Andrew Griscom

1982

EXPLANATION

MAGNETIC INTERPRETATION

Boundary between rock units of different magnetic properties or of differing magnetic patterns. Dashed where location is uncertain. Dotted where boundary is buried beneath nonmagnetic rocks. Code letters (described below), where present, indicate which side is the more magnetic rock unit.

Magnetic rock unit, lithology uncertain

Magnetic rock unit possessing reverse remanent magnetization

G,GR Magnetic rock unit probably granitic in composition. Subscript "R" where rock unit possesses reverse remanent

Magnetic rock unit probably mafic in composition

2,7 Zone of magnetic anomalies. Subscript "R" if more than half of the anomalies in the zone are magnetic lows that appear to be caused by rocks with reverse remanent magnetization

Approximate dip of magnetic boundary as estimated by comparison

with a set of calculated models

Linear magnetic anomaly probably caused by a dike

LAYERED ROCKS 1

Include virtually unmetamorphosed to moderately metamorphosed (greenschist to lower amphibolite facies) and deformed rocks, with original volcanic and sedimentary character preserved.

PREDOMINANTLY VOLCANIC ROCKS: proximal volcanic sequences with flow rocks, volcaniclastic rocks, and minor sedimentary rocks of clastic and chemogenic origin.

Undifferentiated mafic to felsic volcanic rock Predominantly andesitic volcanic rock Undifferentiated felsic volcanic rock (dacite to rhyolite) Predominantly rhyolitic rock

> Predominantly subaerial volcanic rock of felsic composition including tuff, breccia, agglomerate, ignimbrite, and so forth; in some areas has significant sedimentary component (tuffite, sandstone, siltstone). Grades into distal volcanic sequences Agglomerate and breccia

Volcaniclastic conglomerate Extrusive-intrusive complex, mainly of dioritic composition including fine-grained diorite and andesite with some gabbro

Extrusive-intrusive complex of ultramafic to mafic composition (so-called 'Ophiolite Complex') including gabbro, basalt, and serpentinite with subordinate greenstone, pyroxenite, and metasedimentary rocks. In most areas all strongly deformed

MIXED VOLCANIC-SEDIMENTARY ROCKS: distal volcanic sequences with flow rocks and volcaniclastic rocks interbedded with sedimentary rocks of clastic and chemogenic origin (siltstone, sandstone, conglomerate, chert, marble)

Mixed volcanic-sedimentary rocks including andesite and rhyolite flow and pyroclastic rock, siltstone, chert, and

Interbeds of dacitic volcanic rock (flow rock and tuff) in sedimentary sequences

Mixed volcanic-sedimentary rocks including siliceous vitric tuff, tuffaceous graywacke, and siltstone (in some places present as chlorite-sericite schist)

PREDOMINANTLY SEDIMENTARY ROCKS

In some areas include minor volcanic interbeds.

and sedimentary rock

Clastic rocks, mainly medium to fine-grained sandstone (impure arenite to graywacke) with some siltstone (chlorite-sericite schist) and conglomerate. Locally include volcanic interbeds Clastic rocks, mainly siltstone (argillite, pelitic schist, chlorite-sericite schist) and fine-grained sandstone (graywacke). Locally contain calcareous siltstone and sand-

stone, marble, and some volcanic interbeds Calcareous siltstone (argillite) and(or) some marble and calcareous sandstone

Clastic rocks, mainly coarse-grained lithic (volcaniclastic) sandstone with some conglomerate and argillite Clastic rocks, mainly graphitic siltstone, sericite-chlorite schist; locally include sericitic marble and conglomerate

Undifferentiated, unmetamorphosed sedimentary rocks, including polymict conglomerate, sandstone, siltstone, variegated shale, and cherty limestone, with some andesite and rhyolite

> Limestone and marble, including black marble and gray dolomitic marble; locally include chert and commonly intraformational and

> extraformational (polymict) conglomerate. Stromatolites repor-

ted from Jabal Damkh and Jabal al Badr areas Polymict conglomerate

LAYERED ROCKS 2

Include moderately to strongly metamorphosed and deformed rocks, the original volcanic and sedimentary character of which has been blurred or

