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ABSTRACT

A set of interactive computer programs are described whose purpose is
to calculate velocity and depth models from refraction arrival-time data.
The intent is to arrive at one or more such models which, if reinverted into
travel times will satisfy the initial data to within the limits of reading
accuracy. Three main programs, in the form of subroutines, have been
written to accomplish this. One program, named RECIP, calculates depths and
velocities of a refracting horizon from reversed arrival-time data given a
velocity distribution for the overlying layers. Another program, named
CRIT, calculates depths of a refracting horizon from unreversed arrival-time
data given a velocity distribution in the overlying layers and an assumed
velocity distribution of the refracting horizon. The third program, called
RAYTRACE, calculates arrival-time data points for the refracting horizons of
a velocity model from assumed shotpoint locations and depths. Numerous
other subordinate subroutines are included for manipulating and extending
data, inserting hidden layers and otherwise varying the velocity
distribution so that any legitimate arrival-time data set can be analyzed
and will yield valid results. In addition, a section on manipulating input
data to provide an internally consistent set of plots, and also a section on
theory are included. Numerous example problems are provided.

INTRODUCTION

These programs were written to satisfy the need to calculate, on a
routine basis, velocity and depth sections which satisfy refraction arrival-
time plots. Any generalized scheme for doing this must permit velocities to
vary both laterally and vertically. The application of reciprocal methods
to reversed plots provides the means to uniquely determine both changes in
depth and lateral changes in velocity of a refracting horizon (assuming a
known overlying velocity distribution) in essentially the same operation.

In the case of one-way (unreversed) data, depths to the refracting horizon
are uniquely determined by assuming its lateral velocity function obtained
from the average slope of the arrival-time curves. The importance of
determining lateral changes in velocity as well as variations in depth can
hardly be overemphasized. Because rock properties and subsurface conditions
are estimated from velocities, lateral changes may infer zones of weakness,
fractured zones, or changes in lithology.

The interactive methods presented here require that a velocity model be
constructed one layer at a time and permit the user to vary the overlying
velocity distribution as seen fit to arrive at any number of solutions of
the underlying refracting horizon. Solutions obtained should generally
satisfy the initial data to within the accuracy of the arrival-times picked
from the seismogram.

Although graphical-reciprocal methods have long been available to
interpret both changes in depth and velocity of the refracting horizon
(Thornburgh, 1930; Rockwell, 1967, Schenck, 1967), the tedium of these
processes render their general application impractical. More rapid
approximate methods exist, many of which we have used with generally
satisfactory results, particularly the methods described by Hawkins (1961),
Slotnick (1950 and 1959) and Scott (1972). However, upon arriving at a



solution through these methods, application of the inverse process of
computing the original arrival-time data from the calculated model
frequently resulted in significant differences which could only be
reconciled by adjusting the model through trial and error. Scott’s method
employs interactive computer techniques and is rapid. It arrives at a
"best" solution through successive iterations which vary the depth of the
refracting horizon. However, in general a solution which satisfies the data
cannot be obtained unless both depths and velocities of the refracting
horizon are allowed to vary. Instead of building on his method by
permitting velocities to also vary laterally, we decided to forego an
iterative process completely and attack the problem analytically.

The reciprocal methods of Thornburgh (1930), Rockwell (1967) and
Schenck (1967) require the graphical reconstruction of emerging wave fronts
through the use of tangents to circles obtained from the arrival-time curve
and the overlying velocity distribution. Instead of following this method
for reversed plots, we adopted a scheme for reconstructing rays
perpendicular to the wave fronts, using the derivative of the travel-time
curve (Slotnick, 1959, p. 9) and the overlying velocity distribution. New
travel-time curves are constructed successively on all intervening horizons
between the surface and the one being calculated which in essence reduces a
problem of m layers into a two-layer problem. These ray-tracing methods
have also been adapted to unreversed data, through a modification of
Slotnick’s (1950) method, for which the velocity variation along the
refracting horizon is assumed. In both cases, the program will accept up to
ten discrete layers each of which may vary in depth and laterally in
velocity.

The programs are organized into a main driver program named SEISMC from
which three main subroutines and ten auxillary subroutines may be called.
The auxiliary subroutines are used for reading and writing data files,
plotting, and manipulating data. The three main subroutines, RECIP, CRIT,
and RAYTR, actually make depth and velocity calculations. RECIP is a
program invoking reciprocal methods for reversed data. CRIT calculates
depths from unreversed data and an assumed velocity. RAYTR does the inverse
process, of calculating refracted arrival-times from a velocity model and a
shotpoint location. The total package contains twenty additional
subroutines which are called automatically during program execution.

The main text in this report is in five sections, titled Manipulating
Arrival-Time Curves, Theory, The Computer Programs and Sample Problems,
Entry Forms and Conditions (Appendix A) and Program Listings (Appendix B).

The section, Manipulating Arrival-Time Curves, is a discussion of the
nature of refraction arrival-time plots. It demonstrates how a single data
arrival-time set may mathematically fit a variety of models, and discusses
the conditions which must be satisfied, and the way interrelated data may be
manipulated to yield an internally consistent set of plots. Clearly, no
computational scheme can result in a good interpretation if the input data
violate basic physical laws. The success in using these programs hinges in
large part on the care given to the initial data handling.

The section, Theory, discusses the equations and graphically
illustrates the algorithms executed by subroutines RECIP, CRIT, and RAYTR.
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The section, The Computer Programs and Sample Problems, discusses and
provides examples of the execution for each of the main and auxillary
subroutines called from the driver program SEISMC. The functions of the
remaining subroutines are also discussed. The subroutines are described in
an order of increasing complexity. The auxiliary subroutines are described
first, followed by the main subroutines RAYTR, CRIT, and RECIP. The
numerous examples illustrate the different options and also some possible
pitfalls.

Appendix A serves as a manual for the execution of the programs. It
defines the input variables and coded messages which may be output during
execution. It also contains sample forms for listing input parameters.
Logically, the information in this appendix also belongs in the section The
Computer Programs and Sample Problems and is frequently referred to by it.

The individual programs are listed in Appendix B.

The initial version of these programs, completed in 1975, worked well
for refraction data derived from theoretical earth models. However,
problems related to the scatter of real field data, and errors in
constructing the model of the layers overlying the one being calculated
sometimes resulted in intolerable scatter of computed subsurface depth
points. Thus the following programs evolved as different problems were
encountered with each new batch of field data. The programs are still being
modified and appended. For example, a subroutine to analyze computed
lateral velocity variations would be helpful. Turn-around time can be
improved through the use of computer graphics. The system for automatic
digitization of seismograms, briefly touched on in this report, using
punched cards, is cumbersome and has recently been changed. Our
representation of the overlying velocity distribution, in terms of discrete
cells or compartments, is not entirely realistic and could be modified to
allow both lateral and vertical linear velocity changes. Finally, the
utilization of state—-of-the-art digital recording field equipment with large
dynamic range offers a wide range of application, particularly to the use of
secondary arrivals and the study of signal attenuation.

MANIPULATING ARRIVAL-TIME CURVES

Seismic refraction data are interpreted in terms of successively deeper
horizons of increasing velocity. According to ray theory, the shallowest
horizon (horizon 1) is defined by a direct ray propagating from the energy
source (shotpoint) along the ground surface. Each successive underlying
horizon corresponds to the path of a critically refracted (or diffracted)
ray, each propagating with successively higher velocity (fig. 1). Geologic
inferences result through correlating variations in the depth and velocity
of the critically refracted rays to changes in depth and physical properties
of geologic layers.

