
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

FORTRAN '77 PROGRAMS FOR COMPUTING DATA FITTING FUNCTIONS

BASED ON A PRINCIPLE OF MINIMUM INTEGRATED SQUARED CURVATURE

by

Raymond D. Watts

This report is preliminary and has not been reviewed for
conformity with U.S. Geological Survey editorial standards
and stratigraphic nomenclature.

Commercial or trade names appearing in this report are used
for descriptive purposes only. Their use does not
constitute recommendation or endorsement by the U.S.
Geological Survey.

Open File Report 82-831

1982

Page 1

This report consists of listings of FORTRAN '77 computer
programs that implement a new algorithm for fitting a
continuous, analytical function to a set of data points.
The analytical function is defined in a one- or two-
dimensional domain that contains the known data points. The
fit satisfies the following criteria: (1) it passes through
the known data points, and (2) the square of its curvature,
integrated over the entire domain of the fit, is minimized.

The major programs, FOURGRID and FOURFIT, are intended to be
self-documenting. These programs and the subroutines that
they call have been extensively tested using data sets with
up to 50 data points, with satisfactory results. The author
is presently preparing a report on the mathematical
algorithm that these programs implement.

Page 2

SUBROUTINE FOURGRID(X , Y, F,N, DX , DY,XO,YO , MODE , WORK, NWRK,
LX,LY)

1.0 PURPOSE

Grids tabulated data in 2 dimensions using FOURFIT.

2.0 ARGUMENTS

X - (input) real*4 array of x coordinates of known
points, dimensioned (N).

Y - (input) real*4 array of y coordinates of known
points, dimensioned (N).

F - (input) real*4 array of function values at the
known points, dimensioned (N).

N - (input) integer number of known points.

DX - (input) grid interval in the x direction.

DY - (input) grid interval in the y direction.

XO - (input/output) x coordinate of lower left
corner of grid (input or output parameter,
depending on value of MODE).

YO - (input/output) y coordinate of lower left
corner of grid (input or output parameter,
depending on value of MODE).

MODE - (input)

if MODE.eq.1, then XO and YO are considered as
input specifications of the minimum x and y
values of the output grid.

- if MODE.eq.2, then XO and YO are constructed by
FOURGRID so that the grid is centered around
the tabulated input data. XO and YO, which
still represent the minimum x and y coordinates
of the grid, are returned to the calling
program.

if MODE has any other value, an error
is written and the program is STOPped.

message

10. WORK - (output) work and result array that must
contain enough storage for all the work arrays used

Page 3

c by FOURFIT. Real*4 array dimensioned (NWRK). The
c resulting grid is returned in WORK as a real*4
c array dimensioned (0:LX,0:LY).
c
c 11. NWRK - (input) size of WORK, integer input
c parameter. Minimum NWRK is max(N*(LX+1)*(LY+1) +
c 2*N**2+5*N,8*LX*LY). LX and LY are computed by
c FOURGRID as described below.
c
c 12. LX - (output) x size of the output grid.
c
c 13. LY - (output) y size of the output grid. LX and LY
c are powers of 2 (because of the use of a radix-2
c FFT), which are adjusted to the minimum size that
c will span the input data range using either the
c input values of XO and YO or the values computed by
c FOURGRID, depending on the value of MODE.
c
c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c FOURGRID was written in December, 1981, and tested on a
c Digital Equipment Corporation VAX 11/780 computer, using
c DEC'S VAX FORTRAN compiler. The program is intended to
c conform to FORTRAN '77 standards, and contains no known
c non-FORTRAN '77 constructs.
c
c
c
c 5.0 CALLS SUBROUTINES:
c
c
c - FOURFIT
c
c - FFT2D
c
c - TOCOMPLEX
c
c - TOREAL
c
c
c

Page 4

c
c 6.0 USAGE NOTES
c
c If all values of X or Y are the same, and if FFT2D is coded
c so that it will work with NX or NY = 1, then this program
c can be used to fit one-dimensional data.
c
c
c
c

c
c declarations*

REAL*4 X(N),Y(N),F(N),WORK(NWRK)
DATA PI/3.14159265/

c
c determine grid parameters,
c start by scanning for max and min values.

XMIN=X(1)
YMIN=Y(1)
XMAX=XMIN
YMAX=YMIN
DO 1=2,N
XMAX=MAX(XMAX,X(D)
YMAX=MAX(YMAX,Y(D)
XMIN=MIN(XMIN,X(I))
YMIN=MIN(YMIN,Y(D)

END DO
c
c if MODE is 1, then use XO and YO as minima.

IF (MODE.EQ.1) THEN
IF (XMIN.LT.XO) THEN
WRITE(*,'(1X,A)') 'Minimum value in input X array is 1 //

1 smaller than specified XO, MODE = 1 , in FOURGRID.'
STOP

ELSE
XMIN=XO

END IF
IF (YMIN.LT.YO) THEN
WRITE(*,'(1X,A)') 'Minimum value in input Y array is'//

' smaller than specified YO, MODE=1, in FOURGRID.'
STOP

ELSE
YMIN=YO

END IF
c
c check for invalid value for MODE.

ELSE
IF (MODE.NE.2) THEN
WRITE(*,'(1X,A)') 'Illegal value of MODE passed'//

' to FOURGRID.'
STOP

END IF
END IF

Page 5

c determine grid size.
XSPAN=XMAX-XMIN
YSPAN=YMAX-YMIN
LX=1
DO WHILE(LX*DX.LT.XSPAN)

LX=2*LX
END DO
LY=1
DO WHILE(LY*DY.LT.YSPAN)

LY=2*LY
END DO

c
c if MODE is 2, center the grid around the data.

IF (MODE.EQ.2) THEN
XO=(XMIN+XMAX)/2.-DX*UX/2)
YO=(YMIN+YMAX)/2.-DY*(LY/2)

END IF
c
c check size of work array.

