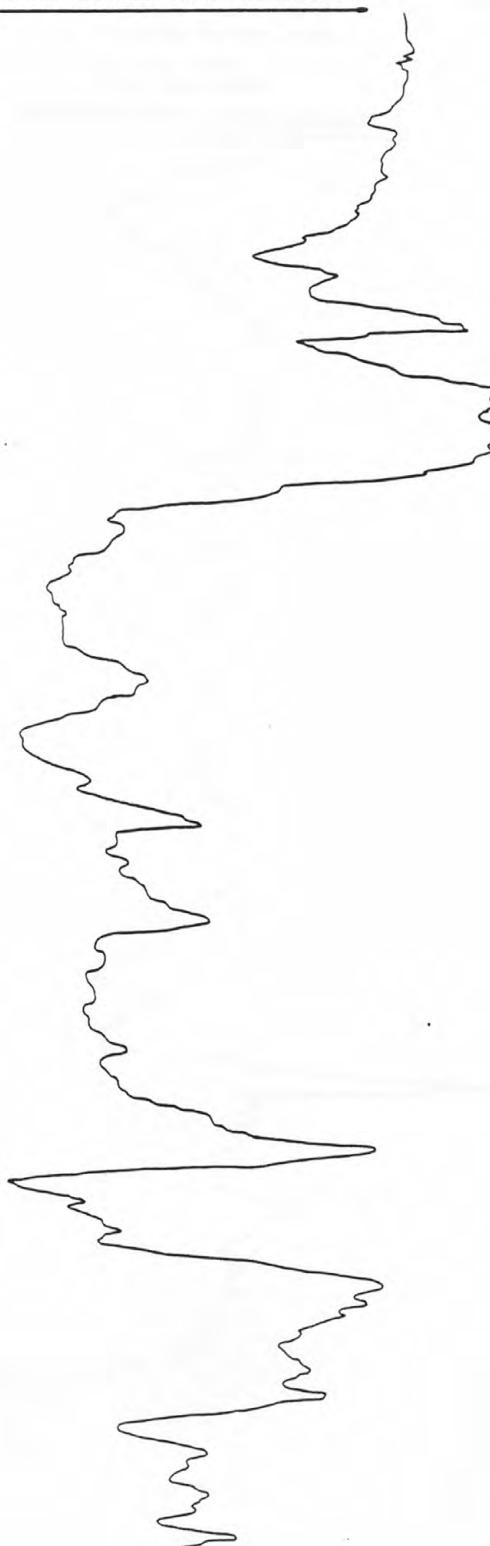
- 600

LOCATION: 089-39-14DDD
 ALTITUDE: 1330
 (FEET, NGVD 1929)

DATE COMPLETED: June 22, 1978
 DEPTH: 375
 (FEET)

DEPTH (FEET)	DESCRIPTION OF MATERIALS
QUATERNARY	
0-3	Topsoil, black
3-5	Till, brown
5-8	Sand and gravel, tan
8-10	Clay, sandy, silty, brown
10-11	Till, yellow-tan
11-15	Sand, fine to coarse, tan to yellow-brown
15-22	Sand and gravel, fine to coarse, yellow-brown
22-50	Till, blue-gray and olive
50-107	Till, gray-brown to blue-gray
107-113	Till, light gray to light yellow-gray
113-167	Clay, silty, very little sand, tan
167-200	Sand, fine to medium, cemented, brown to gray-brown
200-207	Sand, fine to coarse, cemented, red-brown
CRETACEOUS	
DAKOTA FORMATION	
207-210	Sandstone, fine, brown
210-213	Shale, silty, gray
213-244	Sandstone, fine to medium, brown, some shale
244-267	Shale, silty, gray and red
267-280	Sandstone, fine to medium, tan
280-310	Sandstone, medium to coarse, tan
310-320	Sandstone, coarse, tan to yellow-brown
320-332	Sandstone, medium, yellow-brown
332-352	Shale, some silty, light gray and maroon
352-362	Shale, some sandstone and dolomite, light gray to gray
362-375	Sandstone, fine, tan, some shale

LOCATION: 089-44-20DGDC
 ALTITUDE: 1160
 (FEET, NGVD 1929)


DATE COMPLETED: October 1, 1979
 DEPTH: 221
 (FEET)

INCREASING NATURAL GAMMA RADIATION

DESCRIPTION OF MATERIALS	
QUATERNARY	
0-5	Clay, sandy, silty, tan
5-15	Sand, fine to coarse, tan
15-32	Sand, fine to gravel, coarse tan to yellow-brown
32-38	Till, yellow-brown grading to blue-gray at base
38-50	Sand and fine gravel, tan to yellow-brown
50-70	Sand and medium gravel
70-71	Clay, tan
71-79	Sand, fine to coarse
79-81	Clay, tan
81-110	Sand and gravel, fine to medium, yellow-brown and tan
CRETACEOUS	
DAKOTA FORMATION	
110-221	Sandstone, medium to coarse

LOCATION: 089-46-36BBDC1

ALTITUDE: 1268
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: June 20, 1979

DEPTH: 557
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-20 Loess, iron concretions, yellow-brown

50-50 Loess, iron concretions, yellow-brown, some gray, lighter colors at base

50-60 Loess, yellow-brown and gray

60-76 Loess, silty, blue and gray

76-79 Gravel and till, yellow-brown and gray

CRETACEOUS

DAKOTA FORMATION

79-88 Sandstone, fine to medium, 79-80 and 85-88 iron cemented

88-96 Shale, silty, tan to gray

96-105 Sandstone, very fine, some shale, light yellow-brown

105-111 Shale, silty, gray

111-115 Sandstone, fine to very fine, pyrite nodules, tan

115-175 Shale, silty, some pyrite and lignite, gray to brown

175-245 Sandstone, fine to medium, tan

245-290 Sandstone, medium to coarse

290-320 Sandstone, fine to medium, tan

320-328 Sandstone, medium to coarse, tan

328-331 Shale, silty, light-gray

331-360 Sandstone, fine to medium, tan

360-373 Sandstone, medium to coarse, tan

373-374 Dolomite or limestone, brown

374-377 Sandstone, silty, shaly, gray

377-396 Sandstone, medium to coarse, tan

396-400 Limestone, fractured, some sand

400-405 Dolomite or limestone, coarse sandstone

405-501 Shale, silty, yellow, gray, maroon, some lignite and thin sandstone layers

501-512 Sandstone, medium to coarse

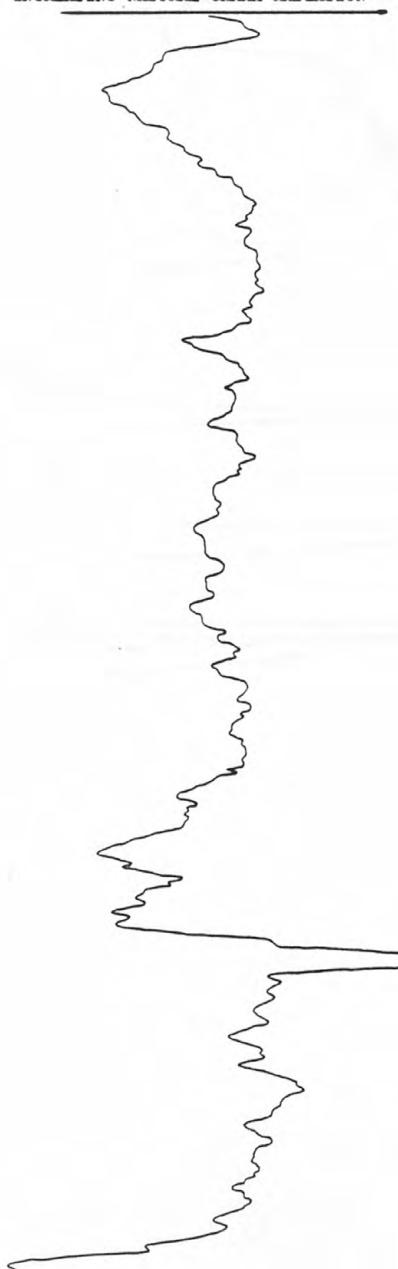
512-513 Dolomite, light tan

513-517 Shale, silty, gray

517-525 Shale, chert, limestone and sandstone all mixed

PALEOZOIC UNDIFFERENTIATED

525-535 Shale, sandy, some limestone and chert


535-539 Limestone, shaly

539-557 Limestone, some shale

LOCATION: 090-38-16DDDD

ALTITUDE: 1365
(FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: April 24, 1979

DEPTH: 517
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-4 Topsoil, loess or clay
4-16 Till, yellow-brown to olive
16-35 Till, boulders, blue-gray- 50 35-52 Sand and gravel, fine to coarse
52-58 Till, sandy, silty, blue-gray
58-61 Sand and gravel, cemented, brown

- 100

- 150 61-312 Till, boulders, some gravel, blue-gray with streaks of olive and yellow-brown

- 200

- 250 312-324 Sand and gravel, mostly fine, well cemented, brown

- 300

CRETACEOUS
DAKOTA FORMATION

324-340 Sandstone, fine, tan to brown, shale streaks

- 350 340-375 Sandstone, fine to medium, hard, some shale, gray
375-380 Shale, silty, yellow-brown
380-384 Sandstone, fine, tan to brown

- 400

384-405 Shale, light-gray with maroon streaks

- 450

405-490 Shale, reddish-brown to light-gray

- 500

490-500 Shale, silty, sandy, light-gray to reddish-brown
PALEOZOIC UNDIFFERENTIATED
500-504 Limestone, tan, some pyrite
504-517 Limestone and dolomite, tan to brown

- 550

- 600

LOCATION: 090-40-06BDCD

ALTITUDE: 1182
(FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: August 30, 1977

DEPTH: 293
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-5 Clay, silty, sandy, yellow-tan
5-15 Sand and gravel, some clay, yellow-brown
15-29 Sand and gravel, tan
29-37 Till, orange at top to blue-gray
37-85 Clay, some sand, blue-gray and gray-green mixed

85-92 Sand, fine, gray
92-109 Sand, fine to coarse, gray-green
109-112 Clay, soft, blue-gray
112-119 Sand, fine to coarse with gray-green clay layers

CRETACEOUS

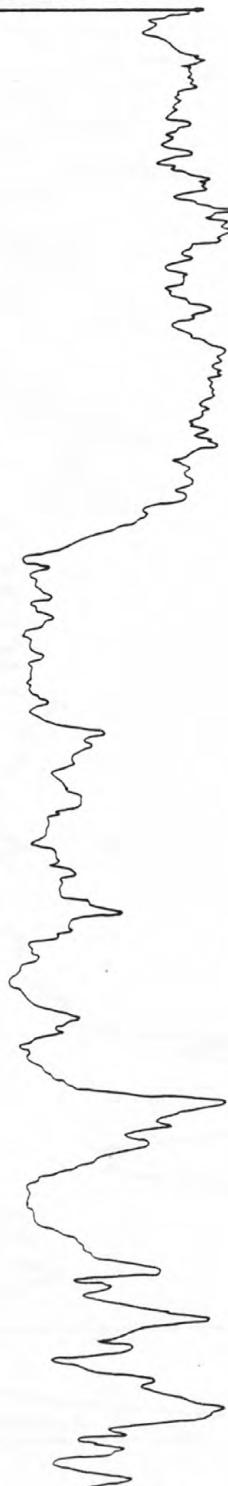
DAKOTA FORMATION

119-140 Sandstone, fine to medium, yellow to tan
140-177 Sandstone, fine to coarse, tan to yellow
177-180 Shale, silty, gray

180-215 Sandstone, fine to medium, tan
215-224 Sandstone, medium to coarse, yellow-tan
224-230 Shale, silty, gray-tan
230-244 Sandstone, fine to medium, tan
244-245 Shale, light gray
245-260 Sandstone, fine to medium
260-265 Sandstone, medium to very coarse
265-278 Shale, silty; gray to light gray

PALEOZOIC UNDIFFERENTIATED

278-293 Limestone, tan to brown


- 50 -
- 100 -
- 150 -
- 200 -
- 250 -
- 300 -
- 350 -
- 400 -
- 450 -
- 500 -
- 550 -
- 600 -

LOCATION: 090-45-28CCD
 ALTITUDE: 1300
 (FEET, NGVD 1929)

DATE COMPLETED: September 12, 1979
 DEPTH: 487
 (FEET)

DEPTH (FEET)	DESCRIPTION OF MATERIALS
QUATERNARY	
0-10	Topsoil and loess with iron concretions, yellow-tan
10-15	Loess, dark yellow-brown
15-18	Loess, yellow-brown, sandy at bottom
18-23	Till, dark brown to yellow-brown
23-30	Till, yellow-gray to olive
30-115	Till, silty, blue-gray
115-135	Sand and gravel, coarse, boulders, yellow-brown
135-137	Clay, silty, tan
137-159	Sand and gravel, fine to medium, yellow-brown
159-189	Till, gray
189-193	Sand, fine to medium, gravel, gray
193-199	Clay, gray
CRETACEOUS	
DAKOTA FORMATION	
199-203	Shale, silty, gray to gray-tan
203-211	Sandstone, fine to medium, tan
211-217	Shale, silty, light gray to gray
217-235	Shale, silty, pyrite, lignite, gray-brown
235-250	Shale, silty, light gray, red-brown and yellow-brown
250-265	Shale, silty, few sandstone layers, light gray and maroon
265-275	Sandstone, very fine, shale layers
275-295	Shale, sandy, some sandstone layers, pyrite, light gray
295-298	Shale, silty, gray to gray-brown
298-335	Sandstone, fine to medium, tan
335-374	Sandstone, medium to coarse, tan
374-378	Shale, silty, gray
378-380	Sandstone, fine, tan
380-383	Shale, silty, gray
383-390	Sandstone, fine to medium, hard, some shale
390-480	Sandstone, medium to coarse, tan
PALEOZOIC UNDIFFERENTIATED	
480-487	Limestone and chert, yellow-brown and tan

LOCATION: 091-39-01ADAD1

ALTITUDE: 1370
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: June 6, 1979

DEPTH: 1545
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

5-14 Till, sand and gravel, very light brown

- 50 14-80 Till, sand and gravel, very light yellow
80-90 Till, very light brown, gray
90-96 Till, sandy, pebbles, light gray
96-100 Till, very light yellow-orange

