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NEAR-STATION TERRAIN CORRECTIONS

FOR GRAVITY DATA 

BY A SURFACE-INTEGRAL TECHNIQUE

By

M. E. Gettings

ABSTRACT

A new method of computing gravity terrain corrections by use of a 

digitizer and digital computer can result in substantial savings in the 

time and manual labor required to perform such corrections by 

conventional manual ring-chart techniques. The method is typically 

applied to estimate terrain effects for topography near the station, for 

example within 3 km of the station, although it has been used 

successfully to a radius of 15 km to estimate corrections in areas where 

topographic mapping is poor.

Points (about 20) that define topographic maxima, minima, and 

changes in the slope gradient are picked on the topographic map, within

the desired radius of correction about the station. Particular attention/

must be paid to the area immediately surrounding the station to ensure a 

good topographic representation. The horizontal and vertical 

coordinates of these points are entered into the computer, usually by 

means of a digitizer. The computer then fits a multiquadric surface to 

the input points to form an analytic representation of the surface. 

By means of the divergence theorem, the gravity effect of an interior 

closed solid can be expressed as a surface integral, and the terrain 

correction is calculated by numerical evaluation of the integral over the 

surfaces of a cylinder,



The vertical sides of which are at the correction radius about the 

station, the flat bottom surface at the topographic minimum, and the 

upper surface given by the multiquadric equation.

The method has been tested with favorable results against models for 

which an exact result is available and against manually computed field- 

station locations in areas of rugged topography. By increasing the 

number of points defining the topographic surface, any desired degree of 

accuracy can be obtained. The method is more objective than manual ring- 

chart techniques because no average compartment elevations need be 

estimated.

INTRODUCTION

Terrain corrections to gravity data collected in areas of moderate to 

rugged topography are a necessary but time-consuming and expensive step 

in the reduction of gravity data. Such corrections are commonly made 

using ring charts on topographic maps (Hayford and Bowie, 1912; Hammer, 

1939) or using computer methods that utilize a digital image of the 

topography (Kane, 1962; Plouff, 1966). Both computer methods require a 

division of the topography of the region into approximately square cells 

to which an average elevation is assigned; from this digital image, 

prisms of height equal to the difference between the cell altitude and 

station altitude can be defined. The terrain effect is then computed by 

summing the computed gravity effects of all the prisms within a specified 

radius of the station. These computer methods have not been sufficiently 

accurate for the near-station «2.5 km) part of the terrain correction, 

which has consequently been done by using ring chart methods that are 

tedius and error-prone.



In the United States, the recent availability of very detailed 

digital topographic models has permitted the use of the method of Plouff 

(1966), with some modifications, to compute terrain corrections to within 

about 70 m of the station with satisfactory results except in the case of 

very rugged topography near the station. A second successful approach 

(Krohn, 1976) has been to use the digitized topography (typically at 1 km 

intervals) to define an analytic surface about the station that is then 

used to generate (by computer) the average elevations of ring segments. 

The gravity effects of these compartments are computed and summed, thus 

achieving a computer analog of the manual ring-chart method.

The method described in this paper also utilizes the fitting of an 

analytic surface representation to the topography but calculates the 

terrain correction from a direct numerical integration of the surface, 

thus abandoning ring compartments and prisms. Points used to define the 

topographic surface are manually chosen such that near the station the 

surface can be specified in more detail if necessary. This technique 

permits estimates of near-station terrain corrections to be easily made 

in areas where detailed topographic maps are lacking, and it eliminates 

the tendency to overestimate the terrain correction because of the use of 

flat-topped prisms in the ring-chart method. Once some facility is 

gained in the choosing of points that adequately specify the topography, 

and if an elec'tronic digitizer is used to input the points, this method 

yields fast and accurate near-station terrain corrections with modest 

computer times.

This work was completed in early 1975 in accordance with a 

cooperative agreement between the Ministry of Petroleum and Mineral



Resources, Kingdom of Saudi Arabia, and the United States Geological 

Survey. The manuscript was drafted in September of 1980.

MATHEMATICAL DEVELOPMENT

The topography within some radius R^ about the station can be 

represented by a multiquadric equation that represents a series of cones 

(Hardy, 1971). Real topography is commonly conical in character, and, as 

shown by Hardy (1971), this surface representation does not introduce 

spurious hills or valleys, which a Fourier series or polynomial surface 

is apt to do; thus such a surface is a good choice for topographic 

representation .