Biotite schist, mainly in zones of contact metamorphism Amphibolite, mainly of volcanic derivation

Heterogeneous paragneiss, including hornblende-biotite schist, amphibole gneiss, feldspathic amphibolite (metamorphosed andesite), metarhyolite, leucocratic quartzofeldspathic gneiss (metamorphosed rhyolite), chlorite-sericite-biotite and calcschist (metamorphosed graywacke), quartzite, marble, and calcsilicate gneiss (metamorphosed impure dolomitic marble or

Biotite-hornblende-garnet gneiss, amphibolite, and biotite-hornblende schist (inferred to be mainly metamorphosed mafic volcanic rocks)

* * * Migmatite zones

PLUTONIC ROCKS

Posttectonic alkalic granite (perthitic orthoclase-albite-sodic

OPEN-FILE REPORT 82-1048

amphibole, and accessory biotite) Late to posttectonic calc-alkalic granite (two feldsparhornblende-biotite) and granodiorite; locally alkalic.

Accompanied by gabbro and diorite. Circa 556+23 to 518+12 Ma: postdates Murdama group. Typically has contact aureoles Microgranite ring dike (calc-alkalic biotite granite) grading to porphyritic rhyolite. Circa 571+22 Ma

Graphic (micro) granite porphyry; includes graphic granite and granophyre. Mainly calc-alkalic, in places soda-alkaline. Considered to be pre-Murdama group

Heterogeneous granitic rocks including trondhjemite, granodiorite, and calc-alkalic granite. Commonly contain biotite and hornblende. Commonly lineated with inclusions of gabbro, diorite, and metamorphic rocks. Syn- to posttectonic with respect to the Hulayfah group: typically pre-Murdama group. One date of 590+12 Ma

Biotite granite with numerous xenoliths of biotite schist and ultramafic rocks. Possibly equivalent to heterogeneous metagranodiorite

Heterogeneous syntectonic metagranodiorite: ranges from quartz diorite to calc-alkalic granite. Typically lineated,

Undifferentiated, partly lineated, locally gneissic granitic rocks, including biotite-amphibole granite, trondhjemite, granodiorite, and diorite, with some inclusions of biotite gneiss. Age uncertain: possibly represent mobilized basement

schistose, or gneissic; commonly migmatitic with inclusions of

↑ ↑ Diorite to quartz diorite

Foliated, metadiorite to quartz diorite with inclusions of country rock

Itramafic rocks, largely serpentinite with some peridotite, yroxenite, and gabbro. Associated with talc schist and marble (ultramafic rocks with carbonate)

MINERALIZATION

Major or dominant commodity Host environment (shown under commodity symbol) Volcanic felsic Volcanic intermediate Volcanic mafic copper Proximal volcanic/clastic Intrusive acid Intrusive intermediate Intrusive basic Intrusive ultramafic Sedimentary clastic iron oxides Sedimentary carbonate clastic Sedimentary carbonate metamorphic fluorine (fluorite) Surface expression (shown on the left of commodity symbol) Types of mineralization (shown

stockwork/stringer zone/ S Staining breccia fill M Mineralized outcrop (5) shear/fracture vein filling Alteration zones stratiform-massive

within commodity symbol)

disseminated

Ancient working

G Gossan

Ancient working, drilled

OTHER SYMBOLS AGE DATING Whole rock Rb/Sr isochron ____ Wadi boundary

Whole rock K/Ar isochron ____ Geologic boundary Rb/Sr determination on Fault Concealed fault

SOURCES OF LITHOLOGIC DATA

6. Kellogg, K. S., USGS, unpublished geologic maps, 1981 7. Letalenet, J., 1979

1. Jackson, R.O., and others, 1963 2. Riofinex Geological Mission, 1979 3. Barnes, D., and Johnson, P.R., 1980 4. Riofinex Geological Mission, 1980

5. Kashkary, A. A. R., 1974

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature