<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inch (in.)</td>
<td>2.54</td>
<td>centimeter (cm)</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter (m)</td>
</tr>
</tbody>
</table>
Records of Selected Wells and Lithologic Logs of Test Holes, Hendry County and Adjacent Areas, Florida

By John E. Fish, Carmen R. Causaras, and T. H. O'Donnell

Abstract

To provide water-resource information for Hendry County, Florida, geologic test holes were drilled in the surficial aquifer, and an extensive inventory was compiled of wells in the surficial aquifer and deep artesian aquifers. This report provides: (1) records for 788 selected wells and test holes including location, construction, water use, water level, chloride concentration, specific conductance, temperature, yield, hydrogen sulfide, and iron-staining problems; and (2) lithologic logs for 26 test holes ranging in depth from 90 to 650 feet. A few inventoried wells and two test holes are in adjacent parts of Collier or Glades Counties.

Introduction

During the past decade, Hendry County, Florida, has experienced a rapid growth in population and an increase in agricultural production. These have caused concern over the effects of present water use on the water resource and the adequacy of the supply to meet anticipated demands. As a result, the U.S. Geological Survey, in cooperation with Hendry County and the South Florida Water Management District, began an investigation in 1975 to provide information needed for the development and management of the water resource.

This report presents new and historic well-construction, water-level, and water-use data, and partial water-quality analyses obtained from an inventory of 788 wells and test holes in the surficial aquifer or deep artesian aquifers, and gives lithologic logs for 26 test holes drilled primarily in the surficial aquifer. Included also are data for a few inventoried wells and two test holes in adjacent areas of Collier County or Glades County.

Records of Wells and Test Holes

Records of 788 wells and test holes selected from a recent inventory and from an earlier inventory by Klein and others (1964) are listed in table 1; locations are shown in figures 1-4. Information includes well identification and location, well construction, data on water levels and partial water analyses, water use or
well use, and remarks. Some information from the earlier inventory, namely the owner and present condition or use of the well, may have changed. Well and casing depths generally are those reported by the owners, although measurements were made for some wells. Supplementary information in the remarks column includes observations of hydrogen sulfide (H_2S), iron (Fe) staining problems, yield of the well, and other information about the well or water.

Each well is identified by a local number, HE-501 for example, composed of a one or two-letter abbreviation of the county and a sequence number in the order that the well was inventoried. The abbreviations for Hendry, Glades, and Collier Counties are "He", "Gl", and "C", respectively.

LITHOLOGIC LOGS

Lithologic logs describing geologic samples (well cuttings) recovered from recent test drilling in Hendry County and adjacent parts of Collier and Glades Counties are given in table 2. Twenty-five of the test wells ranged in depth from 90 to 465 feet; the additional log is for the upper 650 feet of a deep oil test well (He-519). Locations are shown in figure 5.

The geologic samples were examined under a binocular microscope to assist identifying and describing the material. Dilute hydrochloric acid was applied to part of the samples to estimate the relative proportions of carbonate and noncarbonate minerals. The names given samples composed predominantly of noncarbonate minerals follow standard grain size terminology (such as sand, silt, clay). The primary name given samples composed predominantly of calcite is limestone; in addition, a more detailed name is given, based on a classification by Folk (1962). Other information includes secondary constituents, color indicated by chart number in parenthesis based on the Rock Color Chart by Goddard and others (1948), and consolidation of the sample. Additional lithologic logs for Hendry County are given in Klein and others (1964).

REFERENCES

Figure 1.—Location of invention in Hendry County and...
toried wells and test holes, adjacent areas.
Figure 3.—Inset B from figure 1.
Figure 4.—Inset C from figure 1.
Figure 5.—Location of test holes in Hendry County and adjacent areas.
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Water level (feet)</th>
<th>Casing (above below)</th>
<th>Water quality</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-1</td>
<td>1</td>
<td>43</td>
<td>28</td>
<td>Collier Corp.</td>
<td>600</td>
<td>3</td>
<td>+22.0</td>
<td>02/21/34</td>
<td>25.0</td>
<td>02/21/34</td>
<td>Ir</td>
</tr>
<tr>
<td>He-2</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Lowery</td>
<td>650</td>
<td>6</td>
<td>+34.0</td>
<td>02/02/34</td>
<td>490</td>
<td>04/30/53</td>
<td>D</td>
</tr>
<tr>
<td>He-3</td>
<td>12</td>
<td>48</td>
<td>33</td>
<td>U.S. Geological Survey</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>100</td>
<td>100</td>
<td>10/14/58</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>04/13/78</td>
</tr>
<tr>
<td>He-4</td>
<td>20</td>
<td>43</td>
<td>33</td>
<td>Defense Plant Corp.</td>
<td>112</td>
<td>12</td>
<td>107</td>
<td>78</td>
<td>26.0</td>
<td>04/23/43</td>
<td>Ir</td>
</tr>
<tr>
<td>He-5</td>
<td>22</td>
<td>44</td>
<td>32</td>
<td>U.S. Geological Survey</td>
<td>6</td>
<td>1.25</td>
<td>4</td>
<td>23</td>
<td>336</td>
<td>12/10/53</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>02/22/78</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-6</td>
<td>8</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>110</td>
<td>4</td>
<td></td>
<td></td>
<td>24.0</td>
<td>P</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-7</td>
<td>36</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>70</td>
<td>2</td>
<td>70</td>
<td></td>
<td>23.0</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-8</td>
<td>9</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>119</td>
<td>6</td>
<td>115</td>
<td>84</td>
<td>04/07/53</td>
<td>D</td>
<td>04/07/53</td>
</tr>
<tr>
<td>He-9</td>
<td>20</td>
<td>43</td>
<td>33</td>
<td>Defense Plant Corp.</td>
<td>1,039</td>
<td>6</td>
<td>949</td>
<td></td>
<td>1,430</td>
<td>01/05/43</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>1,480</td>
<td>03/26/52</td>
</tr>
</tbody>
</table>

[Water quality: chloride concentration in milligrams per liter; specific conductance in micromhos per centimeter at 25°C; temperature in °C]

[Water or well use: D, domestic; In, industrial; Ir, irrigation; N, none; O, observation; P, public supply; S, stock; T, test hole]

[Remarks: Fe, iron in water; H₂S, hydrogen sulfide odor; gal/min, yield of well in gallons per minute with available pump; flows, gal/min, indicates flowing artesian well with yield]
<table>
<thead>
<tr>
<th>Local Well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Casing (feet)</th>
<th>Diameter (inches)</th>
<th>Depth (feet)</th>
<th>Above or below land surface</th>
<th>Date of measurement</th>
<th>Water quality</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-10</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>88</td>
<td>2</td>
<td>83</td>
<td>29</td>
<td>09/23/41</td>
<td>25.0</td>
<td>04/10/53</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-11</td>
<td>23</td>
<td>43</td>
<td>34</td>
<td>55</td>
<td>1.50</td>
<td>64</td>
<td>43</td>
<td>04/10/53</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-12</td>
<td>17</td>
<td>43</td>
<td>34</td>
<td>105</td>
<td>3</td>
<td>100</td>
<td>43</td>
<td>04/20/33</td>
<td>S</td>
<td>09/24/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-13</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>34</td>
<td>2</td>
<td></td>
<td>24</td>
<td>02/02/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-14</td>
<td>20</td>
<td>43</td>
<td>33</td>
<td>315</td>
<td>10</td>
<td>305</td>
<td>280</td>
<td>04/24/43</td>
<td>P</td>
<td>24.0</td>
<td></td>
<td>90 gal/min</td>
</tr>
<tr>
<td>He-15</td>
<td>13</td>
<td>43</td>
<td>32</td>
<td>130</td>
<td>2</td>
<td></td>
<td>28</td>
<td>05/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-16</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>114</td>
<td>6</td>
<td>105</td>
<td>25</td>
<td>09/25/41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-17</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>601</td>
<td>6</td>
<td></td>
<td>280</td>
<td>03/22/48</td>
<td></td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-18</td>
<td>21</td>
<td>43</td>
<td>34</td>
<td>110</td>
<td>6</td>
<td>110</td>
<td>28</td>
<td>01/30/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-19</td>
<td>12</td>
<td>48</td>
<td>33</td>
<td>80</td>
<td>2</td>
<td></td>
<td>101</td>
<td>06/16/42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-20</td>
<td>34</td>
<td>43</td>
<td>32</td>
<td>50</td>
<td>4</td>
<td>48</td>
<td>838</td>
<td>06/16/42</td>
<td>T</td>
<td></td>
<td></td>
<td>Collapsed</td>
</tr>
<tr>
<td>He-21</td>
<td>22</td>
<td>45</td>
<td>32</td>
<td>46</td>
<td>4</td>
<td>26</td>
<td>823</td>
<td>06/17/42</td>
<td>T</td>
<td></td>
<td></td>
<td>Collapsed</td>
</tr>
<tr>
<td>He-44</td>
<td>9</td>
<td>47</td>
<td>32</td>
<td>750</td>
<td>6</td>
<td>356</td>
<td>+36.5</td>
<td>05/13/58</td>
<td>S</td>
<td></td>
<td></td>
<td>Flows, 485 gal/min</td>
</tr>
</tbody>
</table>

Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued
Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas--Continued

<table>
<thead>
<tr>
<th>Local number</th>
<th>Section</th>
<th>Township (East)</th>
<th>Range (South)</th>
<th>Date drilled</th>
<th>Date completed</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-46</td>
<td>22</td>
<td>43</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-47</td>
<td>5</td>
<td>47</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-48</td>
<td>6</td>
<td>47</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-49</td>
<td>6</td>
<td>47</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-50</td>
<td>33</td>
<td>45</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-51</td>
<td>27</td>
<td>45</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-52</td>
<td>35</td>
<td>45</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-53</td>
<td>22</td>
<td>45</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-54</td>
<td>16</td>
<td>44</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-55</td>
<td>15</td>
<td>44</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-56</td>
<td>5</td>
<td>45</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Earl Hendry Cattle Co.

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,465</td>
<td>6</td>
<td>10/15/52</td>
<td>930</td>
<td>3,840</td>
<td>10/15/52 S</td>
<td>10/15/52 S</td>
<td>22.0</td>
<td></td>
</tr>
</tbody>
</table>

W. H. Willis

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>6</td>
<td>08/13/52</td>
<td>95</td>
<td></td>
<td>08/13/52 Ir</td>
<td>08/13/52 Ir</td>
<td></td>
</tr>
</tbody>
</table>

R. Miller

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>6</td>
<td>08/13/52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W. H. Willis

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>6</td>
<td>08/13/52</td>
<td></td>
<td></td>
<td>08/13/52 Ir</td>
<td>08/13/52 Ir</td>
<td></td>
</tr>
</tbody>
</table>

H. Taylor

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>2</td>
<td>08/13/52</td>
<td></td>
<td></td>
<td>08/13/52 D</td>
<td>330 gal/min</td>
<td></td>
</tr>
</tbody>
</table>

N. Weathersbee

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>08/12/56</td>
<td>1,050</td>
<td>28.0</td>
<td>08/13/52 N</td>
<td>Flows, 20 gal/min</td>
<td>H2S</td>
</tr>
</tbody>
</table>

R. Townsend

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>1.50</td>
<td>08/13/52</td>
<td>24</td>
<td></td>
<td>08/13/52 D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W. S. Shoulty

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>1.50</td>
<td>08/13/52</td>
<td></td>
<td></td>
<td>08/13/52 D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R. Dana

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,300</td>
<td>6</td>
<td>08/14/52</td>
<td>1,390</td>
<td></td>
<td>08/14/52 S</td>
<td>Flows, 95 gal/min</td>
<td>H2S</td>
</tr>
</tbody>
</table>

R. Dana

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>2</td>
<td>08/14/52</td>
<td>300</td>
<td></td>
<td>08/14/52 D</td>
<td>H2S; in 1975 owner reports many irrigation wells 115-150 feet deep</td>
<td></td>
</tr>
</tbody>
</table>