MINSIZE=MAX(N*(LX+1)*(LY+1)+2*N**2+5*N,8*LX*LY)
IF (NWRK.LT.MINSIZE) THEN
WRITE(*, (1X,A) f) 'Error in FOURGRID:',

f Size of work array is not sufficient. 1 ,
f Grid parameters: 1

WRITEC*,'(4X,A,I6)') 'LX =',lx,'LY = f ,ly,
f Minimum NWRK = f ,minsize

STOP
END IF

c
c pointers for work array.

I1=N*(LX+1)*(LY+1)+1
I2=I1+N**2
I3=I2+N**2
I4=I3+N
I5=I4+N
I6=I5+N
I7=I6+N

c
c rescale X and Y to principal interval for FOURFIT

DO 1 = 1 ,N
WORK(I6+1-1)=(X(I)-XO)/DX
WORKU7+I-1)=(Y(I)-YO)/DY

END DO
c
c get the Fourier cosine coefficients of the fit.

CALL FOURFIT (WORKU 6),WORK(I?),F,N,
. FLOAT(LX),FLOAT(LY),WORK,LX,LY,WORK(I1),
. WORK(12),WORK(I3),WORK(I4),WORK(I5))

c
c arrange them for Fourier transformation using FFT

CALL TOCOMPLEX(WORK,WORK,LX,LY,2*LX,2*LY)
c
c do the FFT.

CALL FFT2D(WORK,2*LX,2*LY,-1.)

Page 6

c squeeze out the imaginary part
CALL TOREAL(WORK,WORK,LX,LY)

c
c done

END

Page 7

SUBROUTINE FOURFIT(X,Y,F,N,SPANX,SPANY,D,NX,NY,M,MWORK,
V,W,LAMBDA)

c
c
c 1.0 PURPOSE
c
c Computes the 2-D cosine transform of a fit to a function,
c using the principle of minimum integrated squared curvature,
c At the present time, the mathematical algorithm is
c undocumented, but it can be described briefly as follows:
c (1) we describe a function (the fit) in terms of a Fourier
c cosine series in D dimensions (the present programs work for
c D=1 or 2); (2) we use calculus of variations to minimize
c the square of the second derivative (or the square of
c del-squared) integrated over the domain of the fit, while
c the fit is simultaneously constrained to pass through the
c known data points,
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. X - (input) array of X coordinates of known points,
c real*4 array dimensioned (N). The calling program
c should ensure that all X values fall in the range
c 0. .le. X(i) .le. SPANX.
c
c 2. Y - (input) array of Y coordinates of known points,
c real*4 array dimensioned (N). The calling program
c should ensure that all Y values fall in the range
c 0. .le. Y(i) .le. SPANY.
c
c 3« F - (input) array of values at known points, real*4
c array dimensioned (N).
c
c 4. N - (input) number of known points,
c
c 5. SPANX - (input) half the period of the function in
c the x dimension. Since the function must be even
c as well as periodic, it need be specified only over
c half a period in each dimension,
c
c 6. SPANY - (input) half the period of the function in
c the y dimension,
c
c 7. D (output) work and result array, real*4
c dimensioned (0:NX,0:NY,N). The Fourier cosine
c coefficients are returned in the first panel of D
c [i.e. in D(0:NX,0:NY,1)].
c
c 8. NX - (input) the number of x-dimension frequencies
c included in the series. The highest frequency in
c the X dimension is NX*pi/SPANX.
c

Page 8

9. NY - (input) the number of y-dimension frequencies
included in the series. The highest frequency in
the Y dimension is NY*pi/SPANY.

10. M - work array, real*4 dimensioned (N,N).

11. MWORK - work array, real*4 dimensioned (N,N).

12. V - work array, real*4 dimensioned (N).

13- W - work array, real*4 dimensioned (N).

14. LAMBDA - (output) work array, real*4 dimensioned
(N). On exit, this array contains the Lagrange
multipliers from the minimization.

3.0 AUTHOR

R. Watts
U.S. Geological Survey
P.O. Box 25046, Mail Stop 964
Denver, CO 80225

4.0 TESTING SUMMARY

FOURFIT was written in December, 1981, and tested on a
Digital Equipment Corporation VAX 11/780 computer, using
DEC'S VAX FORTRAN compiler. The program is intended to
conform to FORTRAN '77 standards, and contains no known
non-FORTRAN '77 constructs.

5.0 CALLS SUBROUTINES

- DOT

- MATSOL

- DCT

- DICT

- SUM

Page 9

c
c 6.0 USAGE NOTES
c
c On input, the user provides the known data points in
c tabulated form. The coordinates of the i'th known point are
c (X(i),Y(i)), and the function value at that point is F(i),
c with i ranging between 1 and N.
c
c On output, the array D contains the Fourier cosine
c coefficients. They are stored as if D were dimensioned
c (0:NX,0:NY), with the (i,j)th component representing
c frequencies kx=i*DKX and ky=j*DKY, where DKX=pi/SPANX and
c DKY=pi/SPANY.
c
c To use the results of this program with a Fast Fourier
c Transform for conversion into the space domain, perform the
c following steps:
c
c 1. Take the real values output by this program, and
c make the numbers complex with zero imaginary part.
c
c 2. Place the numbers into the FFT array or file, using
c only positive frequencies in both dimensions.
c
c 3^ Apply the FFT, using a form that only applies the
c necessary exponential factors (or cosine factors)
c with no normalization by N, 2.*PI, etc.
c
c 4. Use only the real part of the result.
c
c
c The solution has two components: (1) a part that depends
c only on the geometry of the known data points, and (2) a
c part that is dependent on the data values at those points.
c Both parts of the problem require solution of an NxN matrix,
c where N is the number of data points. If several
c measurements are made at the same set of stations, then this
c program might profitably be broken into the data-independent
c and data-dependent parts, which could be called separately.
c
c
c
c
c Declarations:

REAL*4 F(N),M(N,N),MWORK(N,N),V(N),LAMBDA(N),
D(0:NX,0:NY,N),W(N),X(N),Y(N)

DATA PI/3.14159265/
c
c The following weights are the number of image points
c for each data point.