Let the set of N topographic points be given by 

{rj, £j>zjlj   1^ ..., Ni where the origin of this cylindrical 

coordinate system is taken so that the z-axis passes through the station. 

The coordinate z is positive upward. Transform the set

7 rJ»^j» z jS to an equivalent set of rectangular coordinates

Xj,yj,zj with the same origin. Then a multiquadric 

representation of the topographic surface is given by (Hardy, 1971)

  
To find the set of GJ, form the N equations

where i   1,2, ..., N; or in matrix notation,

Z = XC (3) 

where Z^ and £ are vectors and X is an NxN matrix. Then

C - X-lZ (4) 

and the coefficients GJ are determined. The inversion of the well- 

conditioned, symmetric matrix X can be accomplished by several schemes, 

for example, Gauss elimination, which was used in this work.



The terrain correction is calculated by computing the gravity effect 

of a vertical-sided circular cylinder of radius RO , whose flat 

(z=constant) bottom is at or below the minimum point of the fitted 

surface. The top surface of the cylinder is defined by equation (1). 

Because the terrain correction is defined as the gravity effect of 

deviations of the topographic surface from the Bouguer plane passing 

through the station (Grant and West, 1965, p. 239), the terrain 

correction can be calculated by subtracting the gravity effect of a 

circular cylinder, of radius R with the same base and a flat top, 

passing through the station. In the more common case of determining the 

terrain correction between an inner radius Rf and an outer radius R6 , 

the above procedure is carried out from RI to R^ .

The gravity effect, g, of the cylinder is calculated as follows. 

First, a volume integration is avoided by applying some form of the 

divergence theorem to convert the volume integral into a surface 

integral, in this case the formulation of Bodvarsson (1970). Bodvarsson 

derived for the gravity effect (vertical acceleration) the surface 

integral

s X

where G is the gravitational constant, f> is the uniform density of the 

body, d <T is a"n infinitesimal element of the surface, ]c is the unit 

vector in the positive (upward) z direction, 11 is a unit vector of the 

outward normal to d<r and

rps - (x2 + y2 + z (x , y)2)l/2 ( 6 ) 

is the distance between the station (origin) and the integration element



d<ron the surface S of the body. The vertical sides of the cylinder 

contribute nothing to the integral since \»li is everywhere zero on 

them.

Considering an element of the surface d<T , the normal n to the 

surface is defined by r,& and z(r,5 ) (or x, y, and z (x,y)) with z 

related to r and 0(x and y) by equation (1). The projection of d<T on 

the r,£ plane is rdrd-£ , as shown in figure 1, and the relation between 

them is

dtf cos£ = rdrd & (7) 

where p is the angle between the tangent plane to the surface at do" and 

the r,0 plane. Because Ic is the normal to the r,£ plane, cosp is

 V. A
simply k«jn and we have

and equation (5) becomes

i. rV
and rps is calculated from equation (6).

A ^

The flat bottom surface has Ic-ix = -1 and the contribution to I for 

the bottom is

ibot - ITT
where h is the distance along the z-axis to the bottom from the station. 

For the case of an annulus,

ibot-

For the top surface, the integral is

Itop

{(.tf « *.*;*-£*;* ' A*.)* ] (ID



Figure 1 .-Geometrical relations between an element of the multiquadric surface da and its
projections on the r,0 plane. Because the unit vector outward normal to the surface 
jj is defined by r,0, and z(r,0) and £ is the unit vector in the +z direction, cos 0 is 
£  Q as shown in the inset. The x-y plane is also the r,0 plane.



where x and y are determined from the transformation equations from r and 

and z± is given by equation (2). This integral is evaluated 

numerically, and the gravity effect of the cylinder (or annulus) is

Finally, the gravity effect of a flat-topped annular ring from the 

station to the bottom of the body is given by

£«. - a.7T &p 6&-*£+f*-O*-(»>r+Ofc;fc (H) 

and the terrain correction is thus

9*** /  *« /  K«

is--( t (15)

where we take absolute values because the terrain correction for near- 

station topography is always positive.

