


# HYDROLOGY OF AREA 2, EASTERN COAL PROVINCE, PENNSYLVANIA AND NEW YORK

- MIDDLE ALLEGHENY RIVER
- FRENCH CREEK
- CLARION RIVER



UNITED STATES DEPARTMENT OF THE INTERIOR  
GEOLOGICAL SURVEY



WATER RESOURCES INVESTIGATIONS  
OPEN FILE REPORT 82-647



# **HYDROLOGY OF AREA 2, EASTERN COAL PROVINCE, PENNSYLVANIA AND NEW YORK**

**BY**

**WILLIAM J. HERB, DEBORAH E. BROWN, LEWIS C. SHAW, JEFFREY D. STONER,  
AND JOHN K. FELBINGER**

---

**U.S. GEOLOGICAL SURVEY**

**WATER RESOURCES INVESTIGATIONS  
OPEN FILE REPORT 82-647**



**HARRISBURG, PENNSYLVANIA  
SEPTEMBER, 1983**

**UNITED STATES DEPARTMENT OF THE INTERIOR**

JAMES G. WATT, *SECRETARY*

**GEOLOGICAL SURVEY**

Dallas L. Peck, *Director*

---

For additional information write to:

U.S. Geological Survey  
Federal Building, 4th Floor  
P.O. Box 1107  
228 Walnut Street  
Harrisburg, Pennsylvania 17108

## CONTENTS

|                                                     | Page |
|-----------------------------------------------------|------|
| <b>Abstract</b> . . . . .                           | 1    |
| <b>1.0 Introduction</b> . . . . .                   | 2    |
| <b>1.1 Objective</b> . . . . .                      | 2    |
| <b>1.2 Project area</b> . . . . .                   | 4    |
| <i>William J. Herb</i>                              |      |
| <b>2.0 Definition of terms</b> . . . . .            | 6    |
| <b>3.0 Water-quality criteria</b> . . . . .         | 8    |
| <i>William J. Herb</i>                              |      |
| <b>4.0 General features</b> . . . . .               | 10   |
| <b>4.1 Geology</b> . . . . .                        | 10   |
| <i>Jeffrey D. Stoner</i>                            |      |
| <b>4.2 Surface drainage</b> . . . . .               | 12   |
| <i>Lewis C. Shaw</i>                                |      |
| <b>4.3 Soils</b> . . . . .                          | 14   |
| <i>Lewis C. Shaw</i>                                |      |
| <b>4.4 Climate</b> . . . . .                        | 16   |
| <i>Lewis C. Shaw</i>                                |      |
| <b>5.0 Coal</b> . . . . .                           | 18   |
| <i>Lewis C. Shaw</i>                                |      |
| <b>6.0 Hydrologic-data network</b> . . . . .        | 20   |
| <b>6.1 Surface-water quantity</b> . . . . .         | 20   |
| <i>Deborah E. Brown</i>                             |      |
| <b>6.2 Surface-water quality</b> . . . . .          | 22   |
| <i>Deborah E. Brown</i>                             |      |
| <b>6.3 Type and scheduling of samples</b> . . . . . | 24   |
| <i>William J. Herb</i>                              |      |
| <b>7.0 Surface-water quality</b> . . . . .          | 26   |
| <b>7.1 Specific conductance</b> . . . . .           | 26   |
| <i>William J. Herb</i>                              |      |
| <b>7.2 Dissolved solids</b> . . . . .               | 28   |
| <i>William J. Herb</i>                              |      |
| <b>7.3 pH</b> . . . . .                             | 30   |
| <i>William J. Herb</i>                              |      |
| <b>7.4 Acidity and alkalinity</b> . . . . .         | 32   |
| <i>William J. Herb</i>                              |      |
| <b>7.5 Total and dissolved iron</b> . . . . .       | 34   |
| <i>William J. Herb</i>                              |      |
| <b>7.6 Total and dissolved manganese</b> . . . . .  | 36   |
| <i>William J. Herb</i>                              |      |

|       |                                                            |    |
|-------|------------------------------------------------------------|----|
| 7.7   | Dissolved sulfate . . . . .                                | 38 |
|       | <i>William J. Herb</i>                                     |    |
| 7.8   | Suspended sediment . . . . .                               | 40 |
|       | <i>William J. Herb</i>                                     |    |
| 7.9   | Bed material . . . . .                                     | 42 |
| 7.9.1 | Iron . . . . .                                             | 42 |
|       | <i>William J. Herb</i>                                     |    |
| 7.9.2 | Manganese . . . . .                                        | 44 |
|       | <i>William J. Herb</i>                                     |    |
| 7.10  | Benthic invertebrates . . . . .                            | 46 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 8.0   | Acid-mine drainage . . . . .                               | 48 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 9.0   | Surface-water quantity . . . . .                           | 50 |
| 9.1   | Daily discharge . . . . .                                  | 50 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 9.2   | Low flow computation and estimation . . . . .              | 52 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 9.3   | Mean flow computation and estimation . . . . .             | 54 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 9.4   | Peak flow . . . . .                                        | 56 |
| 9.4.1 | Computation and estimation . . . . .                       | 56 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 9.4.2 | Flood-prone areas . . . . .                                | 58 |
|       | <i>William J. Herb</i>                                     |    |
| 9.5   | Flow duration . . . . .                                    | 60 |
|       | <i>Deborah E. Brown</i>                                    |    |
| 10.0  | Ground water . . . . .                                     | 62 |
| 10.1  | Hydrologic network . . . . .                               | 62 |
|       | <i>John K. Felbinger</i>                                   |    |
| 10.2  | Source, recharge, and movement . . . . .                   | 64 |
|       | <i>Jeffrey D. Stoner</i>                                   |    |
| 10.3  | Levels . . . . .                                           | 66 |
|       | <i>John K. Felbinger</i>                                   |    |
| 10.4  | Availability . . . . .                                     | 68 |
|       | <i>John K. Felbinger</i>                                   |    |
| 10.5  | Quality . . . . .                                          | 70 |
|       | <i>Jeffrey D. Stoner</i>                                   |    |
| 11.0  | Water-data sources . . . . .                               | 73 |
| 11.1  | Introduction . . . . .                                     | 73 |
| 11.2  | National Water Data Exchange (NAWDEX) . . . . .            | 74 |
| 11.3  | WATSTORE . . . . .                                         | 76 |
| 11.4  | Index to water-data activities in coal provinces . . . . . | 78 |
| 12.0  | Supplemental information for Area 2 . . . . .              | 80 |
| 12.1  | Surface-water sites . . . . .                              | 80 |

|                                                                                               |    |
|-----------------------------------------------------------------------------------------------|----|
| 12.2 Selected water-quality data for surface-water stations,<br>1979-80 water years . . . . . | 82 |
| 12.3 Benthic invertebrate data, August 1979 . . . . .                                         | 88 |
| 12.4 Benthic invertebrate data, August 1980 . . . . .                                         | 90 |
| 13.0 List of references . . . . .                                                             | 92 |

## **FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM OF UNITS (SI)**

**For convenience of readers who may want to use the International System of  
Units (SI), the data may be converted by using the following factors:**

| <b>Multiply</b>                                                                  | <b>By</b>        | <b>To obtain</b>                                                                        |
|----------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|
| inches (in)                                                                      | 25.40            | millimeters (mm)                                                                        |
| feet (ft)                                                                        | 0.3048           | meters (m)                                                                              |
| feet per mile (ft/mi)                                                            | 0.1894           | meters per kilometer (m/km)                                                             |
| miles (mi)                                                                       | 1.609            | kilometers (km)                                                                         |
| square miles (mi <sup>2</sup> )                                                  | 2.590            | square kilometers (km <sup>2</sup> )                                                    |
| gallons per minute (gal/min)                                                     | 0.06309          | liters per second (L/s)                                                                 |
| million gallons per day (mgal/d)                                                 | 0.04381<br>3785. | cubic meters per second (m <sup>3</sup> /s)<br>cubic meters per day (m <sup>3</sup> /d) |
| cubic feet per second (ft <sup>3</sup> /s)                                       | 0.02832          | cubic meters per second (m <sup>3</sup> /s)                                             |
| cubic feet per second<br>per square mile [(ft <sup>3</sup> /s)/mi <sup>2</sup> ] | 0.01093          | cubic meters per second<br>per square kilometer [(m <sup>3</sup> /s)/km <sup>2</sup> ]  |
| tons per square mile (tons/mi <sup>2</sup> )                                     | 0.3503           | megagrams per square kilometer<br>(Mg/km <sup>2</sup> )                                 |
| micromhos ( $\mu$ mho)                                                           | 1.0              | microsiemens ( $\mu$ S)                                                                 |

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in this report.

# HYDROLOGY OF AREA 2, EASTERN COAL PROVINCE, PENNSYLVANIA AND NEW YORK

BY

WILLIAM J. HERB, DEBORAH E. BROWN, LEWIS C. SHAW, JEFFREY D. STONER,  
AND JOHN D. FELBINGER

## Abstract

Provisions of the Surface Mining Control and Reclamation Act of 1977 recognized a nationwide need for hydrologic information in mined and potentially mined areas. This report is designed to be useful to mine owners, operators, regulatory authorities, citizens groups, and others by presenting information on existing hydrologic conditions and by identifying additional sources of hydrologic information. General hydrologic information is presented in a brief text accompanied by a map, chart, graph, or other illustration for each of a series of water-resources-related topics. The summation of the topical discussions provides a description of the hydrology of the area.

The Eastern Coal Province has been divided into 24 hydrologic study areas which are shown on the cover of this report. The divisions are based on hydrologic factors, location, and size. Hydrologic units (surface drainage basins) or parts of units are combined to form each study area.

Study Area 2 covers northwestern Pennsylvania and a small part of southwestern New York. Most exposed bedrock is of Pennsylvanian, Mississippian, or Devonian ages. Glacial drift covers most of the bedrock in the northwestern part of the area. During 1979, more than 7 million tons of bituminous coal was produced from about 230 mines in Area 2 counties. Over 99 percent of the area's coal production is from surface mining.

Streamflow data are available for 18 continuous-record stations; 1 crest-stage, partial-record station; 1

low-flow, partial-record station; and 65 miscellaneous sites. Water-quality data are available for 78 locations.

Streams having the highest median specific conductance, highest median dissolved-solids concentrations, lowest median pH, highest median total-iron concentration, highest median total-manganese concentration, and highest dissolved-sulfate concentrations were found in Clarion County, the leading coal-producing county in the area.

Statistics on low flow, mean flow, peak flow, and flow duration for gaging stations can be computed from recorded mean daily flows. Similar statistics can be estimated for ungauged streams by regression and graphical techniques.

Five ground-water observation wells are being operated in Area 2. Ground-water levels fluctuate seasonally. Depth to water increases with well depth in upland areas and decreases with well depth in valleys. Well yields in the area range from less than 1 to more than 2,000 gallons per minute. Wells in unconsolidated materials usually have higher yields. Ground-water quality is adequate for most domestic purposes, except locally.

Additional water-data information are available through: (1) The National Water Data Exchange, (2) The National Water Data Storage and Retrieval System, and (3) The Office of Water Data Coordination.

## **1.0 INTRODUCTION**

### *1.1 Objective*

## **Area 2 Report to Aid Permitting**

*Existing hydrologic conditions and identification of sources of hydrologic information are described.*

A need for hydrologic information and analysis on a scale never before required nationally was initiated when the "Surface Mining Control and Reclamation Act of 1977" was enacted as Public Law 95-87, August 3, 1977. This need is partially met by this report which broadly characterizes the hydrology of a large sub-basin in the coal area of northwestern Pennsylvania and southwestern New York (see figure 1.1-1). This report, which is for Area 2, is one of a series that covers the coal provinces nationwide. The report contains a brief text with an accompanying map, chart, graph, or other illustration for each of a number of water-resources-related topics. The summation of the topical discussions provides a description of the hydrology of the area.

The hydrologic information presented or available through sources identified in this report may be used in describing the hydrology of the "general area" of any proposed mine. Furthermore, it is expected that this hydrologic information will be supplemented by the lease applicant's specific site data as well as data from other sources to provide a more detailed picture of the hydrology in the vicinity of the mine and the anticipated hydrologic consequences of the mining operation.

The information contained herein should be useful to surface mine owners, operators, and consulting engineers in the preparation of permits and to regulatory authorities in appraising the adequacy of permit applications.

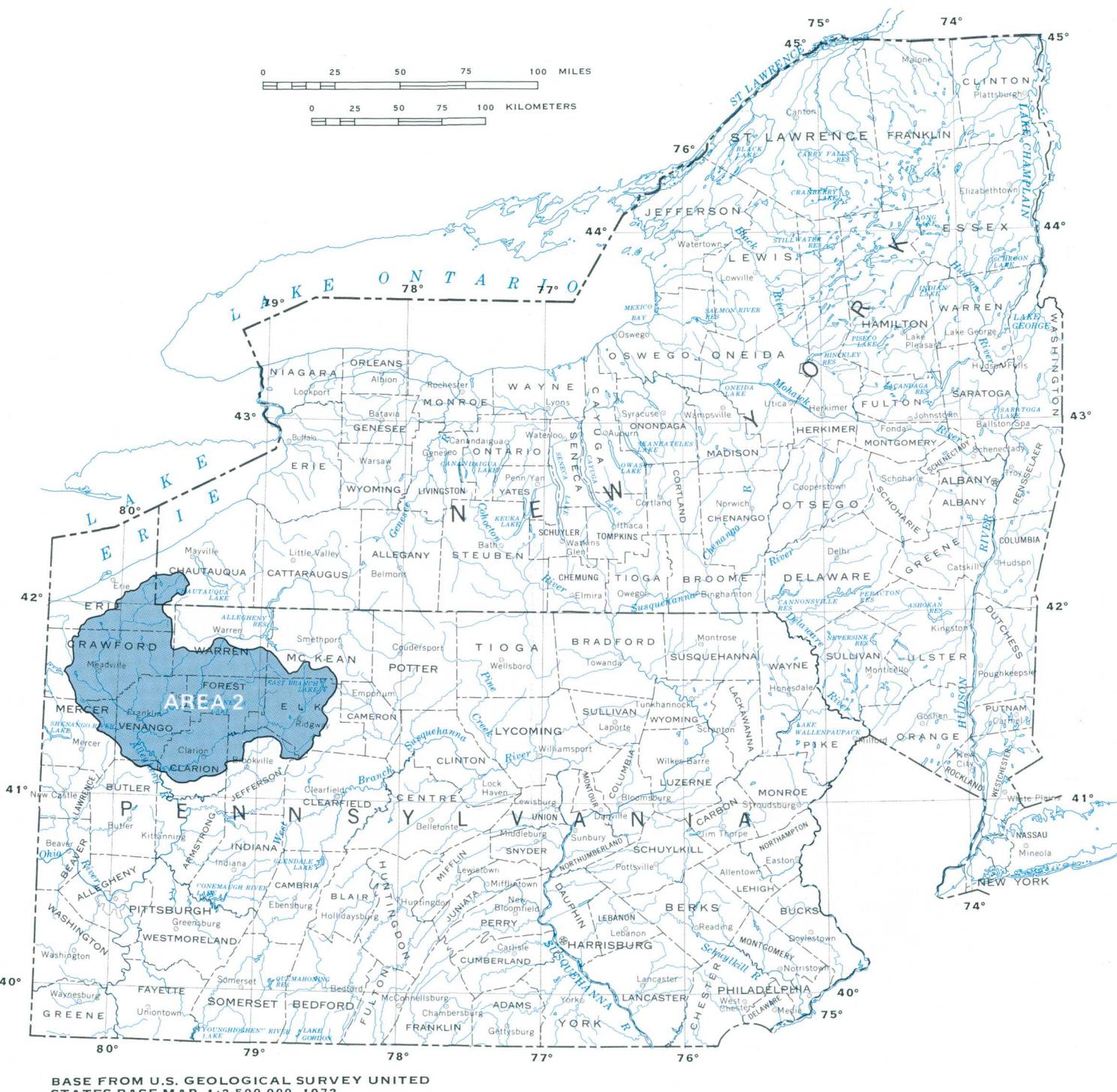



Figure 1.1-1 Location of Area 2 in Pennsylvania and New York.

## **1.0 INTRODUCTION--Continued**

### **1.2 Project Area**

## **Hydrology and Water Resources Summarized for Area 2**

*This report summarizes the hydrology and water resources of Area 2 in the northern part of the Eastern Coal Province.*

The Eastern Coal Province is divided into 24 hydrologic reporting units. The divisions are based on hydrologic factors, location, size, and mining activity (see front cover for areas in the Eastern Coal Province). Hydrologic units (drainage basins) or parts of units are combined to form each area (fig. 1.2-1).

Area 2 is in the northern part of the Eastern Coal Province in northwestern Pennsylvania and southwestern New York. The area includes all or part of Erie, Crawford,

Mercer, Warren, Forest, Elk, Venango, Clarion, Butler, McKean, and Jefferson Counties, Pennsylvania; and Chautauqua County, New York.

Area 2 is comprised of the central part of the Allegheny River basin from immediately south of Warren downstream to Parker. Major tributaries in the Area include French Creek, Oil Creek, Tionesta Creek, and Clarion River. The surface area of Area 2 is 4,170 square miles.

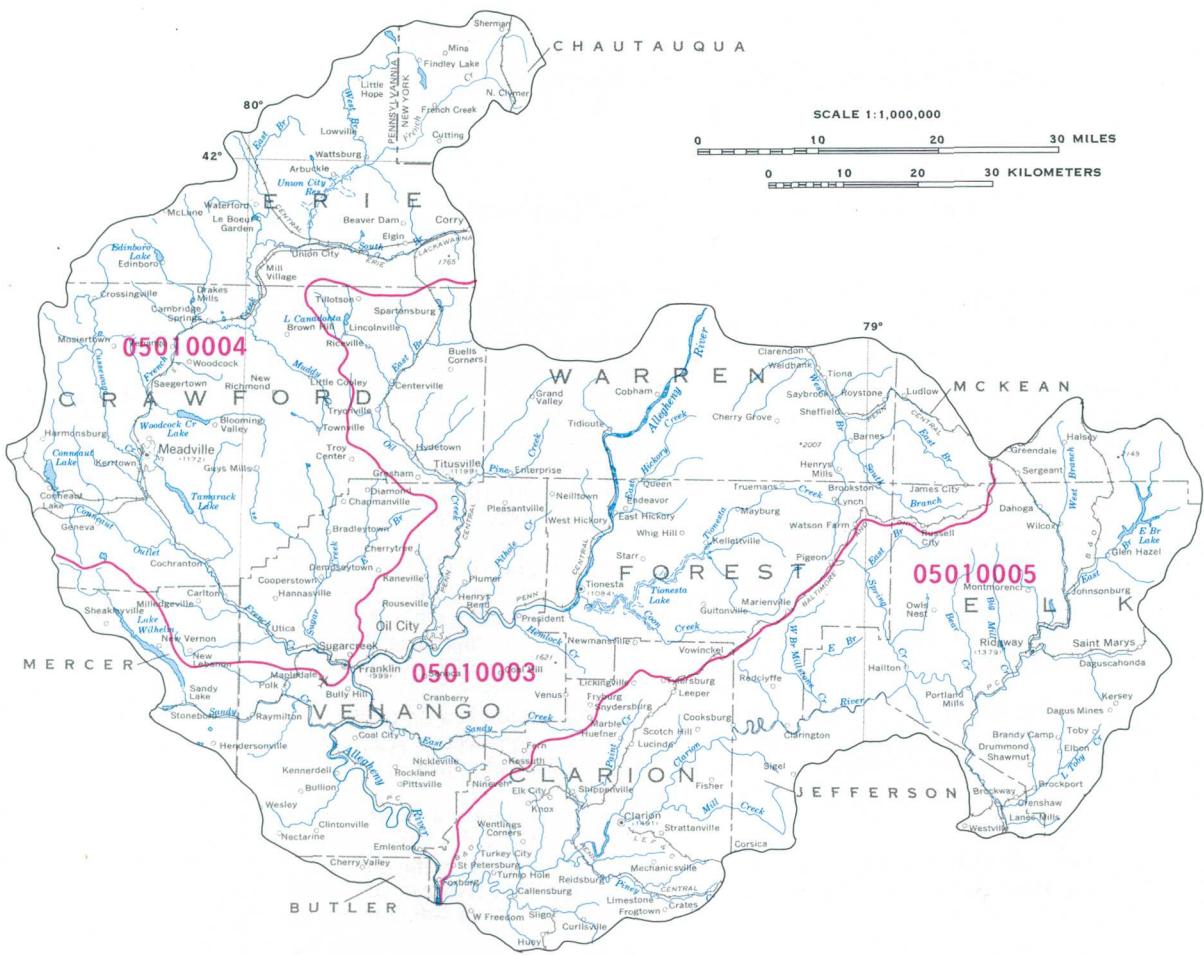



Figure 1.2-1 Hydrologic units.

## 2.0 DEFINITION OF TERMS

### Terms Used in Hydrologic Reports Defined

*Technical terms that occur in this Hydrologic Report are defined.*

**Bed material** is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

**Benthic invertebrate**, for this study, is an animal without a backbone, living on or near the bottom of an aquatic environment, which is retained on a 210  $\mu\text{m}$  mesh sieve.

**Bottom material** specifically includes anthropogenic matter in addition to natural solid material in bed material.

**Cubic feet per second per square mile** [ $(\text{ft}^3/\text{s})/\text{mi}^2$ ] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

**Cubic foot per second** ( $\text{ft}^3/\text{s}$ ) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

**Discharge** is the volume of water (or more broadly, volume of fluid plus suspended material) that passes a given point within a given period of time.

**Mean discharge** is the arithmetic mean of individual daily mean discharges during a specific period.

**Instantaneous discharge** is the discharge at a particular instant of time.

**Dissolved** refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

**Diversity index** is a numerical expression of evenness of distribution of aquatic organisms, the formula for diversity index is:

$$\bar{d} = \sum_{i=1}^s \frac{n_i}{n} \log 2 \frac{n_i}{n}$$

Where  $n_i$  is the number of individuals per taxon,  $n$  is the total number of individuals, and  $s$  is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

**Drainage area** of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from

precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

**Drainage basin** is a part of the surface of the Earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

**Gage height** (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage", although gage height is more appropriate when used with a reading on a gage.

**Gaging station** is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

**Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

**Micrograms per gram** ( $\mu\text{g/g}$ ) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element per unit mass (gram) of sediment.

**Micrograms per liter** ( $\mu\text{g/L}$ ) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

**Milligrams per liter** ( $\text{mg/L}$ ) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in  $\text{mg/L}$ , and is based on the mass (dry weight) of sediment per liter of water-sediment mixture.

**Partial-record station** is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

**Reference station** is a streamflow and water-quality station operated as part of the State coal-hydrology network to monitor hydrologic characteristics in a watershed unaffected by mining.

**Regression line** is a line fitted to a set of data points by a least-squares statistical analysis. The same data set will always produce the same line of relation.

**Sediment** is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

**Suspended sediment** is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

**Suspended-sediment concentration** is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

**Specific conductance** is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter ( $\mu\text{mho}/\text{cm}$ ) at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids concentration of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same stream with changes in the composition of the water.

**Stage-discharge relation** is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

**Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

**Substrate** is the physical surface upon which an organism lived.

**Natural substrate** refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

**Synoptic site** is a station location where periodic measurements are made of streamflow and water quality. If a group of such sites is measured at about the same time, the hydrologic conditions over a wide area can be seen.

**Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata* is the following:

Kingdom --- Animal

Phylum --- Arthropoda

Class --- Insecta

Order --- Ephemeroptera

Family --- Ephemeridae

Genus --- *Hexagenia*

Species --- *Hexagenia limbata*

**Trend station** is a streamflow and water-quality station operated as part of the State coal-hydrology network to monitor hydrologic characteristics in a watershed undergoing coal mining.

**Water-year** is, for this report, the 12-month period beginning October 1 of one year and ending September 30 of the following year. Water year 1979 begins on October 1, 1978, and ends on September 30, 1979.

### **3.0 WATER QUALITY CRITERIA**

#### **New Regulations Set Effluent Limitations for Iron, Manganese, pH, and Suspended Solids**

*Standards have been set for iron, manganese, pH, and suspended solids in water discharged from areas disturbed by surface mining.*

The Permanent Regulatory Program of the Office of Surface Mining Reclamation and Enforcement (1979) sets specific standards for water leaving a mine site. Section 816.42 (a) (7) of the Permanent Regulatory Program states that "discharges of water from areas disturbed by surface mining shall be made in compliance with all Federal and State laws and regulations . . ." This same section also sets certain specific numerical effluent limitations. The specific effluent limitations are for total iron, total man-

ganese, total suspended solids, and pH. Table 3.0-1 lists these numerical standards.

The effluent limitations for iron and manganese are considerably higher than those recommended for drinking water by the U.S. Environmental Protection Agency which sets limits of 300  $\mu\text{g/L}$  (micrograms per liter) iron and 50  $\mu\text{g/L}$  manganese.

**Table 3.0-1 Mine effluent limitations.**

---

| Effluent characteristics      | Maximum allowable          | Average of daily values for 30 consecutive discharge days |
|-------------------------------|----------------------------|-----------------------------------------------------------|
| Iron, total                   | 7.0                        | 3.5                                                       |
| Manganese, total <sup>2</sup> | 4.0                        | 2.0                                                       |
| Total suspended solids        | 70.0                       | 35.0                                                      |
| pH <sup>3</sup>               | Within range of 6.0 to 9.0 |                                                           |

---

<sup>1</sup>Office of Surface Mining, Reclamation, and Enforcement, 1979.

<sup>2</sup>Shall not apply to untreated alkaline discharges.

<sup>3</sup>pH may exceed 9.0, to a small extent, if needed to achieve manganese limit.

## 4.0 GENERAL FEATURES

### 4.1 Geology

## Bedrock and Unconsolidated Deposits Underlie the Area

*Three principal ages of bedrock exposed in Area 2 are Pennsylvanian, Mississippian, and Devonian; most bedrock in the northwest part of the area is covered by glacial drift.*

Pennsylvanian rocks crop out along the hills between major drainages in the southeastern portion of the area (fig. 4.1-1). These strata have a slight regional dip to the southwest. Superimposed on the regional structure is a series of gentle folds whose axes trend northeast. Fold heights, wavelengths, and dips along the flanks of the folds all increase southeastward. Wavelengths, measured between successive structural troughs (synclines) or ridges (anticlines), range from 6 to 9 miles. Fold dips range from 30 to 250 feet per mile.

The Pennsylvanian rocks consist of thin alternating beds of gray to white sandstone, siltstone, claystone, coal, and some limestone. Three major subdivisions of the Pennsylvanian rocks are the Pottsville, Allegheny, and Conemaugh Groups. The Conemaugh Group occurs only along the southern divide of the Clarion River basin where the Pennsylvanian rocks are about 650 feet thick. Numerous commercial coal beds exist in all three groups, but the significant coals lie within the Allegheny Group. Coal bed nomenclature is indicated in figure 4.1-2. Although many of these coal beds are not continuous throughout the area, the general column is useful in showing the relative stratigraphic position of the coal beds.

The Mississippian rocks crop out along major drainage bottoms in the southern part, and between drainages in the northwestern part of the area. The total sequence of Mississippian rocks had been extensively eroded before Pennsylvanian sediments were deposited. Therefore, only Lower Mississippian rocks remain beneath Area 2. The unit dips generally southward from 20 to 40 feet per mile. Due to the unconformable contact with the overlying Pennsylvanian rocks, the thickness of the Mississippian rocks can range from 200 feet in the north to 600 feet in the south.

The Mississippian rocks are composed mostly of shale,

siltstone, sandstone, and flat-pebbled conglomerate. Due to a complex history of deposition, the rock types and thickness of units which make up the Mississippian change across the area (Schiner and Kimmel, 1972, p. A7). Consequently, the names given to major subdivisions differ from east to west (fig. 4.1-2). According to drillers logs, the Burgoon Sandstone exists only in the southern part of Clarion County.

The Devonian rocks which underlie the Mississippian rocks crop out only in the northern portion of the area. These rocks consist mostly of shale and have occasional thin layers of sandstone. The exposed thickness exceeds 900 feet. Several names have been assigned to the major subdivisions of this unit, partly as result of varied appearance, but mostly as result of changes in nomenclature given by various investigators. As it does for the Mississippian rocks, figure 4.1-2 indicates the general correlation of currently used names as well as older names that can be found in geology-related reports of the area.

Pleistocene glaciation has advanced into northwestern Pennsylvania. The southern limits of Illinoian and Wisconsin Glaciations in Area 2 are shown on figure 4.1-1. Due to the glaciation, landforms in the northwest have much less topographic relief than landforms in the rest of the area. Most bedrock northwest of the Illinoian limit of advance is covered by up to 40 feet of till (clay, silt, and boulders). In addition to this till, bedrock northwest of the Wisconsin limit of advance is also covered with local (moraine-type) deposits of alternating sand and gravel. Glacial outwash and alluvial deposits of coarse-grained sand and gravel mixed with clay and silt are found along major drainages and their tributaries northwest of the Illinoian boundary. However, outwash also occurs southeast of this limit along the Allegheny River and Tionesta Creek. The thickness of the outwash is over 100 feet locally in the major valleys.

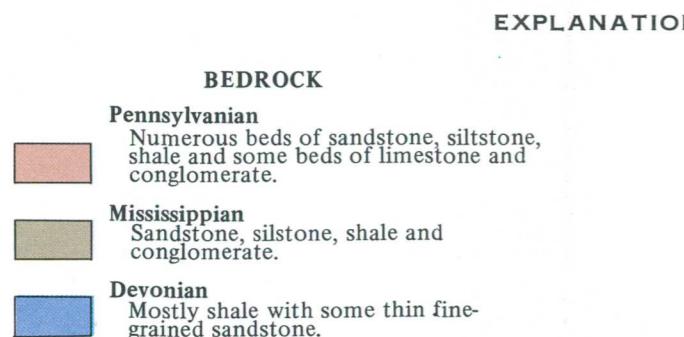
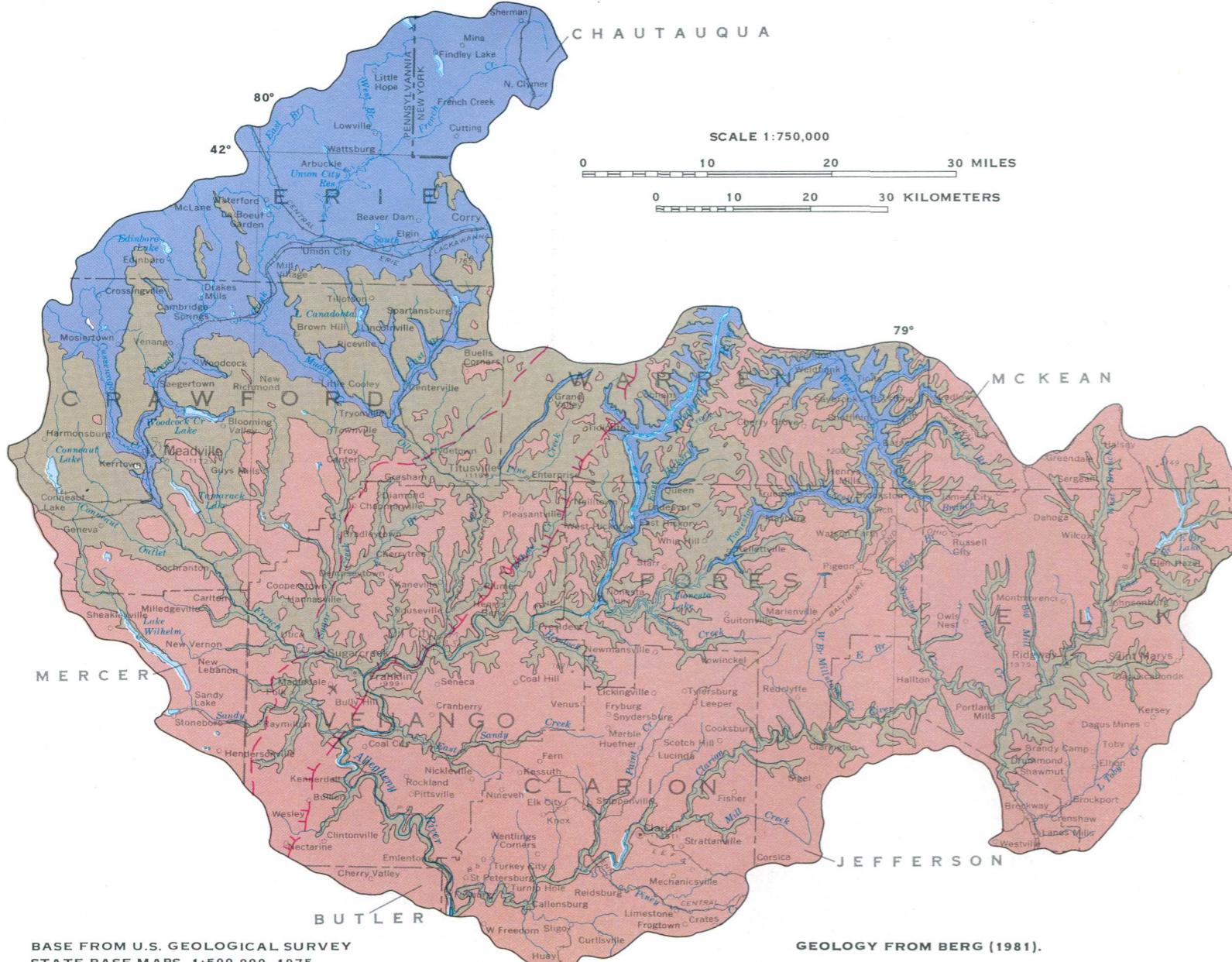




Figure 4.1-1 Geology.

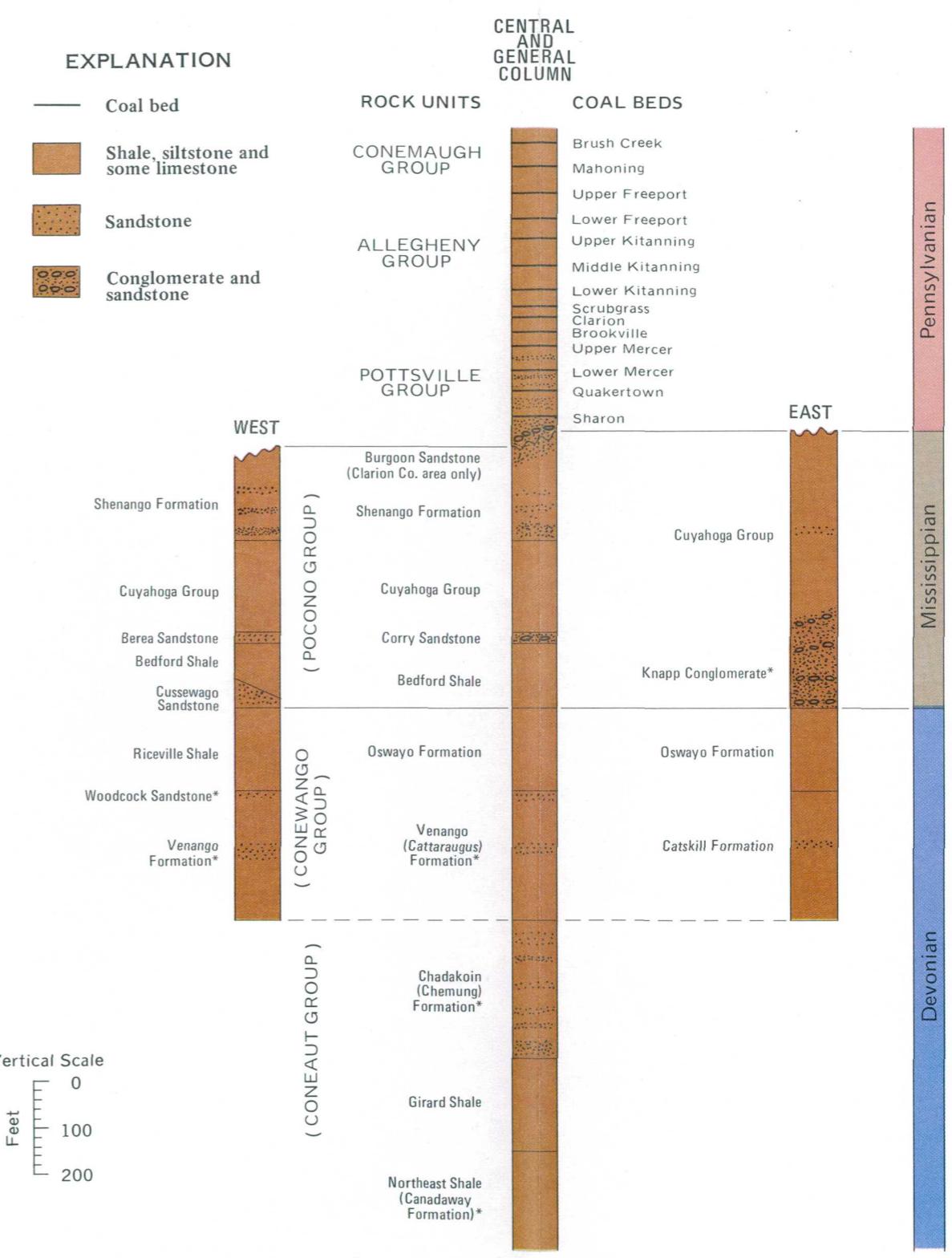



Figure 4.1-2 Generalized geologic sections.

## 4.0 GENERAL FEATURES--Continued

### 4.2 Surface Drainage

## Six Major Tributaries Drain 3,547 Square Miles of Area's 4,170 Square Miles

*French Creek, Clarion River, Tionesta Creek, Oil Creek, Sandy Creek, and  
East Sandy Creek drain 3,547 of the 4,170 square miles in Area 2.*

The Allegheny River originates in northcentral Pennsylvania near the New York border, flows northwest into New York, loops west, reenters Pennsylvania from the north, and flows south past Tidioute, Tionesta, and Foxburg (fig. 4.2-1). The entire Allegheny River basin is in the Appalachian Plateau Province (Fenneman, 1938), a highland having winding drainage divides and no definite valley and ridge pattern. Six major streams, all tributary to the Allegheny River, drain most of Area 2. Tionesta Creek, Oil Creek, French Creek, East Sandy Creek, Sandy Creek, and Clarion River drain 3,547 of Area 2's 4,170 square miles of surface area. Some characteristics of these streams are listed in table 4.2-1. The drainage area of the Allegheny River at the downstream limit of Area 2 is 7,715 square miles; 3,545 square miles are outside Area 2.

Tionesta Creek is in the Allegheny High Plateaus section of the Appalachian Plateau Province and is underlain by coal-bearing rocks of the Pottsville Group. Tionesta Creek originates in the Allegheny National Forest and enters the Allegheny River at Tionesta. The basin has very little coal production, although there is some gas and oil exploration in progress.

Oil Creek flows through the Glaciated section and Allegheny High Plateaus section. It originates north of the coal deposits, but enters the coal-bearing rocks of the Pottsville Group as it flows south. The name Oil Creek

originated from the natural oil seepage on the water surface. The creek became famous on August 27, 1859, when the first drilled oil well produced.

French Creek originates in New York in the glaciated section. There is a small area of the Allegheny High Plateaus section near the mouth. French Creek flows southwest out of New York and arcs southeast to the Allegheny River at Franklin. The lower basin contains some oil and gas, and is underlain by coal-bearing rocks of the Pottsville Group.

East Sandy Creek is in the Pittsburgh Plateaus section and is underlain by coal-bearing rocks of the Allegheny and Pottsville Groups. The basin contains gas, oil, and coal. Sandy Creek is in the glaciated section and is underlain by coal-bearing rocks of the Pottsville and Allegheny Groups. The lower basin has oil and gas, while the coal beds are evenly distributed throughout the basin.

Clarion River is in the Allegheny High Plateaus and Pittsburgh Plateaus sections and is underlain by coal-bearing rocks of the Pottsville and Allegheny Groups. The upper part of the basin above Clarion has narrow steep-sided valleys with high hills. Oil and gas are limited to the lower basin, whereas the coal beds are evenly distributed throughout the basin.

Table 4.2-1 Characteristics of major drainage basins.

| Basin            | Drainage area (mi. <sup>2</sup> ) | Length (mi.)      | Channel slope (ft./mi.) | Drainage <sup>1,2</sup> pattern | Channel <sup>3,4</sup> pattern |
|------------------|-----------------------------------|-------------------|-------------------------|---------------------------------|--------------------------------|
| Tionesta Creek   | 480                               | 61.9              | 7.5                     | Dendritic                       | Irregular                      |
| Oil Creek        | 319                               | 46.7              | 8.6                     | do.                             | Tortuous                       |
| French Creek     | 1,235                             | 83.8 <sup>5</sup> | 4.3                     | Deranged                        | do.                            |
| East Sandy Creek | 103                               | 26.6              | 22.2                    | Dendritic                       | Irregular                      |
| Sandy Creek      | 161                               | 41.0              | 6.8                     | do.                             | do.                            |
| Clarion River    | 1,252                             | 99.2              | 5.7                     | do.                             | do..                           |

<sup>1</sup>Howard (1967)

<sup>2</sup>See figure 4.2-2

<sup>3</sup>Schumm (1963)

<sup>4</sup>See figure 4.2-3

<sup>5</sup>in Pennsylvania

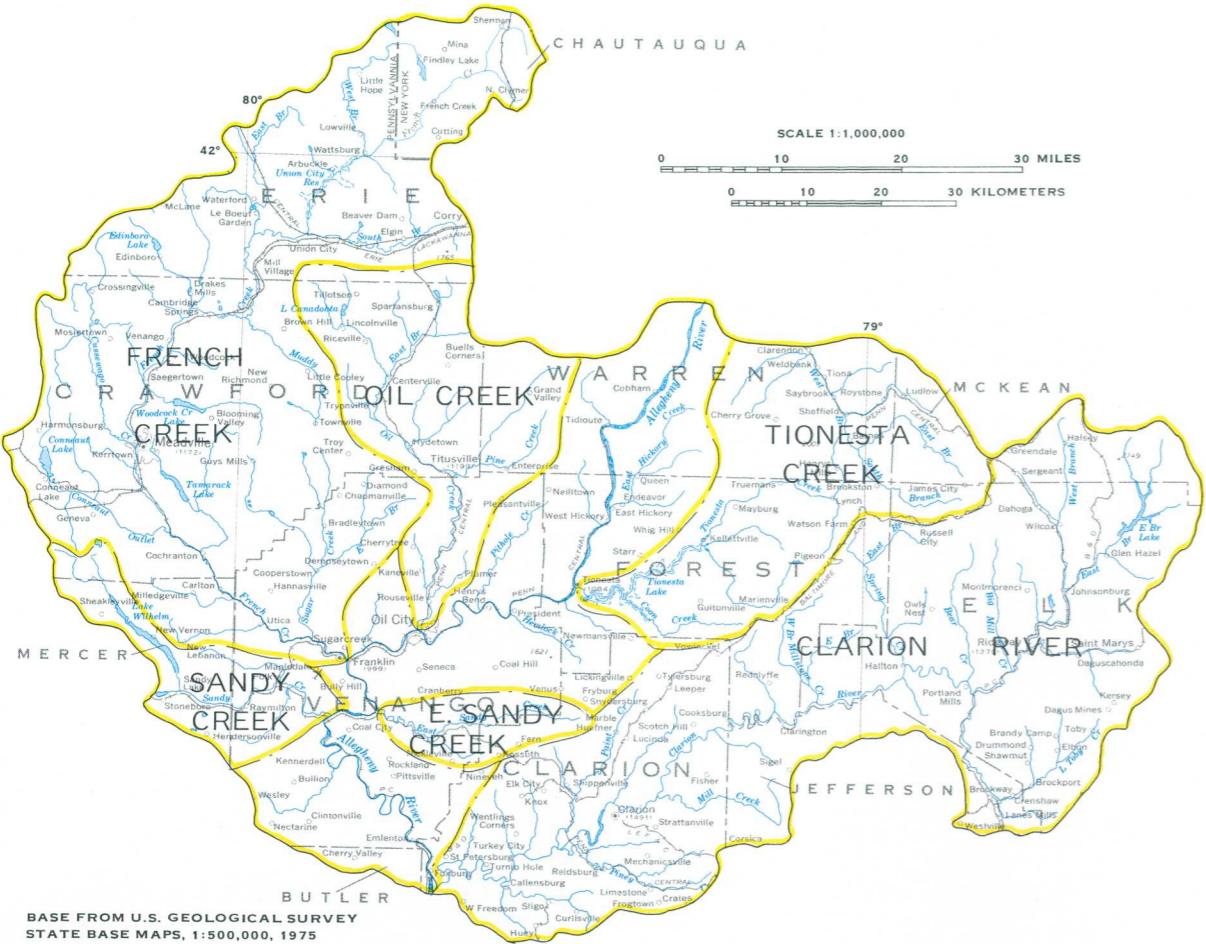



Figure 4.2-1 Major drainage basins.

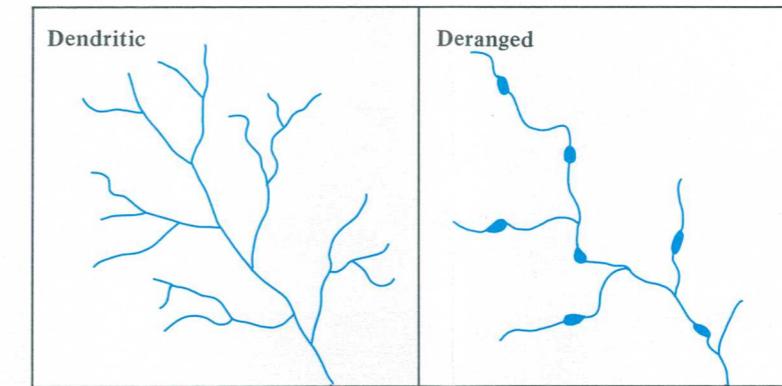



Figure 4.2-2 Morphological classifications of drainage patterns.

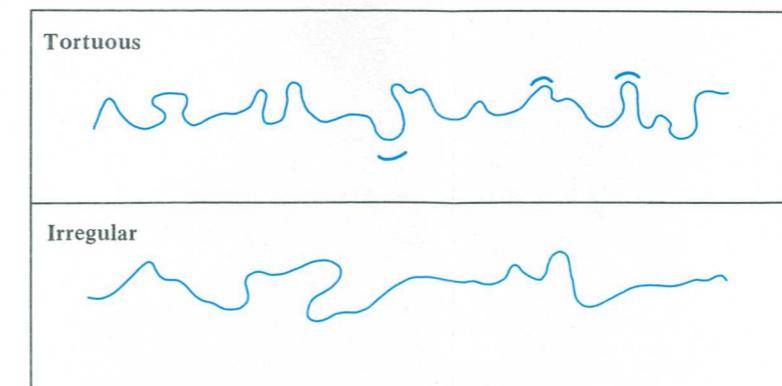
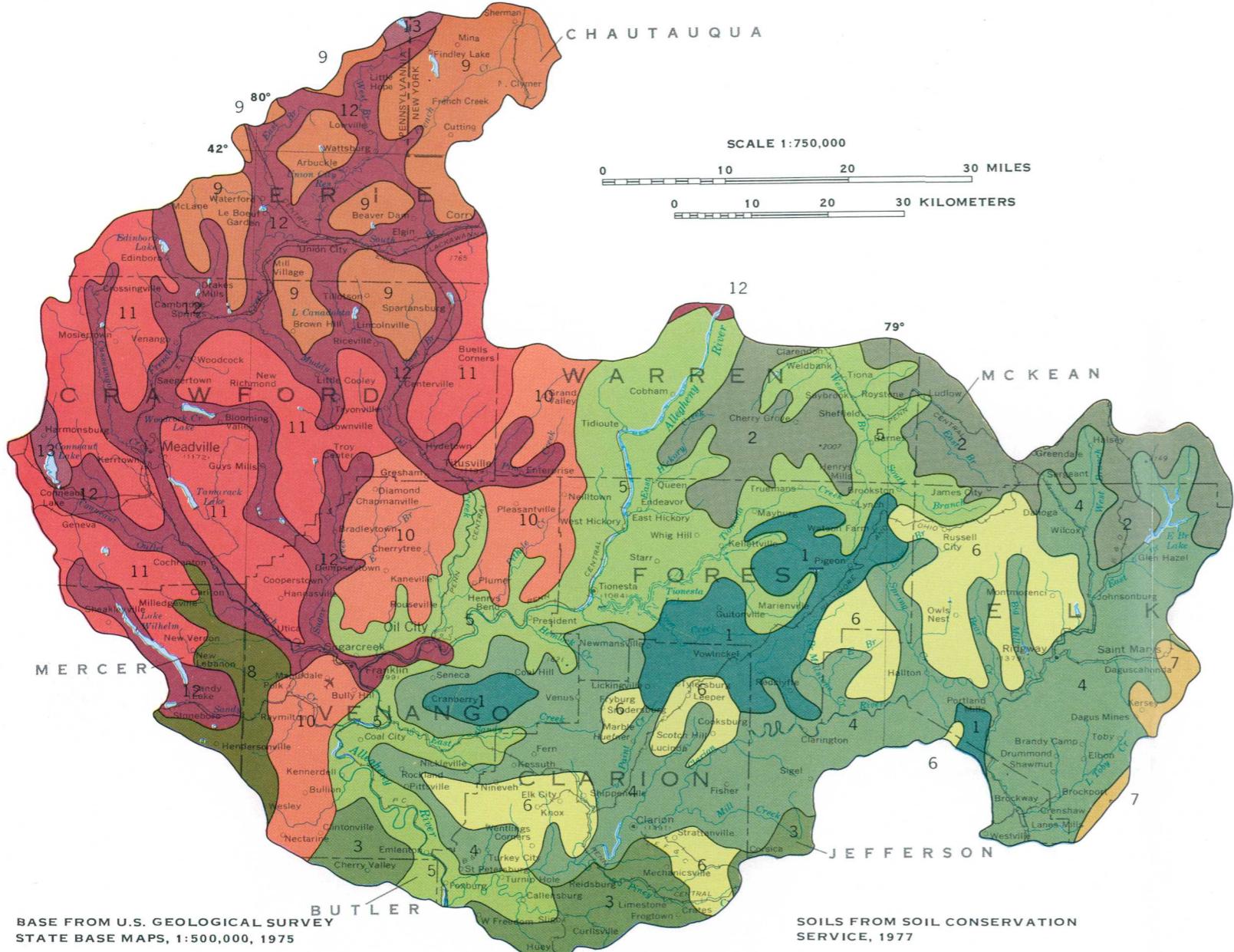



Figure 4.2-3 Channel patterns.

## 4.0 GENERAL FEATURES--Continued

### 4.3 Soils


#### Residual Soils in Area Classified into Three Broad Groups

*Residual soils in Area 2 are generally formed from noncarbonated sedimentary rocks, glacial till, or unconsolidated water-sorted materials.*

Soils in the southeastern part of Area 2 are generally formed from noncarbonated sedimentary rocks, whereas soils in the northwestern part are formed from glacial till and unconsolidated water-sorted materials. The soils formed from the unconsolidated water-sorted materials lie in narrow bands along major streams or valley floors. The locations of the three major soil groups (Soil Conservation Service, 1972) are shown in a generalized soil map (fig. 4.3-1).

Soil depths in the southeastern part of Area 2, the Pittsburgh Plateaus and Allegheny High Plateaus Sections (Office of Resources Management, 1980), vary between 30 and 72 inches (table 4.3-1). This area is largely underlain

by sandstones, conglomerates, thin shales, and coals. Slopes range from 3 to 25 percent. Most of the land is sloping except for small areas of flatlands on the valley bottoms. The northwestern part of the area, the Glaciated Section (Office of Resources Management, 1980), has soils varying in depth from 30 to 60 inches and varying in slope from 0 to 20 percent. The soils formed in unconsolidated water-sorted materials consist of silt, sand, and gravel (table 4.3-2), and overlay the remaining glacial soils, sandstones, shales, and conglomerates. The area is characterized by natural lakes, swamps, low rounded hills, and gravel deposits.



## EXPLANATION SOIL ASSOCIATIONS

Soils found in materials weathered from noncarbonate sedimentary rocks ( A )  
Substrata of reddish sandstone, shale, and siltstone ( A2 )

|   |                                      |
|---|--------------------------------------|
| 1 | Cookport - Clymer - Hazelton ( A2b ) |
| 2 | Cookport - Cavode - Wharton ( A2c )  |
| 3 | Gilpin - Ernest - Wharton ( A2i )    |
| 4 | Hazelton - Cookport ( A2k )          |
| 5 | Hazelton - Gilpin - Ernest ( A2l )   |

Substrata of reddish, yellowish, and brownish clayshale ( A3 )

|   |                                      |
|---|--------------------------------------|
| 6 | Cavode - Wharton - Gilpin ( A3a )    |
| 7 | Upshur - Gilpin - Clarksburg ( A3b ) |

Soils formed in glacial till ( D )  
Substrata grayish ( D2 )

|    |                             |
|----|-----------------------------|
| 8  | Canfield - Rayenna ( D2a )  |
| 9  | Erie - Longford ( D2b )     |
| 10 | Hanover - Alvira ( D2c )    |
| 11 | Venango - Cambridge ( D2h ) |

Soils formed in unconsolidated water-sorted materials ( E )  
Substrata of stratified fluvial sand, silt, and gravel ( E1 )

12 Wayland - Chenango - Braceville ( E1f )

### Substrata of lacustrine clay or silt ( E2 )

13 Canadice - Caneadea ( E2a )

Figure 4.3-1 Generalized soil map.