- 100 100-120 Till, very light yellow-orange to light olive-gray

- 150 120-170 Till, sand and gravel, light medium gray

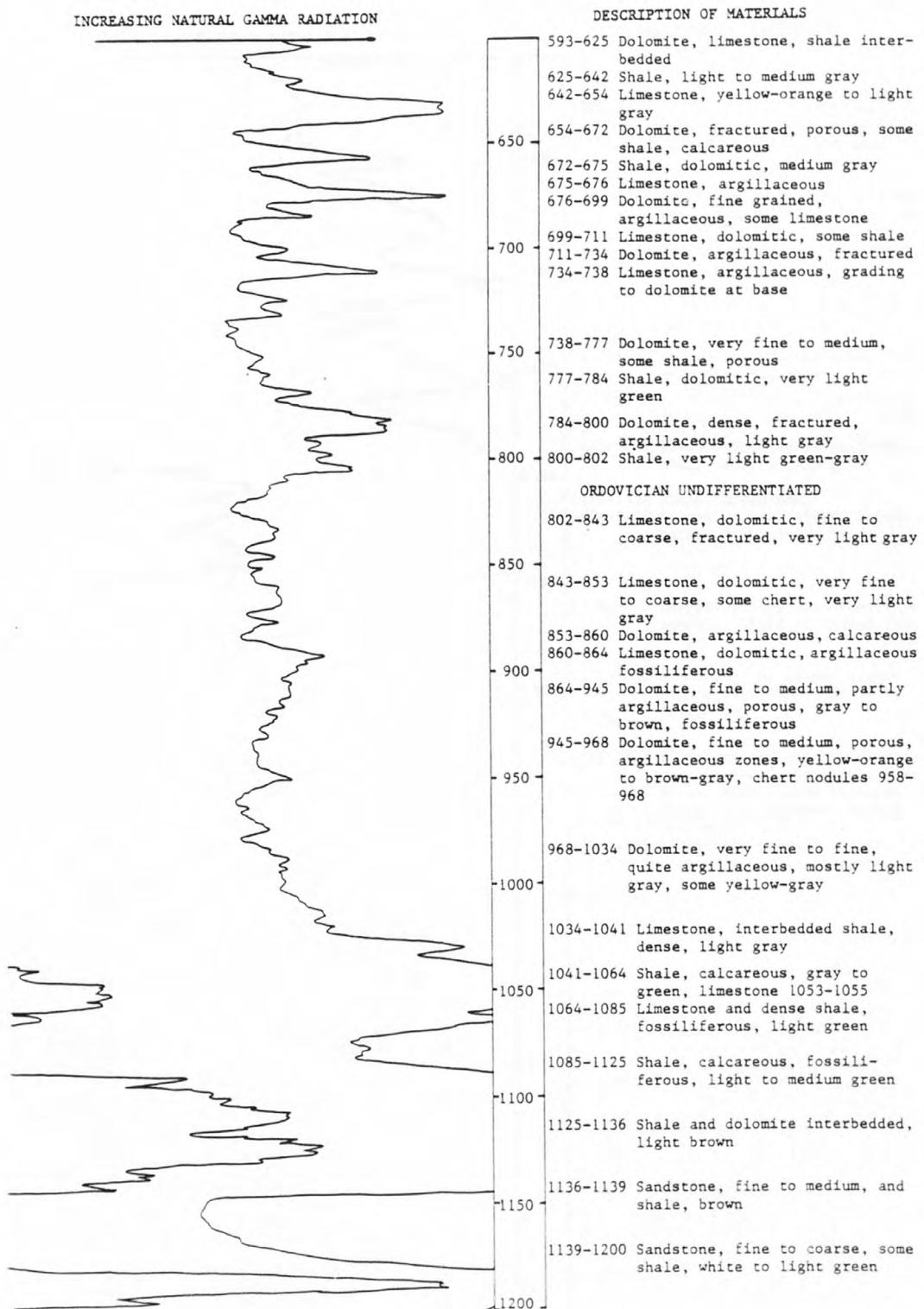
- 200 170-215 Till, sand and gravel, very light orange-brown
215-225 Sand, fine to very coarse, calcareous

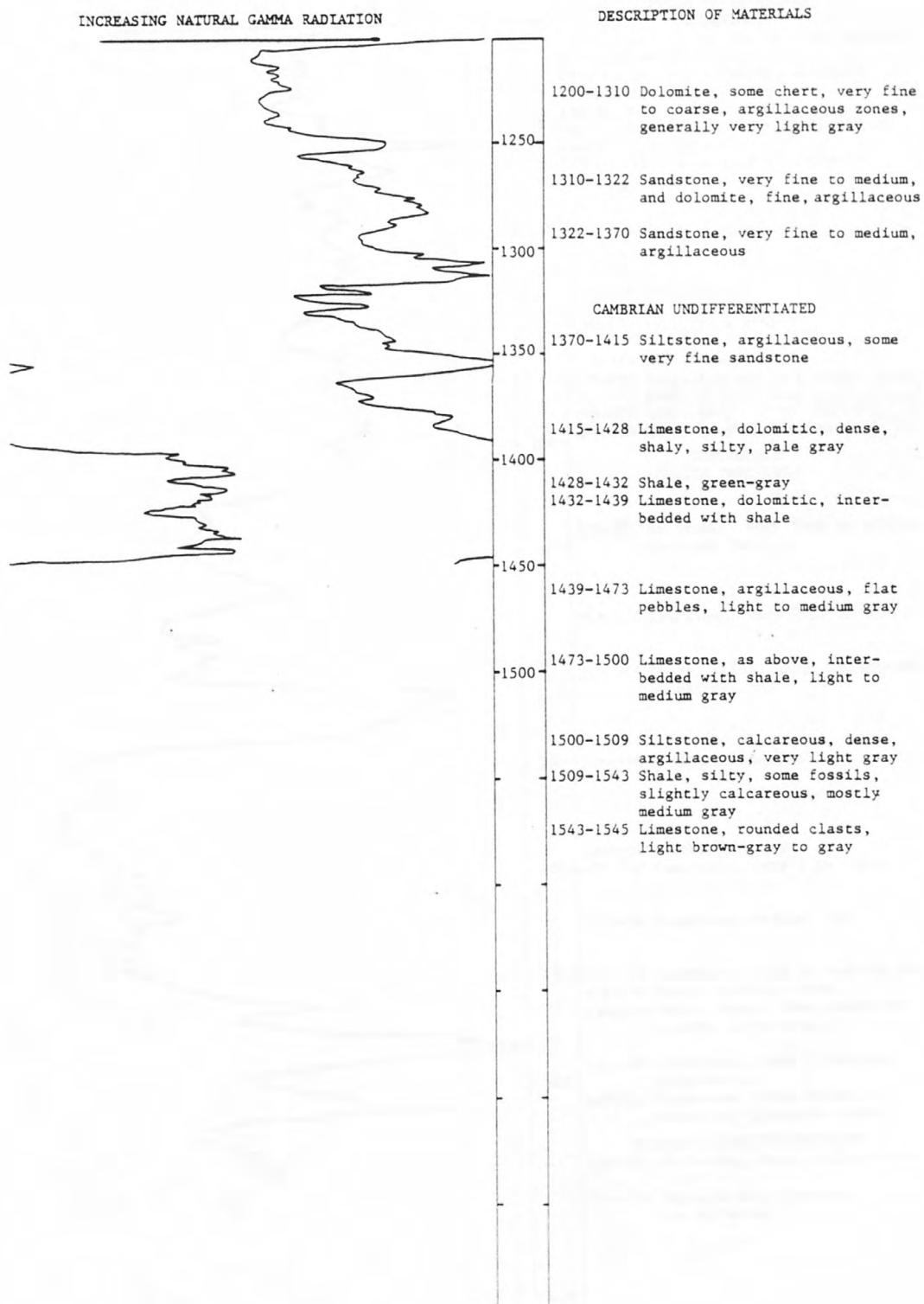
CRETACEOUS

DAKOTA FORMATION

225-241 Sandstone, very fine to fine, some clay, dark gray to medium brown
241-253 No sample
253-273 Sandstone, very fine to fine, light gray to light orange
273-290 Sandstone, very fine to medium, red-brown
290-293 No sample
293-303 Sandstone, coarse, dark red-brown- 350 303-343 Sandstone, very fine to fine, some medium, micaceous, yellow-orange
343-363 Sandstone, fine to medium, partly hematite cement, orange-yellow
363-393 Sandstone, fine to medium, clay bands- 400 393-413 Clay, some sandstone, very light gray
413-443 Sandstone, very fine to medium, cemented, some clay, gray
443-457 Clay, white to pale gray, some sand
- 450 457-473 Clay, sandy, some chert, white to light olive-gray

PALEOZOIC


MISSISSIPPIAN


- 500 473-508 Dolomite, porous, fossiliferous, yellow-orange to light gray at bottom

DEVONIAN

508-529 Dolomite, argillaceous, sand filling fractures at top, gray to green
- 550 529-537 Shale, dolomitic, green
537-544 Dolomite, brecciated, shale in bottom 2 feet
544-593 Limestone, fractured and shale, gray-green

600

LOCATION: 091-42-16DDDD

ALTITUDE: 1320
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: April 13, 1979

DEPTH: 576
(FEET)DESCRIPTION OF MATERIALSQUATERNARY

0-7 Clay, silty, tan to light yellow-brown
 7-9 Clay, silty, sandy, blue-gray
 9-30 Till, yellow-brown
 30-36 Till, yellow-gray
 36-40 Till, blue-gray to yellow-gray
 40-49 Till, yellow-gray
 49-60 Till, blue-gray to olive

