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Estimating ?eak Flow Characteristics at Ungaged Sites With Ridge
Regression
ABSTRACT

A regression simulation model is combined with a multisite streamflow
generator to simulate a regional regression of 50-year peak discharge against
a set of basin characteristics. Monte Carlo experiments are used to compare
the unbiased ordinary lease squares parameter estimator with Hoerl and
Kennard's (1970a) ridge estimator in which the biasing parameter is that
proposed by Hoerl, Kennard, and Baldwin (1975). The simulation results
indicate a substantial improvement in parameter estimation using ridge
regression when the correlation between basin.characteristics is more than
about.0.90. In addition, results indicate a strong potential for improving
the mean square error of prediction of a peak-flow characteristic versus
basin characteristics regression model when the basin characteristics are
approximately colinear. The simulation covers a range of regression parameters,
streamflow statistics, and basin characteristics commonly found in regional

regression studies.
INTRODUCTION

Hydrologists are often called upon to estimate péak flow characteristics
at stream sites where little or no peak flow information is available. One
method frequently uséd to make such estimates is to relate peak flow
characteristics to basin characteristics through a multiple linear regression
model. Sample estimates of the parameters of the regression model are made
using peak flow and basin charaqteristic data collected at gaging stations in
the region. In situations where the basin characteristics (independent

variables) are nearly uncorrelated with each other, the usual least squares



regression analysis provides reasonable results. However, if the basin
characteristics are highly correlated with each other, the results are legs
satisfactory.

A biased parameter estimation technique--ridge regression—-has been
developed by Hoerl and Kennaid (1970a) to eliminate some of the problems
associated with highly correlated independernit variables in a regression
problem. The purpose of this study is to test the ridge regression technique

in a practical hydrologic regression problem.

Use of Multiple Linear Regression in Hydrology

Regional analysis of streamflow characteristics with a multiple linear
regression of flow characteristics on basin characteristics has.been used by
hydrologists to predict flow characteristics at ungaged sites (Thomas and
Benson, 1970) and to improve predictions of flow characteristics at gaged
sites (Benson and Matalas, 1967). 1In addition, some applications of
regression analysis rely on individual parameter estimates to infer cause-
effect relationships between basin characteristics and flow characteristics
(Espey and Winslow, 1974). The power of the linear regression model for
these applications depends on the underlying assumption that the basin
characteristics are not strongly interrelated. The main consequences of
strongly interrelated basin characteristics are the following: 1) The precision
éf estimation of the regression coefficients decreases so that it may be
impossible to infer from the model the relative influence of various basin
characteristics. 2) Estimates of coefficients become very sensitive to
particular sets of sample data. That is, the set of coefficients estimated
from sample data collected at gaging stations in an area may be very much

different from the coeffficients that should be applied to ungaged sites.



3) Investigators may Ee led to drop important variables from the analysis
because their coefficieqts are not significantly different from zero.

The condition of strongly interrelated basin characteristics is
referred to as the problem of multicolinearity. Multicolinearity is a
condition of deficient data rather than an error in the regression model.
It cannot be uncovered by an analysis of residuals. The following is a brief

discussion of the problem of multicolinearity.

The Problem of Multicolinearity

Let ij denote the pth basin characteristic at the jth station. The
basin characteristics are linearly dependent if there exist non-zero
constants al,az,...,am such that

m

T aX. =0 for g =1,2,...,N
p1 PP

where NV is the number of gaging stations in the streamflow network.
Multicolinearity is said to exist when the above condition for linear
dependence approximately holds.

The problem of multicolinearity in a payti?ular dataset is not easy to
detect. Perhaps the best means of detecting the problem.is to compute a
measure of the precisioﬁ with which a regression is estimated. The precision
of a regression coefficient is estimated by its variance which is proportional
to the variance of the error term in the regression model. The constant of
proportionality for a standard linear model is termed by Marquardt (1970) the
variance inflation factor (VIF). The VIF for the pth regression coefficient
bp is [1—R;]_1, where Ri is the coefficient of multiple determination from
the regression of the pth basin characteristic on all other basin character-
istics in the equation. As R; approaches 1, indicating a very strong linear

dependence between the basin characteristics; the VIF approaches infinity.



As R; approaches 0, indicating complete orthogonality of the set of basin
characteristics, the VIF approaches 1. A VIF of five or more is an indication
of possible problems caused by multicolinearity (Montgomery, 1979).