H. B. Townsend

<table>
<thead>
<tr>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of completion</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens/cm)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.50</td>
<td>08/13/52</td>
<td></td>
<td></td>
<td>08/14/52 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Twp.</td>
<td>Range (East)</td>
<td>Owner of tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter of well (inches)</td>
<td>Casing</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>He-57</td>
<td>6</td>
<td>45</td>
<td>29</td>
<td>H. S. Townsend</td>
<td>35</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-58</td>
<td>8</td>
<td>45</td>
<td>29</td>
<td>W. A. Townsend</td>
<td>55</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>He-59</td>
<td>8</td>
<td>45</td>
<td>29</td>
<td>H. B. Townsend</td>
<td>42</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>He-60</td>
<td>17</td>
<td>45</td>
<td>29</td>
<td>M. N. Taylor</td>
<td>995</td>
<td>+19.1</td>
<td>+19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-61</td>
<td>21</td>
<td>45</td>
<td>29</td>
<td>L. A. Willis</td>
<td>90</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-62</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>N. Collins</td>
<td>123</td>
<td>1.25</td>
<td>95</td>
</tr>
<tr>
<td>He-63</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>N. Townsend</td>
<td>580</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-64</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>A. Womble</td>
<td>30</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>He-65</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>C. A. Green</td>
<td>72</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>He-66</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>L. B. Tillet</td>
<td>115</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-67</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>W. A. Gerstman</td>
<td>90</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local Number</th>
<th>Section</th>
<th>Township & Range</th>
<th>Owner or Tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Depth (feet) above or below land surface</th>
<th>Date of measurement</th>
<th>Chloride concentration</th>
<th>Date of measurement</th>
<th>Specific conductance</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-68</td>
<td>32 42 29</td>
<td></td>
<td>W. Hampton</td>
<td>75</td>
<td>1.25</td>
<td>61</td>
<td>24.0</td>
<td>12/03/52</td>
<td>26</td>
<td>09/01/59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-69</td>
<td>32 42 29</td>
<td></td>
<td>J. Deese</td>
<td>25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-71</td>
<td>4 43 28</td>
<td></td>
<td>C. Lickton</td>
<td>300</td>
<td>6</td>
<td>+ 6.3</td>
<td>05/28/58</td>
<td>122</td>
<td>230</td>
<td>12/03/52</td>
<td>24.0</td>
<td>05/28/58</td>
<td>H₂S, flows, 30 gal/min</td>
</tr>
<tr>
<td>He-72</td>
<td>4 43 28</td>
<td></td>
<td>C. Lickton</td>
<td>715</td>
<td>6</td>
<td>+15.5</td>
<td>05/28/58</td>
<td>730</td>
<td>280</td>
<td>12/02/52</td>
<td>25.0</td>
<td>05/28/58</td>
<td>20 gal/min</td>
</tr>
<tr>
<td>He-73</td>
<td>4 43 28</td>
<td></td>
<td>C. Lickton</td>
<td>700</td>
<td>6</td>
<td>+ 2.7</td>
<td>05/28/58</td>
<td>600</td>
<td>280</td>
<td>05/28/58</td>
<td>27.0</td>
<td>05/28/58</td>
<td>Flows</td>
</tr>
<tr>
<td>He-74</td>
<td>4 43 28</td>
<td></td>
<td>C. Lickton</td>
<td>820</td>
<td>6</td>
<td>+ 2.5</td>
<td>05/28/58</td>
<td>540</td>
<td>280</td>
<td>12/02/52</td>
<td>29.0</td>
<td>05/28/58</td>
<td>Destroyed</td>
</tr>
<tr>
<td>He-75</td>
<td>20 43 28</td>
<td></td>
<td>A. Dyess</td>
<td>125</td>
<td>1.50</td>
<td></td>
<td>12/03/58</td>
<td>440</td>
<td>12/02/75</td>
<td>Flows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-76</td>
<td>16 43 28</td>
<td></td>
<td>F. Nicols</td>
<td>4</td>
<td>+ 5.0</td>
<td>05/28/58</td>
<td>600</td>
<td>24.0</td>
<td>05/28/58</td>
<td>Flows, H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-77</td>
<td>16 43 28</td>
<td></td>
<td>B. Wolf</td>
<td>10</td>
<td>+ 6.1</td>
<td>12/03/52</td>
<td>910</td>
<td>29.0</td>
<td>12/03/52</td>
<td>Flows, 100 gal/min, H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-78</td>
<td>8 43 28</td>
<td></td>
<td>T. Watson</td>
<td>28</td>
<td>1.50</td>
<td></td>
<td>250</td>
<td>21.0</td>
<td>12/03/52</td>
<td>D</td>
<td>05/28/58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (south)</td>
<td>Range (east)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Inside or below land surface</td>
<td>Date of measurement</td>
<td>Chloride concentration (ppm)</td>
<td>Specific conductance (microsiemens per centimeter)</td>
<td>Temperature (°F)</td>
<td>Date of measurement</td>
<td>Water use</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>He-79</td>
<td>9</td>
<td>43</td>
<td>28</td>
<td>La Belle Dairy</td>
<td>85</td>
<td>1.50</td>
<td>193</td>
<td>12/03/52</td>
<td>D</td>
<td>12/02/75</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-80</td>
<td>3</td>
<td>43</td>
<td>28</td>
<td>Denaud Cemetery</td>
<td>250</td>
<td>2</td>
<td>+ 0.5</td>
<td>05/27/58</td>
<td>96</td>
<td>24.0</td>
<td>12/03/52</td>
<td>Ir</td>
<td>05/27/58</td>
</tr>
<tr>
<td>He-81</td>
<td>10</td>
<td>43</td>
<td>28</td>
<td>Denaud Cemetery</td>
<td>750</td>
<td>6</td>
<td>540 + 3.1</td>
<td>08/09/56</td>
<td>1,060</td>
<td>1,160</td>
<td>12/03/52</td>
<td>N</td>
<td>08/09/56</td>
</tr>
<tr>
<td>He-82</td>
<td>3</td>
<td>43</td>
<td>28</td>
<td>Denaud Cemetery</td>
<td>16</td>
<td>2</td>
<td>+ 7.5</td>
<td>12/03/52</td>
<td>1,050</td>
<td>1,100</td>
<td>12/03/52</td>
<td>Ir</td>
<td>04/13/77</td>
</tr>
<tr>
<td>He-83</td>
<td>10</td>
<td>43</td>
<td>28</td>
<td>E. C. Mills</td>
<td>6</td>
<td>+24.0</td>
<td>05/27/58</td>
<td>1,020</td>
<td>1,100</td>
<td>1,140</td>
<td>12/03/52</td>
<td>Ir</td>
<td>04/13/77</td>
</tr>
<tr>
<td>He-84</td>
<td>16</td>
<td>43</td>
<td>28</td>
<td>F. Nicols</td>
<td>6</td>
<td>+ 7.5</td>
<td>12/02/52</td>
<td>1,020</td>
<td>1,100</td>
<td>1,140</td>
<td>12/02/52</td>
<td>N</td>
<td>05/01/53</td>
</tr>
<tr>
<td>He-85</td>
<td>1</td>
<td>43</td>
<td>28</td>
<td>H. Parkerson</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1,060</td>
<td>12/03/52</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-86</td>
<td>1</td>
<td>43</td>
<td>28</td>
<td>D. C. Townsend</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td>12/03/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-87</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>E. A. Brungard</td>
<td>90</td>
<td>2</td>
<td></td>
<td></td>
<td>470</td>
<td>12/15/52</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-88</td>
<td>6</td>
<td>43</td>
<td>29</td>
<td>J. Matuciak</td>
<td>700</td>
<td>6</td>
<td></td>
<td></td>
<td>490</td>
<td>2,340</td>
<td>D</td>
<td></td>
<td>04/12/77</td>
</tr>
</tbody>
</table>
Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas--Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range East</th>
<th>Depth (feet)</th>
<th>Diameter (feet)</th>
<th>Water level (feet)</th>
<th>Date of measurement</th>
<th>Chloride concentration</th>
<th>Specific conductance</th>
<th>Total dissolved solids</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-89</td>
<td>27</td>
<td>43</td>
<td>28</td>
<td>1,536</td>
<td>6</td>
<td>+34.9</td>
<td>12/04/52</td>
<td>1,270</td>
<td>29.0</td>
<td>12/04/52</td>
<td>S</td>
<td>1,270</td>
<td>4,590</td>
<td>Flows, H₂S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+35.1</td>
<td>05/27/58</td>
<td>1,390</td>
<td>30.0</td>
<td>05/27/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-90</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>30</td>
<td>1.25</td>
<td></td>
<td>117</td>
<td>26.0</td>
<td>12/03/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>09/01/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-91</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>85</td>
<td>2</td>
<td></td>
<td>45</td>
<td>640</td>
<td>04/12/77</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-92</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>390</td>
<td>3</td>
<td>310 +18.6</td>
<td>12/03/52</td>
<td>91</td>
<td>26.0</td>
<td>12/03/52</td>
<td>D,S</td>
<td>120</td>
<td>1,080</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-93</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>65</td>
<td>1.25</td>
<td></td>
<td>200</td>
<td>09/01/59</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-94</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>65</td>
<td>1.25</td>
<td></td>
<td>65</td>
<td>09/01/59</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-95</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>22</td>
<td>1.25</td>
<td></td>
<td>58</td>
<td>09/01/59</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-96</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>45</td>
<td>1.25</td>
<td>45</td>
<td>27</td>
<td>12/03/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-97</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>69</td>
<td>1.25</td>
<td>55</td>
<td>43</td>
<td>24.0</td>
<td>12/03/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-100</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>82</td>
<td>2</td>
<td></td>
<td>280</td>
<td>12/03/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>280</td>
<td>09/03/59</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>290</td>
<td>1,620</td>
<td>04/12/77</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-103</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>117</td>
<td>2</td>
<td>70</td>
<td>210</td>
<td>26.0</td>
<td>12/03/52</td>
<td>D,S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flows, H₂S
Local well number	Section	Township	Range (east)	Owner or tenant	Depth of well (feet)	Diameter (inches)	Date of measurement																						
He-104	32	42	29	G. Mims	80	2																							
He-105	32	42	29	B. Cross	95	1.25																							
He-106	32	42	29	J. D. McLeod	664	6	+31.5	12/03/52																					
He-107	32	42	29	W. Hampton	800	4	+32.1	12/04/52																					
He-108	32	42	29	S. J. Ridgdill	208	2																							
He-110	27	43	28	M. H. Ranch	800	6	+29.2	12/04/52																					
He-111	28	43	28	H. H. Ranch	122	1.50																							
He-112	30	43	28	C. A. Murphy	45	1.50	+ 7.5	05/27/58																					
He-113	30	43	28	C. A. Murphy	750	10	+37.5	05/27/58																					
He-114	29	43	28	R. Royer	60	1.50																							

Water quality:
- D:
- S:
- Ir:
- Flows, 360 gal/min, H₂S
- Flows, 20 gal/min, H₂S
- Flowed, 560 gal/min; plugged in 1963 along with other deep wells