Table 4.3-1 General soil characteristics

| Section of Appalachian Plateaus province | Soil depth (inches) | Slope range (percent) | Qualitative infiltration rate | Qualitative drainage |
|------------------------------------------|---------------------|-----------------------|-------------------------------|----------------------|
| Pittsburgh Plateaus                      | 30 - 72             | 3 - 20                | Well to medium well           | Good                 |
| Allegheny High Plateaus                  | 30 - 70             | 3 - 25                | Moderate to slow              | Fair                 |
| Glaciated                                | 30 - 60             | 0 - 20                | Slow to moderate              | Poor                 |

Table 4.3-2 Scale of particle sizes

| Class name       | Millimeters      |
|------------------|------------------|
| Boulders         | >256             |
| Cobbles          | 256 - 64         |
| Gravel           | 64 - 2           |
| Very coarse sand | 2.0 - 1.0        |
| Coarse sand      | 1.0 - 0.50       |
| Medium sand      | 0.50 - 0.25      |
| Fine sand        | 0.25 - 0.125     |
| Very fine sand   | 0.125 - 0.062    |
| Coarse silt      | 0.062 - 0.031    |
| Medium silt      | 0.031 - 0.016    |
| Fine silt        | 0.016 - 0.008    |
| Very fine silt   | 0.008 - 0.004    |
| Coarse clay      | 0.004 - 0.0020   |
| Medium clay      | 0.0020 - 0.0010  |
| Fine clay        | 0.0010 - 0.0005  |
| Very fine clay   | 0.0005 - 0.00024 |
| Colloids         | <0.00024         |

## 4.0 GENERAL FEATURES--Continued

### 4.3 Soils

## 4.0 GENERAL FEATURES--Continued

### 4.4 Climate

## Area has Humid Continental Climate

*The humid continental climate of Area 2 is dominated by the west and southwest winds that influence most of the weather disturbances in the area.*

Area 2 is located in the upper and central Allegheny River basin. A number of storm tracks cross the area from the north, west, and south. The Gulf of Mexico and Great Lakes are the primary sources of moisture. Winters are partly controlled by dry air masses that originate in Canada and travel south from Hudson Bay or east from the Rocky Mountains. Cold Hudson Bay air can carry moisture from the Great Lakes, which may produce heavy local snowfalls and sub-zero weather. At other times, moist air from the southwest causes rain and snow. Winter weather can change every few days and extended periods of extreme cold or warmth are rare.

Summer weather usually originates from the southwest. Warm, moist air brings thunderstorms that can occur anytime from May to September. Temperatures peak during July. Hurricanes and tropical storms follow a northeasterly track and may produce heavy rains in the area, generally from June to November.

Mean annual precipitation is shown by the isohyets on

figure 4.4-1 for the base period 1941-70. The monthly normals and extremes at weather stations in Franklin and Warren (immediately north of Area 2) are shown in figure 4.4-2. Monthly extremes of snowfall and ice pellets are illustrated in figure 4.4-3.

Temperatures as high as 105°F have been recorded during July and as low as -32°F in February. Because of the differences in topography, the mean annual frost-free period in Area 2 ranges from 130 days to 175 days. The recorded monthly temperature normals and extremes at the Franklin and Warren weather stations are shown in figure 4.4-4.

Daily precipitation data are published monthly as "Local Climatological Data for Pennsylvania" by the National Oceanic and Atmospheric Administration, National Climatic Center, Asheville, N.C. Statistical information concerning analysis and data are presented by the U.S. Department of Commerce (1973).

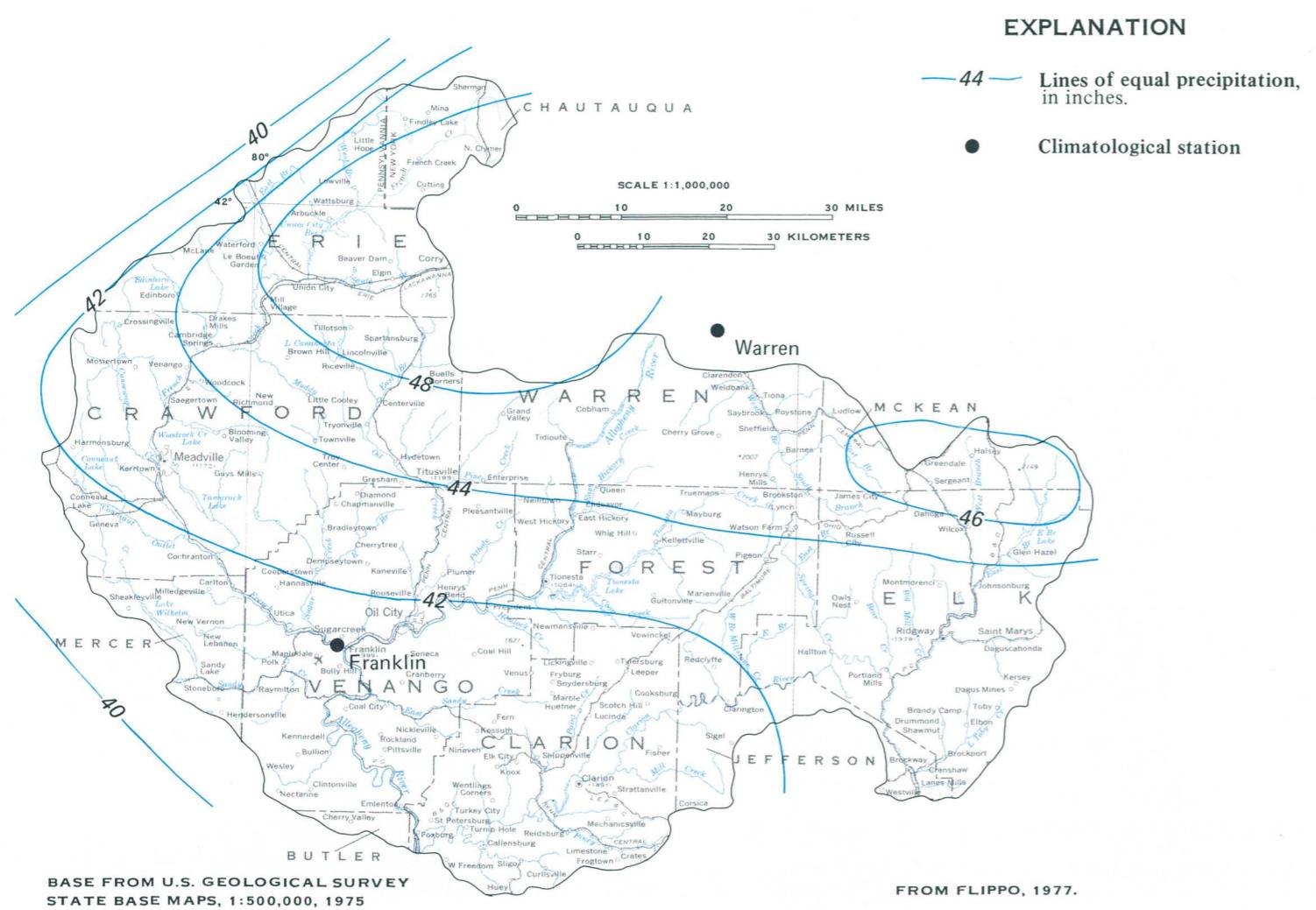



Figure 4.4-1 Mean annual precipitation from 1941-70.

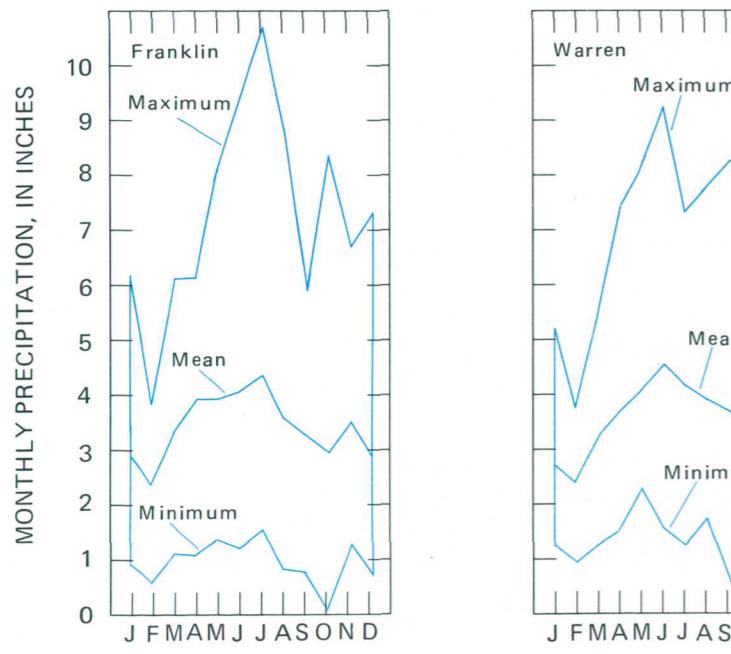



Figure 4.4-2 Monthly precipitation.

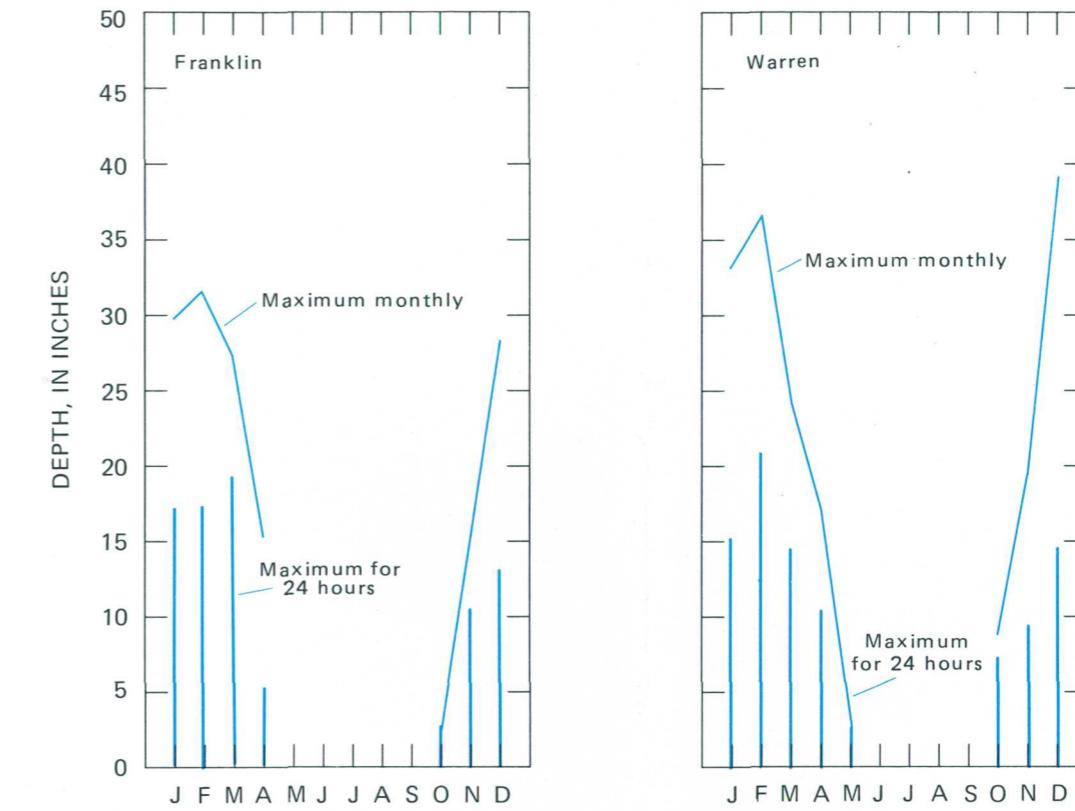



Figure 4.4-3 Depth of snowfall and ice pellets.

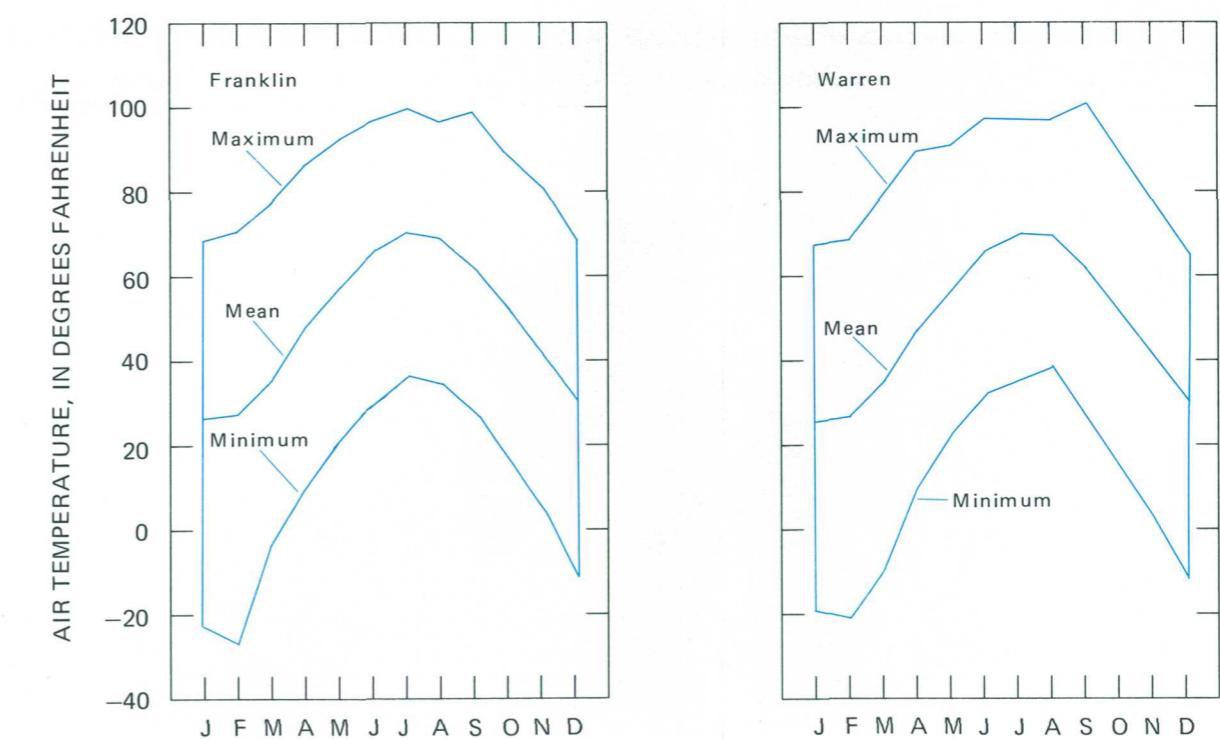



Figure 4.4-4 Air temperature.

## 5.0 COAL

### Clarion County Leading Coal Producer in Area

*Clarion County produced 5.4 million of the area's 7.4 million tons of coal during 1979.*

During 1979, 229 coal mines in Area 2 counties produced 7,370,040 tons (table 5.0-1) of bituminous coal. Clarion County mines produced 5,392,189 tons or 73 percent of the total (Commonwealth of Pennsylvania, 1980). More than 99 percent of Area 2's production was from strip mining; less than 1 percent was from auger mining. Area 2 counties produced about 8 percent of the State's bituminous coal during 1979. Coal production for parts of Butler and Jefferson Counties was included with Areas 4 and 3, respectively.

During the early to mid-1970's coal production in Area 2 counties generally showed an increasing trend (fig. 5.0-1), but during 1979, production dropped to about 7.4 million tons or to about 88 percent of the 8.4 million tons produced in 1978. This drop in production was found in all four coal-producing counties in the area.

The State of Pennsylvania has about 300,000 acres

(468 square miles) of disturbed coal land in need of reclamation, but only 60,000 acres have a legal requirement for reclamation (U.S. Department of Agriculture, 1977). Area 2 counties have about 18,800 acres (29 square miles) of coal land in need of reclamation, but only about 2,400 acres have a legal requirement for reclamation (table 5.0-2).

The Eastern Coal Province extends from southwest Alabama to northcentral Pennsylvania. Area 2 contains the most northern coal fields in the Ohio River basin. There are eight coal seams in Area 2: Upper and Lower Freeport; Upper, Middle, and Lower Kittanning; Clarion; Brookville; and Lower Mercer. The Clarion-Brookville complex is the major source of strippable coal, and it also contains the largest deep coal reserves. These deep reserves may become more important as the strippable coal is depleted. All Area 2 counties except Erie and Chautauqua contain coal deposits (fig. 5.0-2).

ANNUAL COAL PRODUCTION, IN THOUSANDS OF TONS

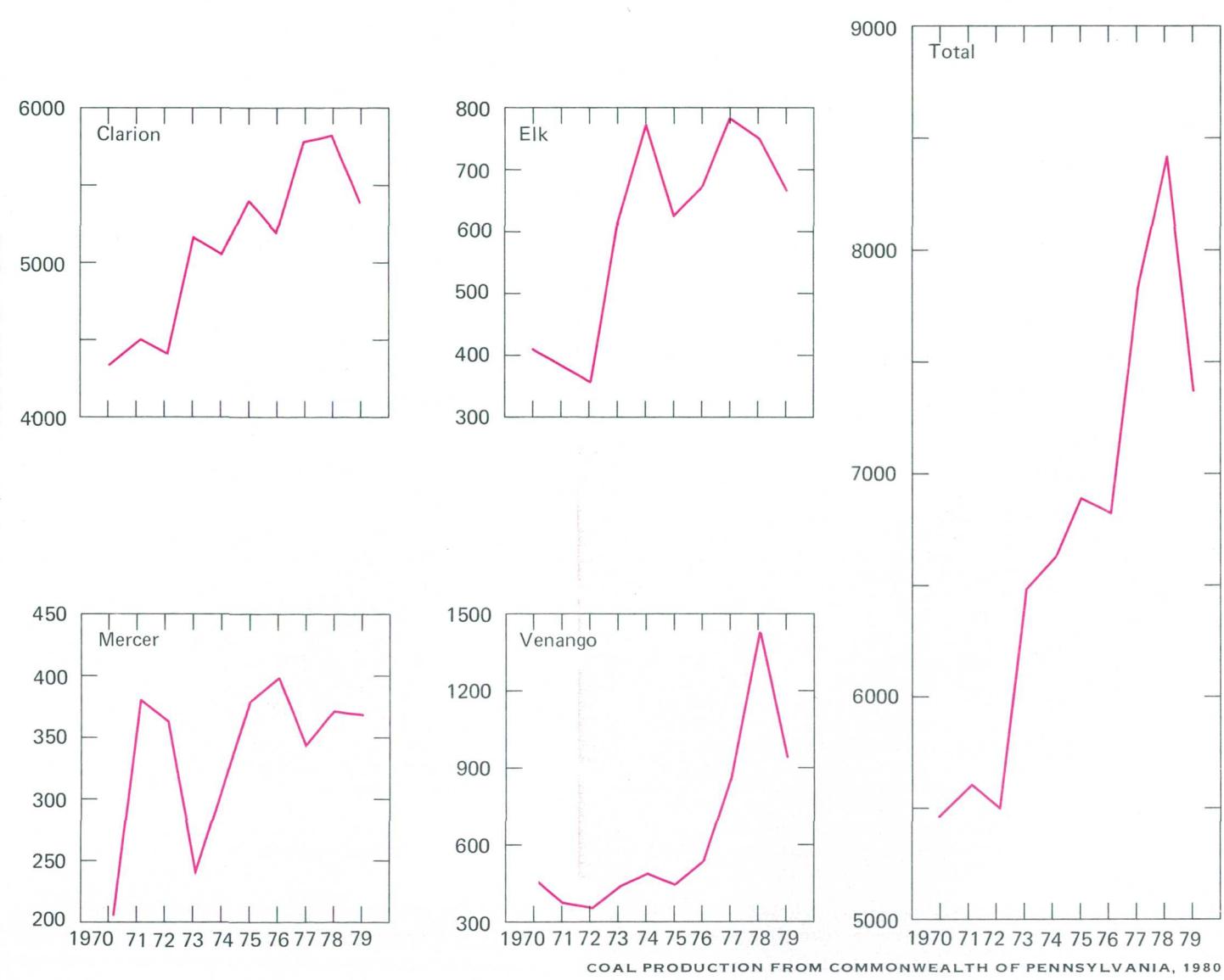



Figure 5.0-1 Coal production 1970-79.

Table 5.0-1 Bituminous coal production, in tons, in Area 2 counties\* during 1979\*\*.

| County      | Production by method |            |         |            |
|-------------|----------------------|------------|---------|------------|
|             | Strip                | Deep       | Auger   | Total      |
| Clarion     | 5,392,189            | ---        | 10,489  | 5,402,678  |
| Crawford    | ---                  | ---        | ---     | ---        |
| Elk         | 658,061              | ---        | 11,434  | 669,495    |
| Erie        | ---                  | ---        | ---     | ---        |
| Forest      | ---                  | ---        | ---     | ---        |
| McKean      | ---                  | ---        | ---     | ---        |
| Mercer      | 370,489              | ---        | ---     | 370,489    |
| Venango     | 949,301              | ---        | ---     | 949,301    |
| Warren      | ---                  | ---        | ---     | ---        |
| Area total  | 7,370,040            | ---        | 21,923  | 7,391,963  |
| State total | 45,116,917           | 43,350,852 | 351,333 | 88,819,102 |

\*Jefferson County production included with Area 3; Butler County production included with Area 4.

\*\*Commonwealth of Pennsylvania (1980).

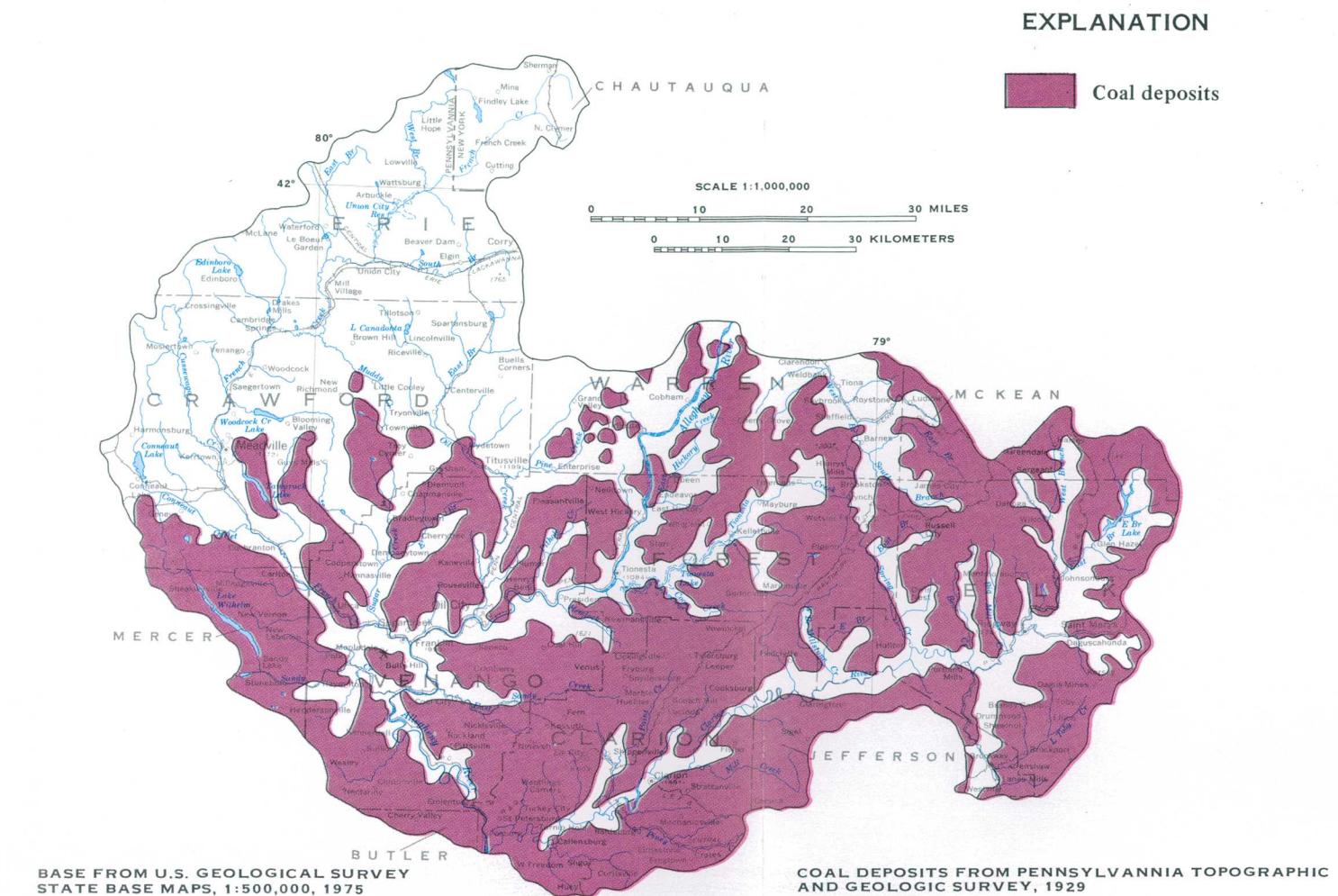



Figure 5.0-2 Coal deposits.

Table 5.0-2 Disturbed coal land, in acres, in Area 2 counties\* in need of reclamation as of July 1977\*\*.

| County      | Reclamation required by law | Reclamation not required by law | Total   |
|-------------|-----------------------------|---------------------------------|---------|
| Clarion     | 1,000                       | 10,000                          | 11,000  |
| Crawford    | ---                         | ---                             | ---     |
| Elk         | 500                         | 2,000                           | 2,500   |
| Erie        | ---                         | ---                             | ---     |
| Forest      | ---                         | ---                             | ---     |
| McKean      | ---                         | ---                             | ---     |
| Mercer      | 400                         | 1,400                           | 1,800   |
| Venango     | 500                         | 3,000                           | 3,500   |
| Warren      | ---                         | ---                             | ---     |
| Area total* | 2,400                       | 16,400                          | 18,800  |
| State total | 60,000                      | 240,000                         | 300,000 |

\*Jefferson County figures included with Area 3; Butler County figures with Area 4.

\*\*U.S. Department of Agriculture (1977).

## 6.0 HYDROLOGIC-DATA NETWORK

### 6.1 Surface-Water Quantity

## Streamflow Data Collected at 85 Locations

*Streamflow data have been collected at 18 continuous-record gaging stations, 1 crest-stage low-flow partial-record station, 1 low-flow partial-record station, and 65 miscellaneous sites in area.*

Systematic collection of streamflow data at an established network of stations is a key ingredient in the assessment of the hydrology of any area. If streamflow-data are collected over a period of time, it is possible to make estimates of certain streamflow characteristics at the stations, such as peak discharge, low flow, mean flow, and flow duration.

Systematic data collection also provides hydrologists with the necessary information to make estimates of streamflow characteristics for sites where data are not collected. Section 12.1 lists 18 continuous-record gaging stations; 1 crest-stage, partial-record station; 1 low-flow partial-record station and 65 miscellaneous sites where surface-water data have been collected, and figure 6.1-1 shows their locations.

Continuous-record stations are locations where a continuous record of stream gage height (stage) is collected. The gage height information is generally collected and recorded by a variety of automatic recorders. Periodic measurements of actual streamflow and indirect determinations of flood flow relate specific gage heights to specific discharges. The continuous record of gage height, combined with the stage-discharge relation, provides a continuous record of streamflow. Such continuous streamflow data are usually presented as mean discharges on a daily and yearly basis, although instantaneous discharges at specific times during the period of record can also be

determined. Continuous-record stations provide the most detailed streamflow data.

Partial-record stations provide less detailed data at a much lower cost than those provided by a continuous-record station. Low-flow partial-record stations have no recording devices, but provide data when measured during low flow. Data from concurrent flows at partial-record and continuous-record stations may be used indirectly to supplement the data available at the low-flow partial-record sites. Crest-stage partial-record stations utilize a simple gage to record the peak gage height reached by a stream during a storm. A stage-discharge relation is then used to compute the peak flow during the storm. Such peak-flow data can be analyzed to determine the flood-flow frequency of a stream.

Miscellaneous sites are locations at which occasional discharge measurements are made, usually when water-quality samples are collected. Discharge data at miscellaneous sites can be combined with water-quality data to compute instantaneous loads of various dissolved or suspended constituents.

The U.S. Geological Survey publishes water-quality data for Area 2 annually in the report "Water Resources Data for Pennsylvania, Volume 3, Ohio and St. Lawrence River Basins."



Figure 6.1-1 Surface-water quantity sites

## EXPLANATION

#### WATER QUANTITY SITES

See section 12.1 for detailed site description.

- ▲ Continuous-record
- ▲ Crest-stage partial-record and low-flow partial-record
- ▲ Low-flow partial-record
- ▲ Miscellaneous

▲ Site number

## 6.0 HYDROLOGIC-DATA NETWORK--Continued

### 6.2 Surface-Water Quality

## Water-Quality Data Available for 78 Sites in Area

*Water-quality data have recently been collected at 71 synoptic sites, 1 partial-record coal hydrology site and 6 partial-record sites.*

The locations of 78 sites where recent water-quality data have been collected are shown in figure 6.2-1. The sites are identified by reference number, downstream order number, and name in section 12.1.

The 71 sites designated as synoptic sites had water quality data routinely collected in the spring and summer. Station 28, the partial-record coal hydrology site, was sampled more frequently because historic water quality data already existed for it. The 6 other partial-record sites were sampled as part of other programs, but provided data useful in the coal hydrology program. Typical data collected during water years 1979 and 1980 included specific conductance, pH, temperature, turbidity, dissolved oxygen, suspended sediment, acidity, alkalinity, dissolved sulfate, dissolved iron, and taxonomic identification of benthic invertebrates.

Seasonal variations in streamflow can concentrate or dilute contaminants in the water. Changes in water quality are more readily detected with frequent, long-term sam-

pling, but a general overview can be obtained through synoptic sampling.

All first order streams in coal-bearing sections of Area 2 were initially considered for a synoptic site. First order streams were defined as those unbranched streams appearing on a 1:500,000 scale Hydrologic Unit map. A subset of these first order streams was selected for actual synoptic site location. The final site selection was designed to provide broad areal coverage.

The 71 synoptic sites had drainage areas ranging from 1.46 to 62.5 mi<sup>2</sup> (square miles). The median drainage area for all streams was about 14.4 mi<sup>2</sup>. Almost 68 percent of the streams have drainage areas less than 20 mi<sup>2</sup>.

The U.S. Geological Survey publishes water-quality data for Area 2 annually in the report "Water Resources Data for Pennsylvania, Volume 3, Ohio and St. Lawrence River Basins."



## **6.0 HYDROLOGIC-DATA NETWORK--Continued**

### *6.3 Type and Scheduling of Samples*

### **Sampling Network Designed to Define Coal-Related Water-Quality in Area**

*A network of 71 synoptic sites and 1 continuous-record station is being sampled to collect water-quality data which may be related to the presence of coal or coal mining. The sampling schedule is designed to collect data over a range of flow conditions.*

The present sampling program of the coal hydrology network utilizes two types of sampling stations, each having a distinct purpose. A large network of synoptic sites is designed to provide broad areal coverage, while a smaller network of continuous-record stations is designed to provide more detailed information on changes in water quality over time. Water-quality and stream discharge data have been collected under low, medium, and high baseflow conditions.

Table 6.3-1 lists the types and frequencies of data collection at the 71 synoptic sites. These data were selected to concentrate on information which may be useful in coal-bearing areas. Many of the water-quality constituents

listed in table 6.3-1 are specifically mentioned in the surface mining regulations. These water-quality data have been published by U.S. Geological Survey (1980, 1981).

Similar data are being collected at the single continuous-record station in Area 2's coal hydrology network; however, samples are being collected more frequently than at the synoptic sites and additional samples are being collected. Table 6.3-2 lists the types and frequencies of sampling at the continuous-record station. The data collected at this site has been published by U.S. Geological Survey (1980, 1981).

**Table 6.3-1 Types and frequency of water-data collection at synoptic sites.**

| Each visit (low, medium, and high flows) |                     | One time only (low flow)<br>Bottom materials |                  |
|------------------------------------------|---------------------|----------------------------------------------|------------------|
| Discharge                                | Dissolved iron      | Arsenic                                      | Manganese        |
| Temperature                              | Total manganese     | Cadmium                                      | Mercury          |
| Specific conductance                     | Dissolved manganese | Chromium                                     | Selenium         |
| pH                                       | Sulfate             | Cobalt                                       | Zinc             |
| Alkalinity                               | Residue, dissolved  | Copper                                       | Organic carbon   |
| Acidity                                  | Suspended sediment  | Iron                                         | Inorganic carbon |
| Total iron                               |                     | Lead                                         | Coal             |
| Annually (low flow)                      |                     | Storm events (high flow)<br>selected sites   |                  |
| Identification of benthic invertebrates  |                     | Suspended sediment and discharge             |                  |

**Table 6.3-2 Types and frequency of water-data collection at the continuous-record station.**

| Each visit (6 - 9, times annually)           |                     | Common constituents     |                      |
|----------------------------------------------|---------------------|-------------------------|----------------------|
| Discharge                                    | Dissolved iron      | Sodium absorption ratio | Dissolved fluoride   |
| Temperature                                  | Total manganese     | Sodium percent          | Residue, dissolved   |
| Specific conductance                         | Dissolved manganese | Dissolved calcium       | Dissolved silica     |
| pH                                           | Sulfate             | Dissolved manganese     | Dissolved sulfate    |
| Alkalinity                                   | Residue, dissolved  | Dissolved potassium     | Nitrite plus nitrate |
| Acidity                                      | Suspended sediment  | Dissolved sodium        | Total phosphorus     |
|                                              |                     | Dissolved chloride      | Total alkalinity     |
| Annually (low flow)                          |                     | Minor elements          |                      |
| Identification of benthic invertebrates      |                     | Total barium            | Total manganese      |
| One time only (low flow)<br>Bottom materials |                     | Total cadmium           | Total silver         |
|                                              |                     | Total chromium          | Total zinc           |
|                                              |                     | Total copper            | Total arsenic        |
|                                              |                     | Total iron              | Total selenium       |
|                                              |                     | Total lead              | Cyanide              |
|                                              |                     |                         | Total mercury        |
| Arsenic                                      | Manganese           |                         |                      |
| Cadmium                                      | Mercury             |                         |                      |
| Chromium                                     | Selenium            |                         |                      |
| Cobalt                                       | Zinc                |                         |                      |
| Copper                                       | Organic carbon      |                         |                      |
| Iron                                         | Inorganic carbon    |                         |                      |
| Lead                                         | Coal                |                         |                      |

## 7.0 SURFACE-WATER QUALITY

### 7.1 Specific Conductance

## Specific Conductances High in Streams of Leading Coal-Producing County

*Streams in Clarion County, which produces three-fourths of the coal mined in Area 2, had a median specific conductance twice as great as the median for any other county in the area.*

Table 7.1-1 shows coal production and median stream specific conductances for six counties in Area 2. Although there is no predictive relation between coal production and median specific conductance, a general trend does exist. Streams in Clarion County, which produces about 72 percent of the coal mined in the seven counties, had a median specific conductance of 390  $\mu\text{mho}/\text{cm}$  (micromhos per centimeter) at 25°C. This is almost twice the median specific conductance of 200  $\mu\text{mho}/\text{cm}$  for streams in Crawford County, where no coal is produced. Median stream specific conductances for the coal-producing counties ranged from 76 to 390  $\mu\text{mho}/\text{cm}$ , whereas median specific conductances for the non-coal-producing counties ranged from 55 to 200  $\mu\text{mho}/\text{cm}$ .

Most streams in Area 2 having maximum specific conductances (highest observed during sample period) of 400  $\mu\text{mho}/\text{cm}$  or greater were in the south-central part of the area in Venango and Clarion Counties (fig. 7.1-1). High specific conductances were also common near the eastern border of Area 2 in Elk County. Several streams in Clarion County had maximum specific conductances in excess of 1,000  $\mu\text{mho}/\text{cm}$  (fig. 7.1-1).

The remaining sections of the area are characterized by maximum specific conductances less than 400  $\mu\text{mho}/\text{cm}$ . Streams in Warren, Forest, and western Elk Counties generally have maximum specific conductances less than 100  $\mu\text{mho}/\text{cm}$ . Venango and northern Crawford County streams usually have maximum specific conductances in the range of 100 to 400  $\mu\text{mho}/\text{cm}$ .

Maximum specific conductances measured at Area 2 streams ranged from 50 to 1,800  $\mu\text{mho}/\text{cm}$ . The mean and median maximum specific conductances were 269 and 170

$\mu\text{mho}/\text{cm}$ , respectively. The difference between the mean and median values is a result of the effect of several high specific conductances on the mean. Only 8 of 71 streams (11 percent) had a maximum specific conductance greater than 500  $\mu\text{mho}/\text{cm}$  (fig. 7.1-2). Figure 7.1-2 also shows that 25 streams (35 percent) had maximum specific conductances of 100  $\mu\text{mho}/\text{cm}$  or less, and that 49 streams (69 percent) had maximum specific conductances of 300  $\mu\text{mho}/\text{cm}$  or less.

Specific conductances (section 12.2) were measured in the field according to procedures described by Skougstad and others (1979). Samples were generally collected four times during the 1979 and 1980 water years during periods of low, medium, and high base flow. Specific-conductance data for the 1979 and 1980 water years are published by the U.S. Geological Survey (1980, 1981).

Specific conductances vary over time within individual streams (fig. 7.1-3). During the 1976-78 water years, the maximum specific conductance observed at four selected stations was 2 to 6 times the minimum observed during the same period. The mean specific conductances for all the stations illustrated in figure 7.1-3 are significantly different (95-percent level) from one another, except when comparing station 12 with stations 59 and 75. All four streams exhibit a negative correlation between specific conductance and the log (base 10) of discharge. The correlation is significant (95-percent level) for stations 59 and 75 (Snedecor, 1957). Such a negative correlation indicates a relatively stable source of dissolved material which is diluted to a greater or lesser extent as streamflow increases or decreases.

Table 7.1-1 Average coal production, 1976-80, and median stream specific conductances, 1979-80, for selected counties.

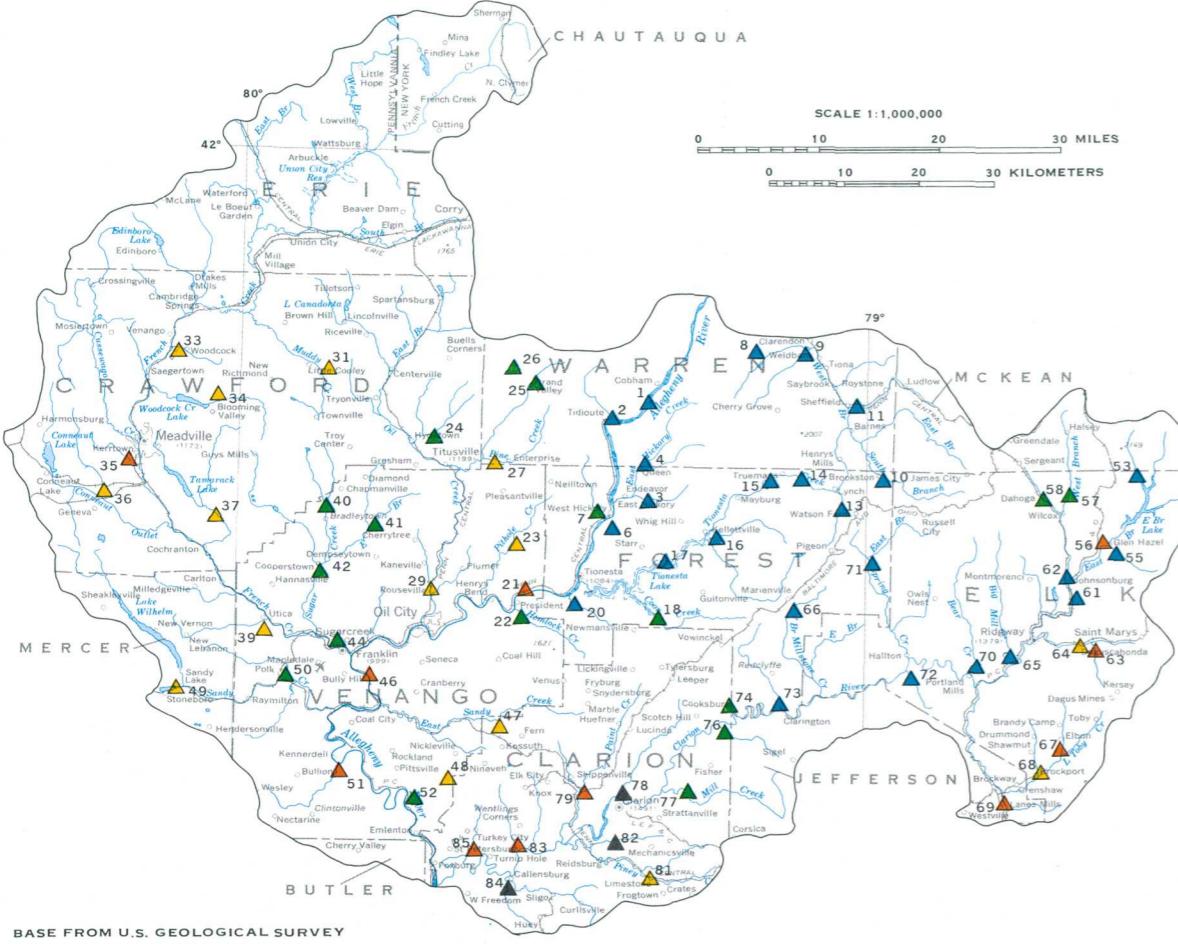



Figure 7.1-1 Maximum specific conductances for selected sites.

| County   | Number of streams sampled | Median specific conductance ( $\mu\text{mho}$ ) | Average annual coal production (tons) |
|----------|---------------------------|-------------------------------------------------|---------------------------------------|
| Clarion  | 11                        | 390                                             | 5,218,414                             |
| Venango  | 14                        | 177                                             | 913,009                               |
| Elk      | 13                        | 76                                              | 732,923                               |
| Mercer   | 1                         | *                                               | 413,368                               |
| Crawford | 8                         | 200                                             | 0                                     |
| Forest   | 12                        | 60                                              | 0                                     |
| Warren   | 10                        | 55                                              | 0                                     |

\*Data insufficient for median computation.

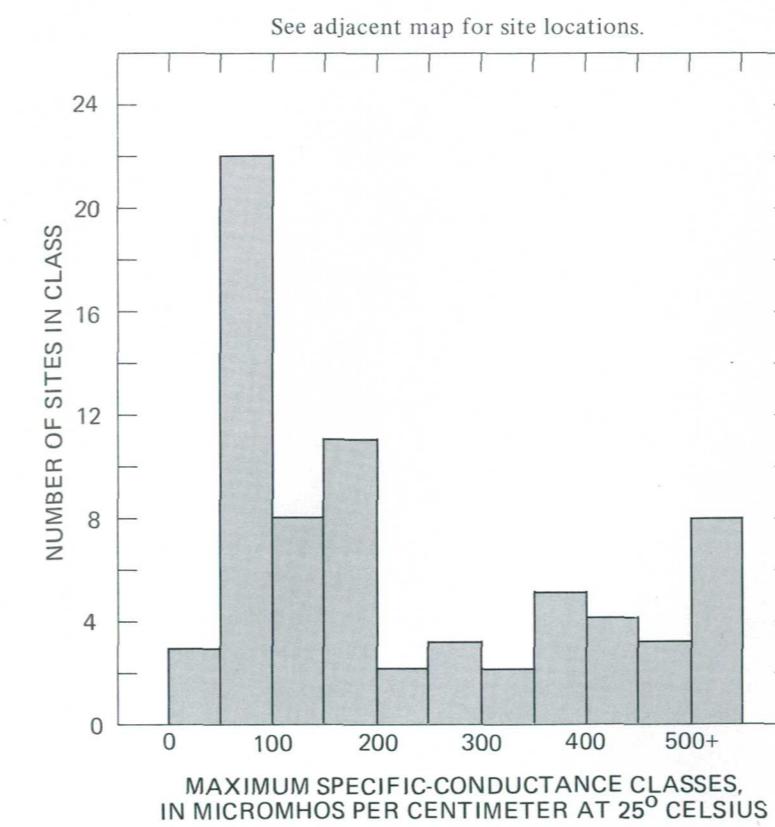



Figure 7.1-2 Maximum specific conductance for selected streams.

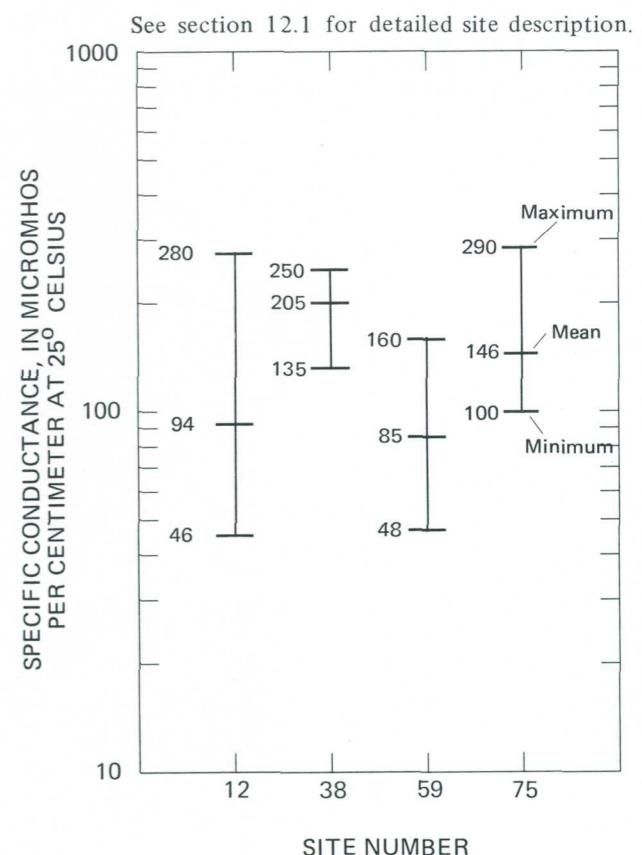



Figure 7.1-3 Variation in specific conductance of selected streams for water years 1979-80.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.2 Dissolved Solids

## Coal Production and Dissolved Solids Both High in Clarion County

*The median dissolved-solids concentration for streams sampled in Clarion County was 70 percent greater than the median concentration for streams in any of Area 2's other counties. About three-fourths of the coal produced in the area is mined in Clarion County.*

Median dissolved-solids concentrations for streams in Area 2 counties and average coal production figures (by county) are presented in table 7.2-1. The median concentration for the area's leading coal-producing county was 224 mg/L (milligrams per liter) or about 72 percent greater than the median concentration of 126 mg/L for Crawford County, which produces no coal. Clarion County's median concentration was also about 5 times higher than the medians for the other non-coal-producing counties in the area. However, there is no predictive relation between average coal production and median dissolved-solids concentration.

Nine of the eleven streams sampled in Clarion County had maximum dissolved-solids concentrations (highest observed during sample period) of 200 mg/L or greater (fig. 7.2-1). The highest dissolved-solids concentrations in Area 2, 500 mg/L or greater, were found at 3 sites in Clarion County. Streams in eastern Warren, northeastern Forest, and northeastern Elk Counties generally had maximum dissolved-solids concentrations less than 50 mg/L. Streams in areas adjacent to the above area generally had concentrations in the 50-100 mg/L range, while streams in the western part of Area 2 generally had maximum dissolved-solids concentrations of 100-200 mg/L.

Maximum dissolved-solids concentrations in Area 2 ranged from 28 to 1,800 mg/L. The mean and median maximum dissolved-solids concentrations were 174 and 105 mg/L, respectively. The difference between the mean and median concentrations was a result of the effect of several high concentrations on the mean.

Fifteen Area 2 streams had maximum dissolved-solids concentrations of 50 mg/L or less (fig. 7.2-2). Fifty streams in the area had maximum concentrations of 150 mg/L or less, and only 7 streams had maximum concentrations in excess of 300 mg/L (fig. 7.2-2).

Dissolved-solids concentration and specific conductance are closely related as shown in figure 7.2-3, based on 207 concurrent pairs of samples for specific conductance and dissolved solids. The relation between the two water-quality measures has a slope of 0.81. The slope of 0.81 is well within the range of 0.54 to 0.96 for natural waters as reported by Hem (1970). Hem indicated that a slope greater than 0.75 is generally associated with water high in sulfate content. Figure 7.2-4 shows the relation between dissolved solids and dissolved sulfate based on 207 concurrent pairs of samples from Area 2 streams. For the 207 concurrent samples, the mean dissolved-solids concentration was 136 mg/L and the mean dissolved-sulfate concentration was 53 mg/L. Dissolved sulfate; therefore, contributed about 40 percent of the dissolved-solids for the 207 samples collected to date.

Water samples for dissolved-solids determinations (section 12.2) were collected four times at each site during the 1979 and 1980 water years. Samples were collected during low, medium, and high base flow. Laboratory analyses for dissolved solids were done according to procedures described by Skoustad and others (1979). Dissolved-solids data for the 1979 and 1980 water years are published by the U.S. Geological Survey (1980, 1981).

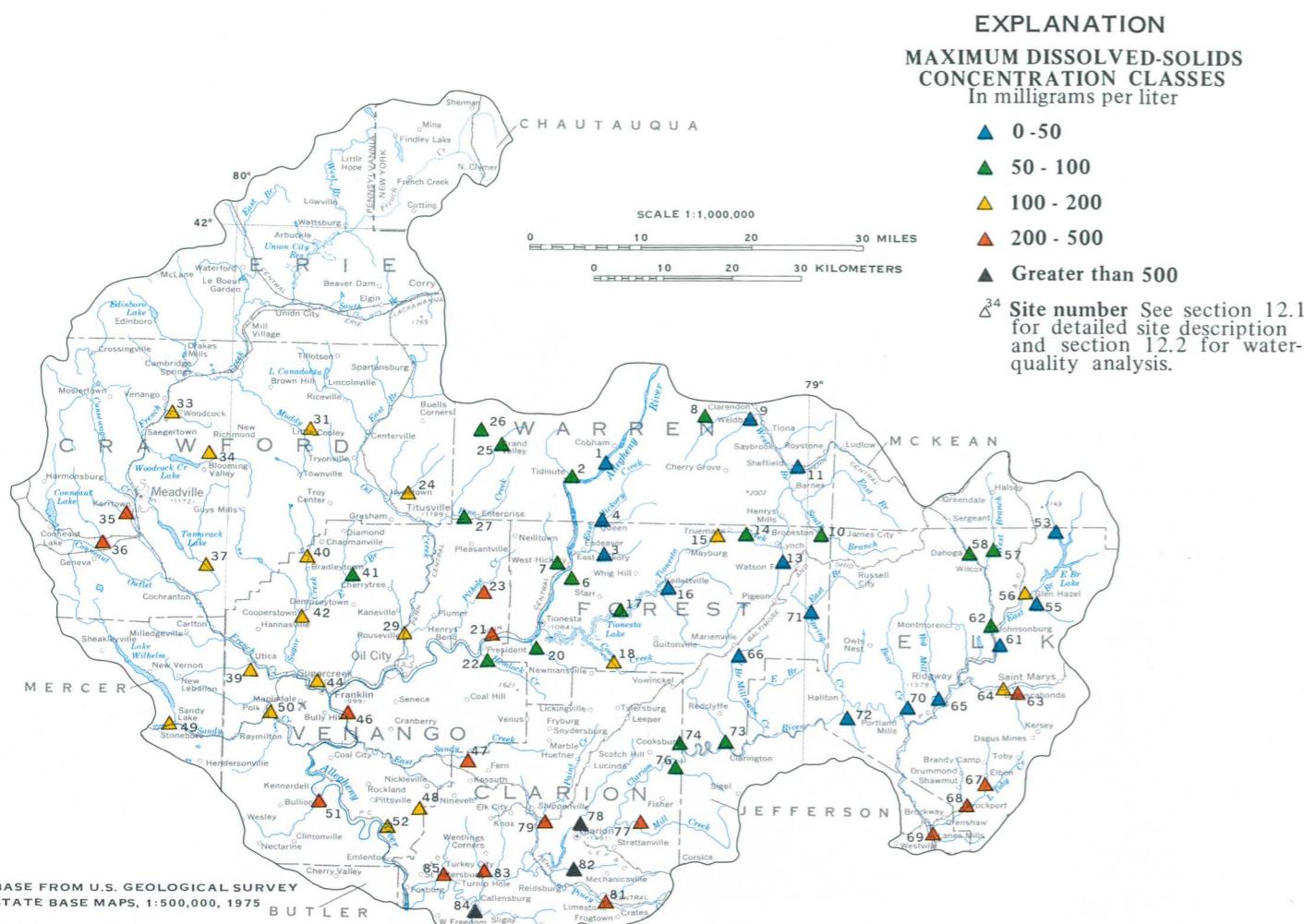



Figure 7.2-1 Maximum dissolved-solids concentrations for selected sites.

Table 7.2-1 Average coal production, 1976-80, and median stream dissolved-solids concentrations, 1979-80, for selected counties.

| County   | Number of streams sampled | Median dissolved-solids concentration (mg/L) | Average annual coal production (tons) |
|----------|---------------------------|----------------------------------------------|---------------------------------------|
| Clarion  | 11                        | 224                                          | 5,218,414                             |
| Venango  | 14                        | 106                                          | 913,009                               |
| Elk      | 13                        | 48                                           | 732,923                               |
| Mercer   | 1                         | *                                            | 413,368                               |
| Crawford | 8                         | 126                                          | 0                                     |
| Forest   | 12                        | 42                                           | 0                                     |
| Warren   | 10                        | 44                                           | 0                                     |

\*Data insufficient for median computation.

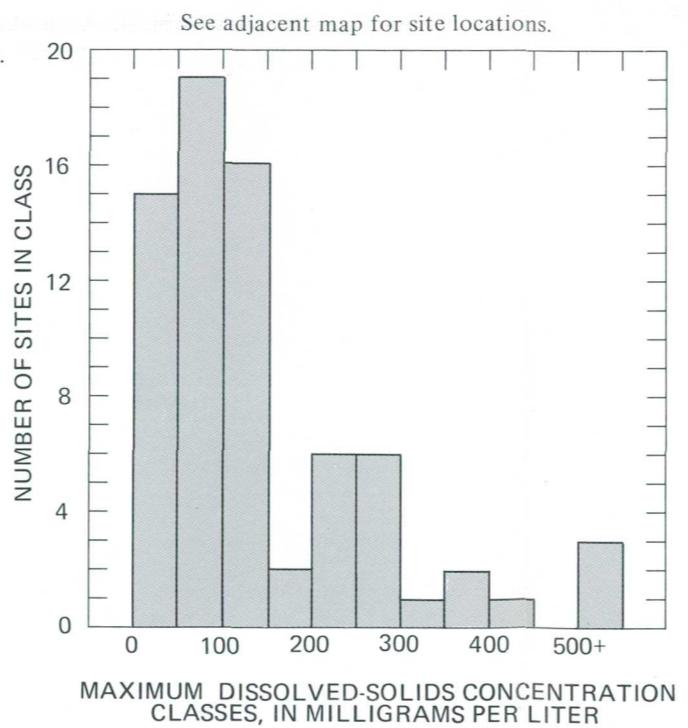



Figure 7.2-2 Maximum dissolved-solids concentration.