Each such critically refracted ray, according to Huygen’s principle,
returns energy to the surface along its entire travel path. Thus, in
principal at least, these returning arrivals can be detected, and for each
critically refracted ray, a plot prepared of arrival time versus distance
from the shotpoint. Thus for the four-layer problem of figure 2, four
individual arrival-time curves may, in principal, be plotted for every

3



A
shotpoint
Direct ray, horizon|, at vl(x)
Layer | .
Z 1 /, Critically refracted or diffracted ray,
Layer2 horizon 2, at v2(x)

D30~ QA< ®—M

/£

™ Critically refracted or diffracted ray,
: horizon 3, at v3(x)

Layeri horizon i at v; (x)

V(x> (X)) >0 > v, (x)> (x)

= X
Distance

Figure l.--Hypothetical refracted ray paths for successive
horizons of increasing veloCitYeeeceeoceceoccoccsccocscsnnsecnossss

4

Nz X X Critically refracted or diffracted ray,



! ' ' | ' ] i ; ; i
' . ' ! | ! ‘
. ] .
: | ®
| | g
| @ i P e—— B
: ta ~__-Crossover points:
— tz | T A : , : -
S PY AR R . o
N T R T A A R R
oy L A

140

160

| : : '
: i i i
: : ' l. B
I : i :
H 5 t -
B } ? .
! : } .
H ; . .
1 T T :
! i . H
H H Lo
i [
A ——
: . i
; .
:

SRS N N S S i
o A , Crossover points—® 4. .
—--20 R — = N @ e
(PSS N ST T S S 0 sl
d : ! i ] : ty
S . - ; : : . . __EN3o_
i : 20 40 60 80 100 120 140 160 Sr
L e ——— SEISMOMETER SPREAD. > i
i i Distance P Lo
5 ‘; AR | o o
U O O O N N O J S S
i . . ' . ( ! H H H 1 N
E Sq horizont v Sr 01—
‘ : layer | V=10 —
RS horizon 2 - ool . . . N R T B
- 2 ; i

" horizon 3

™ horizon 4~

' : .

d0-—=woa<o—m

;.;-,(c)

. layer 4 - - -
EL P ‘

I A

Figure 2.--Arrival-time curves (a) and (b) of a four-layer
velocity model (c) for shotpoint locatioms Sq and Sr.

Heavy line segments in (a) and (b) represent first arrivalsS..cccees

5



shotpoint. In a mathematical sense, the arrival time curve for each
critically refracted ray may be thought of as passing through the time axis
at the shotpoint, and the intersection of the curve for the ith horizon with
the time axis is called its intercept time (ti).

Unfortunately, from the typical refraction seismogram, critically
refracted arrivals from each horizon can not be identified across the entire
length of the seismometer spread. In fact, in most cases, only initial or
first arrivals can be read, resulting in a single valued function of
arrival-times versus distance (the t-x plot) as shown by the heavy lines in
figures 2a and 2b, for shotpoints labeled S, and S,.. Thus instead of a
complete curve corresponding to each horizon along the entire length of the
seismometer spread, only segments are obtained, as seen by AB, BC, CD and DE
in figure 2b. Frequently even segments of arrival time curves for
particular horizons fail to appear as first arrivals (the hidden layer
problem) as seen for horizon 3 in figure 2a,.

Inflections of arrival-time curves

The points of intersection between segments representing arrivals from
successive horizons are called crossover points (fig. 2). Crossover points
are usually marked by a distinct inflection or change in slope of the first
arrival-time curve.

Inflections of first—arrival-time curves are also caused by lateral
variations, either in velocity or dip of the refracting horizon and/or
overlying beds.

Probably the three most difficult, yet extremely important set of tasks
for the interpreter are: 1--to relate inflection point on arrival-time
curves as due either to crossovers, or lateral changes in velocity or dip of
the refracting layer or variations in velocity or dip of the overlying
layers, 2-— associate the segments between crossover points with their
corresponding refracting horizon, and 3—— from the limited first-arrival
data on hand, either implicitly or explicitly reconstruct the hidden
remainder of the arrival-time curve for each horizon., Thus in figure 2,
this would entail identifying and reconstructing, from the first-arrival
data only, each of the eight complete arrival-time curves (four derived from
shotpoint Sq and from Sr). The accuracy of the final computations hinges to
a large degree on how well horizon identifications are made and the degree
to which the extensions of individual first-arrival line segments agree with
the true unobserved arrivals., Multiple models (or solutions) result from
different reconstructions of the unobserved part of arrival-time curves,
each of which may be theoretically wvalid.

A simple example of multiple solutions for a single unreversed arrival-
time curve, obtained by identifying segments with refracting horizons in
different ways, is illustrated by the curve of figure 3a. Figure 3b shows
one of an infinite number of three-layer solutions. Each inflection
represents a crossover point and different solutions are obtained by
arbitrarily varying the velocity of the two lower layers. For this
particular solution, velocities of 2.5 and 5.0 were used for layers two and
three.
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Figures 3c and 3d show solutions involving two layers. Figure 3c
represents a case for which the change in slope between segments II and III
is due to a change in dip of horizon 2. Figure 3d shows a solution for
which the change in slope between segments I and II is due to a lateral
change in velocity of layer 1. Figure 3e shows a solution involving a
single layer with three abrupt lateral changes in velocity., Finally, figure
3f shows a four-layer solution which includes a hidden layer. All of these
solutions satisfy the data of figure 3a.

Reversed profiles also have multiple solutions as shown in figure 4.
One possible solution is that a different layer corresponds to each line
segment of the t-x graph (fig. 4b). Another solution that might be
encountered when shooting across an alluvial valley with steeply sloping
bedrock along the flanks is shown in figure 4c.

Inflections corresponding to crossover points are nearly always
manifested by a decrease in slope of the t-x graph (an increase in apparent
velocity) with increased distance from the shotpoint. This has been amply
illustrated in the reversed arrival-time curves of figure 2. Under certain
conditions involving changes in dip or velocity of overlying layers, the
crossover point will not involve a change in slope at all and may even be
marked by an increase in slope (a decrease in apparent velocity) with
increased distance from the shot point.

Inflections resulting from lateral changes in velocity or dip are
illustrated in figures 5, 6 and 7 using 4-layer problems for illustration.
Reversed arrival-time curves from horizon 4 are plotted to show the effects
in opposite directions. Arrival-times from the overlying three horizons are
not plotted.

Figure 5a shows the effect of a change in velocity of horizon 4 with no
change in dip. We note approximate equal intercept times for both
shotpoints because depth is constant, and a higher apparent velocity on the
arrival-time curves over the part of layer 4 with higher veloecity. For the
case of a gradual change in dip or curved horizon with constant velocity
(fig. 5b), the intercept times at opposite shotpoints are significantly
different and the apparent velocity corresponding to the reversed curves
increase in opposite directions, similar to the effect of an increase in
velocity with depth.

The effects of changes in velocity of overlying beds are shown in
figure 6a. If the velocity transitions were linear instead of
discontinucus, the abrupt changes in slope shown on the graphs would be
removed, and the t-x graphs would consist of two straight lines of different
slope.

Diffraction patterns from a point source can cause marked inflections
on arrival-time curves (fig. 6 b)., They are usually associated with faults
but can arise from an abrupt change in dip. Segment C of the time-distance
curve recorded from a shotpoint at the left end of figure 6b results from a
diffraction pattern originating at point ¢ and, likewise, segment D on the
reverse curve arrises from point d.
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These examples illustrate the diversity of shapes of arrival-time
curves that can result from relatively simple subsurface changes. As
geology becomes complex, the resulting complexity of arrival-time curves
increase to the point where simple identification of cause and effect is
impossible. Figure 7b, for example, illustrates a t—x graph with a marked
inflection in one direction but none in the reverse direction. One possible
solution is a trough-like feature with laterally varying velocity in the
basal layer. These examples show that the interpreter must distinguish
between breaks in slope of arrival-time data due to crossovers from those
due to lateral geologic changes. Then the data can be manipulated in a
manner consistent with the laws of refraction into a form which can be
handled by the computer programs. Once done, the computer programs
themselves calculate the lateral changes in velocity and depth for the
individual horizons which satisfy the perturbations of arrival-time curves.