Resolving Difficulties of Multicolinearity

When multicolinearity problems are recognized in a rcgional hydrologic
regression they are usually handled by variable selection. That is, potential
variables involved in a multicolinearity are not included in the model so that
the problem does not arise. This will happen when a technique such as step-
wise regression (Draper and Smith, 1966) is used. Variable selection implies
a logic in which a basin characteristic must either be important or unimportant.
Eliminating "unimportant" basin characteristics from the model can cause large
prediction errors if the eliminated characteristics are, in fact, good
predictors of the streamflow characteristic.

Hoerl and Kennard (1970a,b) proposed an alternative Lo variable selection
to control the problem of multicolinearity. The procedure was introduced
earlier by Hoerl (1962) and termed "ridge regression' because of its
mathematical similarity Eo a graphical technique called "ridge analysis''.
Ridge regression amounts to adding a small constant k[0<k<1] to the diagonal
of the sample correlation matrix among basin characteristics before inverting
it for ordinary least squares estimation. The ridge estimators are biased,
but they have the popentiél to produce more precise estimates of the
regression coefficients and smaller prediction errors.

The possibility of obtaining improved precision with a small loss of
accuracy makes ridge regression a potentially attractive alternative to
ordinary least squares. Unfortunately, there is no completely objective way
for deciding whether to use ordinary least sqdares regression methods or ridge

regression methods because such a comparison. depends on the true but unknown



values of the regression coefficients. This has led many investigators to
Monte Carlo experiments in order to gain insight into the performance of
the ridge estimators.

Previous Studies

The problem of multicolinearity is discussed by Johnston (1972), Mason,
Gunst, and Webster (1975), Marquardt and Snee (1975), and Chatterjee and
Price (1977). Interest in Hoerl and Kennard's class of biased estimators
called ridge estimators is evident from the growing literature on the subject,
[Marquardt, 1970, Mayer and Willke, 1973, Theobald, 1974, Hocking, Speed, and
Lynn, 1976, Vinod, 1976a,b, Farebrother, 1978, Baldwin and Hoerl, 1978, and
Golub, Heath, and Wahba, 1979]. Hsiang (1975), Rolph (1976), and Oman (1978)
provi&e a bayesian interpretation of the ridge estimators. Conniffe and Stone
(1973),.and Draper and Van Nostrand, (1979), have been critical of ridge
regression. Much of the recent literature concerns Monte Carlo studies to
determine sampling properties of various ridge biasing parameters [Hoerl,
Kennara, and Baldwin, 1975, McDonald and Galarneau, 1975, Hoerl and Kennard,
1976, Lawless and Wang, 1976, Dempster, Schatzoff and Wermuth, 1977, Carmer
and Hsieh, 1978, Swamy, Mehta, and Rappoport, 1978, Vinod, 1978, Wichern and
Churchill, 1978, Hemmerle, and Brantle, 1978, Lawless, 1978, and Peele and
Ryan, 1979]}. Smith, Anderson, and Scott (1973), Ander;on and Scott (1974),
and Kitanidis and Bras (1978) have applied ridge regression methods to
hydrologic problems. |

Purpose and Scope

The purpose of this report is to compare the ordinary least squares
estimator with an operational ridge estimator of regression parameters for
a linear regression model of peak flow characteristics on basin characteristics.
The term operational ridge estimator refers to the fact that the biasing



parameters, k, is estimated from sample data, and thus, can be applied to a
practical problem. The comparison uses Monte Carlo experiments to simulate
regional hydrologic regression problems that cover a range of situations
likely to occur in practice. This simulation differs from earlier omes in
that it simulates a specific regression problem——a regional regression of
peak discharge characteristics on basin characteristics. In such regressions
the regression error term is made up of a sampling error for the peak
discharge characteristic and a model error (Matalas and Gilroy, 1968). The
simulation in this study follows the general scheme of Moss and Karlinger
(1974), who combined a regression simulator with a multisite synthetic
streamflow generator in order to account for these two sources of error in
a streamflow network design stﬁdy.