DO 1=1 ,N
XNORM=X(I)/SPANX
IF(ABS(XNORM-NINT(XNORM)).LT.1.E-5) THEN
WTX=1.

ELSE

Page 10

WTX=2.
END IF
YNORM=Y(I)/SPANY
IF(ABS(YNORM-NINT(YNORM)).LT.1.E-5) THEN

WTY=1.
ELSE

WTY=2.
END IF
W(I)=WTX*WTY

END DO
c
c Compute the Fourier cosine transform of each sample function,
c Since each function is a delta function, the transform is
c done by a simple DFT rather than by an FFT.

DKX=PI/SPANX
DKY=PI/SPANY
DO 1=1,N

CALL DCT(X(I) ,Y(I),DKX,DKY,D(0,0,I),NX,NY,W(D)
END DO

c
c In the frequency domain, compute the function that when operated
c on by the square of the Laplacian operator (del**4), yields
c each sampling function (i.e. a delta function at the location
c of the corresponding known point, plus delta functions
c at any symmetry points). This process must ignore
c the zero-frequency component, since that is destroyed by the
c Laplacian operator.

DO 1=1,N
D(0,0,I)=(0.,0.)
DO KX=0,NX

WX=(KX*DKX)**2
DO KY=MAX(0,1-KX),NY
WY=(KY*DKY)**2
WT=(WX+WY)**2
D(KX,KY,I)=D(KX,KY,I)/WT

END DO
END DO

END DO
c
c Compute summed inverse transforms at the known sample points.
c The results are not equally weighted due to the presence of 0,
c 1, or 3 image points resulting from the required even symmetry
c in 2 dimensions.
c Since the result is required only at one point, this computation
c is most efficiently done by discrete cosine transform rather
c than by FFT.

DO 1=1,N
DO J=1,1

TEMPM=DICT(X(I),Y(I),DKX,DKY,D(0,0,J),NX,NY)*W(I)
M(I,J)=TEMPM
M(J,I)=TEMPM

END DO
END DO

c
c solve Mx=w.

Page 11

CALL MATSOL(M,MWORK,V,W,N)
c
c determine <g>.

GDC=DOT(F,V,W,N)/SUM(V,W,N)
c
c solve My=f.

DO 1=1,N
LAMBDA(I)=W(I)*F(I)

END DO
CALL MATSOL(M,MWORK,LAMBDA,LAMBDA,N)

c
c determine Lagrange multipliers.

DO 1=1,N
LAMBDA(I)=GDC*V(I)-LAMBDA(I)

END DO
c
c Determine the positive-frequency part of the transform of
c the fit function, putting it into the first panel of D.

DO KX=0,NX
DO KY=0,NY

D(KX,KY,1)=-D(KX,KY,1)*LAMBDA(1)
END DO

END DO
DO J=2,N

DO KX=0,NX
DO KY=0,NY

D(KX,KY,1)=D(KX,KY,1)-D(KX,KY,J)*LAMBDA(J)
END DO

END DO
END DO
D(0,0,1)=GDC

c
c done

END

Page 12

SUBROUTINE FFT2D(F,M,N,S)
c
c
c
c 1.0 PURPOSE
c
c Performs a 2-dimensional, radix-2 Fast Fourier Transform
c (FFT) in memory. This program is efficient only if the 2-D
c array can be stored in the user's physical memory space. If
c the array extends into virtual memory space on disk, then
c extensive paging will be incurred while doing the transform
c in the second dimension, which is the part performed by
c calls to FFT2.
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. F - (input/output) complex*8 array of input values
c that is Fourier transformed in place into the
c output values. Dimensioned (M,N).
c
c 2. M (input) integer subscript range of first
c dimension of F. Must be an integral power of 2, or
c FFT will issue an error message and STOP,
c
c 3. N - (input) integer subscript range of second
c dimension of F. Must be an integral power of 2, or
c FFT2 will issue an error message and STOP,
c
c 4. S - (input) real*4 sign of transform. Must equal
c +1. or -1., or FFT will issue an error messages
c and STOP,
c
c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c FFT2D is a simple driver to call FFT and FFT2. FFT does the
c transforms in the first dimension (whose points are
c contiguous) . FFT2 does the transforms in the second
c dimension (whose points are non-contiguous). The program

Page 13

c was written in 1976 and run on a Honeywell Multics system,
c then recompiled and tested in December, 1982, on a Digital
c Equipment Corporation VAX 11/780. The program conforms to
c FORTRAN '77 standards and contains no known non-standard
c constructs.
c
c
c
c 5.0 CALLS SUBROUTINES:
c
c
c - FFT
c
c - FFT2
c
c
c
c
c 6.0 USAGE
c
c 6.1 Definition Of Result
c
c The result F in terms of the input f (which occupies the
c same storage) is:
c
c M-1 N-1
c 2
c \ \ 4iS(pi) klmn/MN
c F(k,l) = / / f(m,n) e
c
c m=0 n=0
c
c for k = 0,1,...,M-1 and 1 = 0,1,...,N-1.
c
c where i is the square root of -1.
c
c
c
c 6.2 Transform Weighting
c
c 6.2.1 Unweighted Results - If FFT2D is called with S = +1.,
c then called again with S = -1., and no weighting is applied
c to the array, then the result will be the original array
c multiplied by M*N.
c
c
c
c 6.2.2 Further Information - See FFT for information on
c appropriate weights to apply to make a scaled transform
c pair.
c
c
c
c 6.3 Subscript Range
c

Page 14

c This program only uses the subscript ranges prescribed by M
c and N. The calling program can use a declaration of the
c form
c
c COMPLEX F(m1:m2,n1:n2)
c
c and the only restrictions are:
c
c m2-m1+1=M
c n2-n1+1=N
c
c which is to say, M and N are the number of elements in each
c dimension.
c
c
c
c 6.4 Efficiency
c
c This program is intended to work in physical memory. If F
c is larger than the user's share of physical memory, then
c extensive paging will occur during the calls to FFT2.
c
c
c -
c

COMPLEX*8 F(0:M-1,0:N-1)
c
c perform transforms in 1st dimension.