Identification of crossover points

The process of unambiguously identifying crossover points and relating
segments of arrival-time curves between them with specific refracting
horizons requires multiple shotpoints. The first step, however, usually
consists of making a preliminary identification (guess) using individual
plots. This is illustrated in figure 8, which shows possible horizon
identifications represented as straight line segments for a variety of
hypothetical arrival time curves. In general, crossover points are
identified with the major decreases in slope with distance shown by the dots
in figure 8.

Once such preliminary identifications have been made, related pairs of
plots may be used for verification or making changes. Such pairs may be
classified as reversed, opposed, or complementary plots and each serve in
their own way to facilitate horizon identification. Given a sufficient
number of related plots, unambiguous identification can usually be achieved.

Reversed plots

Reversed plots have common seismometer locations with shotpoints
recorded in opposite (reversed) directions (fig. 9a). In these
illustrations the shotpoints are located at the ends of the spread.

However, in general, this condition need not be satisfied. Thus reversed
shotpoints may be internal to, or off the ends of a spread. Because minimum
time paths are independent of direction, a necessary condition for reversed
plots is that reciprocal times corrected for shot depth must be equal;
namely, the arrival-time TR from S, to S, (fig. 9a) must equal that in the
reverse direction from S. to S;. Furthermore, the same number of refracting
horizons must be identifiable on the reversed plots and, at the reciprocal
shotpoints refractions must arise from the same horizon. Hence at the
reciprocal points the respective horizon number identifiers must be the
same.,

An example is shown in figure 9. A possible 3~layer solution is shown
in figure 9b; segments BC and CD from shotpoint S, might represent horizon
2 and segment DE might represent horizon 3. Then segment GH of the reversed
plot must also represent horizon 3 because, at reciprocal points,
refractions must arise from the same horizon. Horizon 2 for shotpoint Sy is

13
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assumed to be hidden and may be tentatively sketched in, as shown by the
dashed line segment in figure 9b. Another solution could involve two layers
(fig. 9c). Segments BC, CD and DE could all represent horizon 2; in which
case segment GH in the reversed plot must also represent horizon 2. A one-
layer solution is impossible because this would demand that apparent
velocities for the reversed plots be equal at corresponding locations along
the distance axis which clearly is not the case.

Another example is shown in figure 10. Although the graph may suggest a
simple 3-layer solution, such a solution due to the lackof symmetry, would
require a highly complex velocity section. (Discussion of such complexities
is in the section on extending plots). If however we assume a 4-layer case
(figure 10b), the solution would be less complex. In this case, segment 3
is assumed to be hidden for shotpoint Sq and segment 2 for shotpoint S..

Opposed plots

Opposed plots have common shotpoint locations but are recorded in
opposite directions by different (opposed) spreads (fig. lla). It can be
demonstrated that for opposed plots intercept times (ti) from common
horizons must agree. Intercept times can only be obtained by projecting or
extending arrival-time segments back to the time axis at the shotpoint.

The examples of figure 11 show opposed plots, one member consisting of
three line segments and the other of four. Identification in terms of four
horizons (fig. 11b) demands that horizon 2 on the left hand plot be hidden.
Its arrival-time curve has been constructed to meet at the intercept (tz) of
horizon 2 from the right hand plot. Another possible, though perhaps less
probable identification in terms of three horizons, is shown in figure
llc. In this case, it is assumed that the velocity of the surface layer
changes at dashed line A.

Projections to the intercept point, of course, need not be straight
lines, just as first-arrival-time segments from a given horizon need not be
straight, Figure 12a is an example of opposed plots consisting of curved
line segments. A 3-layer identification is shown in figure 12b, in which
corresponding segments are projected as curved lines to intersect at the
time axis. A 4-layer identification, using hidden layers, is shown in
figure 12c.

Complementary plots

Complementary plots have common seismometer locations and in-line
shotpoints recorded from different distances on the same side of the spread
(fig. 13).

A property of complementary plots is that the slope of the arrival-time
curve from the shotpoint more distant from the seismometer spread (S, in
figure 13) may be either less than (higher apparent velocity), or equal to,
but according to ray theory, never greater than (lower apparent velocity)
that for the nearer shotpoint. (Cases of higher apparent velocity for the
nearer shotpoint do at times occur in cases of near-surface thin high-
velocity beds, such as frost, pavement, or thin volcanic flows.) Equal

slopes indicate that arrivals for both plots originate from the same
17
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horizon. Different slopes indicate that arrivals from the nearer shotpoint
originate from a shallower horizon than the more distant shotpoint. Thus,
in figure 13, arrivals for both plots originate from the same horizon in the
interval BC where the curves are parallel. In the interval AB, arrivals from
the more distant shotpoint originate from a deeper horizon. The point B
therefore represents a crossover point for the nearer shotpoint, Sq. (Note
that in this illustration the crossover is marked by a decrease in apparent
velocity.)

The principal use of complementary plots is to distinguish between
inflections due to crossover points from those due to lateral geologic
changes. Crossover points (with rare exception) move with the shotpoint,
whereas inflections due to lateral changes remain stationary on the time-
distance graph., This is illustrated in figure 14, which represents arrival-
time curves for a 3-layer problem involving five shotpoints,S; through Sg,
with a change in dip of horizon 3 between S; and S). The individual
segments on the arrival-time curves have been labeled to represent
corresponding horizons from which first arrivals originate. We note that
the inflection point between horizons 1 and 2 moves from point A; through Ag
as the shotpoint moves from location 8; through Sg and is therefore a
crossover point. (For shotpoint 81 the crossover points A; and B; are
hidden.) The inflection point representing horizons 2 and 3 similarly moves
from point Bj through Bg and is again a crossover point. The intervals
between successive crossover points are not constant due to the effect of
the change in dip of horizon 3. Point C on the distance axis marks the
location at which the effect of the change in slope of horizon 3 appears omn
the first-arrival plots, and this point stays fixed for all shotpoints.
Thus, for the case of shotpoint S5, although initial inspection may suggest
that the plot represents four layers, inspection of the complementary plots
S4 and Sg indicates that this inflection is due to a lateral geologic
change.

The use of complementary plots is a powerful tool for delineating
between crossover points and lateral changes. They are most effective for
horizons represented by a "long" segment of an arrival-time curve. For
relatively short segments, the method becomes impractical because then many
closely spaced shotpoints are required.

In most applications of seismic~refraction techniques, inflections that
appear on time-distance graphs can be related to subsurface geology through
the judicious application of reversed, opposed and complementary plots.

Extending arrival-time data

As discussed earlier, arrival-times from each horizon must usually be

extended back to the time axis and forward to the reciprocal point in order

to help determine a unique solution.

Extending arrival-time curves back to the intercept point

Without other constraining data, a wide degree of latitude exists for
extending data back to the intercept. Take for an example, the 3-layer case
illustrated in figure 15. Within limits, segment 2 may be projected back to
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Figure 15.--Sketch illustrating valid and invalid extensions
of arrival-time curves to the intercept. BE and BD are

valid for horizen two (b) and CF and CH for horizon
three (c). Extension CH for horizom three is invalidecececoscccsce
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the intercept as desired, provided the absolute value of the slope at
corresponding points along the distance axis of the projected curve does not
exceed that of the segment representing the next shallower horizon. Thus,
in figure 15b, the projected arrival for horizon 2 is constrained to lie
within triangle ABC. Projections such as BD and BE are both possible. 1In
projecting segment 3 to the intercept, the projection for segment 2 must
first be completed. If we assume that BA (fig. 15c) is the correct
projection for horizon 2, then the projection for horizon 3 must lie within
the figure ABCDE such that the slope requirements stated above are again
satisfied. Projections CF and CG are possible whereas projection CH is not
because the slope of segment BA is exceeded. It should be noted that
projecting data near the limits of validity is generally unrealistic unless
clearly substantiated from other data, and may result in computation
problems.