 METHOD

Although an r,£ template analogous to the, ring charts can be drawn up 

to overlay the topographic map, the most efficient method is to use an 

electronic digitizer to enter the set of (*j»&JfZj7. In the test 

cases described here, fa cirolo of radiuo R was diawu o^ a transparency 

with the outer radius R^ drawn to scale on it was overlain centered on 

the station on the topographic map, which is attached to the digitizer 

board. Using a grease pencil or similar method, the points defining the 

surface were marked. For the computer program used in these examples a 

maximum of 25 points, including the station, was allowed. Then, using 

the digitizer, the x and y values were recorded and the z values and 

station name were typed on the digitizer keyboard.

Using a computer, the information so recorded was then converted from 

digitizer coordinates to actual distances, the multiquadric surface fit



was performed, and the numerical integration was carried out. In these 

examples integration was done in the r-direction by repeatedly using 

Simpson's rule (Abramowitz and Stegun, 1965, p. 886) for three equally 

spaced values of r modified such that the integral contribution between 

two successive points is the average of the "leading" and "lagging" three 

points that bracket the interval in question. For the test cases 

described here, corrections were calculated from Hayford-Bowie (1912) 

zone "C" (inner radius 0.068 km) through zone "F" (outer radius 2.29 km). 

Fifty-one points were used from 0.068 to 0.50 km radius, and 

fifty-one points were used for the interval from 0.50 to 2.29 km. The 

increment in for integration was 10°, therefore 3,672 points were used 

in the integration for each station. Note that the integration 

automatically expands to a larger integration interval in the outer 

zones. About 5 minutes at the digitizer and 40 seconds of computer time 

on an IBM 370 were required per station. The computer time per station 

can be reduced substantially without undue loss of accuracy by reducing 

the number of points used in the r-integration. Documentation and

program listings of the Fortran programs used for these computations are
y

available from the author.

In order to render a faithful representation of the topography, the 

points that define the maxima and minima and changes in slope of the 

.topography mus,t be carefully chosen, especially near the station. A 

certain amount of skill must be acquired analogous to estimating average 

elevations in template compartments in the manual method. Poor choices 

of points in this method generally result in the generation of too smooth 

a multiquadric surface such that the terrain correction is usually less



than that given by the manual use of ring charts. In the ring-chart 

method, the tendency is often to overestimate the average compartment 

elevation, which, if combined with the flat-top prism approximation 

inherent in this method, will lead to an overestimation of the terrain 

effect. This overestimation effect was noted by Krohn (1976).

DISCUSSION AND APPLICATION TO TEST CASES

The method was tested against two simple models for which an 

analytical result was available. In the first test, a cone of 2.29 km 

radius base and 225 m height was used. The terrain correction from 68 to 

2,290 m about the station calculated by the numerical integation method 

(using the scheme with 3,672 points described above) was smaller than the
M/Uqtl

exact result by 0.06fagaly (0.37 percent). For this test, 21 points were
A,

used to define the conical surface. The terrain correction of the cone 

was also manually calculated using the Hayford-Bowie ring chart of 28 

compartments for zone C through F (68 to 2,290 m) and using the average 

elevation for each compartment given by the equation of the cone in 

question. The result was a correction that exceeded the exact result by

0.24 mgal (20 percent), which represents the error in the flat-topped
j

prism approximation of the ring-chart method. Because of this error in 

the ring-chart method, corrections for stations on peaks are generally 

overestimated and those for valleys underestimated. The amount of error 

ts a function qf cone angle and is documented by Krohn (1976); it is of 

the order of 15 percent.

In the second test, the terrain correction for from 68 to 2,290 m 

radius for an inverted cone was calculated. The inverted cone had a bas­ 

al radius of 2,290 m and a height of 500 m. When 17 points were used to



define the surface, the result was too large by 0.04 mgal (0.70 percent).

For a field test, an area of dissected flood-basalt topography with 

about 700 m of relief was selected near Spray, Oregon, U.S.A. The 

topography of this area is characterized by deep valleys, steep slopes, 

and abrupt gradient changes and thus provides a good test of any terrain- 

correction method. Five station locations were chosen: 1) a high, flat- 

topped peak; 2) the bottom of a deep, narrow stream valley; 3) a bench 

partway up a hillside; 4) near the end of a more or less flat-topped 

ridge with very steep sides; and 5) the summit of a sharp ridge. The 

stations were chosen to simulate typical gravity station loca-tions in 

fairly rugged topography. Corrections for these locations were made 

using the Hayford- Bcuue n^ c**sf &* &***> C****«gf* F (68 to 2,290 m) 

consisting of 28 compartments. Corrections for stations 2, 4, and 5 were 

also made using the Hayford-Bowie subzone chart of 112 compartments.