- 50 60-142 Till, blue-gray

- 100 142-150 Sand and gravel, fine, tan

- 150 150-173 Till, blue-gray

173-176 Clay, gumbo, gray
 176-195 Till, tougher than above, blue-gray

195-200 Clay, gray
 200-220 Till, gray to blue-gray

CRETACEOUS
DAKOTA FORMATION

- 250 220-261 Sandstone, very fine to medium, gray and tan

- 300 261-312 Sandstone, very fine to fine, tan

- 350 312-335 Shale, silty, hard, interbedded sandstone, tan

- 400 335-406 Sandstone, medium, tan

- 450 406-407 Limestone, hard

- 407-410 Sandstone, very fine, hard

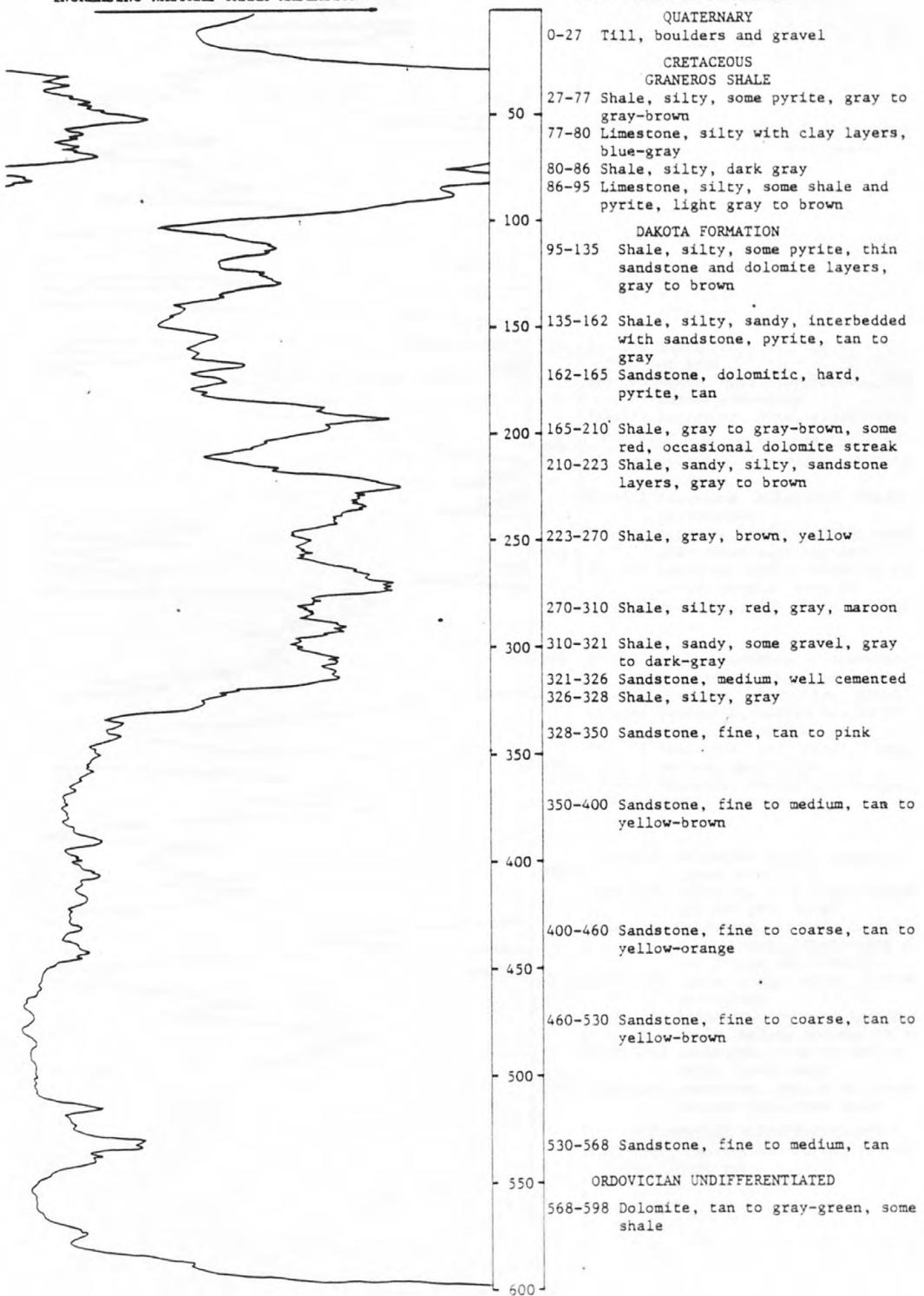
- 500 410-450 Sandstone, medium, tan

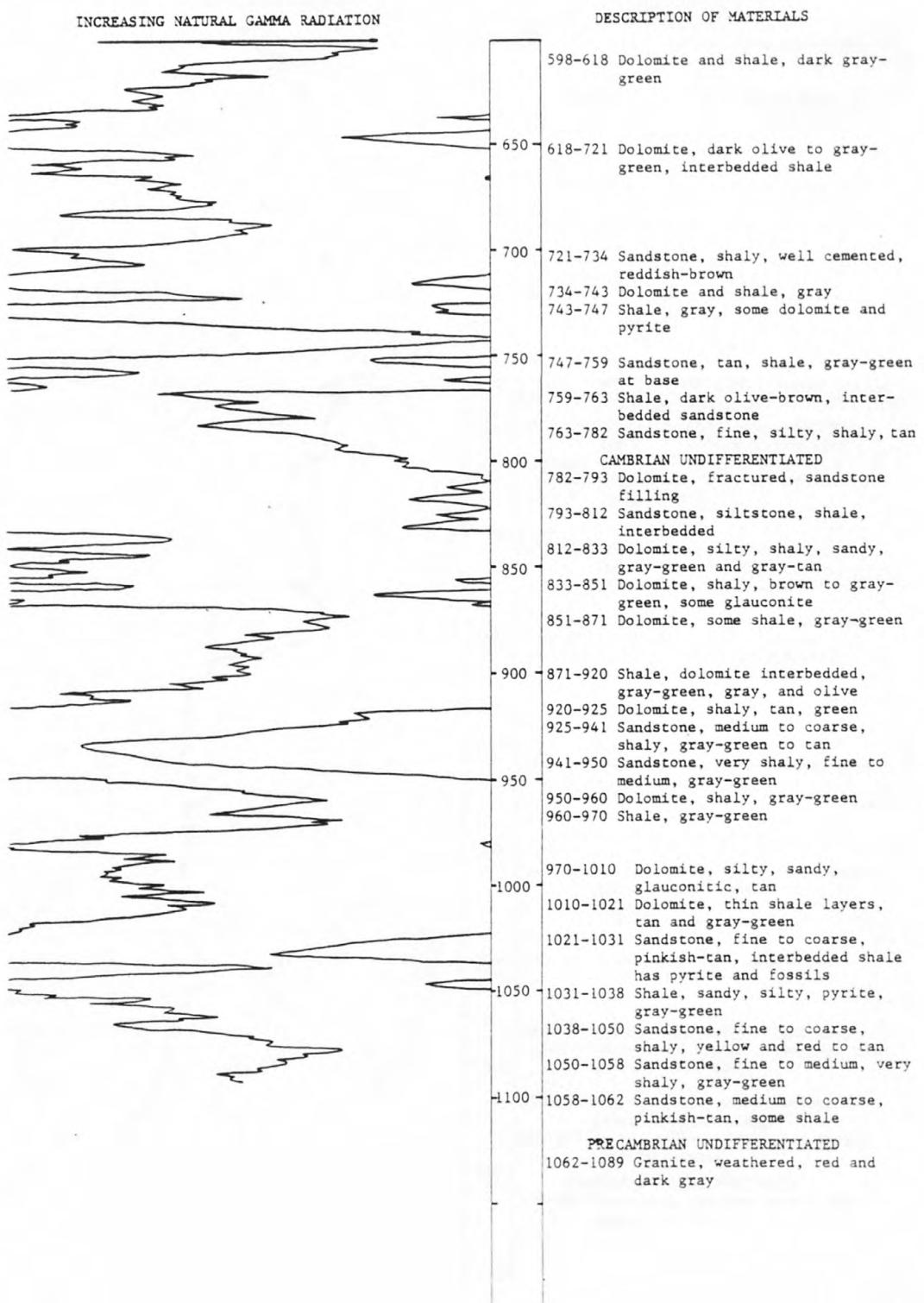
- 550 450-478 Sandstone, fine to medium, tan
 478-490 Shale, reddish-brown
 490-510 Shale, sandy, some sandstone layers, light-gray

- 510-540 Sandstone, fine to medium, pinkish-tan

540-550 Sandstone, fine to medium, with shale and limestone layers

PALEOZOIC UNDIFFERENTIATED

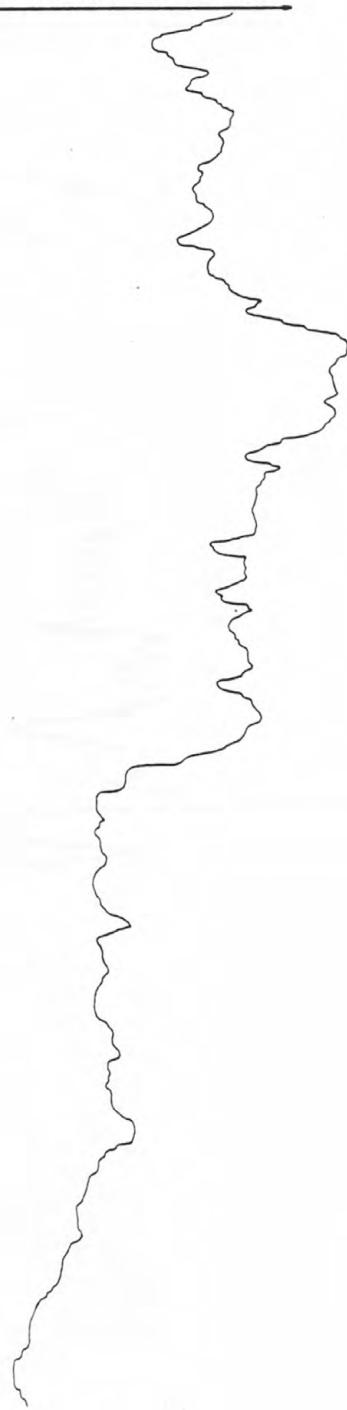

550-554 Sandstone, hard, yellow-brown


- 550 554-576 Dolomite and limestone, chert, tan to brown

LOCATION: 092-45-02CBCB1
 ALTITUDE: 1245
 (FEET, NGVD 1929)

DATE COMPLETED: October 11, 1978
 DEPTH: 1089
 (FEET)

INCREASING NATURAL GAMMA RADIATION



LOCATION: 092-48-06DDDA1

ALTITUDE: 1282
(FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: November 1979

DEPTH: 581
(FEET)DESCRIPTION OF MATERIALS
QUATERNARY

0-10 Loess, sandy, tan
10-35 Sand and gravel, fine to medium, tan to pink
35-36 Clay, tan-gray
36-42 Sand and gravel, tan to pink
42-72 Clay, some sandy or silty, tan to gray
72-78 Clay, silty, yellow-brown
78-95 Clay, silty, sand, gray
95-106 Sand, fine to medium, some cemented
106-110 Clay, sandy, blue-gray, possibly till

CRETACEOUS
GREENHORN LIMESTONE

110-130 Limestone, shaly, fossiliferous, dark colored

GRANEROS SHALE

130-175 Shale, silty, some siltstone, pyrite, dark gray

DAKOTA FORMATION

175-216 Shale, silty, sandy, siltstone, pyrite, dolomite at 203 feet
216-218 Coal, very dark shale
218-228 Sandstone, fine, pyrite, interbedded shale

228-285 Shale, sandy, silty, some thin dolomite and siltstone beds, pyrite, trace of lignite

285-302 Shale, silty, gray to blue-gray
302-303 Sandstone, fine to medium
303-314 Shale, silty, some dolomite

314-448 Sandstone, fine to medium, some coarse, tan

448-480 Shale, sandy, silty, some sandstone layers, gray

480-487 Sandstone, fine, some shale

487-500 Shale, very sandy, light gray
500-531 Sandstone, medium to coarse, pink to tan, thin shale

531-555 Shale, silty, sandy, maroon to gray, some limestone
555-575 Shale, silty, maroon and gray, some limestone

PALEOZOIC UNDIFFERENTIATED

575-581 Limestone, tan and shale, gray-green

LOCATION: 093-35-19DCBB
 ALTITUDE: 1322
 (FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: May 30, 1979

DEPTH: 381
 (FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-5 Clay, sandy, topsoil
 5-30 Sand and gravel, fine to coarse, brown to yellow-brown
 30-46 Till, gravelly, blue-gray
 46-55 Sand and gravel, fine, yellow-brown
 55-57 Till, blue-gray
 57-67 Sand and gravel, fine, yellow-brown
 67-75 Till, yellow-brown
 75-86 Till, some gravel, blue-gray
 86-89 Sand and gravel, fine, yellow-brown

- 100 -

89-161 Till, boulders, gravel, blue-gray

- 150 -

161-171 Till, yellow-brown
 171-174 Sand and gravel, yellow-brown

- 200 -

174-220 Till, gravelly, yellow-brown to yellow-gray
 220-243 Till, some gravel, blue-gray

CRETACEOUS

DAKOTA FORMATION

243-249 Sandstone, tan, some shale
 249-256 Shale, silty, light gray
 256-285 Shale, maroon to red-brown

- 250 -

285-290 Sandstone, fine grading to coarse
 290-318 Shale, silty, some sand, light gray to red-brown
 318-325 Sandstone, fine to medium, shale streaks, lignite
 325-341 Shale, sandstone streaks, silty, very light gray

- 300 -

PALEOZOIC UNDIFFERENTIATED

341-381 Chert and dolomite, tan

- 350 -

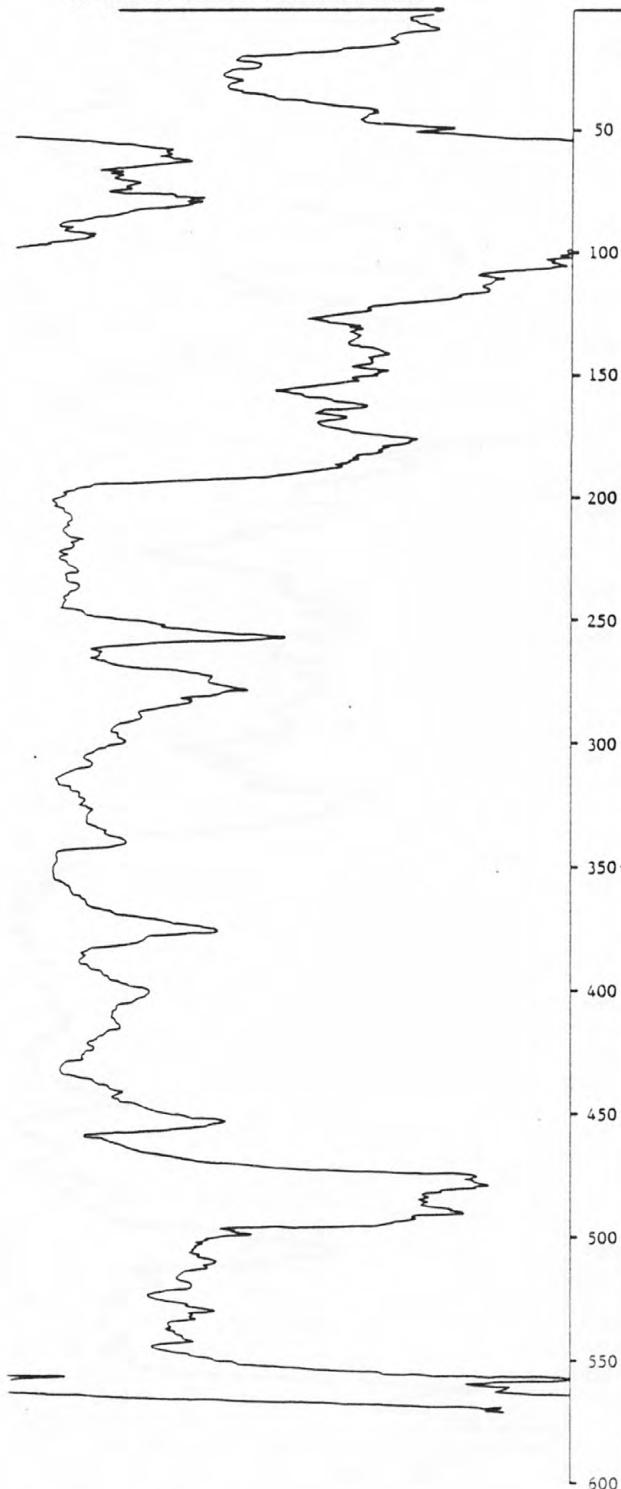
- 400 -

- 450 -

- 500 -

- 550 -

- 600 -


LOCATION: 093-44-36CCC
 ALTITUDE: 1350
 (FEET, NGVD 1929)

DATE COMPLETED: April 26, 1978
 DEPTH: 645
 (FEET)

DEPTH (FEET)	DESCRIPTION OF MATERIALS
QUATERNARY	
0-2	Topsoil
2-8	Loess, tan to yellow-brown
8-10	Sand and gravel, till mixed, yellow-brown
10-12	Till, yellow-brown
12-16	Clay, gumbo, gray
16-40	Till, yellow-brown
40-42	Sand and gravel, fine to medium, yellow-brown
42-43	Till, yellow-brown
43-45	Sand and gravel, till mixed, iron oxide
45-50	Till, gravelly, yellow-brown and gray
50-52	Sand and gravel, fine to medium, yellow-brown
52-60	Till, gravelly, olive and blue-gray
60-64	Sand and gravel, till mixed
64-71	Sand, fine to coarse, cemented, yellow-tan
71-91	Till, blue-gray
91-94	Sand and gravel, fine to coarse, gray
94-108	Till, blue-gray, sand and gravel 101-102
108-121	Clay, sandy, gray-green to gray-brown
121-142	Sandy, very fine to fine, silty, gray
142-144	Clay, gray-green
144-148	Sand, fine, silty, tan and gray
148-180	Clay, silty, some sand layers, gray-green
180-220	Gravel, sand, wood, some cemented
220-245	Sand, fine to coarse, cemented, gray
245-249	Gravel, sand, clay, pyrite, boulders
CRETACEOUS	
DAKOTA FORMATION	
249-252	Limestone, sandy, hard, brown
252-261	Shale, silty, gray
261-262	Limestone, hard, brown
262-265	Sandstone, fine and shale, silty, gray
265-304	Shale, silty, some sandstone layers, brown to gray
304-316	Sandstone, fine, tan, some shale, gray
316-343	Shale, silty, gray, interbedded sandstone, fine, tan
343-370	Sandstone, fine, tan, layers of shale, silty, gray
370-430	Shale, silty, light gray, some sandstone streaks
430-450	Sandstone, fine to medium, tan
450-507	Sandstone, medium to coarse, some fine, tan
507-641	Sandstone, fine to medium, tan, some shale
PALEOZOIC UNDIFFERENTIATED	
641-645	Limestone, coarse, tan and white chert

LOCATION: 093-46-12DDDD
 ALTITUDE: 1280
 (FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: July 20, 1977

DEPTH: 570
 (FEET)DESCRIPTION OF MATERIALS
 QUATERNARY

0-3 Topsoil
 3-20 Clay, silty, wood
 20-30 Till, sandy, tan

CRETACEOUS
 GREENHORN LIMESTONE
 30-36 Clay, limestone fragments, yellow-brown
 36-61 Limestone, soft, shale, silty

GRANEROS SHALE
 61-108 Shale, silty, some siltstone, pyrite, dark to light gray, thin limestone layers 104-108

DAKOTA FORMATION
 108-156 Shale, silty, some limestone streaks, pyrite
 156-162 Sandstone, very fine, silty, pyrite, gray
 162-193 Shale, silty, some limestone, pyrite, gray to gray-brown