The constraints on extending arrivals to the intercept are obtained
from complementary and opposed plots.

The use of complementary plots may provide a guide for projecting
arrivals, as shown in figure 16.In this case, the arrivals from horizon 3 of
shotpoint S, are extended to the intercept from point C by drawing a curve
parallel to EF derived from offset shotpoint Sq.

The use of opposed plots constrains the extension of arrivals by
demanding that intercept times agree, as shown in figure 17a. Although a
degree of freedom exists in extending arrivals from both plots to the
intercept, they must intersect at a common point, such as D. If the
extension of one of the plots has already been completely constrained by
complementary data (fig. 17b), the extension of the other must then be
constrained to intersect at the intercept. If the extension of both opposed
plots are completely constrained by complementary data (fig. 17c¢), their
extensions will, by the laws of refraction, intersect at the intercept. If
not, an error has occurred in segment identification.

Extending arrival-time curves forward to the reciprocal point

The forward extension of data usually implies the existence of a
reciprocal plot in which case constraints are imposed by reciprocity.
Complementary plots may provide further constraints.

Reciprocity demands that reciprocal times from all horizons agree.
Figure 18a illustrates the forward extension of data from horizons labeled 2
and 3 in such a way that reciprocity is satisfied. However, forward
extension of line segments for horizon 4 without change of slope would
violate reciprocity. In the absence of constraints, there are an infinite
number of ways for forward extension of arrivals, However, as with
extending data back to the intercept, the slope of an extended segment must
be greater than that representing the next deeper horizon and less than that
for the next shallower.

Figure 18b is an example involving plots from three shotpoints labeled

S1» S and S3. The addition of one shotpoint in the center of the
seismometer spread severely constrains the extensions for horizon 2. The
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Figure 18.--Example (a) illustrating the forward extension
of arrival-time curves using the constraint of reciprocity.
Example (b) illustrates forward extension constrained by
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27



graph now consists of two reversed plots, one between S, and Sq and other
between S; and S3, and one complementary plot involving shotpoints §; and
Sy). Between S, and Sj, the line segments for horizon 2, when extended
forward to the time axis provide a reciprocal time TRy. The arrival-time
curve from horizon 2 for shotpoint Sy can then be extended forward to its
reciprocal point by constructing a line parallel to that representing
horizon 2 from complementary shotpoint S,, resulting in a reciprocal time
TR9. The line segment representing horizon 2 for shotpoint S is then
constrained to intersect the time axis at TR, as shown.

An example

Figure 19 shows a hypothetical t-x plot for a problem which can
beinterpreted in terms of 5 layers. The solid lines represent first-
arrival-times and the dashed lines are data extensions as discussed below.
This plot consists of two end-to-end spreads labeled spread I and spread II,
each 6000 distance units long. Each spread is recorded from shotpoints
shown as S3 through S;. In addition, both spreads are recorded from
shotpoints S, and Sg at distance coordinates -3000 and 15000 respectively
and spread 1 was recorded from a shotpoint at -6000 and spread II at
20000. These shotpoint locations were picked to conveniently serve the
hypothetical velocity model (fig. 20) from which figure 19 was derived. 1In
order to simplify later discussion, spreads I and II have been subdivided
into the intervals Ia, Ib, IIa, and IIb as shown.

We first note, in figure 19, that reciprocity is satisfied. At S, the
reciprocal values, read vertically on the graph, of approximately 1190,
1260, 2060 and 2550. These times agree with the times from shotpoint Sy
recorded at shotpoint locations S3, SS’ 36 and Sy respectively. Segments
between crossover points, representing specific horizons, are labeled and
crossover points are circled. Usually this labeling process proceeds as
data are extended beginning with the shallow layers. The process may at
times become a complex problem of changing segment labels and introducing
hidden layers in order to maintain internal consistency. At distance 7750,
for example, a distinct inflection appears on the graphs from shotpoints S,
and S3. However, because the two curves are parallel on both the left and
right sides of the inflection point, they represent the same horizon (5).
This suggests that the inflection is due to a lateral effect rather than the
onset of arrivals from a deeper layer. At distance 4650 for Sy and Sg, the
curves are parallel to the left of the common inflection, but not on the
right. It is concluded therefore that this distance marks a crossover point
for shotpoint Sy, but not for Sg.

Normally each segment between inflections is also labeled with its
corresponding approximate apparent velocity. Apparent velocities are
extremely helpful in correlating horizons. However, to avoid cluttering the
plot unnecessarily, only a few velocities have been posted.

Wherever calculations are to be made, data are extended back to the
intercept if the the critical reflection method is to be used
(subroutine CRIT) and forward to the reciprocal point and beyond for the
reciprocal method (subroutine RECIP). For the reciprocal method, arrivals
may also be extended back to the intercept, or beyond, whenever possible, in
order to increase the coverage of calculation points.
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Arrivals from horizon 1 are not extended. Their principal use is to
obtain a velocity for the first layer. For this problem, the velocity of
layer 1 was assumed to vary from 0.6 at S3 to 1.0 at Sy. Data from horizon 2
are straightforward and limited to the vicinity of each shotpoint. Hence
only a few depth calculations in the vicinity of each shotpoint can be
calculated. Velocities in this layer appear to increase gradually from 1.8
at S3 to 2.4 at S7. Data for horizon 2 have therefore only been extended
back to (and slightly beyond) the time intercept.

Data from horizon 3 are sufficient to allow point-by-point calculations
beneath both spreads using reciprocal methods. For shotpoints Sj3, S, and
S5, no complementary data are available for horizon 3; segments
representing this horizon have been extended back to the time axis without
any significant change in slope. For shotpoints S¢» complementary data from
S5 and Sy, and for Sy, complementary data from Sg are used to control the
extension of data to intersect at the intercept. In the intervals ITIa and
ITb, the data for horizon 3 already intersect the reciprocal points,
eliminating the need to extend data forward. In the interval Tb, the data
for horizon 3 are readily extended a few hundred distance units for a
reciprocal time of about 1290. These data can be extended a bit further
into interval Ta by using complementary data from shotpoint S, and into the
interval TITa by using data from Sg. Similarly in the interval Ia, data from
horizon 3 from shotpoints S3 and S, are projected forward to a reciprocal
time of about 1260, and the data from S3 may be extended beyond S, using
complimentary data from S,. With these extensions, the data from horizon 3
form a completely internally consistent unit from which a set of unique
depth and velocity calculations can be made.

Because longer data segments are available from horizon 4 than from
horizon 3, the entire spread-length distances of spreads I and II are used
for constructing reversed graphs rather than half-spread intervals as for
horizon 3. For S3, data are extended to the intercept for horizon 4 using
complementary data from S, for control. For Ss (spread I) data are extended
to the intercept using data from complementary shotpoint S¢ as far as
distance coordinate 5350 and from S; for the remaining distance. For
shotpoint Sg (spread II) data are extended to the intercept using S4 for
complementary control and for shotpoint S;, data from Sg provide
complementary control. For shotpoints S5 and Sy of Spread II, data from
horizon 4 already extend to the reciprocal point or beyond and therefore
need not be extended forward. For spread I, data from both shotpoints Ss
and Sq are extended to the reciprocal point using shotpoint S, for
control. With these extensions, horizon 4 is ready for computations.