The mathematical background of regional hydrologic regression, ordinary
least squares and ridge estimation, and an operational biasing parameter are
given in the next séction. This background is followed by sections on
simulation description, Monte Carlo experimental design, performance measures,
and experimental results. The summary and conclusions section is followed
by a list of references, notations, a table of results (Appendix A), the
computer program listing (Appendix B), and a note on generating correlated
uniform random numbers (Appendix C).
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MATHEMATICAL BACKGROUND

Regression Model of T-Year Peak Discharge

Let zij denote the Zth observation of the logarithm of annual peak
discharge at Fhe Jth station, where 7 = 1,2,...,nj and j = 1,2,...,N. Based
on the nj observations, the estimate of the logarithm of the T-year peak
discharge at the jth station is denoted by yj. Following the procedures
recommended by the Water Resources Council (1977) the estimate yj is

expressed by

e
Il

Ej+k1,sj for § = 1,2,...,N

where

. ..y (D
n
s. = (57%1— z (zi. - z.)z)% and (2)

kT is the standardized Pearson Type III deviate from Harter's (1969)

tables for probability 1/T and weighted skew coefficient §j. Weighted skew

§j is given by

9;s if nj_<_25
nj_zs —_ Tl-~25
§. = . . [1- <L — 1 < <
.gg g‘7 [ 3 1 + g [1 e ‘], if 25 " 100 (3)
. if n.>100
gJ, if 7>

where 53 is the generalized skew coefficient obtained from a map
or from a regional analysis of long-term gages, and gj is the sample skew

given by
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Assuming yj is statistically unbiased and consistent, the estimate yj may

be written

y; = E(yj3 + € : (4)
where E(yj) is the expected value of yj, éj is a random variable zero mean
and variance proportional to Gg/hj, and 0; is the variance of xij's (Bobée,
1973).

Let Xﬁp’ p=1,2,...,M, denote the pth basin characteristic associated
with the jth station. The relationship between E(yj) and the Xﬁp's is
formulated as a linear model

M
E(yj) = BQ + pElﬁpXﬁp + Sj J=1,2,...,N

where BO and the Bp's are constants, and Bj is a random disturbance which

measures the discrepancy in the linear approximation between E(yj) and the ij

From equation 4,
M

=B+ 5B X. +0.+c¢. i=1,2,...,0. (5
iRt TR %)

Assumptions of Classical Regression

Three assumptions are made in accordance with classical regression

analysis. (1) The Xﬁl’ XﬁZ’ e XﬁM are assumed to be fixed variables.

X

(2) For any set of basin characteristics, X X S the variance

J1° fg20 e
of yj is the same. This requires the variance of (Bj + ej) to be the same
for all j's. Homoscedasticity in 9 is assumed to exist. Homoscedasticity

in € requires that Oglnj be a constant for all j's. (3) The yj's associated

with the given set'{Xﬁ ,X5 ""’XﬁM} are normally and independently distri-

S.



9
buted. Normality is needed for tests of significance and confidence limits.
The assumption of independence requires the annual peak flows at different
stations to be uncorrelated. This assumption is generally not valid where
annual peaks result from large general storms rather than very localized
thunderstorms.

Estimating Regression Parameters

In practice it is convenient to have the regression equation in non-

standard form

Y= J8

By + KB+ e

in which Y is an N x 1 vector of observations on the dependent Qariable,
J is a N x 1 vector of 1's, X is an NV x M matrix of observations on basin

characteristics, B, is parameter to be estimated, E_is amzx 1 vector of

0
parameters to be estimated, and ¢ is an ¥ x 1 vector of disturbances. It
. ‘ . 2 e )

is assumed that E(g) = 0 and E(ee”) = 0"I. The objective is to estimate

BO and B. However, for the regression computations some form of standardi-

zation is desirable (Marquardt and Snee, 1975, Vinod, 1978). Let-

U and V denote a unit length standardization of X and Y, so that

V. = . - S ]
= y)/y for all J

J
v
- 1
y=53 t ¥
N F=1 T
v
;,
s,= 1% (; -’
< J=1
. = (X. -X)/S 14
uJP ( ip )/ for all j and p
X == L.X. for all p
p N j=1 9P
S =12 Xx. -X . for all
p {j=1 ip "] P
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The standard linear model is
V=Ua+e

where ¢ is a ¥V x 1 vector of disturbances (g, + Bj), o is aMx1
vector of parameters to be estimated, and U is a N x M matrix of known

constants in correlation form (that is,

N .
Zu. =0 and
j=1 Jp
v 2
Zu. " =1, for p=1,2,...,M).
j=l Jp

The ordinary least squares estimates of a are

o= (y_’U)'1 U’V with

(6)
s —1
Let Al’ AZ’ e ApM denote the characteristic roots of U’U. It can be shown

(Hoerl and Kennard, 1970a) that the mean square error of the estimates of the

regression parameters is

M-
Bzl = o (%~
p=1 "p

2 A P A . :
where L™ = (@ - a) (@ - o). If the U's are highly multicolinear some of the
characteristic roots will be near zero resulting in a large mean square error

of the regression parameters.