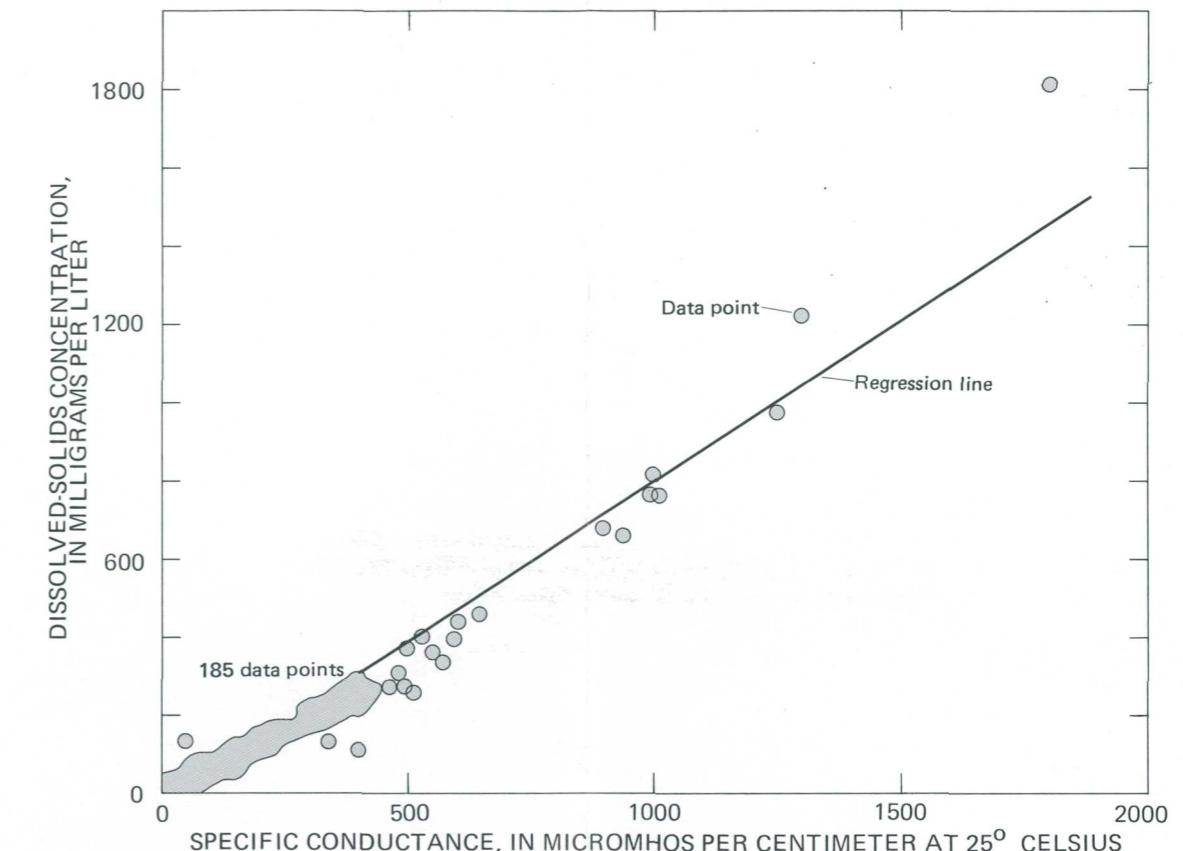



Figure 7.2-3 Relation between dissolved-solids concentration and specific conductance.

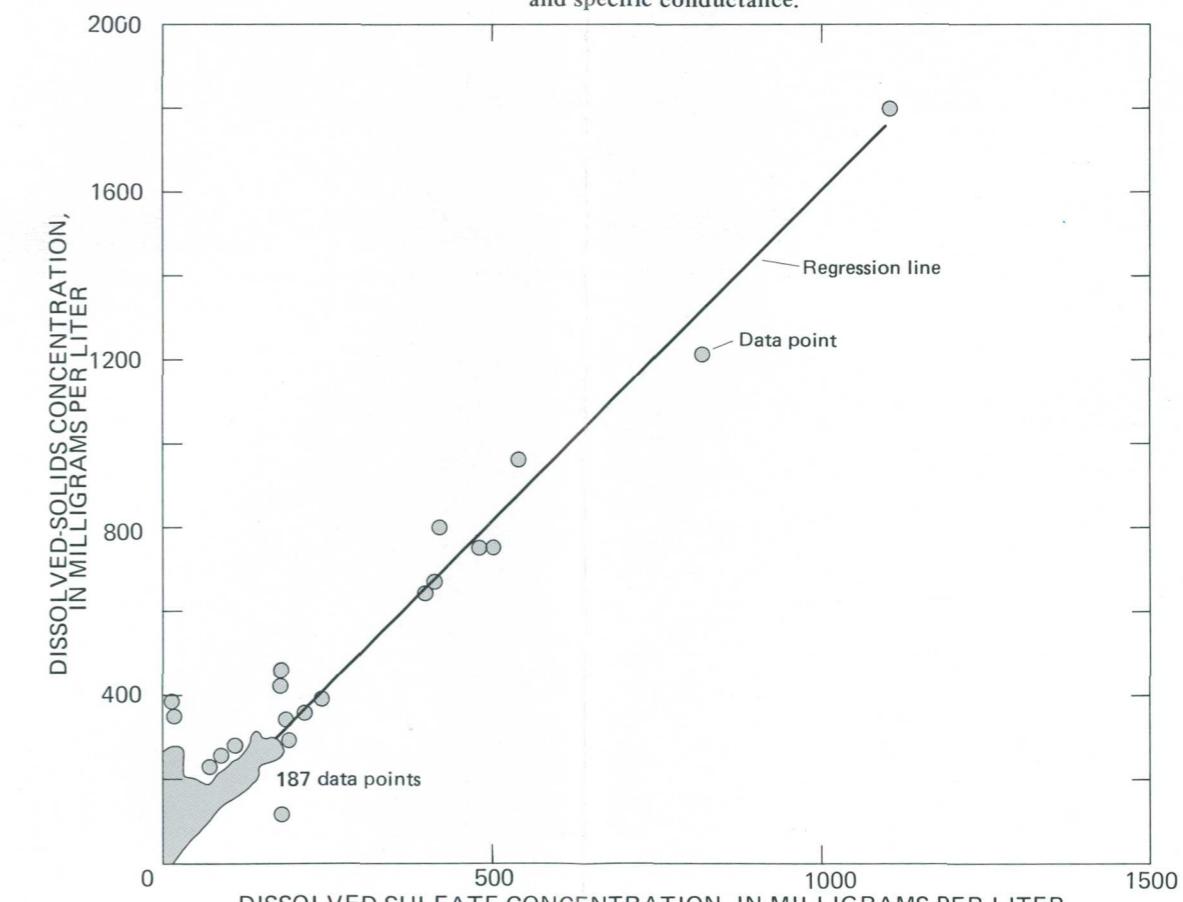



Figure 7.2-4 Relation between dissolved-solids and dissolved-sulfate concentrations.

## 7.0 SURFACE-WATER QUALITY--Continued

7.3 pH

### Streams in Top Coal-Producing County Exhibit Low pH Values

*Streams in Clarion County, the leading coal-producing county in the area, have a median pH value almost 1 unit less than that of streams in other area counties.*

Water samples collected from 11 Clarion County streams during the 1979 and 1980 water years had a median pH value of 6.2. Median pH values for streams in Area 2's other counties ranged from 6.9 to 7.5 (table 7.3-1). Clarion County is the leading coal-producing county in the area, accounting for over 70 percent of the annual production. The four streams in Area 2 which had a minimum pH (lowest pH observed) less than 3.5 were in Clarion County in the vicinity of Clarion (fig. 7.3-1).

Minimum pH values found in selected Area 2 streams ranged from 3.1 to 7.4. The mean and median minimum pH values were 6.1 and 6.4, respectively. The minimum pH values for 48 of 71 streams (68 percent) were within 1 pH unit of neutral (fig. 7.3-2). Eight streams (11 percent) had a minimum pH value of 4.5 or less (fig. 7.3-2).

Streamside pH values (section 12.2) were determined at 71 sites in Area 2 according to procedures described by Skougstad and others (1979). Determinations were generally made four times at each site during low, medium, and

high base-flow conditions during the 1979 and 1980 water years. These pH data are published by the U.S. Geological Survey (1980, 1981).

Data collected at four gaging stations during the 1976-78 water years indicate that pH values vary over time in a single stream (fig. 7.3-3). Data collected from four selected streams show a difference between the maximum and minimum observed pH values ranging from 1.7 to 3.0 pH units. Because of the logarithmic nature of the pH scale, these differences represent changes in hydrogen-ion activity ranging from a factor of 50 to a factor of 1,000. The mean pH values for all four streams were significantly different at the 95-percent level except when comparing station 38 with station 59 (fig. 7.3-3). None of the four stations showed a significant correlation (Snedecor, 1957) between pH and the log (base 10) of discharge. Discharge and pH data for the 1976-78 water years are published by the U.S. Geological Survey (1977, 1978, 1979).

Table 7.3-1 Average coal production, 1976-80, and median stream pH, 1979-80, for selected counties.

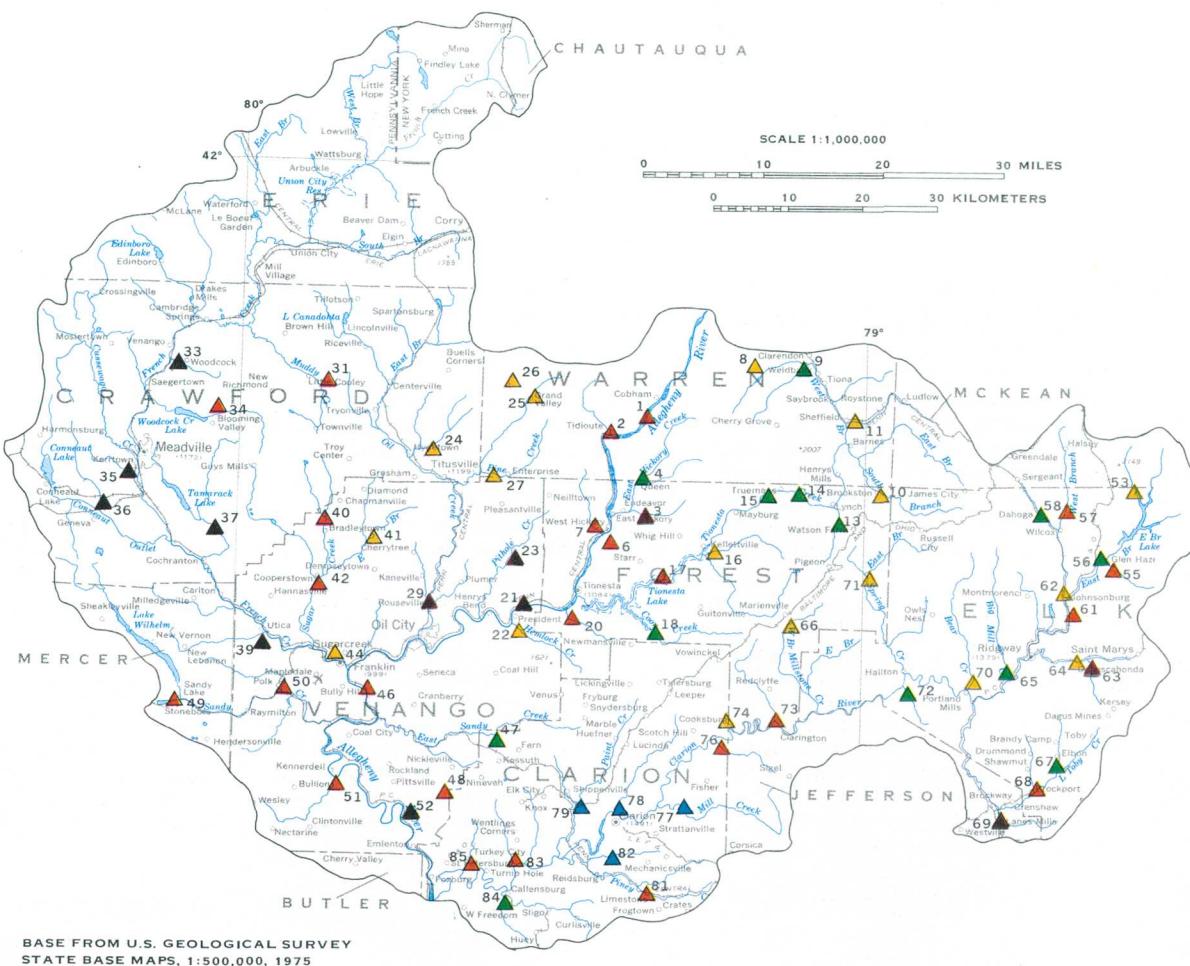



Figure 7.3-1 Minimum pH values for selected sites

| County   | Number of streams sampled | Median pH (units) | Average annual coal production (tons) |
|----------|---------------------------|-------------------|---------------------------------------|
| Clarion  | 11                        | 6.2               | 5,218,414                             |
| Venango  | 14                        | 7.2               | 913,009                               |
| Elk      | 13                        | 6.9               | 732,923                               |
| Mercer   | 1                         | *                 | 413,368                               |
| Crawford | 8                         | 7.5               | 0                                     |
| Forest   | 12                        | 6.9               | 0                                     |
| Warren   | 10                        | 7.0               | 0                                     |

\*Data insufficient for median computation.

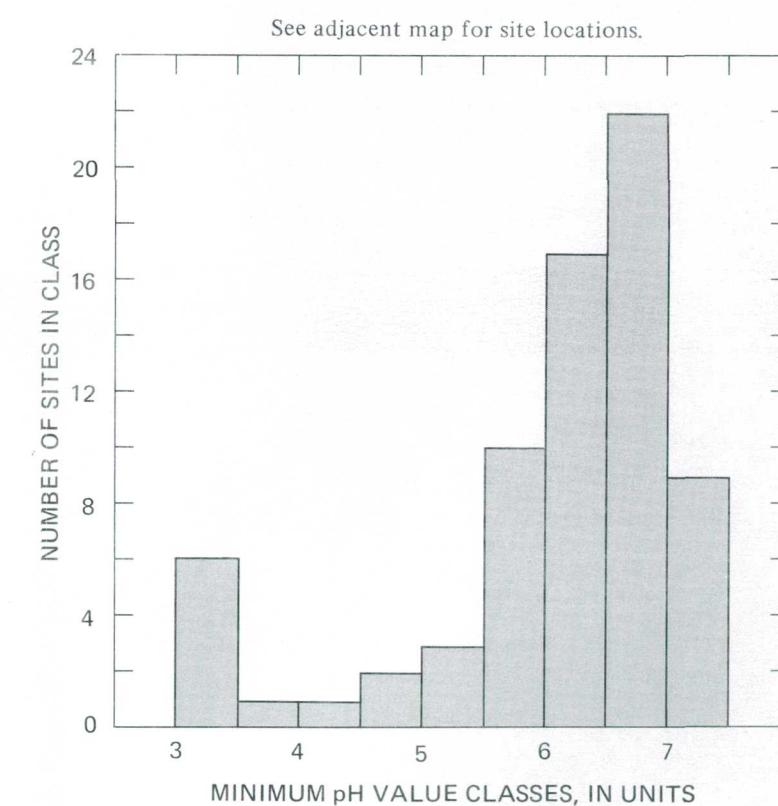



Figure 7.3-2 Minimum pH values.

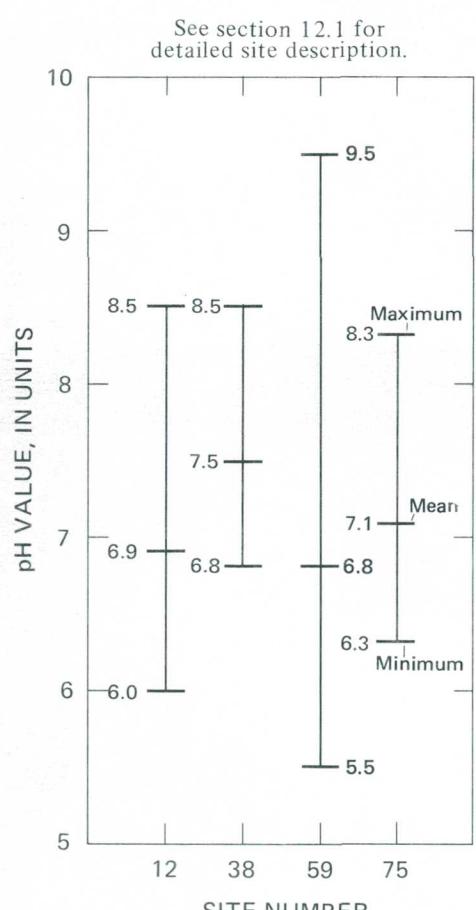
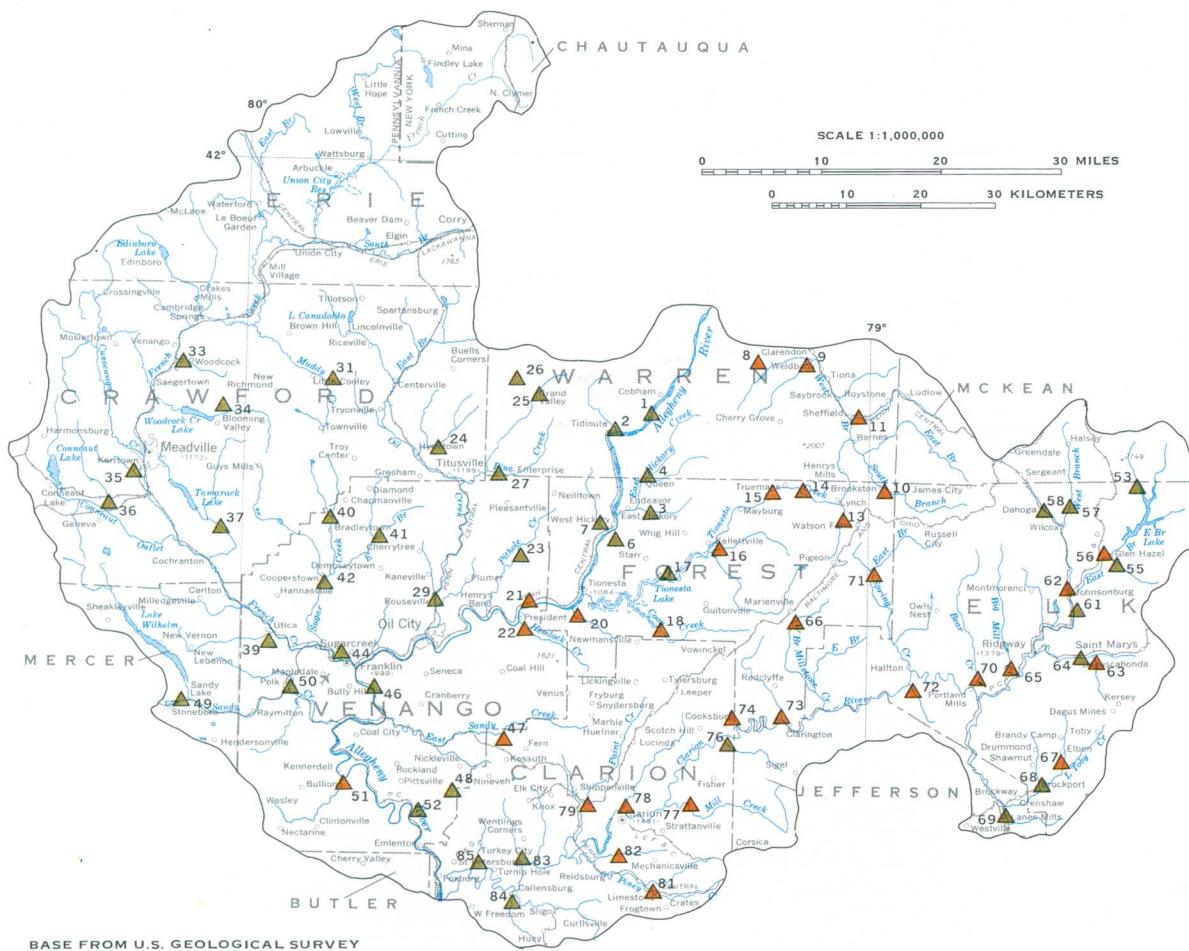



Figure 7.3-3 Variation in pH for water years 1976-78.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.4 Acidity and Alkalinity


### Acidity in Excess of Alkalinity Most Common in Streams in Eastern Part of Area

*Streams in the eastern part of Area 2 are more likely to have acidity in excess of alkalinity than are streams in the western part.*

Acidity and alkalinity are expressed as milligrams per liter of calcium carbonate. Streams in the eastern part of Area 2 are more likely to have acidity in excess of alkalinity than are streams elsewhere in the area (fig. 7.4-1). Of the 71 streams sampled in the area, 30 streams (42 percent) have acidity in excess of alkalinity. If acidity exceeded alkalinity during any visit, the stream was considered to have excess acidity.

Samples for acidity and alkalinity determinations (section 12.2) were generally collected four times under base-flow conditions during the 1979 and 1980 water years. The determinations were conducted according to procedures described by Skoustad and others (1979). All alkalinity titrations were conducted in the field, but acidity determinations were done in the laboratory prior to July 1980. After July 1980, acidity titrations were also done in the field. The acidity data in section 12.2 after July 1980 is probably more representative of in-stream conditions than earlier samples. Acidity and alkalinity data for the 1979 and 1980 water years are published by the U.S. Geological Survey (1980, 1981).

Hem (1970) defines acidity as "the quantitative capacity of aqueous media to react with hydroxyl ions," and alkalinity as "the quantitative capacity of aqueous media to react with hydrogen ions." Acidity and alkalinity are measures of a solution's buffering capacity, or ability to resist a pH change upon the addition of a base (acidity) or an acid (alkalinity). The concentration of hydrogen ions in a stream's water is measured by its pH. The acidity of a stream is dependent upon pH and the concentration of dissolved metals, mostly iron and aluminum. The alkalinity of a stream is dependent upon pH and the concentration of salts of weak acids and bases. Acidity can be measured by titrating a water sample to a pH of 8.3 with sodium hydroxide. Alkalinity can be measured by titrating a water sample to a pH of 4.5. If the pH of a stream is between 4.5 and 8.3, the stream will have both acidity and alkalinity. If the acidity is greater than the alkalinity, the stream is said to be acid; whereas, if alkalinity exceeds acidity, the stream is said to be alkaline.



## EXPLANATION

- ▲ Acidity is greater than alkalinity
- ▲ Acidity is less than or equal to alkalinity

△<sup>53</sup> Site number See section 12.1 for detailed site description and section 12.2 for water-quality analysis.

Figure 7.4-1 Acidity and alkalinity for selected sites.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.5 Total and Dissolved Iron

## Total-Iron Concentrations are High in Area's Leading Coal-Producing County

*Streams in Clarion County, the leading coal producer in Area 2, had a median total-iron concentration about 3 times greater than those of the other counties in the area.*

Clarion County produces about 72 percent of the coal mined in Area 2. The median concentration of dissolved iron in 11 Clarion County streams was 1,040  $\mu\text{g/L}$  (micrograms per liter), whereas streams in the other area counties had median total-iron concentrations ranging from 330 to 470  $\mu\text{g/L}$  (table 7.5-1).

Of 11 streams sampled in Clarion County, 5 had maximum total-iron concentrations (highest observed during sample period) of 3,000  $\mu\text{g/L}$  or greater (fig. 7.5-1). Similarly high iron concentrations were found in only 5 of the remaining 60 streams sampled in Area 2. Maximum total-iron concentrations less than 500  $\mu\text{g/L}$  were common in the north-central and northeastern parts of the area.

Maximum total-iron concentrations in Area 2 streams ranged from 180 to 28,000  $\mu\text{g/L}$ . The mean and median maximum concentrations were 1,865 and 780  $\mu\text{g/L}$ , respectively. The nearly 200-percent difference between the mean and median was the result of the effect of several high concentrations on the mean. Maximum dissolved-iron concentrations ranged from 20 to 26,000  $\mu\text{g/L}$ , and had a mean and median of 1,050 and 180  $\mu\text{g/L}$ , respectively. The maximum total-iron concentration at 24 of 71 sites sampled

(34 percent) was 600  $\mu\text{g/L}$  or less (fig. 7.5-2), whereas the maximum dissolved-iron concentration was 600  $\mu\text{g/L}$  or less at 60 of 71 stations (85 percent). Eleven of 71 stations had maximum total-iron concentrations greater than 3,000  $\mu\text{g/L}$  (fig. 7.5-2), whereas 11 stations had maximum dissolved-iron concentrations of 600  $\mu\text{g/L}$  or greater.

In spite of the distribution differences between total and dissolved iron, the two constituents are closely related as shown in figure 7.5-3, which is based on 263 concurrent samples for dissolved and total iron. These data pairs had a mean total-iron concentration of 1,030  $\mu\text{g/L}$  and a mean dissolved-iron concentration of 555  $\mu\text{g/L}$ .

Samples for dissolved- and total-iron determinations (section 12.2) were collected at 71 sites in Area 2 and analyzed according to procedures detailed by Skougstad and others (1979). Samples were generally collected four times under base-flow conditions during the 1979 and 1980 water years. Dissolved- and total-iron data for the 1979 and 1980 water years are published by the U.S. Geological Survey (1980, 1981).

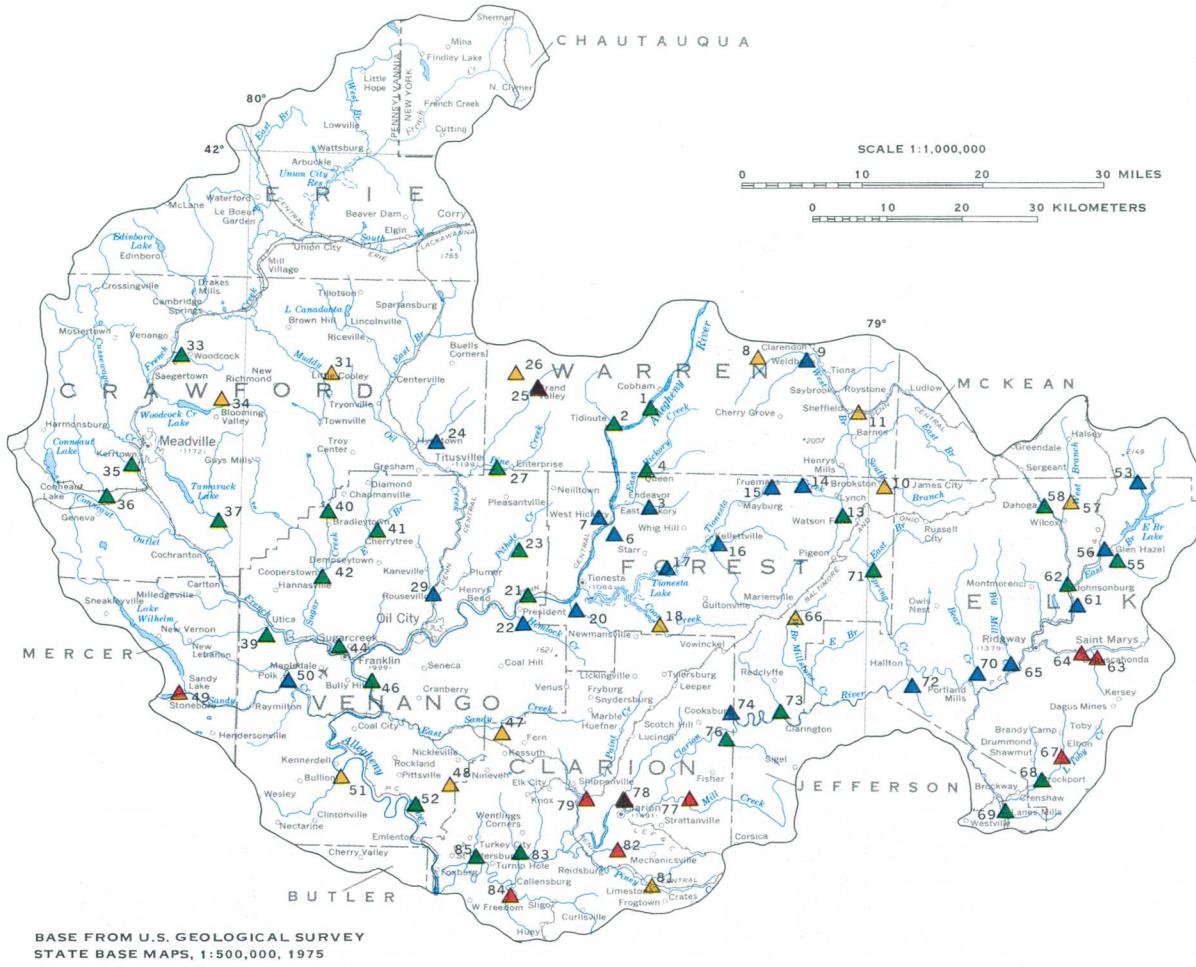



Figure 7.5-1 Maximum total-iron concentrations for selected sites.

Table 7.5-1 Average coal production, 1976-80, and median stream total-iron concentrations, 1979-80, for selected counties.

| County   | Number of streams sampled | Median total-iron concentration ( $\mu\text{g/L}$ ) | Average annual coal production (tons) |
|----------|---------------------------|-----------------------------------------------------|---------------------------------------|
| Clarion  | 11                        | 1,040                                               | 5,218,414                             |
| Venango  | 14                        | 345                                                 | 913,009                               |
| Elk      | 13                        | 330                                                 | 732,923                               |
| Mercer   | 1                         | *                                                   | 413,368                               |
| Crawford | 8                         | 470                                                 | 0                                     |
| Forest   | 12                        | 330                                                 | 0                                     |
| Warren   | 10                        | 435                                                 | 0                                     |

\*Data insufficient for median computation.

See adjacent map for site locations.

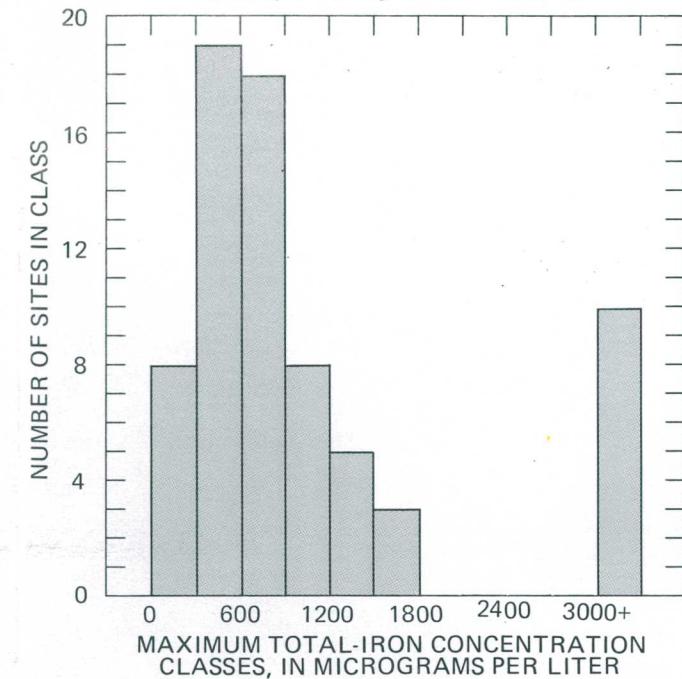



Figure 7.5-2 Maximum total-iron concentration.

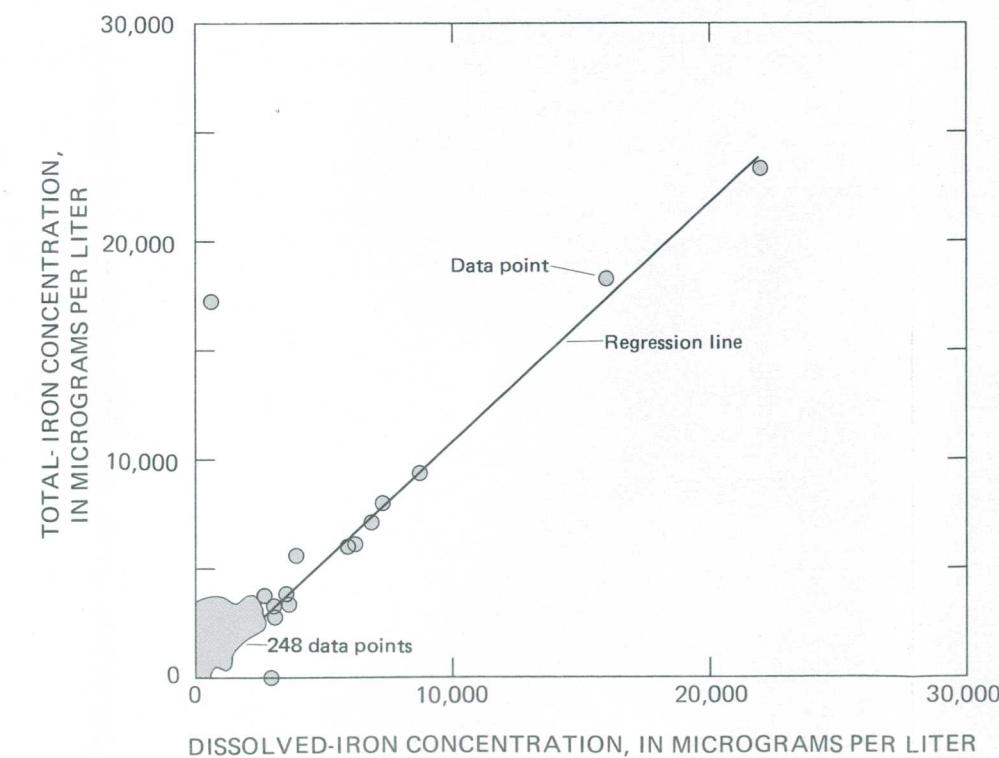



Figure 7.5-3 Relation between total- and dissolved-iron concentration.

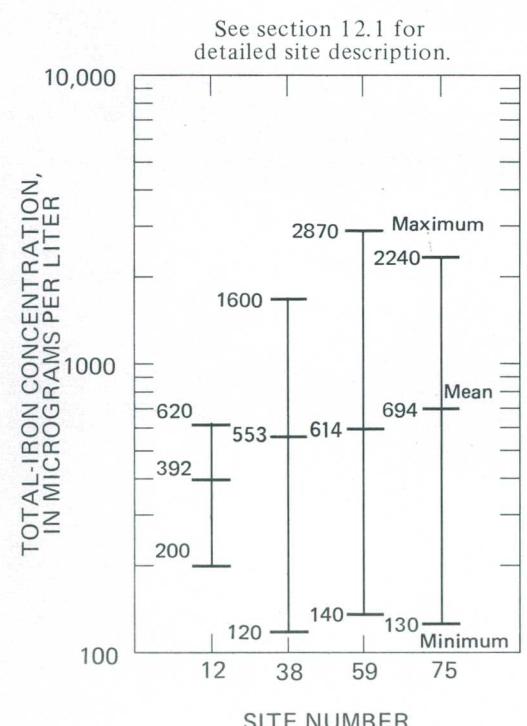



Figure 7.5-4 Variation in total-iron concentrations for water years 1976-1978.

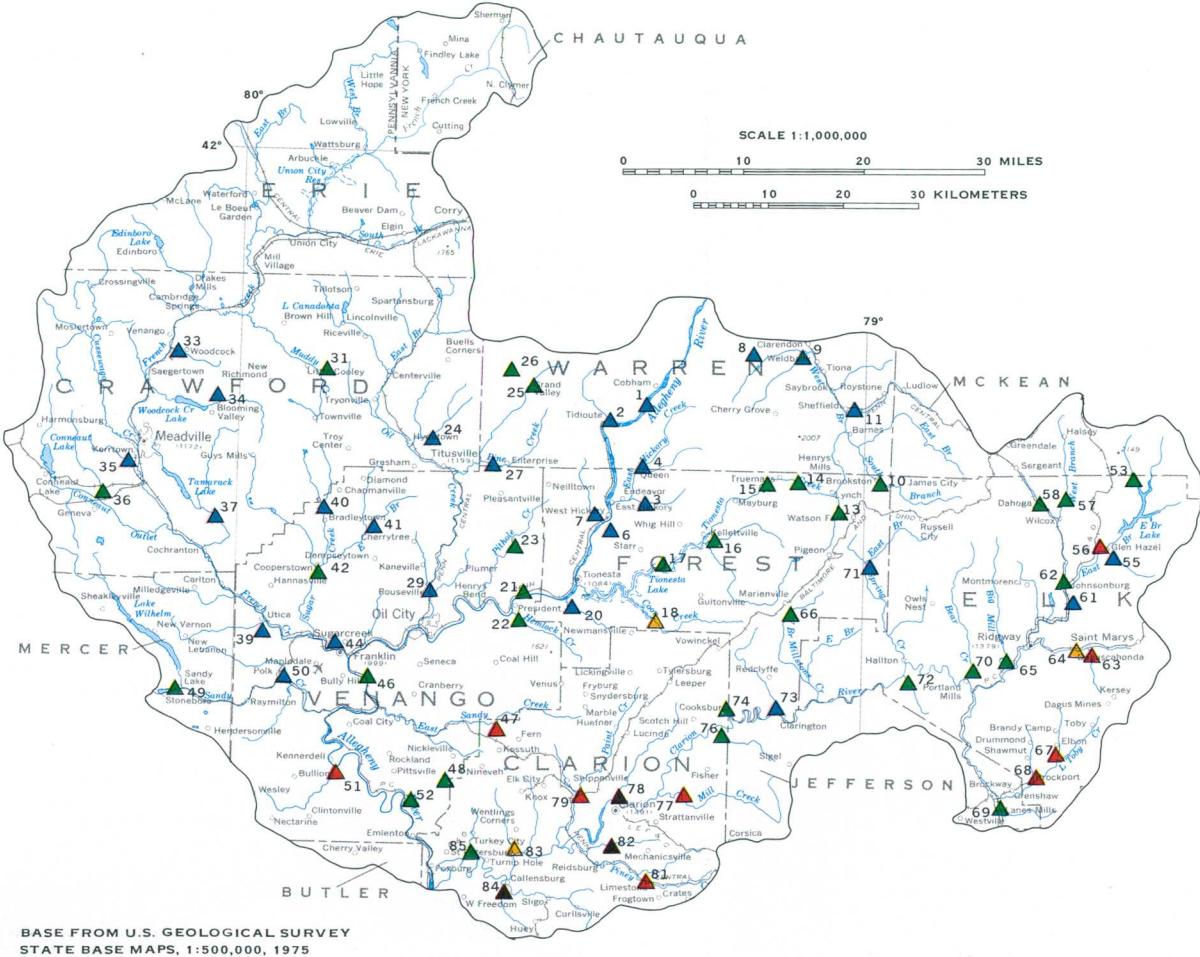
## 7.0 SURFACE-WATER QUALITY--Continued

### 7.6 Total and Dissolved Manganese

## Streams in Area's Top Coal-Producing County have High Total-Manganese Concentrations

*Streams sampled in Clarion County, Area 2's top coal producer, had median total-manganese concentrations 18 to 78 times greater than the medians for the other counties in the area.*

The median total-manganese concentration for 11 streams sampled in Clarion County, Area 2's top coal producer was 1,950  $\mu\text{g}/\text{L}$  (micrograms per liter) (table 7.6-1). The median concentration for the other counties in the area ranged from 110 to 25  $\mu\text{g}/\text{L}$ . Therefore, the median concentration for Clarion County was 18 to 78 times greater than the medians for the other counties.


Streams in most parts of Area 2 have maximum total-manganese concentrations (highest observed during sample period) less than 500  $\mu\text{g}/\text{L}$ , and many streams in the north-central and northwestern sections have concentrations less than 100  $\mu\text{g}/\text{L}$  (fig. 7.6-1). However, numerous streams in Clarion and Elk Counties have maximum total-manganese concentrations in excess of 2,000  $\mu\text{g}/\text{L}$ , and several streams in Clarion County exceed 10,000  $\mu\text{g}/\text{L}$ .

Maximum total-manganese concentrations for 71 Area 2 streams ranged from 20 to 22,000  $\mu\text{g}/\text{L}$ ; the mean and median maximum concentrations were 1,465 and 120  $\mu\text{g}/\text{L}$ , respectively. Maximum dissolved-manganese concentrations ranged from 10 to 22,000  $\mu\text{g}/\text{L}$ ; the mean and median maximum concentrations were 1,440 and 100  $\mu\text{g}/\text{L}$ , respectively. The large difference between the mean and median values is a reflection of the effect of several high

concentrations on the mean. Of the 71 streams sampled in Area 2, 32 (45 percent) had maximum total-manganese concentrations of 100  $\mu\text{g}/\text{L}$  or less, and 50 streams (70 percent) had maximum total-manganese concentrations of 200  $\mu\text{g}/\text{L}$  or less (fig. 7.6-2). The distribution of maximum dissolved-manganese concentrations was similar to that for total manganese.

Total- and dissolved-manganese concentrations are closely related as illustrated in figure 7.6-3 which indicates that most of the manganese transported by Area 2 streams is in the dissolved form. This is confirmed by the fact that for 263 concurrent sample pairs, the mean total-manganese concentration is 987  $\mu\text{g}/\text{L}$  and the mean dissolved-manganese concentration is 925  $\mu\text{g}/\text{L}$ .

Samples for dissolved- and total-manganese determinations (section 12.2) were generally collected four times under base-flow conditions during the 1979 and 1980 water years. Samples were analyzed according to procedures described by Skoustad and others (1979). Total- and dissolved-manganese data for the 1979 and 1980 water years are published by the U.S. Geological Survey (1980, 1981).



**EXPLANATION**  
**MAXIMUM TOTAL-MANGANESE CONCENTRATION CLASSES**  
 In micrograms per liter

- ▲ 0 - 100
- ▲ 100 - 500
- ▲ 500 - 2000
- ▲ 2000 - 10,000
- ▲ Greater than 10,000
- △<sup>37</sup> Site number See section 12.1 for detailed site description and section 12.2 for water-quality analysis.

Figure 7.6-1 Maximum total-manganese concentrations for selected sites.

Table 7.6-1 Average coal production, 1976-80, and median stream total-manganese concentrations, 1979-80, for selected counties.

| County   | Number of streams sampled | Median total-manganese concentrations ( $\mu\text{g/L}$ ) | Average annual coal production (tons) |
|----------|---------------------------|-----------------------------------------------------------|---------------------------------------|
| Clarion  | 11                        | 1,950                                                     | 5,213,414                             |
| Venango  | 14                        | 40                                                        | 913,009                               |
| Elk      | 13                        | 110                                                       | 732,923                               |
| Mercer   | 1                         | *                                                         | 413,368                               |
| Crawford | 8                         | 40                                                        | 0                                     |
| Forest   | 12                        | 40                                                        | 0                                     |
| Warren   | 10                        | 25                                                        | 0                                     |

\*Data insufficient for median computation.

See adjacent map for site locations.

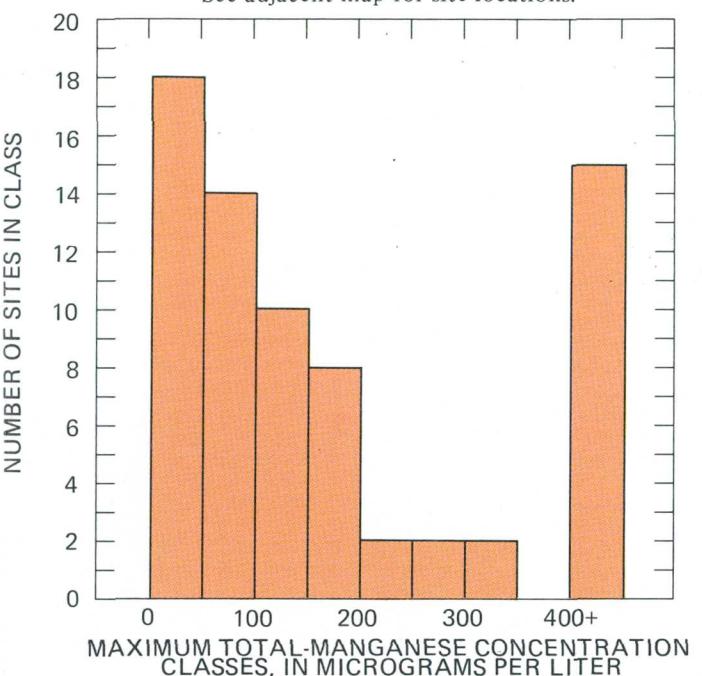



Figure 7.6-2 Maximum total-manganese concentration.

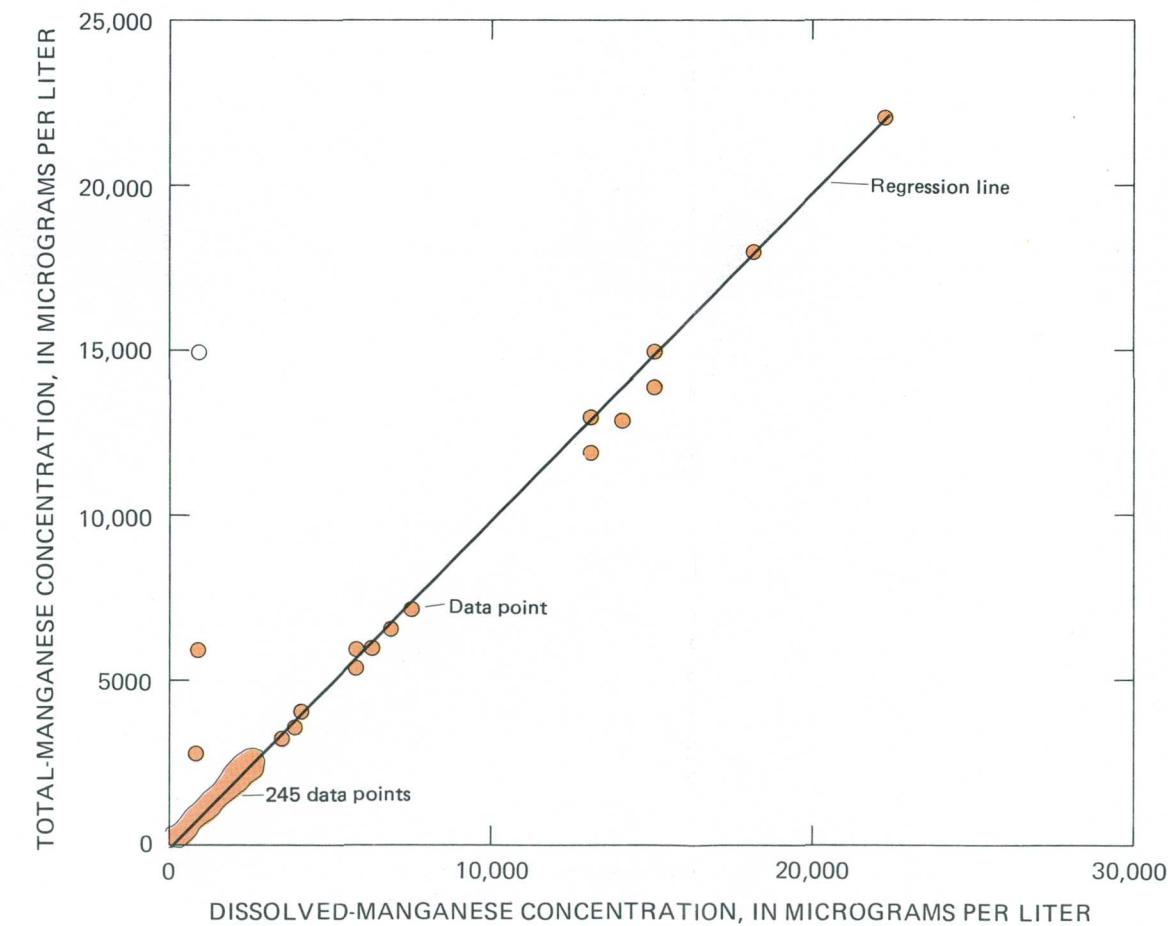


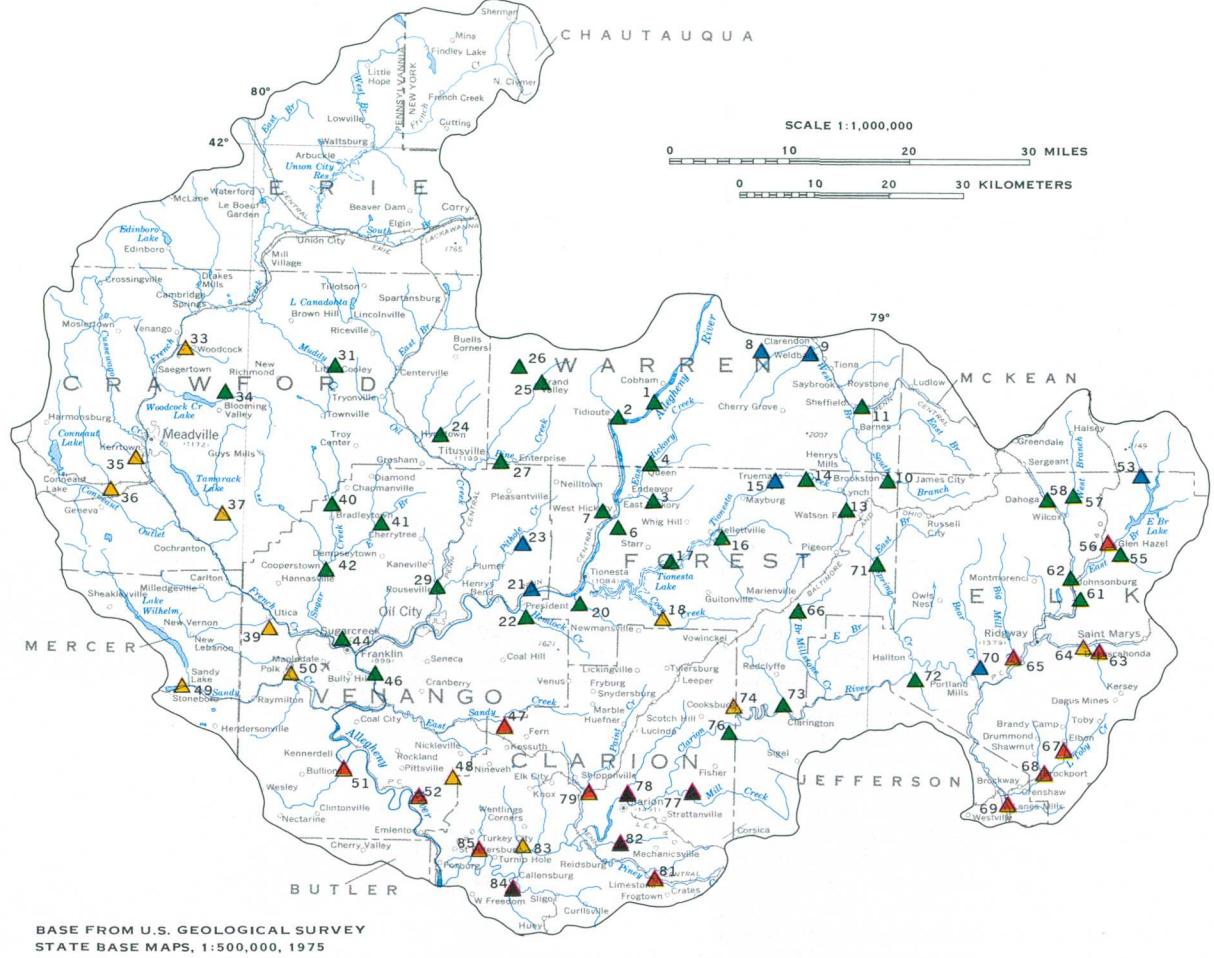

Figure 7.6-3 Relation between total- and dissolved-manganese concentration.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.7 Dissolved Sulfate

## Highest Dissolved-Sulfate Concentrations Found in Coal-Producing Counties

*The highest dissolved-sulfate concentrations in Area 2 were found in streams in the area's three top coal-producing counties.*


Of the 12 Area 2 streams that had dissolved-sulfate concentrations of 100 mg/L (milligrams per liter) or greater, 10 were in Elk and Clarion Counties and the other two were in Venango County (fig. 7.7-1). These three counties produced most of Area's 2 coal during 1976-80 (table 7.7-1). Four of the Clarion County streams had maximum sulfate concentrations (highest observed during sample period) of 300 mg/L or greater. Except for a narrow band along the southern border of Area 2, where maximum sulfate concentrations ranged from 20-99 mg/L, the remaining streams generally had maximum sulfate concentrations less than 20 mg/L.

Maximum dissolved-sulfate concentrations in Area 2 streams ranged from 8.9 to 1,100 mg/L. The mean and median maximum concentrations were 76 and 16 mg/L, respectively. The great difference between the mean and median is a reflection of the effect of several high concentrations on the mean. Fourteen streams (20 percent) had a maximum sulfate concentration of 10 mg/L or less (fig. 7.7-2) and 16 streams (23 percent) had maximum sulfate concentrations greater than 100 mg/L.

Samples for dissolved-sulfate determinations (section 12.2) were generally collected four times under base-flow conditions during the 1979 and 1980 water years. Samples were analyzed according to procedures outlined by Skougstad and others (1979). Dissolved-sulfate data for the 1979 and 1980 water years are published by the U.S. Geological Survey (1980, 1981).