Water quality:
- H₂S
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local Well Number</th>
<th>Section</th>
<th>Township (North)</th>
<th>Range (East)</th>
<th>Owner or Tenant</th>
<th>Depth of Well (feet)</th>
<th>Diameter (inches)</th>
<th>Depth of Casing (feet)</th>
<th>Water level</th>
<th>Water quality</th>
<th>Date of measurement</th>
<th>Date of measurement</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-115</td>
<td>28</td>
<td>43</td>
<td>28</td>
<td>E. A. Brungard</td>
<td>800</td>
<td>5</td>
<td>+38.8 05/27/58</td>
<td>960</td>
<td>1,120</td>
<td>05/27/58</td>
<td>12/04/52</td>
<td>Ir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,450 27.5 03/17/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-116</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>G. Jeffords</td>
<td>700</td>
<td>6</td>
<td>+29.8 05/27/58</td>
<td>1,320</td>
<td>4,600</td>
<td>05/27/58</td>
<td>12/04/52</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,350 30.0 03/07/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,300 29.5 03/07/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,300 29.5 03/17/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-117</td>
<td>23</td>
<td>43</td>
<td>28</td>
<td>H. E. Murray</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td>66</td>
<td>26.0</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td>Ir</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-118</td>
<td>18</td>
<td>43</td>
<td>29</td>
<td>R. Messer</td>
<td>133</td>
<td>1.50</td>
<td>280</td>
<td>240</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td>S</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-119</td>
<td>10</td>
<td>43</td>
<td>28</td>
<td>C. Summerall</td>
<td>137</td>
<td>1.50</td>
<td>250</td>
<td>240</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td>D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-120</td>
<td>15</td>
<td>43</td>
<td>28</td>
<td>B. Poor</td>
<td>26</td>
<td>1.50</td>
<td>19</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>He-121</td>
<td>1</td>
<td>45</td>
<td>29</td>
<td>Atlantic Coastline Railroad</td>
<td>700</td>
<td>6</td>
<td>+26.5 05/14/58</td>
<td>1,090</td>
<td>27.0 05/14/58</td>
<td>12/04/52</td>
<td>12/04/52</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-122</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>J. Maddox</td>
<td>28</td>
<td>8</td>
<td></td>
<td>210</td>
<td>08/14/52</td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-123</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>La Belle School</td>
<td>900</td>
<td>6</td>
<td></td>
<td>97</td>
<td>19.0 12/05/52</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-124</td>
<td>26</td>
<td>45</td>
<td>29</td>
<td>C. Polk</td>
<td>50</td>
<td>3</td>
<td></td>
<td>210</td>
<td>08/14/52</td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-125</td>
<td>7</td>
<td>43</td>
<td>29</td>
<td>T. Crawford</td>
<td>23</td>
<td>1.50</td>
<td></td>
<td>97</td>
<td>19.0 12/05/52</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Flows, 400 gal/min
- Flows, 300 gal/min
- Flows, 500 gal/min, green-colored water
- Flows, H₂S
- Flows, 75 gal/min, H₂S
- 400 gal/min; possibly plugged or buried
<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Range</th>
<th>Township</th>
<th>Owner or tenant</th>
<th>Depth of Well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of measurement</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-126 18 43 29</td>
<td>J. C. McBeath</td>
<td>112</td>
<td>1.50</td>
<td>220</td>
<td>12/05/52</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-127 14 43 29</td>
<td>C. Murray</td>
<td>46</td>
<td>1.50</td>
<td>87</td>
<td>12/05/52</td>
<td>D,S</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-128 14 43 29</td>
<td>C. Murray</td>
<td>76</td>
<td>1.25</td>
<td>520</td>
<td>12/05/52</td>
<td>S</td>
<td>Flows, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-131 5 43 29 A. L. Taylor</td>
<td>100</td>
<td>1.25</td>
<td>490</td>
<td>12/15/52</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-132 5 43 29 La Belle Sugar Co.</td>
<td>2</td>
<td>25.0</td>
<td>In</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-133 5 43 29 La Belle Sugar Co.</td>
<td>2</td>
<td>25.0</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-134 5 43 29 M. Wahatley</td>
<td>100</td>
<td>1.25</td>
<td>115</td>
<td>12/15/52</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-135 5 43 29 La Belle School</td>
<td>100</td>
<td>1.50</td>
<td>400</td>
<td>12/16/52</td>
<td>In</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-136 5 43 29 La Belle High School</td>
<td>100</td>
<td>2</td>
<td>400</td>
<td>12/16/52</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-137 5 43 29 La Belle Grade School</td>
<td>82</td>
<td>1.25</td>
<td>440</td>
<td>12/16/52</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-138 5 43 29 Felton</td>
<td>90</td>
<td>1.25</td>
<td>390</td>
<td>470</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-139 5 43 29 W. P. Andrews</td>
<td>85</td>
<td>1.25</td>
<td>330</td>
<td>12/16/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-140 5 43 29 K. Thompson</td>
<td>1.50</td>
<td>490</td>
<td>2,270</td>
<td>12/16/52</td>
<td>Ir</td>
<td>Flows, 40 gal/min, H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-141 5 43 29 J. R. Spratt</td>
<td>68</td>
<td>1.25</td>
<td>450</td>
<td>12/16/52</td>
<td>D, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of measurement</th>
<th>Date of measurement</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-142</td>
<td>5 43</td>
<td>29</td>
<td></td>
<td>R. N. Miller</td>
<td>74</td>
<td>2</td>
<td>370</td>
<td>12/16/52</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-143</td>
<td>5 43</td>
<td>29</td>
<td></td>
<td>P. O'Bannon</td>
<td>1.25</td>
<td></td>
<td>250</td>
<td>12/16/52</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-145</td>
<td>9 43</td>
<td>29</td>
<td>Hendry County</td>
<td>80 2</td>
<td></td>
<td>119</td>
<td>24.0</td>
<td>12/16/52</td>
<td>P</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-146</td>
<td>9 43</td>
<td>29</td>
<td>Hendry County</td>
<td>80 2</td>
<td></td>
<td>102</td>
<td></td>
<td>12/16/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-147</td>
<td>4 43</td>
<td>29</td>
<td>L. E. O'Neil</td>
<td>2</td>
<td></td>
<td>21</td>
<td></td>
<td>12/16/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-148</td>
<td>4 43</td>
<td>29</td>
<td>C. J. Easterly</td>
<td>75 1.25</td>
<td></td>
<td>65</td>
<td></td>
<td>12/16/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-149</td>
<td>4 43</td>
<td>29</td>
<td>J. B. Hendry</td>
<td>80 1.25</td>
<td></td>
<td>117</td>
<td></td>
<td>12/16/52</td>
<td>Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-150</td>
<td>4 43</td>
<td>29</td>
<td>J. B. Hendry</td>
<td>30 1</td>
<td></td>
<td>24</td>
<td></td>
<td>12/16/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-151</td>
<td>4 43</td>
<td>29</td>
<td>O. L. Langford</td>
<td>28 1.25</td>
<td></td>
<td>86</td>
<td></td>
<td>12/16/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-152</td>
<td>5 43</td>
<td>29</td>
<td>W. P. Andrews</td>
<td>22 2</td>
<td></td>
<td>112</td>
<td></td>
<td>12/16/52</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-153</td>
<td>4 43</td>
<td>29</td>
<td>B. Curtis</td>
<td>168 2</td>
<td></td>
<td>152</td>
<td>21.0</td>
<td>12/17/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-154</td>
<td>4 43</td>
<td>29</td>
<td>J. O. Davidson</td>
<td>18 1.25</td>
<td></td>
<td>470 2,230</td>
<td>04/30/53</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-155</td>
<td>4 43</td>
<td>29</td>
<td>Powell Furniture Co.</td>
<td>80 2</td>
<td></td>
<td>470</td>
<td></td>
<td>12/17/52</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-156</td>
<td>4 43</td>
<td>29</td>
<td>L. M. Jennings</td>
<td>90 1.25</td>
<td></td>
<td>460</td>
<td></td>
<td>12/17/52</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range</td>
<td>Date of measurement</td>
<td>Water type</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-157</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>In</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-158</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>N</td>
<td>640</td>
<td>26.0</td>
<td>12/17/52 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-159</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>105</td>
<td>21.0</td>
<td>12/17/52 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-160</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>29</td>
<td>29</td>
<td>04/14/75 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-161</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>36</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-162</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>41</td>
<td>25</td>
<td>12/17/52 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-163</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>35</td>
<td>24</td>
<td>11/24/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-164</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-165</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-166</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-167</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>P</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-168</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-169</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-170</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-171</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>12/17/52</td>
<td>D</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of measurement</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conduct. (μSiemens cm⁻¹)</th>
<th>Temperature</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-172</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. A. Cockrane</td>
<td>145</td>
<td>1.25</td>
<td>240</td>