DO 1=0,N-1
CALL FFT(F(0,I),M,S)

END DO
c
c perform transforms in 2nd dimension.

DO J=0,M-1
CALL FFT2(F(J,0),M,N,S)

END DO
c
c done

END

Page 15

SUBROUTINE FFT(F,N,S)
c
c
c
c 1.0 PURPOSE
c
c Computes the radix-2 Fast Fourier Transform, using an
c in-place algorithm. Output F in terms of input f is:
c
c N-1
c
c \ iSjk2(pi)/N
c F(k) = / f(j) e
c
c j = 0
c
c where F and f are tabulated transform values that occupy the
c same storage, i is the square root of -1. S is the sign of
c the transform, +/-1. N is restriced to be an integral power
c of 2.
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. F - (input/output) complex input array, N complex
c elements. The transform is done in place, so the
c result is returned to the calling program in F.
c
c 2. N - (input) the (integer) number of elements in F.
c The subscripts actually used in this routine are 0
c to N-1. N is restricted to take on values of
c integral powers of 2. If N is not so specified,
c then an error message is issued and the program is
c STOPped.
c
c 3. S - (input) forward/reverse transform sign
c indicator. Must have a value of +1. or -1.. If S
c is specified with any other value, then an error
c message is issued and the program is STOPped.
c
c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c

Page 16

c
c 4.0 TESTING SUMMARY
c
c This is a variation of a routine that has been used for many
c years; the author obtained its ancestor from Ralph Wiggins
c at MIT. This version has been coded to use some nice
c features of FORTRAN '77, such as subscripts that start at
c zero and logically controlled DO loops.
c
c
c
c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c 6.1 Domain Spacings
c
c If the distance between samples in the input domain is D,
c then the distance between samples in the output domain is
c D 1 , given by
c
c 2*pi
c D 1 =
c D*N
c
c
c
c
c 6.2 Weights
c
c 6.2.1 This incarnation of FFT has no weighting applied for
c forward/reverse transformation, so the user can define
c "forward" with whichever sign he prefers.
c
c
c
c 6.2.2 To use FFT to estimate a Fourier integral, the user
c should multiply the input or the output by the input domain
c spacing. To make a transform pair, Fourier theory requires
c either the "forward" or the "reverse" integral to be
c multiplied by 1/(2*pi), or both integrals to be multiplied
c by 1/sqrt(2*pi).
c
c
c
c 6.2.3 If FFT is called once with S = +1., then again with S
c = -1., or vice-versa, the result will be the original array
c multiplied by N. This result is apparent from the foregoing
c discussion, which says the round-trip transform pair should
c be multiplied by (DD 1)/(2*pi), which is equal to 1/N, from
c the formula in paragraph 6.1 .

Page 17

c
c
c - - -
c

COMPLEX F(0:N),W,WP,X,Y
INTEGER GROUPSTART,GROUPSIZE,HALFSIZE

c
c check validity of arguments

IF (ABS(S) .NE. 1.) THEN
WRITEC*,*) 1 Illegal argument S passed to FFT. 1
STOP

END IF
NT=1
DO WHILE (NT .LT. N)

NT=2*NT
END DO
IF (NT .GT. N) THEN
WRITEC*,*) 1 FFT requires N to be a power of 2. '
STOP

END IF
c
c Arguments are OK.
c
c Do subscript bit reversal,
c
c IREV is bit-reversed counter - set initial value:

IREV=N/2
c
c zero and N-1 are their own bit reverses; do the rest

DO 1=1,N-2
c
c do the reversal only once (since forward and reverse
c counters each take on any given value one time):

IF (IREV .GT. I) THEN
X=F(IREV)
F(IREV)=F(I)
F(I)=X

END IF
c
c step the bit-reverse counter, starting at most significant
c bit:

J=N/2
DO WHILE (IREV .GE. J)

IREV=IREV-J
J=J/2

END DO
IREV=IREV+J

c
c end of bit reversal.

END DO
c
c
c set up for transform,
c
c W is the twiddle factor base, given by

Page 18

c W = exp (i*2*pi/GROUPSIZE)
W=(-1.,0.)

c
c groupsize is the length of the subtransform:

GROUPSIZE=2
c
c loop through the groupsizes.

DO WHILE (GROUPSIZE .LE. N)
c
c set half-groupsize.

HALFSIZE=GROUPSIZE/2
c
c loop for each group.

DO GROUPSTART=0,N-1,GROUPSIZE
c
c set the power of W, WP, which is the "twiddle factor".

WP=(1.,0.)
c
c loop through the halfgroup.

DO I=GROUPSTART,GROUPSTART+HALFSIZE-1
c
c apply the twiddle factor to the second halfgroup,
c then add and subtract to get the next level output.

J=I+HALFSIZE
X=F(I)
Y=F(J)*WP
F(I)=X+Y
F(J)=X-Y

c
c next twiddle factor:

WP=WP*W
c
c end of loop through halfgroup.

END DO
c
c end of loop through all groups.

END DO
c
c W (twiddle factor base) for next size transform:

W=SQRT(W)
IF (AIMAG(W)*S .LT. 0.) W=-W

c
c next group size.

GROUPSIZE=2*GROUPSIZE
c
c end of loop through all groupsizes.

END DO
c
c done.

END

Page 19

SUBROUTINE FFT2(F,M,N,S)

1.0 PURPOSE

Computes the radix-2 Fast Fourier Transform, using an
in-place algorithm. This program is a duplicate of FFT
except that it is coded to access every Mth element of the
input array F rather than consecutive elements. Output F in
terms of input f is:

F(k) =

N-1

\
/

j=0

iSjk2(pi)/N

where F and f are tabulated transform values that occupy the
same storage. i is the square root of -1. S is the sign of
the transform, +/-1. N is restriced to be an integral power
of 2.