Variation in dissolved-sulfate concentrations during the 1976-78 water years at four gaging stations is illustrated in figure 7.7-3. Except for station 59, the maximum observed concentration is two to three times greater than the minimum observed concentration. A comparison of the means for the four stations shows them to be significantly different (99-percent level) except for those comparisons involving station 59. There were no significant correlations (Snedecor, 1957) between sulfate concentration and the log (base 10) of discharge. Dissolved-sulfate data for the 1976-78 water years are published by the U.S. Geological Survey (1977, 1978, 1979).

Table 7.7-1 Average coal production, 1976-80, and median stream dissolved-sulfate concentrations, 1979-80, for selected counties.



**EXPLANATION**  
**MAXIMUM DISSOLVED-SULFATE CONCENTRATION CLASSES**  
 In milligrams per liter

- ▲ 0 - 10
- ▲ 10 - 20
- ▲ 20 - 100
- ▲ 100 - 300
- ▲ Greater than 300

△<sup>27</sup> Site number See section 12.1 for detailed site description and section 12.2 for water-quality analysis.

Figure 7.7-1 Maximum dissolved-sulfate concentrations for selected sites.

| County   | Number of streams sampled | Median dissolved-sulfate concentrations (mg/L) | Average annual coal production (tons) |
|----------|---------------------------|------------------------------------------------|---------------------------------------|
| Clarion  | 11                        | 115                                            | 5,213,414                             |
| Venango  | 14                        | 16                                             | 913,009                               |
| Elk      | 13                        | 11                                             | 732,923                               |
| Mercer   | 1                         | *                                              | 413,368                               |
| Crawford | 8                         | 17                                             | 0                                     |
| Forest   | 12                        | 10                                             | 0                                     |
| Warren   | 10                        | 10                                             | 0                                     |

\*Data insufficient for median computation.

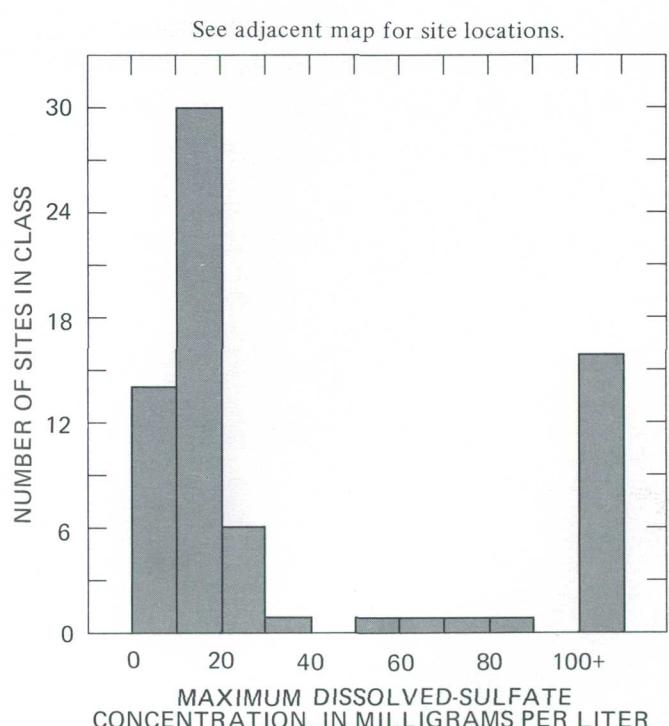



Figure 7.7-2 Maximum dissolved-sulfate concentration.

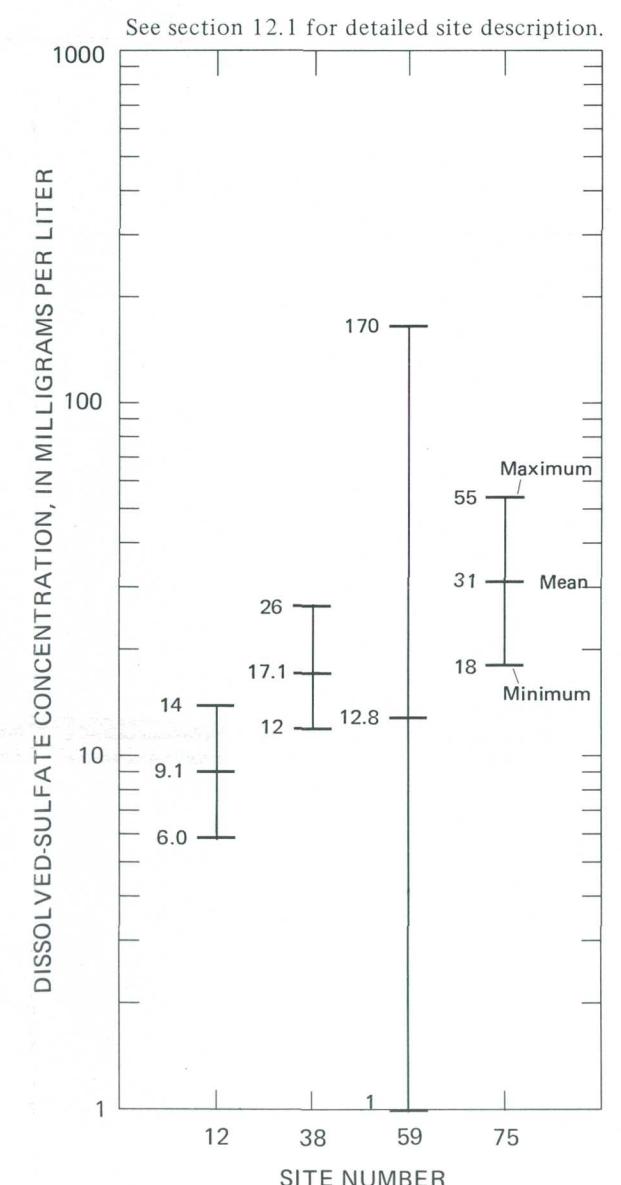



Figure 7.7-3 Variation in dissolved-sulfate concentration for water years 1976-78.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.8 Suspended Sediment

## Suspended-Sediment Discharge Related to Streamflow

*Suspended-sediment discharges in Area 2 streams are related to streamflow, but the relation shows wide variations. The variations are not related solely to mining, but probably to all land uses.*

The suspended-sediment transport data derived from samples at the synoptic sites in Eastern Coal Province Area 2 are shown in figure 7.8-1. This particular graph relates instantaneous suspended-sediment discharge in tons per day to instantaneous streamflow in cubic feet per second per square mile. The shaded portion of figure 7.8-1 encloses 98 percent of the data collected at synoptic sites in Area 2. Note that these data show that for any given instantaneous unit discharge the instantaneous suspended-sediment discharge may vary by a factor of 46. This variability is close to that shown by Wark (1965) for samples from a single large river. The sediment-transport envelope illustrated in figure 7.8-1 should indicate the range of transport values for most streams in Area 2 having drainage areas between 1.5 and 65 square miles. The variability may be a function of the different land uses within the area.

Porterfield (1972) states that an instantaneous transport curve may agree, in practice, with a daily transport curve. If this is the case, it should be possible to compute average annual loads using the flow-duration transport-curve method described by Miller (1951). Under this assumption a minimum annual suspended-sediment discharge for Area 2 streams was computed as shown in table 7.8-1. Average water discharges per square mile for selected time intervals were determined from a composite flow-duration curve for streams in Area 2 (fig. 7.8-2). The development of the composite flow-duration curve is discussed in section 9.5. Minimum suspended-sediment discharges corresponding to the selected streamflows were determined from the composite suspended-sediment transport curve for Area 2 streams (fig. 7.8-1) and multiplied by the duration intervals of water discharge to calculate the average annual sediment load. For example, the average water discharge for Area 2 streams for 8.5 to 15 percent of

the time is  $3.7 \text{ (ft}^3/\text{s)}/\text{mi}^2$ . The corresponding suspended-sediment discharge is  $0.016 \text{ (tons}/\text{mi}^2)/\text{day}$  (tons per square mile per day). Multiplying the suspended-sediment discharge by the time interval for each interval in table 7.8-1 and dividing the sum of column 6 by 100 (table 7.8-1) yields the mean daily suspended-sediment discharge in  $(\text{tons}/\text{mi}^2)/\text{day}$ . Multiplying the mean daily suspended-sediment discharge by 365 yields the minimum annual suspended-sediment discharge in tons per square mile.

Table 7.8-1 indicates that the minimum annual suspended-sediment discharge for streams in Area 2 would be about  $2.8 \text{ tons}/\text{mi}^2$ . Wark (1965) states that the average annual suspended-sediment yield in Area 2 ranges from  $20\text{--}250 \text{ tons}/\text{mi}^2$ . Wark's 1965 figures indicate that the average suspended-sediment concentration would range from  $11\text{--}140 \text{ mg/L}$  (milligrams per liter). The concentrations are computed using an average discharge of  $1.8 \text{ (ft}^3/\text{s)}/\text{mi}^2$  which is applicable for Area 2 streams. Because relatively large amounts of sediment move in short periods of storm runoff (Wark, 1965), the concentrations must be less than the average values much of the time.

Sediment-transport data for 8 streams exhibiting AMD (acid-mine drainage) indicators fell within the envelope as shown by the circles in figure 7.8-1. However, the data from AMD streams tended to indicate larger minimum suspended-sediment loads at all discharges than did the data from all synoptic sites in Area 2. This analysis, based on scant data, does not consider the effects of flows greater than 10 percent duration, nor does it include the effects of significant land disturbance near streams during surface mining. The suspended-sediment and discharge data used to develop the sediment-transport curve are published by the U.S. Geological Survey (1980, 1981).

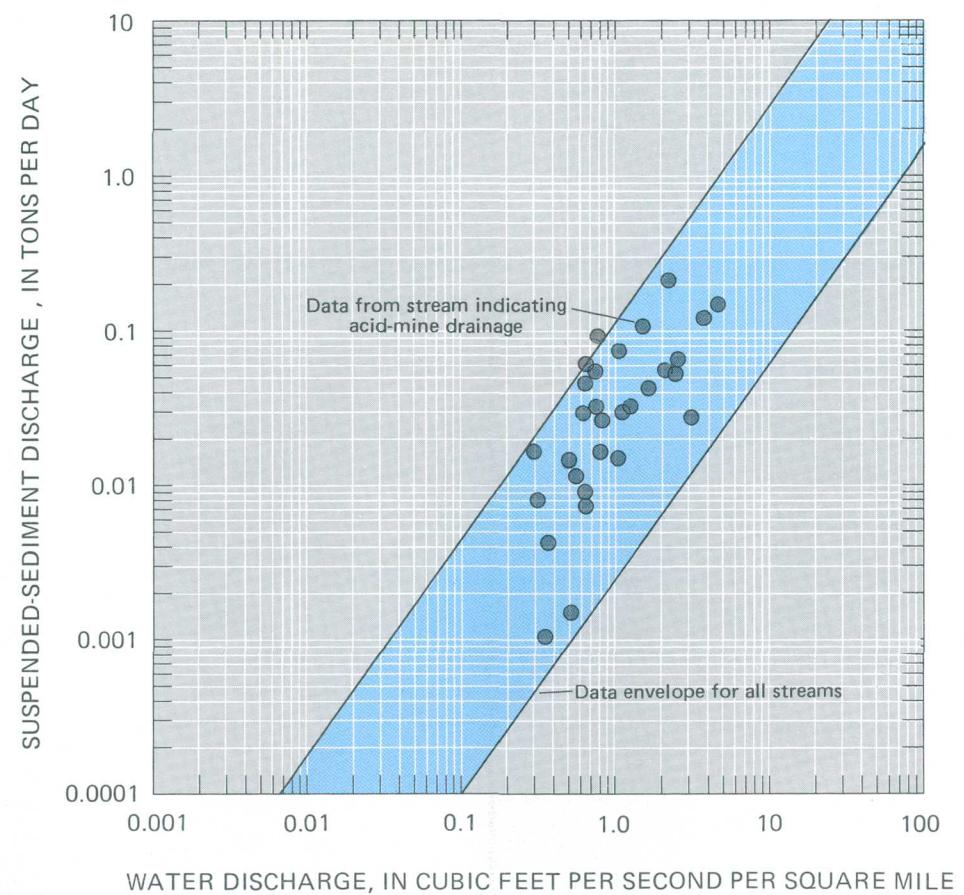



Figure 7.8-1 Suspended-sediment transport for selected sites.

Table 7.8-1 Computation of minimum annual suspended-sediment load using sediment transport and flow-duration data.

Mean minimum daily suspended-sediment load =  $0.758/100 = 0.00758 \text{ tons/mi}^2$ ;  
 Average annual suspended-sediment load =  $0.00758 \times 365 = 2.8 \text{ tons/mi}^2$ .

| Cumulative time (percent) (1) | Time interval (percent) (2) | Mid-ordinate (percent) (3) | Unit discharge [(ft. <sup>3</sup> /s)/mi. <sup>2</sup> ] (4) | Suspended-sediment load (tons/mi. <sup>2</sup> ) (5) | Load for interval* (tons/mi. <sup>2</sup> ) (6) |
|-------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| 0.25                          | 0.25                        | 0.125                      | 20**                                                         | 0.160                                                | 0.040                                           |
| .75                           | .50                         | .500                       | 15**                                                         | .120                                                 | .060                                            |
| 1.5                           | .75                         | 1.125                      | 12**                                                         | .080                                                 | .060                                            |
| 2.5                           | 1.0                         | 2.000                      | 10                                                           | .072                                                 | .072                                            |
| 4.5                           | 2.0                         | 3.500                      | 7.7                                                          | .042                                                 | .084                                            |
| 8.5                           | 4.0                         | 6.500                      | 5.5                                                          | .027                                                 | .108                                            |
| 15                            | 6.5                         | 11.750                     | 3.7                                                          | .016                                                 | .104                                            |
| 25                            | 10                          | 20.000                     | 2.5                                                          | .010                                                 | .100                                            |
| 35                            | 10                          | 30.000                     | 1.7                                                          | .0054                                                | .054                                            |
| 45                            | 10                          | 40.000                     | 1.2                                                          | .0030                                                | .030                                            |
| 55                            | 10                          | 50.000                     | .88                                                          | .0022                                                | .022                                            |
| 75                            | 20                          | 65.000                     | .50                                                          | .0010                                                | .020                                            |
| 95                            | 20                          | 85.000                     | .22                                                          | .0002                                                | .004                                            |
| 100                           | 5                           | 97.000                     | .11                                                          | .0001                                                | ---                                             |
| <b>Total</b>                  |                             |                            |                                                              |                                                      |                                                 |
|                               |                             |                            |                                                              |                                                      | 0.758                                           |

\*Column 6 = column 2 x column 5

\*\*Estimated

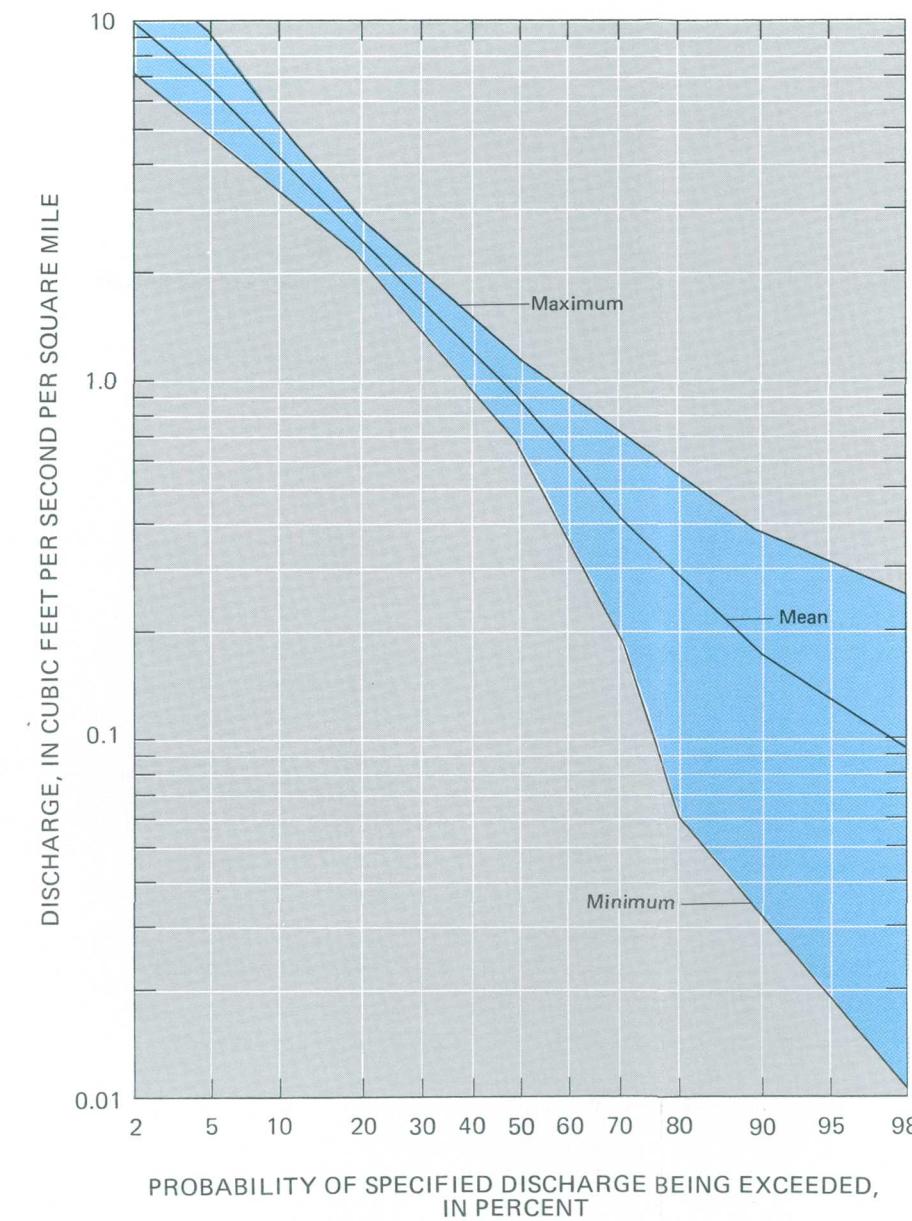



Figure 7.8-2 Composite unit flow-duration curves for selected sites.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.9 Bed Material 7.9.1 Iron

## Clarion County Streams have High Bed-Material Iron Concentrations

*Streams in Clarion County, which produces about 70 percent of Area 2's coal, had a median bed-material iron concentration 1.7 to 4.2 times greater than those for streams in the other area counties.*

Eleven streams sampled in Clarion County had a median bed-material iron concentration of 57,000  $\mu\text{g/g}$  (micrograms per gram), whereas streams in the other counties in the area had median concentrations ranging from 34,000  $\mu\text{g/g}$  to 13,500  $\mu\text{g/g}$ . The Clarion County median concentration was 1.7 to 4.2 times greater than those of the other counties. Clarion County produces about 72 percent of the coal mined in Area 2.

Of the 65 streams sampled in Area 2, 5 had bed-material iron concentrations of 75,000  $\mu\text{g/g}$  or greater. Four of these streams were in Clarion County (fig. 7.9.1-1) in the vicinity of Clarion. The fifth stream with a bed-material iron concentration of 75,000  $\mu\text{g/g}$  or greater is located in southwestern Warren County near Enterprise. Bed-material iron concentrations in the range of 35,000-75,000  $\mu\text{g/g}$  were found in scattered locations across the area. Bed-material iron concentrations less than 10,000  $\mu\text{g/g}$  were found in all sections of Area 2 except the central and north-central parts.


Bed-material iron concentrations for 65 selected streams in Area 2 ranged from 810 to 100,000  $\mu\text{g/g}$ . The mean and median concentrations were 27,600 and 21,000

$\mu\text{g/g}$ , respectively. Ten streams (15 percent) had bed-material iron concentrations of 10,000  $\mu\text{g/g}$  or less, and 49 streams (75 percent) had concentrations of 30,000  $\mu\text{g/g}$  or less (fig. 7.9.1-2).

Samples for bed-material iron determinations (section 12.2) were collected during low base flow in the 1979 water year. Analyses were performed according to procedures outlined by Skougstad and others (1979). Bed-material iron data are published by the U.S. Geological Survey (1980).

As materials pass through the stream channel network, they are incorporated into the bed material. Unless extremely high flows scour the bed material and transport it downstream, the deposits may serve as indicators of past water-quality conditions. Feltz (1980) states that concentrations of heavy metals found in bottom materials confirmed potential contamination in the Schuylkill River even though concentrations in the water itself indicated no apparent problem. The concentrations of heavy metals in the bottom materials were several orders of magnitude higher than the concentrations in the water. It is possible that bed-material iron may be useful as a similar indicator.

Table 7.9.1-1 Average coal production, 1976-80, and median stream bed-material iron concentrations, 1979, for selected counties.



**EXPLANATION**  
**BED-MATERIAL IRON CONCENTRATION CLASSES**  
In micrograms per gram

▲ 0 - 10,000

▲ 10,000 - 20,000

▲ 20,000 - 35,000

▲ 35,000 - 75,000

▲ Greater than 75,000

△<sup>23</sup> Site number See section 12.1  
for detailed site description  
and section 12.2 for water-  
quality analysis.

Figure 7.9.1-1 Iron concentrations in bed-material for selected sites.

| County   | Number of streams sampled | Median bed-material iron concentration ( $\mu\text{g/g}$ ) | Average annual coal production (tons) |
|----------|---------------------------|------------------------------------------------------------|---------------------------------------|
| Clarion  | 11                        | 57,000                                                     | 5,218,414                             |
| Venango  | 14                        | 20,500                                                     | 913,009                               |
| Elk      | 11                        | 21,000                                                     | 732,923                               |
| Mercer   | 1                         | *                                                          | 413,368                               |
| Crawford | 8                         | 13,500                                                     | 0                                     |
| Forest   | 11                        | 14,500                                                     | 0                                     |
| Warren   | 7                         | 34,000                                                     | 0                                     |

\*Data insufficient for median computation.

See adjacent map for site locations.

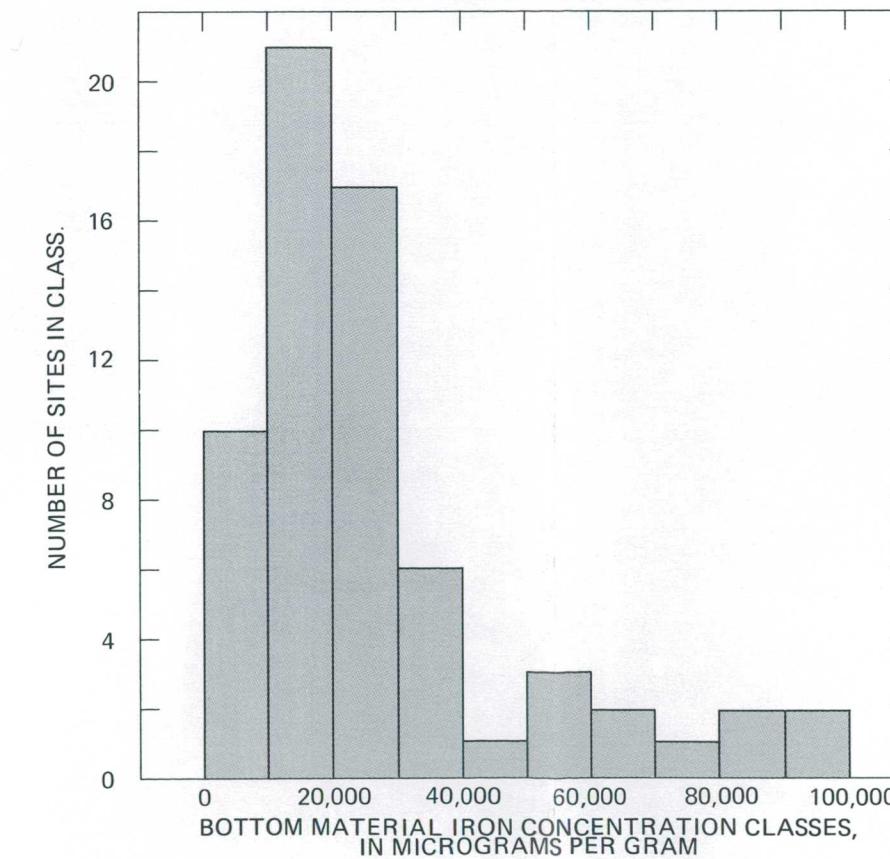



Figure 7.9.1-2 Iron concentration in bottom material.

**7.0 SURFACE-WATER QUALITY--Continued**

7.9 Bed Material  
7.9.1 Iron

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.9 Bed Material--Continued

#### 7.9.2 Manganese

### High Bed-Material Manganese Concentrations Most Common in Coal-Producing Counties

*The highest bed-material manganese concentrations in Area 2 streams were found in the three top coal-producing counties.*

Of the 65 selected streams sampled in Area 2, 10 had bed-material manganese concentrations of 1,000  $\mu\text{g/g}$  (micrograms per gram) or greater. All of these streams were in Venango, Clarion, and Elk counties, the leading coal producers in the area (fig. 7.9.2-1). Four of the 10 streams had a bed-material manganese concentration equal to or greater than 1,500  $\mu\text{g/g}$ . Bed-material manganese concentrations in the rest of Area 2 generally ranged between 100 and 1,000  $\mu\text{g/g}$ , but several streams in Clarion and Forest counties had concentrations less than 100  $\mu\text{g/g}$  (fig. 7.9.2-1).

Bed-material manganese concentrations at 65 selected sites in Area 2 ranged from 10 to 2,000  $\mu\text{g/g}$ . The mean and median concentrations were 600 and 490  $\mu\text{g/g}$ , respectively. Eleven streams (17 percent) had concentrations of 200  $\mu\text{g/g}$  or less, 27 streams (42 percent) had concentrations of 400  $\mu\text{g/g}$  or less, and only 5 streams (8 percent) had concentrations greater than 1,200  $\mu\text{g/g}$  (fig. 7.9.2-2).

Samples for bed-material manganese determinations (section 12.2) were collected during low base flow in the 1979 water year. Samples were analyzed by procedures described by Skougstad and others (1979). Bed-material manganese data for the 1979 water year are published by the U.S. Geological Survey (1980).

As materials pass through the stream channel network, they are incorporated into the bed material. Unless extremely high flows scour the bed material and transport it downstream, the deposits may serve as indicators of past water-quality conditions. Feltz (1980) states that concentrations of heavy metals found in bottom materials confirmed potential contamination in the Schuylkill River even though concentrations in the water itself indicated no apparent problem. The concentrations of heavy metals in the bottom materials were several orders of magnitude higher than the concentrations in the water. It is possible that manganese may act in a similar fashion.

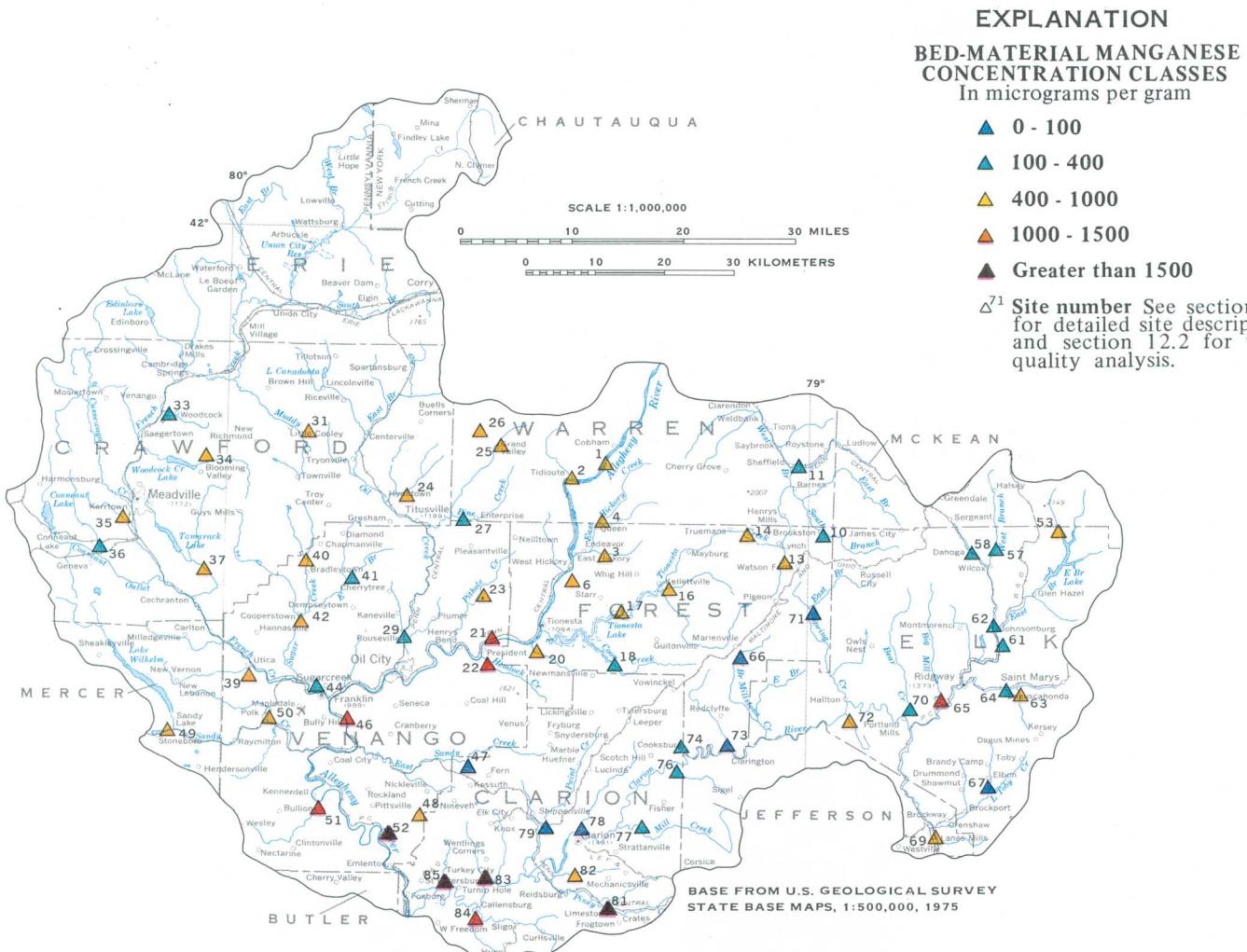



Figure 7.9.2-1 Manganese concentrations in bed material for selected sites.

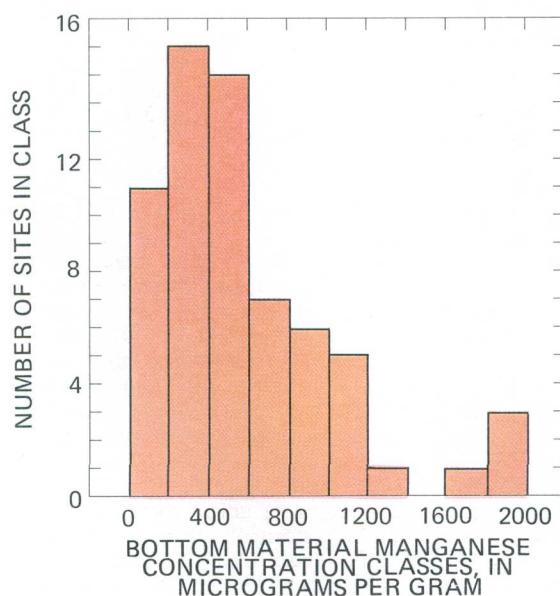



Figure 7.9.2-2 Manganese concentration in bottom material.

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.9 Bed Material--Continued

#### 7.9.2 Manganese

## 7.0 SURFACE-WATER QUALITY--Continued

### 7.10 Benthic Invertebrates

## Composition of Benthic Invertebrates and Chemical Constituents Indicate Good Water Quality

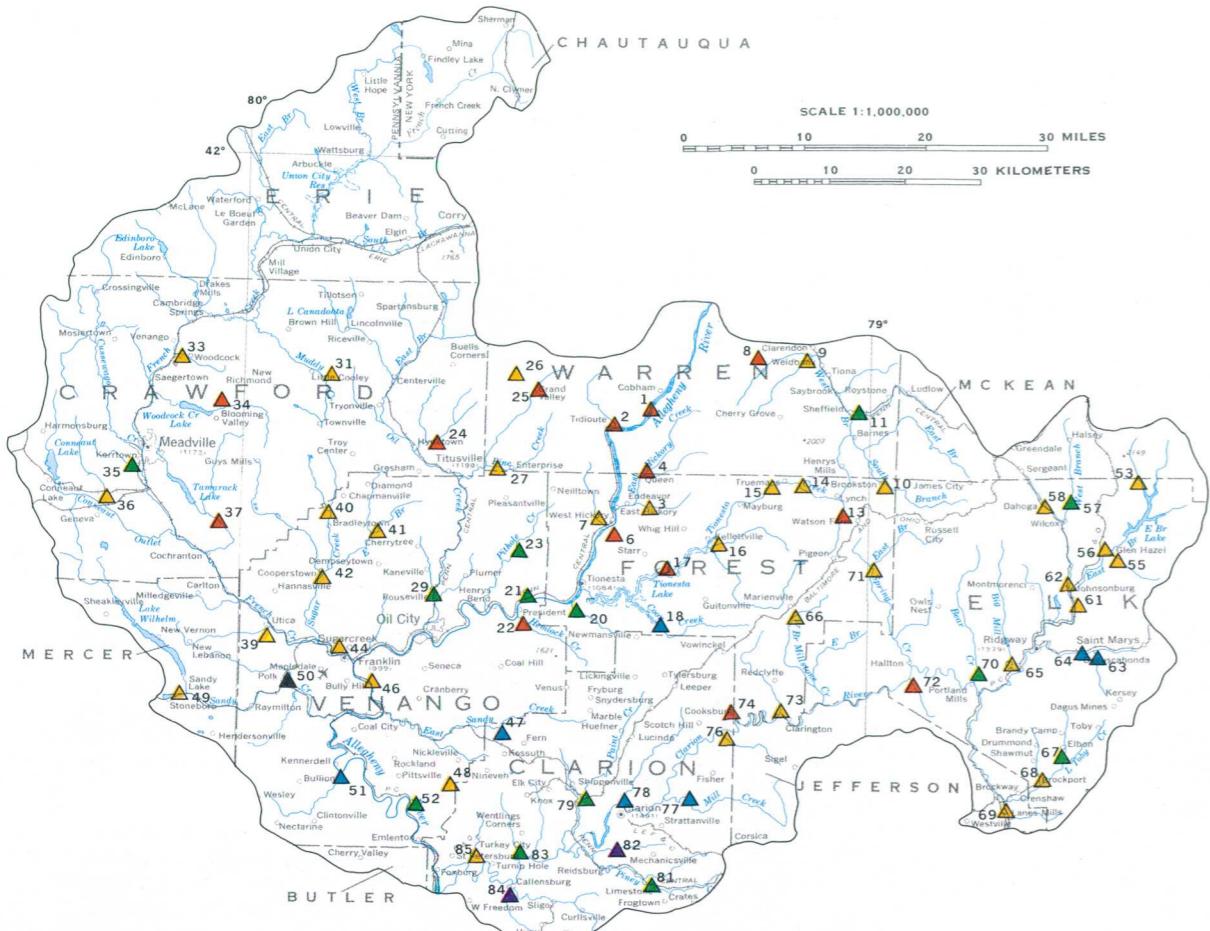
*Benthic invertebrate composition and chemical constituents for Area 2 generally indicated good water quality for 1979 and 1980, though the chemical constituents and numbers of benthic invertebrates found in portions of the Clarion basins indicated poor water quality.*

Benthic invertebrates are used as indicators of water quality because of their relatively long life, restricted mobility, and sensitivity to water contaminants (Britton and Averett, 1974), such as acid mine drainage (AMD). Although variations in tolerance to AMD may not be evident unless benthic invertebrates are identified to the species level, some broad generalizations concerning composition and numbers can be made on the basis of identification to the order level. Good biological water quality in a stream can be characterized by a large variety of benthic invertebrate orders with no dominant population; whereas poor water quality can be characterized by a small variety of benthic invertebrate orders with one or two dominant populations or by very small populations. No benthic invertebrate population would generally indicate very poor water quality.

Benthic invertebrate composition is important in determining water quality. Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are found in healthy streams, whereas unhealthy streams may be dominated by Diptera (flies, midges) and snails. Along with numbers and composition of benthic invertebrates, chemical constituents found in a stream are important in determining the over-all water quality. Sections 12.2, 12.3, and 12.4 show the benthic-invertebrate and chemical water-quality data collected at synoptic sites in Area 2.

Benthic invertebrate samples were collected in August 1979 and August 1980 by spending 15 minutes sampling all habitats in a stream reach. The basic technique comprised of disturbing bed material and then allowing the debris and organisms to float via streamflow into a mesh net. Contents of the net were then placed in a No. 70 sieve, rinsed with stream water and placed in a white polymer tray where specimens were separated and put in an appropriately labeled jar containing 70 percent alcohol. In 1979 benthic invertebrates were identified in a laboratory, but in 1980 they were identified in the field.

Four phyla were found in Area 2: Arthropoda, Mollusca, Annelida, and Nematoda. Five orders dominated the area, though they varied in rank from basin to basin and year to year. In August 1979 Diptera (midges, flies) was found at 71 sites, Trichoptera (caddisfly) at 56 sites, Ephemeroptera (mayflies) at 53 sites and Plecoptera (stoneflies) at 42 sites. In August 1980 Ephemeroptera was found at 55 sites, Plecoptera at 52 sites, Trichoptera at 53 sites and Coleoptera (beetles) at 44 sites.


Two streams in the Clarion River basin lacked benthic invertebrates, while four others in the Clarion and Allegheny basins lacked aquatic biological communities. The Office of Surface Mining (1979) defines a stream with a biological community as having at least two species of benthic invertebrates in either of the phyla Arthropoda or Mollusca. Six streams out of 69 sampled in Area 2 lacked such biological communities. They were 51, 63, 77, 78, 82, and 84 (figures 7.10-1 and 7.10-2). Most of these sites had dissolved sulfate, total iron, total manganese, pH, and acidity values indicating AMD. According to the U.S. Department of the Interior (1968), dissolved sulfate values greater than 75 mg/L, total iron greater than .5 mg/L, pH values less than 6.0, and acidity values greater than alkalinity values are indicative of AMD.

Stations in Area 2 lacking a benthic invertebrate population or having two or fewer orders of benthic invertebrates had a mean dissolved-sulfate concentration of 338 mg/L (range 130 mg/L to 820 mg/L), whereas sites having seven or more benthic invertebrate orders had a mean dissolved sulfate concentration of 15 mg/L (range 7.5 mg/L to 110 mg/L). The mean total iron value of 4.04 mg/L for the former group of stations (range .04 mg/L to 22 mg/L) is 23 times greater than the mean total iron value of .169 mg/L for the latter group of stations (range 0.01 mg/L to 1.2 mg/L). Sites lacking benthic invertebrates or having two or fewer orders of benthic invertebrates had a mean pH of 4.5, (range 3.1 to 6.7), whereas sites with 7 or more benthic invertebrate orders had a mean pH of 7.2 (range 5.8 to 8.9).

The Shannon-Weaver diversity index was determined for the benthic invertebrate samples of August 1979. This diversity index (DI) is a measure of the numbers and kinds (Wilhm and Dorris, 1968) of benthic invertebrates sampled in a stream without regard to sample size (Doyle Stevens, written communication, 1979). A high DI is generally an indicator of good water quality and a low DI is generally an indicator of poor water quality. Fifty percent of the sites in Area 2 had order-level DI's greater than or equal to 2.0, indicating good water quality. Low flow can concentrate contaminants in streams causing benthic invertebrates or their food sources to die. High flow generally dilutes contaminants unless there is runoff from a mining area during a storm and then contaminants may be concentrated in the stream. Area 2 generally had intermediate base flow in August 1979 and 1980 when benthic invertebrates were collected.

In general the biological and chemical data for Area 2 streams are good except for the southern section of the Clarion River basin which had fewer than normal benthic

invertebrates, and water quality constituents indicating AMD.




#### EXPLANATION

##### TAXONOMIC ORDERS

- ▲ 9 or 10
- ▲ 7 or 8
- ▲ 5 or 6
- ▲ 3 or 4
- ▲ 1 or 2
- ▲ 0

△<sup>77</sup> Site number See section 12.1 for detailed site description and section 12.3 for benthic invertebrate data.

Figure 7.10-1 Number of benthic invertebrate orders, August 1979.



#### EXPLANATION

##### TAXONOMIC ORDERS

- ▲ 9 or 10
- ▲ 7 or 8
- ▲ 5 or 6
- ▲ 3 or 4
- ▲ 1 or 2
- ▲ 0

△ Not sampled

26 Site number See section 12.1 for detailed site description and section 12.3 for benthic invertebrate data.

Figure 7.10-2 Number of benthic invertebrate orders, August 1980.

## 8.0 ACID-MINE DRAINAGE

### Strong Indications of Acid Mine Drainage are Found in Eight Streams

*Synoptic samples at eight streams in Area 2 exceeded the levels of pH, acidity-alkalinity, total iron, total manganese, and sulfate which are indicators of acid-mine drainage. Most of the streams were found in the Clarion River basin.*

Several water-quality measures have been proposed as indicators of acid mine drainage (AMD). Five common indicators are (U.S. Department of the Interior, 1968):

- pH < 6.0
- acidity > alkalinity
- total iron > 0.5 mg/L (milligrams per liter)
- total manganese > 0.5 mg/L
- dissolved sulfate > 75 mg/L

Eight of the 71 sites in Eastern Coal Province Area 2 that were sampled during June 1979 to August 1980 exceeded all five indicator levels. All indicator levels may not have been exceeded during a single sampling, but each AMD indicator level was exceeded at some time when all samples were considered. The presence of AMD indicators is no guarantee of AMD, though the Office of Surface Mining Reclamation and Enforcement (1979) defines AMD as "Water with a pH less than 6.0 and in which total acidity exceeds total alkalinity, discharges from an active, inactive, or abandoned surface coal mine and reclamation operation or from an area affected by surface coal mining and reclamation activities."

Figure 8.0-1 shows the location of the eight synoptic sites meeting all five AMD indicator levels. Seven of the streams are in the Clarion River basin, one is in the Allegheny basin. The figure also shows the 63 remaining sites in the area that have been ranked by the number of AMD indicators found during the sampling period. All streams that had acid-mine drainage (AMD) indicators did not exhibit the usual connections among the AMD constituents. If a stream had a low pH, it did not necessarily follow that total iron or total manganese were found in high concentrations.

Equation 8.0-1 was developed from the relation between dissolved solids and specific conductance based upon concurrent samples at the eight sites that exhibited all 5 AMD indicators.

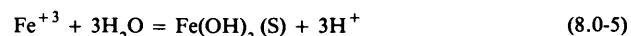
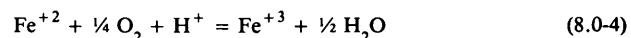
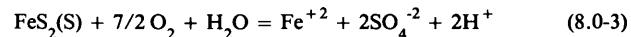
The regression equation for the relation is:

$$ROE = .95(SC) - 125 \quad (8.0-1)$$

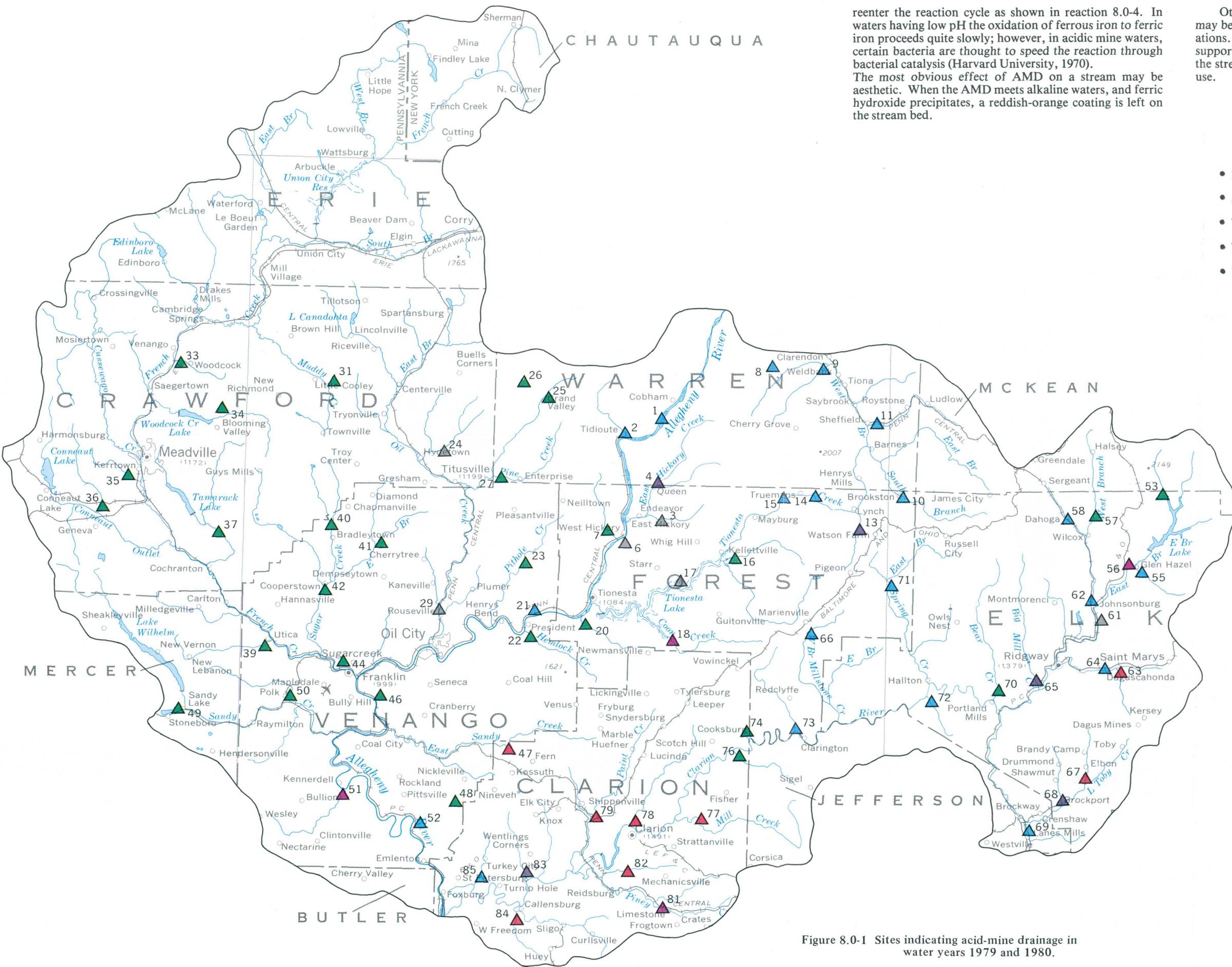
where ROE = dissolved solids, in milligrams per liter and SC = specific conductance, in micromhos per centimeter at 25°C.

The multiple correlation coefficient ( $R^2$ ) and standard error of estimate (SE) for equation 8.0-1 are 96 percent and 78 mg/L dissolved solids, respectively. The range for dissolved solids was 64-1,800 mg/L with a mean of 461 mg/L.

Hem (1970) states that a specific conductance coefficient greater than about 0.75 is an indication of high sulfate concentrations. This is supported by equation 8.0-2 which shows the relation between dissolved solids and dissolved sulfate based on concurrent samples at the eight sites indicating AMD.




$$ROE = 1.6(SO_4) + 20 \quad (8.0-2)$$

where ROE = dissolved solids, in milligrams per liter, and  $SO_4$  = dissolved-sulfate concentration, in milligrams per liter.


Equation 8.0-2 has an  $R^2$  of 99 percent and an SE of 42 mg/L of dissolved solids. The range of  $SO_4$  values was 30-1,100 mg/L with a mean of 303 mg/L. The relations shown in this section are based upon relatively scant data, and may not be representative.

Sulfate is found in most coal areas because of sulfur-bearing minerals, such as pyrite. Weather and mining expose the pyrite to water and oxygen causing it to oxidize into a weak sulfuric acid. When the sulfuric acid contacts rock strata, most metals, including iron, manganese, aluminum, sodium, calcium, magnesium, and probably some trace metals are dissolved.

Harvard University (1970) presents the following overall reactions for the mine-water system:



In the initial step (8.0-3) pyrite is exposed to water and atmospheric oxygen, producing ferrous iron and sulfate and releasing hydrogen ions into the water. Reaction 8.0-4 illustrates the oxidation of ferrous iron to ferric iron which hydrolyzes to form the insoluble ferric hydroxide (8.0-5), a step which releases more hydrogen ions into the water. Reaction 8.0-6 shows that pyrite itself can reduce ferric iron to ferrous iron accompanied by an additional release of hydrogen ions. The ferrous iron formed in the step can



reenter the reaction cycle as shown in reaction 8.0-4. In waters having low pH the oxidation of ferrous iron to ferric iron proceeds quite slowly; however, in acidic mine waters, certain bacteria are thought to speed the reaction through bacterial catalysis (Harvard University, 1970).

The most obvious effect of AMD on a stream may be aesthetic. When the AMD meets alkaline waters, and ferric hydroxide precipitates, a reddish-orange coating is left on the stream bed.

Other effects of AMD may not be as noticeable, but may be of greater consequence than the aesthetic considerations. These effects may alter the ability of a stream to support aquatic life, or may adversely affect the quality of the stream's water for industrial, agricultural, or domestic use.

#### ACID-MINE DRAINAGE INDICATOR LEVELS

- pH is less than 6.0
- Acidity is greater than alkalinity
- Total iron is greater than 0.5 milligrams per liter
- Total manganese is greater than 0.5 milligrams per liter
- Dissolved sulfate is greater than 75 milligrams per liter

Figure 8.0-1 Sites indicating acid-mine drainage in water years 1979 and 1980.

## 9.0 SURFACE-WATER QUANTITY

### 9.1 Daily Discharge

## Daily Discharge Data are Valuable for the Design of Hydraulic Structures and Determining Water-Supply Availability

*Daily discharge is the average flow rate of water in a stream during each day. It is used in the computation of many hydrologic indices, which are needed to design hydraulic structures or to determine water-supply availability.*

The basic reporting unit of streamflow is mean daily discharge in cubic feet per second. Mean daily discharge is determined by measuring stream stage (fig. 9.1-1) at intervals ranging from 5 minutes to 1 hour, and applying a stage-discharge relation.

Mean daily discharge, although a convenient unit of flow measurement, does not show the variation of flow throughout the day. Figure 9.1-2 is a discharge hydrograph for station 34, computed from the stage hydrograph shown in figure 9.1-1, and the appropriate stage-discharge relation. The mean discharge for November 30, 1977, was 139 ft<sup>3</sup>/s (cubic feet per second), but the actual recorded instantaneous discharges ranged from a low of 56 ft<sup>3</sup>/s to a high of 430 ft<sup>3</sup>/s. The mean stage for November 30, 1977, was 6.51 feet, the recorded stage ranged from 6.15 to 7.44 feet.

Mean daily discharges during a period can be presented in tabular form, such as table 9.1-1 for station 34 for October 1978. The daily discharges can be presented graphically, as shown in figure 9.1-3 for station 34 for the 1979 water year.

Daily discharge data have greater utility than simply reporting average discharges for individual days. Daily discharge data are used in the computation of hydrologic indices such as mean flows, low flows, and flow-duration curves or tables. These indices are useful in the safe and economical design of a wide variety of hydraulic structures such as dams and bridges. These indices are also used in determining the availability of water under different flow conditions and at different times of the year.

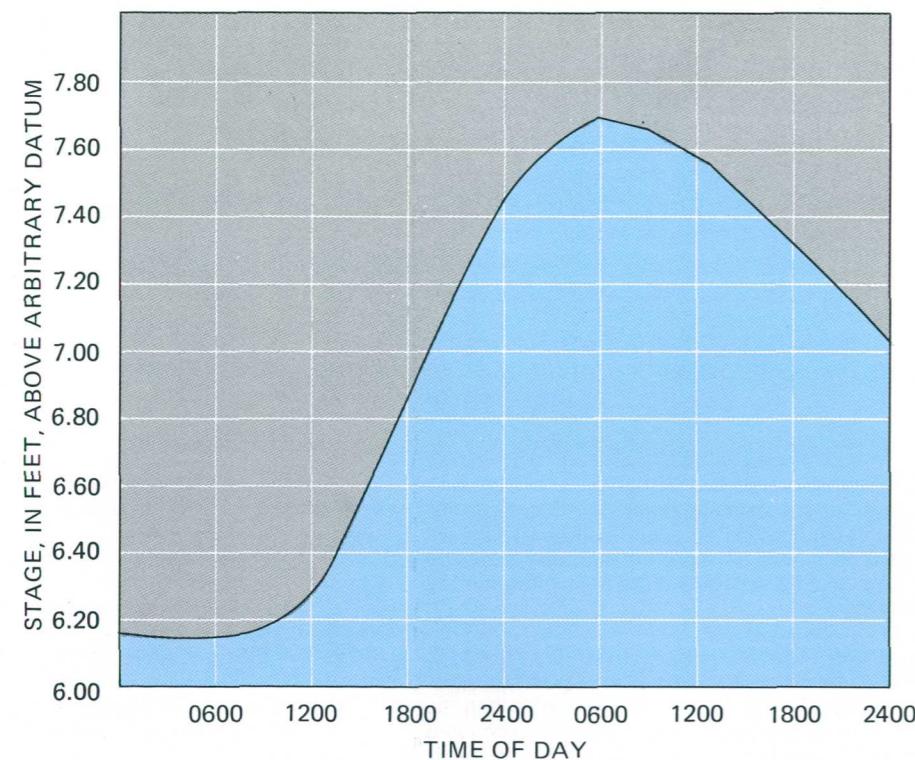



Figure 9.1-1 Stage hydrograph for station 34, November 30, 1977 and December 1, 1977.