The ridge regression estimates proposed by Hoerl and Kennard (1970a) are

o~

ak)y = v+ kDL Uty o<k<d Q)
where I is an (MxM) identity matrix. It can be shown (Hoerl and Kennard,

1970a) that the mean square error of the ridge estimator is
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Mo
BP0 = o8 1 —E— 1+ 1% 0" + KDy
p=l(lp+k)

in which the first term on the righthand side denotes the variance of the
ridge estimator, and the second term denotes the bias squared of the ridge
estimator. Hoerl and Kennard (1970a) provide the following theorems:

(1) The variance term is a continuous monotenically decreasing

function of k.

(2) The bias squared term is a continuous menotonically increasing
function of k, and

(3) There always exists a k>0 such that

B2 (k))<E@D).

In other words, there exists at least one value of k such that the mean square
error of the ridge estimator is less than that of the ordinary least squares
estimator. Unfortunately, the optimal value of kX cannot be determined with
certainty because it depends on the unknowns 0 and o%. The value of k must

be estimated from the data. An intractable distribution of the ridge estimator
results from such a randomly chosen k. This accounts for the large number of
papers dealing with computer simulations of ridge estimators mentioned earlier.

The unstandardized estimators are determined from the

unstandardization formulas

= S £ =1,2,...,M 8
Bp ap/p or p (8)
and
—— MA—
B.=y - L aX. 9
0 p=1 PP
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4. Choosing the value of k--

Hoerl and Kennard (1970b) suggest a ridge trace [plot of &(k) agains£ k]
for subjectively delecting a value for k. For the simulation described in
the following section an objective method of selecting k is needed. Several
investigators including Hoerl, Kennard, and Baldwin (1975), Lawless and Wang
(1976), McDonald and Galarneau (1975) and Dempster, Schatzoff, and Wermuth
(1977) have used computer simulation to study the properties of k estimated
by various formulas. Although none of the formulas for estimating kX from
sample data can predict the optimal value of k, the formula proposed by
Hoerl, Kennard, and Baldwin has performed well in most of these simulation

studies. The Hoerl, Kennard, and Baldwin (1975) formula,

(10)

8
where 82 is the sample estimate of 02 was used for this simulation study.
SIMULATION DESCRIPTION
The objective of these Monte Carlo experiments was to simulate a regional
hydrologic regression problem in order to compare ordinary least squares (OLS)

regression with ridge (RGE) regression. A model is assumed of the form

Bi1 B2
QSO =ad S

where QSO is the 50-year peak discharge for a site with basin characteristics
A and S, and a, Bi, and B2 are constants. Log transformation of variables

allows this equation to be expressed as a linear regression model
Y = Bop + B1X; + B2X,

where Y = log10 Q By = loglou, Xl = 1oglOA, and X2 = 1og105.

1/

The simulation proceeds as follows: =

50°

1 .
— Another description of the simulation procedure in flow chart form can
be found in Appendix D.

o
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b)
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For each replication a set of N pairs of numbers representing Xl and X2
at N gaging stations was generated.

Next, it was assumed that the logarithms (base 10) of the annﬁal peaks

at station J in the region are drawn from a Pearson Type III distribution
with mean uj, standard deviation Oj.and skew coefficient y=0. Further

it was assumed that

, = + BiX. . + L. i=1,2,...,0 11
UJ BO Bl J,l C’J J 4y ( )

and
o, = B2 Xﬁ,Z + nj J=1,2,...,N (12)

in which Cj and ”j are normally and independently distributed random
disturbances with means zero and standard deviations O(;j) and O(nj),
respectively. Hence, the true regression model to be estimated by
generated samples is obtained by substituting the righthand side of (11)

and (12) into the first equation on page 7, so that,

E(Y[Xl,Xz) = Bo + Ble + kO(Bz Xy)