For horizon 5, a single set of reversed graphs are constructed in the
combined interval of spreads I and II. For shotpoint S5, data are extended
to the time axis at a time of about 840 using complementary data from
shotpoint S;. For S7, complementary data are obtained from shotpoints Sg
and Sg, and the intercept is about 1035,

Thus, in making interpretations, horizon 2 will be calculated using
subroutine CRIT at individual shotpoints S3 through Sy. Horizon 3 will be
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pr play1l.lay

Figure 2

playt.lay
1 5 -90000.00 0.00 0.60
2500.00 0.00 0.70
5500.00 0.00 0.90
9000.00 0.00 1.00
90000.00 0.00 1.00
2 5 -90000.00 -20.00 1.80
4000.00 -20.00 2.00
7000.00 -20.00 2.20
10000.00 -20.00 2.40
90000.00 -20.00 2.40
3 7 =90000.00 -150.00 2.80
0.00 -150.00 2.80
4500.00 -275.00 3.00
6300.00 -325.00 3.00
8000.00 -325.00 3.20
10500.00 -325.00 3.4%0
90000.00 -325.00 3.40
4 7 -90000.00 -325.00 3.50
0.00 -325.00 3.50
2500.00 -527.00 3.70
6500.00 -875.00 4.00
9500.00 =1075.00 4,20
12500.00 -1250.00 4.20
90000.00 -1250.00 4.20
5 5 =90000.00 -1500.00 5.50
2500.00 -1500.00 5.50
4500.00 ~-1750.00 5.50
5500.00 -2250.00 6.00
90000.00 =2250.00 6.00

Table 1.--Digital represgentat
§ in file playl-i
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calculated with subroutine RECIP within individual intervals Ia, Ib, IIa and
IIb. Horizon 4 will be calculated using RECIP within the individual
intervals of spread I and spread II, and horizon 5 within the combined
interval of spreads I and II. Clearly, other constructions could be made to
make calculations within different intervals. However, because the plots
are already completely internally consistent, all other combinations should
give the same solutions In practice, redundant combinations are often used
to provide internal checks.

The data of figure 19 were computed from the model shown in figure
20, The layers in digital format (as described later) are given in table
1. The user may interpret the data of figure 19 using the computer methods
to be described later and compare results with the initial model. Reading
and plotting errors of roughly 5 to 10 time units should be considered in
comparing results.

THEORY

In order to calculate the configuration of an (n+l)th horizon from its
associated arrival-time curves, a model (e.g. velocity distribution) for the
overlying n layers must be assumed. This distribution may have been
calculated using refraction arrivals from the shallower horizons or from
well data.

The Model

For these programs, the n overlying layers are assumed to be discrete
and of variable thickness and velocity. The upper boundary of each layer
referred to as a horizon, so that horizon 1 represents the ground surface.
Ideally, the velocity of a layer should be expressable as a function of x
and y, v = v(x,y); where x equals the horizontal distance and y the
elevation above some arbitrary datum. In this way, lateral and vertical
velocity variations can be expressed mathematically. In the method outlined
in this paper, however, each horizon is represented by connected straight
line segments and each layer is subdivided into compartments with vertical
boundaries (fig. 21). The velocity within a compartment is assumed to be
constant and a compartment boundary marks a change in velocity and/or a
change in slope.

The arrival-time curve

The arrival-time plots for the (n+1)th horizon consist of a series of
points expressed in time and distance (t vs x) using the same coordinates of
x as for the velocity model described previously. An arrival-time curve is
obtained by approximating these points by a series of straight line
segments; constructed either by hand, in a least squares sense, using an
arbitrary number of points for each segment (fig. 22), or by a cubic spline
(Anderson, 1971). In either case, the value of t, and the derivative,
dt/dx, are readily calculable from the arrival-time curve for any given x.
(We have found that straight line approximations are generally more
satisfactory because of problems with derivatives using splines.)
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Figure 21.--Graphic representation of a velocity model of
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Figure 22.——Representation of a set of arrival-time points
are represented by least square straight line segments.
The parameter k, represents the number of points used.ccceccccecssss
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Reduction of arrival-time curves
Using the notation in figure 21, the equation of the Ith horizon within
its Jth compartment (fig. 23) is

y-Y (L, _Y(I,J+ 1) -Y (LI, _
XX (LD "X (LI+ D =x(nn - oD (1)

and the expression for y in terms of x is

y =Y (I,3) +M (I,3) (x - X (I,])). (2)
The expression for the dip of the horizon is
0 (I,J) = arc tan M (I,J). (3)

Thus for any given distance xly (fig. 23) representing the kth point on the
Ith horizon and in the Jth compartment, its corresponding elevation yly 1is

ylk =Y (I,J) + M (I1,J) (xlk - X (1,3)) (%)
The dip of the Ith horizon at point k is

61, =0 (1,0, (5)
and the velocity of the Ith layer below point k is

vl =V (1,3 (6)

The emergence angle (Slotnick, 1959, p 3) al, (fig. 23) is defined as
the angle an emerging ray makes with the perpendicular to the horizon at the
point of emergence (xl,, yly).

Given an arrival-time curve (t vs x) defined on the Ith horizon, as
shown in figure 23, the emergence angle may be calculated from the
derivative of the arrival-time curve and the layer velocity at the point of
emergence (Slotnick, 1959, page 9). At the point (xly, yly) the emergence
angle aly is given by

_ dt
sin al, = vl L - N
or solving for aly, k
; dt
al, = arc sin (vlk I ) (8)
x=x1
k
ay
The value of dx x=x1 is the inverse of the apparent velocity vlé of the
k

arrival-time curve at x=xlk»> 2nd equation (8) in more familiar form would be

vlk
alk = arc sin (-‘-7—1—11-)
where vl £ v1'y.
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The emergence angle Al, with respect to the vertical at (xlk, yly) is
seen from figure 23 to be

Alk = alk - elk 9)

and hence the equation of the kth ray path which emerges at (xlk, yly) is

y-yl
k _ T (10)
e, Tt (g AL

Because the emergent ray is usually not vertical, it may intersect
compartment boundaries (e.g., at point G in figure 23) and be refracted
within a layer. 1In this case equation (9), and equation (6) cannot be used
to calculate Aly and vly respectively. (The programs contain the option not
to refract rays at compartment boundaries.) However, the details regarding
such changes at compartment boundaries are largely a matter of bookkeeping
within the programs and are not discussed here.

The ray path defined by equation (10) (shown as Ray k in figure 23)
will intersect the next underlying (I+1)th horizon. If it intersects in the
Kth compartment of this horizon, then the equation of the (I+1)th horizon at
the intersection point, shown as (x2y, y2j) is

y - Y (I+1,K) _ Y(I+l,K+1) - Y(I+1,K) - M(T+1,K) (11)

x - X (1+2,K) X(1+2,K+1) = X(I+1,K)

The point of intersection (x2y, y2),) is found by solving equations (10) and
(11) simultaneously, giving

M (I+1,K) X (I+1,K) - Y (I+1,K) - tan (%-- ALY + iyl (12)

x2k=

M (I+1,K) - tan (12 - AL)

= - LA
yzk = (xzk xlk) tan (2 Alk) + ylk (13)

and as with horizon I (equations (5) and (6)), the dip of the (I+1)th
horizon at (x2),y2;) and the velocity beneath this point are

62k =0 (I+1,K) = arc tan M (I+1,K) , (14)
and

V2, = V (I+1,K) (15)
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The travel-time At; for propagation between (xly,yly) and (x2y,y2y) is
given by

1/2

2 2
At, = (Gl - %2 7+ (91 - y2) } (16)

vlk

and the arrival-time t2y at (x2y,y2y) is given by
tzk = tlyp = Aty (17)

where tly = arrival time at xly (fig. 23).