193-256 Sandstone, very fine to fine, pyrite, lignite, tan

256-259 Shale, silty, light gray
 259-265 Sandstone, fine, tan
 265-279 Sandstone, fine to coarse, some shale, tan

279-316 Sandstone, very fine, tan

341-395 Sandstone, fine to coarse, dolomite at 375

395-420 Sandstone, fine, some dolomite streaks, tan

420-452 Sandstone, very fine to fine, some dolomite streaks, tan

252-271 Sandstone, fine grading to coarse, tan

471-494 Shale, sandy, red, maroon and light gray

494-555 Sandstone, fine, some shale, dolomite and limestone, tan

PALEOZOIC UNDIFFERENTIATED
 555-560 Shale, gray-green
 560-567 Dolomite, gray-green to gray-brown
 567-568 Shale, gray
 568-570 Dolomite, brown and shale, gray

LOCATION: 094-47-35AAAB
 ALTITUDE: 1305
 (FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: July 30, 1978

DEPTH: 601
 (FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-10 Clay, tan to brown
 10-28 Sand, some silty clay, tan
 28-34 Sand and gravel, fine to boulders
 34-37 Till, sandy, silty, yellow to blue-gray
 37-75 Sand and gravel, medium to coarse, yellow-brown

CRETACEOUS
 CARLILE SHALE

75-102 Shale, silty, gray to blue-gray
 102-113 Limestone, brown to dark brown
 113-128 Shale, hard, calcareous, brown and dark gray

GRANEROS SHALE

128-170 Shale, silty, pyrite, gray-brown
 170-190 Shale, siltstone and limestone, pyrite, gray
 190-215 Shale, silty, sandy, pyrite, gray
 215-221 Sandstone, very fine, pyrite, tan

221-330 Shale, sandy, silty, some pyrite and lignite, tan to gray

330-360 Sandstone, very fine to fine, tan

360-381 Sandstone, fine to medium, tan

381-400 Sandstone, medium, tan

400-420 Sandstone, fine, tan

420-460 Sandstone, fine to medium, tan

460-494 Sandstone, medium to coarse, tan, dolomite at 483 feet

494-505 Shale, silty, gray to light gray

505-550 Sandstone, very, fine to medium at base, gray to tan

PALEOZOIC UNDIFFERENTIATED

550-572 Shale, maroon, yellow, gray, and green
 572-581 Shale, sandy, red-brown
 581-601 Limestone and shale, tan, gray-green, red-brown

LOCATION: 095-39-04ABCB
 ALTITUDE: 1390
 (FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: August 11, 1977

DEPTH: 620
 (FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-12 Sand, fine to coarse, gravel, yellow-brown
 50 12-90 Till, yellow-brown alternating yellow-gray
 100 90-105 Till, yellow-brown, some gravel
 105-107 Sand and gravel, fine to coarse
 107-109 Till, yellow-brown
 109-127 Clay, gumbo, gray
 150 127-185 Till, mostly clay, gray-brown to blue-gray

185-230 Clay, silty, gray to light gray

CRETACEOUS

DAKOTA FORMATION
 230-235 Clay, interbedded sandstone, silty, yellow-tan
 235-267 Sandstone, very fine to coarse, cemented, brown
 250 267-269 Lignite
 269-278 Shale, silty, some sandstone, gray
 278-281 Sandstone, fine
 281-295 Shale, silty, gray, interbedded sandstone
 300 295-297 Dolomite, brown
 297-318 Shale, silty, gray
 318-328 Sandstone, fine, interbedded shale
 328-336 Shale, silty, gray
 336-342 Sandstone, fine, tan

342-440 Shale, silty, light gray, and reddish-brown

440-445 Shale, silty, interbedded sandstone
 445-510 Sandstone, fine to medium
 510-520 Sandstone, fine, shaly, tan
 520-533 Sandstone, fine to medium, tan

533-542 Sandstone, very coarse, tan
 542-557 Shale, silty, sandy
 557-565 Sandstone, fine to medium, tan
 565-567 Shale, gray
 567-587 Sandstone, fine, tan, soft shale layers
 587-589 Shale, gray
 589-591 Sandstone, fine
 591-605 Shale, soft, brown, gray

PALEOZOIC UNDIFFERENTIATED

605-620 Dolomite, coarse, light colored

LOCATION: 096-34-24BBB

ALTITUDE: 1315
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: November 1979

DEPTH: 501
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-14 Till, gravelly, yellow-brown

50 14-86 Till, thin gravel layers, blue-gray

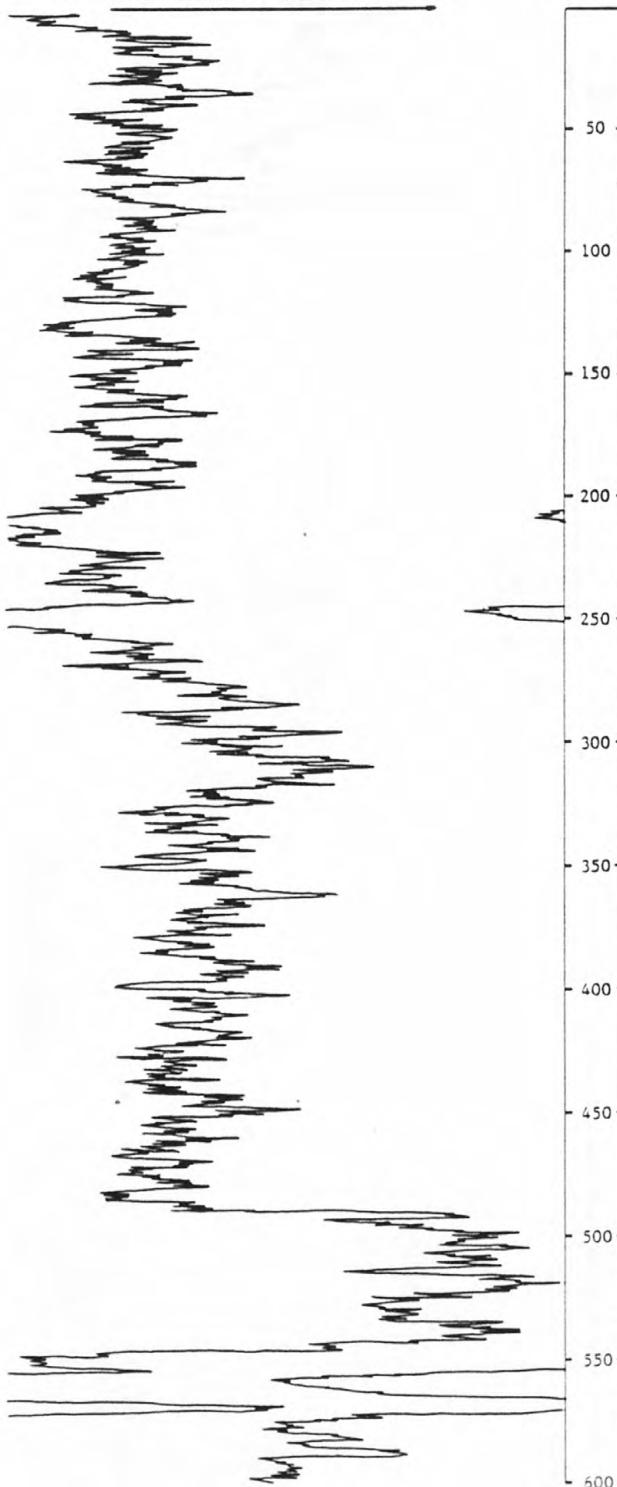
86-97 Till, sandy, olive

100 97-120 Till, blue-gray
120-124 Sand and gravel, fine to coarse,
gray
124-140 Till, sandy, blue-gray
140-146 Till, light blue-gray150 146-155 Till, yellow-gray to yellow-brown
155-161 Till, gumbo, dark gray161-190 Till, yellow-brown
190-200 Till, olive to blue-gray

200 200-290 Till, boulders, blue-gray

300 290-310 Till, sandy, gravelly, boulders,
blue-gray
310-321 Sand, fine to medium, gray
321-330 Sand and gravel, cemented330-350 Sand and gravel, some clay
streaks
350-360 Sand and gravel, cementedCRETACEOUS
DAKOTA FORMATION
360-387 Sandstone, fine to very coarse,
tan
387-430 Shale, silty, sandstone inter-
bedded, gray
430-436 Shale, silty, light gray

450 436-466 Shale, silty, gray


466-498 Sandstone

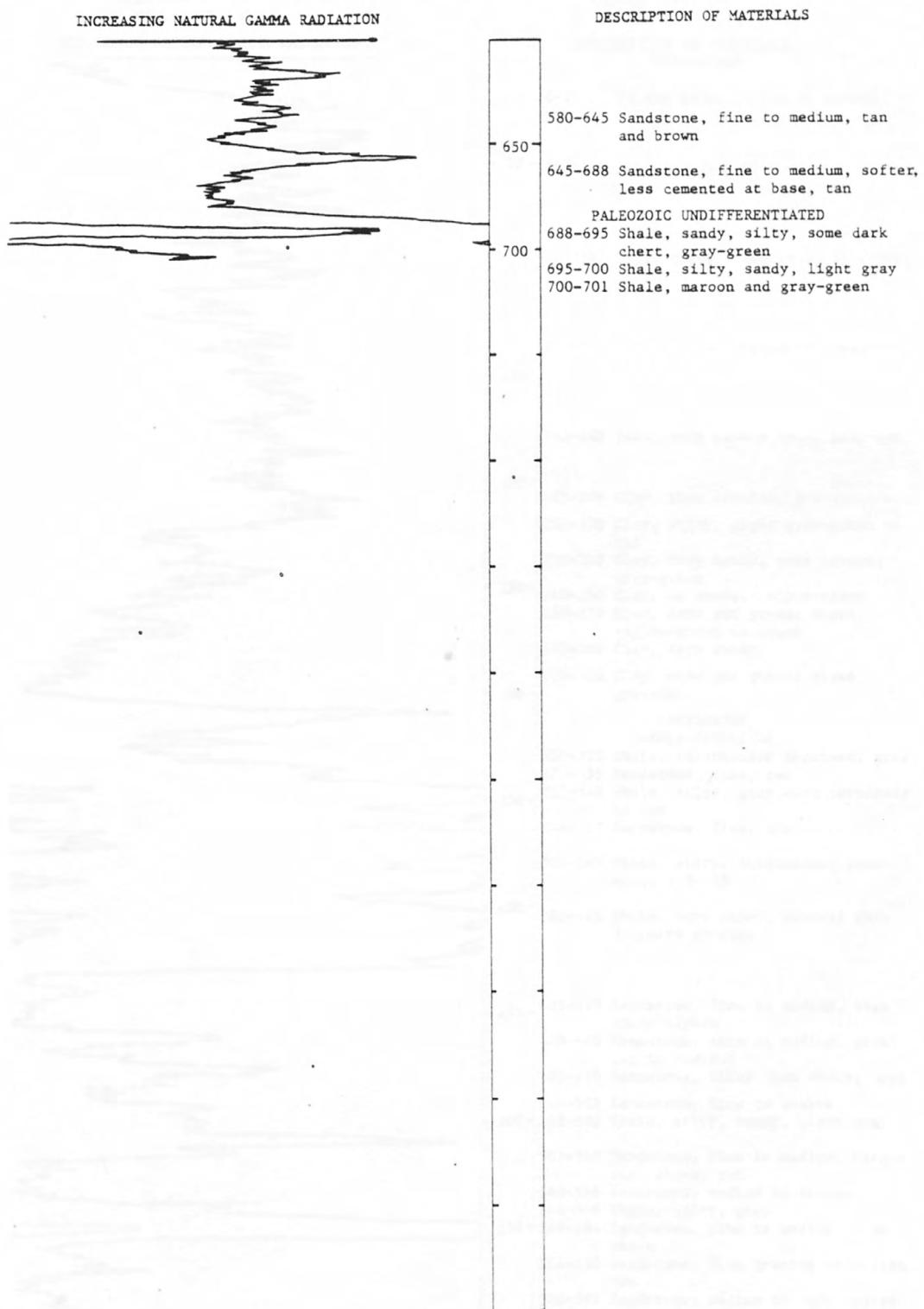
500 PALEOZOIC UNDIFFERENTIATED
498-501 Limestone