E(Y|X],X,) = Bo + BiX) + BoX,

* where E(Yle,Xé) is the expected value of Y given X, and X,, ko =

2.05375 is the standardized Pearson Type III deviate for a 50-year

return period. and skew coefficient of zero, from Harter's (1969)

tables, B2 = k082, and Bg, B; and P, are constants.
For all experiments the values of regression parameters
Bo and B, were taken to be identiéally 0 and 1, respectively. The

value of B, was set equal to 0.5 in some experiments and 1.5 in

others. Substituting these known values into the equation above

~



c)

d)
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yields the true regression model

.5

;11.0)X1 + (1.026875)X,, when B2
E(YIXl,Xz) =

((1.0)X; + (3.080625)X,, when Bz = 1.5

1]

In step b, it was assumed logarithms of annual peaks were drawn from an
underlying Pearson Type III distribution with skew coefficient zero.
This is equivalent to assuming a log normal distribution (Johnson and
Kotz, 1970, p. 170). Therefore, a multi-variate streamflow generator
(Matalas, 1967) was used to synthesize the common logarithms of a

sequence of 7n observed annual peaks; z, ., 2 cens 2, 53 at

L4 #2,5° #3,5° s
20 stations in a simulation region while preserving the following
assumptions: 1) the random variable Zj is normally and independently
distributed in time with mean uj and standard deviation Oj’ and 2) the
cross correlation between logarithms of annual peaks for any pair of
stations (pc) is a constant for all pairs of stations.
The estimated value of y at station J§ to be used as the dependent
variable in the simulated regressions is given by

Y; = 23 + ko 85
in which 23 and Sj are sample mean and standard deviation given by
equations (1) a§d (2), and 250 is the standardized Pearson Type III
deviate given in Harter's (1969) tables for a 50-year recurrence
interval as a function of weighted skew coefficient ;j (equation 3),
in which E& is assumed to be zero. In the simulation program it was

not necessary to compute sample skew because the weighting formula gives

zero weight to sample skew for the record lengths used.
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e) Regression parameters using OLS and RGE were determined from equations

(6) and (7) and unstandardized using equations (8) and (9).

SIMULATION DESIGN

The performance of an operational ridge estimator depends on (1) the
correlations among basin characteristics p, (2) the variaace of sampling
error Oz(ej), (3) the degree to which estimates of the dependent variable
are related, (4) the variance of the model error 02(8j), and (5) the regression
coefficient vector B. The simulation was divided into 294 experiments with
500 replicatons of each experiment. Separate experiments were conducted hv
changing one of the five factors above while the remaining four were fixed.

In order to evaluate the performance of RGE with respect to p, for each
replication a new set of N pairs of basin characteristics,

X X }

{x n ,1>n ,2

X X

1,10 %1,25 %o,10 Ko, 00 &g 00 X5 95 - o - 0 0 08

lwere randomly selected from uniform distributions on the ingérvals
(0,2) for Xj,l and (1,3) for Xﬁ,Z with correlations p, between Xj,l and ijz.
(See Appendix C for the method of generating correlated uniform pseudo-random
numbers) .

Forty-two experiments were run with each of seven values for
p (p = 0.0, 0.249, 0.50, 0.75, 0.90, 0.95, 0.989). These correlations
introduce a range of levels of multicolinearity into the simulation which
may also be expressed as VIF's (VIF=1.0, 1.066, 1.333, 2.286, 5.263, 10.256,
and 45.706, respectively).

The variance of the sampling error is a function of the number \
of stations in the regression, N, and the number of years of record at each
site, n. In order to evaluate the performance of RGE with respect to

sampling errors, separate experiments were run with six different combinations

of ¥ and n [(N,n) = (15,10), (15,25) (25,10), (25,25), (40,10), (40,25)].
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One of the assumptions of classical regression analysis is that the y's
associated with a given set of xjp's are independently distributed{ This
assumption is, in general, not valid because the flows at different gaging
stations are correlated. The accuracy of a regional regression model depends,
in part, on the degree to which estimates of the dependent variable are
related (Matalas and Gilroy, 1968). Hardison (1976) has shown the interstation

correlation between observed 50-year peaks, Psge is approximated by

2,07
Psp = Pe

where Py is the interstation correlation between logarithms of annual peaks.
In order to assess the effect of different values of p, on the results,
separqte simulation runs were made with b, = 0, .4, and .8 or p50 =0, .15,
and .63.