Equations (1) through (17) provide the information to trace a ray from
a kth point (xl,, yly) on the Ith horizon through one complete layer. We
furthermore note that the triplet (xly,yly,tly) on the Ith horizon maps into
the triplet (x2k,y2k,t2k) on the (I+1)th horizon. Thus if an arrival-time
curve on the Ith horizon is defined by the set of coordinates (xlk,ylk,tlk),
the corresponding set of coordinates (x2k,y2k,t2k) define the arrival-time
curve which would have been recorded had the seismometers been placed in the
(I+1)th horizon. The Ith layer has been stripped! Clearly then all the
data are available for stripping yet another layer through the change of
variables

(sz,yzk,tzk,ezk,vzk,1+l,K) > (Xlk,ylk,tlk,elk,Vlk,I,J) (18)

and repeating equations (7) through (17) for the next deeper layer. Thus
from a time-distance curve, which represents data recorded on the ground
surface, we can derive another curve which represents data that would have
been recorded had the seismometers been placed on the nth horizon.

It is theoretically sound to trace a complete arival-time curve to the
nth horizon one ray at a time by applying Snells law instead of redefining
the arrival-time curve at each successive horizon. However in practice it
is far superior not to consider rays separately but rather through their
relationship with each other at frequent intervals (horizons) by the use of
derivatives.

Ray Tracing

At times an individual ray must be traced into the subsurface without
having an arrival-time curve defined on the surface. In this case, the
emergence angle in the first layer can be assigned a trial value, and those
associated with deeper layers can be calculated by applying Snell’s law.
Thus, in figure 23, the emergence angle a2y at (x2y,y2;) is calculated from
the equation

sin (aZk) v2k
sTn (AL F 62 ~ VI (19)
k k k
or
v2k
a2, = arc s1n{;T; sin (Al + 62k)} (20)

39



where the absolute value of { } <l. Thus the individual ray is traced
through the next underlying layer by making the change in variables

(sz,yzk,tzk,e 2k,v2k,a2k,1+1,K) > (xlk,ylk,tlk,elk,vlk,alk,I,J) (21)

and repeating equations (9) through (20) (excluding equation 18). An
individual ray can thus be traced to the deepest known horizon, the nth, by
repeating equations (9) through (21) n-1 times.

In a similar manner rays can be traced upwards from the subsurface
(e.g., from the nth horizon to the first) provided again that some initial
angle such as the critical angle, is given. This is equivalent to turning
figure 23 upside down. In the discussions to follow, tracing up—-going or
down-going rays or travel-time curves, will be considered identical and will
be referred to by equations (1) through (21).

Notation

In calculating the (n+l)th horizon, it is assumed that all calculations
to obtain the configuration and velocity of the overlying n layers, and all
the necessary extensions and constructions of its arrival-time curves, as
discussed in the previous section, have been made. Furthermore, it is
assumed that arrival-times have been corrected for shot depth by adding an
uphole time, a provision automatically handled in the programs. Thus we
deal with arrivals from just one horizon at a time (the n+lth) with the
shotpoint on the ground surface (horizon 1).

To simplify discussions and avoid lengthy mathematical expressions, the
ith horizon will be represented by the function yi(x), and its layer
velocity by v;(x) (fig. 24).

Because the (n+1)th horizon may have been recorded from more than one
shotpoint, the arrival-time curves for each shotpoint are also
subscripted. Thus t_(x) will be the functional notation of the arrival-time
curve from the (n+l)th horizon for the qth shotpoint Sq(xSq,ySq) with both
shot and seismometers on horizon 1 (fig. 24).

Calculations involved in a 2-layer problem are relatively
straightforward. For the (n+l)th horizon, the arrival-time curves t_(x) are
first reduced to the deepest known horizon, namely the nth, which may then
in a sense be thought of as datum. The expression T, (x) represents the
arrival-time curve for the qth shotpoint that would have been recorded if
the shotpoint remained on horizon 1 but the recording seismometers were on
the nth (fig. 24). (Thus if the second horizon is the one being calculated,
n=1 and tq(x)=Tq(x) ).

For purposes of demonstration, a four-layer problem (n=3) with a single
shotpoint with index q is used (fig. 25).

To obtain T_(x) from t,(x), successive points (x1;, tly) are selected
on tq(x) and through the use of equations (1) through (17), their respective
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emergent rays are traced through one layer, resulting in an arrival-time
curve for horizon 2, shown as the dashed curve. The process is repeated
(equation (18)) resulting in T _(x). This function then represents the
arrival-time curve from horizon 4 which would have been recorded on horizon
y3(x) with the shotpoint on the surface. (Initially the programs were
written without constructing the intermediate arrival-time curves by using
equations (19) and (20). This sometimes resulted in errors due to
intersecting ray paths.)

The process of deriving Tq(x) from tq(x) results, in nearly all cases,
of a shift of the arrival-time curves in the direction of the shotpoint as
shown in figure 25.

Depth and velocity calculations from reduced data
using reversed plots (the reciprocal method)

The basic assumption used in interpreting data from reversed graphs is
that part of the ray path down to and along a refracting interface is common
to all the rays that are refrcted from that interface. This is illustrated
in figure 26a by the common path along the (n+l)th horizon. For the ray
paths ABCE and ABCDF, ABC is common to both ray paths. This condition,
however, is never completely satisfied. In the case of a velocity increase
with depth, (fig. 26b) in the (n+l1)th layer, rays to successively more
distant receiver locations propagate at ever increasing depths. 1In the case
where a horizon is offset, perhaps by a fault (fig. 26c), the refraction
paths are also variable. Another example (not illustrated) is if travel
paths to successive receivers are not all in the same plane; this is
usually the case when seismic lines are crooked.

Given the reversed arrival-time curves t (x) and t_(x), (fig. 27a) the
reduced curves are T (x) and T _(x) (fig. 27b) Curves %q(x) and Tp(x)
represent arrivals from the (ngl)th horizon that would have been recorded if
the shotpoints were on the surface and the receivers on the nth horizon.

(We note that the reduced curves extend behind the shotpoints, which cannot
occur unless the functions t (x) and t.(x) represent data extended back
toward the intercept.) Because of recgprocity, the travel-time between
shotpoints S, and S, equals that in the reverse direction from S, to S, and
is called the reciprocal time shown as TR in figure 27a. By assumption, all
arrivals refracted from the (n+1)th horizon travel in part along the
reciprocal ray path S _ABS_ in figure 27c. The path between A and B defines
the (n+l)th horizon and each point on it, by Huygens principal, may be
thought of as a source point. Hence, any point such as E; on this horizon,
is a common source point from the reversed shotpoints S, and S,, which are
recorded at points Q;(xQ4,yQj) and P;(xPj,yP;) respectively on horizon n.

On the reduced reversed plots, the corresponding arrival-times are indicated
as TQq and TP4.
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Because the travel-path along the (n+l)th horizon for arrivals recorded
at points P; and Q; from reversed shots both terminate at Ey, and the
combined paths S, to Ej plus S, to Ej correspond to the reciprocal path, the
reciprocal time %R equals the sum of the travel-times to P; and Qi less the
time for the slant emerging paths from E; to P; and E; to Qj, or

TR = (TQ; - TE;Q;) + (TP; - TE;P;) (22)

where TR = reciprocal time
TQq = arrival-time at Q4
TE;Qq = travel-time from E; to Q;
TPy = arrival-time at P,
TEiPi = travel-time from E; to Py

It is further inferred from the above argument, that any two points such as
(xQi, TQi) and (xPi, TPi), on reversed travel-time curves which satisfy
equation (22) also define a point, such as Ej, on the refracting horizon.

Points on the (n+l)th horizon are found by systematically searching the
reversed arrival-time curves for values which satisfy equation (22).

