
UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

WOLF: Automatic Typing Program
%

By

Gerald lan Evenden

U.S. GEOLOGICAL SURVEY
OPEN-FILE REPORT 82-379

This report is preliminary and has not been
reviewed for conformity with U.S. Geological Survey
editorial standards. Any use of trade names is for
descriptive purposes only and does not constitute
endorsement by the USGS.

Preface

In order to create a complete document for programmers involved
with program modification and maintenance as well as a documentation for
general users, it is necessary to include the technical description and
details of implimentation. However* the user documentation, along with
appendix A, can be extracted and distributed as a complete manual.

ii

Abstract

A FORTRAN IV program for the Hewlett-Packard 1000 series computer
provides for automatic typing operations and can, when employed with
manufacturer's text editor, provide a system to greatly facilitate
preparation of reports, letters and other text. The input text and
imbedded control data can perform nearly all of the functions of a
typist. A few of the features available are centering, titles,,
footnotes, indentation, page numbering (including Roman numerals),
automatic paragraphing, and two forms of tab operations. This
documentation contains both user and technical description of the
program.

iv

Introduction

The program WOLF (Word Oriented Line Formatter) transforms free
form source text and special commands into formalized typewritten pages.
A nearly exact analogy of the function of this program is to that of a
typist. Although the source text must be in computer readable form and
a typing operation is normally required to initially create this text,
the typing is far less demanding than direct typewriter operation. In
fact, those who generally prepare typewritten rather than handwritten
drafts for typists could, just as easily, enter the text on the host
computer system directly.

The principle advantage of WOLF is not in simple one-step typing
operations (draft to final copy), but in multiple draft applications.
For example, in the preparation of reports there are often at least 3
drafts produced: 1) an initial draft reviewed and corrected by the
author 2) a second draft reviewed by critics and 3) the final draft.
When using this system the only part of the job consuming considerable
time and labor is the conversion of the source text to computer readable
form. Subsequent corrections are readily and quickly inserted in the
source text and the next copy is produced quickly and, just as
Important, accurately. Usage is, of course, not limited to reports.
"Personalized" form letters are an excellent example where a general
text body is quickly changed to reflect specific details and then typed.
Even filling out frequently employed forms or even creating new forms
can be expedited. The principle thing to remember is that the WOLF
system is quite flexible and so are its potential applications.

Usage of WOLF is as simple or complex as the job requires. For
example, to prepare the body of a letter the beginner is urged to just
enter the text into a file and process that file with WOLF. To start a
paragraph the only thing the user needs to know is that the paragraph
must start at the beginning of an input line and a blank must preceed
the capital letter of the first word. To add the heading and closing of
the letter the user only needs to learn the usage of four WOLF command
words.

In the following description of the use of WOLF the basic concepts
and modes of operation are covered first. These are followed by
description of editing characters and command words which control WOLF
functions. Finally, a control summary and an error message summary are
included.

Basic Principles

Program WOLF is basically a processor of "words". Most of the
words it processes are the same as normal language words. However,
there are other words recognized by WOLF so that a specific definition
of a word needs to be made. A word in this system is defined as any
continous string or group of characters separated by a delimiting
condition which may be a blank or space, a tab character, or the end of
the input line of text. Whether the blank or tab is used as a word
separator is dependent upon which of two modes, "fill" or "no-fill"
(discussed in more detail later), the program is processing as the input
text. In fill mode the blank is a separator and the tab editing
character (the > character described in more detail in the Editing
Characters section) assume printable character status, while in the
no-fill mode blanks are treated as printable characters and the tab
editing character is a word separator. For example, in the fill mode
the list

cow and/or
WOLF? second>third>fourth
$12.34 Thus,
end. on-lineI

contains eight words even though one might be considered a number, and
others a connection of words. Note that the punctuation is also part of
the word. In no-fill mode the same list contains six words since the
second line has three words (because of the tab editing character) and
the others have only one. Understanding the word concept is critical in
later usage of certain editing functions.

The fill mode also has an important function other than defining
word separations. In fill mode the input is considered a continuous
stream of words to "fill" the output printed line. When an input word
is encountered which won't fit in the current line, the current line is
printed and the left over word is placed first in the next line. This
process is repeated until the text is completed or a control condition
occurs. To demonstrate this operation consider the following listing of
a source text file and the resultant fill mode of output:

Source text...

This is an example
of how fragmented
the
source text can be in fill mode.
The resultant text, however,

does not reflect
this chaos.

We could go to the extreme and

put
one
word

Basic Principles

per
line.

WOLF processed resultant text...

This is an example of how fragmented the source text
can be in fill mode. The resultant text, however,
does not reflect this chaos. We could go to the
extreme and put one word per line.

Since it is often desirable to have the last character of each line
fall on the right margin, the "justify" function is also included in
WOLF. For this operation the program simply determines the number of
spaces left over at the end of the line and distributes them between the
words. The following shows the effect of justifying the previous text
example:

This is an example of how fragmented the source text
can be in fill mode. The resultant text, however,
does not reflect this chaos. We could go to the
extreme and put one word per line.

It is generally recommended for reports but will give away the machine
processing when used for letters. Both fill and justify are the initial
modes when executing WOLF.

In the no-fill mode, each source line produces one output line.
Its primary purpose is in producing tables, listings or other text where
automatic filling of output lines is not desired (i.ei poetry). If,
for example, the previous source text was processed with no-fill mode,
the identical text would be returned.

Obviously, typing is not always constant transformation of the
source text. There must be provisions to adjust margins, control
pagination, underscore words, etc. In standard human typing these
controls are often verbally given, specified by margin notes in the
source text and/or a wide variety of annotations and markings in the
text itself. In an automatic system the control must be formalized into
a structure or syntax understandable by both user and machine. In the
WOLF system there are more than forty controls or commands which affect
every aspect of text preparation. It should be noted, however, that the
average usage of the program will employ a small percentage of these
commands and their usage will become readily automatic. These controls
are subdivided into two types: editing characters and command words.

Editing Characters

Editing characters are employed to perform special operations, or
operations normally performed by control keys on the typewriter such as
backspace and tab. These latter functions exist as characters in the
computer system but are difficult to handle when using a text editor on
the source text. To overcome this problem these functions are indicated
by printable characters recognized by the WOLF program as control, but
recognized as simply another printable character by other programs. The
selected characters employed for editing control are used relatively
infrequently in most text, but should the need arise, the user can
readily change or, in some cases, suppress their meaning.

Underscore editing character

Since underscoring of words is a common part of typing operations,
the underscore character, __, is included as an editing character. The
action of the single underscore editing character only affects the
current word and is similar to a toggle switch: turn on when off, and
off when on. When two underscore editing characters occur consecutively
all following words are to be underscored until a second double
underscore editing character pair is encountered. The following example
illustrates its use:

__WOLF -> WOLF
__r_a_d__a_r -> .radar
_now is the time? -> now is the time?

no. 52.75 is -> no. 52.75 is

As can be seen from some of the above examples punctuation and special
symbols are not underscored. How to underscore these characters is
shown in the examples of literal editing*

Tab editing characters

Two forms of tab editing characters are provided: normal tab, >,
and the tab with "fill string" or fill-tab, ~. Except for the condition
discussed in the following paragraph, each of the tabs is only performed
in the no-fill mode of operation since their effect in fill mode would
normally be hard to predict. Each time either tab character is
encountered the next word is positioned at the next tab position.
Remember, tabs in no-fill are usually word separators. In the case of
the tab with fill string, a set of up to four characters, period and
blank initially, will be inserted from the end of the last word to the
next tab position. Setting tab stops and altering the fill string will
be discussed later in the command word section. In the following

Editing Characters

examples the tab positions are assumed to be set at 10 and 20:

name>phone>office -> name phone office
>no.>no. -> no. no.
Smith>165>201 -> Smith 165 201
Jones~140~Bldg B -> Jones. . .140. . . .Bldg B
James 207 -> James.207
rn -> i___i___i

In the last example line the fill string had been changed to _.

Either tab editing character may be used in fill mode when text has
been indented to the left of the -left margin and the first character of
the word following a tab would be output to a column left of the left
margin. In this case, the tab editing character will cause a tabbing
operation to the left margin column. This feature is especially useful
in paragraph or section numbering as shown in the following source text
examples:

l.~Now is the time for all good men to come to
the aid of desperate programmers.

S.2>This section deals with tabs.

Sub. section 2>This shows how the tab is ignored when
the next word is to the right of the left margin.

Assuming that indentation was 8 columns to the left of the left margin
(these operations will be discussed later) the resultant text would
appear as:

1.. . . Now is the time for all good men to come to the
aid of desperate programmers.

S.2 This section deals with tabs.

Sub. section 2 This shows how the tab is ignored when
the next word is to the right of the left margin.

Backspace editing character

The backspace editing character, <, is employed to print a second
character over the previous character, such as accents and creating
special mathematical symbols. It is not employed to rub out or correct
an error as is typical in manual typing. The only restriction in its
usage is that the user cannot backspace beyond the beginning of a word
The following are examples of its usage:

Saute<' -> Saut&
Di<'as -> Dlas

-> 1000

Editing Characters

Literal editing character

The literal editing character, *, causes the next following
character in the text to be treated as a printable character and thus
part of a word. Its principle usage is to allow blanks and other
editing characters to become part of the output word. When two
consecutive literal editing characters occur, all characters, except the
underscore character, are considered part of the input word until the
second pair of literal editing characters or the end of the input line
occurs. The following are examples of literal editing:

2* PM -> 2 PM
*«*__ -> £

_12.<*_J34 ' -> 12.34
12 AM -> 12 AM
joined*_word -> joined__word
<<bracketed*>*> -> «bracketed»
12.5*~-10 -> 12.5~-10
L E T T E R S P -> LETTER S P
__WOLF -> WOLF
symbol * is -> symbol is
** A T** odds -> A T odds

Most of the above usage is obvious except for the two time
examples. In some cases the user will want to be sure certain word
groups are treated as one word so that there will be no possibility of
their being split onto two output lines. 2 PM looks better if it is on
one line than if the 2 and the PM are split.

The literal editing character cannot be included in text. If
inclusion of the the literal editing character is required, the user
must change it by use of the \CL command word discussed later.

Hyphen editing character

A distracting and undesirable appearance of fill mode text can be
caused by words which will not fit on the current line because of their
length and, consequently, create an excessive number of blank fill
characters in the line or an excessive indentation of the right margin.
In normal typing these words are hyphenated by the typist. To allow
this system to hyphenate long words the user may insert one or more
"ghost" hyphens, », between word syllables. For example, the following
text shows several words containing the ghost hyphens:

\MR18,52
Hy^phen^ation should be used sparingly.
However, extreme blank pad=ding, "rivers"
in the text, or other dis^trac-tions
in the overfall ap^pear^ance of the text

Editing Characters

make hy-phen^ation extemely useful.
Note that shorter text lines will re=quire
greater use of the hyphen.

The result of processing the above text is:

Hyphenation should be used spar­
ingly. However, extreme blank pad­
ding, "rivers" in the text, or
other distractions in the overall
appearance of the text make hyphen­
ation extemely useful. Note that
shorter text lines will require
greater use of the hyphen.

As can be seen, the ghost hyphen is deleted from the text when not
needed. The ghost hyphen editing character has effect in fill mode only
and is simply another printable character in no-fill mode and literal
strings.

In practice, the use of the ghost hyphen in text with lines of 65
or more characters is generally not needed. In any case, it is usually
desirable to prepare the initial draft without ghost hyphens and then
insert them, if required, prior to a secondary processing.

Line shift editing characters

Two editing characters { and } allow respective up and down half
line shifting of the following characters. This shifting remains in
effect unil another line shift editing character or the end of the word.
Typical applications are in superscripts, subscripts and mathematical
typing as shown in the following example:

latitude 27<o 30' -> latitude 27° 30'

The acid H}2<SO}4 is -> The acid H SO, is

1.5xlO<-5 -> 1.5xlO"5

footnote{__3/ type -> footnote^' type

s-<d-a«<__«}}T -> s= "a~""""* 1

These editing characters can, of course, be used only with devices
capable of forward and reverse half line spacing.

Command Words

Command words are used to control general aspects of WOLF
operations such as mode selection, margin control, indentation, etc. In
this section the command words are grouped into generally related
operations. As required, further details of WOLF operation are included
to help explain the usage of the particular command words.

Each command word consists of a command prefix character, \,
followed by a one or two letter function identifier (ie. \JR, \FS, \S)
Although the following discussion of the commands employs upper case
letters, lower case letters are equivalent: \JR = \jr » \Jr.

Many commands require additional control information to be supplied
by the user. This information is transmitted to the program by means of
numeric or character string values, called arguments, immediately
following the function identifier. Numeric arguments, denoted in the
text by the lower case letter n (or nl,n2,... for multiple arguments),
may be a signed (+ or -) number. If the sign is omitted they are
assumed positive. Character string arguments are denoted by the lower
case s (or sl,s2,... for multiple arguments) and must consist of a
character string enclosed by the literal editing character * (note: the
character string may also be ended by the end of the input line). Each
argument of multiple argument command words must be separated from the
previous argument by a comma. Arguments may be omitted and in such
cases the action taken is described. Where arguments are omitted prior
to secondary arguments commas must be employed (ie. \MR,60) to show the
absence of the previous argument) Arguments must agree with the type
specified (numeric or character string) but are ignored when employed
where no argument is expected. The user may use this latter feature to
include comments in the source text which do not affect program
operation nor appear in the output text (ie. \FS*start of main
section*).

Placement of the command word in the input text depends upon the
basic mode in effect. In fill mode command words may appear anywhere in
the source text In no-fill mode they may only appear at the beginning of
the input lines. It is generally recommended that command words occur
on separate lines because their usage becomes more obvious and readable
in the source text. Remember that command words are words and a blank
character or end of line condition is required before and after every
command word.

Break operation
\B

The break command word, \B, is not often directly employed by the
user. However because the operation it performs is frequently a part of
other WOLF command words special attention needs to be given to it.
When later discussion employs the word "break" it is referring to this
operation.

Command Words

In fill mode it is often required to stop the current "filling" of
an output line with input words and to start a new output line and print
it prior to continued operation. When justify mode is in effect the
current output line is not justified when the break is employed. Use of
break in no-fill mode is meaningless since command words can only occur
at the beginning of the input line where, in a sense, the break has
already occured (no-fill mode can be considered as fill mode with a
break at the end of each input line).

Mode selection
\FS \FR \JS \JR

To change the fill, no-fill and justify modes of WOLF processing
four command words are provided. \FS, \FR, \JS and \JR initiate fill,
no-fill, justify and stop justify modes respectively. Since fill mode
is required for justify operation \JS also initiates fill mode if it is
not already in effect. All of these command words cause a break.

Horizontal control
\MR \I \T \SF

When executing WOLF the left margin is initially set to column 1
and the right margin is set to maximum print column value of the
execution parameter (column 72 if not specified). During execution
these margins can be modified by \MRnl,n2 where nl is the left margin
column and n2 is the right margin column number. The only restrictions
are that the left margin must be greater than 0 and less than the right
margin and the right margin cannot be greater than the maximum number of
columns specified at execution.

The margin command word causes a break and both left and right
margin arguments are optional (ie. set left margin by \MR5, right
margin by \MR,68 and both margins by \MR5,68) and when omitted the
omitted margin remains at its previous value. If both margins are
omitted the only action is the break.

Indentation, \In, causes a break and the start of the next line to
be shifted n spaces from the current left margin. If n is negative the
shift is to the left of the left margin and, consequently, the left
margin must have been previously set to a number greater than or equal
to the positive value of n. Also, a positive n should not cause an
indentation beyond the right margin. If n is not specified or 0 no
operation is performed except the break.

Tab stops, employed by the tab and fill-tab editing characters are
set with the \T command word. The WOLF system provides for up to 33 tab
stops with initial settings t>f columns 6, 11, 16, 21, ... etc. (every
fifth column). When the user enters new tab stops each tab entry in the
list must be greater than the previous tab stop entry and the last tab
entry terminates the list. This also means that a null or absent value
also terminates the list (ie. if \T5,15,,25 is entered the last tab
stop is 15). If the user attempts to tab beyond the last established

Command Words

tab stop an error condition will occur.

The \SFs command word allows the user to set the fill string
employed by the fill-tab editing character. The string s may contain
from 1 to 4 characters which will be repeated until the next tab stop.
If more than 4 characters are in the string only the first 4 will be
employed. If the string s is not specified the fill-tab editing
character will act the same as the simple tab. The initial setting of s
is ". " (period-blank).

Centering control
\C \CS \CE

Centering of text can be used to prepare title pages and chapter or
section headings. Three command words are provided for centering
operations. \C indicates that the following text on the same input line
as the command word or the next non-blank input line should be centered
between the current left and right margins. \CS indicates that all
following input lines are to be centered until the \CE command word is
encountered. When centering is initiated (\C or \CS) the mode is forced
to no-fill and all no-fill rules apply to the source text. At the end
of centering operation the modes previously in effect are restored.
Both \C and \CS cause a break.

Paragraph control
\P \AP \AR \PP

WOLF can perform "automatic paragraphing" (break, added line
spacing and indentation) if the source text line in fill mode begins
with one or more blanks followed by an upper case letter. Selection of
automatic paragraphing (initial condition of program) is made by the \AP
command word and can be halted by the \AR command word. In certain
cases paragraphing operations need to be forced by the use of the \P
command word (ie. the paragraph starts in the middle of the source text
line, does not start with an upper case letter or automatic paragraphing
is turned off).

The \PPnl,n2 command word allows the user to control the details of
the paragraphing operation. The optional argument nl specifies the
number of added blank lines to preceed the new paragraph (initially set
to 1) and the second optional parameter, n2, specifies the indentation
of the first word of the new paragraph line (initially set to 5). Note
that the same rules of indentation of the \I command word apply to n2.
Omission of either argument does not cause the current associated value
to be changed.

Changing editing characters
\CL \CC \CU \CT \CB \CF \CH \CK

Command words \CLs, \CCs, \CUs, \CTs, \CBs, \CFs, \CHs and \CKsl,s2
allow changing the respective literal editing character, command word

10

Command Words

prefix, underscore, tab, backspace, fill-tab, hyphen and line shift
editing characters. The character string s (if more than one character
is present only the first, is used) replaces the current editing
character. In the case of \CK si is the line up-shift editing character
and s2 is the line down-shift editing character. The arguments for \CU,
\CT, \CB, \CF, \CH and \CK may be omitted and in such cases the
corresponding editing function is eliminated. The literal editing and
command prefix characters cannot be omitted. In all cases the new
editing character must not be a blank, sign (+ or -) character, numeric
digit or an editing character currently in use. As an example of usage,
\CL*$* and \CU will cause the literal editing character to become $ and
the underscoring operation is eliminated.

In practice the only required usage is the \CL command word when
the literal editing character is to be employed in the output text. All
other editing characters can be incorporated by prefixing them with the
literal editing character.

Page operations

Before proceeding it is necessary to discuss the details of WOLF
operation with respect to pagination. All text output is in terms of
pages and WOLF always performs the following sequence of operations for
each page:

1 Pause if output to teletype and wait for user response.
2 Increment page number.
3 Print page number if page number line less than first text line.
4 Print title group A.
5 Print title group B.
6 Print title group C.
7 Print main text body, including figures.
8 Print footnotes.
9 Print page number if page number is not already printed.

10 Eject page.

Any one of the above operations except 10 can be omitted but the order
cannot be altered (ie. title B cannot be printed before title A). This
operating sequence is not started until a line of main text is ready for
output, a page command word (\PG) or a \TO command word condition is
encountered. The \PG and \TO commands are discussed in more detail
later.

Operations 3 through 9 have associated line numbers defining the
starting position of the output on the page (nate: line 1 is top of
page). In each of these cases, however, if the line number of the next
output line is greater than the specified line number of the operation,
the operation starts on the next line number. For example, if the page
number line is 4, the title A line number is 6 (titles B and C are not
used) and the first line of main text is specified as 6, the following
output lines will be employed: page number on line 4, title A on lines
6, 7 and 8 and the text starts on line 9. Everything is "pushed down"
based on the effect of the previous operations except the end of main

11

Command Words

text and footnote lines which are always cut off at the specified last
line.

Vertical control
\S \SP \CP \PG

The \Sn command word causes a break and a space of n blank lines to
be output. In fill mode it is the only way, besides paragraphing, that
blank lines can be introduced into the output text. If the value of n
is less than 1 or omitted 1 blank line is assumed. Spacing will not
continue from one page to the next. That is, if 5 lines are left on the
current page and an \S10 command word is given, spacing is only made to
the bottom of the current page and the residual 5 spacing lines are
ignored

The user may change the number of blank lines between output lines
(what is normally called "spacing") by the \SPn command word where n is
the number of blank lines desired minus 1. For example, a "double
spacing" request is \SP2, and "single spacing" is \SP1 or \SP. If n is
less than 1 or omitted 1 is assumed. The initial value of n is 1.

For controlling the vertical size and position of output on a page
the \CPnl,n2,n3 command word is employed, nl specifies the first line
for text and n2 the last line. n3 specifies the first line on which
footnotes may start so that some normal text will appear on a page prior
to footnote output. To provide one inch top and bottom margins for
standard 66 line pages (11 inch stock) the initial value of nl is set to
6 and n2 is set to 6 less than the maximum lines per page specified at
execution time. The initial value of n3 is line 10. nl and n2 are
similar to the left and right margin values and the same rules apply
(ie. nl<n2, etc.). When any argument value is absent the corresponding
control remains unaltered.

The \PGn command work provides for page ejection. If the value of
n is 0 or omitted a break is performed, applicable figures, footnotes
and page number are output and a new page is started. If the value of n
is greater than 0 the previous operations are only performed if there
are less than n lines remaining on the current page. Major divisions of
a report frequently employ \PG or \PGO to start the section on a new
page. Use of \PGn, where n is positive, is primarily at the head of
minor divisions where the user wants to ensure that the heading with one
or more lines of text body will occur on the same output page. If n is
greater than the number of text lines per page then the command is
identical to the \PG command.

A third form of the \PG command is where n is less than 0. This
case is the same as the positive n except the break function is not
performed. The priciple usage of the negative argument \PG command is
where the user does not want a shortened line (in fill mode) caused by
the break function to occur at the bottom of the page if the page
ejection is made. Note that one or more words preceeding the command
may be transfered to the next page along with the following text. The
negative argument form is identical with the positive argument form in

12

Command Words

no-fill mode.

Page numbering control
\PE \PS \PO \PN \AN \RN \NC

The WOLF system provides automatic page numbering services. The
internal page number is incremented at the start of each page and is
printed at either the top or the bottom of the page, depending upon user
selection. Printing of the page number may be stopped by the \PE
command word or re-enabled by the \PS command word (initial condition).
The.page number is kept current even when not being printed. Since
printing of page number 1 is often suppressed the WOLF system will not
print page 1 unless the \PO command word is given.