2.0 ARGUMENTS

1. F - (input/output) complex input array, M*N complex
elements. The transform is done in place, so the
result is returned to the calling program in F.

2. M - (input) the (integer) skipping factor for
accessing the array F. If M = 1, then FFT2 does
exactly the same operation as FFT, accessing
consecutive elements of F. If M = 2, every second
element of F is accessed, etc..

3. N - (input) the (integer) number of elements in F.
The subscripts actually used in this routine are 0
to N-1. N is restricted to take on values of
integral powers of 2. If N is not so specified,
then an error message is issued and the program is
STOPped.

4. S (input) forward/reverse transform sign
indicator. Must have a value of +1. or -1.. If S
is specified with any other value, then an error
message is issued and the program is STOPped.

3.0 AUTHOR

Page 20

c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c This is a variation of a routine that has been used for many
c years; the author obtained its ancestor from Ralph Wiggins
c at MIT. This version has been coded to use some nice
c features of FORTRAN '77, such as subscripts that start at
c zero and logically controlled DO loops.
c
c
c
c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c 6.1 Domain Spacings
c
c If the distance between samples in the input domain is D,
c then the distance between samples in the output domain is
c D 1 , given by
c
c 2*pi
c D 1 =
c D*N
c
c
c
c
c 6.2 Weights
c
c 6.2.1 This incarnation of FFT2 has no weighting applied for
c forward/reverse transformation, so the user can define
c "forward" with whichever sign he prefers.
c
c
c
c 6.2.2 To use FFT2 to estimate a Fourier integral, the user
c should multiply the input or the output by the input domain
c spacing. To make a transform pair, Fourier theory requires
c either the "forward" or the "reverse" integral to be
c multiplied by 1/(2*pi), or both integrals to be multiplied
c by 1/sqrt(2*pi).

Page 21

c
c
c
c 6.2.3 If FFT2 is called once with S = +1., then again with
c S = -1., or vice-versa, the result will be the original
c array multiplied by N. This result is apparent from the
c foregoing discussion, which says the round-trip transform
c pair should be multiplied by (DD 1)/(2*pi), which is equal to
c 1/N, from the formula in paragraph 6.1 .
c
c
c -
c
c declarations:

COMPLEX F(M,0:N-1),W,WP,X,Y
INTEGER GROUPSTART,GROUPSIZE,HALFSIZE

c
c check validity of arguments

IF (ABS(S) .NE. 1.) THEN
WRITEC*,*) 1 Illegal argument S passed to FFT2. 1
STOP

END IF
NT=1
DO WHILE (NT .LT. N)

NT=2*NT
END DO
IF (NT .GT. N) THEN
WRITE(*,*)' FFT2 requires N to be a power of 2.'
STOP

END IF
c
c Arguments are OK.
c
c Do subscript bit reversal,
c
c irev is bit-reversed counter - set initial value:

IREV=N/2
c
c zero and n-1 are their own bit reverses; do the rest

DO 1=1,N-2
c
c do the reversal only once (since forward and reverse
c counters each take on any given value one time):

IF (IREV .GT. I) THEN
X=F(1,IREV)
F(1,IREV)=F(1,I)
F(1,I)=X

END IF
c
c step the bit-reverse counter, starting at most significant
c bit:

J=N/2
DO WHILE (IREV .GE. J)

IREV=IREV-J
J=J/2

Page 22

END DO
IREV=IREV+J

c
c end of bit reversal.

END DO
c
c
c set up for transform,
c
c w is the twiddle factor base, given by
c w = exp (i*2*pi/groupsize)

W=(-1.,0.)
c
c groupsize is the length of the subtransform:

GROUPSIZE=2
c
c loop through the groupsizes.

DO WHILE (GROUPSIZE .LE. N)
c
c set half-groupsize.

HALFSIZE=GROUPSIZE/2
c
c loop for each group.

DO GROUPSTART=0,N-1,GROUPSIZE
c
c set the power of w, wp, which is the "twiddle factor".

WP=(1.,0.)
c
c loop through the halfgroup.

DO I=GROUPSTART,GROUPSTART+HALFSIZE-1
c
c apply the twiddle factor to the second halfgroup,
c then add and subtract to get the next level output.

J=I+HALFSIZE
X=F(1,I)
Y=F(1,J)*WP
F(1,I)=X+Y
F(1,J)=X-Y

c
c next twiddle factor:

WP=WP*W
c
c end of loop through halfgroup.

END DO
c
c end of loop through all groups.

END DO
c
c w (twiddle factor base) for next size transform:

W=SQRT(W)
IF (AIMAG(W)*S .LT. 0.) W=-W

c
c next group size.

GROUPSIZE=2*GROUPSIZE

Page 23

c end of loop through all groupsizes.
END DO

c
c done.

END

Page 24

SUBROUTINE DCT(X,Y,DKX,DKY,D,NX,NY,WIM)
c
c
c
c 1.0 PURPOSE
c
c Computes a Discrete Cosine Transform as described below:
c
c If we have a two-dimensional sequence of delta functions
c that satisfy the conditions
c
c 1. Even symmetry about zero in both x and y.
c
c 2. Periodicity of 2*pi/DKX and 2*pi/DKY, respectively,
c in the x and y dimensions,
c
c then that sequence can be represented as an infinite 2-
c dimensional Fourier cosine series. DCT computes the first
c NX columns and NY rows (i.e., a rectangle in the low-
c frequency part) of the 2-dimensional cosine series,
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. X - (input) x coordinate of one of the series of
c delta functions,
c
c 2. Y - (input) y coordinate of one of the series of
c delta functions,
c
c 3- DKX - (input) frequency interval of cosine series
c in x dimension,
c
c 4. DKY - (input) frequency interval of cosine series
c in y dimension,
c
c 5. D - output array to hold 2-D cosine series. Real*4
c array dimensioned (0:NX,0:NY).
c
c 6. NX - (input) integer number of frequency components
c to determine in x direction. Maximum x frequency
c in output 2-D series is NX*DKX.
c
c 7- NY - (input) integer number of frequency components
c to determine in y direction. Maximum y frequency
c in output 2-D series is NY*DKY.
c
c 8. WIM - (input) real*4 weight due to images of the
c point at (x,y). WIM is a multiplicative factor
c applied to the output. WIM will ordinarily have a
c value of 4 (for the delta function plus its three
c images), but is reduced by a factor of 2 for each
c symmetry-line that (X,Y) occupies. For example,

Page 25

(0,0) lies on a symmetry line in the x dimension
(reducing WIM to 2) and on a symmetry line in the y
dimension (further reducing WIM to 1).

3.0 AUTHOR

R. Watts
U.S. Geological Survey
P.O. Box 25046, Mail Stop 964
Denver, CO 80225

4.0 TESTING SUMMARY

DCT was written in December, 1981, and tested on a Digital
Equipment Corporation VAX 11/780 computer, using DEC's VAX
FORTRAN compiler. The program is intended to conform to
FORTRAN '77 standards, and contains no known non-FORTRAN '77
constructs.

5.0 CALLS SUBROUTINES:

None.

6.0 USAGE

6.1 Notes

This program is more efficient than the FFT for computing
cosines at regular intervals. Note that DCT does not
compute a complete transform, since the input function is
restricted to be a single delta function plus its images.
The true transform of the delta functions is not band-
limited, so the use of DCT must be followed by some band-
limiting procedure. When DCT is called by FOURFIT (for
which it was originally coded), a factor of 1/(kx**2 +
ky**2)**2, which is a strong band-limiting factor, is
applied.

6.2 Computed Output

The Fourier cosine series computed by DCT is

Page 26

d(x,y) =

-i-inf

\
/

i = 0

+ inf

\
/ D

j=o
(i,j) cos(x*DKX*i) cos(y*DKY*j)

c
c WIM*DKX*DKY
c D(i,j) = cos(X*DKX*i) cos(Y*DKY*j)
c (pi**2)*w(i)*w(j)
c
c i = (0,1,...,NX); j = (0,1,...,NY).
c
c where w(k)=2 for k=0 and w(k)=1 otherwise.
c
c
c
c 6.3 Inverse Series
c
c The output series is a partial representation of the input
c delta-function and its symmetric images, if there are any.
c The full representation is given by:
c
c
c
c
c

c
c
c
c
c declarations:

REAL*4 D(0:NX,0:NY)
COMPLEX*8 COSX,COSY,COSGENX,COSGENY
DATA PI/3.14159265/

c
c weight factors

WT=WIM*DKX*DKY/PI**2
c
c complex exponentials for cosine generation

COSGENX=EXP(CMPLX(0.,DKX*X))
COSGENY=EXP(CMPLX(0.,DKY*Y))

c
c do the transform.

D(0,0)=WT/4.
COSX=WT/2.
DO KX=1,NX

COSX=COSX*COSGENX
D(KX,0)=REAL(COSX)

END DO
COSY=(1.,0.)
DO KY=1,NY

COSY=COSY*COSGENY
D(0,KY)=WT/2.*REAL(COSY)
COSX=WT
DO KX=1,NX

COSX=COSX*COSGENX
D(KX,KY)=REAL(COSX)*REAL(COSY)

END DO
END DO

Page 27

c
c done

END

Page 28

REAL*4 FUNCTION DICT(X,Y,DKX,DKY,D,NX,NY)

1.0 PURPOSE

DICT (Discrete Inverse Cosine Transform) is a real*4
function that evaluates a 2-dimensional Fourier cosine
series at one output point. Since the output is required at
one point rather than over the entire transform domain, DICT
is more efficient than a 2-dimensional FFT.

2.0 ARGUMENTS

1.

2.

3.

4.

5.

6.

7.

X - (input)
evaluation.

Y - (input)
evaluation.

real*4 x coordinate of point of

real*4 y coordinate of point of

DKX - (input) real*4 frequency interval in the x
dimension.

DKY - (input) real*4 frequency interval in the y
dimension.

D - (input) coefficients of the 2-D cosine series,
real*4 array dimensioned (0:NX,0:NY).

NX - (input) integer number of non-zero-frequency
terms to compute in the x dimension. Maximum
frequency in the x dimension is NX*DKX.

NY - (input) integer number of non-zero-frequency
terms to compute in the y dimension. Maximum
frequency in the y dimension is NY*DKY.

3.0 AUTHOR

R. Watts
U.S. Geological Survey
P.O. Box 25046, Mail Stop 964
Denver, CO 80225

4.0 TESTING SUMMARY

Page 29

c
c DICT was written in December, 1981, and tested on a Digital
c Equipment Corporation VAX 11/780 computer, using DEC'S VAX
c FORTRAN compiler. The program is intended to conform to
c FORTRAN '77 standards and contains no known non-fortran
c constructs.
c
c
c
c 5.0 CALLS SUBROUTINES:
c
c None
c
c
c
c 6.0 USAGE NOTES
c
c The function value computed for DICT is given by:
c
c NX NY
c
c \ \
c DICT r / / D(i,j) cos(X*DKX*i) cos(Y*DKY*j)

c i=0 j=0
c
c

c
c declarations:

REAL*4 D(0:NX,0:NY)
COMPLEX*8 COSX,COSY,COSGENX,COSGENY

c
c complex exponentials for cosine generation

COSGENX=EXP(CMPLX(0.,X*DKX))
COSGENY=EXP(CMPLX(0.,Y*DKY))

c
c addemup

SUM=0.
COSXr(1.,0.)
DO KX=0,NX

COSY=(1.,0.)
DO KY=0,NY

SUM = SUM+REAL(COSX)*REAL(COSY)*D(KX,KY)
COSY=COSY*COSGENY

END DO
COSXrCOSX*COSGENX

END DO
c
c done.

DICTrSUM
END

Page 30

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE MATSOLU, AT, B, C,N)

1.0 PURPOSE

Solves the matrix equation Ab=c, where A is a real NxN
matrix, c is a given vector, and b is an unknown vector.
Solution is by Gaussian elimination with pivoting.

2.0 ARGUMENTS

1.

2.

3.

4.

5.

A - (input) real*4 array dimensioned (N,N). Matrix
for solution, remains unchanged by operation of
subroutine MATSOL.

AT - (work) real*4 array dimensioned (N,N). Work
array used to hold A and its modifications that
occur during Gaussian elimination.

B - (output) real*4 vector dimensioned (N). Result
of solution of the matrix equation.

C - (input) real*4 vector dimensioned (N).
side vector in matrix equation.

Right-

N - (input) integer size of matrix-vector problem.

3.0 AUTHOR

R. Watts
U.S. Geological Survey
P.O. Box 25046, Mail Stop 964
Denver, CO 80225

4.0 TESTING SUMMARY

MATSOL was written in December, 1981. It was compiled on a
Digital Equipment Corporation VAX 11/780 computer, using
DEC'S VAX FORTRAN '77 compiler. MATSOL contains no known
non-FORTRAN '77 constructs.

MATSOL has been tested with adequate results with N as great
as 50.

Page 31

c
c
c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c Gaussian elimination is used, with pivoting around the
c largest element in the elimination column. Output
c accuracy ! s dependence on N has not been established. All
c operations are done in single precision. No provision is
c made for detection of singular matrices; a divide-by-zero
c exception occurs if A is singular.
c
c
c - - - - -
c

REAL*4 A(N,N),AT(N,N),B(N),C(N)
c
c copy A into AT, C into B.

DO 1=1,N
B(I)=C(I)
DO J=1,N

AT(I,J)=A(I,J)
END DO

END DO
c
c scan through elimination pivot points.

DO IPIVOT=1,N-1
c
c search for largest number in pivot column.

CMAX=ABS(AT(IPIVOT,IPIVOT))
IMAX=IPIVOT
DO I=IPIVOT+1,N

CTEMP=ABS(AT(I,IPIVOT))
IF(CTEMP.GT.CMAX) THEN

CMAX=CTEMP
IMAX=I

END IF
END DO

c
c swap it into pivot position.

IF(IMAX.NE.IPIVOT) THEN
DO J=IPIVOT,N

T=AT(IPIVOT,J)
AT(IPIVOT,J)=AT(IMAX,J)
ATCIMAX,J)=T

END DO
T=B(IPIVOT)
B(IPIVOT)=B(IMAX)
B(IMAX)=T

END IF

Page 32

c
c do the elimination.

PVAL=AT(IPIVOT,IPIVOT)
BVAL=B(IPIVOT)

c
c scan down the rows.

DO IROW=IPIVOT+1,N
RATIO=AT(I ROW,IPIVOT)/PVAL

c
c scan across row.

DO J=IPIVOT+1,N
c
c eliminate.

AT(IROW,J)=AT(IROW,J)-AT(IPIVOT,J)*RATIO
c

END DO
c
c and adjust B in the same way.

B(IROW)=B(IROW)-BVAL*RATIO
c

END DO
c

END DO
c
c back substitution.

B(N)=B(N)/AT(N,N)
c
c scan up the rows.

DO IPIVOT=N-1,1,-1
c
c add up the known parts.

SUM=B(IPIVOT)
DO J=IPIVOT+1,N

SUM=SUM-AT(IPIVOT,J)*B(J)
END DO

c
c determine the unknown.

B(IPIVOT)=SUM/AT(IPIVOT,IPIVOT)
c

END DO
c

END

Page 33

SUBROUTINE TOCOMPLEX(DR,DC,LX,LY,MX,MY)
c
c
c
c 1.0 PURPOSE
c
c Takes the real, 2-dimensional array DR and puts it into the
c bottom corner of the complex, 2-dimensional array DC,
c converting the real numbers into complex numbers with zero
c imaginary part,
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. DR - (input) array of real numbers that are to be
c made complex and placed in the corresponding
c locations of the complex array DC (which must have
c the same or larger dimension). Dimensioned (0:LX,
c 0:LY).
c
c 2. DC - (output) complex array, dimensioned (0:MX-1,
c 0:MY-1).
c
c 3. LX - (input) integer dimension for DR.
c
c 4. LY - (input) integer dimension for DR.
c
c 5. MX - (input) integer dimension for DC. Must be
c greater than LX.
c
c 6. MY - (input) integer dimension for DC. Must be
c greater than LY.
c
c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c TOCOMPLEX was compiled and tested in December, 1981, on a
c Digital Equipment Corporation VAX 11/780 computer, using
c DEC'S VAX FORTRAN '77 compiler. It contains no known
c non-FORTRAN '77 constructs.

Page 34

c
c
c
c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c TOCOMPLEX is called by FOURGRID in preparation for
c generating the grid using a 2-dimensional FFT.
c
c TOCOMPLEX works if DC(0,0) and DR(0,0) are the same storage
c location (i.e., an in-place real-to-complex array
c conversion). This is the reason the DO loops are run from
c high to low subscript.
c

c
c declarations:

REAL*4 DR(0:LX,0:LY)
COMPLEX*8 DC(0:MX-1,0:MY-1)

c
c check the array sizes.

IFCMX.LE.LX .OR. MY.LT.LY) THEN
WRITEC*, f (1XA) f) 'Output array dimensions are smaller than '//

'input array dimensions in TOCOMPLEX.'
STOP

END IF
c
c copy the non-zero part, filling line ends with zeroes.