<td>24.0</td>
<td>12/18/52</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-173</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. A. Cockrane</td>
<td>28</td>
<td>1.25</td>
<td>1,390</td>
<td>12/18/52</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-174</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>M. B. Rasmussen</td>
<td>110</td>
<td>1.25</td>
<td>76</td>
<td>12/18/52</td>
<td>N</td>
<td></td>
<td></td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-175</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Waldron Hotel</td>
<td>140</td>
<td>2</td>
<td>109</td>
<td>12/18/52</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-176</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>135</td>
<td>3</td>
<td>188</td>
<td>12/18/52</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-177</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Waldron Hotel</td>
<td>3</td>
<td>+30.4</td>
<td>530</td>
<td>12/18/52</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-178</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Davis Trading Post</td>
<td>22</td>
<td>1.50</td>
<td>113</td>
<td>12/18/52</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-179</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Davis Trading Post</td>
<td>108</td>
<td>1.25</td>
<td>113</td>
<td>12/18/52</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-180</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>F. O'Bannon</td>
<td>18</td>
<td>1.25</td>
<td>24</td>
<td>12/18/52</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-181</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>L. Thomas</td>
<td>20</td>
<td>1.25</td>
<td>13</td>
<td>24.0</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-182</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Maddox Brothers Dairy</td>
<td>92</td>
<td>1.50</td>
<td>144</td>
<td>12/18/52</td>
<td>S</td>
<td></td>
<td></td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>He-183</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>G. R. Risley</td>
<td>20</td>
<td>1.25</td>
<td>250</td>
<td>12/18/52</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td>Chloride concentration</td>
<td>Specific conductance</td>
<td>Temperature</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>He-184</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>C. Moore</td>
<td>60</td>
<td>1.25</td>
<td></td>
<td>110</td>
<td>H₂S</td>
<td>12/18/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-185</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>H. L. Johnson</td>
<td>180</td>
<td>1.25</td>
<td></td>
<td>117</td>
<td>H₂S</td>
<td>12/18/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-186</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>W. A. Horn</td>
<td>99</td>
<td>1.25</td>
<td></td>
<td>42</td>
<td>H₂S</td>
<td>12/18/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-187</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>F. Dougherty</td>
<td>78</td>
<td>2</td>
<td></td>
<td>23</td>
<td>H₂S</td>
<td>12/18/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-188</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>R. F. Lewis</td>
<td>100</td>
<td>1.25</td>
<td></td>
<td>101</td>
<td>H₂S</td>
<td>12/19/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-189</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>E. Yoemans</td>
<td>40</td>
<td>1.25</td>
<td></td>
<td>28</td>
<td>Fe</td>
<td>12/19/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-190</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>R. L. Yoemans</td>
<td>60</td>
<td>2</td>
<td></td>
<td>29</td>
<td></td>
<td>12/19/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-191</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>R. L. Yoemans</td>
<td>110</td>
<td>1.25</td>
<td>-2.43</td>
<td>12/19/52</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-192</td>
<td>24</td>
<td>44</td>
<td>29</td>
<td>M. Flipsa</td>
<td>29</td>
<td>6</td>
<td>-2.69</td>
<td>12/19/52</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-193</td>
<td>32</td>
<td>44</td>
<td>29</td>
<td>M. White</td>
<td>168</td>
<td>6</td>
<td>179</td>
<td>25.0</td>
<td>Ir</td>
<td>12/18/52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-194</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>Atlantic Land and Improvement Co.</td>
<td>326</td>
<td>6</td>
<td>318</td>
<td>240</td>
<td>Ir</td>
<td>05/07/53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-195</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>Atlantic Land and Improvement Co.</td>
<td>300</td>
<td>4</td>
<td></td>
<td>300</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-196</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>J. W. Lolley</td>
<td>80</td>
<td>1.25</td>
<td>78</td>
<td>3.26</td>
<td>Ir</td>
<td>01/26/52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (north)</th>
<th>Range (east)</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
<th>Date of measurement</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Date of measurement</th>
<th>Water use</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-197</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>J. M. Fountain</td>
<td>45</td>
<td>1.50</td>
<td>97</td>
<td>23.0</td>
<td>01/26/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-198</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>C. J. Anderson</td>
<td>47</td>
<td>1.25</td>
<td>76</td>
<td>24.0</td>
<td>01/26/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-199</td>
<td>7</td>
<td>43</td>
<td>32</td>
<td>J. B. Hendry</td>
<td>90</td>
<td>1.25</td>
<td>43</td>
<td>24.0</td>
<td>02/26/53</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-200</td>
<td>7</td>
<td>43</td>
<td>32</td>
<td>J. B. Hendry</td>
<td>70</td>
<td>1.25</td>
<td>40</td>
<td>24.0</td>
<td>12/10/53</td>
<td>D</td>
<td>H2S</td>
<td>02/26/53</td>
<td>S</td>
</tr>
<tr>
<td>He-201</td>
<td>7</td>
<td>43</td>
<td>32</td>
<td>J. B. Hendry</td>
<td>180</td>
<td>1.50</td>
<td>52</td>
<td>02/26/53</td>
<td>09/01/59</td>
<td></td>
<td>H2S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-202</td>
<td>14</td>
<td>47</td>
<td>33</td>
<td>J. W. McDaniels</td>
<td>18</td>
<td>1.25</td>
<td>42</td>
<td>23.0</td>
<td>02/26/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-203</td>
<td>14</td>
<td>47</td>
<td>33</td>
<td>J. W. McDaniels</td>
<td>15</td>
<td>1.25</td>
<td>46</td>
<td>23.0</td>
<td>02/26/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-204</td>
<td>4</td>
<td>47</td>
<td>33</td>
<td>J. W. McDaniels</td>
<td>112</td>
<td>1.25</td>
<td>46</td>
<td>24.0</td>
<td>02/26/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-205</td>
<td>28</td>
<td>46</td>
<td>33</td>
<td>W. Ward</td>
<td>90</td>
<td>2.50</td>
<td>149</td>
<td>02/26/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-206</td>
<td>23</td>
<td>46</td>
<td>32</td>
<td>V. Babcock</td>
<td>160</td>
<td>2</td>
<td>30</td>
<td>02/26/53</td>
<td></td>
<td></td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-207</td>
<td>15</td>
<td>46</td>
<td>32</td>
<td>V. Babcock</td>
<td>100</td>
<td>2</td>
<td>186</td>
<td>03/11/53</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-208</td>
<td>27</td>
<td>45</td>
<td>32</td>
<td>Hull Brothers</td>
<td>15</td>
<td>1.25</td>
<td>45</td>
<td>23.0</td>
<td>02/26/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-209</td>
<td>27</td>
<td>45</td>
<td>32</td>
<td>Hull Brothers</td>
<td>15</td>
<td>1.25</td>
<td>59</td>
<td>23.0</td>
<td>02/26/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-210</td>
<td>25</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>100</td>
<td>2</td>
<td>210</td>
<td>02/27/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. -- Records of selected wells and test holes in Hendry County and adjacent areas -- Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (east)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Water level</th>
<th>Casing</th>
<th>Water quality</th>
<th>Water quality</th>
<th>Date of measurement</th>
<th>Chloride concentration</th>
<th>Specific conductance</th>
<th>Temperature</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-211</td>
<td>36</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>26</td>
<td>1.25</td>
<td>450</td>
<td></td>
<td>22.0</td>
<td>02/27/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-212</td>
<td>22</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>42</td>
<td>2</td>
<td>40</td>
<td></td>
<td>25.0</td>
<td>02/27/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-213</td>
<td>21</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>28</td>
<td>2</td>
<td>43</td>
<td></td>
<td>24.0</td>
<td>02/27/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-214</td>
<td>4</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>140</td>
<td>6</td>
<td>90</td>
<td>690</td>
<td></td>
<td>09/04/59</td>
<td></td>
<td></td>
<td>230</td>
<td>165</td>
<td>09/04/59</td>
<td>500 gal/min; wells in area are about 120 feet deep</td>
<td></td>
</tr>
<tr>
<td>He-215</td>
<td>4</td>
<td>45</td>
<td>32</td>
<td>Florida Forest Service</td>
<td>50</td>
<td>2</td>
<td>1,070</td>
<td>1,030</td>
<td>24.0</td>
<td>02/27/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-216</td>
<td>34</td>
<td>44</td>
<td>32</td>
<td>F. M. Reeder</td>
<td>244</td>
<td>2</td>
<td>174</td>
<td>570</td>
<td>600</td>
<td>02/27/53</td>
<td>Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-217</td>
<td>33</td>
<td>44</td>
<td>32</td>
<td>J. Healey</td>
<td>1.50</td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td>02/27/53</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-218</td>
<td>15</td>
<td>44</td>
<td>32</td>
<td>F. Braddock</td>
<td>137</td>
<td>2</td>
<td>165</td>
<td>165</td>
<td></td>
<td>02/27/53</td>
<td>D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-219</td>
<td>2</td>
<td>47</td>
<td>31</td>
<td>Collier Corp.</td>
<td>8</td>
<td></td>
<td>47</td>
<td></td>