550

600

LOCATION: 096-40-05DDDA

ALTITUDE: 1560
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

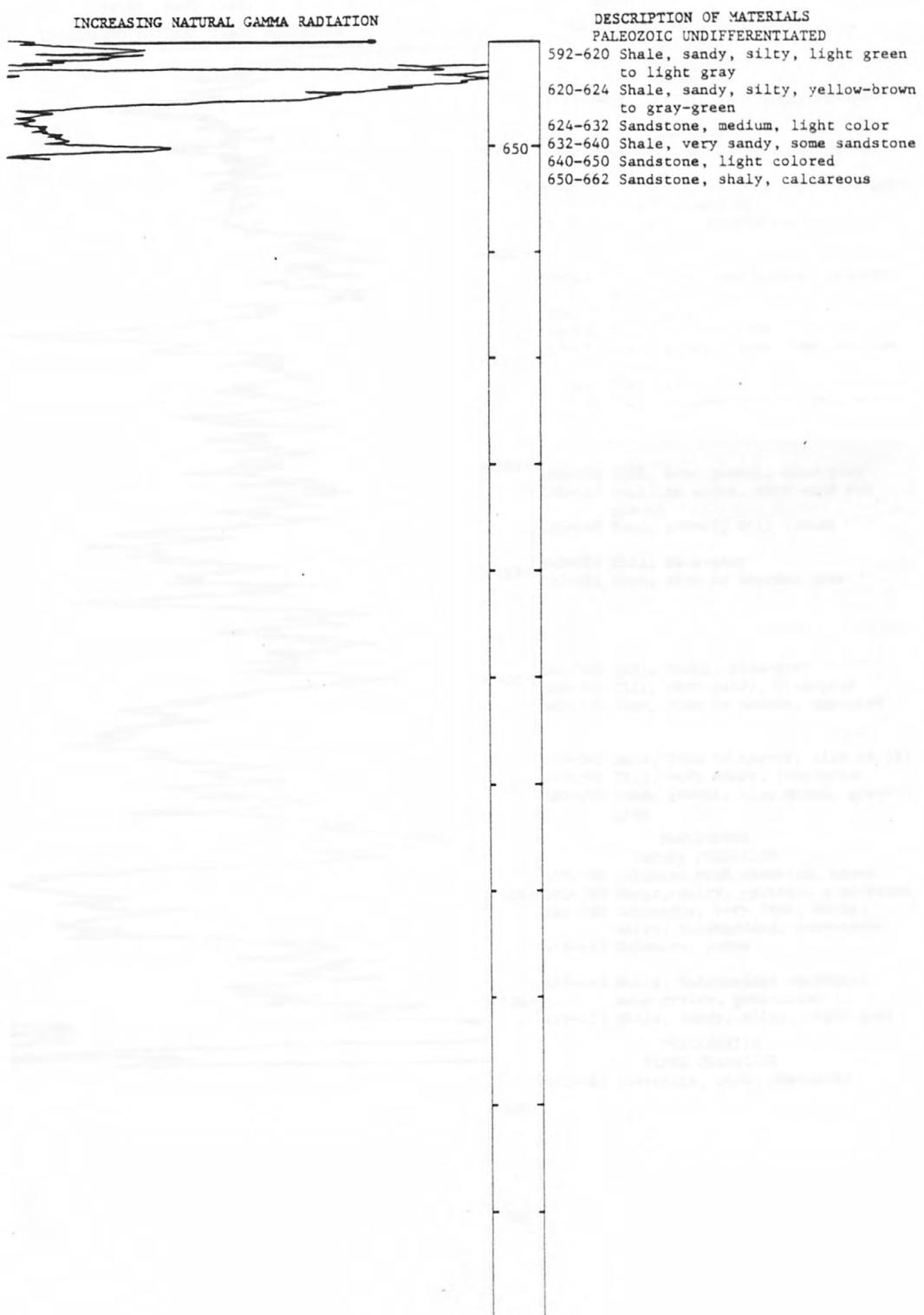

DATE COMPLETED: June 1980

DEPTH: 704
(FEET)DESCRIPTION OF MATERIALS
QUATERNARY

0-35 Till, yellow-brown to yellow-gray
 - 50
 35-190 Till, some boulders, blue-gray
 - 100
 190-208 Till, gravelly, blue-gray
 - 150
 208-211 Sand and gravel, fine to medium, gray
 211-214 Clay, silty, brown
 214-218 Till, sandy, light blue-gray
 218-221 Sand and gravel, fine to coarse, mostly fine, gray
 221-226 Till, sandy, light blue-gray
 226-234 Till, thin gravel layers, yellow-brown
 234-236 Till, sandy, gray
 236-244 Till, yellow-brown
 244-252 Sand, fine to coarse, some gravel, medium
 - 300
 252-310 Till, sandy, some sand and gravel, yellow-brown to gray
 - 350
 310-487 Till, sandy, gravelly, few sand and gravel layers at base
 - 400

CRETACEOUS
DAKOTA FORMATION

- 450 487-501 Shale, silty, blue-gray
 - 500 501-541 Shale, silty, some dolomite, gray-brown
 541-544 Shale, silty, some pyrite, gray-brown
 544-550 Sandstone with shale, silty, sandy, light gray
 - 550 550-561 Sandstone, fractured
 561-565 Sandstone, fine with shale, silty, gray-brown
 565-567 Shale, silty, gray
 567-580 Sandstone, fine to medium, tan to brown
 - 600


LOCATION: 098-39-26CDAD1

ALTITUDE: 1401.98
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: May 21, 1980

DEPTH: 662
(FEET)DESCRIPTION OF MATERIALS
QUATERNARY

0-20	Sand and gravel, fine to coarse
- 50	20-61 Till, blue-gray
- 100	61-114 Till, gravel, boulders, blue-gray
- 150	114-143 Till, gravel, boulders, yellow-brown
- 200	143-185 Till, very little sand, gray-tan
- 250	185-206 Clay, lime nodules, gray-yellow 206-220 Clay, silty, light gray-green to tan 220-240 Clay, very sandy, sand layers, gray-green 240-250 Clay, as above, yellow-brown 250-270 Clay, sand and gravel mixed, yellow-brown to brown 270-280 Clay, very sandy
- 300	280-300 Clay, sand and gravel mixed, gray-tan
	CRETACEOUS
	DAKOTA FORMATION
- 350	300-320 Shale, interbedded sandstone, gray 320-335 Sandstone, fine, tan 335-348 Shale, silty, gray with carbonate at top 348-352 Sandstone, fine, tan
- 400	352-385 Shale, silty, interbedded sandstone 370-385 385-425 Shale, very silty, several thin dolomite streaks
- 450	425-470 Sandstone, fine to medium, thin shale layers 470-480 Sandstone, fine to medium, grading to coarser 480-490 Sandstone, finer than above, hard
- 500	490-502 Sandstone, fine to coarse 502-507 Shale, silty, sandy, light gray
	507-540 Sandstone, fine to medium, harder than above, tan
- 550	540-544 Sandstone, medium to coarse 544-549 Shale, silty, gray 549-564 Sandstone, fine to medium, some shale 564-580 Sandstone, fine grading to coarse, tan 580-592 Sandstone, medium to very coarse
600	

LOCATION: 098-42-33AABB

ALTITUDE: 1440
(FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: June 6, 1980

DEPTH: 481
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-17 Till, yellow-brown
17-22 Till, blue-gray
22-24 Sand, gravel, some clay, yellow-brown
24-26 Till, blue-gray
26-30 Sand and gravel, fine to coarse, gray
30-65 Till, sandy, peat at top, blue-gray to light blue-gray
65-70 Till, silty, gray-green

- 100 -

70-125 Till, some sand layers, yellow-brown
125-129 Clay, gray
129-132 Till, yellow-brown
132-138 Sand, gravel, some clay, yellow-brown
138-140 Clay, gray
140-160 Till, yellow-brown to yellow-gray

- 200 -

160-225 Till, some gravel, blue-gray
225-233 Till, as above, more sand and gravel
233-240 Sand, gravel, till layers

- 250 -

240-257 Till, blue-gray
257-261 Sand, fine to coarse, gray

- 300 -

261-300 Till, tough, blue-gray
300-305 Till, very sandy, blue-gray
305-310 Sand, fine to medium, cemented

- 350 -

310-345 Sand, fine to coarse, clay at 333
345-350 Till, very sandy, gray-green
350-359 Sand, gravel, clay mixed, green-gray

CRETACEOUS

DAKOTA FORMATION

359-360 Dolomite with siderite, brown
360-383 Shale, silty, pyritic, gray-brown
383-418 Sandstone, very fine, shale, silty, interbedded, gray-brown
418-419 Dolomite, brown

- 450 -

419-465 Shale, interbedded sandstone, some pyrite, gray-brown
465-473 Shale, sandy, silty, light gray

PRECAMBRIAN

SIOUX QUARTZITE

473-481 Quartzite, pink, weathered

- 500 -

- 550 -

- 600 -

LOCATION: 098-48-16DDAD

ALTITUDE: 1268
(FEET, NGVD 1929)INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: August 29, 1978

DEPTH: 358
(FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-7 Clay, silty, gray and tan

7-18 Sand, gravel, boulders, oxidized

- 50 18-100 Till, blue-gray

- 100 100-115 Till, very sandy, blue-gray

CRETACEOUS
DAKOTA FORMATION

- 150 115-161 Shale, silty, hard, gray to gray-brown

- 200 161-205 Shale, silty, with brown limestone, pyrite, gray-brown

- 250 205-250 Shale, silty, gray, limestone layer at 215

250-270 Shale, silty, dolomite streaks, gray

270-290 Shale, silty, dolomite and sandstone streaks, gray

- 300 290-295 Shale and sandstone, fine, tan and gray

295-310 Shale, silty, sandy, dolomite and lignite streaks

310-330 Shale, silty, gray

- 350 330-350 Shale, silty, sandy, sandstone and lignite layers

350-353 Quartzite, weathered

PRECAMBRIAN
SIOUX QUARTZITE

353-358 Quartzite, pink

- 400

- 450

- 500

- 550

- 600

LOCATION: 100-39-17DCCB
 ALTITUDE: 1560
 (FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: June 14, 1978

DEPTH: 923
 (FEET)

DESCRIPTION OF MATERIALS

QUATERNARY

0-12 Till, light yellow
 12-14 Sand and gravel, yellow-brown

- 50 14-69 Till, blue-gray

- 100 69-109 Sand and gravel, some boulders
 109-125 Till, sandy, yellow-brown

- 125 125-129 Till, very sandy, olive

- 150 129-152 Till, blue-gray
 152-157 Clay, silty, gray to light gray
 157-166 Till, some gravel, blue-gray
 166-168 Sand, fine, gray
 168-176 Till, blue-gray
 176-190 Till, pebbles, light-gray to
 blue-gray
 - 200 190-201 Till, yellow-gray to gray
 201-212 Till, pebbly, light gray

- 250 212-278 Till, yellow-gray to blue-gray
 278-284 Till, sandy, medium gray

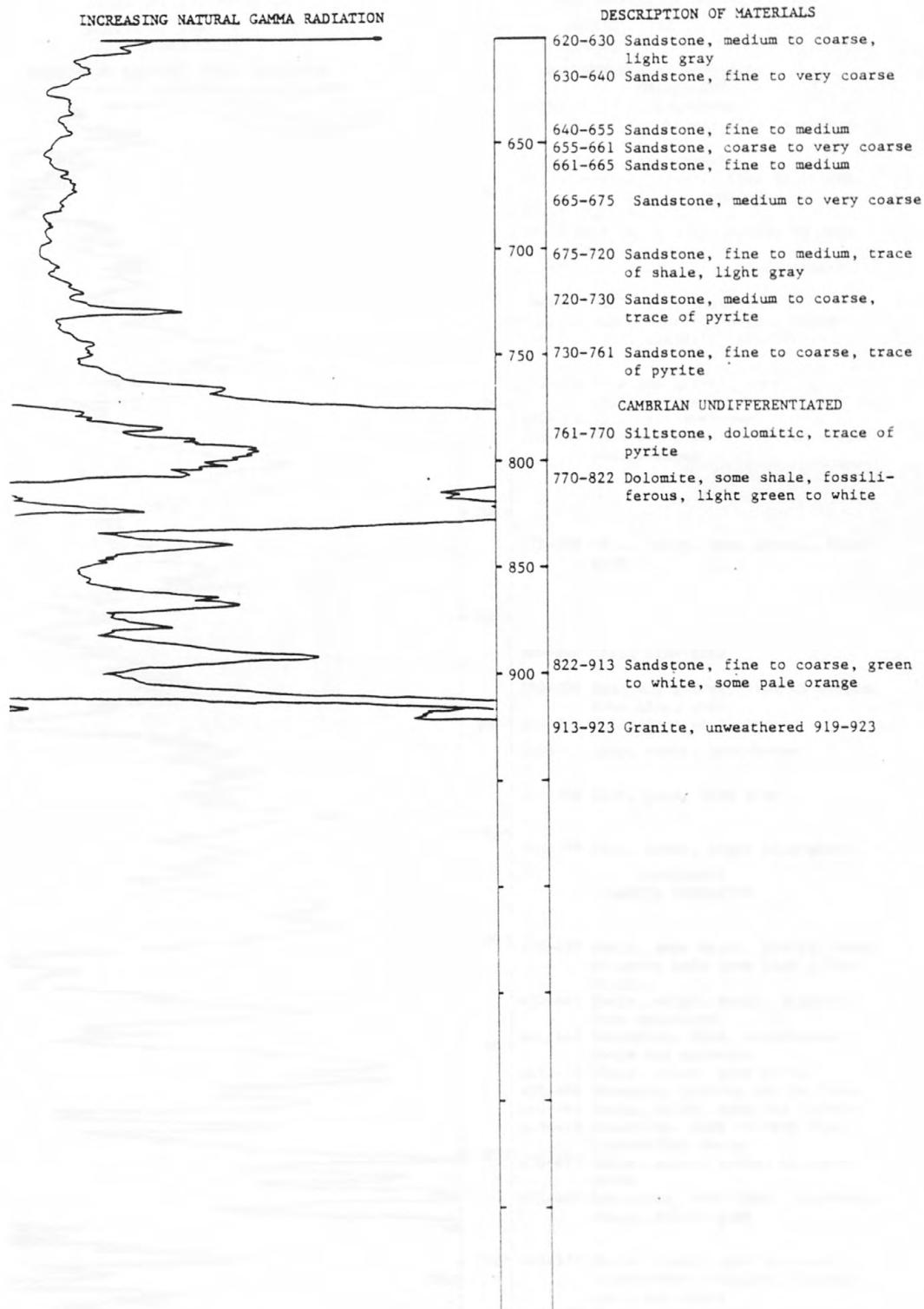
- 300 284-345 Till, sand and pebbles, very
 light brown

- 350 345-430 Till, sandy, some gravel, very
 light gray to light brown-gray

- 400 430-435 Sand, very fine to medium
 435-443 Till, brown-gray to green-gray
 443-449 Till, silty, yellow-green

CRETACEOUS

DAKOTA FORMATION


449-450 Shale or siltstone, brown
 450-461 Shale, silty, yellow

- 461 461-490 Siltstone and very fine sandstone,
 argillaceous

- 500 490-515 Shale, silty, some siltstone

- 550 515-570 Sandstone, fine to coarse, shale
 interbedded
 570-620 Sandstone, very fine to fine,
 some medium, trace of shale