DO IY=LY,0,-1
DO IX=LX,0,-1

DC(IX,IY)=CMPLX(DR(IX,IY),0.)
END DO
DO IX=LX+1,MX-1

DC(IX,IY)=(0.,0.)
END DO

END DO
c
c fill remainder of DC with zeroes.

DO IY=LY+1,MY-1
DO IX=0,MX-1

DC(IX,IY)=(0.,0.)
END DO

END DO
c
c done.

END

Page 35

SUBROUTINE TOREAL(DC,DR,LX,LY)
c
c
c
c 1.0 PURPOSE
c
c Performs the following operations on the complex output of
c an FFT:
c
c 1. Keeps only the real part of the 2-dimensional FFT
c output, and only the part with even symmetry in the
c x dimension. This corresponds to terms of the
c form:
c
c i(k x + k y) i(-k x + k y)
c 1 x y x y
c Real [e + e]
c 2
c
c This reduces to terms of the form:
c
c cos(k x) cos(k y)
c x y
c
c
c 2. Moves the result into the low-subscript corner of
c the array DR.
c
c By keeping the specified terms, the operation of a
c 2-dimensional FFT followed by a call to TOREAL is equivalent
c to a 2-dimensional cosine transform,
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. DC - (input) array of complex numbers that are to
c be made real by discarding the imaginary part and
c keeping the part that is even in x, and placing the
c results in the corresponding locations of the real
c array DR. Dimensioned (0:2*LX-1,0:2*LY-1). DC is
c assumed to be arranged in the usual fashion for FFT
c arrays, with positive frequencies in the range
c (0:LX,0:LY) and negative frequencies in the range
c (LX+1:2*LX-1,LY+1:2*LY-1).
c
c 2. DR - (output) complex array, dimensioned (0:LX,
c 0:LY). Normally DR occupies the same storage as
c DC, since compression-in-place is possible,
c
c 3. LX - (input) integer dimension for DC and DR.
c
c 4. LY - (input) integer dimension for DC and DR.
c

Page 36

c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c TOREAL was compiled and tested in December, 1981, on a
c Digital Equipment Corporation VAX 11/780 computer, using
c DEC'S VAX FORTRAN '77 compiler. It contains no known
c non-FORTRAN '77 constructs.
c
c
c
c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c TOREAL is called by FOURGRID to keep the desired parts of
c the output of a 2-dimensional FFT.
c
c TOREAL works if DC(0,0) and DR(0,0) are the same storage
c location (i.e., an in-place complex-to-real array
c conversion).
c
c
c -
c
c declarations:

REAL*4 DR(0:LX,0:LY)
COMPLEX*8 DC(0:2*LX-1,0:2*LY-1)

c
c do the work.

NX=2*LX
DO IY=0,LY

DR(0,IY)=REAL(DC(0,IY))
DO IX=1,LX
DR(IX,IY)=(REAL(DC(IX,IY))+REAL(DC(NX-IX,IY)))/2.

END DO
END DO

c
c * done.

Page 37

END

Page 38

REAL*4 FUNCTION DOT(F,G,W,N)
c
c
c
c 1.0 PURPOSE
c
c Computes the dot product of F and G, weighted by W. The
c function value is:
c
c N
c
c \
c DOT = / F G W
c i i i
c i = 1
c
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. F - (input) real*4 vector dimensioned (N). First
c factor of dot product,
c
c 2. G - (input) real*4 vector dimensioned (N). Second
c factor of dot product,
c
c 3. W - (input) real*4 vector dimensioned (N).
c Weighting factor of dot product,
c
c 4. N - (input) integer length of vectors in dot
c product,
c
c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c DOT was compiled and tested on a Digital Equipment
c Corporation VAX 11/780 computer, using DEC'S VAX FORTRAN '77
c compiler. It contains no known non-FORTRAN '77 constructs,
c
c

Page 39

c
c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c The weighting factor is included as a facility for FOURFIT,
c which applies weights to dot products according to the
c number of images possessed by a data point in a symmetric
c fitting domain. See FOURFIT documentation.
c

c
c declarations:

REAL*4 F(N),G(N),W(N)
c
c clear the sum.

SUM=0.
c
c addemup.

DO 1=1,N
SUM = SUM+F(I)*G(I)*W(I)

END DO
c
c transfer the answer to the function value.

DOT=SUM
c
c done.

END

Page 40

FUNCTION SUM(F,W,N)
c
c
c
c 1.0 PURPOSE
c
c Computes the sum of F, weighted by W. The function value
c is:
c
c N
c
c \
c SUM = / F W .
c i i
c i = 1
c
c Obviously, this result can also be considered as the dot
c product of F and W.
c
c
c
c 2.0 ARGUMENTS
c
c
c 1. F - (input) real*4 vector dimensioned (N). Vector
c to be summed,
c
c 2. W - (input) real*4 vector dimensioned (N). Weights
c to be applied to summation vector,
c
c 3- N (input) integer length of summation and
c weighting vectors,
c
c
c
c
c 3.0 AUTHOR
c
c
c R. Watts
c U.S. Geological Survey
c P.O. Box 25046, Mail Stop 964
c Denver, CO 80225
c
c
c
c
c 4.0 TESTING SUMMARY
c
c DOT was compiled and tested on a Digital Equipment
c Corporation VAX 11/780 computer, using DEC'S VAX FORTRAN '77
c compiler. It contains no known non-FORTRAN f 77 constructs,
c
c
c

Page 41

c 5.0 CALLS SUBROUTINES:
c
c None.
c
c
c
c 6.0 USAGE NOTES
c
c This routine is called by FOURFIT to compute summed elements
c of vectors, with weights applied to compensate for the
c number of images possessed by each known data point. See
c FOURFIT documentation.
c
c
c -
c
c declarations:

REAL*4 F(N),W(N)
c
c clear the sum.

SUM=0.
c
c addemup.

DO 1=1,N
SUM=SUM+F(I)*W(I)

END DO
c
c done.

END