<td>25.0</td>
<td>03/11/53</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-220</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>Florida Forest Service</td>
<td>328</td>
<td>3</td>
<td>230</td>
<td></td>
<td></td>
<td>03/11/53</td>
<td>D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Date of measurement</td>
<td>Water level</td>
<td>Water quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-221</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>112</td>
<td>6</td>
<td>105</td>
<td>310</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-222</td>
<td>32</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>97</td>
<td>8</td>
<td>84 + 0.53</td>
<td>06/24/58</td>
<td>Flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-223</td>
<td>9</td>
<td>43</td>
<td>34</td>
<td>R. Christian</td>
<td>12</td>
<td>1.50</td>
<td>32</td>
<td>04/07/53</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-224</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>R. M. Bishop</td>
<td>40</td>
<td>2</td>
<td>101</td>
<td>04/07/53</td>
<td>In H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-225</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>L. V. Bybee</td>
<td>15</td>
<td>1.50</td>
<td>26</td>
<td>04/07/53</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-226</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>First Bank of Clewiston</td>
<td>41</td>
<td>1.25</td>
<td>105</td>
<td>04/07/53</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-227</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>Martins Department Store</td>
<td>36</td>
<td>2</td>
<td>86</td>
<td>04/07/53</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-228</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>Parkers Drug Store</td>
<td>30</td>
<td>2</td>
<td>84</td>
<td>04/07/53</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-229</td>
<td>17</td>
<td>43</td>
<td>34</td>
<td>U. T. Cook</td>
<td>25</td>
<td>1.25</td>
<td>13</td>
<td>04/08/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-230</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>City of Clewiston</td>
<td>25</td>
<td>2</td>
<td>140</td>
<td>04/08/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-231</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>Hendry County</td>
<td>15</td>
<td>2</td>
<td></td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-232</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>Hendry County</td>
<td>15</td>
<td>2</td>
<td></td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-233</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>Davis and Marguette</td>
<td>28</td>
<td>1.25</td>
<td>81</td>
<td>04/08/53</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-234</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>U.S. Geological Survey</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Well Number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner of tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Depth (feet) Above or Below Land Surface</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td>Chloride concentration</td>
<td>Specific conductance</td>
<td>Temperature</td>
<td>Date of measurement</td>
<td>Water use</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>He-235</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>G. Nottingham</td>
<td>30</td>
<td>1.50</td>
<td></td>
<td></td>
<td>53</td>
<td>D</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-236</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>L. E. Thompson</td>
<td>115</td>
<td>2</td>
<td></td>
<td></td>
<td>45</td>
<td>D</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-237</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>Shaw Brothers</td>
<td>40</td>
<td>1.50</td>
<td></td>
<td></td>
<td>30</td>
<td>In</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-238</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>G. Neil</td>
<td>35</td>
<td>1.25</td>
<td></td>
<td></td>
<td>39</td>
<td>D</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-239</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>R. M. Schell</td>
<td>82</td>
<td>1.25</td>
<td></td>
<td></td>
<td>33</td>
<td>D</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-240</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>N. Cox</td>
<td>53</td>
<td>2</td>
<td></td>
<td></td>
<td>66</td>
<td>D</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-241</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>E. M. Cornett</td>
<td>38</td>
<td>2</td>
<td></td>
<td></td>
<td>93</td>
<td>In</td>
<td>04/08/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-242</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>B. Bolton</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>He-243</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>B. Pape</td>
<td>90</td>
<td>2</td>
<td></td>
<td></td>
<td>90</td>
<td>D</td>
<td>04/09/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-244</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>B. Lawrence</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>176</td>
<td>D</td>
<td>04/09/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-245</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>J. Lowe</td>
<td>73</td>
<td>1.25</td>
<td></td>
<td></td>
<td>119</td>
<td>D</td>
<td>09/04/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-246</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>S. Stanley</td>
<td>30</td>
<td>1.25</td>
<td></td>
<td></td>
<td>102</td>
<td>D</td>
<td>04/09/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-247</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>H. Story</td>
<td>39</td>
<td>1.25</td>
<td></td>
<td></td>
<td>78</td>
<td>D</td>
<td>04/09/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-248</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>K. Golden</td>
<td>35</td>
<td>1.25</td>
<td></td>
<td></td>
<td>91</td>
<td>D</td>
<td>04/09/53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Depth of well (feet)</td>
<td>Diameter (inch)</td>
<td>Date of measurement</td>
<td>Water level</td>
<td>Water quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-249</td>
<td>12</td>
<td>43</td>
<td>33</td>
<td>97</td>
<td>1.50</td>
<td>73</td>
<td>04/09/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-250</td>
<td>11</td>
<td>43</td>
<td>33</td>
<td>119</td>
<td>1.50</td>
<td>230</td>
<td>04/09/53</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-251</td>
<td>11</td>
<td>43</td>
<td>33</td>
<td>35</td>
<td>0.00</td>
<td>57</td>
<td>04/09/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-252</td>
<td>11</td>
<td>43</td>
<td>33</td>
<td>80</td>
<td>2</td>
<td>102</td>
<td>04/09/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-253</td>
<td>10</td>
<td>43</td>
<td>33</td>
<td>80</td>
<td>2</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-254</td>
<td>14</td>
<td>43</td>
<td>33</td>
<td>80</td>
<td>1.25</td>
<td>76</td>
<td>04/10/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-255</td>
<td>14</td>
<td>43</td>
<td>33</td>
<td>95</td>
<td>2</td>
<td>94 - 2.30 04/10/53</td>
<td>78</td>
<td>04/10/53 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-256</td>
<td>15</td>
<td>43</td>
<td>33</td>
<td>40</td>
<td>1.50</td>
<td>146</td>
<td>04/10/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-257</td>
<td>15</td>
<td>43</td>
<td>33</td>
<td>42</td>
<td>1.50</td>
<td>88</td>
<td>04/10/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-258</td>
<td>23</td>
<td>43</td>
<td>34</td>
<td>54</td>
<td>2</td>
<td>73</td>
<td>04/10/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-259</td>
<td>14</td>
<td>43</td>
<td>34</td>
<td>49</td>
<td>1.25</td>
<td>76</td>
<td>04/10/53</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-260</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>30</td>
<td>1.50</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-261</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>42</td>
<td>2</td>
<td>30</td>
<td>23.0</td>
<td>D H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-262</td>
<td>7</td>
<td>43</td>
<td>34</td>
<td>62</td>
<td>2</td>
<td>34</td>
<td>24.0</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of measurement</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-263</td>
<td>24</td>
<td>43</td>
<td>34</td>
<td>A. U. Tokieda</td>
<td>125</td>
<td>8</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-264</td>
<td>23</td>
<td>43</td>
<td>34</td>
<td>G. B. McDuffie</td>
<td>20</td>
<td>1.50</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-265</td>
<td>23</td>
<td>43</td>
<td>34</td>
<td>W. W. Ricks</td>
<td>63</td>
<td>1.25</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-267</td>
<td>23</td>
<td>43</td>
<td>34</td>
<td>J. J. Herring</td>
<td>60</td>
<td>1.25</td>
<td>04/10/53</td>
<td>D</td>
<td>Yellow-colored water</td>
<td></td>
</tr>
<tr>
<td>He-268</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>W. E. Anderson</td>
<td>55</td>
<td>1.25</td>
<td>04/10/53</td>
<td>D</td>
<td>Yellow-colored water</td>
<td></td>
</tr>
<tr>
<td>He-269</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>B. Maddox</td>
<td>6</td>
<td></td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-270</td>
<td>17</td>
<td>45</td>
<td>29</td>
<td>M. N. Taylor</td>
<td>40</td>
<td>1.25</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-271</td>
<td>29</td>
<td>46</td>
<td>33</td>
<td>W. Ward</td>
<td>47</td>
<td></td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-272</td>
<td>4</td>
<td>45</td>
<td>32</td>
<td>Florida Forest Service</td>
<td>220</td>
<td>2</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-273</td>
<td>20</td>
<td>43</td>
<td>33</td>
<td>Fla. Conservation School</td>
<td>58</td>
<td>2</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-274</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>Variety Corp.</td>
<td>56</td>
<td>3</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-275</td>