The random disturbances Cj and nj in equations (11) and (12) measure

the discrepancies between the population values of My and Gj and their
linear.estimators. Therefore, the variances of gj and ”j (Oz(cj) and
Oz(nj)) may be thought of as a measure of error in the underlying model.
Because the magnitudes of>02(cj) and Oz(nj) affect the accuracy of the
regression model separate simulation runs were made with O(Cj) = O(nj) =
0.01, 0.05, and 0.20 to assess the effect of model error on the results.
In actual hydrologic regressions little is known about model error because
they are masked by sampling errors. However, the range of model error in
this study (.01 to .2) is expected to adequately cover the practical range
in model error for useful hydrologic regressions.

For most experiments the true regression coeffients, Bo, B1, and B2,
were set equal to 0, 1.0, and 1.026875, respectively; In order to gain

insight into how changes in f might affect the‘performance of RGE, some

additional experiments were made with 82 = 3.080625 and By = 0 and B; = 1.0.
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The 294 expefimeﬁts are distinguished by having a different combination
of input variables p, N;_n, pc,oz(cj), and Bi' Table 1A in appendix A shows
the values of these input variables for each of the experiments. Because
this table and all others were printed on a line printer without lower case
or Greek letters, some notational changes were necessary and are given on
the first page of each table.

Initially experiments were run on the.IBM 370/155 / computer at the
U.S. Geological Survey, Reston, Virginia. Later experiments were run on a
Harris 125-S computer 2/ at the U.S. Geological Survey, Northeastern Region,
Reston, Virginia. A listing of the computer program for the Harris computer
is given in Appendix B.

Performance Measures

Let él and gz (B10 and B20) denote OLS estimates of Bl and 82, and let
él(k) and éz(k) (B1R and B2R) denote the RGE estimates. For each experiment
the root-mean-square error (RMSE) for OLS and RGE estimators of Bl and 62 are

defined as follows:

NR .
L 2, %
RMSE-B10 =[ 55 T (B - B,).]
r=1 .
NR A
L 2 %
RMSE-B20 —[NR z (82 - Bz) . ]
r=1
—_rt _ 2
RMSE-B1R _[NR z (Bl(k) 81} 1
r=1
NR .
b _ 1l B 2. %
RMSE-B2R = 7 rzl (Bz(k) Bz)r]

where NR is the number of replications of the experiment (NR=500

SY77 .
1/2 Any use of trade names and trademarks in this publication is for descriptive

purposes only and does not constitute endorsement by the U.S. Geological
Survey. )
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for the 294 experiments and NR = 100, 500, 1000, 2000, 3000, 4000, or 5000
for the sensitivity analysis explained below). The mean deviation was also

computed as

1 NR .
BIAS-Blp = B b} (Bl - Bl)
r=1
1 NR A
BIAS-B2§ = B z (82 - 62)
r=1
NR . -
_ 1 2
BIAS-B2R = P z (Bl(k) - Bl)
r=1
NR
=L 2 -
BIAS-B2R = 7 El (Bz(k) 62)

Two other useful performance measures are the probabilities that the RGE
estimates of Bl and 62 will be "closer" to the true values than will the OLS
estimates. These probabilities, respectively, labeled P-RGEl and P-RGE2 were
determined for each experiment by the following

Let ~

C(nar g0 - 8] < I8y _ 8]
Q = r

r
r,L

0, otherwise

for » = 1,2,...,NR and L = 1,2. Then

1 NR
P-RGE1 = B z Qr,l and
r=]
1 NR
P-RGE2?2 = TE X Qr,z
r=1

It is not sufficient to compare OLS and RGE on the basis of individual
parameters alone, because it is the linear combination of these parameters

which yields a predicted peak discharge. Perhaps a more reasonable measure
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by which to, compare OLS and RGE is the total mean square error of prediction,
A A

SE; . Let y denote the predicted value of y given BO, Bl’ and BZ' SE; for all

possible values of X

~ al

1 and X2 given BO, Bl, and Bz is given by

A A AN

SE = ELGy)7 8,8, 8,]

A ~ A ’ 2
EI(BO + Ble + BZX?_) - (BO + Ble + 82X2 + 3+ €)]