Changing of the current page number can be made at any time with
the \PNn command word where n is the new page number. This is
particularly useful when segementing the preparation of large reports
into independent jobs. Initially the page number is set to 0. Remember
that the page number is incremented when the program starts to print a
new page. Consequently, if a \PG command word is followed by \PNn the
page number printed will be n+1 since the output of the new page is not
started until text is to be printed or a \TO command word (see
miscellaneous commands) is given. If a \PNn is specified in the middle
of page output the result will depend upon whether the page number was
printed at the top of the page or the bottom. If printed at the top it
will obviously contain the previous page value and the next page will
contain n+1. If printed at the bottom the new page number will be n.
Because of the confusion that can exist it is recomended that \PNn be
employed after a \PG command word where the user will be sure of the
operational sequence.

Two additional command words \RN and \AN allow selection of Roman
and Arabic numeral presentation of the page number (Arabic is the
initial mode). Roman numerals are frequently employed on
pre-intreduction sections of a report. Typically, if such page
numbering is employed in a one step execution of WOLF the command
sequence would be: \RN at the beginning of the report followed by the
title page, preface, etc. and then prior to the main section of the
report the \PG \AN \PNO command word sequence would be given.

To control the position and page number annotation the
\NCsl,s2,nl,n2 command word is used, si and s2 are strings of up to 10
characters each which will preceed and follow, respectively, the page
number. For example, \NC*Page * or \NC*- *,* -* will cause all
subsequent page numbers to appear as "Page 10" or "- 10 -" If si
and/or s2 is omitted the respective previous string remains in effect.
If any numeric value is in si and/or s2 (this is the only place a
numeric value is allowed in a string argument) the respective content of
the string is deleted. If more than 10 characters are in either string
only the first 10 are used. Initially si and s2 are empty.

Arguments nl and n2 of the \NC command control the column position
of the first character of the total number string and output line number

13

Command Words

of the page number. If nl is omitted the previous position remains in
effect and if nl is less than 1 (initial condition) the page number
string is centered between column 1 and the maximum column number
specified at execution (it is not centered between margins). If the
line number, n2, is less than the first text line, the page number is
printed a£ the top of the page; otherwise it is printed after the last
output text line. Initially n2 is specified as the maximum number of
lines - 4. Omission of n2 leaves the previous value in effect.

Titles and footnotes
\TA \TB \TC \FT \EN

Three title line groups, appearing at the top of each page, and
footnotes are controlled with the \TAn, \TBn, \TCn and \FT command
words. Creating titles and footnotes is similar to starting a new
output file in that text entry may contain command words and editing
characters as shown in this example:

\TA \MR50 \FR
Cape Cod Windmill Co.
Murky Pond, MA 02541
(617) 999-9999
\EN

The most important factor in creating titles or footnotes is' that
control established in the main text does not apply to these entries.
Similarly, the mode and/or margin command words in the above example do
not alter the mode and/or margins of the main text nor- footnotes. In
addition, all commands generally relating to basic page control, figures
and other title/footnote commands are not allowed in the title/footnote
text. The main thing to remember is that main or body text, titles and
footnotes are three entirely independent processing entities, each
initialized in the identical manner.

Title entries are separated into three groups (A, B and C) each
allowing up to 5 lines (including blank lines) of text. To enter text
in each of these groups the \TAn, \TBn and \TCn command words must
preceed the text and where n is a positive number or omitted. Title
text must be followed by the \EN command word to return to main text
processing. The positive value of n, if specified, denotes the first
output line on which the title is to be printed. All title groups are
under the same general control such that command words like \MR or \SP
used in \TA will affect \TB and \TC processing.

If the argument n is specified, but less than 1, two control
functions are involved and title text does not follow. When n is zero
the title lines for the specified group are deleted and when n is less
than zero the printing status is toggled (ie. print to no-print,
no-print to print) and the title text is not altered.

The \FT command word starts the entry of text into the footnote
section at the bottom of the page. Footnote input is terminated by the

14

Command Words

\EN command word (same as titles). Up to 40 lines excluding blank lines
generated by \S, multiple spacing or paragraphing may be placed in the
footnote section (the blank lines are regenerated on output). To ensure
that a footnote reference in the main text starts on the same page as
the reference, the footnote entry should immediately follow the
referencing text word as shown in this example:

source text reference \J
\FT \J See last chapter for more details. \EN
cannot be applied.

The WOLF system keeps track of footnote requirements so that if the
footnote cannot be placed on the same page the line with the reference
word in it is not printed on the current page and a new page is started.
When footnote output cannot be completed on the current page it is
continued on the next page.

When a footnote is entered prior to the completion of output of the
previous footnote it is appended to the previous footnote. Again,
assurance is made that the appended footnote will occur on the same page
as the footnoted word of main text.

Footnotes are placed at the bottom of the page using no more lines
than are allowed or required. In addition, a blank line followed by a
line of dashes and a second blank line preceed the footnote text.

Input file control
\FI \EF

When the \FIs command word is encountered subsequent source text is
obtained from the file specified by the contents of s. The new input is
incorporated into the input stream as if it was part of the old file.
When the text from the new file is exhausted the system resumes
processing from the old file. Input files may be nested (ie. the new
file contains an \FI reference to another file) up to 5 levels deep.
The argument string s must be specified and the details of its contents
are dependent upon the file naming conventions of the host computer
system.

This feature may be used to put together parts of a long report,
prepared and corrected independently, into a single "final edition" run
such as in the following example:

\FI*TITLEP* \PG
\FI*PREFAC* \PG
\FI*CHAP1* \PG
\FI*CHAP2* \PG
\FI*APPNDX* \PG

Another application is in form letter preparation where the constant
portion of letter text resides in a file which has references to
secondary files containing the date, addressee's name and address and if

15

Command Words

necessary certain particular details. The advantage here is that each
time the form letter is typed only the detail files need to be altered.

The \EF command word signifies the end of the current input file.
It is not required but can be used to delete ending sections of a source
file without actually deleting the text.

Miscellaneous functions
\TO \NP \FG

The \TO command word has effect only when WOLF is at the top of the
output page. It causes the system to process the page heading functions
(steps 1 through 6 previously discussed in the page operations section).
For example, if a new section is started and a new title is to be
specified for the first page followed by a second title line on
subsequent pages, the following source text is required:

\PG*start of section A*
\TB \C Section A.
\EN \TO*forces current titles to be printed*
\TB \CS Section A.
(Con't)
\CE
\EN*end of title for remaining pages.*

When WOLF is writing output to a teletype device it automatically
pauses at the top of each page to allow the user to change paper and to
notify the program when to continue. However, if continuous form paper
material is being used, this operation can be bypassed with the \NP
command word.

For certain reports figures are included in the text. Figures
require a contiguous sequence of blank lines where the \S command word
cannot be used since it is usually not known where the resultant
operation is going to occur in the output text. If it occurs near the
bottom of the page insufficient space could result. The \FGn command
however causes n blank lines to be inserted in the text either
immediately (if there's room) or on subsequent pages. If there are
additional figure requests before the current request is satisfied they
are added to a figure list of up to 17 entries. When there is a list of
entries each is satisfied, in order of entry, as soon as possible and
deleted from the list.

16

Control summary

This section is provided as a quick reference to WOLF program
control for users already familiar with its basic operation.

Editing characters

* literal editing character causes the next character to be
treated as printable character even though it is a blank or
other editing character. When ** occurs all following
characters, except the underscore and literal editing
characters, until a second ** or end of the input line, are
treated as printable characters.

J_ underscore editing character causes the underscoring of the
remaining letters of the word or until a second underscore
editing character is encountered. Two underscore editing
characters ('") initiates underscoring of all words until a
second pair of underscore editing characters occurs.

< backspace editing character causes backspacing prior to the
printing of the next text character.

> tab editing character (no-fill mode only) causes horizontal
spacing to the next tab position. See \T command word for
initial tab settings and how to change them.

~ fill-tab editing character (no-fill mode only) performs like
> except that instead of spaces a string of characters is
repeated.