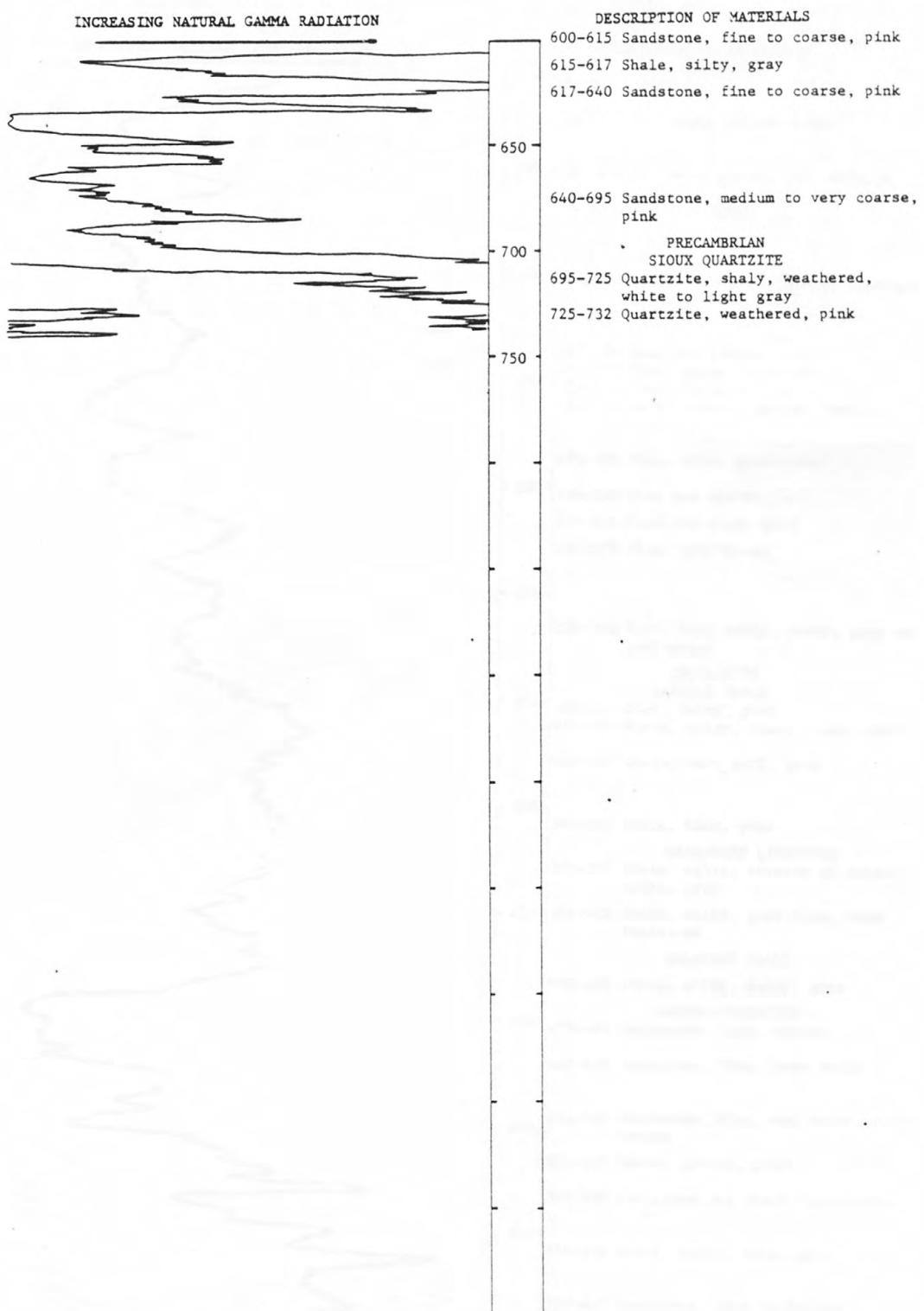
- 600

LOCATION: 100-43-33CCCD
 ALTITUDE: 1465
 (FEET, NGVD 1929)

INCREASING NATURAL GAMMA RADIATION

DATE COMPLETED: August 1, 1980

DEPTH: 732
 (FEET)


DESCRIPTION OF MATERIALS

QUATERNARY

1-16 Till, yellow-brown
 16-17 Sand and gravel, fine to medium, yellow-brown
 17-25 Till, yellow-gray
 25-32 Sand and gravel, fine to coarse, some till and boulders
 32-50 Till, blue-gray
 50-65 Sand and gravel, medium to very coarse, very gray
 65-95 Till, sandy, gray to blue-gray
 95-132 Till, yellow-gray
 132-134 Sand, fine to coarse, brown
 134-143 Till, gravelly, gray-brown
 143-152 Sand and gravel, some till, yellow-brown
 152-158 Till, yellow-brown
 158-162 Sand and gravel, fine to coarse, yellow-brown
 175-260 Till, sandy, some gravel, blue-gray
 260-290 Till, blue-gray
 290-298 Sand and gravel, fine to coarse, some till, gray
 298-310 Till, gray to blue-gray
 310-317 Clay, sandy, gray-brown
 317-340 Clay, hard, dark gray
 340-379 Till, sandy, light blue-gray

CRETACEOUS
 DAKOTA FORMATION

379-430 Shale, some silty, pyrite, some dolomite beds less than 1 foot thick
 430-441 Shale, silty, sandy, lignite, some sandstone
 441-445 Sandstone, fine, interbedded shale and dolomite
 445-455 Shale, silty, gray-brown
 455-460 Dolomite, pyrite, tan to brown
 460-463 Shale, silty, gray and lignite
 463-470 Sandstone, fine to very fine, interbedded shale
 470-473 Shale, silty, sandy, dolomite, brown
 473-480 Sandstone, very fine, interbedded shale, silty, gray
 480-570 Shale, silty, gray to brown, interbedded dolomite, lignite and black shale
 570-600 Shale, silty, gray, interbedded sandstone

LOCATION: 100-48-31CCCC
ALTITUDE: 1417
(FEET, NGVD 1929)

DATE COMPLETED: August 21, 1980

INCREASING NATURAL GAMMA RADIATION

DESCRIPTION OF MATERIALS
QUATERNARY

0-18	Loess
18-25	Till, light yellow-brown
- 50	25-58 Till, some gravel, yellow-brown
	58-69 Till, dark gray
- 100	69-150 Till, some sand layers, blue-gray to light blue-gray
- 150	150-154 Sand and gravel, gray 154-155 Clay, gumbo, blue-gray 155-162 Sand and gravel, gray 162-176 Sand, fine to gravel, medium, gray
	176-188 Till, clay, gray-green
- 200	188-210 Sand and gravel 210-215 Sand and clay, gray 215-235 Till, gray-green
- 250	235-300 Till, very silty, sandy, gray to gray-green
	CRETACEOUS CARLILE SHALE
- 300	300-310 Clay, silty, gray 310-325 Shale, silty, sandy, hard, gray
	325-340 Shale, very hard, gray
- 350	340-383 Shale, hard, gray
	GREENHORN LIMESTONE
	383-390 Shale, silty, streaks of sandstone, gray
- 400	390-408 Shale, silty, gray-blue, some sandstone
	GRANEROS SHALE
	408-435 Shale, silty, sandy, gray
- 450	DAKOTA FORMATION
	435-460 Sandstone, fine, pyrite
	460-470 Sandstone, fine, some shale
- 500	470-524 Sandstone, fine, and shale interbedded
	524-530 Shale, pyrite, gray
	530-560 Sandstone and shale interbedded
- 550	560-590 Shale, silty, hard, gray
	590-610 Sandstone, fine to medium
- 600	

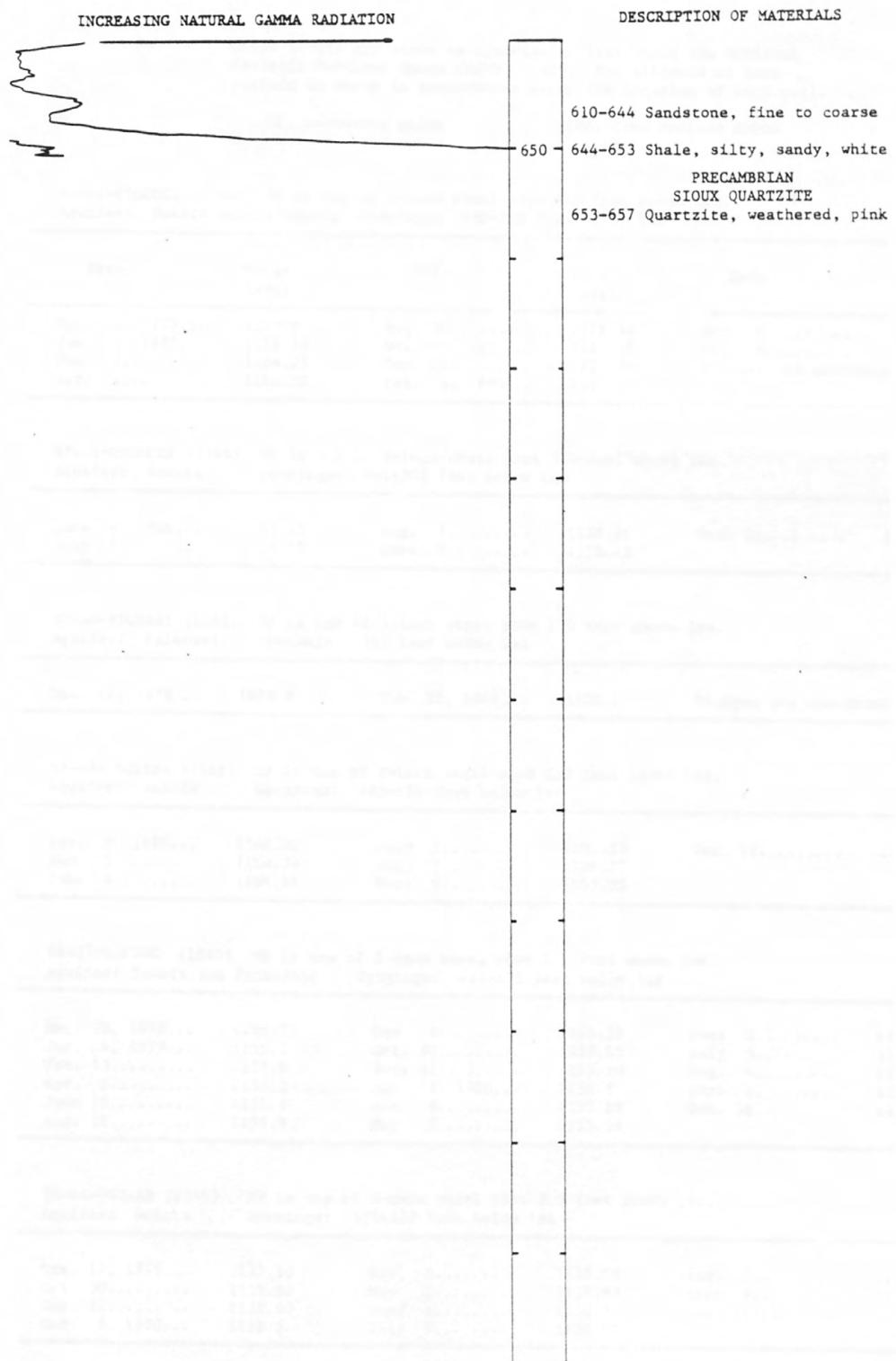


Table 3.--Water levels in observation wells

Water levels are shown as altitude in feet above the National Geodetic Vertical Datum (NGVD), 1929. The altitude of land surface is shown in parentheses after the location of each well.

MP, measuring point lsd, land surface datum

87-41-05CCCC1 (1344) MP is top of 2-inch steel pipe 3.0 feet above lsd.
Aquifer: Dakota and Paleozoic Openings: 490-510 feet below lsd

Date	Water level	Date	Water level	Date	Water level
Dec. 12, 1978...	1127.0	Aug. 30.....	1126.60	Mar. 6.....	1127.2
Jan. 5, 1979...	1126.15	Oct. 29.....	1127.35	Apr. 8.....	1127.40
Feb. 13.....	1126.25	Dec. 12.....	1127.00	Plugged and abandoned	
Apr. 2.....	1126.10	Feb. 6, 1980...	1127.20		

87-41-05CCCC2 (1344) MP is top of 2-inch steel pipe 3.0 feet above lsd.
Aquifer: Dakota Openings: 301-305 feet below lsd

June 4, 1980...	1141.45	Aug. 7.....	1138.31	Dec. 11.....	1137.90
July 9.....	1139.10	Sept. 9.....	1138.45		

87-44-15CBBB1 (1165) MP is top of 2-inch steel pipe 1.5 feet above lsd.
Aquifer: Paleozoic Openings: 281 feet below lsd

Dec. 12, 1979...	1098.9	Feb. 28, 1980...	1100.1	Plugged and abandoned	
------------------	--------	------------------	--------	-----------------------	--

87-44-15CBBB2 (1165) MP is top of 2-inch steel pipe 1.5 feet above lsd.
Aquifer: Dakota Openings: 185-189 feet below lsd

Apr. 8, 1980...	1104.80	July 9.....	1104.50	Dec. 11.....	1103.00
May 5.....	1104.74	Aug. 7.....	1104.27		
June 4.....	1104.64	Sept. 9.....	1103.82		

88-37-22CCCC (1320) MP is top of 2-inch steel pipe 2.5 feet above lsd.
Aquifer: Dakota and Paleozoic Openings: 417-435 feet below lsd

Dec. 12, 1978...	1155.75	Oct. 5.....	1155.35	June 2.....	1155.40
Jan. 4, 1979...	1155.1	Oct. 30.....	1155.85	July 8.....	1155.36
Feb. 13.....	1155.6	Dec. 11.....	1155.50	Aug. 4.....	1155.06
Apr. 2.....	1155.3	Mar. 5, 1980...	1155.8	Sept. 8.....	1155.03
June 10.....	1155.4	Apr. 8.....	1155.38	Dec. 16.....	1154.6
Aug. 16.....	1155.9	May 5.....	1155.36		

88-44-06BAAB (1340) MP is top of 2-inch steel pipe 3.5 feet above lsd.
Aquifer: Dakota Openings: 332-337 feet below lsd

Oct. 17, 1979...	1137.10	Apr. 8.....	1135.75	Aug. 7.....	1138.64
Oct. 30.....	1138.60	May 5.....	1138.83	Sept. 9.....	1138.28
Dec. 12.....	1138.90	June 4.....	1138.77	Dec. 11.....	1137.95
Mar. 5, 1980...	1138.5	July 9.....	1138.77		

89-38-36CBCC (1445) MP is top of 2-inch steel pipe 4.0 feet above lsd.
 Aquifer: Dakota Openings: 410-430 feet below lsd

Date	Water level	Date	Water level	Date	Water level
Dec. 12, 1978...	1154.7	Oct. 5.....	1156.6	June 2.....	1156.95
Jan. 4, 1979...	1154.0	Oct. 30.....	1155.0	July 8.....	1154.28
Feb. 13.....	1154.0	Dec. 11.....	1154.15	Aug. 4.....	1154.40
Apr. 2.....	1154.1	Feb. 6, 1980...	1153.92	Sept. 5.....	1153.92
June 10.....	1154.2	Mar. 5.....	1155.10	Dec. 16.....	1153.90
Aug. 16.....	1154.1	Apr. 8.....	1153.50		
Aug. 30.....	1154.2	May 5.....	1154.68		

89-41-13CCCC (1320) MP is top of 2-inch steel pipe 1.5 feet above lsd.
 Aquifer: Paleozoic Openings: 465-468 feet below lsd

Dec. 12, 1978...	1129.2	Dec. 12.....	1130.40	May 5.....	959.99
Jan. 5, 1979...	1129.00	Feb. 5, 1980...	1131.70	July 9.....	1075.45
Feb. 13.....	1128.85	Mar. 6.....	1122.00	Aug. 6.....	1093.00
Apr. 2.....	1128.90	Mar. 12.....	pumped	Sept. 9.....	1105.90
Aug. 30.....	1130.15	Apr. 8.....	1112.86	Dec. 11.....	1127.90
Oct. 29.....	1130.45	Apr. 8.....	pumped		

89-44-20DCDC (1160) MP is top of 2-inch steel pipe 4.0 feet above lsd.
 Aquifer: Dakota Openings: 206-221 feet below lsd