Terrain corrections for these stations were computed as outlined 

above, with most points chosen at topographic maxima and minima, and the 

results are shown in table 1 and plotted for comparison in figure 2. 

Stations 1 and 5 showed the largest disparity and were rerun with a few
V

more points in an attempt to define the topography near the station, in 

particular the change in gradient to steep slopes. At station 5, an 

increase in the number of defining points and the use of more 

compartments in the ring-chart method lead to a convergence of results at 

approximately 7.2 mgal for this station. The actual topographic surface 

at station 5 is shown in figure 3, and the 23-point multiquadric surface 

is shown in figure 4 for comparison. As a result of the station 1 and 5 

improvements, it is clear that good agreement between the two methods 

could be

10
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Figure 2.-Scatterplots of terrain-correction estimates for five test station locations computed 
by manual ring-chart and surface-integral methods. Circles are results for each 
station using Hayford-Bowie zones C-F (68-2,290 m radius) with 28 compartments. 
Circles with "S" beside them are corrections computed for same radii using a 
subzone chart (112 compartments). Triangles are terrain corrections computed by 
the surface-integral method; the number beside triangle is the number of topo­ 
graphic points used to define the surface; station number is in parentheses below 
the corrections. The agreement between values at stations 2 and 4 could be 
improved by including more points near the station.
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55*

Figure 3.-Topographic map of the area of test station 5. Map is a section of the U. S.
Geological Survey (1953) 15-minute series topographic map of the Spray quad­ 
rangle, Oregon; contour interval 80 feet, scale 1:62,500. Encircled area is area of 
terrain correction.
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. 2000
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Figure 4.-Fitted multiquadric surface map of location of test station 5. Dots show locations 
of the 22 control points that were used, along with the station location at the 
-center, to define the surface. Compare with encircled area of figure 3. Contour 
interval is 80 feet.
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and manual ring-chart techniques from Krohn (p. 272, 1976). The arrows indicate 
the two gravity stations for which the highest precision multiquadric-surface terrain 
correction is greater than the ring-chart result. See text for details.



obtained at stations 2, 3, and 4 by a more careful choice of controlling 

points for the multiquadric-surface fit.

A similar plot of the data of Krohn (1976, table 1) is shown in 

figure 5 for 2-1 gravity stations. With only two exceptions, the highest 

precision multiquadric-surface terrain correction is systematically less 

than the ring-chart result. The two exceptions may be cases in which the 

station is in a valley bottom, where, because of the flat-topped prism 

approximation, the ring-chart method tends to give too small a 

correction. It appears therefore that the method is valid and if care­ 

fully applied will yield terrain-correction estimates that ar« equal to 

or greater than in precision compared to corrections obtained by the 

manual ring-chart method. The advantage of the method is its objectivity 

and the large reduction in labor required to complete the corrections. 

Also less skill is required to choose the points defining the surface 

than to estimate accurately the average elevations of compartments in 

rough topography. The method can also be applied to the innermost zones 

(0-70 m about the station) to compute corrections using estimated

elevations obtained during the gravity survey work. Finally, the use of
s

a smooth analytic surface to accomplish the computation rather than flat- 

topped prisms seems desirable on theoretical grounds.

This method was used to estimate terrain corrections in southwestern 

Saudi Arabia in the Jizan area (approximately lat 17° N., long 43° E.). 

Corrections were carried out for approximately 150 stations from 68 m to 

15 km about the stations using 3.0 km radius as the point beyond which 

the integration spacing was increased. Computer time for the 

calculations averaged 36 seconds per station. In this area and at the

11



time (1975), the only topographic map available was at 1:4,000,000 scale, 

and thus the large radius of 15 km was used. Beyond a radius of 15 km 

the method of Plouff (1966) was used. The estimated terrain corrections 

within a radius of 15 km are probably optimal for the topographic 

information available and required about 20 hours of time at the 

digitizer to select and enter the defining points. It is important to 

use the map elevation of the station rather than that determined in the 

gravity survey because there can be considerable discrepancies between 

the two resulting from the generality of the map and datum 

inconsistencies.

It should be noted that the method as presented should not be used 

for terrain corrections beyond a radius of 15 km about the station 

because no allowance for of the Earth's curvature has been included in 

the theory, and this effect becomes appreciable beyond a radius of 15 km.

12
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