For any two trial points such as P; and Qi with distance coordinates
xP; and xQ; (fig. 27), the corresponding arrival-times TP; and TQ; are
determined by evaluating Tp(x) and Tq(x) (e.gs, TP;=Tp(xP;) and
TQ1=Tq(in).) The reciprocal time TR is obtained by evaluating tp(x) and
tq(x) at the reversed shotpoint locations (e.g., TR;tp(xSq)=tq(xSp).)
Equation (22) can then be tested by computing values for TE;Q; and TE;P;.
This is done by first calculating the elevationms yP; and yQ; (fig. 27)
(e.g., yPi=y,(xP;) and ¥Qi=Yn(x%Q;)+) By applying the ray-tracing methods
derived from equations (1) through (9) to the functionsdTp(x) and Tq(x) at
points P; and Q respectively, the angles AP; and AQ4 that the emergent ray
makes with a vertical line (fig. 27) at P; and Q; are determined. The two
raypath equations, by analogy with equation (10) may then be written as

y-yP

x-xPi = tan (n/2 - APi) (23)
y-yQ, (2
x-in = tan (7/2 - AQi)

Equations (23) and (24) are solved simultaneously for their intersection
point, shown as the common source point Ei(EEi»NEj) 1in figure 27c. The
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"average" velocities along the emergent rays between E; and P; and between
E; and Qi(vP; and vQ4) are then obtained from the known function Vn(X), and

the travel-times TE;P; and TE;Q; may be written as

1/2
{(xq, - )2 + (y0, - nEH?) (22)
1 i i i
TE,Q, =
iti
in
1/2
{xp, - eE)2 + (v, - nE.)Z} (26)
i i i i
TE,P, =
i1
VPi

Having now computed all the parameters in equation (22) at the trial points
Py and Qj, they are substituted and tested to determine whether the right
side actually equals the reciprocal time. If they do,then point E; lies on
the (n+l)th horizon. If not, other pairs such as Py and Q4 are tested
until a successful pair are found which satisfy equation (22&. By repeating
this procedure, a sequence of points e<+++es Ey, Eqiq, **°c°* (fig. 27c) are
determined which satisfy the reversed arrival-time curves and hence define
the (n+l)th horizon.

The velocities in the intervals between successive calculated points Ey
and E;4q in the (n+1)th layer are obtained from the parameters already
calculated. The travel-times TSqu (fig. 27c) from shotpoint Sq to E; and
TSqu+1 from Sq to E;4y are given by

(27)
TSqEi+1 = TQi41 — TE141Q4
The travel-time ATi in the interval between E; and E;,; then is
ATy = TSqEi4q - TSgEg (28)
and the velocity V; in the ith interval is
- _ 2 _ 2 1/2 (29)
v, = {(EE;,, - EE)DT + (nE, nE ) } /AT,

The velocity of the (n+l)th layer is thus represented by a series of

velocities within successive increments, ees++Vis Vit1s*°***, from which the
lateral velocity variations in this layer are represented.

47



The velocity of the (n+l1)th layer may also be calculated by assuming
that the rays E;jQ; and E;Py (fig. 27c) emerged at the critical angle from
the (n+l1)th horizon. Thus the angle ¢i formed between these two emerging
rays is twice the critical angle and from Snell’s law

vn(EEi)
sin (@i/2)= A (30)
or
v_(EE,)
v o= 17 (31)
sin(@i/Z)

where Vh(EEy) = velocity of the nth layer at &E;
vi = velocity of the (n+l)th layer at EE; .

The angle ¢i can be determined geometrically because the coordinates of the
points Py, Qi and E; have already been determined. If emergence at E; is
not at the critical angle, such as at a diffraction point, equation (&1)
will not yield a correct value of Vj.

In practice, velocities are calculated using both equatiomns (29) and
(31) permitting a comparison of two independent methods.

The reciprocal method just described utilizes only those parts of
reversed arrival-time curves which have common depth points (e.g., have
recorded arrivals from the same part of a horizon). Because of this
restriction significant portions of reversed arrival-time curves which have
been extended to the time intercept frequently can not be used. For
example, the overlapping arrival-time curves of figure 27a may suggest
complete subsurface overlap in reversed directions. However, the shifting
of these curves (fig. 27b) due to the reduction process indicates a lack of
subsurface overlap from the (n+l1)th horizon. The extent of true subsurface
overlap is shown in figure 28. As indicated by the emergent raypaths, the
curve T_ (x) represents subsurface coverage between points A and C, whereas
Tp(x) represents coverage between points B and D. Thus, true subsurface
overlap occurs only between points B and C which corresponds to the heavy
portions of the arrival-time curves (fig. 28). Hence if arrival-time curves
have been extended, the reciprocal method utilizing equations (27 through
31) may apply to only parts of the curves. Depths corresponding to the
lightly drawn portions must be estimated using other algorithms.

Figure 28 shows that the lightly drawn portions of the reduced
travel-time curves do not represent actual refraction arrivals because they
lie between the shotpoint and the point of reflection at the critical angle
(e.g., point B for shotpoint S, and point C for shotpoint S ). They must,
therefore, represent portions of the data which have been extended using
other information such as complementary plots for control. Nevertheless,
they can be used for making computations. If, for example, travel-times
from shotpoint S, .had been obtained to the left of point S,, then the curve
between points d and e could be used in the reciprocal method of depth
calculation,
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The example in figure 28 may represent a rather extreme example of only
a small percentage of real subsurface overlap. This situation arises,
however, when deploying offset shotpoints to map horizons which begin to
approach a depth equal to the spread length, such as shown in figure 28.

A procedural outline of the reciprocal method from reduced arrival-time
curves T,(x) and T_.(xX) used by the computer programs is given with the aid
of figure 29. First, the reciprocal time TR is calculated as described
previously.

At points Up, Uy eee Uj(xU;,yU3), *+<+ taken at regular intervals from
right to left along horizon 1, the afrival-times TU; (e.g., TU; = T (xUj))
and the equations for emerging rays (analogous to equation (24;), simply
designated at Ray U.: in figure 29) are calculated and stored. Thus,on the
curve representing ghe function Tq(x), TU; is the arrival-time and Ray U; is
the representation of the equation of the emerging ray at the far right-hand

point.

Beginning at P, corresponding to the far left-hand point on T (x), the
arrival-time TP; (e.g., TP} = Tp(xPl)) and the emerging ray equation Ray P;
(analogous to equation (23}) are also calculated. The points of
intersection between Ray P; and other rays, Ray U;, are calculated resulting
in the points D;, Dy, e+ D3, **+. Using the function v,(x), the travel-
time from each Dy to P; (e.g., TDjP;) and from each Dy to Uj (e.g., TD;Uj)
are calculated (analogous to equagions (26) and (25)). The expression

TR - [(TUj - TD3U3) + (TPy - TD3Py)] (32)

(analogous to equation (22)) is evaluated for each D;, If a solution exists
along Ray Py, expression (32) will change sign from negative to positive
between two calculation points shown as Dy and Dp4; in figure 29. Between
these two points, a point E;(ZE ,nEI) is found which is the interpolated
zero crossing of expression (32%. The interpolation process also yields
values used for later calculations: Q;(xQ;,yQ;) which is the point of
emergence on horizon n, of Ray Q; which intersects Ej; TQ;, the arrival-time
at Q;; and TE;Qy, the travel-time along Ray Q; between points E; and Q.
With these parameters in hand, equation (27) is used to calculate TSqu,
namely the travel-time from shotpoint Sq to the subsurface point Ej.

This process is repeated for all successive points see+ Py, Pj.q ece
along yn(x) yielding a succession of points ++++ E;(§E;{,nE;),
E1+1(5§i+1’“Ei+1) seee and transit times sesee TS Eé’ TS E-+%, seee
The E;’s define the (n+1)th horizon. Equations %2 ) ang %2 ) and equation
(31) are used to calculate the velocity along the (n+l)th layer in two
different ways.

It may be noted from the geometry of figure 29 that the parts of the
travel-time curves included within brackets are the result of extensions
obtained from complementary data. Depths cannot be calculated from these
parts using this method due to the lack of subsurface overlap.
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Depth calculations from reduced data using one-way plots
(the critical reflection method)

In the absence of overlapping reversed plots, horizon depths may be
calculated from one-way data by assuming values for the velocity V of the
(n+1)th layer. 1If non-overlapping portions of arrival-time curves recorded
in opposite directions are available, reasonably accurate estimates of V are
possible by averaging apparent velocities.