Oct. 16, 1979...	1134.0	Apr. 8.....	1134.50	Aug. 6.....	1133.82
Oct. 30.....	1134.15	May 5.....	1134.28	Sept. 9.....	1133.79
Dec. 12.....	1134.7	June 4.....	1134.52	Dec. 11.....	1133.35
Mar. 6, 1980...	1136.1	July 9.....	1134.14		

89-46-36BBDC1 (1268) MP is top of 2-inch steel pipe 3.0 feet above lsd.
 Aquifer: Paleozoic Openings: 519-537 feet below lsd

Oct. 10, 1979...	1107.25	Dec. 12.....	1129.7	Feb. 28.....	1129.8
Oct. 30.....	1129.25	Feb. 1, 1980...	1129.4	Plugged and abandoned	

89-46-36BBDC2 (1268) MP is top of 2-inch steel pipe 3.0 feet above lsd.
 Aquifer: Dakota Openings: 358-362 feet below lsd

Apr. 8, 1980...	1134.88	July 9.....	1134.45	Dec. 11.....	1133.50
May 5.....	1137.20	Aug. 7.....	1133.64		
June 4.....	1134.55	Sept. 9.....	1133.69		

90-36-13ADDA (1281) MP is top of 2-inch steel pipe 3.3 feet above lsd.
 Aquifer: Paleozoic Openings: 223-235 feet below lsd

May 10, 1979...	1180.4	Feb. 7.....	1179.82	June 2.....	1179.94
June 10.....	1180.4	Mar. 5.....	1180.15	July 8.....	1179.60
Aug. 30.....	1179.9	Mar. 10.....	1181.10	Aug. 5.....	1179.18
Dec. 11.....	1179.80	Apr. 8.....	1180.67	Sept. 4.....	1179.56
Jan. 1, 1980...	1180.00	May 5.....	1180.16	Dec. 16.....	1179.8

90-38-16DDDD1 (1365) MP is top of 2-inch steel pipe 3.5 feet above lsd.
Aquifer: Paleozoic Openings: 499-517 feet below lsd

Date	Water level	Date	Water level	Date	Water level
May 7, 1979...	1174.10	Oct. 30.....	1174.90	Mar. 10.....	1173.62
June 10.....	1174.70	Dec. 11.....	1174.40	Plugged and abandoned	
Aug. 30.....	1174.45	Feb. 7, 1980...	1174.23		
Oct. 5.....	1174.65	Feb. 27.....	1174.5		

90-38-16DDDD2 (1365) MP is top of 2-inch steel pipe 3.5 feet above lsd.
Aquifer: Dakota Openings: 346.5-349.5 feet below lsd

Apr. 8, 1980...	1176.70	July 8.....	1176.69	Dec. 16.....	1176.15
May 5.....	1176.73	Aug. 4.....	1176.62		
June 2.....	1176.75	Sept. 4.....	1176.54		

90-40-06BDCD (1182) MP is top of 1.25-inch steel pipe 4.0 feet above lsd.
Aquifer: Dakota Openings: 252-254 feet below lsd

Dec. 12, 1978...	1145.4	Dec. 12.....	1149.30	July 9.....	1148.01
Jan. 5, 1979...	1145.2	Feb. 5, 1980...	1148.25	Aug. 6.....	1147.45
Feb. 13.....	1145.25	Mar. 6.....	1148.15	Sept. 4.....	1147.06
Apr. 2.....	1148.3	Mar. 31.....	1148.4	Dec. 11.....	1146.0
Aug. 30.....	1148.15	May 5.....	1148.74		
Sept. 29.....	1148.10	June 4.....	1148.20		

91-35-26BCCC (1291) MP is top of 2-inch steel pipe 2.0 feet above lsd.
Aquifer: Dakota Openings: 338-347 feet below lsd

Dec. 12, 1978...	1195.70	Oct. 15.....	1238.1	May 5.....	1266.92
Jan. 1, 1979...	1195.40	Dec. 11.....	1271.50	June 2.....	1266.46
Feb. 13.....	1197.15	Jan. 7, 1980...	1272.60	July 8.....	1266.05
Apr. 2.....	1197.80	Mar. 5.....	1266.30	Aug. 5.....	1265.55
June 10.....	1198.70	Mar. 10.....	1266.60	Sept. 4.....	1265.58
Aug. 30.....	1200.20	Apr. 11.....	1267.33	Dec. 16.....	1265.05

91-39-01ADAD1 (1370) MP is top of 6-inch steel pipe 3.2 feet above lsd.
Aquifer: Paleozoic Openings: 1126-1545 feet below lsd

Sept. 13, 1979...	1176.2	May 5.....	1176.36	Sept. 4.....	1175.81
Dec. 11.....	1176.05	June 4.....	1176.37	Dec. 16.....	1174.75
Feb. 7, 1980...	1175.90	July 10.....	1176.24		
Apr. 8.....	1176.70	Aug. 6.....	1176.21		

91-39-01ADAD2 (1370) MP is top of 4-inch steel pipe 3.3 feet above lsd.
Aquifer: Dakota Openings: 235-240 feet below lsd

Sept. 13, 1979...	1178.3	May 5.....	1178.87	Sept. 4.....	1178.53
Dec. 11.....	1178.50	June 6.....	1178.80	Dec. 16.....	1178.40
Feb. 7, 1980...	1178.11	July 10.....	1178.80		
Apr. 8.....	1178.90	Aug. 6.....	1178.86		

91-42-16DDDD1 (1320) MP is top of 2-inch steel pipe 1.5 feet above lsd.
Aquifer: Paleozoic Openings: 561-576 feet below lsd

Date	Water level	Date	Water level	Date	Water level
Dec. 12, 1978...	1180.90	Aug. 29.....	1164.50	Dec. 12.....	1164.8
Apr. 2, 1979...	1179.20	Sept. 13.....	1164.20	Feb. 5, 1980...	1165.90
May 7.....	1180.15	Oct. 4.....	1164.20	Feb. 27.....	1164.9
June 10.....	1163.80	Oct. 29.....	1165.40	Plugged and abandoned	

91-42-16DDDD2 (1320) MP is top of 2-inch steel pipe 1.5 feet above lsd.
Aquifer: Dakota Openings: 386-390 feet below lsd

Mar. 31, 1980...	1165.5	June 8.....	1165.44	Sept. 4.....	1164.83
Apr. 8.....	1166.0	July 9.....	1165.44	Dec. 15.....	1164.50
May 5.....	1165.74	Aug. 6.....	1165.07		

92-40-10BDDD (1210) MP is top of 2.5-inch steel pipe at lsd.
Aquifer: Dakota Openings: 114-118 feet below lsd

Apr. 7, 1980...	1182.0	June 4.....	1181.52	Aug. 6.....	1180.90
May 7.....	1181.66	July 8.....	1181.28	Sept. 4.....	1180.94

92-45-02CBCB1 (1245) MP is top of 5-inch steel pipe 3.2 feet above lsd.
Aquifer: Paleozoic Openings: 598-1089 feet below lsd

May 7, 1979...	1149.10	Mar. 12.....	1149.75	Aug. 6.....	1142.90
Aug. 31.....	1148.90	Apr. 8.....	1147.43	Sept. 4.....	1143.71
Oct. 4.....	1148.20	May 5.....	1145.87	Dec. 15.....	1145.65
Dec. 12.....	1149.30	June 8.....	1145.86		
Feb. 22, 1980...	1149.70	July 9.....	1144.29		

92-45-02CBCB2 (1245) MP is top of 4-inch steel pipe 3.5 feet above lsd.
Aquifer: Dakota Openings: 347-365 feet below lsd

Apr. 17, 1979...	1143.8	Feb. 22.....	1145.15	Aug. 6.....	1139.66
May 7.....	1143.8	Apr. 8.....	1144.40	Sept. 4.....	1138.44
Aug. 16.....	1143.8	May 6.....	1142.70	Dec. 15.....	1142.9
Dec. 12.....	1144.7	June 8.....	1142.99		
Jan. 21, 1980...	1145.1	July 9.....	1141.16		

92-45-02CBAB (1220) MP is top of 4-inch steel pipe 5.0 feet above lsd.
Aquifer: Quaternary Openings: 10-22 feet below lsd

Apr. 17, 1979...	1213.85	Mar. 4, 1980...	1213.50	Aug. 6.....	1212.19
May 7.....	1213.20	Apr. 8.....	1214.95	Sept. 3.....	1213.77
Aug. 16.....	1213.25	May 6.....	1213.12	Dec. 15.....	1212.30
Oct. 4.....	1212.7	June 5.....	1214.65		
Dec. 12.....	1216.5	July 9.....	1212.67		

92-48-06DDDA1 (1282) MP is top of 2-inch steel pipe 4.8 feet above lsd.
Aquifer: Dakota Openings: 510-515 feet below lsd

Date	Water level	Date	Water level	Date	Water level
Dec. 14, 1979...	1131.5	Mar. 27.....	1132.05	Plugged and abandoned	
Mar. 4, 1980...	1131.8	Apr. 8.....	1132.22		

92-48-06DDDA2 (1282) MP is top of 2-inch steel pipe 4.8 feet above lsd.
Aquifer: Dakota Openings: 430-434 feet below lsd

May 5, 1980...	1126.13	July 9.....	1125.02	Sept. 9.....	1122.82
June 4.....	1125.69	Aug. 6.....	1122.18	Dec. 11.....	1123.60

93-35-13ADAA (1330) MP is top of 1.5-inch steel pipe 3.0 feet above lsd.
Aquifer: Dakota Openings: 350-360 feet below lsd

Feb. 6, 1980...	1196.85	May 7.....	1196.84	Sept. 10.....	1196.53
Mar. 5.....	1196.75	June 2.....	1196.94	Dec. 10.....	1196.45
Mar. 10.....	1197.05	July 8.....	1196.61		
Apr. 11.....	1196.99	Aug. 4.....	1196.42		

93-35-19DCBB (1322) MP is top of 2-inch steel pipe 3.8 feet above lsd.
Aquifer: Dakota Openings: 253-268 feet below lsd

Aug. 16, 1979...	1194.70	Jan. 7, 1980...	1195.50*	June 2.....	1195.72
Aug. 30.....	1194.75	Mar. 5.....	1195.35	July 8.....	1195.55
Oct. 15.....	1196.45	Mar. 10.....	1195.68	Aug. 5.....	1195.32
Oct. 30.....	1195.30	Apr. 11.....	1195.80	Sept. 10.....	1195.23
Dec. 11.....	1195.30	May 7.....	1195.46		

93-46-12DDDD (1280) MP is top of 2.5-inch steel pipe 4.8 feet above lsd.
Aquifer: Dakota Openings: 356-360 feet below lsd

Apr. 9, 1980...	1162.22	July 17.....	1160.63	Dec. 15.....	1160.25
May 5.....	1161.86	Aug. 6.....	1160.07		
June 5.....	1161.53	Sept. 4.....	1159.73		

94-39-26BADB (1212) MP is top of 2.5-inch steel pipe at lsd.
Aquifer: Dakota Openings: 291-295 feet below lsd

Apr. 17, 1980...	1173.20	July 10.....	1173.61	Dec. 15.....	1175.15
May 6.....	1173.71	Aug. 6.....	1173.45		
June 4.....	1173.72	Sept. 9.....	1173.30		

94-42-09DDDD (1440) MP is top of 2-inch steel pipe 4.0 feet above lsd.
Aquifer: Dakota Openings: 516-536 feet below lsd

July 10, 1980...	1179.36	Sept. 10.....	1191.16	Dec. 12.....	1199.15
Aug. 6.....	1185.3				

94-47-35AAAB1 (1305) MP is top of 2-inch steel pipe 1.4 feet above lsd.
Aquifer: Dakota and Paleozoic Openings: 520-540 feet below lsd

Date	Water level	Date	Water level	Date	Water level
Dec. 11, 1978...	1159.65	June 10.....	1156.65	Feb. 1, 1980...	1159.85
Jan. 3, 1979...	1159.7	Aug. 29.....	1158.35	Feb. 28.....	1160.30
Apr. 3.....	1159.9	Oct. 29.....	1159.40	Plugged and abandoned	
May 7.....	1160.45	Dec. 13.....	1159.50		

94-47-35AAAB2 (1305) MP is top of 2-inch steel pipe 1.4 feet above lsd.
Aquifer: Dakota Openings: 450-454 feet below lsd

Mar. 28, 1980...	1161.30	June 5.....	1168.31	Sept. 3.....	pumped
Apr. 4.....	1161.4	July 9.....	1169.23	Sept. 10.....	1157.62
May 5.....	1166.67	Aug. 6.....	1169.21	Dec. 15.....	1158.60

95-43-07AAAA (1390) MP is top of 2-inch steel pipe 3.7 feet above lsd.
Aquifer: Dakota Openings: 641-681 feet below lsd

July 16, 1980...	1174.2	Sept. 9.....	1174.43	Dec. 12.....	1174.25
Aug. 6.....	1174.59				

95-47-05AAAD (1292) MP is top of 4-inch steel pipe 4.3 feet above lsd.
Aquifer: Dakota Openings: 570-571.5 feet below lsd

May 7, 1979...	1182.95	Apr. 8.....	1167.10	Sept. 3.....	1160.44
Dec. 13.....	1165.30	May 6.....	1162.49	Dec. 15.....	1160.9
Feb. 1, 1980...	1164.90	July 10.....	1161.		
Mar. 4.....	1166.7	Aug. 5.....	1160.3		

96-40-05DDDA (1560) MP is top of 2-inch steel pipe 4.0 feet above lsd.
Aquifer: Dakota and Paleozoic Openings: 661-701 feet below lsd

July 16, 1980...	1198.6	Sept. 10.....	1200.63	Dec. 12.....	1200.20

96-44-08ADAA (1373) MP is top of 2-inch steel pipe 3.7 feet above lsd.
Aquifer: Dakota Openings: 647-667 feet below lsd

Aug. 6, 1980...	1179.97	Sept. 9.....	1179.95	Dec. 12.....	1179.95

98-39-26CDAD1 (1401.98) MP is top of 2-inch steel pipe 1.47 feet above lsd.
Aquifer: Paleozoic Openings: 622-662 feet below lsd

June 17, 1980...	1203.90	Aug. 5.....	1202.46	Nov. 26.....	1203.40
July 10.....	1203.60	Sept. 3.....	1203.61		

98-39-26CDAD2 (1401.98) MP is top of 2-inch steel pipe 2.6 feet above lsd.
Aquifer: Dakota Openings: 333-345 feet below lsd