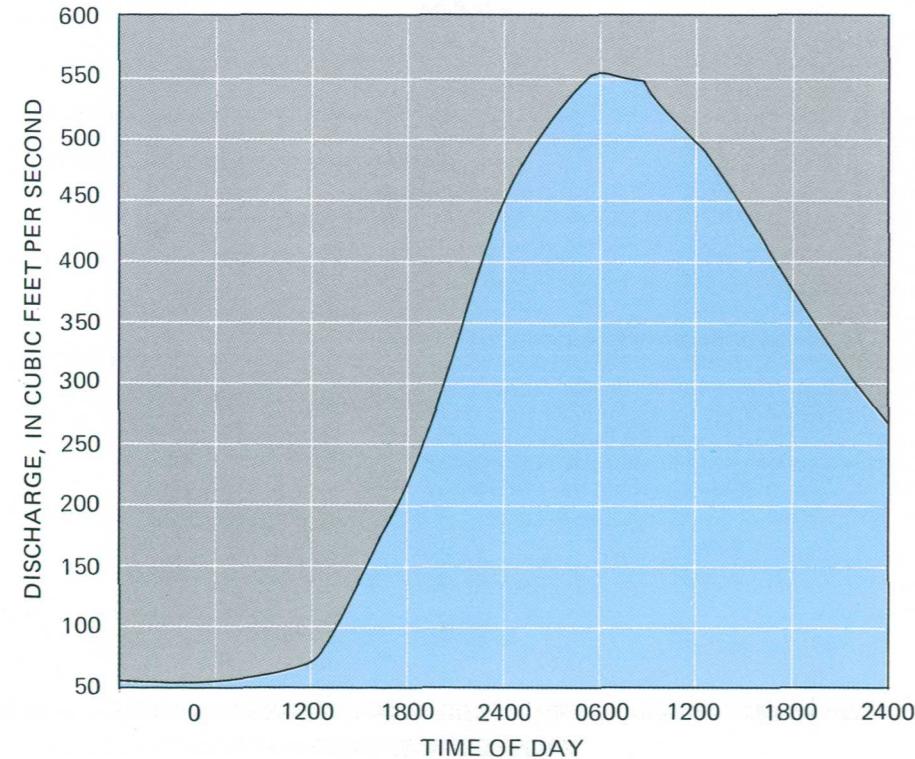



Figure 9.1-2 Discharge hydrograph for station 34, November 30, 1977 and December 1, 1977.

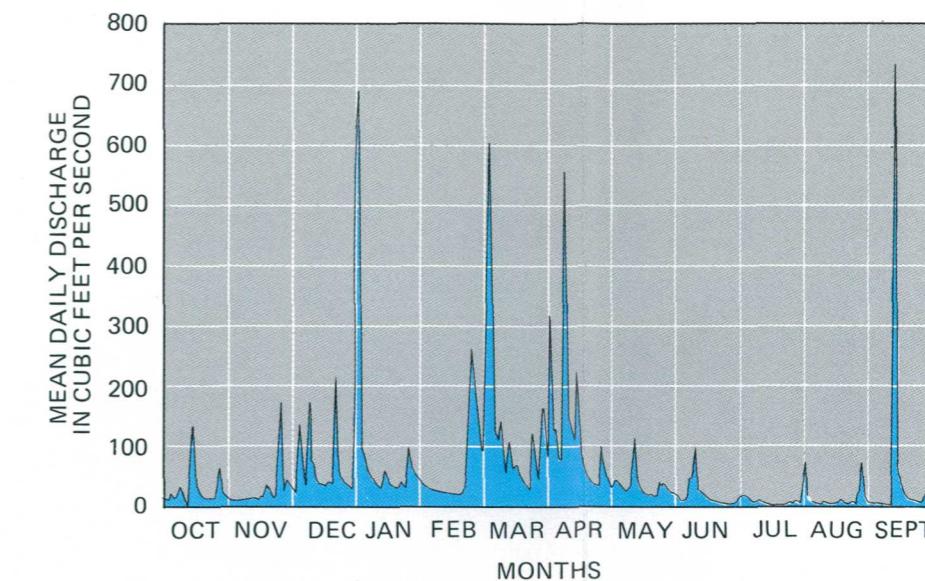



Figure 9.1-3 Daily discharge hydrograph for station 34, water year 1979.

Table 9.1-1 Mean daily discharge, in cubic feet per second, for station 34 during October 1978.  
(Drainage area 31.1 square miles)

| Day | Mean discharge (ft <sup>3</sup> /sec) |
|-----|---------------------------------------|
| 1   | 13                                    |
| 2   | 11                                    |
| 3   | 8.5                                   |
| 4   | 27                                    |
| 5   | 17                                    |
| 6   | 14                                    |
| 7   | 19                                    |
| 8   | 36                                    |
| 9   | 26                                    |
| 10  | 16                                    |
| 11  | 12                                    |
| 12  | 14                                    |
| 13  | 76                                    |
| 14  | 132                                   |
| 15  | 80                                    |
| 16  | 36                                    |
| 17  | 24                                    |
| 18  | 20                                    |
| 19  | 18                                    |
| 20  | 16                                    |
| 21  | 15                                    |
| 22  | 14                                    |
| 23  | 14                                    |
| 24  | 16                                    |
| 25  | 15                                    |
| 26  | 40                                    |
| 27  | 67                                    |
| 28  | 31                                    |
| 29  | 22                                    |
| 30  | 18                                    |
| 31  | 16                                    |

## 9.0 SURFACE-WATER QUANTITY--Continued

### 9.2 Low Flow Computation and Estimation

## Low-Flow Data Available for Gaged and Ungaged Streams

*Low-flow statistics for gaged streams are computed from recorded daily discharge  
Regression equations can be used to estimate low-flow statistics for ungaged,  
unregulated streams.*

Low-flow statistics can be computed for any stream that has daily-discharge data; however, the data is meaningful only for those streams not significantly affected by regulation and diversion. Regulation and diversion can unnaturally change flow patterns thereby invalidating the low-flow estimates.

Low-flow statistics are commonly computed for 1, 3, 7, 30, and 120 consecutive-day periods at recurrence intervals of 2, 5, 10, 20, 100 years. The statistics can be determined for an entire year, or they may be computed month-by-month. Naturally, monthly low flows, in most instances, will be computed for consecutive-day periods of 30 days or less.

Low-flow statistics can be presented as an  $x$ -day,  $y$ -year low flow, where  $x$  is the number of consecutive days and  $y$  is the recurrence interval. For example, a 7-day, 10-year low flow of  $40 \text{ ft}^3/\text{s}$  (cubic feet per second) means that the average discharge for the lowest 7 consecutive days would be less than  $40 \text{ ft}^3/\text{s}$ , on the average, once in ten years.

Flippo (1981) developed a series of equations for the estimation of low flows for ungaged, unregulated streams. Some of these equations are applicable to ungaged streams in Eastern Coal Province Area 2. Flippo divided Pennsylvania into a number of low-flow regions. Area 2 contains low-flow regions 9, 10, and 11 as delineated on figure 9.2-1. Low flows in each area must be estimated by a separate set of equations.

Flippo's equations can be used to estimate annual minimum discharge for 3, 7, 30, and 120 consecutive-day periods at recurrence intervals of 5, 10, 20, 50, and 100 years. Flippo also provides equations for estimating minimum discharges for 1, 3, 7, and 30 days at the same recurrence intervals for the six individual months of May through October. The monthly equations are too lengthy to include in this report.

The reader should consult Flippo (1981) for an explanation of the determination of the following parameters used in his equations:

$A_{n,mm}$  = Annual low flow for (n) days with (mm) recurrence interval, in cubic feet per second,

DA = Drainage area, in square miles,

G = Geologic index, dimensionless, and,

S = Channel slope, in feet per mile.

The terminology in Flippo (1981) differs somewhat from that used in this report, but no major problems should be encountered.

As an example, the 3-day, 5-year annual low flow (A3,5) will be computed for a hypothetical stream in low-flow region 10 of Area 1. Assume we have determined the drainage area to be  $20 \text{ mi}^2$  (square miles), the geologic index to be 1.5, and the channel slope to be 17 feet per mile; therefore, DA = 20, G = 1.5, and S = 17. Because our hypothetical stream is in region 10, the equation to be used is:

$$\log(A3,5) = -2.831 + 1.410(\log DA) + 0.649(\log S)$$

substitute determined values of DA and S

$$\log(A3,5) = -2.831 + 1.410(\log 20) + 0.649(\log 17)$$

take log (base 10) of DA and S and substitute

$$\log(A3,5) = -2.831 + 1.410(1.301) + 0.649(1.230)$$

multiply

$$\log(A3,5) = -2.831 + [1.834] + 0.798$$

combine

$$\log(A3,5) = -0.199$$

take antilog (base 10) of both sides

$$A3,5 = 0.63$$

We can interpret this answer to mean that during any given year, there is one chance in twenty that the lowest 3-consecutive-day discharge will average less than  $0.63 \text{ ft}^3/\text{s}$ .

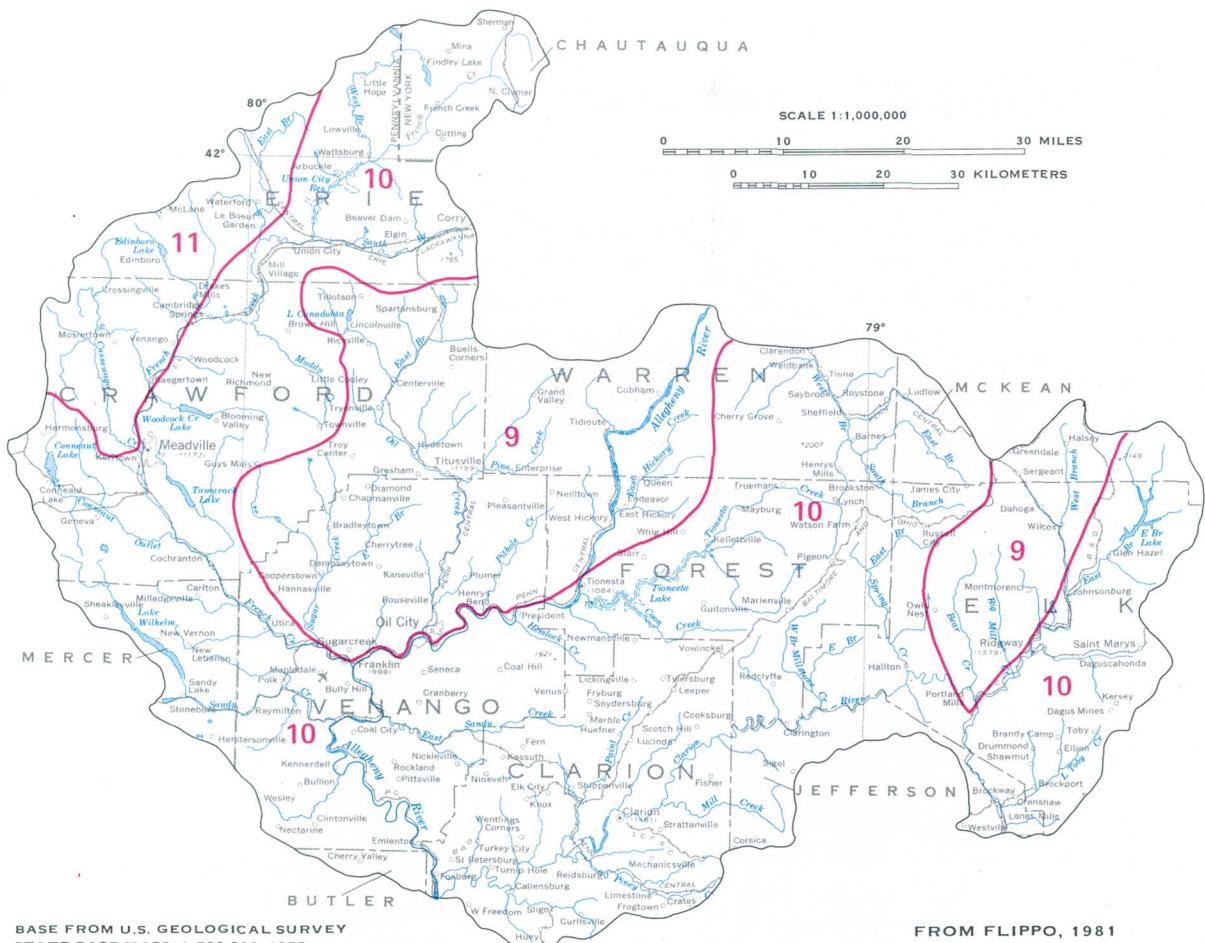



Figure 9.2-1 Low-flow regions.

## 9.0 SURFACE-WATER QUANTITY--Continued

### 9.3 Mean Flow Computation and Estimation

## Mean-Flow Data Available for Gaged and Ungaged Streams

*Mean and mean monthly flows for gaged streams can be computed from recorded daily discharges. Regression equations can be used to estimate mean and mean monthly flows for ungaged streams.*

Mean flow is the arithmetic average of all recorded daily discharge during the period of record. Mean monthly flow is the arithmetic average of all recorded daily discharges during a particular month for the period recorded. For example, the mean October discharge for a station having 40 years of record would be the arithmetic average of the daily discharges recorded during the 40 Octobers in the record period. Means computed from longer periods of record are more likely to be representative of long-term conditions than are means determined from short record periods.

Herb (1981) developed a series of regression equations for the estimation of mean and mean monthly flows for ungaged, unregulated streams in Pennsylvania. Some of these equations are applicable to streams in Eastern Coal Province Area 2 that are not affected by significant regulation or diversions. The applicability of the equations to streams having drainage areas less than 2 mi<sup>2</sup> (square mile) or to extensively surface-mined basins is unknown.

Table 9.3-1 presents the mean-flow equations and a description of the part of Area 2 to which each equation is applicable. The only data required for the estimates are the independent variables: drainage area, mean basin elevation, and average annual precipitation excess (average annual precipitation minus potential annual evapotranspiration).

Drainage area (DA) is determined by delineating the boundary of a drainage basin above a point-of-interest on a 7½-minute topographic map and planimetering. Mean basin elevation (E) is computed by averaging the elevation of 20 grid points overlaying the above delineated drainage area.

Annual precipitation excess (APX) is computed by subtracting annual potential evapotranspiration from average annual precipitation (Flippo, 1977). Average annual precipitation and annual potential evapotranspiration are interpolated at the centroid of the drainage basin of interest using the appropriate evapotranspiration map from Flippo's report. Flippo (1977) found, based on methods of Thornthwaite and Mather (1955), potential annual evapotranspiration could be used as an unadjusted estimator of actual annual evapotranspiration for Pennsylvania. The parameters used in the equations in table 9.3-1 are:

Q<sub>n</sub> = Mean discharge for specified period (where n =

A, overall mean is computed; where n = 1, January mean is computed; where n = 2, February mean is computed; and so forth), in cubic feet per second,

DA = Drainage area, in square miles

E = Mean basin elevation, in thousands of feet above sea level, and

APX = Annual precipitation excess, in inches.

As an example, the mean May discharge will be computed for ungaged Station 33 (03022100) in the French Creek basin. Substituting values for the above parameters we have DA = 10.2 mi<sup>2</sup>, E = 1.36 thousands of feet above sea level, and APX = 18 inches. Because station 33 is in the French Creek basin, the equation (from table 9.3-1) to be used is:

$$Q_5 = 0.561 DA^{1.00} E^{0.48} APX^{0.31}$$

substitute determined values of DA, E, and APX

$$Q_5 = 0.561 (10.2)^{1.00} (1.36)^{0.48} (18)^{0.31}$$

raise to indicated powers

$$Q_5 = 0.561 (10.2) (1.16) (2.45)$$

multiply

$$Q_5 = 16.3 \text{ cubic feet per second}$$

We can interpret this to indicate that the mean May flow for station 33 is 16.3 ft<sup>3</sup>/s (cubic feet per second).

Each equation in table 9.3-1 is accompanied by its standard error of estimate and its coefficient of determination. The standard error of the estimate is a rough measure of the reliability of the equation. Two-thirds of the regression estimates of the low-flow characteristics for the streams used to develop the equation fell within the percentage errors shown. The coefficient of determination is a measure of the effectiveness of the selected basin characteristics in explaining observed variations in the low-flow characteristics. The more effective, or the more perfect, the equation is in relating selected basin characteristics to observed variations in low-flow, the closer the coefficient of determination comes to 100 percent. All of the equations in table 9.3-1 had a coefficient of 98 percent or greater.

**Table 9.3-1 Equations for estimating mean discharges for ungaged, unregulated streams in Area 2.**

| To estimate specified discharge | Use equation                                    | For designated part of area                                                                                                              | Standard error (percent) | Coefficient of determination (percent) |
|---------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|
| Mean                            | $Q_A = 0.216 DA^{1.00} APX^{0.68}$              | All                                                                                                                                      | 8                        | 99.8                                   |
| Mean October                    | $Q_{10} = 0.002 DA^{0.98} E^{-0.49} APX^{2.11}$ | All of area except for that part of Clarion River basin upstream from Spring Creek. Spring Creek basin is included.                      | 16                       | 99.4                                   |
|                                 | $Q_{10} = 0.052 DA^{0.99} APX^{0.13}$           | Clarion River basin upstream from spring Creek, not including Spring Creek                                                               | 17                       | 98.7                                   |
| Mean November                   | $Q_{11} = 0.161 DA^{0.96} E^{-0.35} APX^{0.89}$ | All                                                                                                                                      | 16                       | 98.9                                   |
| Mean December                   | $Q_{12} = 0.116 DA^{0.98} APX^{1.01}$           | All                                                                                                                                      | 20                       | 98.7                                   |
| Mean January                    | $Q_1 = 0.150 DA^{1.03} APX^{0.89}$              | All                                                                                                                                      | 13                       | 99.5                                   |
| Mean February                   | $Q_2 = 0.320 DA^{1.00} APX^{0.72}$              | French Creek basin, and all Allegheny River tributaries downstream from French Creek, excluding the Clarion River basin                  | 11                       | 99.6                                   |
|                                 | $Q_2 = 0.199 DA^{1.01} APX^{0.79}$              | All of area except for French Creek basin and Allegheny River tributaries downstream from French Creek. Clarion River basin is included. | 10                       | 99.7                                   |
| Mean March                      | $Q_3 = 0.610 DA^{1.01} APX^{0.59}$              | All                                                                                                                                      | 13                       | 99.6                                   |
| Mean April                      | $Q_4 = 0.340 DA^{1.00} E^{0.21} APX^{0.67}$     | All                                                                                                                                      | 10                       | 99.4                                   |
| Mean May                        | $Q_5 = 0.561 DA^{1.00} E^{0.48} APX^{0.31}$     | Part of area upstream from French Creek including the French Creek basin.                                                                | 16                       | 99.0                                   |
|                                 | $Q_5 = 1.102 DA^{1.06} E^{0.65}$                | Part of area downstream from French Creek, not including the French Creek basin.                                                         | 12                       | 99.7                                   |
| Mean June                       | $Q_6 = 0.586 DA^{1.04} E^{1.05}$                | Tionesta Creek basin and part of area downstream from the Clarion River including the Clarion River basin.                               | 12                       | 99.7                                   |
|                                 | $Q_6 = 0.481 DA^{1.03} E^{1.30}$                | Part of area upstream from Clarion River, but not including the Tionesta Creek basin                                                     | 25                       | 97.5                                   |
| Mean July                       | $Q_7 = 0.041 DA^{1.00} APX^{0.97}$              | Part of area upstream from French Creek including the French Creek basin.                                                                | 20                       | 98.7                                   |
|                                 | $Q_7 = 0.024 DA^{1.00} APX^{1.03}$              | Part of area downstream from French Creek, not including the French Creek basin                                                          | 33                       | 95.8                                   |
| Mean August                     | $Q_8 = 0.001 DA^{0.98} APX^{1.95}$              | All                                                                                                                                      | 19                       | 99.0                                   |
| Mean September                  | $Q_9 = 0.002 DA^{0.96} APX^{1.87}$              | Part of area downstream from Tionesta Creek including Tionesta Creek basin                                                               | 35                       | 96.2                                   |
|                                 | $Q_9 = 0.002 DA^{0.88} E^{1.42}$                | Part of area upstream from Tionesta Creek, not including the Tionesta Creek basin                                                        | 23                       | 97.5                                   |

## 9.0 SURFACE-WATER QUANTITY--Continued

### 9.4 Peak Flow

#### 9.4.1 Computation and Estimation

## Peak Flow Data Available for Gaged and Ungaged Streams

*Peak discharges at specified exceedance probabilities can be computed from flood records at gaging stations. Regression equations can be used to estimate peak discharges for ungaged streams.*

Recorded peak discharges at gaging stations can be used to compute peak flows at various exceedance probabilities. Exceedance probabilities commonly used are 50, 10, 4, 2, and 1 percent, although other exceedance-probability floods may be computed. Exceedance probability is defined as the probability or chance that a given flood peak will be greater than a computed value. Exceedance probability percentages are the reciprocals of recurrence intervals. An exceedance probability of 4 percent, 0.04, is analogous to a recurrence interval of 1/0.04 or 25 years. A flood with a recurrence interval of 25 years would be expected to be exceeded, on the average, once in 25 years. Because these are estimates of averages, it is entirely possible to have floods with recurrence intervals of 100 and 25 years (exceedance probabilities of 1 and 4 percent), occurring in successive years, or even in the same year.

Flippo (1977) and Herb (1977) developed systems of regression equations for estimating floods at selected exceedance probabilities for Pennsylvania streams. Some of their equations are applicable to ungaged, unregulated streams in Eastern Coal Province Area 2. The equations developed by Flippo (1977) use basin and climatic characteristics as the independent variables, while those equations developed by Herb (1977) use channel characteristics.

Table 9.4.1-1 (from Flippo, 1977) presents equations for flood-peak estimation at exceedance probabilities of 43, 10, 4, 2, and 1 percent. These equations are applicable only in the flood-frequency region of Area 2 shown in the table heading. Figure 9.4.1-1 delineates the three flood-frequency regions in Area 2. Note that region 6 has separate equations for basins having drainage areas in two size classes. Table 9.4.1-2 (from Herb) presents equations for flood-peak estimation at exceedance probabilities of 99, 50, 20, 10, 4, and 2 percent.

The parameters used in the equations in tables 9.4.1-1 and 9.4.1-2 are:

$P_n$  = Flood peak having exceedance probability of  $n$  percent ( $n = 99, 50, 43, 10, 4, 2$ , or  $1$ ), in cubic feet per second,

DA = Drainage area, in square miles

APX = Annual precipitation index, in inches

CAREA = Cross-sectional area of bankfull channel, in square feet,

CWIDE = Width of bankfull channel, in feet, and,

CDEEP = Average depth of bankfull channel, determined by dividing CAREA by CWIDE, in feet.

Each equation in tables 9.4.1-1 and 9.4.1-2 is accompanied by its standard error of estimate. The standard error of the estimate is a rough measure of the reliability of a particular equation. Two-thirds of the regression estimates of the peak flows used to develop the equations fell within the listed percentage errors.

Flippo (1977) indicates that the equations in table 9.4.1-1 are applicable to unregulated, non-urban streams having drainage areas larger than 2 square miles. He also cautions about the use of the equations in basins that have been extensively strip mined. Such basins may produce anomalously low flood peaks. Herb (1977) indicates that the equations in table 9.4.1-2 are applicable to unregulated, forested watersheds having drainage areas between 2 and 300  $\text{mi}^2$ . The applicability of Herb's (1977) equations in extensively strip-mined basins is unknown. For more discussion of limitations and applications of the aforementioned equations please refer to Flippo (1977).

Once the independent variables (basin characteristics or channel characteristics) are determined for a particular basin, the computation of the estimated flood peaks is relatively simple. As an example, the peak discharge at an exceedance probability of 1 percent (100-year recurrence interval) will be determined by the basin characteristics method (Flippo, 1977) for a hypothetical stream in flood-frequency region 5 having a drainage area of 20  $\text{mi}^2$  and an annual precipitation index of 17 inches; DA = 20, APX = 17.

To estimate a flood peak having an exceedance probability of 1 percent in flood-frequency region 5, use the following equation (table 9.4.1-1):

$$P_1 = 39.4 \text{ DA}^{0.751} \text{ APX}^{0.744}$$

Substitute values of DA and APX

$$P_1 = 39.4 (20)^{0.751} (17)^{0.744}$$

raise to powers

$$P_1 = 39.4 (9.486) (8.231)$$

multiply through

$$P_1 = 3,080$$

Table 9.4.1-1 Regression equations for flood-peak estimation at selected exceedance probabilities for Area 2 streams in flood-frequency regions\* (Flippo, 1977).




Figure 9.4.1-1 Peak flow regions.

We can interpret this to mean that our hypothetical stream has a 1-percent chance of experiencing a flood peak of greater than  $3,080 \text{ ft}^3/\text{s}$  during any year.

Region 4

| Exceedance probability (percent) | Equation ( $P_n=$ )       | Standard error (percent) |
|----------------------------------|---------------------------|--------------------------|
| 43                               | $73.5 \text{ DA}^{0.789}$ | 28                       |
| 10                               | $118 \text{ DA}^{0.778}$  | 27                       |
| 4                                | $143 \text{ DA}^{0.773}$  | 28                       |
| 2                                | $162 \text{ DA}^{0.770}$  | 30                       |
| 1                                | $181 \text{ DA}^{0.766}$  | 32                       |

\*Flood-frequency regions delineated on Figure 9.4.1-1.

Region 5

| Exceedance probability (percent) | Equation ( $P_n=$ )       | Standard error (percent) |
|----------------------------------|---------------------------|--------------------------|
| 43                               | $39.4 \text{ DA}^{0.827}$ | 28                       |
| 10                               | $45.4 \text{ DA}^{0.789}$ | 25                       |
| 4                                | $45.3 \text{ DA}^{0.772}$ | 26                       |
| 2                                | $44.5 \text{ DA}^{0.759}$ | 29                       |
| 1                                | $42.2 \text{ DA}^{0.751}$ | 31                       |

Drainage areas of more than 15 square miles.

| Exceedance probability (percent) | Equation ( $P_n=$ )       | Standard error (percent) |
|----------------------------------|---------------------------|--------------------------|
| 43                               | $57.7 \text{ DA}^{0.879}$ | 23                       |
| 10                               | $156 \text{ DA}^{0.817}$  | 22                       |
| 4                                | $244 \text{ DA}^{0.788}$  | 25                       |
| 2                                | $330 \text{ DA}^{0.769}$  | 27                       |
| 1                                | $434 \text{ DA}^{0.751}$  | 30                       |

\*Flood-frequency regions delineated on Figure 9.4.1-1.

Region 6

Drainage areas of 15 square miles or less.

| Exceedance probability (percent) | Equation ( $P_n=$ )       | Standard error (percent) |
|----------------------------------|---------------------------|--------------------------|
| 43                               | $63.2 \text{ DA}^{0.943}$ | 45                       |
| 10                               | $126 \text{ DA}^{1.001}$  | 46                       |
| 4                                | $173 \text{ DA}^{1.023}$  | 49                       |
| 2                                | $213 \text{ DA}^{1.037}$  | 51                       |
| 1                                | $259 \text{ DA}^{1.050}$  | 54                       |

Table 9.4.1-2 Regression equations for flood-peak estimation at selected exceedance probabilities for Area 2 streams (Herb, 1977).

| Exceedance probability (percent) | Equation ( $P_n=$ )                                      | Standard error (percent) |
|----------------------------------|----------------------------------------------------------|--------------------------|
| 99                               | $0.362 \text{ (CAREA)}^{1.811} \text{ (CDEEP)}^{-0.317}$ | 61                       |
| 50                               | $2.366 \text{ (CAREA)}^{1.609} \text{ (CDEEP)}^{-0.263}$ | 56                       |
| 20                               | $4.842 \text{ (CWIDE)}^{1.495}$                          | 53                       |
| 10                               | $7.079 \text{ (CWIDE)}^{1.473}$                          | 50                       |
| 4                                | $10.641 \text{ (CWIDE)}^{1.451}$                         | 50                       |
| 2                                | $14.028 \text{ (CWIDE)}^{1.437}$                         | 50                       |

## **9.0 SURFACE-WATER QUANTITY--Continued**

### **9.4 Peak Flow--Continued**

#### **9.4.2 Flood-Prone Areas**

### **Flood-Prone Area Maps Available for Area**

*Flood-prone area maps are available for 69 7½-minute topographic maps in Area 2.*

The National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973 established programs for identifying towns and streams subject to flood problems and for outlining flood-prone areas on topographic maps by approximate methods. In 1968 the Geological Survey began delineating flood-prone areas of the maximum known flood on 7½-minute topographic quadrangle maps using existing information. After 2 years it was decided that areal uniformity of the flood delineated would be desirable, so the 100-year flood (1-percent exceedance probability flood) was selected for mapping in 1970.

As of 1980, the area inundated by the 1-percent exceedance probability flood had been delineated for selected streams on 69 of the 103 7½-minute topographic quadrangle maps covering Area 2. The delineations were

based upon existing flood-depth data and flood depths estimated from the area's flood hydrology. Flood-prone maps within or partially within Area 2 are indicated by shading on figure 9.4.2-1, which also shows the names and locations of all 7½-minute topographic quadrangle maps in the area.

Copies of the flood-prone area maps for Area 2 may be obtained from:

U.S. Geological Survey  
Water Resources Division  
P.O. Box 1107  
Harrisburg, Pennsylvania 17108

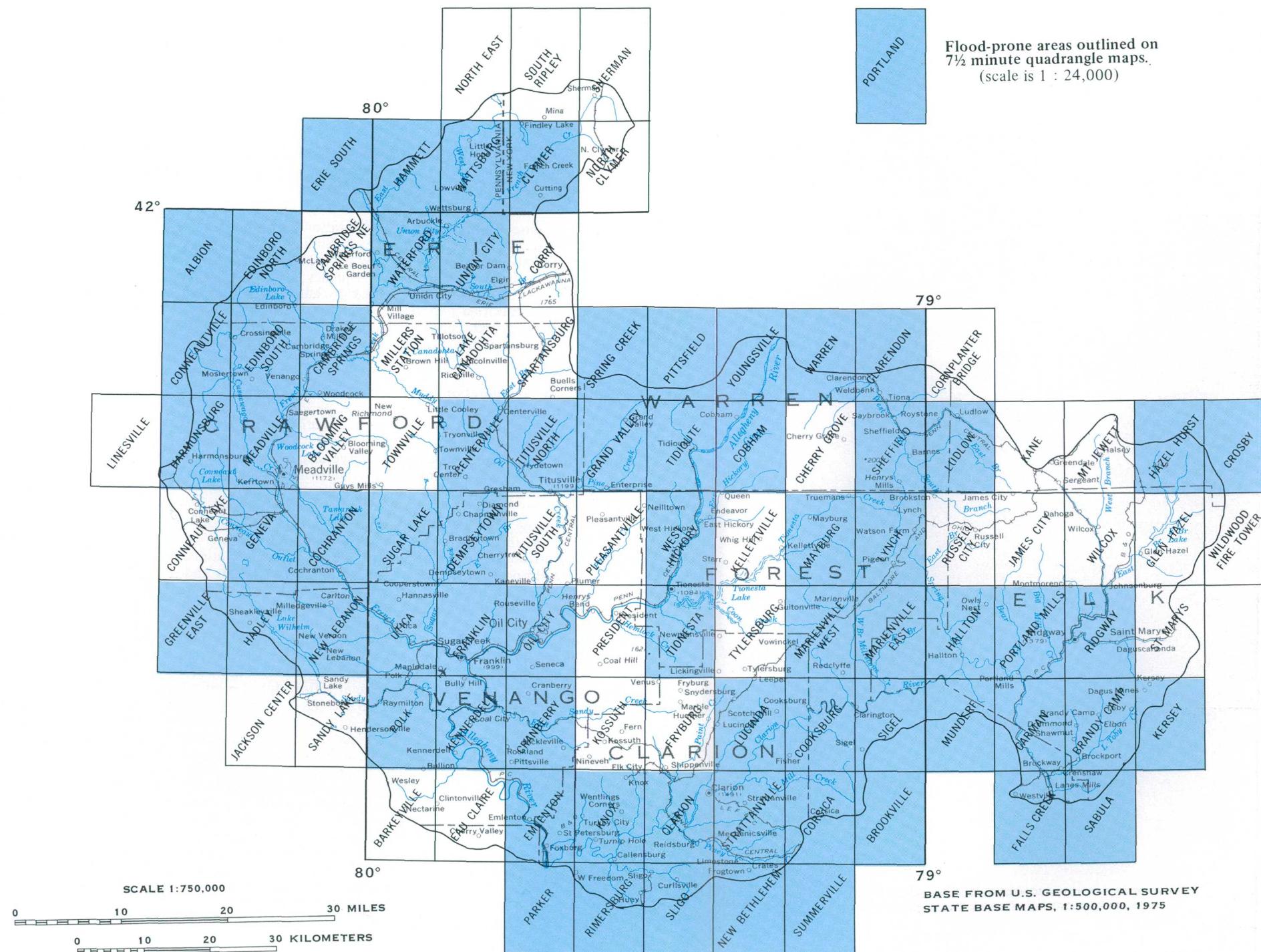



Figure 9.4.2-1 Availability of flood-prone maps for Area 2.

## 9.0 SURFACE-WATER QUANTITY--Continued

### 9.5 Flow Duration Computation and Estimation

## Flow-Duration Data Available for Gaged and Ungaged Streams

*Recorded daily discharges are used to compute flow-duration data for gaging stations. A simple graph and knowledge of a stream's drainage area can be used to estimate flow-duration data for ungaged streams.*

Figure 9.5-1 presents a flow-duration curve for station 12, an unregulated stream in Area 2. Similar curves or data tabulations can be made for any gaging station. A flow-duration curve is a cumulative frequency curve that shows the percentage of time a specified discharge was exceeded during a specified period (Searcy, 1959). The flow-duration curve depicts the flow characteristics of a stream over a wide range of discharges without any consideration of the sequence of flows.

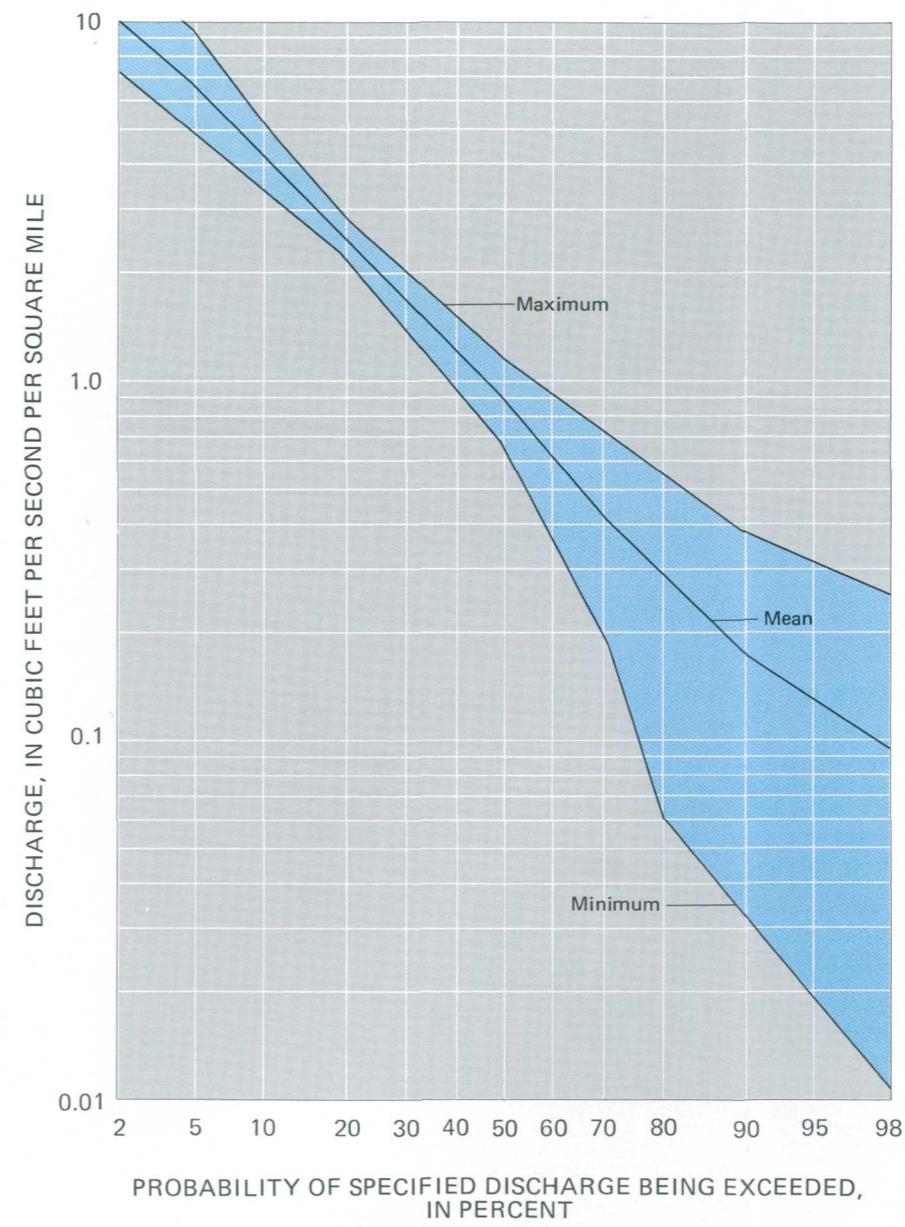
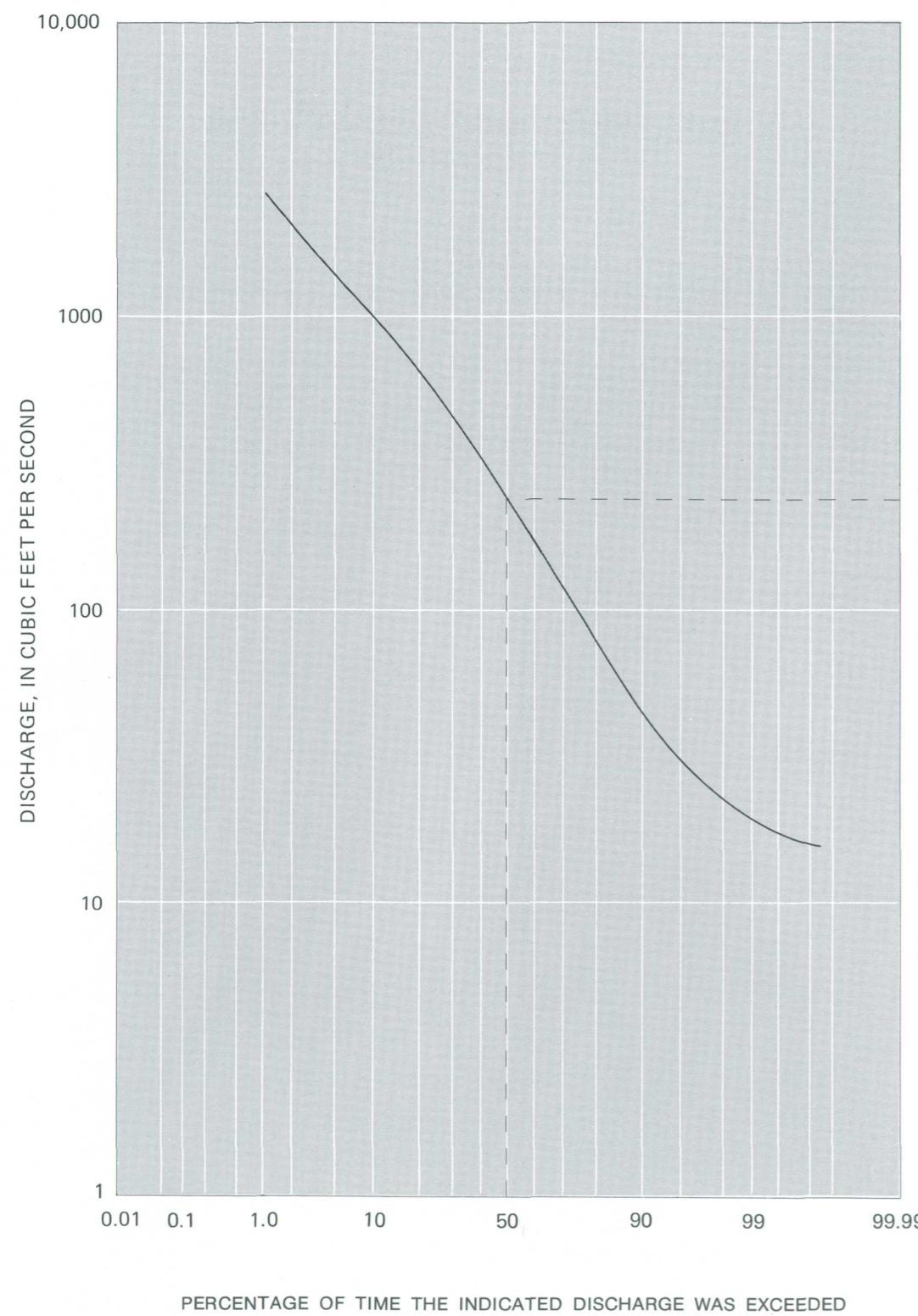
A flow-duration curve is useful for more than simply depicting flow characteristics. If the period of record used in developing the curve is representative of long-term conditions, a flow-duration curve can be used in conjunction with the proper transport curve to compute loads of water-borne constituents such as suspended sediment or sulfate.

Using figure 9.5-1 to find the flow-duration of a specified discharge, extend a horizontal line from one of the vertical axes until it intersects the curve for the station. Then drop a vertical line to the lower horizontal axis and read the flow-duration percentage. To find the discharge associated with a specific flow-duration, extend a vertical line from the lower horizontal axis to its intersection with the curve for the stream. A horizontal line extended from that point will intersect one of the vertical axes at the desired discharge. The dashed line in figure 9.5-1 indicates that for station 12, the discharge at a flow duration of 50 percent is about 240 cubic feet per second.

Flow duration can be estimated for ungaged, unregulated streams in Eastern Coal Province Area 2 by a simple, graphical procedure. Figure 9.5-2 is a composite unit flow-duration curve where unit discharge is plotted against exceedance probability. Such a method of presentation allows the comparison of flow durations among streams having different drainage areas. The shaded part of the figure demonstrates the range of unit flow-duration data at the seven selected stations. The mean of the unit discharges is given by the heavy line within the shaded area.

Figure 9.5-2 can be used in the following manner.

1. Find the unit discharge that corresponds to an exceedance probability of 10 percent.



A. Extend a vertical line upward from the 10-percent point on the lower x-axis to its intersection with the mean unit discharge curve within the shaded part of figure 9.5-2.

B. Read the corresponding unit discharge, 4.2  $(\text{ft}^3/\text{s})/\text{mi}^2$ , on the y-axis.

2. This can be interpreted to mean that a unit discharge of 4.2  $(\text{ft}^3/\text{s})/\text{mi}^2$  is exceeded 10 percent of the time.

Figure 9.5-2, in combination with a knowledge of an unaged stream's drainage area can be used to estimate points on a flow-duration curve. As an example, we will compute the points on a flow-duration curve for a stream having a drainage area of  $10 \text{ mi}^2$  (square miles). The mean unit flow-duration curve in figure 9.5-2 gives unit discharges of 10, 2.5, 0.89, 0.28, and 0.093  $(\text{ft}^3/\text{s})/\text{mi}^2$  at exceedance probabilities of 2, 20, 50, 80, and 98 percent, respectively. Multiplying these unit discharges by the drainage area of  $10 \text{ mi}^2$  gives discharges of 100, 25, 8.9, 2.8, and 0.93 cubic feet per second at the specified points on the flow-duration curve. More points could be determined to better define the shape of the curve.

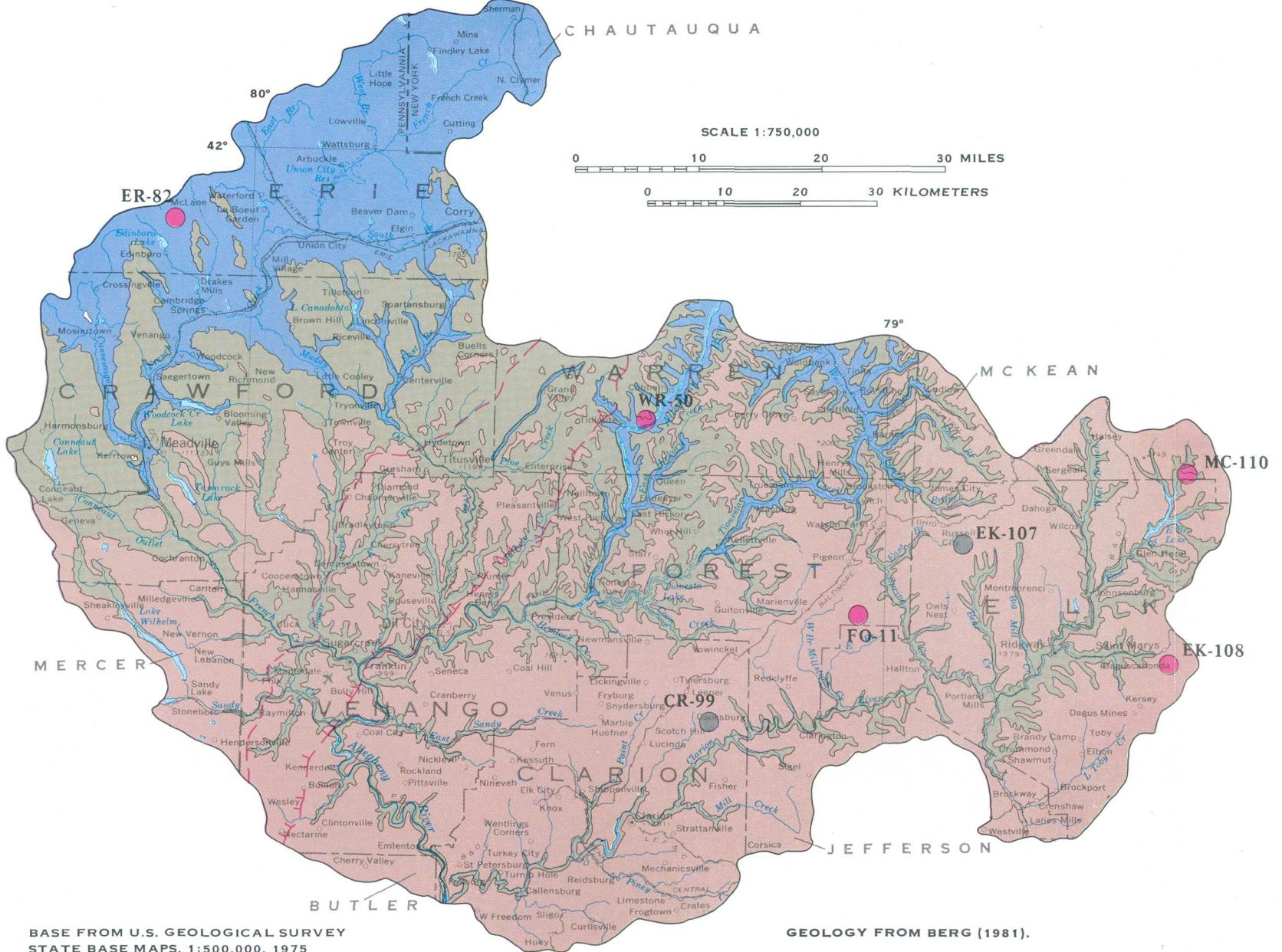
The composite flow-duration curve was constructed using computed unit flow-duration data from seven streams in or near Area 2 having drainage areas ranging from  $3.6$  to  $63 \text{ mi}^2$ . Because of the relatively small sample size used in developing the curve its reliability is unknown. The width of the shaded part of the figure gives some indication of the uncertainty in estimates using the procedure. Searcy (1959) presents an alternate method of developing unit flow-duration curves, however, Searcy's method requires a knowledge of the stream's mean flow before an estimate can be made. The procedure outlined herein can be used for flow-duration estimates until a better system is developed.



## **10.0 GROUND WATER**

*10.1 Hydrologic Network*

### **Information on Ground Water is Available for Several Locations**


*The U.S. Geological Survey ground-water network has continuous water-level data  
in 5 counties and hundreds of water samples from wells in Area 2.*

The U.S. Geological Survey ground-water network provides a long term water-level data base to monitor the responses of climatic changes and induced stresses on the hydrologic system. The network originally had seven observation wells in Area 2; however, two wells have been discontinued. Station locations and identification numbers of the observation wells are shown on figure 10.1-1; the periods of record are given in table 10.1-1.

The U.S. Geological Survey and the Pennsylvania Bureau of Topographic and Geologic Survey have evaluated the ground-water resources of some parts of Area 2 in detail. Therefore, a large volume of water-level and water-quality data have been published. Water-quality sam-

ples have been collected periodically from some wells and once only from other wells. Koester and Miller (1980) have a complete listing of Area 2 wells and their respective water-quality analyses. Buckwalter and others (1979) include a listing of wells in the Clarion River basin with water-levels, well yields, specific capacities, aquifer names, and other pertinent well data.

More information about the type of data, in addition to actual data is available from computer storage through the National Water Data Exchange (NAWDEX) and in annually published U.S. Geological Survey reports "Water Resources Data for Pennsylvania, Volume 3."



#### EXPLANATION

##### BEDROCK

- Pennsylvanian**  
Numerous beds of sandstone, siltstone, shale and some beds of limestone and conglomerate.
- Mississippian**  
Sandstone, siltstone, shale and conglomerate.
- Devonian**  
Mostly shale with some thin fine-grained sandstone.

- Active observation well
- Inactive observation well

##### UNCONSOLIDATED

- — — Southeastern limit of Wisconsin Glaciation
- — — Southeastern limit of Illinoian Glaciation
- Bedrock northwest of lines of glaciation is generally covered with unconsolidated material such as clay, silt, sand and gravel.

EK-108 Well number

Table 10.1-1 Record periods for observation wells\*.

| Well identification number | Period of record                |
|----------------------------|---------------------------------|
| Active wells:              |                                 |
| EK-108                     | October 1975 to present         |
| ER-82                      | July 1966 to present            |
| FO-11                      | August 1973 to present          |
| MC-110                     | August 1973 to present          |
| WR-50                      | August 1972 to present          |
| Inactive wells:            |                                 |
| CR-99                      | December 1973 to September 1977 |
| EK-107                     | August 1973 to December 1976    |

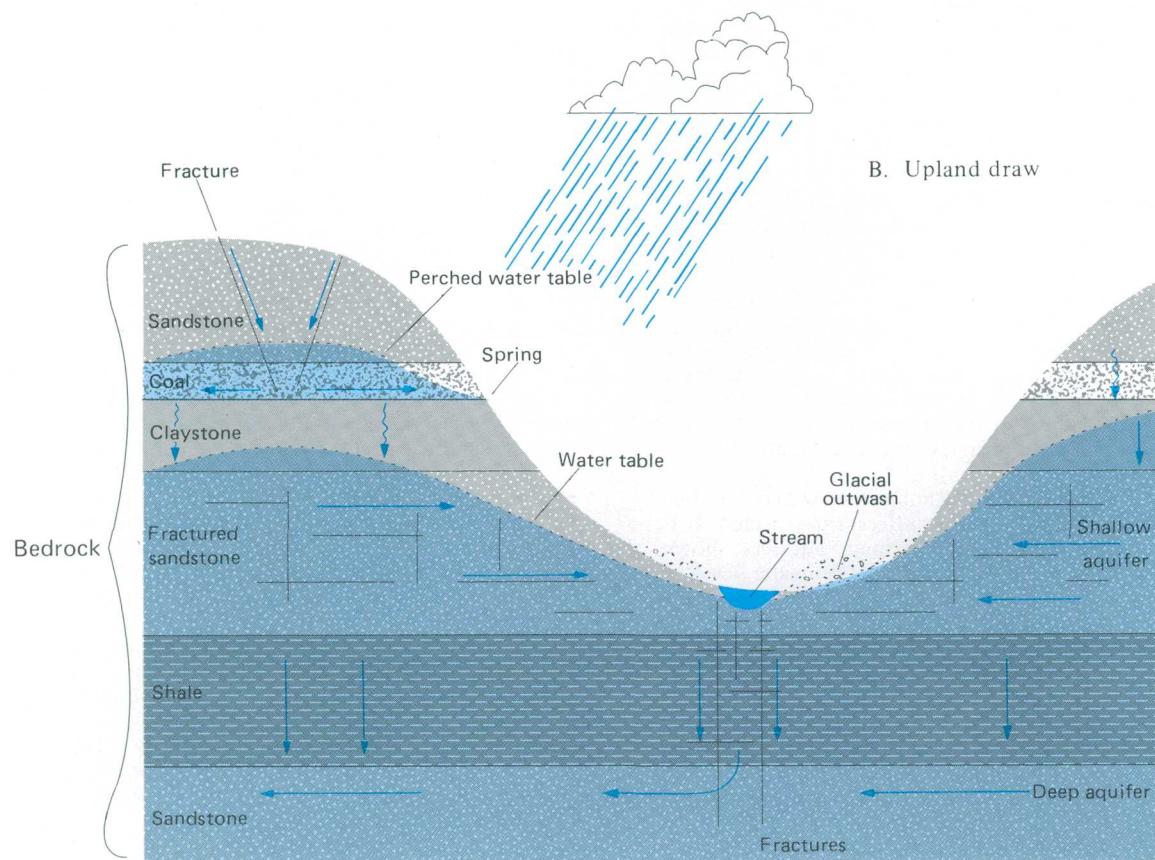
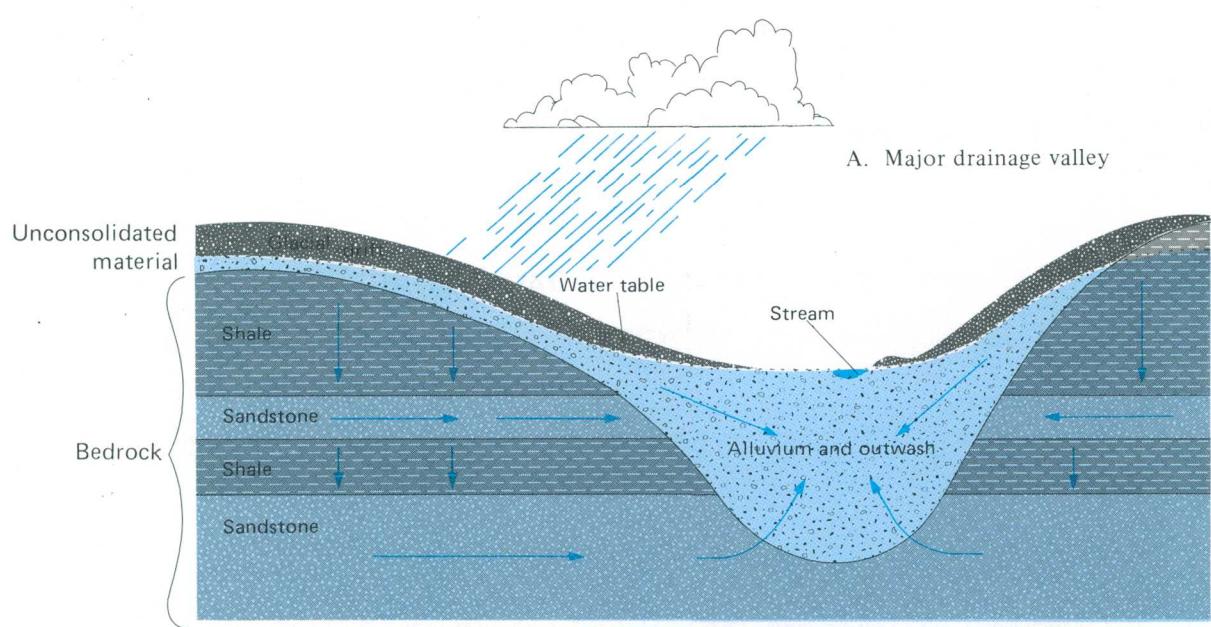
\*Well location shown on Figure 10.1-1.

Figure 10.1-1 Ground-water network.

## **10.0 GROUND WATER--Continued**

### *10.2 Source, Recharge, and Movement*

## **Precipitation Recharges Most Area 2 Aquifers Directly**



*Bedrock and unconsolidated aquifers receive recharge mostly near outcrops. Water movement is generally toward valleys but some water leaks to deeper aquifers.*

The source of ground water is precipitation. Part of the precipitation returns to the atmosphere via evaporation and transpiration, part flows into streams and lakes as runoff, and part seeps downward through soils, glacial material, and rock to the zone of saturation (fig. 10.2-1).

Direct infiltration of rain or snowmelt is the major means of recharge to aquifers exposed in the area. Indirect recharge occurs in some aquifers by leakage from adjacent aquifers or streams. Glacial drift overlying bedrock usually enhances recharge to the bedrock aquifers. However, outwash and alluvial deposits in major drainages may receive recharge from bedrock aquifers as well as from precipitation. Deep bedrock aquifers generally receive recharge from overlying bedrock aquifers. Some bedrock aquifers contain saline connate water that, owing to the depth of occurrence, has not been flushed by fresher shallow water circulation.

Ground water is in motion from areas of recharge to discharge. Generally this movement is from hilltops and hillsides down and outward toward valleys. Between recharge and discharge areas, ground water always moves in

the direction of decreasing head (water elevation) but not necessarily down dip with rock structure. The rate of movement in most aquifers is slow and depends on the size and degree of inter-connection of the water-bearing openings and the hydraulic gradient. Materials that transmit water readily are said to have high permeability or to be permeable. Among the more permeable rocks are well-sorted sand and gravel and fractured sandstone and coal. The largest volume of ground-water flow, either lateral or vertical between adjacent aquifers, occurs through the most permeable rock (fig. 10.2-1). rocks that do not transmit water readily are said to have low permeability or to be relatively impermeable. Among the low-permeable rocks are clay, shale, unfractured sandstone, and unfractured limestone. Water tables are commonly perched above low-permeable rocks in recharge areas, and hillside springs or seeps may occur (fig. 10.2-1A). Rocks immediately below a perched water table may be unsaturated; however, all rocks below the actual water table are saturated. Sometimes it is difficult to determine saturation conditions in the field as low-permeable rocks that are saturated may yield very little water to wells.



#### EXPLANATION

← Water movement

Zone of saturation

Figure 10.2-1 Occurrence and movement of water in aquifers.

## 10.0 GROUND WATER--Continued

### 10.3 Levels

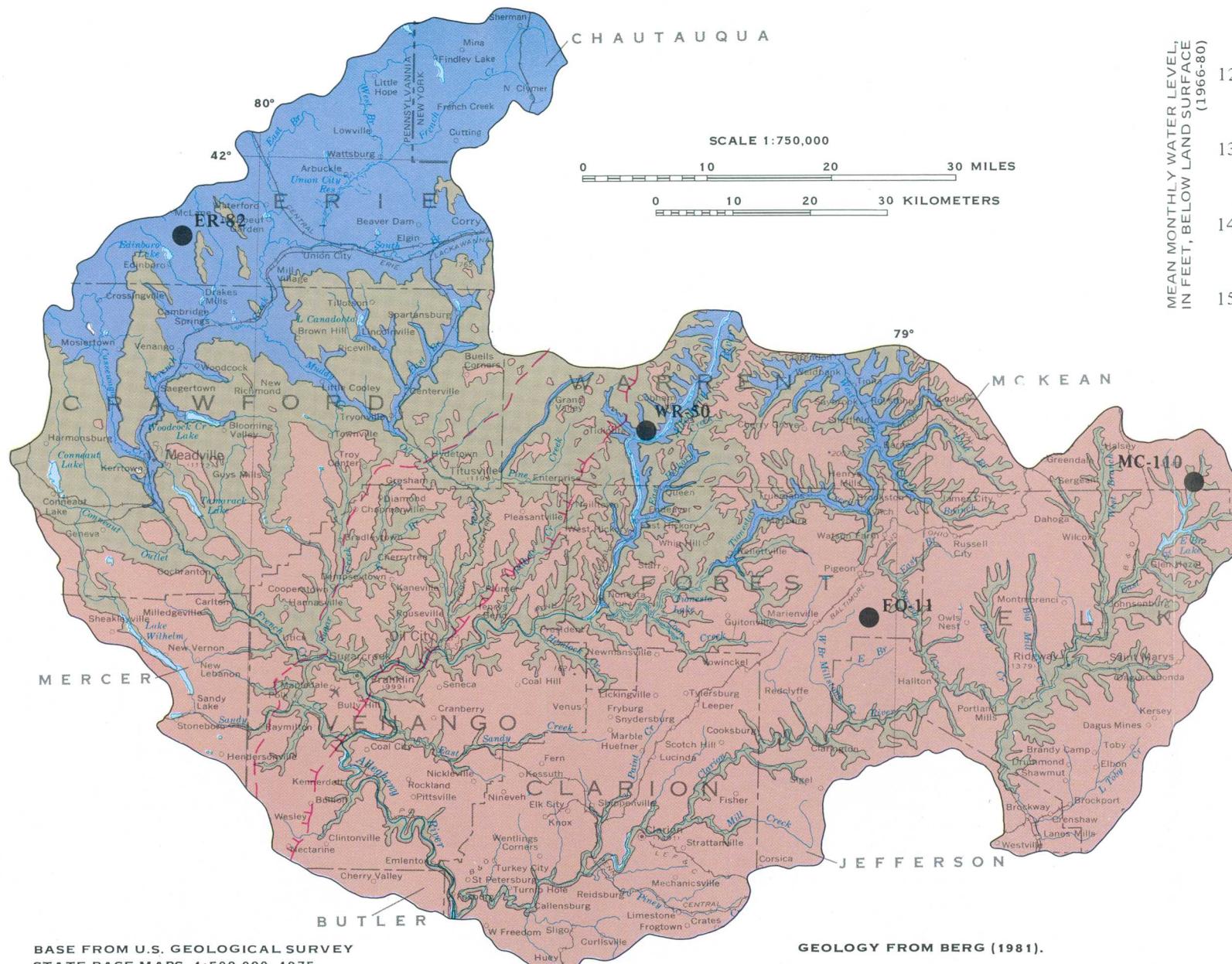
## Water Levels in Area 2 Fluctuate Seasonally

*Factors such as precipitation, rock type, and fractures affect water level fluctuation in Area 2. In addition, topographic setting and casing length affect the depth to water among wells.*

Water levels in Area 2 fluctuate seasonally, with the highest water levels occurring in early spring prior to the growing season in response to recharge from snowmelt and precipitation. The lowest levels occur in late summer and early fall generally as a result of continual down-gradient flow to springs and losses to evaporation and consumptive use by vegetation (evapotranspiration). Seasonal water-level fluctuations are fairly representative of fluctuations in other wells tapping similar formations in Area 2 (figs. 10.3-1 and 10.3-2).

Monthly water levels are shown for Pennsylvanian and Devonian aquifers (fig. 10.3-2). Values are averaged over periods of 7 to 14 years. Such data are not available for glacial drift and Mississippian aquifers in Area 2. Also included in figure 10.3-2 are concurrent mean monthly precipitation values from precipitation stations near the observation wells. Water levels have a greater annual fluctuation in the two wells that tap the Devonian aquifers than in the two wells that tap the Pennsylvanian aquifers. This is probably due to the lower storage capacities and permeabilities of the Devonian aquifers. The sandstone and shale aquifers, which are finer-grained and less fractured in the Devonian, have slightly larger fluctuations and respond more slowly to recharge from precipitation.

Because of the lithologic similarities, water-level fluctuations in the Mississippian aquifers are expected to be similar to that of the Pennsylvanian aquifers shown. Assuming an equal amount of recharge, water levels in wells that tap glacial and unconsolidated deposits probably fluctuate less than bedrock wells. This is due to the larger storage capability of the glacial and unconsolidated deposits.


Extreme values for the period of record are greater for the two wells tapping Devonian aquifers than for the two wells tapping Pennsylvanian aquifers. The water level in well ER-82 ranged from 10.00 feet below land surface on March 17, 1973, to 18.41 feet below land surface on September 20, 1966. Well ER-82 is located in the northwestern part of Area 2 and taps the Riceville Shale of Late

Devonian age. The water level in well WR-50 ranged from 40 feet below land surface on June 9, 1973, to 45.27 feet below land surface on October 5, 1979. Well WR-50 is located in the northcentral part of Area 2 and taps the Venango Formation (Pennsylvania Geological Survey usage) also of Late Devonian age. Well FO-11 is located in the east-central part of Area 2 and taps the Allegheny Group of Pennsylvanian age. The water level in well FO-11 ranged from 7.78 feet below land surface on January 27-28, 1973, to 11.52 feet below land surface on September 9-17, 1976. Well MC-110 taps the Pottsville Group of Pennsylvanian age and is located at the northeastern edge of Area 2. The water level ranged from 27.08 feet below land surface on May 17, 1974, to 30.09 feet below land surface on August 8, 1973.

Topographic location and head in the water-bearing zones affect the water levels in wells. Water levels range from above land surface in some valleys to more than 300 feet below land surface in hilltop wells. An average depth to water is 25-30 feet for bedrock valley wells and about 50 feet for hilltop wells (Buckwalter and others, 1981). Depth to water usually increases as well depth increases in upland areas. Conversely, depth to water decreases or remains about the same as well depths increase in valleys.

Depth to water below land surface can also be affected by the amount of casing used in the well. If a large amount of surface casing is used, some shallow water-bearing zones may be sealed off, and water levels would then reflect head conditions in the deeper units.

Records of water levels for observation wells in Area 2 may be obtained from the U.S. Geological Survey in Harrisburg, Pennsylvania. Water levels are published in the U.S. Geological Survey report "Water Resources Data for Pennsylvania, Volume 3." Monthly and annual precipitation and air temperature records may be found in the U.S. Department of Commerce Climatological Data Reports for Pennsylvania.



#### EXPLANATION

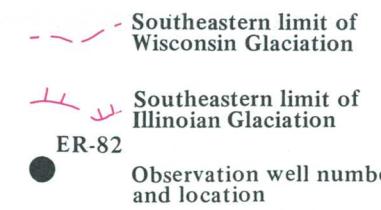
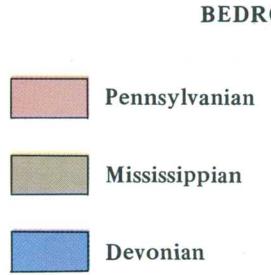




Figure 10.3-1 Selected well locations.

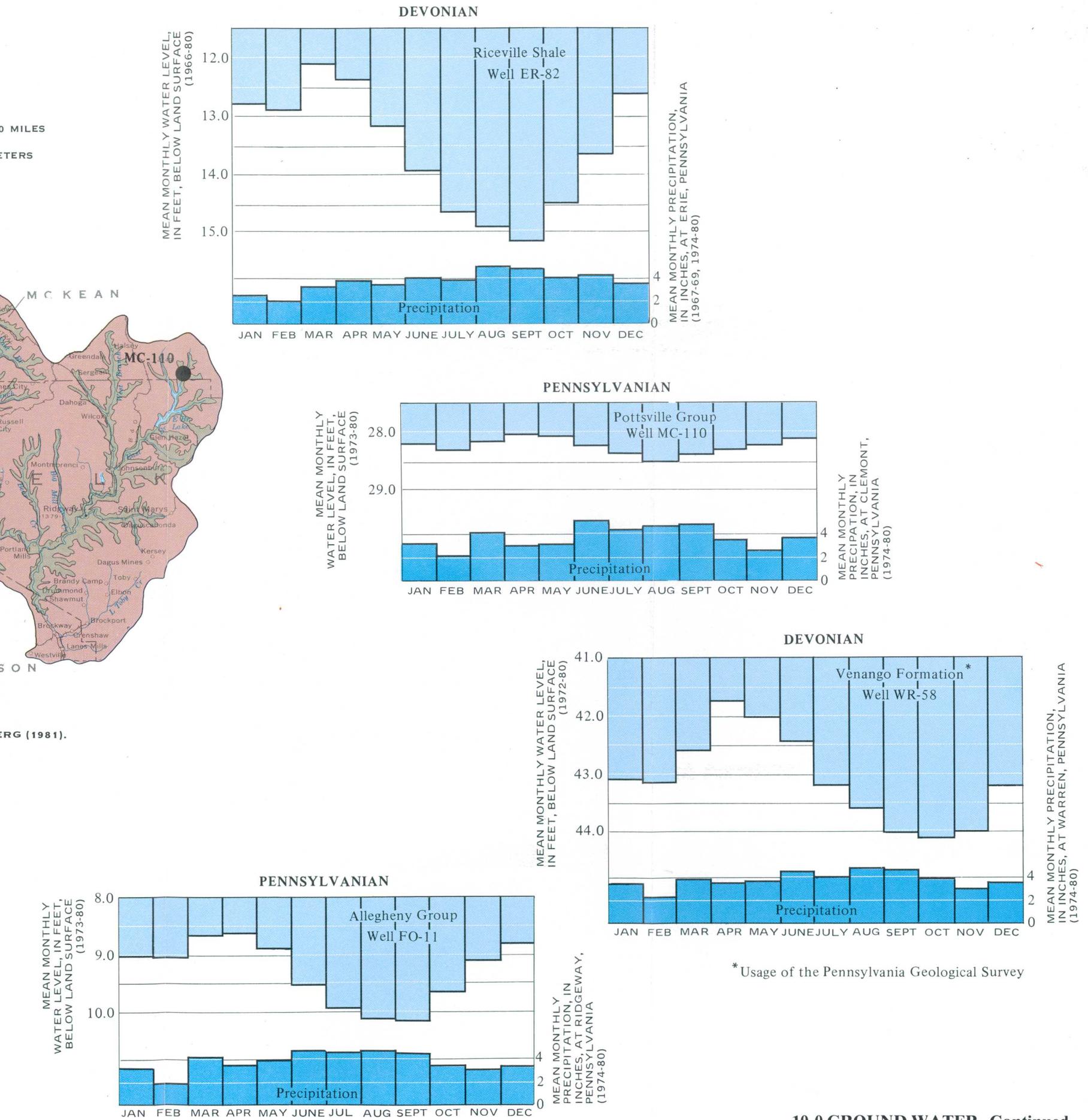



Figure 10.3-2 Seasonal water-level fluctuations.

## 10.0 GROUND WATER--Continued

### 10.4 Availability

## Unconsolidated and Bedrock Aquifers in Area have Diverse Water-Bearing Characteristics

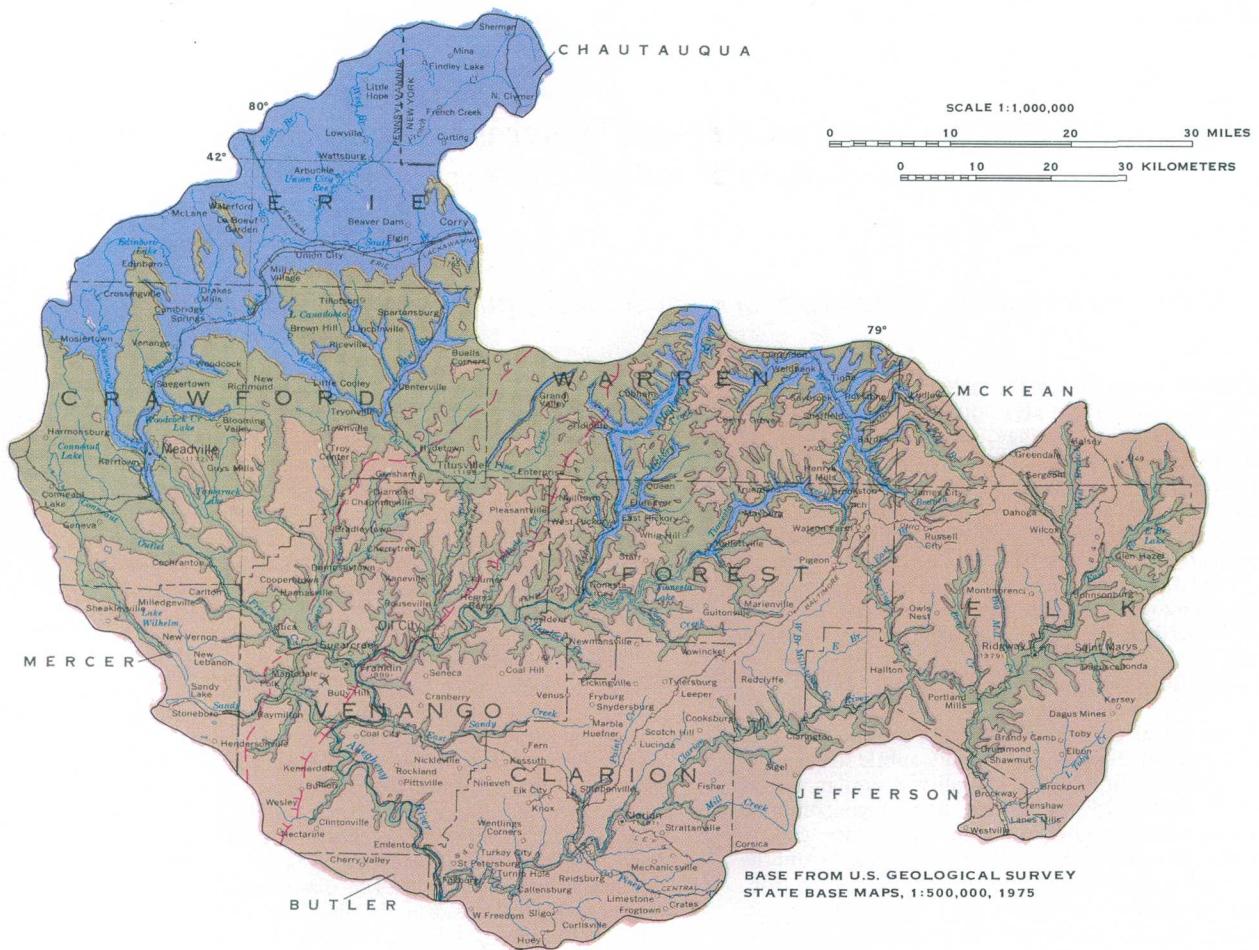
*Well yields range from less than 1 to more than 2,000 gallons per minute depending on aquifer material, bedrock fracturing, and topographic location.*

Water availability and well yields involve many variables. Water yields are greater in valleys than on hilltops as a result of greater aquifer permeability and storage and shallower depths to water. Wells in unconsolidated materials generally have higher yields than bedrock wells especially in locations of thick valley fill. Wide ranges of well yields can occur in bedrock wells due to the amount of fracturing and the lithology of the bedrock unit. Generally, greater recharge is available to bedrock aquifers overlain by glacial drift and aquifers in unconsolidated materials. Such areas are flatter and more pervious which result in reduced surface runoff.

Glacial deposits are locally the best source of large ground-water supplies. Glacial drift is generally divided into outwash and till deposits. Glacial outwash is generally well sorted coarse-grained sands and gravels that have large yields. The range of well yields from outwash is from less than 1 to 2,050 gpm (gallons per minute) and the median is 15 gpm. Lake deposits, which are also outwash, can be fine-grained sands, silts, and clays having low yields. Glacial outwash is commonly found along major drainages and their tributaries northwest of the Illinoian boundary (fig. 10.4-1). However, outwash also occurs southeast of this limit along the Allegheny River and Tionesta Creek. Outwash is over 100 feet thick locally in the major valleys. Till is poorly sorted material. Well yields range from less than 1 to 50 gpm with a median of 6 gpm. The till covering bedrock in the uplands is usually thin, but till in the valleys can be tens of feet thick.

Alluvium may also be a large source of ground-water supplies locally. Alluvial materials are usually highly permeable and are found along most drainage bottoms in

the area. Well yields can range from less than 1 to 200 gpm with a median of 20 gpm.


The rocks of the Mississippian generally have the highest well yields of all bedrock aquifers tapped by wells in Area 2 (fig. 10.4-1). The range is from less than 1 to 550 gpm, depending upon the extent of weathering and fractures. The median yield is about 20 gpm. The higher yields come from highly fractured sandstones whereas lower yields come from poorly fractured shales.

Generally the Pennsylvanian formations (fig. 10.4-1) contain a larger percentage of finer-grained sediments than formations of the Mississippian in Area 2. Most water occurs within fractured sandstones of the Allegheny and Pottsville Groups, but some occurs along the bedding planes of the numerous beds of alternating sandstone and shale. The well yields range from less than 1 to 300 gpm with a median of 10 gpm.

The Upper Devonian rocks are predominantly shales and siltstones that are poorly fractured and yield little water to wells (fig. 10.4-1). Well yields range from less than 1 to 60 gpm with a median of 6 gpm.

Springs discharge a limited water supply in Area 2. Springs usually occur above relatively impermeable rock layers found along hillsides and upland draws.

Hydrologic and geologic data used in this section are from Bloyd (1974), Buckwalter and others (1981), and Schiner and Gallaher (1979).



### EXPLANATION

Yields to wells, in gallons per minute

#### BEDROCK

- Pennsylvanian**  
From less than 1 to 300, median 10
- Mississippian**  
From less than 1 to 550, median 20
- Devonian**  
From less than 1 to 60, median 6

#### UNCONSOLIDATED

- Southeastern limit of Wisconsin Glaciation**
- Southeastern limit of Illinoian Glaciation**
- Glacial drift (not shown on map)**  
Outwash from less than 1 to more than 200, median 15  
Till from less than 1 to 50, median 6

Figure 10.4-1 Sources of ground water.

## 10.0 GROUND WATER--Continued

### 10.5 Quality

## Chemical Quality of Ground Water is Variable, but Generally Satisfactory

*Ground-water quality is adequate for most domestic purposes, except locally.*

The quality of ground water in Area 2 is highly variable. Chemical quality for major aquifer units (fig. 10.5-1) is shown in table 10.5-1. Range, mean, and median are given for each constituent. Medians provide the best indication of typical chemical character over the area. Extremely high and low values, generally resulting from local effects, have less influence on the computation of the median as compared to the mean. The overall chemical character of water tabulated for the Devonian aquifers may not be accurately represented because of the low number of samples. Nevertheless, iron, chloride, specific conductance, and hardness are probably representative of the Devonian aquifers.

Comparison of constituent medians between the major aquifer units of the area shows only subtle differences in natural water quality. Overall quality is similar among the Pennsylvanian, Mississippian, and unconsolidated aquifers; the water is good for most uses, but greater hardness ( $\text{CaCO}_3$ ) and higher pH can be expected from the Devonian and unconsolidated aquifers. Values of iron, manganese, and pH which are outside the limits for public water supply (U.S. Environmental Protection Agency, 1977) occur locally within these aquifers. Iron exceeds the 0.3 mg/L (milligrams per liter) limit in Pennsylvanian and Mississippian age rocks. Manganese exceeds the 0.05 mg/L limit in Pennsylvanian, Mississippian and unconsolidated rocks. Median pH values in Pennsylvanian rocks are locally below the 6.5 recommended limit.

Even though the most saline water of the area occurs in the Devonian aquifers, none of the median values exceed the recommended limits for public water supply. Water from these rocks has the lowest median concentrations of iron, manganese, and sulfate. Median dissolved solids are 300 mg/L.

The most important factors affecting ground-water quality in the area are rock type and residence time (duration of contact between water and rock). The occurrence of coal, organic-type claystones, and associated iron pyrite in the Pennsylvanian rocks marks the most significant lithologic difference between these and Mississippian

rocks. Consequently, iron and sulfate concentrations are higher and pH is lower in water of the Pennsylvanian aquifer. Other concentrations of constituents compare favorably between the major aquifers. Devonian rocks, which contain numerous marine-deposited shales and brine, yield water of relatively high salinity for the area. The unconsolidated deposits contain poorly soluble siliceous material. Ground-water quality from these aquifers more closely resembles the Pennsylvanian and Mississippian water quality.

Residence time causes large variations of chemical character within each major aquifer unit in Area 2. Ground water near recharge areas typically is a calcium and or magnesium bicarbonate type with low dissolved solids, and moderate sulfate and pH. Such water is therefore common in the unconsolidated aquifers and in most shallow bedrock aquifers along hilltops. Along the ground-water flow path away from recharge and toward discharge areas, residence time becomes greater. Ground water becomes softer and increases in dissolved solids. Sodium and bicarbonate are usually the principal ions. Deep bedrock aquifers and aquifers at intermediate depth beneath valleys generally have sodium-bicarbonate type water. Connate waters (water entrapped in sediments at the time for their deposition) have high dissolved solids, mostly sodium and chloride, and some heavy metals. Such poor quality water occurs at shallow depths (generally more than 50 feet) below some Devonian unit outcrops. Saline water can also be found at depths greater than 300 feet below major drainage bottoms in the area.

Coal mining activity in Area 2 typically exposes iron sulfides (pyrite) to oxidation. Water in contact with these materials usually is high in dissolved solids, iron, manganese, sulfate, and acidity (low pH). Such conditions in ground water are responsible for the higher mean values of these constituents in the Pennsylvanian and Mississippian rocks. Basic data used to compile table 10.5-1 may be obtained from published reports. (See Frimpter, 1974; p. 96-98 and Koester and Miller, 1980, p. 26-52.)

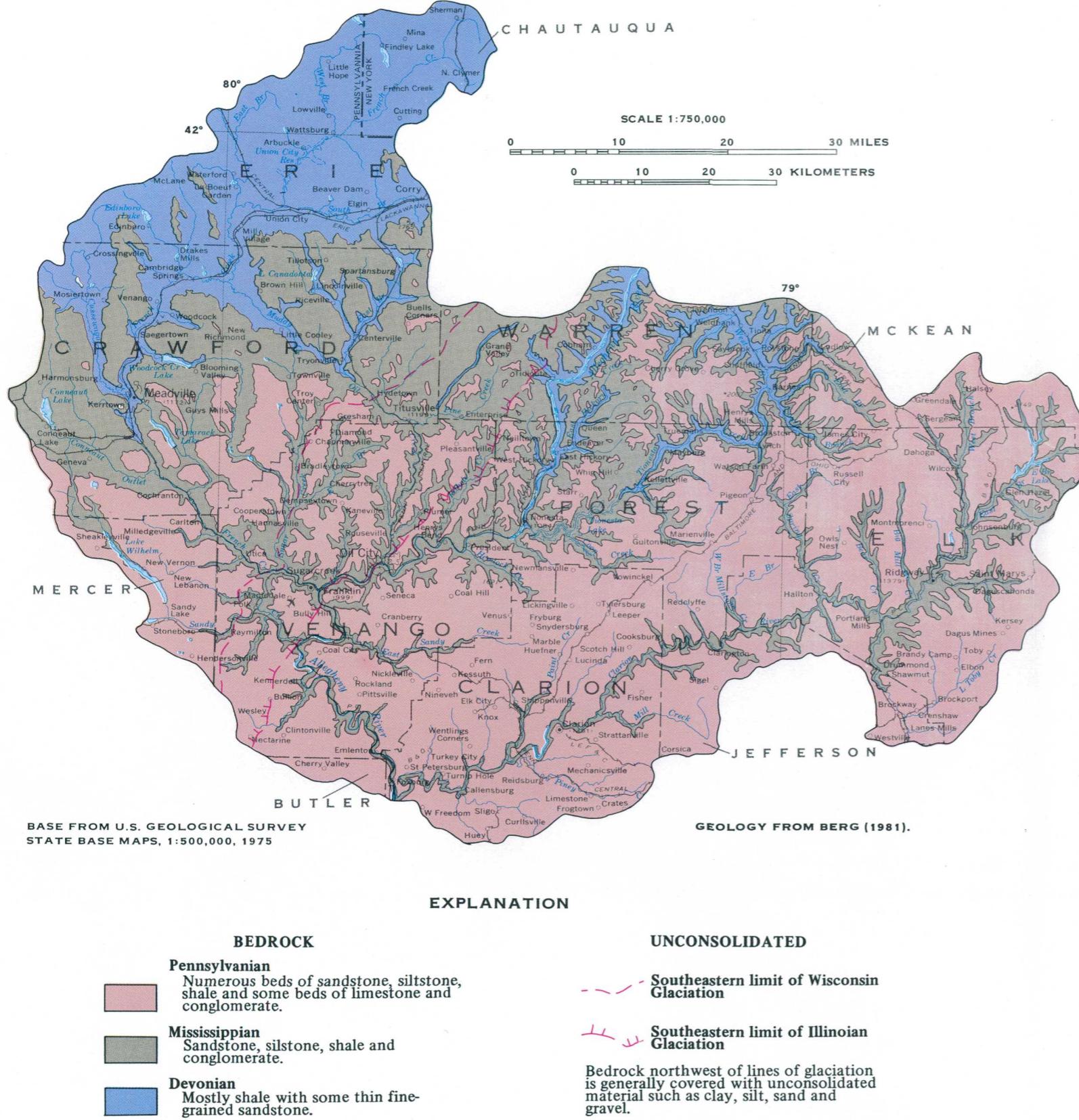



Table 10.5-1 Ground-water chemical quality.

| Water-quality constituent              | Number of samples | Pennsylvanian |         |       |        | Mississippian           |         |         |      |
|----------------------------------------|-------------------|---------------|---------|-------|--------|-------------------------|---------|---------|------|
|                                        |                   | Minimum       | Maximum | Mean  | Median | Number of samples       | Minimum | Maximum | Mean |
|                                        |                   |               |         |       |        |                         |         |         |      |
| Calcium (mg/L)                         | 61                | 1.0           | 280     | 47    | 15     | 37                      | 1       | 84      | 30   |
| Magnesium (mg/L)                       | 60                | 0.5           | 550     | 35    | 6.5    | 36                      | 0.1     | 25      | 7.8  |
| Sodium (mg/L)                          | 75                | 0.2           | 340     | 22    | 1.7    | 34                      | 0.1     | 980     | 92   |
| Potassium (mg/L)                       | 46                | 0.3           | 9.8     | 2.6   | 1.6    | 32                      | 1.4     | 8.5     | 2.9  |
| Iron (mg/L)                            | 152               | 0.0           | 500     | 24    | 3.4    | 62                      | 0.01    | 250     | 10   |
| Manganese (mg/L)                       | 149               | 0.0           | 40      | 2.6   | .55    | 48                      | 0.0     | 40      | 1.4  |
| Bicarbonate (mg/L)                     | 153               | 0.0           | 260     | 47    | 22     | 48                      | 0.0     | 410     | 140  |
| Sulfate (mg/L)                         | 75                | 0.2           | 3,400   | 290   | 25     | 43                      | 0.2     | 670     | 63   |
| Chloride (mg/L)                        | 85                | 0.3           | 580     | 23    | 5.3    | 57                      | 0.6     | 1,600   | 85   |
| Nitrate (mg/L)                         | 47                | 0.0           | 40      | 2.6   | 0.3    | 28                      | 0.0     | 4.2     | 0.8  |
| Specific conductance (umho/cm at 25°C) | 147               | 25            | 5,800   | 486   | 185    | 53                      | 85      | 4,230   | 667  |
| Dissolved solids (mg/L)                | 61                | 19            | 7,400   | 566   | 119    | 40                      | 46      | 2,710   | 363  |
| pH (units)                             | 134               | 2.7           | 8.1     | 6.0   | 6.2    | 43                      | 3.9     | 8.3     | 6.7  |
| Hardness (mg/L CaCO <sub>3</sub> )     | 154               | 5             | 3,000   | 190   | 68     | 59                      | 3       | 500     | 120  |
|                                        |                   | Devonian      |         |       |        | Unconsolidated aquifers |         |         |      |
| Calcium (mg/L)                         | 6                 | 11            | 180     | 92    | 62     | 29                      | 4.5     | 90      | 46   |
| Magnesium (mg/L)                       | 6                 | 2.4           | 48      | 23    | 15     | 23                      | 3.8     | 14      | 9.4  |
| Sodium (mg/L)                          | 8                 | 4             | 2,700   | 870   | 80     | 25                      | 1.5     | 57      | 17   |
| Potassium (mg/L)                       | 4                 | 1.6           | 40      | 25    | 13     | 20                      | 0.5     | 14      | 3.4  |
| Iron (mg/L)                            | 35                | 0.0           | 38      | 1.2   | .10    | 84                      | 0.0     | 3.3     | .32  |
| Manganese (mg/L)                       | 7                 | 0.0           | .70     | .20   | .05    | 21                      | 0.0     | .40     | .09  |
| Bicarbonate (mg/L)                     | 7                 | 90            | 3,340   | 680   | 240    | 37                      | 6       | 270     | 160  |
| Sulfate (mg/L)                         | 9                 | 0.2           | 74      | 27    | 13     | 37                      | 0.2     | 80      | 30   |
| Chloride (mg/L)                        | 39                | 3             | 4,500   | 310   | 11     | 88                      | 2       | 1,200   | 36   |
| Nitrate (mg/L)                         | 5                 | 0.0           | 6.2     | 2.1   | 0.3    | 35                      | 0.0     | 9.3     | 1.4  |
| Specific conductance (umho/cm at 25°C) | 36                | 245           | 13,000  | 1,370 | 320    | 65                      | 200     | 4,800   | 477  |
| Dissolved solids (mg/L)                | 10                | 165           | 8,100   | 2,300 | 300    | 30                      | 88      | 461     | 245  |
| pH (units)                             | 8                 | 7.1           | 8.1     | 7.8   | 7.8    | 26                      | 5.0     | 8.2     | 7.5  |
| Hardness (mg/L CaCO <sub>3</sub> )     | 37                | 25            | 630     | 160   | 130    | 84                      | 10      | 720     | 140  |

Figure 10.5-1 Geology.



## **11.0 WATER-DATA SOURCES**

### *11.1 Introduction*

## **NAWDEX, WATSTORE, OWDC have Water Data Information**

*Water data are collected in coal areas by a large number of organizations in response to a wide variety of missions and needs.*

Within the U.S. Geological Survey there are three activities that help to identify and improve access to the vast amount of existing water data.

(1) The National Water Data Exchange (NAWDEX), which indexes the water data available for over 400 organizations and serves as a central focal point to help those in need of water data to determine what information already is available.

(2) The National Water Data Storage and Retrieval System (WATSTORE), which serves as the central repository of water data collected by the U.S. Geological Survey

and which contains large volumes of data on the quantity and quality of both surface and ground waters.

(3) The Office of Water Data Coordination (OWDC), which coordinates Federal water-data acquisition activities and maintains a "Catalog of Information on Water Data." To assist in identifying available water-data activities in coal provinces of the United States special indexes to the Catalog are being printed and made available to the public.

A more detailed explanation of these three activities is given in sections 11.2, 11.3, and 11.4.

## 11.0 WATER-DATA SOURCES--Continued

### 11.2 National Water Data Exchange (NAWDEX)

## NAWDEX Simplifies Access to Water Data

*The National Water-Data Exchange (NAWDEX) is a nationwide program managed by the U.S. Geological Survey to assist users of water data or water-related data in identifying, locating, and acquiring needed data.*

NAWDEX is a national confederation of water-oriented organizations working together to make their data more readily accessible and to facilitate a more efficient exchange of water data.

Services are available through a Program Office located at the U.S. Geological Survey's National Center in Reston, Virginia, and a nationwide network of Assistance Centers located in 45 States and Puerto Rico, which provide local and convenient access to NAWDEX facilities (see fig. 11.2-1). A directory is available on request that provides names of organizations and persons to contact, addresses, telephone numbers, and office hours for each of these locations [Directory of Assistance Centers of the National Water Data Exchange (NAWDEX), U.S. Geological Survey Open-File Report 79-423 (revised)].

NAWDEX can assist any organization or individual in identifying and locating needed water data and referring the requester to the organization that retains the data required. To accomplish this service, NAWDEX maintains a computerized Master Water Data Index (fig. 11.2-2), which identifies sites for which water data are available, the type of data available for each site, and the organization retaining the data. A Water Data Sources Directory (fig. 11.2-3) also is maintained that identifies organizations that are sources of water data and the locations within these organizations from which data may be obtained. In addition NAWDEX has direct access to some large water-data bases of its members and has reciprocal agreements for the exchange of services with others.

Charges for NAWDEX services are assessed at the option of the organization providing the requested data or data service. Search assistance services are provided free by NAWDEX to the greatest extent possible. Charges are assessed, however, for those requests requiring computer

cost, extensive personnel time, duplicating services, or other costs encountered by NAWDEX in the course of providing services. In all cases, charges assessed by NAWDEX Assistance Centers will not exceed the direct costs incurred in responding to the data request. Estimates of cost are provided by NAWDEX upon request and in all cases where costs are anticipated to be substantial.

For additional information concerning the NAWDEX program or its services contact:

Program Office  
National Water Data Exchange (NAWDEX)  
U.S. Geological Survey  
421 National Center  
12201 Sunrise Valley Drive  
Reston, Virginia 22092

Telephone: (703) 860-6031  
FTS 928-6031

Hours: 7:45-4:15 Eastern Time

or

U.S. Geological Survey  
Water Resources Division  
4th Floor, Federal Building  
P.O. Box 1107  
Harrisburg, Pennsylvania 17108

Telephone: (717) 782-3851  
FTS 590-3851

Hours: 8:00-4:00 Eastern Time

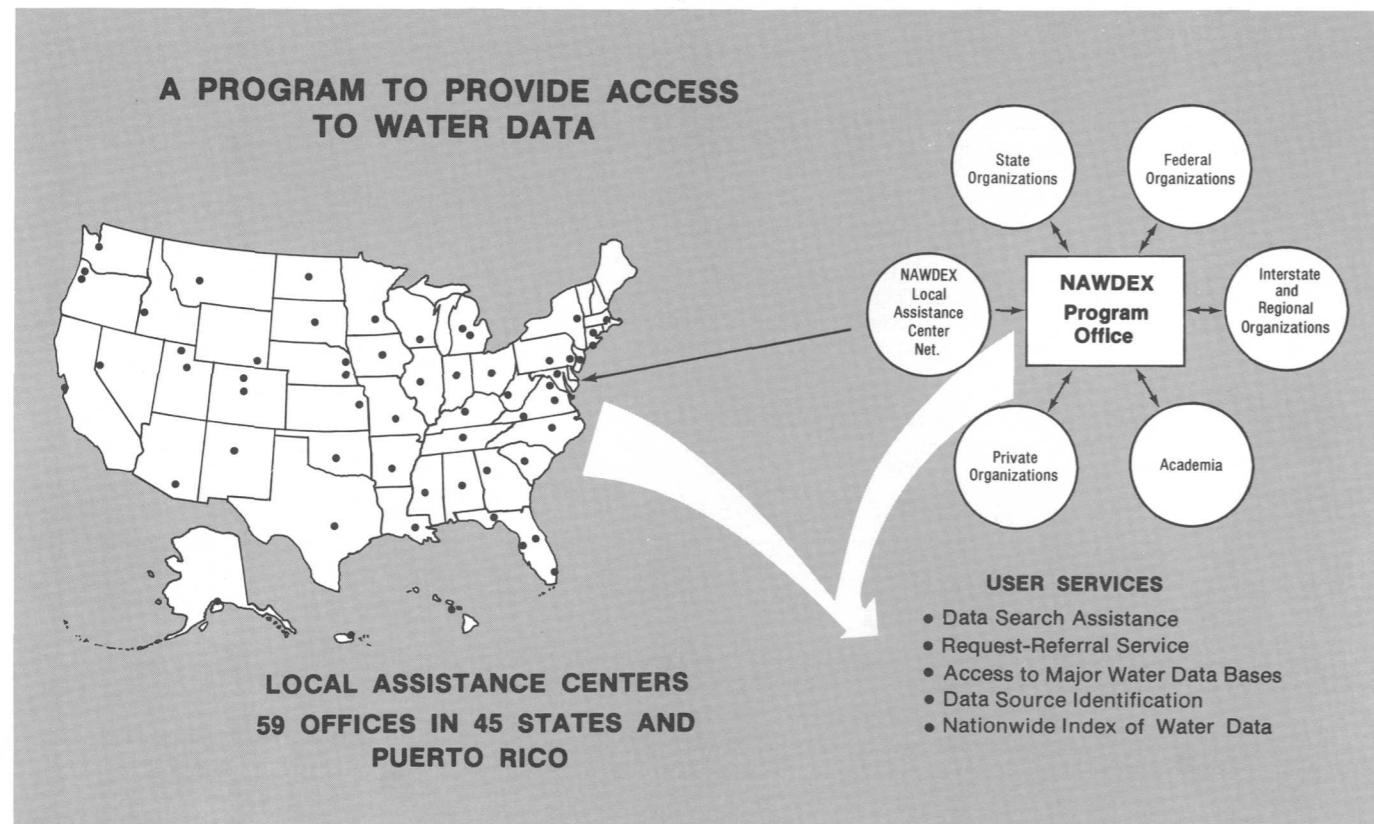



Figure 11.2-1 Access to water data.

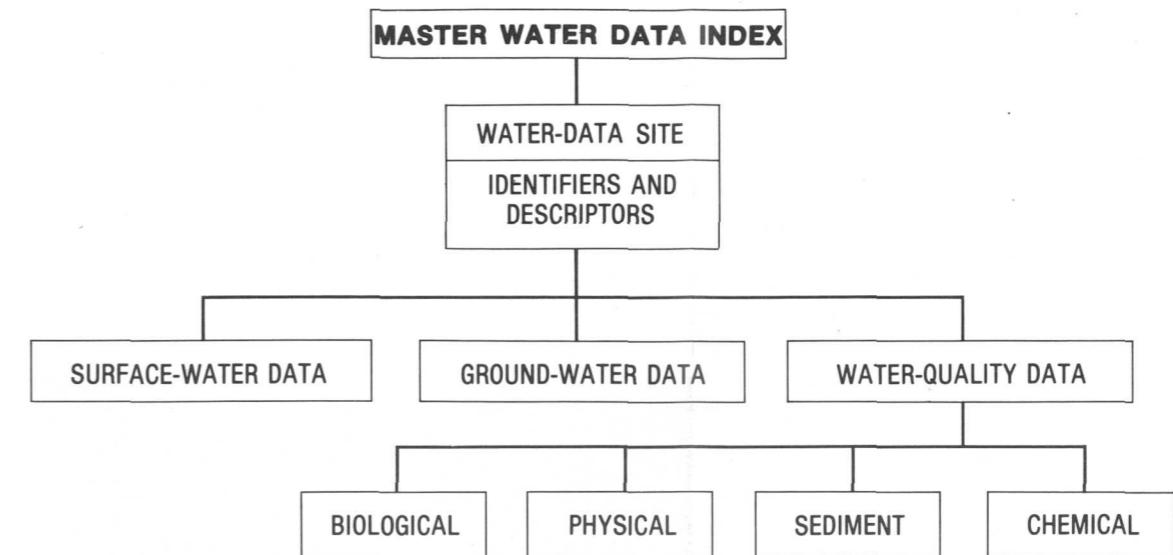



Figure 11.2-2 Master water-data index.

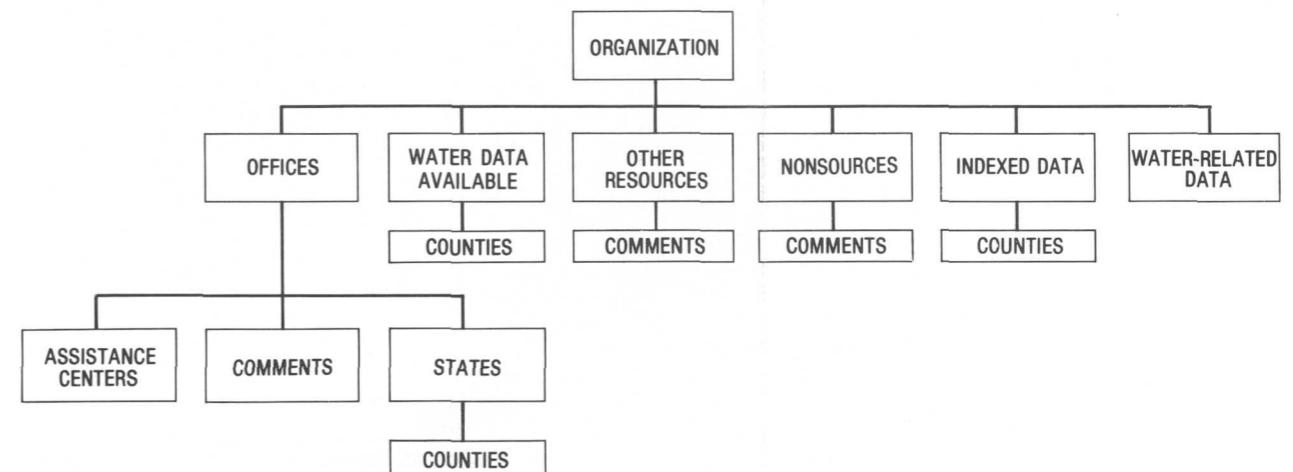



Figure 11.2-3 Water-data sources directory.

## 11.0 WATER-DATA SOURCES--Continued

### 11.3 WATSTORE

## WATSTORE Automated Data System

*The National Water Data Storage and Retrieval System (WATSTORE) of the U.S. Geological Survey provides computerized procedures and techniques for processing water data and provides effective and efficient management of data-releasing activities.*

The National Water Data Storage and Retrieval System (WATSTORE) was established in November 1971 to computerize the U.S. Geological Survey's existing water-data system and to provide for more effective and efficient management of its data-releasing activities. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia. Data may be obtained from WATSTORE through the Water Resources Division's 46 district offices. General inquiries about WATSTORE may be directed to:

Chief Hydrologist  
U.S. Geological Survey  
437 National Center  
Reston, Virginia 22092

or

U.S. Geological Survey  
Water Resources Division  
4th Floor, Federal Building  
P.O. Box 1107  
Harrisburg, Pennsylvania 17108

The Geological Survey currently (1980) collects data at approximately 16,000 streamgaging stations, 1,000 lakes and reservoirs, 5,200 surface-water quality stations, 1,020 sediment stations, 30,000 water-level observation wells, and 12,500 ground-water quality wells. Each year many water-data collection sites are added and others are discontinued; thus, large amounts of diversified data, both current and historical, are amassed by the Survey's data-collection activities.

The WATSTORE system consists of several files in which data are grouped and stored by common characteristics and data-collection frequencies. The system also is designed to allow for the inclusion of additional data files as needed. Currently, files are maintained for the storage of: (1) surface-water, quality-of-water, and ground-water data measured on a daily or continuous basis; (2) annual peak values for streamflow stations; (3) chemical analyses for surface- and ground-water sites; (4) water parameters measured more frequently than daily; and (5) geologic and inventory data for ground-water sites. In addition, an index file of sites for which data are stored in the system is also maintained (fig. 11.3-1). A brief description of each file is as follows.

**Station Header File:** All sites for which data are stored in the Daily Values, Peak Flow, Water-Quality, and Unit Values files of WATSTORE are indexed in this file. It contains information pertinent to the identification, location, and physical description of nearly 220,000 sites.

**Daily Values File:** All water-data parameters measured or observed either on a daily or on a continuous basis and numerically reduced to daily values are stored in this file. Instantaneous measurements at fixed-time intervals, daily mean values, and statistics such as daily maximum and minimum values also may be stored. This file currently contains over 200 million daily values including data on streamflow, river stages, reservoir contents, water temperatures, specific conductance, sediment concentrations, sediment discharges, and ground-water levels.

**Peak Flow File:** Annual maximum (peak) streamflow (discharge) and gage height (stage) values at surface-water sites comprise this file, which currently contains over 400,000 peak observations.

**Water-Quality File:** Results of over 1.4 million analyses of water samples that describe the chemical, physical, biological, and radiochemical characteristics of both surface and ground waters are contained in this file. These analyses contain data for 185 different constituents.

**Unit Values File:** Water parameters measured on a schedule more frequent than daily are stored in this file. Rainfall, stream discharge, and temperature data are examples of the types of data stored in the Unit Values File.

**Ground-Water Site-Inventory File:** This file is maintained within WATSTORE independent of the files discussed above, but it is cross-referenced to the Water-Quality File and the Daily Values File. It contains inventory data about wells, springs, and other sources of ground water. The data included are site location and identification, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature. The file is designed to accommodate 255 data elements and currently contains data for nearly 700,000 sites.

All data files of the WATSTORE system are maintained and managed on the central computer facilities of the Geological Survey at its National Center. However, data may be entered into or retrieved from WATSTORE at

a number of locations that are part of a nationwide telecommunication network.

**Remote Job Entry Sites:** Almost all of the Water Resources Division's district offices are equipped with high-speed computer terminals for remote access to the WATSTORE system. These terminals allow each site to put data into or retrieve data from the system within several minutes to overnight, depending upon the priority placed on the request. The number of remote job entry sites is increased as the need arises.

**Digital Transmission Sites:** Digital recorders are used at many field locations to record values for parameters such as river stages, conductivity, water temperature, turbidity, wind direction, and chlorides. Data are recorded on 16-channel paper tape, which is removed from the recorder and transmitted over telephone lines to the receiver at Reston, Va. The data are recorded on magnetic tape for use on the central computer. Extensive testing of satellite data collection platforms indicates their feasibility for collecting real-time hydrologic data on a national scale. Battery-operated radios are used as the communication link to the satellite. About 200 data relay stations are being operated currently (1980).

**Central Laboratory System:** The Water Resources Division's two water-quality laboratories, located in Denver, Colorado, and Atlanta, Georgia, analyze more than 150,000 water samples per year. These laboratories are equipped to automatically perform chemical analyses ranging from determinations of simple inorganic compounds, such as chloride, to complex organic compounds, such as pesticides. As each analysis is completed, the results are verified by laboratory personnel and transmitted via a computer terminal to the central computer facilities to be stored in the Water-Quality File of WATSTORE.

Water data are used in many ways by decisionmakers for the management, development, and monitoring of our water resources. In addition to its data processing, storage,

and retrieval capabilities, WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester.

**Computer-Printed Tables:** Users most often request data from WATSTORE in the form of tables printed by the computer. These tables may contain lists of actual data or condensed indexes that indicate the availability of data stored in the files. A variety of formats is available to display the many types of data.

**Computer-Printed Graphs:** Computer-printed graphs for the rapid analysis or display of data are another capability of WATSTORE. Computer programs are available to produce bar graphs (histograms), line graphs, frequency distribution curves, X-Y point plots, site-location map plots, and other similar items by means of line printers.

**Statistical Analyses:** WATSTORE interfaces with a proprietary statistical package (SAS) to provide extensive analyses of data such as regression analyses, the analysis of variance, transformations, and correlations.

**Digital Plotting:** WATSTORE also makes use of software systems that prepare data for digital plotting on peripheral offline plotters available at the central computer site. Plots that can be obtained include hydrographs, frequency distribution curves, X-Y point plots, contour plots, and three-dimensional plots.

**Data in Machine-Readable Form:** Data stored in WATSTORE can be obtained in machine-readable form for use on other computers or for use as input to user-written computer programs. These data are available in the standard storage format of the WATSTORE system or in the form of punched cards or card images on magnetic tape.

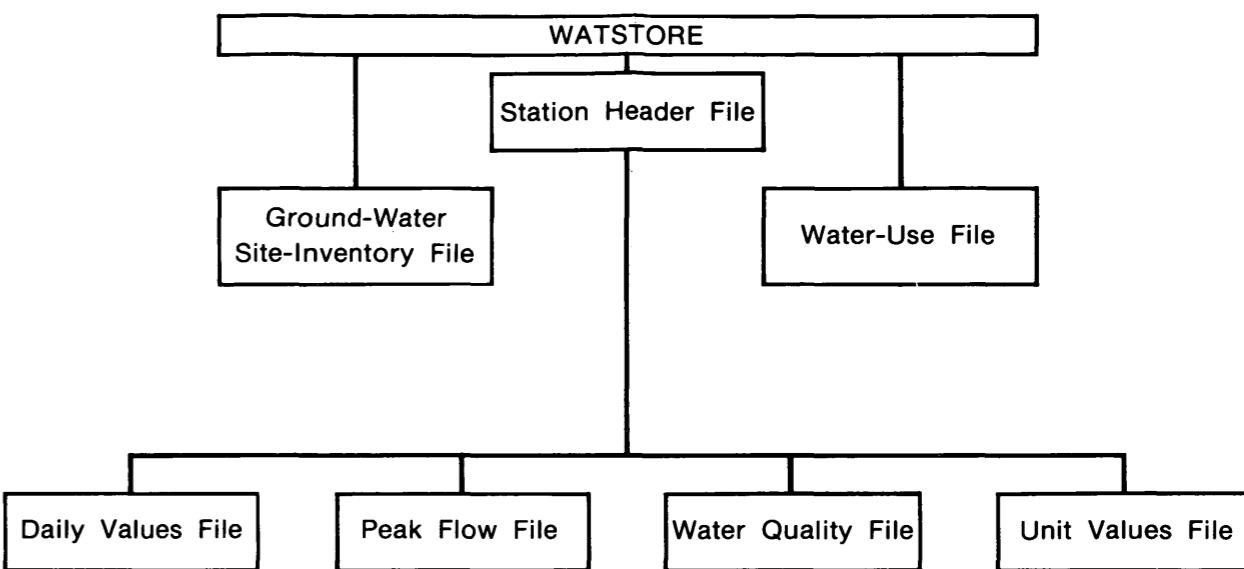



Figure 11.3-1 Index file stored data.

## 11.0 WATER-DATA SOURCES--Continued

### 11.4 Index to Water-Data Activities in Coal Provinces

## Water Data Indexed for Coal Provinces

*A special index, "Index to Water-Data Activities in Coal Provinces of the United States," has been published by the U.S. Geological Survey's Office of Water Data Coordination (OWDC).*

The "Index to Water-Data Activities in Coal Provinces of the United States" was prepared to assist those involved in developing, managing, and regulating the Nation's coal resources by providing information on the availability of water-resources data in the major coal provinces of the United States. It is derived from the "Catalog of Information on Water Data," which is a computerized information file about water-data acquisition activities in the United States, and its territories and possessions, with some international activities included.

This special index consists of five volumes (fig. 11.4-1): Volume I, Eastern Coal province; Volume II, Interior Coal province; Volume III, Northern Great Plains and Rocky Mountain Coal provinces; Volume IV, Gulf Coast Coal province; and Volume V, Pacific Coast and Alaska Coal provinces. The information presented will aid the user in obtaining data for evaluating the effects of coal mining on water resources and in developing plans for meeting additional water-data needs. The report does not contain the actual data; rather, it provides information that will enable the user to determine if needed data are available.

Each volume of this special index consists of four parts: Part A, Streamflow and Stage Stations; Part B, Quality of Surface-Water Stations; Part C, Quality of Ground-Water Stations; and Part D, Areal Investigations

and Miscellaneous Activities. Information given for each activity in Parts A-C includes: (1) the identification and location of the station, (2) the major types of data collected, (3) the frequency of data collection, (4) the form in which the data are stored, and (5) the agency or organization reporting the activity. Part D summarizes areal hydrologic investigations and water-data activities not included in the other parts of the index. The agencies that submitted the information, agency codes, and the number of activities reported by type are shown in a table.

Those who need additional information from the Catalog file or who need assistance in obtaining water data should contact the National Water Data Exchange (NAWDEX) (See section 11.2).

Further information on the index volumes and their availability may be obtained from:

U.S. Geological Survey  
Water Resources Division  
4th Floor, Federal Building  
P.O. Box 1107  
Harrisburg, Pennsylvania 17108

Telephone (717) 782-3851  
FTS 590-3851

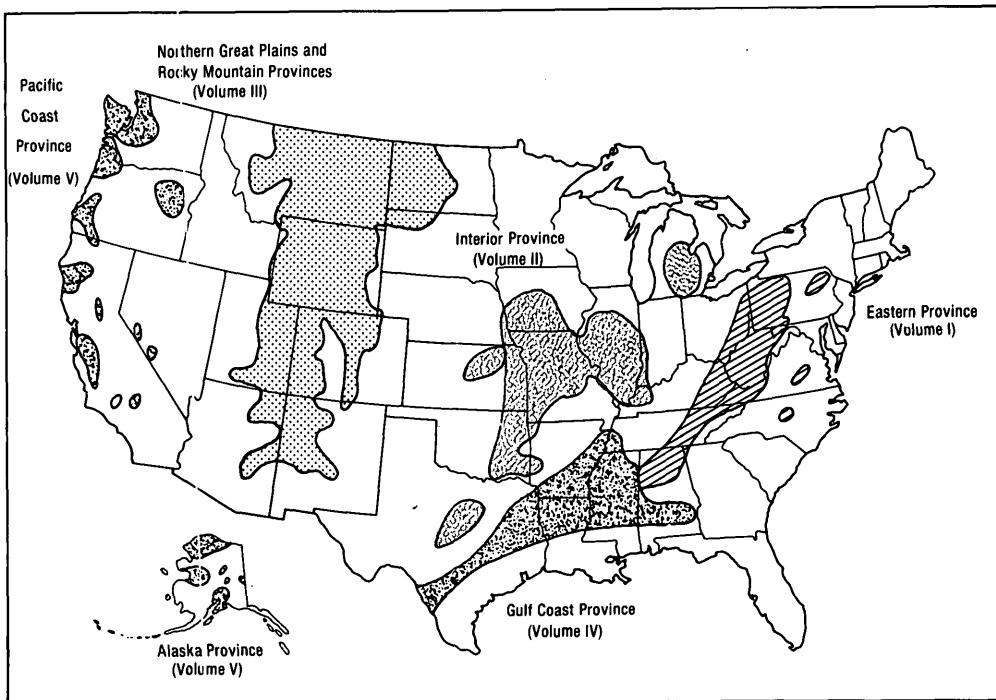



Figure 11.4-1 Index volumes and related provinces.

## 11.0 WATER-DATA SOURCES--Continued

### 11.4 Index to Water-Data Activities in Coal Provinces

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2

### 12.1 Surface-Water Sites

#### Surface-water sites in Area 2.

| Reference No. | USGS station number | Station name                          | Drainage area (mi <sup>2</sup> ) | Surface-water records |         |                |                |
|---------------|---------------------|---------------------------------------|----------------------------------|-----------------------|---------|----------------|----------------|
|               |                     |                                       |                                  | Quantity              |         | Station Record | Quality Record |
|               |                     |                                       |                                  | type 2                | period  |                |                |
| 1             | 03015550            | Perry McGee Run near Tidioute         | 5.78                             | 414219                | 0792115 | MI             | 6/79-8/80      |
| 2             | 03015560            | Tidioute Creek at Tidioute            | 19.8                             | 414000                | 0792435 | MI             | 6/79-8/80      |
| 3             | 03015700            | Beaver Run at Endrever                | 9.4                              | 413512                | 0792117 | MI             | 6/79-8/80      |
| 4             | 03015798            | E Hickory Run at Queen                | 23.6                             | 413732                | 0792144 | MI             | 6/79-8/80      |
| 5             | 03016000            | Allegheny River at West Hickory       | 3,660                            | 413415                | 0792429 | CR             | 10/41-8/80     |
| 6             | 03016005            | L Hickory Run at West Hickory         | 7.52                             | 413328                | 0792456 | MI             | 6/79-8/80      |
| 7             | 03016100            | W Hickory Creek near West Hickory     | 18.0                             | 413432                | 0792620 | LF             | 6/79-8/80      |
| 8             | 03016200            | Elkhorn Run at Buchers Mills          | 4.31                             | 414535                | 0791011 | MI             | 6/79-8/80      |
| 9             | 03016300            | Farnsworth Br near Clarendon          | 11.7                             | 414437                | 0790821 | MI             | 6/79-8/80      |
| 10            | 03016805            | S Br Tionesta Creek at Cherry Run     | 41.3                             | 413803                | 0785950 | MI             | 6/79-8/80      |
| 11            | 03016900            | Twomile Run at Sheffield              | 29.4                             | 414215                | 0790121 | MI             | 6/79-8/80      |
| 12            | 03017500            | Tionesta Creek at Lynch               | 233                              | 413607                | 0790301 | CR             | 10/37-9/79     |
| 13            | 03017510            | Bluejay Creek at Lynch                | 16.6                             | 413435                | 0790256 | MI             | 6/79-8/80      |
| 14            | 03017700            | Upper Sheriff Run near Lynch          | 4.44                             | 413704                | 0790647 | MI             | 6/79-8/80      |
| 15            | 03017800            | Minister Creek near Truemans          | 10.8                             | 413716                | 0790912 | CR-LF          | 6/79-8/80      |
| 16            | 03017810            | The Branch at Kellettville            | 14.0                             | 413231                | 0791440 | MI             | 6/79-8/80      |
| 17            | 03017820            | Ross Run near Crystal Springs         | 8.53                             | 413053                | 0791930 | MI             | 6/79-8/80      |
| 18            | 03018900            | Coon Creek near Newmansville          | 34.2                             | 412624                | 0791944 | MI             | 6/79-8/80      |
| 19            | 03020000            | Tionesta Creek at Tionesta Dam        | 479                              | 412844                | 0792626 | CR             | 6/40-9/80      |
| 20            | 03020055            | L Tionesta Creek at Tionesta          | 11.4                             | 412755                | 0792825 | MI             | 6/79-8/80      |
| 21            | 03020100            | Stewart Run at Baum                   | 12.6                             | 412828                | 0793232 | MI             | 6/79-8/80      |
| 22            | 03020200            | Hemlock Run at President              | 49.2                             | 412704                | 0793325 | MI             | 6/79-8/80      |
| 23            | 03020250            | Pithole Creek near Lovell Corners     | 21.5                             | 413205                | 0793351 | MI             | 6/79-8/80      |
| 24            | 03020428            | Thompson Creek near Hydetown          | 23.7                             | 413942                | 0794158 | MI             | 7/79-8/80      |
| 25            | 03020438            | Caldwell Creek at Grand Valley        | 10.9                             | 414236                | 0793244 | MI             | 7/78-8/80      |
| 26            | 03020445            | W Br Caldwell Creek near Grand Valley | 12.9                             | 414316                | 0793449 | MI             | 7/79-8/80      |
| 27            | 03020455            | Pine Creek near Enterprise            | 30.7                             | 413756                | 0793649 | MI             | 7/79-8/80      |
| 28            | 03020500            | Oil Creek at Rouseville               | 300                              | 412854                | 0794144 | CR             | 6/32-9/80      |
| 29            | 03020510            | Cherrytree Run near Rouseville        | 16.9                             | 412851                | 0794147 | MI             | 6/79-8/80      |
| 30            | 03021500            | French Creek at Carters Corner        | 208                              | 415720                | 0795240 | CR             | 10/09-9/71     |
| 31            | 03021610            | E Br Muddy Creek near Koochay Corners | 9.53                             | 414306                | 0795107 | MI             | 7/79-8/80      |
| 32            | 03021700            | L Conneautee Creek near McKeon        | 3.6                              | 415553                | 0800502 | CR             | 10/60-9/80     |
| 33            | 03022100            | Gravel Run near Woodcock              | 10.2                             | 414531                | 0800634 | MI             | 7/79-8/80      |
| 34            | 03022540            | Woodcock Creek at Blooming Valley     | 30.3                             | 414126                | 0800254 | CR             | 10/74-9/80     |
| 35            | 03023301            | Van Horne Creek at Kentown            | 5.26                             | 413704                | 0801015 | MI             | 7/79-8/80      |
| 36            | 03023338            | Watson Run at Watson Run              | 14.4                             | 413523                | 0801312 | MI             | 7/79-8/80      |
| 37            | 03023400            | L Sugar Creek at Cochranton           | 52.5                             | 413121                | 0800300 | MI             | 7/79-8/80      |
| 38            | 03024000            | French Creek at Utica                 | 1,028                            | 412115                | 0795722 | CR             | 8/32-9/80      |
| 39            | 03024003            | Mill Creek at Utica                   | 15.3                             | 412558                | 0795719 | MI             | 7/79-8/80      |
| 40            | 03024200            | W Br Sugar Creek near Bradleytown     | 10.5                             | 413431                | 0795154 | MI             | 7/79-8/80      |
| 41            | 03024210            | Prather Creek near Dempseytown        | 19.9                             | 413254                | 0794739 | MI             | 7/79-8/80      |
| 42            | 03024300            | Lake Creek at Cooperstown             | 34.3                             | 412952                | 0795222 | MI             | 7/79-8/80      |
| 43            | 03025000            | Sugar Creek at Sugar Creek            | 166                              | 412543                | 0795248 | CR             | 8/32-9/80      |
| 44            | 03025200            | Patchel Run near Franklin             | 5.69                             | 412520                | 0795558 | CR             | 10/64-9/80     |
| 45            | 03025500            | Allegheny River at Franklin           | 5,982                            | 412322                | 0794914 | CR             | 10/14-9/80     |
| 46            | 03025505            | Lower Two Mile Run at Venango         | 12.3                             | 412236                | 0794757 | MI             | 7/79-8/80      |
| 47            | 03025790            | E Sandy Creek near Kossuth            | 29.9                             | 411900                | 0793514 | MI             | 6/79-8/80      |
| 48            | 03025810            | Pine Run at Nickleville               | 8.48                             | 411700                | 0793831 | MI             | 6/79-8/80      |
| 49            | 03026005            | McCutcheon Run at Sandy Lake          | 1.46                             | 412107                | 0800530 | MI             | 6/79-8/80      |
| 50            | 03026100            | L Sandy Creek at Polk                 | 20.4                             | 412214                | 0795523 | MI             | 7/79-8/80      |
| 51            | 03026200            | Scrubgrass Creek at Kennerdell        | 39.6                             | 411518                | 0795027 | MI             | 6/79-8/80      |

Surface-water sites in Area 2 (continued).

| Reference <sup>1</sup><br>No. | USGS<br>station<br>number | Station name                             | Drainage<br>area<br>(mi <sup>2</sup> ) | Latitude | Longitude | Surface-water records |                                        |                              |
|-------------------------------|---------------------------|------------------------------------------|----------------------------------------|----------|-----------|-----------------------|----------------------------------------|------------------------------|
|                               |                           |                                          |                                        |          |           | Quantity              | Station<br>record<br>type <sup>2</sup> | Station<br>type <sup>3</sup> |
| 52                            | 03026300                  | Mill Creek near Emleton                  | 13.9                                   | 411330   | 0794320   | MI                    | 6/79-8/80                              | SY                           |
| 53                            | 03026500                  | Seven-mile Run at Rasselas               | 7.84                                   | 413751   | 0783437   | CR                    | 10/51-9/80                             | SY                           |
| 54                            | 03027500                  | E Br Clarion River at E Br Clarion River | 73.2                                   | 413311   | 0783547   | CR                    | 10/48-9/80                             | --                           |
| 55                            | 03027550                  | Crooked Creek at Glen Hazel              | 9.71                                   | 413215   | 0783649   | MI                    | 6/79-8/80                              | SY                           |
| 56                            | 03027610                  | Johnson Run at Ketner Dam                | 8.32                                   | 413223   | 0783134   | MI                    | 6/79-8/80                              | SY                           |
| 57                            | 03027830                  | W Br Clarion River near Wilcox           | 27.4                                   | 413620   | 0784045   | MI                    | 6/79-8/80                              | SY                           |
| 58                            | 03027990                  | Wilson Run at Dahoga                     | 20.0                                   | 413556   | 0784335   | MI                    | 6/79-8/80                              | SY                           |
| 59                            | 03028000                  | W Br Clarion River at Wilcox             | 63                                     | 413431   | 078433    | CR                    | 10/53-9/80                             | --                           |
| 60                            | 03028500                  | Clarion River at Johnsonburg             | 204                                    | 412910   | 0784043   | CR                    | 10/45-9/80                             | --                           |
| 61                            | 03028520                  | Powers Run at Johnsonburg                | 11.8                                   | 412845   | 0784012   | MI                    | 6/79-8/80                              | SY                           |
| 62                            | 03028595                  | Silver Creek at Wilcox                   | 7.96                                   | 412957   | 0784103   | MI                    | 6/79-8/80                              | SY                           |
| 63                            | 03028800                  | Daguscahonda Creek near Daguscahonda     | 13.4                                   | 412509   | 0783832   | MI                    | 6/79-8/80                              | SY                           |
| 64                            | 03028803                  | Elk Creek at Daguscahonda                | 48.6                                   | 412504   | 0783917   | MI                    | 6/79-8/80                              | SY                           |
| 65                            | 03029120                  | Mill Creek near Ridgway                  | 31.5                                   | 412457   | 0784637   | MI                    | 6/79-8/80                              | SY                           |
| 66                            | 03029139                  | W Br Millstone Creek at Marlenville      | 11.4                                   | 412725   | 0790713   | MI                    | 6/79-8/80                              | SY                           |
| 67                            | 03029140                  | Brandy Camp Creek at Challenge           | 13.2                                   | 411720   | 0784119   | MI                    | 6/79-8/80                              | SY                           |
| 68                            | 03029144                  | Mead Run at Brockport                    | 7.37                                   | 411538   | 0784333   | MI                    | 6/79-8/80                              | SY                           |
| 69                            | 03029149                  | Rattlesnake Creek near Lanes Mills       | 17.0                                   | 411341   | 0784652   | MI                    | 6/79-8/80                              | SY                           |
| 70                            | 03029180                  | Bear Creek near Ridgway                  | 37.0                                   | 412351   | 0784924   | MI                    | 6/79-8/80                              | SY                           |
| 71                            | 03029182                  | Spring Creek at Duhring                  | 36.9                                   | 413057   | 0785936   | MI                    | 6/79-8/80                              | SY                           |
| 72                            | 03029188                  | Maxwell Run near Hallton                 | 14.7                                   | 412305   | 0785608   | MI                    | 6/79-8/80                              | SY                           |
| 73                            | 03029250                  | Maple Creek near Clarington              | 18.9                                   | 412030   | 0790888   | MI                    | 6/79-8/80                              | SY                           |
| 74                            | 03029400                  | Toms Run at Cooksburg                    | 11.8                                   | 412016   | 0791250   | CR                    | 10/59-9/80                             | SY                           |
| 75                            | 03029500                  | Clarion River at Cooksburg               | 807                                    | 411950   | 0791233   | CR                    | 10/38-8/80                             | PN                           |
| 76                            | 03029510                  | Cathers Run at Gravel Lick               | 17.9                                   | 411900   | 0791359   | MI                    | 6/79-8/80                              | SY                           |
| 77                            | 03029700                  | Mill Creek near Stratianville            | 53.7                                   | 411414   | 0791711   | MI                    | 6/79-8/80                              | SY                           |
| 78                            | 03030105                  | Toby Creek near Clarion                  | 34.5                                   | 411405   | 0792305   | MI                    | 6/79-8/80                              | SY                           |
| 79                            | 03030365                  | Deer Creek near Shippenville             | 62.5                                   | 411404   | 0792706   | MI                    | 6/79-8/80                              | SY                           |
| 80                            | 03030500                  | Clarion River near Piney                 | 951                                    | 411133   | 0792625   | CR                    | 10/44-8/80                             | --                           |
| 81                            | 03030570                  | Piney Creek near Limestone               | 19.2                                   | 410757   | 0792054   | MI                    | 6/79-8/80                              | SY                           |
| 82                            | 03030580                  | Brush Run at Williamsburg                | 11.2                                   | 411024   | 0792355   | MI                    | 6/79-8/80                              | SY                           |
| 83                            | 03030803                  | Beaver Creek below Blairs Corner         | 15.6                                   | 411038   | 0793337   | MI                    | 6/79-8/80                              | SY                           |
| 84                            | 03030900                  | Licking Creek near Callensburg           | 50.6                                   | 410725   | 0793406   | MI                    | 6/79-8/80                              | SY                           |
| 85                            | 03030948                  | Turkey Run at Alum Park                  | 11.3                                   | 411002   | 0793718   | MI                    | 6/79-8/80                              | SY                           |
| 86                            | 03031500                  | Allegheny River at Parker                | 7,671                                  | 410602   | 0794053   | CR                    | 10/32-8/80                             | PN                           |

<sup>1</sup>Used on figures

<sup>2</sup>Types of surface-water quantity stations (description and frequency of measurements given in Section 6.1).

CR = continuous-record

CS = crest-stage, partial record

LF = low-flow, partial record

MI = miscellaneous

PC = partial-record (coal hydrology)

PN = partial-record (non-coal hydrology)

SY = synoptic

<sup>3</sup>Types of surface-water quality stations (description and frequency of sampling given in Sections 6.2 and 6.3).

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

### 12.1 Surface-Water Sites

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

### 12.2 Selected Water-Quality Data for Surface-Water Stations 1979-80 Water Years

Water quality at surface-water sites in Area 2.

| STATION NUMBER | DATE OF SAMPLE | TIME | STREAM-FLOW, INSTANTANEOUS (CFS) | TEMPERATURE (DEG C) | SPECIFIC CONDUCTANCE (DEG C) | SOLIDS, RESIDUE AT 180 DEG C | ACIDITY (MG/L AS CACO3) | ALKALINITY FIELD (MG/L AS CACO3) | IRON, TOTAL RECOVERABLE (UG/L AS FE) | IRON, TOTAL DISOLVED (UG/L AS MN) | MANGANESE, TOTAL RECOVERABLE (UG/G AS FE) | IRON, FM BOT-RECOV. (MG/L AS FE) | MANGANESE, FM BOT-RECOV. (UG/G AS FE) | IRON, FM BOT-RECOV. (MG/L AS FE) | MANGANESE, FM BOT-RECOV. (UG/G AS FE) |
|----------------|----------------|------|----------------------------------|---------------------|------------------------------|------------------------------|-------------------------|----------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------|---------------------------------------|----------------------------------|---------------------------------------|
|                |                |      |                                  |                     |                              |                              |                         |                                  |                                      |                                   |                                           |                                  |                                       |                                  |                                       |
| 03015550       | 79-06-11       | 1610 | 12                               | 14.0                | 50                           | --                           | 6.6                     | .0                               | 6                                    | 480                               | 70                                        | 40                               | <10                                   | 11                               | --                                    |
|                | 79-08-16       | 1440 | .53                              | 16.0                | 50                           | 40                           | 7.1                     | .0                               | 12                                   | 510                               | 90                                        | 30                               | 20                                    | 8.5                              | 6                                     |
|                | 80-03-30       | 1000 | 26                               | 5.5                 | 70                           | 25                           | 6.6                     | 5.0                              | 1                                    | 250                               | 40                                        | 10                               | 10                                    | 9.8                              | 3                                     |
|                | 80-08-22       | 0845 | 3.9                              | 17.0                | <50                          | 49                           | 7.0                     | --                               | 10                                   | 680                               | 100                                       | 10                               | 10                                    | 8.0                              | 13                                    |
| 03015560       | 79-06-11       | 1445 | 60                               | 15.0                | 57                           | --                           | 6.6                     | .0                               | 4                                    | 800                               | 110                                       | <10                              | 20                                    | 9.7                              | 15                                    |
|                | 79-08-16       | 1315 | 2.4                              | 16.0                | 50                           | 57                           | 7.4                     | .0                               | 16                                   | 410                               | 170                                       | <10                              | <10                                   | 8.9                              | 3                                     |
|                | 80-03-27       | 1615 | 64                               | 6.0                 | 50                           | 32                           | 6.6                     | 5.0                              | 4                                    | 250                               | 40                                        | 20                               | 10                                    | 2                                | --                                    |
|                | 80-08-22       | 1000 | 8.2                              | 18.0                | 67                           | 43                           | 7.2                     | --                               | 14                                   | 510                               | 120                                       | 20                               | 10                                    | 8.1                              | 7                                     |
| 03015700       | 79-06-19       | 1405 | 2.4                              | 14.0                | 55                           | --                           | 7.0                     | .0                               | 8                                    | 180                               | 50                                        | <10                              | <10                                   | 8.2                              | 2                                     |
|                | 79-08-15       | 1630 | .98                              | 14.0                | 50                           | 41                           | 7.1                     | .0                               | 16                                   | 420                               | 130                                       | <10                              | <10                                   | 5.5                              | 4                                     |
|                | 80-03-26       | 1710 | 25                               | 4.5                 | 45                           | 31                           | 7.1                     | 5.0                              | 8                                    | 200                               | 50                                        | 40                               | 30                                    | 11                               | 5                                     |
|                | 80-08-22       | 1700 | 1.7                              | 17.5                | 63                           | 45                           | 7.2                     | --                               | 14                                   | 430                               | 100                                       | 30                               | 10                                    | 7.6                              | 7                                     |
| 03015798       | 79-06-19       | 1240 | 6.9                              | 15.0                | <50                          | --                           | 6.9                     | .0                               | 10                                   | 310                               | 130                                       | <10                              | <10                                   | 12                               | 3                                     |
|                | 79-08-16       | 1135 | 3.5                              | 14.0                | 50                           | 44                           | 6.9                     | .0                               | 10                                   | 700                               | 430                                       | <10                              | <10                                   | 20                               | 7.7                                   |
|                | 80-03-30       | 1100 | 130                              | 6.0                 | 45                           | 28                           | 5.7                     | 5.0                              | 2                                    | 320                               | 100                                       | 60                               | 50                                    | 11                               | 6                                     |
|                | 80-08-27       | 0845 | 5.5                              | 17.5                | 51                           | 36                           | 7.1                     | --                               | 10                                   | 500                               | 270                                       | 20                               | 30                                    | 7.9                              | 2                                     |
| 03015800       | 80-06-20       | 1050 | 28                               | 13.0                | <50                          | 36                           | 7.1                     | 1.0                              | 6                                    | --                                | --                                        | --                               | --                                    | 9.4                              | --                                    |
|                | 79-06-19       | 1700 | 2.2                              | 15.0                | 74                           | --                           | 7.3                     | .0                               | 12                                   | 120                               | <10                                       | <10                              | <10                                   | 9.7                              | 3                                     |
|                | 79-08-16       | 0815 | 1.3                              | 12.0                | 90                           | 59                           | 7.3                     | .0                               | 20                                   | 200                               | <10                                       | <10                              | <10                                   | 9.8                              | 5                                     |
|                | 80-03-25       | 1815 | 26                               | 3.0                 | 50                           | 32                           | 6.8                     | 5.0                              | 5                                    | 180                               | 20                                        | 20                               | 10                                    | 8.8                              | 1                                     |
| 03016005       | 80-08-27       | 1030 | 2.6                              | 16.5                | 82                           | 81                           | 7.5                     | --                               | 18                                   | 250                               | 20                                        | 20                               | 10                                    | 8.8                              | --                                    |
|                | 80-03-29       | 0930 | 20                               | 4.0                 | 55                           | 32                           | 6.0                     | 5.0                              | 2                                    | 630                               | 70                                        | 90                               | 80                                    | 9.6                              | --                                    |
|                | 80-08-20       | 0945 | 1.7                              | 18.0                | 62                           | 58                           | 7.1                     | --                               | 14                                   | 1200                              | 320                                       | 80                               | 50                                    | 7.5                              | --                                    |
|                | 80-08-29       | 1050 | 70                               | 6.0                 | 50                           | 27                           | 5.6                     | 5.0                              | 1                                    | --                                | 30                                        | --                               | 90                                    | 9.3                              | --                                    |
| 03016200       | 80-08-20       | 1145 | 10                               | 15.0                | <50                          | 45                           | 6.8                     | .0                               | 6                                    | 250                               | 30                                        | 20                               | 20                                    | 7.7                              | --                                    |
|                | 79-06-12       | 1735 | 26                               | 14.0                | 82                           | --                           | 7.4                     | .0                               | 16                                   | 370                               | 160                                       | 40                               | 40                                    | 9.4                              | --                                    |
|                | 79-08-01       | 1140 | 39                               | 18.5                | 82                           | 51                           | 7.1                     | .0                               | 12                                   | 1500                              | 170                                       | 100                              | 40                                    | 10                               | 31                                    |
|                | 80-03-29       | 1400 | 259                              | 4.5                 | 55                           | 37                           | 6.3                     | 5.0                              | 4                                    | 260                               | 60                                        | 20                               | 10                                    | 9.2                              | 5                                     |
| 03016300       | 80-08-21       | 0815 | 39                               | 16.0                | 77                           | 46                           | 7.3                     | --                               | 16                                   | 340                               | 90                                        | 50                               | 20                                    | 8.6                              | --                                    |
|                | 79-06-12       | 0940 | 27                               | 12.0                | 66                           | --                           | 6.8                     | .0                               | 10                                   | 350                               | 130                                       | 40                               | 40                                    | 9.5                              | --                                    |
|                | 79-08-01       | 1320 | 26                               | 21.5                | 80                           | 47                           | 7.2                     | .0                               | 14                                   | 670                               | 170                                       | 60                               | 50                                    | 11                               | 20                                    |
|                | 80-03-29       | 1200 | 188                              | 4.5                 | 55                           | 36                           | 6.4                     | 5.0                              | 2                                    | 1000                              | 50                                        | 40                               | 10                                    | 276                              | 14000                                 |
| 03016805       | 80-08-20       | 1445 | 27                               | 18.0                | 52                           | 36                           | 7.2                     | --                               | 8                                    | 320                               | 60                                        | 40                               | 20                                    | 8.6                              | --                                    |
|                | 79-09-19       | 1600 | 108                              | 18.0                | 100                          | --                           | 8.1                     | .0                               | 16                                   | 410                               | 180                                       | 30                               | 20                                    | 9.5                              | 2                                     |
|                | 79-11-15       | 1200 | 347                              | 4.5                 | 80                           | --                           | --                      | .0                               | --                                   | 300                               | 200                                       | 40                               | 11                                    | 20                               | --                                    |
|                | 79-06-12       | 1120 | 12                               | 12.5                | 50                           | --                           | 6.7                     | .0                               | 6                                    | 730                               | 130                                       | 50                               | 50                                    | 8.8                              | --                                    |
| 03016900       | 79-08-02       | 1320 | 8.1                              | 20.5                | 60                           | 40                           | 7.4                     | .0                               | 16                                   | 850                               | 230                                       | 90                               | 40                                    | 8.3                              | 20000                                 |
|                | 80-03-29       | 1545 | 137                              | 4.5                 | 50                           | 29                           | 5.3                     | 5.0                              | 2                                    | 490                               | 40                                        | 190                              | 10                                    | 18                               | --                                    |
|                | 80-08-21       | 1015 | 14                               | 16.5                | 51                           | 40                           | 6.9                     | 5.0                              | 8                                    | 730                               | 20                                        | 70                               | 30                                    | 8.0                              | 7                                     |
|                | 79-06-12       | 1245 | 3.2                              | 12.0                | <50                          | --                           | 6.8                     | .0                               | 6                                    | <10                               | <10                                       | 20                               | <10                                   | 9.9                              | 1                                     |
| 03017500       | 79-09-19       | 1600 | 108                              | 18.0                | 100                          | --                           | 8.1                     | .0                               | 16                                   | 410                               | 180                                       | 30                               | 20                                    | 9.5                              | --                                    |
|                | 79-11-15       | 1200 | 347                              | 4.5                 | 80                           | --                           | --                      | .0                               | --                                   | 300                               | 200                                       | 40                               | 11                                    | 20                               | --                                    |
| 03017510       | 79-06-12       | 1120 | 12                               | 12.5                | 50                           | --                           | 6.7                     | .0                               | 6                                    | 730                               | 130                                       | 50                               | 50                                    | 8.8                              | --                                    |
|                | 79-08-02       | 1320 | 8.1                              | 20.5                | 60                           | 40                           | 7.4                     | .0                               | 16                                   | 850                               | 230                                       | 90                               | 40                                    | 8.3                              | 20000                                 |
| 03017700       | 79-06-12       | 1245 | 3.2                              | 12.0                | <50                          | --                           | 6.8                     | .0                               | 6                                    | <10                               | <10                                       | 20                               | <10                                   | 9.9                              | 1                                     |

Water quality at surface-water sites in Area 2 (continued).

| STATION NUMBER | DATE OF SAMPLE | TIME | STREAM-FLOW-INSTANTANEOUS (CFS) | TEMPERATURE (DEG C) | SPECIFIC CONDUCTANCE (DENS.) | PH  | ACIDITY (MG/L AS SOLVED (MG/L)) | ALKALINITY FIELD (MG/L AS (CaCO <sub>3</sub> )) | IRON, TOTAL, DIS-SOLVED (UG/L AS FE) | IRON, TOTAL, DIS-SOLVED (UG/L AS MN) | MANGANESE, TOTAL, RECOVERABLE (UG/L AS SO <sub>4</sub> ) | IRON, TOTAL, DIS-SOLVED (UG/L AS MN) | MANGANESE, TOTAL, RECOVERABLE (UG/L AS SO <sub>4</sub> ) | IRON, TOTAL, DIS-SOLVED (UG/L AS MN) | MANGANESE, TOTAL, RECOVERABLE (UG/L AS SO <sub>4</sub> ) | IRON, TOTAL, DIS-SOLVED (UG/L AS MN) | MANGANESE, TOTAL, RECOVERABLE (UG/L AS SO <sub>4</sub> ) |
|----------------|----------------|------|---------------------------------|---------------------|------------------------------|-----|---------------------------------|-------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------|
|                |                |      |                                 |                     |                              |     |                                 |                                                 |                                      |                                      |                                                          |                                      |                                                          |                                      |                                                          |                                      |                                                          |
| 03017700       | 79-08-02       | 0920 | 1.8                             | 18.0                | 50                           | 42  | 6.9                             | 0                                               | 8                                    | 210                                  | 20                                                       | <10                                  | 10                                                       | 4                                    | 16000                                                    | 870                                  |                                                          |
|                | 80-03-29       | 1700 | 3.3                             | 4.0                 | 6                            | 35  | 5.0                             | 0                                               | 20                                   | 430                                  | 40                                                       | 160                                  | 10                                                       | 12                                   | --                                                       | --                                   |                                                          |
|                | 80-08-21       | 1200 | 3.6                             | 16.0                | 63                           | 56  | 6.7                             | 5.0                                             | 4                                    | 160                                  | 20                                                       | 40                                   | 30                                                       | 9.5                                  | 1                                                        | --                                   | --                                                       |
| 03017810       | 79-06-20       | 0950 | 4.8                             | 13.5                | 65                           | --  | 6.9                             | 0                                               | 10                                   | 210                                  | 80                                                       | 20                                   | 20                                                       | 8.6                                  | 2                                                        | --                                   | --                                                       |
|                | 79-08-15       | 1500 | 3.6                             | 15.0                | 50                           | 44  | 7.3                             | 0                                               | 16                                   | 390                                  | 160                                                      | 20                                   | <10                                                      | 6.3                                  | 6                                                        | 11000                                | 580                                                      |
|                | 80-03-26       | 1600 | 45                              | 5.0                 | 50                           | 30  | 6.4                             | 5.0                                             | 3                                    | 280                                  | 70                                                       | 100                                  | 90                                                       | 11                                   | 6                                                        | --                                   | --                                                       |
|                | 80-08-21       | 1545 | 6.7                             | 21.0                | 58                           | 38  | 7.2                             | --                                              | 12                                   | 450                                  | 200                                                      | 20                                   | 10                                                       | 8.0                                  | 1                                                        | --                                   | --                                                       |
| 03017820       | 79-06-20       | 1130 | 1.9                             | 12.5                | 58                           | --  | 6.9                             | 0                                               | 8                                    | 200                                  | 30                                                       | <10                                  | <10                                                      | 9.4                                  | 2                                                        | --                                   | --                                                       |
|                | 79-08-15       | 1325 | 13                              | 15.0                | 50                           | 53  | 7.2                             | 5.0                                             | 12                                   | 410                                  | 60                                                       | 30                                   | <10                                                      | 9.4                                  | 6                                                        | 27000                                | 480                                                      |
|                | 80-03-23       | 1430 | 2.6                             | 4.0                 | 40                           | 34  | 7.6                             | 5.0                                             | 6                                    | 320                                  | 30                                                       | 20                                   | 10                                                       | 11                                   | 23                                                       | --                                   | --                                                       |
|                | 80-08-23       | 0830 | 2.8                             | 16.0                | 59                           | 52  | 7.1                             | --                                              | 12                                   | 270                                  | 50                                                       | 20                                   | 10                                                       | 8.9                                  | 3                                                        | --                                   | --                                                       |
| 03018900       | 79-06-20       | 1410 | 16                              | 17.5                | 140                          | --  | 6.8                             | 0                                               | 6                                    | 340                                  | 40                                                       | 700                                  | 700                                                      | 43                                   | 2                                                        | --                                   | --                                                       |
|                | 79-08-15       | 1140 | 12                              | 15.0                | 180                          | 130 | 6.3                             | 0                                               | 4                                    | 430                                  | 150                                                      | 1300                                 | 1300                                                     | 61                                   | 6                                                        | 13000                                | 330                                                      |
|                | 80-03-26       | 1230 | 105                             | 4.5                 | 70                           | 44  | 5.4                             | 5.0                                             | 1                                    | 1800                                 | 340                                                      | 390                                  | 340                                                      | 22                                   | 6                                                        | --                                   | --                                                       |
|                | 80-08-23       | 1200 | 15                              | 16.5                | 140                          | 106 | 6.7                             | 5.0                                             | 6                                    | 340                                  | 30                                                       | 780                                  | 790                                                      | 45                                   | 1                                                        | --                                   | --                                                       |
| 03020055       | 79-06-21       | 0925 | 4.2                             | 15.0                | 76                           | --  | 6.6                             | 0                                               | 8                                    | 120                                  | 30                                                       | <10                                  | <10                                                      | 17                                   | 4                                                        | --                                   | --                                                       |
|                | 79-08-17       | 0820 | 2.8                             | 12.0                | 50                           | 68  | 6.9                             | 0                                               | --                                   | 270                                  | 60                                                       | <10                                  | <10                                                      | 12                                   | 8                                                        | 10000                                | 440                                                      |
|                | 80-03-26       | 0800 | 35                              | 3.0                 | 55                           | 38  | 6.7                             | 5.0                                             | 2                                    | 290                                  | 50                                                       | 40                                   | 30                                                       | 14                                   | 6                                                        | --                                   | --                                                       |
|                | 80-08-23       | 1015 | 6.0                             | 16.0                | 73                           | 47  | 6.9                             | 5.0                                             | 8                                    | 210                                  | 50                                                       | 20                                   | 10                                                       | 12                                   | 5                                                        | --                                   | --                                                       |
| 03020100       | 79-06-21       | 1045 | 6.0                             | 15.0                | 461                          | --  | 7.4                             | 0                                               | 20                                   | 250                                  | <10                                                      | 50                                   | 20                                                       | 6.4                                  | 4                                                        | --                                   | --                                                       |
|                | 79-08-10       | 1240 | 3.1                             | 19.0                | 500                          | 372 | 7.8                             | 0                                               | 36                                   | 350                                  | <10                                                      | 80                                   | 30                                                       | 7.6                                  | 16                                                       | 15000                                | 1400                                                     |
|                | 80-03-25       | 1645 | 48                              | 4.0                 | 310                          | 202 | 7.1                             | 5.0                                             | 4                                    | 690                                  | 30                                                       | 200                                  | 170                                                      | 9.7                                  | 22                                                       | --                                   | --                                                       |
|                | 80-08-27       | 1145 | 6.6                             | 17.0                | 587                          | 392 | 7.5                             | --                                              | 24                                   | 170                                  | 10                                                       | 30                                   | 30                                                       | 4.6                                  | 5                                                        | --                                   | --                                                       |
| 03020200       | 79-06-20       | 1655 | 34                              | 18.0                | 81                           | --  | 7.1                             | 0                                               | 8                                    | 160                                  | 30                                                       | 30                                   | 20                                                       | 15                                   | 2                                                        | --                                   | --                                                       |
|                | 79-08-10       | 1058 | 11                              | 20.0                | 115                          | 68  | 6.2                             | 0                                               | 10                                   | 300                                  | 40                                                       | 30                                   | 20                                                       | 18                                   | 3                                                        | 20000                                | 1200                                                     |
|                | 80-03-25       | 1515 | 176                             | 4.5                 | 60                           | 42  | 6.7                             | 5.0                                             | 2                                    | 430                                  | 20                                                       | 150                                  | 120                                                      | 16                                   | 14                                                       | --                                   | --                                                       |
|                | 80-08-27       | 1300 | 29                              | 18.0                | 90                           | 54  | 7.2                             | --                                              | 12                                   | 230                                  | 40                                                       | 30                                   | 30                                                       | 18                                   | 1                                                        | --                                   | --                                                       |
| 03020250       | 79-06-21       | 1245 | 9.8                             | 15.0                | 362                          | --  | 7.7                             | 0                                               | 32                                   | 350                                  | 120                                                      | 110                                  | 100                                                      | 8.7                                  | 11                                                       | --                                   | --                                                       |
|                | 79-08-08       | 1720 | 10                              | 21.0                | 360                          | 248 | 7.6                             | 0                                               | 32                                   | 840                                  | 180                                                      | 130                                  | 80                                                       | 7.0                                  | 6                                                        | 12000                                | 870                                                      |
|                | 80-03-27       | 1020 | 66                              | 3.5                 | 198                          | 114 | 7.2                             | 5.0                                             | 20                                   | 390                                  | 60                                                       | 150                                  | 130                                                      | 9.1                                  | 7                                                        | --                                   | --                                                       |
|                | 80-08-22       | 1330 | 17                              | 15.5                | 363                          | 227 | 7.6                             | --                                              | 26                                   | 430                                  | 170                                                      | 110                                  | 100                                                      | 6.3                                  | 5                                                        | --                                   | --                                                       |
| 03020428       | 79-07-03       | 1730 | 13                              | 20.5                | 144                          | --  | 7.3                             | 0                                               | 40                                   | 300                                  | 100                                                      | 20                                   | <10                                                      | 14                                   | 2                                                        | --                                   | --                                                       |
|                | 79-08-08       | 1505 | 4.8                             | 23.0                | 165                          | 101 | 8.9                             | 0                                               | 48                                   | 250                                  | 40                                                       | 20                                   | <10                                                      | 12                                   | 6                                                        | 25000                                | 820                                                      |
|                | 80-03-25       | 0815 | 120                             | 3.5                 | 85                           | 59  | 6.0                             | 5.0                                             | 18                                   | 230                                  | 150                                                      | 30                                   | 30                                                       | 14                                   | 10                                                       | --                                   | --                                                       |
|                | 80-08-26       | 1400 | 14                              | 19.0                | 145                          | 86  | 8.2                             | --                                              | 68                                   | 280                                  | 30                                                       | 10                                   | 0                                                        | 13                                   | 5                                                        | --                                   | --                                                       |
| 03020438       | 79-07-03       | 1430 | 5.1                             | 18.0                | 98                           | --  | 6.4                             | 0                                               | 22                                   | 3100                                 | 1700                                                     | 260                                  | 230                                                      | 8.8                                  | 10                                                       | --                                   | --                                                       |
|                | 79-08-08       | 1100 | 2.2                             | 20.0                | 125                          | 95  | 7.1                             | 0                                               | 24                                   | 3200                                 | 1200                                                     | 330                                  | 300                                                      | 8.9                                  | 22                                                       | 18000                                | 580                                                      |
|                | 80-03-27       | 1500 | 27                              | 5.0                 | 65                           | 40  | 6.6                             | 5.0                                             | 8                                    | 520                                  | 130                                                      | 50                                   | 40                                                       | 11                                   | 9                                                        | --                                   | --                                                       |
|                | 80-08-18       | 1400 | 5.6                             | 17.5                | 89                           | 63  | 7.2                             | --                                              | 18                                   | 17000                                | 680                                                      | 120                                  | 110                                                      | 9.6                                  | 11                                                       | --                                   | --                                                       |

**12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued**  
 12.2 Selected Water-Quality Data for Surface-Water Stations  
 1979-80 Water Years

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

### 12.2 Selected Water-Quality Data for Surface-Water Stations 1979-80 Water Years

Water quality at surface-water sites in Area 2 (continued).

| STATION<br>NUMBER | DATE<br>OF<br>SAMPLE | TIME | STREAM-<br>FLOW,<br>INSTANTANEOUS<br>(CFS) | TEMPER-<br>ATURE<br>(DEG C) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C | SPECIFIC<br>CON-<br>DUCT-<br>ANCE<br>(UHRS) | PH  | ACIDITY<br>(MG/L<br>AS<br>CACO <sub>3</sub> ) | ALKALINITY<br>FIELD<br>(MG/L<br>AS<br>CACO <sub>3</sub> ) | IRON,<br>TOTAL<br>(UG/L<br>AS<br>FE) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS<br>MN) | MANGANESE,<br>TOTAL<br>(UG/L<br>AS<br>FE) | MANGANESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS<br>MN) | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) |
|-------------------|----------------------|------|--------------------------------------------|-----------------------------|----------------------------------------|---------------------------------------------|-----|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|
|                   |                      |      |                                            |                             |                                        |                                             |     |                                               |                                                           |                                      |                                               |                                           |                                                    |                                                           |
| 03020445          | 79-07-03             | 1325 | 6.3                                        | 16.0                        | 93                                     | --                                          | 6.4 | 0                                             | 8                                                         | 1000                                 | 540                                           | 50                                        | 30                                                 | 9.5                                                       |
|                   | 79-08-08             | 0915 | 5.1                                        | 18.0                        | 105                                    | 66                                          | 7.4 | 0                                             | 32                                                        | 1200                                 | 510                                           | 70                                        | 70                                                 | 9.0                                                       |
|                   | 80-03-27             | 1400 | 4.0                                        | 6.0                         | 55                                     | 36                                          | 7.1 | 5.0                                           | 16                                                        | 1000                                 | 70                                            | 140                                       | 100                                                | 10                                                        |
|                   | 80-08-18             | 1545 | 11                                         | 16.0                        | 74                                     | 81                                          | 7.5 | --                                            | 18                                                        | 460                                  | 190                                           | 30                                        | 20                                                 | 8.8                                                       |
| 03020455          | 79-07-03             | 1600 | 11                                         | 18.0                        | 200                                    | --                                          | 6.0 | 0                                             | 24                                                        | 470                                  | 180                                           | 40                                        | 20                                                 | 11                                                        |
|                   | 79-08-08             | 1245 | 15                                         | 20.5                        | 150                                    | 82                                          | 7.7 | 0                                             | 24                                                        | 930                                  | 160                                           | 60                                        | 30                                                 | 10                                                        |
|                   | 80-03-27             | 1230 | 82                                         | 4.5                         | 85                                     | 52                                          | 7.2 | 0                                             | 12                                                        | 250                                  | 80                                            | 20                                        | 20                                                 | 12                                                        |
|                   | 80-08-18             | 1145 | 25                                         | 15.0                        | 150                                    | 51                                          | 7.5 | --                                            | 20                                                        | 350                                  | 140                                           | 40                                        | 30                                                 | 10                                                        |
| 03020500          | 79-09-13             | 1100 | 59                                         | 18.5                        | 260                                    | --                                          | 7.9 | 0                                             | 76                                                        | 290                                  | 50                                            | 40                                        | <10                                                | 16                                                        |
|                   | 79-12-20             | 1100 | 254                                        | 0                           | 105                                    | --                                          | 7.3 | 0                                             | 24                                                        | 160                                  | 70                                            | 20                                        | 20                                                 | 17                                                        |
|                   | 80-04-28             | 1600 | 9.5                                        | 150                         | 91                                     | 8.6                                         | --  | 34                                            | 250                                                       | 80                                   | 10                                            | 10                                        | 14                                                 | 3                                                         |
|                   | 80-06-17             | 1000 | 459                                        | 16.0                        | 140                                    | 74                                          | 7.6 | --                                            | 8                                                         | 790                                  | 160                                           | 50                                        | 20                                                 | 12                                                        |
|                   | 80-08-01             | 1100 | 338                                        | 20.0                        | 170                                    | 87                                          | 7.3 | --                                            | 42                                                        | 940                                  | 170                                           | 60                                        | 20                                                 | 14                                                        |
|                   | 80-09-17             | 1515 | 154                                        | 19.0                        | 230                                    | 121                                         | 6.9 | 5.0                                           | 36                                                        | 310                                  | 80                                            | 40                                        | 30                                                 | 16                                                        |
| 03020510          | 79-06-21             | 1535 | 5.6                                        | 20.0                        | 200                                    | --                                          | 7.9 | 0                                             | 30                                                        | 180                                  | 40                                            | 20                                        | <10                                                | 15                                                        |
|                   | 79-08-10             | 0845 | 2.5                                        | 19.0                        | 250                                    | 144                                         | 7.7 | 0                                             | 42                                                        | 120                                  | 20                                            | 20                                        | <10                                                | 16                                                        |
|                   | 80-03-25             | 0730 | 51                                         | 6.0                         | 105                                    | 67                                          | 7.4 | 5.0                                           | 22                                                        | 150                                  | 80                                            | 50                                        | 40                                                 | 8                                                         |
|                   | 80-08-26             | 0730 | 6.9                                        | 16.0                        | 160                                    | 102                                         | 7.2 | --                                            | 32                                                        | --                                   | 10                                            | --                                        | 0                                                  | 14                                                        |
|                   | 80-09-17             | 1515 | 154                                        | 19.0                        | 230                                    | 121                                         | 6.9 | 5.0                                           | 36                                                        | 310                                  | 80                                            | 40                                        | 30                                                 | 16                                                        |
| 03021610          | 79-07-04             | 1110 | 5.7                                        | 16.0                        | 106                                    | --                                          | 6.6 | 0                                             | 62                                                        | 1100                                 | 450                                           | 160                                       | 100                                                | 15                                                        |
|                   | 79-08-07             | 1350 | 2.2                                        | 20.0                        | 200                                    | 126                                         | 7.7 | 0                                             | 58                                                        | 850                                  | 360                                           | 110                                       | 70                                                 | 15                                                        |
|                   | 80-03-26             | 1030 | 26                                         | 2.0                         | 116                                    | 70                                          | 7.7 | 5.0                                           | 26                                                        | 400                                  | 100                                           | 40                                        | 40                                                 | 16                                                        |
|                   | 80-08-26             | 1600 | 3.4                                        | 20.0                        | 200                                    | 126                                         | 7.4 | --                                            | 74                                                        | 840                                  | 240                                           | 60                                        | 50                                                 | 14                                                        |
|                   | 80-09-17             | 1515 | 154                                        | 19.0                        | 230                                    | 121                                         | 6.9 | 5.0                                           | 36                                                        | 310                                  | 80                                            | 40                                        | 30                                                 | 16                                                        |
| 03022100          | 79-07-04             | 1415 | 12                                         | 17.0                        | 264                                    | --                                          | 7.1 | 0                                             | 68                                                        | 540                                  | 90                                            | 60                                        | 30                                                 | 21                                                        |
|                   | 79-08-07             | 0840 | 2.1                                        | 17.5                        | 300                                    | 181                                         | 7.8 | 0                                             | 110                                                       | 370                                  | 60                                            | 90                                        | 60                                                 | 21                                                        |
|                   | 80-03-26             | 0840 | 31                                         | 2.0                         | 117                                    | 94                                          | 7.2 | 5.0                                           | 25                                                        | 400                                  | 60                                            | 30                                        | 20                                                 | 8                                                         |
|                   | 80-08-27             | 0745 | 6.8                                        | 17.5                        | 265                                    | 161                                         | 7.9 | --                                            | 108                                                       | 310                                  | 60                                            | 30                                        | 30                                                 | 19                                                        |
|                   | 80-09-17             | 1515 | 154                                        | 19.0                        | 335                                    | 130                                         | 8.0 | 0                                             | 62                                                        | 1200                                 | 280                                           | 60                                        | 40                                                 | 17                                                        |
| 03022540          | 79-07-04             | 1230 | 16                                         | 16.0                        | 202                                    | --                                          | 6.5 | 0                                             | 62                                                        | 640                                  | 250                                           | 70                                        | 30                                                 | 17                                                        |
|                   | 79-08-07             | 1110 | 5.7                                        | 19.0                        | 335                                    | 130                                         | 8.0 | 0                                             | 68                                                        | 400                                  | 70                                            | 30                                        | 20                                                 | 17                                                        |
|                   | 80-03-26             | 0730 | 88                                         | 2.0                         | 112                                    | 63                                          | 7.1 | 5.0                                           | 28                                                        | 400                                  | 70                                            | 30                                        | 20                                                 | 17                                                        |
|                   | 80-08-27             | 1200 | 1.5                                        | 20.0                        | 425                                    | 262                                         | 8.3 | --                                            | 116                                                       | 390                                  | 70                                            | 50                                        | 50                                                 | 27                                                        |
|                   | 80-09-17             | 1515 | 16                                         | 17.0                        | 197                                    | 118                                         | 7.7 | --                                            | 58                                                        | 480                                  | 180                                           | 30                                        | 10                                                 | 15                                                        |
| 03023301          | 79-07-04             | 1720 | 8.4                                        | 18.5                        | 378                                    | --                                          | 7.4 | 0                                             | 78                                                        | 920                                  | 100                                           | 70                                        | 30                                                 | 26                                                        |
|                   | 79-08-06             | 1615 | 4.0                                        | 24.5                        | 400                                    | 250                                         | 8.2 | 0                                             | 84                                                        | 550                                  | 120                                           | 70                                        | 50                                                 | 28                                                        |
|                   | 80-03-25             | 1700 | 20                                         | 4.0                         | 240                                    | 151                                         | 7.2 | 5.0                                           | 40                                                        | 500                                  | 70                                            | 50                                        | 40                                                 | 25                                                        |
|                   | 80-08-27             | 1430 | 1.5                                        | 20.0                        | 425                                    | 262                                         | 8.3 | --                                            | 116                                                       | 390                                  | 70                                            | 50                                        | 50                                                 | 27                                                        |
| 03023338          | 79-07-04             | 1520 | 24                                         | 18.0                        | 322                                    | --                                          | 7.7 | 0                                             | 78                                                        | 140                                  | 90                                            | 70                                        | 22                                                 | 46                                                        |
|                   | 79-08-06             | 1455 | 12                                         | 23.0                        | 340                                    | 185                                         | 8.0 | 0                                             | 80                                                        | 830                                  | 140                                           | 70                                        | 22                                                 | 19                                                        |
|                   | 80-03-26             | 1300 | 38                                         | 4.5                         | 179                                    | 115                                         | 7.4 | 5.0                                           | 48                                                        | 360                                  | 70                                            | 30                                        | 21                                                 | 12                                                        |
|                   | 80-08-27             | 1430 | 4.3                                        | 20.5                        | 357                                    | 210                                         | 8.0 | --                                            | 110                                                       | 800                                  | 30                                            | 110                                       | 90                                                 | 23                                                        |
| 03023400          | 79-07-05             | 0910 | 31                                         | 14.0                        | 221                                    | --                                          | 7.4 | 0                                             | 74                                                        | 650                                  | 210                                           | 40                                        | <10                                                | 19                                                        |
|                   | 79-08-06             | 1300 | 16                                         | 22.0                        | 270                                    | 154                                         | 8.6 | 0                                             | 76                                                        | 400                                  | 100                                           | 20                                        | <10                                                | 8                                                         |

Water quality at surface-water sites in Area 2 (continued).

| STATION NUMBER | STATION | DATE OF SAMPLE | TIME | STREAM FLOW, INSTANTANEOUS (CFS.) | TEMPERATURE (DEG C.) | SPECIFIC CONDUCTANCE (MHOH) | SOLIDS, RESIDUE AT 180 DEG. C | ACIDITY (MG/L AS CACO3) | ALKALINITY FIELD AS CACO3) | IRON, TOTAL (MG/L AS FE) | IRON, DIS-SOLVED (UG/L AS FE) | MANGANESE, TOTAL (MG/L AS SO4) | MANGANESE, DIS-SOLVED (UG/L AS Mn) | SULFATE (MG/L AS SO4) | IRON, RECOV. (%) | MANGANESE, RECOV. (%) | IRON, TOTAL (MG/L AS FE) | MANGANESE, RECOV. (%) |
|----------------|---------|----------------|------|-----------------------------------|----------------------|-----------------------------|-------------------------------|-------------------------|----------------------------|--------------------------|-------------------------------|--------------------------------|------------------------------------|-----------------------|------------------|-----------------------|--------------------------|-----------------------|
|                |         |                |      |                                   |                      |                             |                               |                         |                            |                          |                               |                                |                                    |                       |                  |                       |                          |                       |
| 03023400       |         | 80-03-25       | 1545 | 218                               | 3.0                  | 125                         | 86                            | 7.4                     | 5.0                        | 32                       | 680                           | 70                             | 40                                 | 20                    | 19               | 19                    | --                       |                       |
|                |         | 80-08-27       | 1545 | 25                                | 20.5                 | 210                         | 132                           | 9.2                     | --                         | 58                       | 430                           | 50                             | 10                                 | 10                    | 17               | 3                     | --                       |                       |
| 03024003       |         | 79-07-05       | --   | 10                                | 13.0                 | 162                         | --                            | 7.2                     | .0                         | 60                       | 540                           | 160                            | 30                                 | <10                   | 23               | 2                     | --                       |                       |
|                |         | 79-08-09       | 1440 | 4.1                               | 19.0                 | 200                         | 129                           | 7.4                     | .0                         | 62                       | 230                           | 60                             | <10                                | 18                    | 5                | 4,1000                | 760                      |                       |
|                |         | 80-03-25       | 1430 | 50                                | 4.0                  | 115                         | 80                            | 7.3                     | 5.0                        | 26                       | 220                           | 60                             | 20                                 | 10                    | 20               | 8                     | --                       |                       |
|                |         | 80-08-25       | 1100 | 9.2                               | 15.5                 | 190                         | 113                           | 7.7                     | --                         | 64                       | 430                           | 130                            | 20                                 | 10                    | 18               | 4                     | --                       |                       |
| 03024200       |         | 79-07-04       | 0930 | 4.3                               | 13.0                 | 148                         | --                            | 7.1                     | .0                         | 40                       | 340                           | 120                            | 20                                 | <10                   | 15               | 3                     | --                       |                       |
|                |         | 79-08-07       | 1530 | .76                               | 24.0                 | 180                         | 107                           | 9.0                     | .0                         | 56                       | 210                           | 20                             | 20                                 | <10                   | 17               | 4                     | 26000                    |                       |
|                |         | 80-03-25       | 1130 | .49                               | 3.0                  | 75                          | 54                            | 6.5                     | 5.0                        | 16                       | 520                           | 300                            | 30                                 | 30                    | 14               | 14                    | --                       |                       |
|                |         | 80-08-26       | 1115 | 5.0                               | 17.0                 | 115                         | 84                            | 8.1                     | --                         | 62                       | 270                           | 60                             | 10                                 | 0                     | 14               | 1                     | --                       |                       |
| 03024210       |         | 79-07-05       | 1425 | 6.2                               | 14.0                 | 152                         | --                            | 7.1                     | .0                         | 34                       | 520                           | 120                            | 30                                 | 20                    | 14               | 2                     | --                       |                       |
|                |         | 79-08-07       | 1705 | 9.0                               | 18.5                 | 115                         | 73                            | 7.6                     | .0                         | 24                       | 350                           | 120                            | 30                                 | 20                    | 12               | 3                     | 24000                    |                       |
|                |         | 80-03-25       | 1000 | 79                                | 3.0                  | 75                          | 43                            | 6.3                     | 5.0                        | 10                       | 320                           | 70                             | 40                                 | 40                    | 13               | 10                    | --                       |                       |
|                |         | 80-08-26       | 0930 | 6.5                               | 16.5                 | 130                         | 81                            | 7.4                     | --                         | 44                       | 330                           | 180                            | 40                                 | 50                    | 13               | 2                     | --                       |                       |
| 03024300       |         | 79-07-05       | 1230 | 21                                | 16.0                 | 156                         | --                            | 7.5                     | .0                         | 58                       | 660                           | 90                             | 120                                | <10                   | 10               | 12                    | --                       |                       |
|                |         | 79-08-09       | 1230 | 8.6                               | 20.5                 | 170                         | 105                           | 8.1                     | .0                         | 64                       | 280                           | 20                             | 50                                 | <10                   | 10               | 8                     | 66000                    |                       |
|                |         | 80-03-25       | 1230 | 116                               | 3.5                  | 100                         | 66                            | 6.7                     | 5.0                        | 22                       | 310                           | 60                             | 30                                 | 20                    | 16               | 7                     | --                       |                       |
|                |         | 80-08-25       | 1500 | 22                                | 22.0                 | 140                         | 94                            | 8.9                     | --                         | 51                       | 330                           | 90                             | 40                                 | 10                    | 9.5              | 3                     | --                       |                       |
| 03025200       |         | 79-07-05       | 1600 | 2.3                               | 14.0                 | 164                         | --                            | 6.2                     | .0                         | 22                       | 400                           | 60                             | 50                                 | 20                    | 14               | 5                     | --                       |                       |
|                |         | 79-08-09       | 1035 | 1.3                               | 17.0                 | 180                         | 114                           | 6.9                     | .0                         | 28                       | 340                           | 60                             | 30                                 | 20                    | 13               | 6                     | 7800                     |                       |
|                |         | 80-03-24       | 1515 | 23                                | 16.0                 | 96                          | 56                            | 6.8                     | 5.0                        | 10                       | 540                           | 30                             | 40                                 | 20                    | 15               | 22                    | --                       |                       |
|                |         | 80-08-25       | 1245 | 4.4                               | 16.0                 | 138                         | 82                            | 7.2                     | --                         | 20                       | 230                           | 50                             | 20                                 | 30                    | 14               | 5                     | --                       |                       |
| 03025505       |         | 79-07-05       | 1730 | 5.3                               | 14.0                 | 325                         | --                            | 6.9                     | .0                         | 28                       | 520                           | 100                            | 80                                 | 40                    | 16               | 6                     | --                       |                       |
|                |         | 79-08-09       | 0850 | 3.5                               | 18.0                 | 300                         | 213                           | 8.1                     | .0                         | 54                       | 420                           | 70                             | 80                                 | 40                    | 15               | 7                     | 21000                    |                       |
|                |         | 80-03-24       | 1700 | 40                                | 6.0                  | 290                         | 170                           | 7.3                     | 5.0                        | 14                       | 370                           | 50                             | 130                                | 120                   | 18               | 11                    | --                       |                       |
|                |         | 80-08-25       | 1630 | 5.1                               | 17.5                 | 410                         | 221                           | 7.1                     | --                         | 40                       | 260                           | 60                             | 30                                 | 40                    | 14               | 3                     | --                       |                       |
| 03025790       |         | 79-06-21       | 1730 | 9.8                               | 18.0                 | 273                         | --                            | 4.6                     | .0                         | 1                        | 450                           | 170                            | 1800                               | 92                    | 1                | --                    | --                       |                       |
|                |         | 79-08-10       | 1510 | 6.1                               | 20.0                 | 360                         | 204                           | 4.7                     | .0                         | 0                        | 550                           | 130                            | 2500                               | 120                   | --               | 11000                 | 80                       |                       |
|                |         | 80-03-25       | 1345 | 106                               | 4.5                  | 100                         | 64                            | 6.3                     | 5.0                        | 4                        | 1500                          | 810                            | 480                                | 470                   | 30               | 11                    | --                       |                       |
|                |         | 80-08-26       | 0845 | 15                                | 16.0                 | 217                         | 156                           | 5.2                     | 10                         | 2                        | 580                           | 240                            | 1300                               | 1300                  | 90               | 1                     | --                       |                       |
| 03025810       |         | 79-06-15       | 0955 | 2.8                               | 13.0                 | 290                         | --                            | 7.2                     | .0                         | 27                       | 510                           | 220                            | 150                                | 130                   | 32               | 3                     | --                       |                       |
|                |         | 79-07-31       | 1015 | 3.1                               | 19.0                 | 200                         | 133                           | 6.9                     | .0                         | 20                       | 1700                          | 150                            | 90                                 | 30                    | 1                | 9700                  | 490                      |                       |
|                |         | 80-03-24       | 1700 | 29                                | 6.0                  | 125                         | 68                            | 6.9                     | 5.0                        | 10                       | 670                           | 150                            | 160                                | 140                   | 26               | 12                    | --                       |                       |
|                |         | 80-08-26       | 1015 | 3.7                               | 15.0                 | 179                         | 106                           | 7.4                     | --                         | 26                       | 490                           | 150                            | 90                                 | 90                    | 28               | 3                     | --                       |                       |
| 03026005       |         | 79-06-21       | 0825 | --                                | 14.5                 | 240                         | --                            | 7.3                     | .0                         | 96                       | 3200                          | 240                            | 330                                | 300                   | 38               | 234                   | --                       |                       |
|                |         | 79-08-21       | 1045 | 2.2                               | 18.5                 | 395                         | 106                           | 7.0                     | .0                         | 98                       | 870                           | 140                            | 190                                | 53                    | 12               | 24000                 | 480                      |                       |
|                |         | 80-03-24       | 1230 | 4.1                               | 6.0                  | 125                         | 73                            | 6.6                     | 5.0                        | 14                       | 150                           | 10                             | 10                                 | 10                    | 25               | 4                     | --                       |                       |
|                |         | 80-08-28       | 1130 | .46                               | 17.0                 | 170                         | 110                           | 7.3                     | --                         | 36                       | 420                           | 20                             | 20                                 | 10                    | 30               | 7                     | --                       |                       |
| 03026100       |         | 79-07-05       | 0930 | 10                                | 10.5                 | 195                         | --                            | 6.8                     | .0                         | 44                       | 280                           | 60                             | 30                                 | 20                    | 21               | 2                     | --                       |                       |
|                |         | 79-08-09       | 1645 | 7.4                               | 20.0                 | 175                         | 111                           | 7.4                     | .0                         | 46                       | 230                           | 50                             | 20                                 | <10                   | 17               | 4                     | 22000                    |                       |

**12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued**  
**12.2 Selected Water-Quality Data for Surface-Water Stations**  
**1979-80 Water Years**

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

### 12.2 Selected Water-Quality Data for Surface-Water Stations 1979-80 Water Years

Water quality at surface-water sites in Area 2 (continued).

| STATION<br>NUMBER | DATE<br>OF<br>SAMPLE | TIME | STREAM-<br>FLOW,<br>INSTANTANEOUS<br>(CFS) | TEMPER-<br>ATURE<br>(DEG C) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DUCT-<br>ANCE<br>(DHRDS) | SPF-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(DHRDS) | PH  | ACIDITY<br>(MG/L<br>AS<br>SOLVED<br>(MG/L)) | ALKAL-<br>INITY<br>FIELD<br>(MG/L<br>AS<br>CACO3)) | IRON,<br>TOTAL,<br>RECOV-<br>ERABLE<br>(UG/L<br>AS<br>FE)) | IRON,<br>DISSOLVED<br>(UG/L<br>AS<br>MN)) | MANGA-<br>NESE,<br>DISSOLVED<br>(UG/L<br>AS<br>SO4)) | IRON,<br>DISSOLVED<br>(UG/L<br>AS<br>FE)) | MANGA-<br>NESE,<br>TOTAL,<br>RECOV-<br>ERABLE<br>(UG/L<br>AS<br>MN)) | IRON,<br>DISSOLVED<br>(UG/L<br>AS<br>FE)) | MANGA-<br>NESE,<br>DISSOLVED<br>(UG/L<br>AS<br>FE)) |       |      |
|-------------------|----------------------|------|--------------------------------------------|-----------------------------|--------------------------------------------------------------------|---------------------------------------------------|-----|---------------------------------------------|----------------------------------------------------|------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------|------|
|                   |                      |      |                                            |                             |                                                                    |                                                   |     |                                             |                                                    |                                                            |                                           |                                                      |                                           |                                                                      |                                           |                                                     |       |      |
| 03026100          | 80-03-24             | 1330 | 56                                         | 6.0                         | 115                                                                | 6.6                                               | 5.0 | 20                                          | 230                                                | 50                                                         | 20                                        | 20                                                   | 21                                        | 7                                                                    | 7                                         | 7                                                   | 7     |      |
|                   | 80-08-25             | 0900 | 15                                         | 15.5                        | 155                                                                | 92                                                | 7.3 | —                                           | 40                                                 | 320                                                        | 70                                        | 10                                                   | 17                                        | 2                                                                    | —                                         | —                                                   | —     |      |
| 03026200          | 79-06-16             | —    | 19                                         | 20.0                        | 475                                                                | —                                                 | 7.3 | .0                                          | 34                                                 | 300                                                        | 40                                        | 2200                                                 | 170                                       | 5                                                                    | —                                         | —                                                   | —     |      |
|                   | 79-07-31             | 1100 | 12                                         | 19.0                        | 640                                                                | 449                                               | 6.7 | .0                                          | 16                                                 | —                                                          | 30                                        | —                                                    | 2100                                      | 180                                                                  | 1                                         | 2300                                                | 1200  | 1200 |
|                   | 80-03-25             | 0930 | 105                                        | 4.0                         | 330                                                                | 198                                               | 6.8 | 5.0                                         | 4                                                  | 1500                                                       | 1000                                      | 1300                                                 | 94                                        | 9                                                                    | —                                         | —                                                   | —     | —    |
|                   | 80-08-26             | 1400 | 18                                         | 19.5                        | 598                                                                | 434                                               | 7.3 | —                                           | 16                                                 | 250                                                        | 10                                        | 2000                                                 | 180                                       | 1                                                                    | —                                         | —                                                   | —     | —    |
| 03026300          | 79-06-16             | 0800 | 6.3                                        | 14.5                        | 168                                                                | —                                                 | 7.2 | .0                                          | 24                                                 | 830                                                        | 20                                        | 90                                                   | 20                                        | 46                                                                   | 10                                        | —                                                   | —     | —    |
|                   | 79-07-31             | 1320 | 5.8                                        | 19.0                        | 190                                                                | 125                                               | 7.2 | .0                                          | 24                                                 | 610                                                        | 60                                        | <10                                                  | 180                                       | 14                                                                   | 12000                                     | 1700                                                | 1700  | 1700 |
|                   | 80-03-25             | 1130 | 39                                         | 3.5                         | 130                                                                | 76                                                | 7.4 | 5.0                                         | 20                                                 | 650                                                        | 90                                        | 100                                                  | 80                                        | 29                                                                   | 5                                         | —                                                   | —     | —    |
|                   | 80-08-26             | 1145 | 3.2                                        | 17.0                        | 191                                                                | 114                                               | 7.7 | —                                           | 32                                                 | 510                                                        | 40                                        | 30                                                   | 20                                        | 38                                                                   | 8                                         | —                                                   | —     | —    |
| 03026500          | 79-06-13             | 0900 | 6.7                                        | 8.0                         | <50                                                                | —                                                 | 6.4 | .0                                          | 4                                                  | 80                                                         | <10                                       | 30                                                   | 30                                        | 7.8                                                                  | 1                                         | —                                                   | —     | —    |
|                   | 79-08-01             | 0915 | 13                                         | 17.0                        | 30                                                                 | 28                                                | 6.9 | .0                                          | 4                                                  | 400                                                        | 30                                        | 110                                                  | 70                                        | 8.5                                                                  | 12                                        | 9600                                                | 140   | 140  |
|                   | 79-08-03             | 0940 | —                                          | —                           | —                                                                  | —                                                 | —   | —                                           | —                                                  | —                                                          | —                                         | —                                                    | —                                         | —                                                                    | —                                         | —                                                   | 52000 | 760  |
|                   | 80-03-26             | 0900 | 31                                         | 3.0                         | 50                                                                 | 25                                                | 6.7 | 5.0                                         | 10                                                 | 200                                                        | 10                                        | 100                                                  | 80                                        | 8.9                                                                  | 4                                         | —                                                   | —     | —    |
|                   | 80-08-20             | 0830 | 6.8                                        | 11.5                        | 32                                                                 | 4                                                 | 6.3 | 11                                          | 10                                                 | 140                                                        | 20                                        | 40                                                   | 40                                        | 8.8                                                                  | 1                                         | —                                                   | —     | —    |
| 03027550          | 79-06-13             | 1425 | 4.1                                        | 13.5                        | 61                                                                 | —                                                 | 6.9 | .0                                          | 11                                                 | 340                                                        | 150                                       | 30                                                   | <10                                       | 10                                                                   | 3                                         | —                                                   | —     | —    |
|                   | 79-08-01             | 1445 | 2.5                                        | 22.5                        | 71                                                                 | 46                                                | 7.5 | .0                                          | 20                                                 | 900                                                        | 330                                       | 30                                                   | 40                                        | 10                                                                   | 2                                         | 26000                                               | 530   | 530  |
|                   | 80-03-26             | 1020 | 35                                         | 2.5                         | 50                                                                 | 37                                                | 6.8 | 5.0                                         | —                                                  | 640                                                        | 40                                        | 40                                                   | 20                                        | 11                                                                   | 19                                        | —                                                   | —     | —    |
|                   | 80-08-20             | 1310 | 10                                         | 16.0                        | 60                                                                 | 33                                                | 8.1 | —                                           | 15                                                 | 550                                                        | 150                                       | 40                                                   | 40                                        | 10                                                                   | 14                                        | —                                                   | —     | —    |
| 03027610          | 79-06-13             | 1515 | 5.3                                        | 16.0                        | 385                                                                | —                                                 | 4.4 | .0                                          | <1                                                 | 260                                                        | 160                                       | 4100                                                 | 160                                       | 1                                                                    | —                                         | —                                                   | —     | —    |
|                   | 80-03-26             | 0945 | 30                                         | 2.5                         | 150                                                                | 122                                               | 4.6 | 5.0                                         | 1                                                  | 400                                                        | 220                                       | 1300                                                 | 1400                                      | 58                                                                   | 5                                         | —                                                   | —     | —    |
|                   | 80-08-20             | 1200 | 5.1                                        | 16.0                        | 435                                                                | —                                                 | 4.7 | 15                                          | 1                                                  | 240                                                        | 120                                       | 4100                                                 | 4200                                      | 180                                                                  | —                                         | —                                                   | —     | —    |
| 03027830          | 79-06-13             | 1015 | 22                                         | 9.0                         | 104                                                                | —                                                 | 7.4 | .0                                          | 24                                                 | 180                                                        | 50                                        | 30                                                   | 20                                        | 9.1                                                                  | 4                                         | —                                                   | —     | —    |
|                   | 79-08-01             | 1045 | 41                                         | 18.0                        | 92                                                                 | 76                                                | 6.9 | .0                                          | 14                                                 | 1600                                                       | 130                                       | 110                                                  | 130                                       | 5.0                                                                  | 29                                        | 11000                                               | 310   | 310  |
|                   | 80-03-26             | 1110 | 109                                        | 3.0                         | 65                                                                 | 52                                                | 6.9 | 5.0                                         | 16                                                 | 240                                                        | 30                                        | 40                                                   | 20                                        | 9.6                                                                  | 3                                         | —                                                   | —     | —    |
|                   | 80-08-20             | 0945 | 29                                         | 13.5                        | 100                                                                | 39                                                | 7.0 | —                                           | 23                                                 | 250                                                        | 70                                        | 20                                                   | 10                                        | 11                                                                   | 10                                        | —                                                   | —     | —    |
| 03027990          | 79-06-13             | 1115 | 11                                         | 9.5                         | 95                                                                 | —                                                 | 7.6 | .0                                          | 23                                                 | 250                                                        | 70                                        | 50                                                   | 30                                        | 7.9                                                                  | 3                                         | —                                                   | —     | —    |
|                   | 79-08-01             | 1215 | 14                                         | 18.0                        | 115                                                                | 70                                                | 7.0 | .0                                          | 8                                                  | 880                                                        | 140                                       | 140                                                  | 130                                       | 16                                                                   | 14                                        | 9200                                                | 230   | 230  |
|                   | 80-03-26             | 1150 | 51                                         | 4.0                         | 63                                                                 | 52                                                | 6.9 | 5.0                                         | 17                                                 | 280                                                        | 40                                        | 40                                                   | 30                                        | 9.1                                                                  | 11                                        | —                                                   | —     | —    |
|                   | 80-08-20             | 1050 | 16                                         | 12.0                        | 85                                                                 | 30                                                | 5.8 | 20                                          | 22                                                 | 300                                                        | 40                                        | 40                                                   | 30                                        | 13                                                                   | 4                                         | —                                                   | —     | —    |
| 03028520          | 79-06-13             | 1315 | 5.6                                        | 12.0                        | 67                                                                 | —                                                 | 7.5 | .0                                          | —                                                  | 120                                                        | <10                                       | 20                                                   | 20                                        | 12                                                                   | 1                                         | —                                                   | —     | 220  |
|                   | 79-08-01             | 1700 | 3.3                                        | 22.5                        | 76                                                                 | 48                                                | 7.2 | .0                                          | 14                                                 | 270                                                        | 40                                        | 10                                                   | 10                                        | 11                                                                   | 3                                         | 21000                                               | 220   | 220  |
|                   | 80-03-26             | 1345 | 45                                         | 3.5                         | 55                                                                 | 48                                                | 6.9 | 5.0                                         | 14                                                 | 210                                                        | 10                                        | 40                                                   | 30                                        | 13                                                                   | 4                                         | —                                                   | —     | —    |
|                   | 80-08-20             | 1430 | 4.7                                        | 18.5                        | 70                                                                 | 36                                                | 7.2 | —                                           | 13                                                 | 300                                                        | 30                                        | 10                                                   | 10                                        | 11                                                                   | 1                                         | —                                                   | —     | —    |
| 03028595          | 79-06-13             | 1230 | 4.4                                        | 15.0                        | 58                                                                 | —                                                 | 6.8 | .0                                          | —                                                  | 260                                                        | 50                                        | 100                                                  | 100                                       | 4                                                                    | —                                         | —                                                   | —     | —    |
|                   | 79-08-01             | 1600 | 3.8                                        | 25.5                        | 70                                                                 | 55                                                | 7.5 | .0                                          | 10                                                 | 760                                                        | 20                                        | 50                                                   | 30                                        | 5.0                                                                  | 4                                         | 5100                                                | 320   | 320  |
|                   | 80-03-26             | 1240 | 28                                         | 3.5                         | 50                                                                 | 38                                                | 6.5 | 10                                          | 8                                                  | 190                                                        | 40                                        | 180                                                  | 180                                       | 12                                                                   | 4                                         | —                                                   | —     | —    |
|                   | 80-08-20             | 1430 | 4.7                                        | 18.5                        | 70                                                                 | 36                                                | 6.4 | 10                                          | 16                                                 | 310                                                        | 40                                        | 80                                                   | 80                                        | 10                                                                   | 1                                         | —                                                   | —     | —    |
| 03028800          | 79-06-13             | 1800 | 7.1                                        | 13.0                        | 365                                                                | —                                                 | 3.8 | 60                                          | —                                                  | 3500                                                       | 3000                                      | 5900                                                 | 140                                       | 7                                                                    | —                                         | —                                                   | 25000 | 150  |
|                   | 79-08-01             | 1930 | 20                                         | 21.5                        | 185                                                                | 108                                               | 4.3 | 20                                          | —                                                  | 3300                                                       | 480                                       | 1800                                                 | 1900                                      | 61                                                                   | 24                                        | —                                                   | —     | —    |

Water quality at surface-water sites in Area 2 (continued).

| STATION NUMBER | DATE OF SAMPLE | TIME | STREAM-FLOW, INSTANTANEOUS (CFS) | TEMPERATURE (DEG C) | DUCT-ANCE (UMHOS) | CON-DUCT-ANCE (DEG C) | DIS-SOLVED (MG/L) | SOLIDS, RESIDUE (MG/L) | SPE-CIFIC AT 180 (UNITS) | PH   | ACIDITY (MG/L AS CACO3) | ALKALINITY FIELD (MG/L AS CACO3) | IRON, TOTAL RECOVERABLE (UG/L AS FE) | IRON, DIS-SOLVED (UG/L AS FE) | MANGANESE, TOTAL RECOVERABLE (UG/L AS MN) | MANGANESE, DIS-SOLVED (UG/L AS MN) | SULFATE (MG/L AS SO4) | SEDIMENT, SUSPENDED (MG/L) | IRON, RECOV. (UG/C AS FE) | MANGANESE, RECOV. (UG/C AS FE) |
|----------------|----------------|------|----------------------------------|---------------------|-------------------|-----------------------|-------------------|------------------------|--------------------------|------|-------------------------|----------------------------------|--------------------------------------|-------------------------------|-------------------------------------------|------------------------------------|-----------------------|----------------------------|---------------------------|--------------------------------|
|                |                |      |                                  |                     |                   |                       |                   |                        |                          |      |                         |                                  |                                      |                               |                                           |                                    |                       |                            |                           |                                |
| 03028800       | 80-03-26       | 1440 | 39                               | 3.0                 | 1.10              | 78                    | 4.2               | 15                     | 0                        | 1900 | 1700                    | 1200                             | 1200                                 | 40                            | 3                                         | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-20       | 1745 | 3.9                              | 16.0                | 460               | 270                   | 3.4               | 5.0                    | 0                        | 1200 | 990                     | 6700                             | 6800                                 | 170                           | 9                                         | --                                 | --                    | --                         | --                        |                                |
| 03028803       | 79-06-13       | 1650 | 24                               | 17.0                | 230               | --                    | 6.1               | .0                     | 5                        | 1500 | 540                     | 1900                             | 2100                                 | 73                            | 11                                        | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-01       | 1830 | 56                               | 23.0                | 170               | 117                   | 6.7               | .0                     | 4                        | 3100 | 110                     | 1100                             | 1100                                 | 51                            | 40                                        | 28000                              | 230                   | --                         | --                        |                                |
|                | 80-03-26       | 1515 | 165                              | 3.5                 | 110               | 68                    | 6.6               | 5.0                    | 6                        | 1000 | 510                     | 610                              | 610                                  | 31                            | 10                                        | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-20       | 1700 | 30                               | 19.0                | 215               | 113                   | 6.3               | 1.0                    | 7                        | 500  | 50                      | 1200                             | 1300                                 | 56                            | 16                                        | --                                 | --                    | --                         | --                        |                                |
| 03029120       | 79-06-14       | 1635 | 12                               | 20.0                | 59                | --                    | 6.9               | .0                     | 8                        | 290  | 50                      | 100                              | 120                                  | 2                             | --                                        | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-15       | 0845 | 14                               | 18.5                | 50                | 43                    | 7.1               | .0                     | 12                       | 400  | 140                     | 110                              | 30                                   | 7.9                           | --                                        | 40000                              | 1100                  | --                         | --                        |                                |
|                | 80-03-25       | 0830 | 160                              | 3.0                 | 49                | 32                    | 5.5               | 5.0                    | 4                        | 440  | 20                      | 260                              | 200                                  | 9.6                           | 1                                         | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-20       | 0900 | 18                               | 21.0                | <50               | 28                    | 6.9               | --                     | 15                       | 280  | 130                     | 80                               | 90                                   | 9.8                           | 4                                         | --                                 | --                    | --                         | --                        |                                |
| 03029140       | 79-06-15       | 1000 | 11                               | 12.5                | 650               | --                    | 3.6               | --                     | <1                       | 8200 | 7300                    | 3700                             | 3900                                 | 280                           | 7                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-03       | 0755 | 21                               | 16.5                | 360               | 206                   | 4.4               | 25                     | --                       | 3200 | 2200                    | 2500                             | 2400                                 | 130                           | 9                                         | 58000                              | <10                   | --                         | --                        |                                |
|                | 80-03-24       | 1245 | 56                               | 3.0                 | 247               | 146                   | 5.3               | 10                     | 6                        | 2400 | 2100                    | 1200                             | 1300                                 | 79                            | 11                                        | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-18       | 1400 | 8.1                              | 16.0                | 520               | 391                   | 4.5               | --                     | 0                        | 6200 | 5900                    | 3400                             | 3500                                 | 240                           | 31                                        | --                                 | --                    | --                         | --                        |                                |
| 03029144       | 79-06-15       | 1115 | 5.2                              | 14.0                | 340               | --                    | 7.1               | .0                     | 16                       | 190  | 30                      | 1900                             | 1900                                 | 120                           | 1                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-03       | 0940 | 9.6                              | 17.0                | 300               | 212                   | 6.8               | .0                     | 8                        | 280  | 40                      | 4000                             | 4100                                 | 120                           | --                                        | --                                 | --                    | --                         | --                        |                                |
|                | 80-03-24       | 1100 | 44                               | 4.5                 | 220               | 142                   | 6.8               | 5.0                    | 7                        | 600  | 300                     | 1600                             | 1800                                 | 73                            | 12                                        | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-18       | 1130 | 6.3                              | 16.0                | 290               | 207                   | 7.0               | --                     | 15                       | 180  | 40                      | 1700                             | 1800                                 | 110                           | 3                                         | --                                 | --                    | --                         | --                        |                                |
| 03029149       | 79-06-15       | --   | 14                               | 16.0                | 360               | --                    | 7.7               | .0                     | 36                       | 400  | <10                     | 230                              | 260                                  | 120                           | 3                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-03       | 1110 | 13                               | 18.5                | 410               | 248                   | 7.6               | .0                     | 40                       | 940  | 50                      | 290                              | 240                                  | 130                           | 17                                        | 40000                              | 990                   | --                         | --                        |                                |
|                | 80-03-24       | 1400 | 68                               | 5.0                 | 236               | 162                   | 7.0               | 5.0                    | 12                       | 800  | 410                     | 280                              | 310                                  | 71                            | 11                                        | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-18       | 1630 | 29                               | 15.5                | 320               | 217                   | 7.0               | --                     | 480                      | 110  | 280                     | 300                              | 110                                  | 9                             | --                                        | --                                 | --                    | --                         | --                        |                                |
| 03029180       | 79-06-14       | 1545 | 17                               | 18.0                | 71                | --                    | 7.5               | .0                     | 16                       | 280  | 110                     | 50                               | 20                                   | 7.8                           | 1                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-14       | 1830 | 25                               | 17.5                | 60                | 44                    | 7.2               | .0                     | 12                       | 480  | 120                     | 80                               | 50                                   | 7.8                           | 5                                         | 19000                              | 370                   | --                         | --                        |                                |
|                | 80-03-25       | 0930 | 204                              | 3.0                 | 44                | 31                    | 6.0               | 5.0                    | 3                        | 220  | 40                      | 160                              | 160                                  | 9.7                           | 1                                         | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-20       | 1030 | 23                               | 17.5                | 60                | 33                    | 7.2               | --                     | 18                       | 330  | 170                     | 30                               | 40                                   | 8.3                           | 3                                         | --                                 | --                    | --                         | --                        |                                |
| 03029182       | 79-06-13       | 0950 | 72                               | 9.0                 | 66                | --                    | 6.8               | .0                     | 12                       | 220  | 160                     | 40                               | 40                                   | 11                            | 2                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-02       | 1515 | 19                               | 21.0                | 70                | 37                    | 7.3               | .0                     | 16                       | 780  | 210                     | 50                               | 40                                   | 8.0                           | 5                                         | 8900                               | 60                    | --                         | --                        |                                |
|                | 80-03-27       | 1100 | 124                              | 3.5                 | 54                | 47                    | 6.4               | 5.0                    | 4                        | 150  | 0                       | 90                               | 90                                   | 9.9                           | 2                                         | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-21       | 0930 | 33                               | 16.5                | <50               | 32                    | 7.2               | --                     | 16                       | 460  | 150                     | 70                               | 70                                   | 8.9                           | 8                                         | --                                 | --                    | --                         | --                        |                                |
| 03029188       | 79-06-14       | 1255 | 8.6                              | 13.5                | 57                | --                    | 7.0               | .0                     | 8                        | 180  | 70                      | 30                               | 40                                   | 9.1                           | 1                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-14       | 1625 | 12                               | 17.0                | 50                | 38                    | 7.0               | .0                     | 8                        | 410  | 100                     | 80                               | 50                                   | 9.1                           | 14                                        | 1000                               | 710                   | --                         | --                        |                                |
|                | 80-03-25       | 1100 | 69                               | 3.5                 | 49                | 37                    | 5.8               | 5.0                    | 2                        | 130  | 10                      | 130                              | 130                                  | 10                            | 1                                         | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-20       | 1330 | 9.9                              | 17.5                | <50               | 32                    | 7.1               | --                     | 17                       | 220  | 140                     | 30                               | 30                                   | 8.8                           | 5                                         | --                                 | --                    | --                         | --                        |                                |
| 03029193       | 79-06-13       | 1120 | 3.9                              | 13.0                | 88                | --                    | 7.3               | .0                     | 20                       | 750  | 240                     | 90                               | 90                                   | 8.2                           | 2                                         | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-02       | 1700 | 4.9                              | 22.5                | 92                | 40                    | 7.3               | .0                     | 16                       | 1400 | 390                     | 120                              | 90                                   | 8.8                           | 10                                        | 26000                              | 20                    | --                         | --                        |                                |
|                | 80-03-27       | 1330 | 30                               | 5.0                 | 61                | 47                    | 6.2               | 5.0                    | 4                        | 230  | 80                      | 220                              | 230                                  | 10                            | 20                                        | --                                 | --                    | --                         | --                        |                                |
|                | 80-08-21       | 1300 | 8.6                              | 19.0                | 60                | 35                    | 7.2               | --                     | 17                       | 1200 | 580                     | 90                               | 100                                  | 8.0                           | 12                                        | --                                 | --                    | --                         | --                        |                                |
| 03029250       | 79-06-13       | 1350 | 9.7                              | 13.0                | 80                | --                    | 7.4               | .0                     | 14                       | 690  | 390                     | 20                               | <10                                  | 11                            | 11                                        | --                                 | --                    | --                         | --                        |                                |
|                | 79-08-14       | 1230 | 7.9                              | 15.5                | 90                | 55                    | 7.3               | .0                     | 17                       | 880  | 390                     | 40                               | <10                                  | 8.1                           | 6                                         | 11000                              | 80                    | --                         | --                        |                                |

12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

12.2 Selected Water-Quality

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

12.3 Benthic Invertebrate Data, August 1979

Benthic invertebrate data, Area 2, August 1979.

| Station<br>reference<br>No. | Hemi-<br>ptera | Coleo-<br>ptera | Dip-<br>tera | Ephemer-<br>optera | Trichop-<br>tera | Plecop-<br>tera | Mega-<br>loptera | Amphi-<br>poda | Aca-<br>poda | Deca-<br>poda | Ara-<br>neida | Number of individuals in taxon |                     | Diversity<br>index |     |
|-----------------------------|----------------|-----------------|--------------|--------------------|------------------|-----------------|------------------|----------------|--------------|---------------|---------------|--------------------------------|---------------------|--------------------|-----|
|                             |                |                 |              |                    |                  |                 |                  |                |              |               |               | Order<br>Plesio-<br>poda       | Basomma-<br>tophora |                    |     |
| 1                           | 2              | 2               | 8            | 3                  | 28               | 19              | 13               | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.3 |
| 2                           | 0              | 6               | 10           | 20                 | 17               | 13              | 1                | 0              | 1            | 0             | 0             | 0                              | 0                   | 0                  | 2.4 |
| 3                           | 0              | 4               | 6            | 8                  | 33               | 17              | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.1 |
| 4                           | 3              | 2               | 10           | 31                 | 20               | 8               | 1                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.2 |
| 6                           | 2              | 1               | 4            | 5                  | 57               | 25              | 1                | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.7 |
| 7                           | 0              | 0               | 9            | 9                  | 22               | 9               | 2                | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.2 |
| 8                           | 0              | 17              | 23           | 3                  | 45               | 7               | 1                | 1              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.0 |
| 9                           | 0              | 0               | 11           | 1                  | 31               | 17              | 13               | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.0 |
| 10                          | 1              | 0               | 17           | 13                 | 3                | 15              | 0                | 3              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.1 |
| 11                          | 0              | 0               | 3            | 0                  | 4                | 0               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.4 |
| 13                          | 1              | 4               | 9            | 3                  | 4                | 11              | 4                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.7 |
| 14                          | 2              | 2               | 7            | 1                  | 4                | 4               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.3 |
| 15                          | 1              | 0               | 1            | 4                  | 1                | 7               | 0                | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.1 |
| 16                          | 0              | 2               | 10           | 10                 | 17               | 26              | 3                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.2 |
| 17                          | 2              | 0               | 15           | 3                  | 72               | 17              | 2                | 1              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.6 |
| 18                          | 0              | 0               | 1            | 0                  | 0                | 0               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 0.4 |
| 20                          | 0              | 0               | 2            | 0                  | 0                | 20              | 13               | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.5 |
| 21                          | 0              | 0               | 5            | 9                  | 23               | 0               | 0                | 1              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.5 |
| 22                          | 0              | 2               | 2            | 7                  | 18               | 3               | 3                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.2 |
| 23                          | 0              | 0               | 1            | 13                 | 1                | 0               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.1 |
| 24                          | 0              | 25              | 23           | 25                 | 102              | 9               | 3                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.0 |
| 25                          | 0              | 19              | 30           | 6                  | 16               | 3               | 14               | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.4 |
| 26                          | 0              | 1               | 13           | 6                  | 11               | 6               | 4                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.3 |
| 27                          | 0              | 0               | 30           | 12                 | 33               | 0               | 12               | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.0 |
| 29                          | 0              | 0               | 2            | 1                  | 0                | 0               | 0                | 1              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.5 |
| 31                          | 0              | 4               | 10           | 9                  | 8                | 3               | 4                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.4 |
| 33                          | 0              | 18              | 29           | 14                 | 139              | 1               | 3                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.5 |
| 34                          | 0              | 8               | 40           | 62                 | 16               | 1               | 8                | 2              | 0            | 0             | 1             | 0                              | 0                   | 0                  | 2.0 |
| 35                          | 0              | 3               | 32           | 0                  | 28               | 0               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.8 |
| 36                          | 0              | 1               | 2            | 1                  | 0                | 2               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.4 |
| 37                          | 1              | 4               | 23           | 11                 | 46               | 5               | 7                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.1 |
| 39                          | 0              | 2               | 17           | 16                 | 43               | 10              | 0                | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.0 |
| 40                          | 0              | 0               | 7            | 23                 | 15               | 102             | 22               | 2              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.8 |
| 41                          | 0              | 6               | 8            | 15                 | 7                | 2               | 11               | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.4 |
| 42                          | 0              | 2               | 23           | 16                 | 41               | 4               | 7                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.1 |
| 44                          | 0              | 1               | 3            | 9                  | 23               | 1               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.6 |
| 46                          | 0              | 0               | 8            | 2                  | 26               | 0               | 1                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.3 |
| 47                          | 0              | 2               | 3            | 0                  | 0                | 0               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.0 |
| 48                          | 0              | 0               | 2            | 11                 | 0                | 2               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 1.7 |
| 49                          | 0              | 3               | 3            | 1                  | 5                | 0               | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.3 |
| 50                          | 0              | 3               | 4            | 30                 | 53               | 27              | 0                | 0              | 0            | 0             | 0             | 0                              | 0                   | 0                  | 2.1 |

Benthic invertebrate data, Area 2, August 1979.

| Station<br>reference<br>No. | Hemi-<br>ptera | Coleo-<br>ptera | Dip-<br>tera | Ephemer-<br>optera | Trichop-<br>tera | Plecop-<br>tera | Mega-<br>loptera | Údon-<br>ata | Amphi-<br>poda | Aca-<br>rina | Are-<br>neida | Deca-<br>poda | Unknown<br>Order<br>(Annelida) | Number of Individuals in taxon |                  | Diversity<br>index |
|-----------------------------|----------------|-----------------|--------------|--------------------|------------------|-----------------|------------------|--------------|----------------|--------------|---------------|---------------|--------------------------------|--------------------------------|------------------|--------------------|
|                             |                |                 |              |                    |                  |                 |                  |              |                |              |               |               |                                | Plesio-<br>poda                | Oligo-<br>chaeta |                    |
| 51                          | 0              | 0               | 0            | 0                  | 3                | 0               | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 0.0                |
| 52                          | 0              | 0               | 0            | 8                  | 23               | 6               | 7                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.8                |
| 53                          | 0              | 0               | 1            | 3                  | 3                | 0               | 21               | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.3                |
| 55                          | 0              | 0               | 0            | 4                  | 4                | 21              | 1                | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.5                |
| 56                          | 0              | 0               | 1            | 1                  | 0                | 0               | 2                | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 0.0                |
| 57                          | 5              | 0               | 1            | 1                  | 11               | 0               | 0                | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.4                |
| 58                          | 58             | 1               | 0            | 3                  | 0                | 0               | 4                | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 2.0                |
| 61                          | 61             | 0               | 0            | 1                  | 5                | 33              | 3                | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.2                |
| 62                          | 62             | 1               | 0            | 0                  | 4                | 2               | 3                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.1                |
| 63                          | 63             | 0               | 0            | 1                  | 0                | 0               | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 0.0                |
| 64                          | 64             | 0               | 0            | 0                  | 1                | 0               | 0                | 0            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.0                |
| 65                          | 65             | 0               | 0            | 3                  | 29               | 4               | 2                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.5                |
| 66                          | 66             | 3               | 0            | 18                 | 30               | 3               | 3                | 11           | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.0                |
| 67                          | 67             | 0               | 0            | 3                  | 0                | 1               | 0                | 1            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.4                |
| 68                          | 68             | 12              | 0            | 3                  | 2                | 6               | 5                | 0            | 2              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.3                |
| 69                          | 69             | 0               | 2            | 5                  | 2                | 0               | 0                | 3            | 1              | 0            | 1             | 0             | 0                              | 0                              | 0                | 2.1                |
| 70                          | 70             | 0               | 0            | 1                  | 12               | 1               | 0                | 1            | 0              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.0                |
| 71                          | 71             | 1               | 2            | 4                  | 41               | 0               | 6                | 0            | 1              | 0            | 1             | 0             | 0                              | 0                              | 0                | 1.3                |
| 72                          | 72             | 3               | 0            | 9                  | 12               | 9               | 7                | 1            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.4                |
| 73                          | 73             | 0               | 2            | 7                  | 6                | 6               | 10               | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.2                |
| 74                          | 74             | 1               | 0            | 10                 | 28               | 7               | 8                | 0            | 5              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.2                |
| 76                          | 76             | 0               | 0            | 11                 | 16               | 9               | 10               | 6            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 2.3                |
| 77                          | 77             | 0               | 0            | 0                  | 0                | 0               | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 0.0                |
| 78                          | 78             | 0               | 0            | 0                  | 0                | 0               | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 0.0                |
| 79                          | 79             | 25              | 0            | 3                  | 0                | 2               | 26               | 11           | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.5                |
| 81                          | 81             | 0               | 0            | 2                  | 26               | 11              | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.1                |
| 82                          | 82             | 0               | 0            | 0                  | 0                | 0               | 29               | 4            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.2                |
| 83                          | 83             | 0               | 1            | 6                  | 29               | 4               | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.2                |
| 84                          | 84             | 0               | 0            | 1                  | 10               | 32              | 16               | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 1.8                |
| 85                          | 85             | 1               | 0            | 0                  | 0                | 0               | 0                | 0            | 0              | 0            | 0             | 0             | 0                              | 0                              | 0                | 0                  |

**12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued**  
**12.3 Benthic Invertebrate Data, August 1979**

## 12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued

12.4 Benthic Invertebrate Data, August 1980

Benthic invertebrate data<sup>1</sup>, Area 2, August 1980.

| Station<br>reference<br>No. | Ephemero-<br>ptera | Odon-<br>ata | Plecop-<br>tera | Mega-<br>loptera | Trichop-<br>tera | Coleo-<br>ptera | Dip-<br>tera | Amphi-<br>poda | Gastro-<br>poda | Hiru-<br>dinea | Oligo-<br>chaeta | Anne-<br>lida | Nema-<br>toda | Hemip-<br>tera | Deca-<br>poda | Hydra-<br>carina |  |
|-----------------------------|--------------------|--------------|-----------------|------------------|------------------|-----------------|--------------|----------------|-----------------|----------------|------------------|---------------|---------------|----------------|---------------|------------------|--|
| 1                           |                    |              |                 |                  |                  |                 |              |                |                 |                |                  |               |               |                |               |                  |  |
| 2                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 3                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 4                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 5                           |                    |              |                 |                  |                  |                 |              |                |                 |                |                  |               |               |                |               |                  |  |
| 6                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 7                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 8                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 9                           | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 10                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 11                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 12                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 13                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 14                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 15                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 16                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 17                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 18                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 19                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 20                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 21                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 22                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 23                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 24                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 25                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 26                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 27                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 28                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 29                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 30                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 31                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 32                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 33                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 34                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 35                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 36                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 37                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 38                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 39                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 40                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 41                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 42                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 43                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 44                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 45                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 46                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 47                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 48                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 49                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |
| 50                          | P                  | P            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P             | P              | P             | P                |  |

Benthic invertebrate data<sup>1</sup>, Area 2, August 1980 (continued).

| Station<br>reference<br>No. | Ephemero-<br>ptera | Odon-<br>ata | Plecop-<br>tera | Mega-<br>loptera | Trichop-<br>tera | Coleo-<br>ptera | Dip-<br>tera | Amphi-<br>poda | Gastro-<br>poda | Hiru-<br>dinea | Oligo-<br>chaeta | Anne-<br>lida | Hemip-<br>tera | Nema-<br>toda | Deca-<br>poda | Hydra-<br>carina |
|-----------------------------|--------------------|--------------|-----------------|------------------|------------------|-----------------|--------------|----------------|-----------------|----------------|------------------|---------------|----------------|---------------|---------------|------------------|
| 51                          | -                  | -            | -               | -                | -                | -               | -            | -              | -               | -              | -                | -             | -              | -             | -             | -                |
| 52                          | P                  | -            | P               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 53                          | -                  | P            | -               | P                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 55                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 56                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 57                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 58                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 61                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 62                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 63                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 64                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 65                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 66                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 67                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 68                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 69                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 70                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 71                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 72                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 73                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 74                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 76                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 77                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 78                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 79                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 81                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 82                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 83                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 84                          | -                  | P            | -               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |
| 85                          | P                  | -            | P               | -                | P                | P               | P            | P              | P               | P              | P                | P             | P              | P             | P             | P                |

<sup>1</sup>P indicates taxon is present.

**12.0 SUPPLEMENTAL INFORMATION FOR AREA 2--Continued**  
**12.4 Benthic Invertebrate Data, August 1980**

## 13.0 LIST OF REFERENCES

Berg, T. M., and others, 1981, Geologic map of Pennsylvania: Pennsylvania Geological Survey, 4th series, Map 1, (in press).

Bloyd, R. M., Jr., 1974, Summary appraisals of the nation's ground-water resources--Ohio region: U.S. Geological Survey Professional Paper 813-A, 41 p.

Britton, L. J., and Averett, R. C., 1974, Water-quality data of the Sacramento River, California, May 1972 to April 1973: U.S. Geological Survey Open-File Report, Menlo Park, California, U.S. Geological Survey, 30 p.

Buckwalter, T. F., Dodge, C. H., and Schiner, G. R., 1979, Selected water resources data, Clarion River and Redbank Creek basins, northwestern Pennsylvania, Part 2: U.S. Geological Survey Water-Resources Investigation 79-19, 135 p.

Buckwalter, T. F., and others, 1981, Water resources of the Clarion River and Redbank Creek basins: U.S. Geological Survey Water-Resources Investigations, (in press).

Commonwealth of Pennsylvania, 1980, Annual report on mining, oil and gas, and land reclamation and conservation activities: Department of Environmental Resources, 363 p.

Edmunds, W. E., and others, 1979, The Mississippian and Pennsylvanian (Carboniferous) systems in the United States--Pennsylvania and New York: U.S. Geological Survey Professional Paper 1110 B, 33 p.

Feltz, H. R., 1980, Significance of bottom material data in evaluating water quality: Contaminants and Sediments, Volume 1, Baker, R. A., editor, Ann Arbor, Ann Arbor Science Publishers, p. 271-287.

Fenneman, N. M., 1938, Physiography of eastern United States: McGraw Hill, New York, 714 p.

Flippo, H. N., Jr., 1977, Floods in Pennsylvania: Pennsylvania Department of Environmental Resources Water Resources Bulletin 13, 59 p.

1981, Technical manual of low-flow frequency models for streams in Pennsylvania: U.S. Geological Survey Water-Resources Investigations (in press).

Frimpter, M. H., 1974, Ground-water resources, Allegheny River basin and part of the Lake Erie basin, New York: Allegheny River Basin Regional Water Resources Planning Board Report ARB-2, 98 p.

Harvard University, 1970, Oxygenation of ferrous iron: Water Pollution Control Research Series 14010-06/69, Federal Water Quality Administration, 199 p.

Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473, second edition, 362 p.

Herb, W. J., 1977, Channel characteristics as flood predictors for selected forested watersheds in Pennsylvania and Maryland: Unpublished M.S. thesis, Pennsylvania State University.

1981, Technical manual for estimating mean flow characteristics of Pennsylvania streams: Unpublished report on file in the Harrisburg, Pennsylvania office of the U.S. Geological Survey, Water Resources Division.

Howard, A. D., 1967, Drainage analysis in geologic interpretation, a summation: Bulletin American Association Petroleum Geologists 51, p. 2246-59.

Koester, H. E., and Miller, D. R., 1980, Ground-water quality and data on wells and springs in Pennsylvania, Volume I--Ohio and St. Lawrence River basins: U.S. Geological Survey Open-File Report 80-1119, p. 26-52.

Miller, C. R., 1951, Analysis of flow-duration, sediment-rating curve method of computing sediment yield: U.S. Department of the Interior, Bureau of Reclamation, 55 p.

National Climatic Center, 1977, Climate of Pennsylvania: Climatography of the United States No. 60, National Oceanic and Atmospheric Administration, 21 p.

Office of Resources Management, 1980, The state water plan, subbasins 14 and 16, Genesee and upper Allegheny River, Pennsylvania Department of Environmental Resources State Water Plan Bulletin 16, 202 p.

Office of Surface Mining, Reclamation, and Enforcement, 1979, Surface coal mining and reclamation operations, permanent regulatory program: Federal Register, v. 44, no. 50, book 3, 153 p.

Pennsylvania Topographic and Geologic Survey, 1929, Map of the coal fields of Pennsylvania: Commonwealth of Pennsylvania.

Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, Chapter C3, 66 p.

Schiner, G. R., and Gallaher, J. T., 1979, Geology and ground-water resources of western Crawford County, Pennsylvania: Pennsylvania Geological Survey, 4th series, Water Resources Report 46, 103 p.

Schiner, G. R., and Kimmel, G. E., 1972, Mississippian stratigraphy of northwestern Pennsylvania: U.S. Geological Survey Bulletin 1331-1, 27 p.

Schumm, S. A., 1963, A tentative classification of river channels: U.S. Geological Survey Circular 477, 10 p.

Searcy, J. K., 1959, Flow-duration curves, manual of hydrology; Part 2, Low-flow techniques: U.S. Geological Survey Water-Supply Paper 1542-A, 33 p.

Skoustad, M. W., Fishman, M. J., Friedman, L. C., Erdman, D. E., and Duncan, S. S., (eds.), 1979, Methods for analysis of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.

Snedecor, G. W., 1957, Statistical methods, Fifth edition, Ames, Iowa State College Press, p. 174.

Soil Conservation Service, 1972, General soil map, Pennsylvania: Soil Conservation Service.

U.S. Department of Agriculture, 1977, The status of land disturbed by surface mining in the United States, basic statistics by State and county as of July 1, 1977: U.S. Department of Agriculture, 124 p.

U.S. Department of Commerce, 1973, Monthly normals of temperature, precipitation, and heating and cooling degree days 1941-70, Pennsylvania: National Oceanic and Atmospheric Administration, Environmental Data Service, Climatography of the United States, No. 81, 8 p.

U.S. Department of the Interior, 1968, Stream pollution by coal mine drainage upper Ohio River basin: Federal Water Pollution Control Administration, p. 110.

U.S. Environmental Protection Agency, 1977, National interim primary drinking water regulations: Environmental Protection Agency Report 570/9-76-003, 159 p.

U.S. Geological Survey, 1977, Water resources data for

Pennsylvania, Volume 3, Ohio and St. Lawrence River basins: U.S. Geological Survey Water-Data Report PA-76-3, Water year 1976, 262 p.

1978, Water resources data for Pennsylvania, Volume 3, Ohio and St. Lawrence River basins: U.S. Geological Survey Water-Data Report PA-77-3, Water year 1977, 272 p.

1979, Water resources data for Pennsylvania, Volume 3, Ohio and St. Lawrence River basins: U.S. Geological Survey Water-Data Report PA-78-3, Water year 1978, 310 p.

1980, Water resources data for Pennsylvania, Volume 3, Ohio and St. Lawrence River basins: U.S.

Geological Survey Water-Data Report PA-79-3, Water year 1979, 386 p.

1981, Water resources data for Pennsylvania, Volume 3, Ohio and St. Lawrence River basins: U.S. Geological Survey Water-Data Report PA-80-3, Water year 1980, 304 p.

Wark, J. W., 1965, Sediment load of streams in the region, in Schneider, W. J., and others, Water resources of the Appalachian region, Pennsylvania to Alabama: U.S. Geological Survey Hydrologic Atlas HA-198.

Wilhm, J. L., and Dorris, J. C., 1968, Biological parameters for water quality criteria: BioScience, v. 18, no. 6, p. 477-480.