<td>16</td>
<td>43</td>
<td>28</td>
<td>B. Wolf</td>
<td>6</td>
<td></td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-276</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>Lakeside Manor Motel</td>
<td>44</td>
<td>4</td>
<td>04/10/53</td>
<td>D</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Location (south)</td>
<td>Name (east)</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Water level above soil (ft)</td>
<td>Date of measurement</td>
<td>Chloride concentration (ppm)</td>
<td>Specific conductance (µS/cm)</td>
<td>Temperature (°F)</td>
<td>Date of measurement</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>He-277</td>
<td></td>
<td></td>
<td>170</td>
<td>1.25</td>
<td>95</td>
<td>90</td>
<td>07/10/53</td>
<td>D</td>
<td>90</td>
<td>08/10/53</td>
</tr>
<tr>
<td>He-278</td>
<td></td>
<td>M. K. Wheeler</td>
<td>790</td>
<td>8</td>
<td>+25.8</td>
<td>05/26/58</td>
<td>1,030</td>
<td>1,030</td>
<td>28.0</td>
<td>08/10/53</td>
</tr>
<tr>
<td>He-279</td>
<td></td>
<td>M. K. Wheeler</td>
<td>531</td>
<td>8</td>
<td>295</td>
<td>05/26/58</td>
<td>620</td>
<td>28.0</td>
<td>08/24/58</td>
<td>05/26/58</td>
</tr>
<tr>
<td>He-280</td>
<td></td>
<td>U.S. Sugar Corp.</td>
<td>135</td>
<td>6</td>
<td>111</td>
<td></td>
<td>109</td>
<td>06/23/54</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-284</td>
<td></td>
<td>Waldron Hotel</td>
<td>75</td>
<td>2</td>
<td></td>
<td>109</td>
<td></td>
<td>06/23/54</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-285</td>
<td></td>
<td>Collier Corp.</td>
<td>40</td>
<td>6</td>
<td>-1.92</td>
<td>04/21/58</td>
<td>45</td>
<td>24.0</td>
<td>07/30/58</td>
<td>Ir</td>
</tr>
<tr>
<td>He-286</td>
<td></td>
<td>Collier Corp.</td>
<td>40</td>
<td>6</td>
<td>-1.03</td>
<td>07/30/58</td>
<td>45</td>
<td>24.0</td>
<td>07/30/58</td>
<td>Ir</td>
</tr>
<tr>
<td>He-287</td>
<td></td>
<td>Collier Corp.</td>
<td>51</td>
<td>6</td>
<td>-2.78</td>
<td>04/21/58</td>
<td>45</td>
<td>24.0</td>
<td>04/30/58</td>
<td>Ir</td>
</tr>
<tr>
<td>He-288</td>
<td></td>
<td>Collier Corp.</td>
<td>40</td>
<td>6</td>
<td></td>
<td>140</td>
<td></td>
<td>24.0</td>
<td>04/30/58</td>
<td>Ir</td>
</tr>
<tr>
<td>He-289</td>
<td></td>
<td>Collier Corp.</td>
<td>70</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-290</td>
<td></td>
<td>Collier Corp.</td>
<td>80</td>
<td>6</td>
<td>-1.26</td>
<td>06/18/58</td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (South)</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Depth (feet) or below land surface</th>
<th>Date of measurement</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (mhos)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-291</td>
<td>32</td>
<td>46</td>
<td>32</td>
<td>Collier Corp.</td>
<td>92</td>
<td>6</td>
<td>-1.48</td>
<td>06/18/58</td>
<td></td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-292</td>
<td>29</td>
<td>43</td>
<td>29</td>
<td>T. Wells</td>
<td>552</td>
<td>8</td>
<td>+27.5</td>
<td>05/21/58</td>
<td>1,190</td>
<td>28.0</td>
<td>03/07/75</td>
<td>S Flows, 75 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-293</td>
<td>5</td>
<td>45</td>
<td>29</td>
<td>A. Duda</td>
<td>762</td>
<td>6</td>
<td>+24.7</td>
<td>05/21/58</td>
<td>940</td>
<td>28.0</td>
<td>12/04/75</td>
<td>N Flowed, 215 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-294</td>
<td>5</td>
<td>45</td>
<td>29</td>
<td>A. Duda</td>
<td>762</td>
<td>6</td>
<td>+24.7</td>
<td>05/21/58</td>
<td>1,140</td>
<td>28.0</td>
<td>12/04/75</td>
<td>Ir,S Flows, 375 gal/min 1958, 80 gal/min, H₂S, 12/04/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-295</td>
<td>7</td>
<td>45</td>
<td>29</td>
<td>A. Townsend</td>
<td>1,145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.0</td>
<td>05/21/58</td>
<td>Ir,S Flows, 150 gal/min</td>
<td></td>
</tr>
<tr>
<td>He-296</td>
<td>17</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>872</td>
<td>6</td>
<td>+25.5</td>
<td>05/14/58</td>
<td>2,300</td>
<td>28.0</td>
<td>05/14/58</td>
<td>Ir,S Flows, 340 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-297</td>
<td>11</td>
<td>45</td>
<td>30</td>
<td>Atlantic Land and Improvement Co.</td>
<td>782</td>
<td>6</td>
<td>+25.0</td>
<td>05/14/58</td>
<td>2,170</td>
<td>27.0</td>
<td>11/07/75</td>
<td>Ir Flowed, 140 gal/min, H₂S; plugged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-299</td>
<td>14</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>72</td>
<td>6</td>
<td>-0.93</td>
<td>04/23/58</td>
<td></td>
<td>2,160</td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-300</td>
<td>14</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>97</td>
<td>6</td>
<td>-1.18</td>
<td>04/23/58</td>
<td>340</td>
<td>25.0</td>
<td>06/26/56</td>
<td>Ir Pump test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-301</td>
<td>13</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>98</td>
<td>6</td>
<td>-0.99</td>
<td>06/26/58</td>
<td></td>
<td>2,160</td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner or tenant</td>
<td>Depth of Well (feet)</td>
<td>Diameter (inches)</td>
<td>Date of measurement</td>
<td>Water level</td>
<td>Water quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-302</td>
<td>18</td>
<td>47</td>
<td>34</td>
<td>S. and M. Farms</td>
<td>121</td>
<td>6</td>
<td>04/24/58</td>
<td>1.48</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-303</td>
<td>18</td>
<td>47</td>
<td>34</td>
<td>S. and M. Farms</td>
<td>120</td>
<td>6</td>
<td>05/01/58</td>
<td>1.95</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-304</td>
<td>18</td>
<td>47</td>
<td>34</td>
<td>S. and M. Farms</td>
<td>122</td>
<td>6</td>
<td>04/24/58</td>
<td>1.95</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-305</td>
<td>18</td>
<td>47</td>
<td>34</td>
<td>S. and M. Farms</td>
<td>120</td>
<td>6</td>
<td>06/03/58</td>
<td>1.10</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-306</td>
<td>6</td>
<td>47</td>
<td>31</td>
<td>Collier Corp.</td>
<td>40</td>
<td>6</td>
<td>06/17/58</td>
<td>1.93</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-307</td>
<td>36</td>
<td>33</td>
<td>45</td>
<td>Atlantic Land and Improvement Co.</td>
<td>83</td>
<td>8</td>
<td>05/02/58</td>
<td>0.81</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-308</td>
<td>35</td>
<td>43</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>87</td>
<td>6</td>
<td></td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-309</td>
<td>36</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>97</td>
<td>6</td>
<td></td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-310</td>
<td>36</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>125</td>
<td>8</td>
<td></td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-311</td>
<td>6</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>950</td>
<td>6</td>
<td>+22.0</td>
<td>05/14/58</td>
<td>1,240</td>
<td>27.0</td>
<td>05/14/58</td>
<td>Flows, 160 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-312</td>
<td>28</td>
<td>43</td>
<td>28</td>
<td>R. Dainails</td>
<td>125</td>
<td>4</td>
<td>05/19/58</td>
<td>1.18</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (east)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inch)</th>
<th>Above (') or below (-) land surface</th>
<th>Date of measurement</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (µS/cm)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (µS/cm)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Water use</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-313</td>
<td>28</td>
<td>43</td>
<td>28</td>
<td>A. Quermia</td>
<td>125</td>
<td>6</td>
<td>124</td>
<td>1,100</td>
<td>26.0</td>
<td>05/20/58</td>
<td>Ir</td>
<td>310 gal/min, pump test, H_2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>45</td>
<td>29</td>
<td>R. Roberts</td>
<td>940</td>
<td>6</td>
<td></td>
<td>180</td>
<td>26.0</td>
<td>05/22/58</td>
<td>S</td>
<td>Collapsed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>45</td>
<td>28</td>
<td>R. Roberts</td>
<td>700</td>
<td>6</td>
<td>+20.3</td>
<td>05/22/58</td>
<td>28.0</td>
<td>05/22/58</td>
<td>S</td>
<td>Flows, 40 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>45</td>
<td>28</td>
<td>R. Roberts</td>
<td>815</td>
<td>4</td>
<td>+19.5</td>
<td>05/22/58</td>
<td>29.0</td>
<td>05/22/58</td>
<td>S</td>
<td>Flows, 20 gal/min, H_2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>45</td>
<td>29</td>
<td>R. Roberts</td>
<td>900</td>
<td>6</td>
<td></td>
<td>860</td>
<td>29.0</td>
<td>05/22/58</td>
<td>S, Ir</td>
<td>Flows, 60 gal/min, H_2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>43</td>
<td>28</td>
<td>C. A. Murphy</td>
<td>400</td>
<td>3</td>
<td>+39.9</td>
<td>05/27/58</td>
<td>27.0</td>
<td>05/27/58</td>
<td>Ir</td>
<td>Flows, 100 gal/min, H_2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-319</td>
<td>30</td>
<td>43</td>
<td>28</td>
<td>C. A. Murphy</td>
<td>135</td>
<td>2.50</td>
<td>+8.4</td>
<td>05/27/58</td>
<td>27.0</td>
<td>05/27/58</td>
<td>Ir</td>
<td>Flows, 30 gal/min, H_2S; adjacent to He-318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>34</td>
<td>6</td>
<td>-0.52</td>
<td>07/30/58</td>
<td>74</td>
<td>24.0</td>
<td>07/30/58</td>
<td>Ir</td>
<td>700 gal/min, pump test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-321</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>Unknown</td>
<td>135</td>
<td>6</td>
<td></td>
<td>700</td>
<td>24.0</td>
<td>05/27/58</td>
<td>Ir</td>
<td>Flows, 30 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6</td>
<td>-0.93</td>
<td>07/29/58</td>
<td>31</td>
<td>3</td>
<td>-0.58</td>
<td>07/29/58</td>
<td>25.0</td>
<td>05/27/58</td>
<td>Ir</td>
<td>Flows, 1 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-323</td>
<td>14</td>
<td>43</td>
<td>28</td>
<td>Kirkland</td>
<td>135</td>
<td>6</td>
<td>+3.6</td>
<td>05/27/58</td>
<td>25.0</td>
<td>05/27/58</td>
<td>Ir</td>
<td>Flows, 1 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