Date	Water level	Date	Water level	Date	Water level
June 17, 1980...	1209.36	Aug. 5.....	1209.50	Nov. 26.....	1208.83
July 10.....	1209.63	Sept. 3.....	1209.55		

98-39-26CDCC (1397.69) MP is top of 2-inch steel pipe 2.7 feet above lsd.
Aquifer: Dakota Openings: 490-500 feet below lsd

June 17, 1980...	1207.70	Aug. 5.....	1204.83	Nov. 26.....	1206.09
July 10.....	1206.20	Sept. 3.....	1206.47		

98-42-33AABB1 (1440) MP is top of 2-inch steel pipe 2.8 feet above lsd.
Aquifer: Precambrian Openings: 476-481 feet below lsd

June 18, 1980...	1192.29	Aug. 5.....	1192.15	Plugged and abandoned
July 10.....	1192.46			

98-42-33AABB2 (1440) MP is top of 2-inch steel pipe 2.0 feet above lsd.
Aquifer: Quaternary Openings: 310-359 feet below lsd

Dec. 12, 1980...	1199.45
------------------	---------

98-48-16DDAD (1268) MP is top of 2-inch steel pipe 2.0 feet above lsd.
Aquifer: Dakota and Precambrian Openings: 335-355 feet below lsd

Dec. 28, 1978...	1172.8	Oct. 24.....	1173.90	June 6.....	1174.59
Jan. 3, 1979...	1172.75	Feb. 6, 1980...	1174.14	July 10.....	1173.94
Feb. 19.....	1173.55	Feb. 29.....	1174.20	Aug. 5.....	1173.74
Apr. 3.....	1173.10	Mar. 28.....	1174.60	Sept. 3.....	1173.47
Aug. 29.....	1171.55	May 6.....	1174.60	Dec. 12.....	1172.10

100-39-17DCCB1(1560) MP is top of 5-inch steel pipe 3.0 feet above lsd.
Aquifer: Cambrian Openings: 770-923 feet below lsd

Dec. 8, 1978...	1208.6	Aug. 29.....	1217.80	Feb. 6, 1980...	1217.22
Jan. 4, 1979...	1217.2	Oct. 30.....	1218.1	Apr. 10.....	1217.75
Apr. 3.....	1217.35	Dec. 13.....	1217.20	Plugged and abandoned	

100-39-17DCCB2 (1560) MP is top of 5-inch steel pipe 3.0 feet above lsd.
Aquifer: Dakota Openings: 680-700 feet below lsd

July 10, 1980...	1217.6	Sept. 9.....	1217.50	Dec. 10.....	1216.7
Aug. 5.....	1218.2				

100-43-33CCCC (1465) MP is top of 2-inch steel pipe 3.8 feet above lsd.
Aquifer: Dakota Openings: 728-732 feet below lsd

Date	Water level	Date	Water level	Date	Water level
Aug. 5, 1980...	1224.47	Sept. 3,.....	1124.39	Dec. 12,.....	1223.95

100-48-31CCCC1 (1417) MP is top of 2-inch steel pipe at lsd.
Aquifer: Dakota Openings: 630-650 feet below lsd

Dec. 8, 1978...	1260.45	Aug. 29,.....	1262.15	Feb. 29,.....	1261.8
Jan. 3, 1979...	1260.15	Oct. 24,.....	1261.75	Plugged and abandoned	
Apr. 3,.....	1260.90	Feb. 6,.....	1261.70		

100-48-31CCCC2 (1417) MP is top of 2-inch steel pipe at lsd.
Aquifer: Dakota Openings: 450-455 feet below lsd

Mar. 28, 1980...	1260.6	June 6,.....	1260.93	Sept. 3,.....	1260.46
Apr. 4,.....	1260.7	July 10,.....	1260.79	Dec. 12,.....	1259.55
May 6,.....	1260.90	Aug. 5,.....	1260.59		

Table 5. Selected chemical analyses of water from the Dakota aquifer

Station name includes location and local name of well

Temperature is in degrees Celsius (DEG C)

Most constituents are measured in milligrams per liter (MG/L)

Iron and manganese are measured in micrograms per liter (UG/L)

Gross alpha is measured in micrograms per liter (UG/L) equivalent of naturally occurring uranium (U-NAT)

Radium is measured in picocuries per liter (PCI/L)

Gross beta is measured in picocuries per liter (PCI/L) equivalent of cesium-137

STATION	NAME	SOLIDS, RESIDUE AT 105°C.	SPECIFIC CONDUCT. OF 0.1M. DILUTE SOLVED SAMPLE (MG/L)	DATE OF SAMPLE	TEMPERATURE, WATER (°C/L)	HARDNESS (MG/L) (D6 C) (CaCO ₃)	IRON, ADSORPTION RATIO (AS/Fe)	SODIUM DISOLVED (MG/L AS Na)	MAGNESIUM DISOLVED (MG/L AS Mg)	SULFATE DISOLVED (MG/L AS SO ₄)	MANGANESE DISOLVED (MG/L AS Mn)	NITROGEN, GEN. (AS NH ₃)	FLUORIDE, DISOLVED (MG/L AS F)	CHLORIDE, BICARBONATE, DISOLVED (MG/L AS CO ₃)	RADON, DISOLVED (PCU/L AS Ra)	BETA, DISOLVED (PCU/L AS Ra)	GROSS DISOLVED (PCU/L AS Ra)	
08631W1ACC	02975 1947 FARMHILL WELL NO 3	848	1200	11.0	510	1.2	450	110	56	20	<10	300	<1.0	12	365	7.2	15	
08631W1DC	02980 1948 TOWN OF AUBURN NO 2-88	528	790	4.0	450	2.0	120	36	13	1.6	110	1.3	2.0	6.7	7.7	1.2	5.0	
08631W4A8A	01584 1950 TOWN OF AUBURN NO 2	1060	1000	10.0	560	1.1	5600	180	65	6.7	920	4.0	1.0	483	7.7	1.2	5.0	
08631W4B8D	04210 1951 TOWN OF AUBURN NO 3	1130	1000	10.0	780	1.1	4900	200	67	6.4	100	4.0	1.6	490	2.0	1.6	0.0	
08631W5D0D	24594 1957 HOSFEST NO 2	516	620	11.0	420	1.4	1900	110	35	2.3	40	28	1.0	533	1.0	1.6	0.0	
0873W2ACBD	18840 1967 AUSTIN TOWN NO 4	1580	2000	10.0	870	2.1	3700	220	21	1.0	110	470	0.8	22.10	7.5	3.0	12	
0874W4ACDD	02735 1975 1979 ICS CRET PROJ D-34	80-04-23	351	950	11.0	320	1.3	1600	90	23	1.2	120	220	1.4	1.5	1.5	1.9	3.0
0874W5BCB	02859 1985 SALIX NO 1	560	880	4.0	450	1.6	920	110	43	2.8	240	45	1.4	6.0	532	2.1	1.9	1.9
0884W0BABA	25594 1979 ICS D-33N LA PROJECT	377	970	13.0	280	3.3	2400	80	20	1.4	170	52	3.0	318	—	—	—	
0893W2ACBAA	01276 1970 TOWN OF SCHALLER NO 1	7511-1-10	2730	2000	14.0	1000	2.4	6600	320	150	2.0	2400	1500	0	12	334	10.0	33
0893W2ACBDC	01280 1970 TOWN OF SCHALLER TOWN NO 3	7511-1-20	2250	1800	14.0	1200	2.5	2400	300	120	2.0	2000	9.5	1.0	2.3	2.3	2.3	23
0894W5B8B	01280 1970 HOLLOWELL TOWN NO 3	7511-1-25	1510	1000	16.2	860	1.6	1800	200	62	1.0	100	950	0.9	<1.0	5.0	2.6	25
0894W5B8BC	00562 1972 HOLLOWELL TOWN NO 2 DW	7511-1-25	1510	1000	16.2	860	1.6	1800	200	62	1.0	100	950	0.9	<1.0	5.0	2.6	25
0894W20DCD	25593 1979 ICS CRET PROJ D-32	79-10-16	447	970	11.0	290	3.3	1300	97	19	1.4	190	54	3.0	2.0	324	—	—
0894W20BDC	25591 1979 ICS CRET PROJ D-30	80-04-09	378	620	12.0	320	1.2	700	93	21	1.2	150	65	3.0	4.3	338	4.3	12
0894W20B8DC	1979 ICS TOWN CITY NO 20 PERRY C	74-10-22	881	1000	12.0	590	1.1	—	510	150	1.2	280	260	0.2	9.0	405	5.1	25
0894W20B8D	1979 ICS TOWN CITY NO 18 PERRY C	74-10-22	759	1000	12.0	490	1.1	380	120	41	1.1	110	250	0.2	58	344	1.1	19
0894W20B8DC	1979 ICS TOWN CITY NO 11-HAIA ST	77-08-02	796	1100	13.0	520	1.9	620	140	41	1.1	260	290	0.2	14	359	8.9	6.8
0894W20CABA	1979 ICS TOWN CITY NO 14-7 PERRY C	77-10-22	628	930	11.5	390	1.2	450	100	34	5.3	150	230	0.3	13	322	3.5	23
0894W20CABA	1979 ICS TOWN CITY NO 17 PERRY C	77-10-22	788	1000	13.0	530	1.0	490	140	44	4.8	220	160	0.2	112	412	2.3	23
0894W20CABA	1979 ICS TOWN CITY NO 18-PERRY C	77-10-22	715	1100	12.0	530	1.8	110	50	43	1.1	90	200	0.2	49	111	2.7	16
0894W20CABA	1979 ICS TOWN CITY NO 5-MO RIVER	73-04-05	549	870	10.0	350	1.3	460	94	53	7.1	240	22	0.2	110	307	—	—
0894W20CABA	1979 ICS TOWN CITY NO 4-MO RIVER	73-04-05	490	830	10.0	350	1.1	410	93	29	4.8	240	22	0.2	111	261	—	—
0894W20CABA	1979 ICS TOWN CITY NO 3-MO RIVER	73-04-05	467	780	10.0	300	1.4	430	74	26	5.6	420	210	0.1	14	17	2.6	—
0894W20CABA	1979 ICS TOWN CITY NO 2-MO RIVER	73-04-05	450	780	10.0	280	1.5	420	74	26	5.6	420	210	0.1	14	17	2.6	—
0894W20CABA	1979 ICS TOWN CITY NO 1-MO RIVER	73-04-05	510	750	12.0	390	1.2	450	76	24	4.8	630	200	0.1	110	310	—	—
0894W20CABA	1979 ICS TOWN CITY NO 2-MP PARK	77-08-02	455	730	13.0	390	1.4	270	110	27	16	630	210	0.1	110	190	17	16
0894W20CABA	1979 ICS TOWN CITY NO 3-MP PARK	74-10-22	355	630	12.0	340	2.0	120	92	26	6.5	110	74	0.1	110	190	17	16
0894W30DAB	1979 ICS TOWN CITY NO 4-MP PARK	74-10-22	368	610	12.0	340	3.3	930	92	26	11	60	110	0.1	110	200	—	—
0894W30DAB	1979 ICS TOWN CITY NO 5-MP PARK	77-08-27	375	630	13.0	340	3.0	670	94	26	8.9	200	100	0.1	110	200	—	—
0894W30DAB	1979 ICS TOWN CITY NO 6-MP PARK	80-04-08	901	1000	10.0	630	1.5	800	90	44	20	400	350	0.1	110	377	2.0	—
0894W30DAB	1979 ICS TOWN CITY NO 1-MP PARK	77-08-15	846	1100	10.0	550	1.2	250	60	42	39	8.3	160	0.1	110	350	3.8	8.0
0894W30DAB	1979 ICS TOWN CITY NO 2-MP PARK	77-08-15	849	1100	10.0	550	1.7	2400	150	42	39	110	70	0.1	110	350	3.8	8.0
0894W7AC	1979 HINTON NO 4	1979 HINTON NO 4	197	640	11.0	340	3.3	540	91	28	11	3.3	120	0.4	1.2	19	1.5	7.0
0894W28ACB	25525 1979 ICS CRET PROJ D-24	80-04-05	441	1030	10.0	180	2.6	180	140	37	8.9	60	110	0.1	110	192	8.4	5.1
0894W28ACB	25526 1979 ICS CRET PROJ D-25 (DAK)	77-05-11	1270	1800	10.0	780	1.9	730	180	36	7.0	170	18	0.1	110	398	4.4	3.4
0894W28ACB	25526 1979 ICS CRET PROJ D-25 (DAK)	77-05-08	1290	1800	10.0	780	1.9	810	19	37	7.0	210	69	0.1	110	397	4.4	3.4
0894W28ACB	25527 1979 ICS CRET PROJ D-26 (DAK)	77-05-08	1290	1800	10.0	780	1.9	810	19	37	7.0	210	69	0.1	110	398	4.4	3.4
0894W28ACB	25528 1979 ICS CRET PROJ D-29	80-01-28	785	840	9.0	430	5.5	840	110	37	25	4.4	480	0.1	110	150	6.9	1.1
0894W28ACB	1979 AURELIA CITY NO 3	74-06-07	340	570	11.0	310	1.2	310	50	81	2.6	210	140	0.1	110	216	6.9	1.1
0894W28ACB	1979 AURELIA CITY NO 4	74-06-07	403	620	11.0	304	1.5	240	82	24	19.9	240	110	0.1	110	322	1.6	6.0
0894W28ACB	1979 AURELIA CITY NO 5	73-10-05	791	1100	11.0	510	1.9	760	140	46	6.6	260	110	0.1	110	337	1.6	2.0
0894W28ACB	1979 CHEEKEE CITY NO 5	73-10-05	801	1100	11.0	510	1.9	760	140	46	6.6	260	110	0.1	110	337	1.6	2.0
0894W28ACB	01514 1979 ICS CRET PROJ D-11	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01515 1979 ICS CRET PROJ D-12	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01516 1979 ICS CRET PROJ D-13	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01517 1979 ICS CRET PROJ D-14	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01518 1979 ICS CRET PROJ D-15	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01519 1979 ICS CRET PROJ D-16	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01520 1979 ICS CRET PROJ D-17	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01521 1979 ICS CRET PROJ D-18	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01522 1979 ICS CRET PROJ D-19	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01523 1979 ICS CRET PROJ D-20	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01524 1979 ICS CRET PROJ D-21	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01525 1979 ICS CRET PROJ D-22	80-04-11	1370	1500	10.0	760	2.2	330	200	63	1.4	120	730	0.1	110	176	5.1	3.0
0894W28ACB	01526 1979 ICS CRET PROJ D-23	80-04-11	1370	1500	10.0	760</												

POCKET CONTAINS
8 ITEMS

USGS LIBRARY-RESTON

3 1818 00070824 6