N 2 N 2,2 2 N 2,2
(By = By)” + (B = BDH(O, + 1) + (B, - B, (0]

1 1 2
2
+ u‘”z)
+2(8) ~ B (B, - BPu_ + 2By - B (B, ~ B b
1 2

* 208y = B (B = By (covltyaXy) + iy W)

+ 02(3) + o> (e) : (13)

where 9 and € are independent random variables with zero means, and

wo, 02 , L., and 02 are respectively the means and variances of x, and x,.
xtoxy’ e, Yo 1 2

Because Xl and X2 are uniform random numbers on the intervals (0,2)

and (1,3), respectively, with correlation p then

2-0
THE R S |
xl 2
2 _(2-0° _ 1
X 12 3
31
ux =1+ 5 = 2
2
G2 - 6-D% 1
mz 12 3
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For each experiment the values of Bo, 81,62, 0, 02(8),Aand 62(6) are
known. Each replication within an experiment produced two sets of estimates—-

0 Bl, 82 and Bo(k), Bl(k), BZ(k). Therefore, for each replication of an
experiment two values of SE; are computed--one associated with the OLS

. 2 . . 2
estimator SET,OLS and one associated with the RGE estimator SEngGE'

square root of SE; is calculated and called the true standard error. For each

B
The

experiment the mean true standard error (MISE) using OLS and RGE are

calculated by

1 NE
MTSE-OLS = VB 2 (SE'T’OLS)P

r=1

‘f‘“d L IR
MTSE-RGE = B ) (SﬂﬁgRGE)r'

r=1

Also, the standard deviation of the true standard error (STSE) is computed

for each experiment,

| MR -
P _ ol 2
STSE-0LS =l I (SEp .o - MISE-OLS), ]
r=1
NR
STSE-RGE =[2—— 3T  (SE — MTSE-RGE) %)%
WRT 2 T, RGE r

For comparison, the mean and standard'deviations of the observed standard
errors (MOSE and SOSE) were computed and labeled MOSE-OLS, MOSE-RGE, SOSE-OLS,
and SOSE-RGE where the observed standard error is the square root of the
variance of the residuals, (;—y).

It is important to recognize the source of multicolinarily in a regression
problem. For purposes of discussion, let us assume that bias introduces a
multicolinearity in basin characteristics that is not inherent in the actual

hydrologic region. For example, assume that there is a hydrologic region of

varying elevation consisting of parcels of cleared land and parcels of forested

~
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land where gaging stations in the area had been placed years before for

reasons other than trying to randomly sample basin characteristics. As a
result, stations at low elevations drained mostly cleared land while high
elevation stations drained mostly forested land, resulting in a high sample
correlation between elevation and forest cover which is not an inherent
characteristic of the region. In order to compare performance of OLS and RGE
estimators in this situation, a new value of SE;’is computed from equation (13)

with cov(Xl,X2)=O. The means and standard deviations of SET (MTSEO and STSEO)

calculated with cov(Xl,X2)=0 are given by

, MR
r=1
, IR
MTSEO-R = 3= _z_] (SFp pomy
%
1 MR 2
STSEO-f = [1— (SEp g = MISEO-)], ]
NR
r=1
NR
and  STSEO-R =[~~— ¥ (SE. .. - MISEO-R)%]?
w1 2 P reE P

In addition, some sampling statiétics of the biasing parameter, k, and
the basin characteristic correlation coefficient, p, were computed. For each
replication a new value of Xk was computed using equation (10). In each
experiment the mean, ﬁaximum, and minimum values of k were determined and
denoted as K-MEAN, K-MAX, and KMIN, respectively. For each replication a

A

sample correlation, p, between Xl and X2 was computed. For each experiment
the mean deviation of the sample correlation from the true correlation

(BIAS-RHO) and the root-mean-squared deviation.of sample correlation (RMSE-RHO)

were computed as
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NR A

1
B;ASLRHO =3B T (p - p)r_
r=1
NR .
_ 1 2 %
RMSE~-RHO 7 rzl (p p)r .

In order to determine if 500 replications were adequate, a sensitivity
analysis was performed. Four different experiments were replicated 100, 500,
1000, 2000, 3000, and 5000 times, and the results (Table 2A, appendix A)

compared. The four experiments had the following sets of input wvariables:

E§§I P v.oom Pe Oz(gj) B,
1. 0.0 15 10 0.0 .01 .5
2. 0.0 15 10 0.8 .01 .5
3. 0.95 15 10 0.0 .01 .5
4. 0.95 15 10 0.8 .01 .5

Results indicate virtually no difference in the relative performance
measures for 500 or 5000 replications. The sensitivity analysis showed that
500 replications were adequate.
EXPERIMENTAL RESULTS

In order to directly compare the RGE estimators with OLS
estimators, the following ratios weré computed: RTSE .= MTSE—BGE/MTSE—OLS
(the ratio of mean true standard errors); RSET1 = MTSEO-E/MTSEO-0 (the ratio
of mean true standard errors where the.population covariance between X1 and X2
is zero); RBl1 = RMSE-B1R/RMSE-B10 (the ratio of root-mean-square errors for
estimating Bl); and FB2 = RMSE-B2R/RMSE-B20 (the ratio of root-mean-square
errors for estimating 82). A ratio of less than 1.0 indicates an advantage
for the ridge estimator.

To concisely display the main results, each of these ratios and

P-RGE1 and P-RGE2 are shown in box and whisker plots (Tukey, 1977) as a
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function of p (figures 1-6). Each box and whisker plot represents the results from
forty-two experiments in which p was constant at the indicated value whilé some
other input parameters (namely; N, n, P, OZ(C), Oz(n), and 82) were changed from
experiment to experiment. In a box and whisker plot, the ends of the 'whiskers"
are maximum and minimum observed values, the "box" contains the middle 50
percent of observations, the dashed line represents the median value, and the
"4'" represents the mean value.

It is clear from these plots that the RGE estimator dominates the
OLS estimator in this simulation when p is greater than or equal to .90
because all of the ratios (figures 1-4) are less than or equal to one and
the probabilities (figures 5 and 6) are all greater than about 6.5. For
values of p below about .5 the OLS estimator generally performed better than
the RGE estimator. For values of p between .5 and .9, results of this
experiment indicate the RGF estimator generally performed better than the
OLS estimator with respect to the six measures of performance tested.

The relative performance of the RGE and OLS estimators is shown by
table 1. In this table, results from the 294 experiments were grouped by 0
(denoted RHO in tables 1-6), then ranked according to RTSE within each group.
Displayed along with RTSE are several key input parameters that were changed
from experiment to experiment. When p>.75, the smallest values of RTSE occurred
when P, {the between-station correlation of annual peaks) was zero and
N and n were relatively small (p. 36). Similar results were found with
respect to RSET-1, RBl, RB2, P-RGEl, and P-RGE2 in tables 2-6. 1In other
words, the RGE estimator performed much better than the OLS estimator
under the conditions of high multicolinearity (p>.90), low between-
station correlation of annual peaks (pc = 0), and relatively few basins with

relatively short records [(¥,n) = (15,10), (25,10), or (15,25)].
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SUMMARY AND CONCLUSIONS

A regression simulator was combined with a multisite streamsite
streamflow generator to simulate a regional hydrologic regression. Monte
Carlo experiments were used to compare an operational ridge regression
estimator with ordinary least squares regression estimator. The simulation
indicates a potential for improved parameter, estimation for hydrologic
regressions when multicolinearity is a problem. It also demonstrates a
method of evaluating the performance of potentially useful bias regression
estimators which are hard to evaluate analytically for specific hydrologic
regression problems.

In one sense the simulation was large because 145,000 regressions were
simulated. But in a more important sense it was small--only two explanatory
variables, constant values for BO and Bl, and only two values for 82 were
tested. Although the simulation favors ridge regression for highly multi-
colinear data and the models tested, the evidence for ridge regression is
not compelling for hydrologic regressions in general because of the small
number of explanatory variables and narrow range of regression parameters.
Future studies on this problem should include more than two explanatory
variables, a wider range of regression parameters, other means of estimating
k, and other biased estimators—-such as the James~Stein estimator (James and

Stein, 1961).
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TABLE 4. Results of 294 experiments grouped by p and

ranked within each group by RTSE,
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TABLE 7. Results of 294 experiments grouped by p and

ranked within each group by RSETA4 ,

Explanation

[Becausei this table was printed on a line printer without
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lower case or Greek letters,ﬁthc following notation changes,

were made:l
[ere made: |

Text notation Equivalent table notation
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