A basic assumption used in calculating one-way data is that the reduced
arrival-time curve T (x) (fig. 30) contains a point (xC, TC) which
represents a reflectgon from a point (EC,nC) on the (n+l)th horizon at the
critical angle ®C/2. The point (xC,TC) represents the intersection between
the time-distance plot of the theoretical reflection curve and the
refraction arrival-time curve extended back toward the intercept. The
subsurface point (§C,nC) on the (n+l1)th horizon at which the reflection
occurs is called the critical reflection point (not to be confused with
Nettleton’s (1940, p. 249) critical distance).

The point on the nth horizon at which the critical reflection emerges
is labeled (xC,yC). Points (xQj, TQj) on T (x) shown to the right of
(xC,TC), have a raypath which also extends gownward to (EC,nC), then
laterally with positive travel-time to (£Q;,nQ;) and then upward to
(xQ »¥Q4)+ Points (xQ ,TQJ) on T,(x), in the reverse direction, to the left

%xC TC), have a raypath which also extends downward to (§C,nC), then
laterally with negative travel-time to (£C;,nC;) and then upward to
(xQJ,yQ :)e Such rays with negative travel-time between (EC,nC) and
(EQj5 ,nQ ) do not actually occur, but are obtained geometrically by extending
arrival ~time curves toward or beyond the shotpoint. They only have
mathematical significance and can be used for estimating depths to
horizons. We will refer to ray paths having only positive segments as
"realizable", and those containing negative segments as 'non-realizable".

The point (£C,nC) on the (n+l)th horizon is calculated by
systematically searching the subsurface below the nth horizon for a point
giving a reflection at the critical angle which satisfies the arrival-time
curve Tq(x). This is illustrated by Figures 31 and 32.

Points Q;(xQq,yQ;) (fig. 31) are selected at constant intervals along
Yn(x). The equations (Ray Q;) of the emerging rays are calculated using
equation (24). At successive points W (EW MW 4 ;) along Ray Qy, this
emerging ray is rotated through twice ghe critical angle &C
{®#C/2 = arc sin {vn(EWj)/V} in the direction toward the shotpoint S_.

This rotated ray repreSents a possible downgoing (submerging) ray. Its
equation (shown as Ray U: in fig. 31) is determined from geometry. The
intersection between Ray U: with horizon yn(x) is calculated, resulting in
point UJ(xUJ,yU ) as well as the submergence angle B;. The angle B
analogous to a2k in figure 23, and hence the submerging ray can be traced to
the surface (horizon 1) by using equations (1) through (21). It intersects
the surface horizon y;(x) at the point R; (ij,yR ). The position of Rj is
compared with that of the shotpoint S and is shown in figure 31 to 1lié to
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the right of S By testing the successive points W , two points shown as
Wy and Wy may be found for which the corresponding surface points Ry and
Ry41 straddle S Interpolation then yields the coordinates of a point Dj
(EDi,nD .) for Whlch the rotated ray intersects the shotpoint S, and hence
represents a possible critical reflection point. Its travel—t%me TQ
calculated from the travel path, shown plotted as coordinate (le,TQi) on
the graph of figure 31, If this point falls on the function T_(x), then
Di(EDi,nDi) must be the critical reflection point on the (n+l1)th horizon.

It may be seen from figure 32 that for the points of Q; nearer the
shotpoint Sq, TQs will be less than the actual arrival-time TQ;
(e.g., TQ; Ty >0) For Q; more distant from the shotpoint, the curve
defined by the (xQq,TQq) eventually intersects T (x) and the critical
reflection point C%EC,nC) on the (n+l)th horizon corresponds to the
intersection of these two curves. This point of intersection is determined
by incrementing Q; until the point Q4; (fig. 32) is found for which
(TQk+l = TQr+1 2 0). The critical reflection point C then falls between Dy
and Dy, and is found by interpolation between these two points. The
critical arrival-time TC and the point of emergence QC(xQC,yQC) on the nth
horizon are similarly found by interpolation.

The submerging ray from S,, which is critically refracted into the
(n+1)th layer also intersects this horizon at the critical reflection point
c(¢C,nC). The travel-time TS,C from S, to C is important for subsequent
depth computations, obtained by making use of the remainder of the arrival-
time curve T, (x). The value of TSqC is obtained by subtracting the travel-
time between C and QC from TC, or

9 2 1/2
{(&C - xQC)~ - (nC - yQC)~} (33)
vC

where vC is a representative velocity for the nth layer between the points C
and QC, which were derived from vn(x).

TS C =TC -
q

Once the critical parameters C(£C,nC) and TS_,C have been determined,
other points on the (n+l1)th horizon satisfying the arrival-time curve T,(x)
can be computed. This is illustrated in figure 33. It shows a realizable
raypath the right of C, critically refracted at D;(£D4,nD;) and emerging at
Qi(in,yQi)on the nth horizon with arrival-time TQi. Also shown is a non-
realizable raypath with negative travel—-time to the left of C, critically
refracted at D:(£D;,nD;) and emerging at Q (xQ; » Q3 :) with arrival-time
TQ:« These latter points arise from hav1ng exgended the arrival-time curve
to the time intercept or beyond (e.g., in the direction of the shotpoint
from the point of emergence QC of the critically reflected ray).

The raypath, within reasonable tolerance, between the critical

reflection point C(£C,nC) and a point Qi(in,YQi) on the nth horizon can be
thought of as consisting of two segments, one from C to D; on the (n+l)th
horizon and the other from Dy to Q;. The total travel-time along these
segments is given by (TQ; - TSqC).
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Thus one can write,

1/2 ) 1/2
{(xq - 807 + (yq, - nD)%} (¢ - gp)% + (n¢ - np)%

+
vD, A
i

= TQ; - TSqC (34)

where vD; is a representative velocity between Dy and Q; obtained from
v, (x). The expression for the emerging ray at Q; is given by

yQi - nDi
xQ; - &D;

= tan (%-- AQi) (35)

where AQ; is obtained by applying equations (1) through (10). Equations
(34) and (35) can be solved simultaneously for D; (§Dy, nDj). The set of Dy
then define the (n+l1)th horizon on the positive side of the critical
reflection point.

On the side of C nearer the shotpoint, the travel-time between C and D,

is negative and hence the plus sign on the left side of the equation (34) ]
must be replaced by a minus sign. Hence the equations to be solved to
obtain the points Dj(EDj,nDj) are
2 2, /2 2 2, , /2
- D, + P, - nD - &D + nG - nD
{(xq, - &D)) (v, By g - e (ng ) }
vD v
j .
= TQj - TS4C (36)
"9y - Dy m
w= tan (5 - AQJ.) (37)

It can be shown that the calculation of the critical reflection
point C, using the critical reflection method is fairly insensative to
errors in the value of V used for the velocity of the (n+l1)th layer.
However, large errors in the calculation of the D; and D; through the use of
equations (34) through (37) may result from an incorrect choice of V, and
hence these equations must be used with caution.

In most cases when reversed data are available and the reciprocal
method is used for interpretation, the critical reflection method can also
be used. Because the two methods employ unrelated algorithms, their
combined use my serve as a quick check of results.
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Arrival-time calculations from a velocity model

A scheme to calculate arrival-times from a particular computed velocity
model is discussed in this section.

The method is described with the aid of figure 34, for which an
arrival-time curve from the mth horizon with shotpoint at Sq(xS ,ysq) is to
be calculated. A systematic search is first made for that parthular ray
which, when traced into the subsurface from the shotpoint, intersects the
mth horizon at the critical angle, thus defining the critical point
C(EC,nC) and its travel-time TS ,C. Points E;(xE;,yE;) are then selected at
constant interva<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>