= ghost hyphen editing character (fill mode only) allows a word
to be split across two output lines. The » character is
replaced with a normal hyphen (-) if the preceeding segment
will fit on the current line and the remaining characters of
the word are placed on the next output line. If hyphenation
is not performed the ghost hyphen editing character is
omitted.

{ up-shift editing character shifts the output line up 1/2
line.

} down-shift editing character shifts the output line down 1/2
line.

17

Control summary

Command words

In the following alphabetically ordered list of WOLF commands,
optional arguments are enclosed in square brackets [] and n denotes
numeric arguments and s denotes character string arguments* Values
enclosed in parentheses after n or s are minimal assignments followed by
initial system assignments when applicable.

UN (initial)
Set output of page numbers to Arabic numeral form.

\AP (initial)
Perform automatic paragraphing. Automatic paragraphing
(fill mode only) occurs when one or more blank characters
start a line followed by an upper case letter.

\AR
Halt automatic paragraphing.

\B
Break processing of current output line and start new
output line with following text. Last output line is not
right justified.

\C
Perform break function (\B) and center between margins the
text when it occurs a) on current input line when
non-blank characters are present or b) first following
non-blank input line. No-fill mode is temporarily in
effect.

\CB[s(,<)]
Change backspace editing character to s. If s omitted,
operation is suspended.

\CCs(,\)
Change command prefix character to s.

\CE
Halt centering operation initiated by \CS. Fill and
justify modes in effect prior to \CS are restored.

\CF[s(,~)]
Change fill-tab editing character to s. If omitted,
operation is suspended.

\CH[s(,=)]
Change ghost hyphen editing character to s. If omitted,
the operation is suspended.

18

Control summary

Change respective up-shift and down-shift editing
characters to si and s2. If respective values are omitted
the operation is suspended.

\CLs(,*)
Change literal editing character to s.

\CP[nl(l,6)] [,n2(,maxlines-6] [,n3(,
Set first (nl) and last (n2) text lines. n3 is first line
number on which footnote output may begin.

\CS
Perform break function (\B) and center all following
non-blank input lines. No- fill mode is in effect.

\CT[s(,>)]
Change tab editing character to s. If omitted, operation
is suspended.

\CU[s(,_)]
Change underscore editing character to s. If omitted,
operation is suspended.

\EF
End of current input file.

\EN
End of title or footnote entry.

\FGn
Space, when available, n lines for figure entry.

\FIs
Start processing input from file defined by s. Input
files may be nested five deep.

\FR
Perform break operation (\B) and start no-fill and
no-justify mode of operation.

\FS (initial)
Start fill mode of operation.

\FT
Start footnote entry.

\In
Perform break function (\B) and indent start of next line
n spaces from left margin.

\JR
Perform break operation and stop justify mode of
operation.

19

Control summary

\JS (initial)
Perform break operation and start justify mode of
operation. Fill mode is also initiated if necessary.

\MR[nl(l,l)3 [,n2(l,max cols)]
Perform break operation (\B) and set left margin (nl)
and /or right margin (n2).

\NC[sl(,)] [,s2(,)] [,nl(0,0)3 [,n2(0,maxlines-4)]
Set left (si) and right (s2) bracket strings of page
numbers. Any numeric value in si or s2 deletes the
string, nl specifies column of first page character and
if _£ 0 then centers page number. n2 specifies line number
to print page number.

\NP
Do not pause at top of page.

\P
Perform break (\B) and start next line as a paragraph.

\PCn
Identical to \PG command. Maintained for historical
purposes.

\PE
Stop printing of page numbers.

\PGn(0)
If n<0 eject page only if less than |n| text lines remain
on current page.
If n absent or equal to 0 perform break and eject page.
If n>0 perform break and eject page if less than n text
lines remain on current page.

\PNn(l,0)
Set current page number to n.

\PO
Print page number one (normally suppressed).

\PP[nl(0,5)][,n2(0,l)l
Set paragraph parameters, nl is number of indent spaces.
n2 is number of blank lines to preceed paragraph.

\PS (initial)
Start printing of page numbers.

\RN
Set output of page numbers to Roman numeral form.

20

Control summary

\S[n(l)]
Perform break (\B) and space n blank lines. Blank lines
are not spaced across page boundaries .

\SF[s(,.)]
Set tab fill characters to string s.

\SP[n(l,l)]
Set number (n-1) of blank lines ("spacing") to be inserted
between output lines.

\T[nl(l,6)3 [,n2(l
Set tab stops to nl, n2, n3, nl<n2<n3<

\TA[n(,l)]
\TB[n(,l)]
\TC[n(,l)]

Start output or control of respective A, B or C title
lines.
If n<0 change printing status of title.
If n^O suspend printing of title and delete.
If >0 n is line number of first line of title and
following text will be output as title. If n absent
previous n setting employed and title text follows.

\TO
If at top of page force printing of titles.

21

Error messages

Whenever error conditions are encountered in the source text WOLF
outputs an error message and suspends operation. The form of the error
message is:

WOLF>error number/input file data/output file data

The error numbers and their meanings are listed below. The input file
data consists of the current input file name and line number of the
source text containing the error. Output file data consists of the
output file name and the system page number (not user page number) and
next output line number.

The first 17 error numbers are reserved for host computer system
errors and the user must refer to appendix A for further information.
The name in parentheses following the error numbers listed identifies
the program module generating the error and is meant for program
maintenance personnel. If "pathologic" errors (program checks which
should not occur) are encountered see personel involved with program
maintenance.

-18 (UNIT) null control line.

-19 (UNIT) improper number of lines per page.

-20 (IOPNI) null or otherwise invalid name specified for new
input file in the \FI command word.

-21 (IGETC) end of file. For system use. Not seen by user.

-22 (IWORD) input word too large to be handled by current
version of WOLF.

-23 (IWORD) attempted to backspace beyond beginning of word.

-24 (ILINE) too many words in one line for current version of
WOLF to process.

-25 (ILINE) input line cannot fit between margins. Too many
characters in one word (fill mode) or line too long
(no-fill mode).

-26 (ILINE) attempted to indent paragraph to the left of left
margin.

-27 (ICMDA) invalid margin values. Out of range.

-28 (IPARS) pathologic error.

-29 (UNIT) improper text offset values in RUN parameter list.

22

Error messages

-30 (UNIT) improper maximum columns specified in RUN parameter
list.

-31 (IFIGC) overflow of figure request list.

-32 (IFTHC) overflow of number of lines allowed in titles or
footnotes.

-33 (IPAGP) Roman number too large (>3999)

-34 (IPAGP) error in positioning line number. Check \NC nl
parameter.

-35 (IPARC) exceeded the number of command arguments allowed.

-36 (IPARC) parsing pathologic error.

-37 (IPARC) pathologic error.

-38 (IPARC) invalid command.

-39 (IPARC) number argument too large.

-40 (ICMDA) alphanumeric argument occurred when numeric
argument required.

-41 (ICMDA) non-ascending tab stop positions.

-42 (ICMDA) numeric argument occurred when alphanumeric
argument required.

-43 (ICMDA) null character invalid for literal editing
character or command prefix character.

-44 (ICMDA) specified character not allowed as editing
character or command prefix.

-45 (ICMDA) pathologic error. Invalid function number.

-46 (ICMDA) command word not allowed in title or footnote text.

-47 (IFILE) invalid or null field specified for \FI argument.

-48 (IFILE) input files nested too deep.

-49 (IFTHC) too many lines in title (>5).

-50 (IFTHC) too many lines in footnotes.

23

Error messages

-52 (ITIFT) end footnote/title (\EN) command word while not in
footnote or title processing mode.

-53 (IFTLP) pathologic error in footnote printing.

24

Technical Description

General

Program WOLF is written for the Hewlett-Packard 2100 series
computer with RTE-II or III operating system. It requires 11 k-words of
user memory, approximately 18 k-words of system disc for working storage
in addition to normal system overhead requirements. It should be noted
that current output capability is limited to terminals or devices
capable of properly processing ASCII backspace and formfeed control
characters. In addition to normal RTE (HP, 1977D), FMP (HP, 1977A) and
relocatable library (HP, 1977C) subroutine calls it employs the Decimal
String Arithmetic package (HP, 1977B). In the following description
WOLF design philosophy, general flow description and overlay-linking
factors will be covered. A magnetic tape supplied with this
documentation contains copies of all WOLF source code, and other data is
described in appendix E.

Design philosophy

The WOLF program is a high modular set of subprograms which are
nearly all coded in FORTRAN IV and where many have no machine dependent
coding nor inclusion of non-standard FORTRAN features except as noted
below. In a few cases, most notably I/O, machine dependent code was
necessary. Obviously, this provides for relative ease in transportation
of the program to other computer system environments and generally
facilitates modifications. A reasonable effort was made to "comment"
the code and, along with this description, an experienced programmer
should be able to modify the system after some study.

The only known non-standard FORTRAN exception was the short form of
the arithmetic IF statement. For example,

IF (I).10,20

is identical to the proper form:

IF (I) 10,20,20

Although COMMON was used for storage of most working variables,
many of the subprograms have all data passed as arguments including many
variables employed only in the routine itself. To minimize argument
lists these local variables are often stored in arrays with "PCA"
suffixes and "loaded" into local arrays equivalenced with local simple
variable names. Including COMMON declarations in the modules would have
improved efficiency but since the final contents of COMMON was not known
until the final stages, continued updating of the debugged modules would
have, to say the least, impeded the development. In most cases, the
subprograms are serially reusable and, consequently, can be freely
employed in overlay segments.

It is recognized that any system of such general usage interest as
WOLF will never be complete and even at this date certain changes and
improvements are planned. Despite shortcomings, it was deemed more

25

Technical description

important to make it available for wider distribution than try to hold
off until a "perfectly polished" version was coded. Hopefully, the
design philosophy employed will allow WOLF to easily grow and change.

Basic Control Flow

Because it is not practical to describe all details of a program as
complex as WOLF the following description is an overall view of the
program. For specific details, the reader can refer to the source code
listings in appendix B. When refering to specific statements in the
program listings, reference is always made to the FORTRAN statement
number plus (if necessary) an offset to the statement discussed. For
example, "statement 500+4" means the fourth line following the FORTRAN
statement number 500.

It should also be noted that because of the overlaying method used
(described later) several modules referred to in the main segment have
the first letter changed from I to J. For example, IPAGC in MAINC is
referred to as JPAGC.

The main program module, WOLF, merely calls UNIT for
initialization, MAINC for basic operation and UNIT again for closing up
the program. Note that the initial development of WOLF preceeded
availability of FORTRAN BLOCK DATA segment so that all common
initialization was performed by assignment statements in UNIT. It
should be also noted that the HP system effectively clears memory for
all variables so that a zero initial value can be assumed if not
otherwise specified. UNIT also retrieves the remainder of the program
execution line, opens initial input file, output file and sets optional
run time variables. Comments at the beginning of UNIT also gives one
line descriptions of most COMMON variables.

Routine MAINC provides basic control of WOLF operation. For source
text uninterupted by command words, MAINC principally loops in the
segment from statements 190 to 390, calling IPARS, ILINO and either
IPAGC or IFTHC in sequence. When commands are encountered by IPARS,
flow interupts and proceeds to statement 400 where IPARC interprets the
command for function and arguments. MAINC then either processes some of
the simpler commands locally, statements 410 through 6091, or calls
additional command processing routines at statements 700 to 734. After
successful processing of a command, control goes back to IPARS. When
errors are encountered statements 800 on are associated with message
monitoring, cleanup and return to WOLF.

Routine IPARS is responsible for retrieving, character by
character, the input text data stream by the calls to routine IGETC and
determining, by means of a decision table, the action to be performed by
the system. The decision table is a two dimensional array (although
coded as one dimensional) with the columns representing input character
type and the rows representing phases of processing. Associated with
each particular array position are two factors: 1) the operation to be
performed on the current character and 2) the next phase or row to be
employed when the next character is processed. Arrays IACTON and IPHASA
represent these respective decision tables in IPARS and their DATA

26

Technical description

statements show the operations and phases* The comments in IPARS also
define the meaning of each row and column. These data statements
represent the syntax of control of WOLF operation.

The basic sequence of IPARS functions can be summarized as follows:
1) Secure next input character and its type code (see comments in IGETC)
from IGETC at statement 500 (Note: IGETC ignores and discards all
non-printable ASCII characters), 2) decode next action or sequence of
actions to be performed upon current phase and character type and 3)
perform these actions as defined in code contained in statements 5012
through 519 and return for next character at step 1. The resultant
operation (ignoring command word traps and other control) is to build a
word by stacking printable characters with calls to IWORD. When the end
of word is sensed the stacked characters are transferred to a word stack
by calls to ILINE. ILINE keeps track of the total number of print
positions required by the input word stream and will notify IPARS (IER
return from ILINE >0) when the line is full (fill mode) which in turn
causes an exit from IPARS with indication that a line is ready for
printing. Note that when the full line condition exists there is a
pending word in the character stack which must be placed in the new line
upon reentry into IPARS. 'Of course, in no-fill mode the completion of
the line is determined by the end-of-line condition returned by IGETC.

Returning to MAINC we can see that when IPARS returns with
completed line and that after checking spacing and centering options
this stack of words is now processed by ILINO at statement 290+1. ILINO
takes the words in the word stack, performs required centering or
justification operations and transfers them to the final output line, in
"packed" form, ready for printing. MAINC then calls either IPAGC
(normal text) or IFTHC (footnotes or titles) with' line spacing
instructions and with the final output line at statements 300 through
370.

Unfortunately, IPAGC is a complex routine for its size, but it
basically controls all page related actions of WOLF. Its actions are
best summarized by the page operations description of the users manual
section. The page numbering routines, IPAGP, and output routine, IOUTP,
are fairly self explanatory. Title and footnote operation will be
covered later.

Returning to IPARS we will trace the command word control operation
of the system. IPARS traps on the proper occurrance of the command word
prefix character and returns to MAINC. In MAINC control is transferred
to IPARC at label 400+2 to interpret the following characters of the
command word. IPARC also employes a decision table for interpreting the
input character stream. After IPARC determines the command word
function number by calling ICMDH and stacks the command word arguments
along with their type (null, integer or alpha) and values, control is
returned to MAINC. Most of the remaining control action is fairly
straight forward tracing of the path created by the command word number.

Footnotes and titles are handled in nearly the identical method as
normal text and use the same control areas of COMMON, consequently
reducing the amount of program and data storage memory requirements.

27

Technical description

Because of this shared COMMON area, the basic text control variables
(COMMON variables ITRANS through LFILLT) are swapped out to temporary
system disc when these changes of text processing are encountered. It
is this swapping which explains the mutual independence of footnotes,
titles and main text control discussed in the users manual section.

The major difference in footnote-title processing is that MAINC
calls IFTHC instead of IPAGC when the output line is ready for printing.
For titles, IFTHC then simply adds the spacing or lines to temporary
disc storage to be recalled and printed when IPAGC calls ITTLP at the
beginning of the output page. Footnote lines are also stored on disc
but because of the appending problem of footnotes a "first in, first
out" type of stack system is kept to define their location. IPAGC calls
IFTLP to first inform IPAGC of the number of footnote lines required and
then later to print the lines at the bottom of the page.

Although several WOLF modules are not discussed here, their usage
is primarily in support of the aforementioned routines. The reader
should have no difficulty in understanding their usages and function.

A peculiarity in the code should also be mentioned. Because of the
HP2100's lack of an integer subtraction machine function (resulting in
added instructions to compliment before addition) and the failure of the
FORTRAN compiler to compensate by proper handling of negative constants
(always treated as positive values) nearly all negative constants are
initialized by data statements so that addition can be directly
performed. For example, the normal statement

NN-1

will be coded as:

DATA N1/-1/

N-N+N1

Overlaying and Linking

To further conserve memory WOLF is divided into 5 overlay segments.
Because of problems associated with utilizing Hewlett-Packard's method
of overlaying and the resultant necessity of considerable non-standard
code in the FORTRAN programs and lack of calling parameter list
capability, a system of linking was devised. This system works as
follows. First the names of the modules in the overlay segments
referred to in the main segment are changed- (in this case, substituting
first letter J for I). The overlay map module, $$WLF, resolves these
names with a jump to routine $.OVL and defines for each entry the
overlay segment name and offset to the desired module address in the
overlay segment. $.OVL then performs overlaying, if necessary, and
properly structures the call to the actual routine desired by referring
to the type 5 directory programs (WLF.O, WLF.l,... etc.) at the head of
each overlay segment. Although this system was developed for WOLF it is

28

Technical description

quite flexible and is useful for other overlay applications. The final
load map for this system is listed in appendix C.

29

References

HP, 1977A, Batch spool monitor reference manual: Hewlett-Packard Co.,
pp. 3-1 - 3-56.

HP, 1977B, Real-time executive III software system program and operating
manual: Hewlett-Packard Co., pp. 3-1 - 3-42.

HP, 1977C, Decimal string arithmetic routines: Hewlett-Packard Co.,
pp. 2-3 - 2-10.

HP, 1977D, DOS/RTE relocatable library reference manual: Hewlett-Packard
Co.*, p. 3-15.

30

Appendix A

This description relates to details of WOLF execution on an HP21
series mini-computer with RTE-II or III executive system.

To run WOLF:

RUN,WOLF,input file,output file[,nl(66)[,n2(0)[,n3(72)]]]

where the input and output file can be either logical unit numbers or
FMP "namr" file names. Both file names must be specified. The same
file name convention, when enclosed with literal editing characters,
applies to the argument value of the \FI command word. Optional
parameters nl, n2 and n3 (default values in parenthesis) control,
respectively, the maximum lines per page, right shift and maximum number
of columns or print positions in the output line. The right shift
parameter allows adding a left margin to the output text by shifting all
output n2 columns to the right.

The input file can be either the users terminal or the source text
file. The former case is usually employed when the user desires to make
temporary control changes as shown in this example:

:RUN,WOLF,52,52,,10
\SP2 \FI*LETTER::300* \EF

where the spacing is changed to double. Note that if the \EF is not
used the program goes back to the terminal and expects more input. If
the text was to be processed as is, then:

:RUN,WOLF,LETTER::300,52,,10

In both cases the output was to logical unit 52 and the fourth argument
(third and fifth arguments are omitted) indicated the output was to be
shifted to the right 10 spaces.

Output of WOLF can only be directed to disc, magnetic tape and the
Anderson-Jacobson terminals if complete capability of program is
required. Underscoring, backspacing and page control for line printer
and HP2640 terminals are not supported in WOLF although these devices
can be used to perform quick copies of most text.

Error message numbers -1 to -17 are those values returned by the
FMP system. See Batch Spool Monitor manual for description.

A-l

This appendix
the WOLF program.
FORTRAN IV.

Appendix B

Program module summary

contains a summary listing of all modules unique to
Unless otherwise noted all modules are written in

Module name

Main program - WOLF
Subprogram - MAINC

IPARS
IGETC
IWORD
ILINE
ILINQ
IDSWP
IODTP
IFIGC
UNIT
IOPEN
IPAGC
IPAUS
IPAGP
ROMAN
DECIM
IPARC
ICMDH
ITTLP
IFTLP
IFTHC
IALPX
IERRM
CFILE
CMOVE
ICMDA
ITIFT
INUMX
IFILE
$.OVY

Overlay directories
WLF.2,

Summary

principle control section
input scanner
input character and translate
word stack control
line building
restructure line into ASCII string
data overlay controller
output device control
figure stack control
initiallization
input-output file control
page control
top of page pause
page numbering format and output
roman numeral generator
arabic numeral generator
command scanner
command lookup
title line output
footnote output
figure-footnote input
ASCII command argument return
error message handler
decode file data
special string transfer
command control
title-footnote control
numeric command argument return
input file stacker
overlay control (Assembler)

- $$WLF, WLF.O, WLF.l,
WLF.3, WLF.4 (Assembler)

B-l

Appendix C

LOADR Map

The following listing of the map produced by the RTE loader is
provided as a check of the execution of the WOLFL transfer file
contained in the program tape. Of course module address locations will
vary depending upon system's first available user page.

COM
WOLF
$$WLF
MAINC
IDSWP
ILINO
IPARS
IOUTP
IWORD
ILINE
IGETC
IFIGC
$.OVL

READF
REIO
P. PAS
CLRIO
MOD
R/W$
RW$UB
RWND$
SGET
SPUT
SFILL

WLF.O
UNIT
IOPEN

OPEN
CLOSE
GREAT
NAMR
NAM..
LAND
IGET
$OPEN
RMPAR

WLF.l
IPAGC
IPAUS

36002
43240
43276
43355
44301
44411
45255
47263
47560
50712
52355
52705
53151

53241
53777
54102
54131
54140
54170
54324
54576
54707
54737
54772

55020
55023
56614

57463
57651
57760
60236
60533
60630
60640
60647
61056

55020
55024
55404

43237
43275
43354
44300
44410
45254
47262
47557
50711
52354
52704
53150
53240

53776
54101
54130
54137
54167
54323
54575
54706
54736
54771
55017

55022
56613
57462

57650
57757
60235
60532
60627
60637
60646
61055
61113

55023
55403
55443

22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780619
22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780619
22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780502

92002-16006 760702
92001-16005 741120
92002-16006 740801-
750701 24998-16001

751101 24998-16001
92002-16006 740801
92002-16006 750422
92002-16006 740801

22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780502

92002-16006 741205
92002-16006 740801
92002-16006 741022
750701 24998-16001

92002-16006 740801
750701 24998-16001
750701 24998-16001

92002-16006 740801
770812 24998-16001

22682-10993 REV. A 780502
22682-10993 REV. A 780502
22682-10993 REV. A 780502

C-l

Appendix C (Con't)

IPAGP
ROMAN
DECIM
IPARC
ICMDH
ITTLP
IFTLP

IAND
SMOVE

WLF.2
IFTHC
IFILE
IOPEN
IALPX

OPEN
CLOSE
CHEAT
NAMR
NAH..
IAND
IGET
$OPEN
EMPAR

WLF.3
IERRM
CFILE
CMOVE
DECIM

WLF.4
ICMDA
ITIFT
INUMX
IALPX

55444
56226
56320
56461
57470
60114
60303

61147
61157

55020
55024
55340
55613
56462

56552
56740
57047
57325
57622
57717
57727
57736
60145

55020
55023
55434
55543
55615

55020
55024
56776
57327
57436

56225
56317
56460
57467
60113
60302
61146

61156
61221

55023
55337
55612
56461
56551

56737
57046
57324
57621
57716
57726
57735
60144
60202

55022
55433
55542
55614
55755

55023
56775
57326
57435
57525

22682-10993
22682-10993
22682-10993
22682-10993
22682-10993
22682-10993
22682-10993

REV. A
REV. A
REV. A
REV. A
REV. A
REV. A
REV. A

780502
780502
780502
780502
780502
780502
780502

750701 24998-16001

22682-10993
22682-10993
22682-10993
22682-10993
22682-10993

92002-16006
92002-16006
92002-16006

REV. A
REV. A
REV. A
REV. A
REV. A

741205
740801
741022

780502
780502
780502
780502
780502

750701 24998-16001
92002-16006 740801
750701 24998-16001
750701 24998-16001

92002-16006 740801
770812 24998-16001

22682-10993
22682-10993
22682-10993
22682-10993
22682-10993

22682-10993
22682-10993
22682-10993
22682-10993
22682-10993

REV. A
REV. A
REV. A
REV. A
REV. A

REV. A
REV. A
REV. A
REV. A
REV. A

780502
780502
780502
780502
780502

780502
780502
780502
780502
780502

SMOVE 57526 57570

11 PAGES REQUIRED
\LOADR:WOLF READY

\LOADR:$END

C-2

Appendix D

Program HASHT

Since hash table lookup algorithm was employed in WOLF routine
ICHDH it was necessary to write a small program, HASHT, to create the
required table contents* Operation is fairly simple: a list of command
identifiers and their function number preceeded by the number of entries
in the list (see current list following program listing) is input on the
first logical unit (lul) specified at run time by:

RUN,HASHT,lul,lu2,lu3

and where Iu2 specifies logical unit of DATA statements and Iu3
specifies collision monitoring logical unit number. The output on Iu2
must be edited and /'s placed at the end of each array data statement
and the file merged into ICMDH.

When adding commands the user must be careful not to exceed the
dimension, ITMAX in HASHT, of the ICMDH arrays and if the dimensions
must be changed, the new value must be a prime number. The hashing
equation in HASHT and ICMDH obviously must be identical so that if
changes are desired care must be taken to ensure proper operation of
ICMDH. Monitoring of lookup collisions allows testing of the quality of
the hashing equation. Although collisions will occur, they should be
kept to a minimum.

D-l

Appendix D (Con't)

FTN4
C
C WOLF - AUTOMATIC TYPING SYSTEM, 1977
C
C USDI, GEOLOGICAL SURVEY
C GERALD I. EVENDEN
C
C
C SUPPLIMENTARY PROGRAM TO GENERATE LOOKUP TABLE FOR
C SUBROUTINE ICMDH.
C

PROGRAM HASHT,3
C

DIMENSION IP(5)
EQUIVALENCE (IP(1),LU),(IP(2),LIST),(IP(3),MON)

C
DIMENSION ICIT(IOO),IC2T(100),ICOMN(100)

C
DATA IC1T,IC2T,ICOMN/300*-1/

C
C INSERT TABLE SIZE
C MUST BE PRIME NUMBER

DATA ITMAX/59/
C
C

CALL RMPAR(IP)
C

READ(LU,9900) NENT
9900 FORMAT(IS)

DO 200 I»1,NENT
READ(LU,9901) IW,ICOM

9901 FORMAT(4X,A2,I5)
CALL SGET(IW,1,IC1)
CALL SGET(IW,2,IC2)

C
C HASH ALGORITM
C RANDOMIZE..

IHT»MOD((IC1-64)*(IC2-31),ITMAX)
IF (IHT.LE.O) IHT-1
IHS«IHT

100 IH»MOD(IHS,ITMAX)+1
FS-FS+1.
IF (ICIT(IH)) 110,120,120

C
C NO COLLISION ADD TO TABLE
110 IC1T(IH)»IC1

IC2T(IH)»IC2
ICOMN(IH)»ICOM
GO TO 200

C
C CHECK IF DOUBLE ENTRY
120 IF (ICI-ICIT(IH)) 140,130,140
130 IF (IC2-IC2TUH)) 140,800,140
C

D-2

Appendix D (Con't)

C NO, RE-RANDOMIZE
140 CONTINUE

K*IHS
IHS*IAND(IHS+IHT,77777B)
WRITE(MON,9905) IW,ICOM,K,IHS,IHT,IH

9905 FORMAT(11H COLLISION:,4X,A2,15,416)
GO TO 100

C
200 CONTINUE

FS~FS/NENT
WRITE(MON,9940) FS

9940 FORMAT("AVERAGE COLLISION RATE:",F10.3)
C
C PRINT RESULTS

WRITE(LIST,9909)
9909 FORMATU6H DATA IC1T/)

WRITE(LIST,9910) (IC1T(I),1-1 ,TTMAX)
9910 FORMAT((6H *,10(15,IH,)))

WRITE(LIST,9911)
9911 FORMATU6H DATA IC2T/)

WRITE(LIST,9910) (IC2T(I),I-1,ITMAX)
WRITE(LIST,9912)

9912 FORMAT(17H DATA ICOMN/)
WRITE(LIST,9910) (ICOMN(I),I-1,ITMAX)

C
GO TO 900

C
800 WRITE(MON,9920) IW.ICOM
9920 FORMAT(13HDOUBLE ENTRY:,4X,A2,15)
C
900 STOP
C

END
END$

D-3

Appendix D (Con't)

The following is a listing of the input to lul which contains the
current command words of the WOLF system.

46
B
P
C
CS
CE
FS
FR
JS
JR
PG
PC
S
SP
PP
AP
AR
MR
T
CP
CT
CF
CU
CC
CB
CL
PN
PS
PE
NC
RN
AN
I
SF
PO
FI
EF
TA
TB
TC
FT
EN
TO
NP
FG
CH
CK

1
2
3
4
5
6
7
8
9

10
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
40
41
42
43
44
45
46
35
36
37
38
39

HISTORICAL

D-4

Appendix E

WOLF Program Tape

The 9 track, 800 bpi tape supplied with this documentation contains
source and binary files of all software unique to the WOLF program. In
addition, FMGR transfer files are also recorded to facilitate copying
the tape to disc and program loading* The following listing of the disc
transfer file (first file on tape) also serves as a directory of tape
contents. In all cases, Hewlett-Packard file naming conventions are
employed.

:** TRANFER FILE FOR LOADING TAPE COPY OF WOLF SYSTEM'TO DISC
;CN,1G,RW MAKE SURE WE'RE AT EOT
;CN,1G,FF SKIP THIS FILE
:ST,1G,&WOLF ::
ST,1G,&MAINC:;
ST,1G,&IPARS::
ST,1G,&IGETC:;
;ST,1G,&IWORD:;
;ST,1G,&ILINE:;
:ST,1G,&ILINO:;
:ST,1G,&IDSWP::
:ST,1G,&IOUTP::
;ST,1G,&$.OVY::
:ST,1G,&$$WLF:
:ST,1G,&IFIGC:
:ST,1G,&WLF.O:
:ST,1G,&IINIT:
:ST,1G,&IOPEN:
:ST,1G,&WLF.1:
:ST,1G,&IPAGC:
:ST,1G,&IPAUS:
:ST,1G,&IPAGP:
:ST,1G,&ROMAN:
:ST,1G,&DECIM:
:ST,1G,&IPARC:
:ST,1G,&ICMDH:
:ST,1G,&ITTLP:
:ST,1G,&IFTLP:
:ST,1G,&WLF.2:
:ST,1G,&IFTHC:
:ST,1G,&IFILE:
:ST,1G,&IALPX:
:ST,1G,&WLF.3:
:ST,1G,&IERRM:
:ST,1G,&CFILE:
:ST,1G,&CMOVE:
:ST,1G,&WLF.4:
:ST,1G,&ICMDA:
:ST,1G,&ITIFT:
:ST,1G,&INUMX:
:ST,1G,%WOLFP:
:ST,1G,*WOLFL::2G:

2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:
2G:

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

,AS
,AS

,BR
,AS

MAIN SEGMENT
THE FOLLOWING ARE WOLF SUBPROGRAMS

RELOCATABLE READY FOR LOADR
TRANSFER FILE TO LOAD WOLF PROGRAM

E-l

Appendix E (Con't)

:** FROM INDIVIDUAL BINARIES
:ST,1G,"APPXA::2G::-1,AS SOURCE TEXT FOR APPENDIX A
:ST,1G,&HASHT::2G::-1,AS HASH TABLE PROGRAM
:ST,1G,HASHT ::2G::-1,AS CURRENT COMMANDRNO. LIST FOR PROG. HASHT
:CN,1G,RW

E-2