He-324 14 43 28 Kirkland
Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas--Continued

<table>
<thead>
<tr>
<th>Local Well number</th>
<th>Section</th>
<th>Township (east)</th>
<th>Range (north)</th>
<th>Owner or tenant</th>
<th>Depth of Well (feet)</th>
<th>Diameter (inches)</th>
<th>Depth below land surface</th>
<th>Water level</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-325</td>
<td>14</td>
<td>43</td>
<td>28</td>
<td>B. Stuart</td>
<td>137</td>
<td>2</td>
<td>- 5.6</td>
<td>05/27/58</td>
<td>570</td>
<td>25.0</td>
<td>05/27/58</td>
<td>S</td>
<td>Flows, 30 gal/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-326</td>
<td>14</td>
<td>48</td>
<td>31</td>
<td>W. Burdine</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1,630</td>
<td>27.0</td>
<td>05/28/58</td>
<td></td>
<td>Flows, 15 gal/min, casing leaks in subsurface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-327</td>
<td>18</td>
<td>43</td>
<td>28</td>
<td>J. Lamb</td>
<td>4</td>
<td>+27.7</td>
<td>05/28/58</td>
<td>1,490</td>
<td>30.0</td>
<td>05/28/58</td>
<td>S,D</td>
<td></td>
<td>Flows, 200 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-328</td>
<td>10</td>
<td>43</td>
<td>28</td>
<td>H. Parkenson</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1,020</td>
<td>28.0</td>
<td>05/28/58</td>
<td>Ir</td>
<td>Flows, 250 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-329</td>
<td>9</td>
<td>43</td>
<td>28</td>
<td>Whitton</td>
<td>110</td>
<td>2</td>
<td>+ 3.33</td>
<td>05/28/58</td>
<td>900</td>
<td>24.0</td>
<td>05/28/58</td>
<td>12/07/75</td>
<td>Flows, 20 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-330</td>
<td>9</td>
<td>43</td>
<td>28</td>
<td>Whitton</td>
<td>110</td>
<td>2</td>
<td>+ 3.66</td>
<td>05/28/58</td>
<td>550</td>
<td>24.0</td>
<td>05/28/58</td>
<td>12/02/75</td>
<td>Flows, 20 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-331</td>
<td>9</td>
<td>43</td>
<td>28</td>
<td>L. Harell</td>
<td>120</td>
<td>1.50</td>
<td>+ 3.82</td>
<td>05/28/58</td>
<td>330</td>
<td>24.0</td>
<td>05/28/58</td>
<td>12/02/75</td>
<td>Flows, 20 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-332</td>
<td>24</td>
<td>44</td>
<td>29</td>
<td>R. Dana</td>
<td>900</td>
<td>+17.5</td>
<td>05/26/58</td>
<td>1,200</td>
<td>27.0</td>
<td>05/26/58</td>
<td>Ir</td>
<td></td>
<td>Flows, 60 gal/min, H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-333</td>
<td>13</td>
<td>44</td>
<td>29</td>
<td>R. Dana</td>
<td>896</td>
<td>6</td>
<td></td>
<td></td>
<td>4,200</td>
<td>28.0</td>
<td>05/28/58</td>
<td>Ir,S</td>
<td>Flows, 200 gal/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-334</td>
<td>22</td>
<td>45</td>
<td>29</td>
<td>Hendry County</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>930</td>
<td>28.0</td>
<td>05/26/58</td>
<td></td>
<td>Flows, 30 gal/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-335</td>
<td>29</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>139</td>
<td>6</td>
<td>- 0.21</td>
<td>06/24/58</td>
<td>84</td>
<td>06/24/58</td>
<td>Flows in rainy season, 2 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (north)</td>
<td>Range (east)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-336 29 45 33</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>112 6</td>
<td>- 0.76</td>
<td>06/25/58</td>
<td>136</td>
<td>25.0 06/25/58</td>
<td>Ir 670 gal/min, H_2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-337 32 45 33</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>95 6</td>
<td>- 0.63</td>
<td>06/26/58</td>
<td>194</td>
<td>25.0 06/26/58</td>
<td>Ir H_2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-338 11 43 33</td>
<td>33</td>
<td>J. M. Dickson</td>
<td>150 2</td>
<td>-</td>
<td>09/04/58</td>
<td>450</td>
<td>S</td>
<td>0 25 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-339 27 44 34</td>
<td>34</td>
<td>U.S. Geological Survey</td>
<td>12 4</td>
<td>11 - 1.18</td>
<td>01/08/64</td>
<td>0</td>
<td>03/07/75</td>
<td>Flows, 20 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-368 8 43 29</td>
<td>29</td>
<td>City of La Belle</td>
<td>569 8</td>
<td>245 -29.1</td>
<td>03/17/75</td>
<td>670 2,850 26.5</td>
<td>O 03/07/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-369 28 43 29</td>
<td>29</td>
<td>Spencer</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>He-370 28 43 29</td>
<td>29</td>
<td>Unknown</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>He-371 28 43 29</td>
<td>29</td>
<td>L. Gonzales</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>He-372 20 43 29</td>
<td>29</td>
<td>W. G. Woolsy</td>
<td>56 6</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>He-373 27 43 29</td>
<td>29</td>
<td>Holt</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>He-375 28 43 29</td>
<td>29</td>
<td>C. Howard</td>
<td>190 2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>He-376 8 43 29</td>
<td>29</td>
<td>City of La Belle</td>
<td>21 6</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Ir: Iron
- S: Sulfate
- D: Dissolved gases
- P: Permeable
- Flows, 20 gal/min
- 25 gal/min
- 250 gal/min
<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-377</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>21</td>
<td>6</td>
<td>-8.99 04/29/74</td>
</tr>
<tr>
<td>He-378</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>39</td>
<td>6</td>
<td>44 1,100 25.0 03/07/75 P 115 gal/min</td>
</tr>
<tr>
<td>He-379</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>68</td>
<td>2</td>
<td>50 670 03/10/75 D</td>
</tr>
<tr>
<td>He-380</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>O. Taylor</td>
<td>45</td>
<td>1.25 37</td>
<td>40 680 03/10/75 D</td>
</tr>
<tr>
<td>He-381</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Fallin</td>
<td>45</td>
<td>2 40</td>
<td>60 710 03/10/75 D</td>
</tr>
<tr>
<td>He-382</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Fallin</td>
<td>68</td>
<td>2 21</td>
<td>40 750 03/10/75 Ir</td>
</tr>
<tr>
<td>He-383</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>I. Hall</td>
<td>36</td>
<td>2 21</td>
<td>40 700 03/10/75 Ir</td>
</tr>
<tr>
<td>He-384</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>C. Hall</td>
<td>194</td>
<td>2 100</td>
<td>130 920 03/10/75 D</td>
</tr>
<tr>
<td>He-385</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>44</td>
<td>2</td>
<td>30 450 03/10/75</td>
</tr>
<tr>
<td>He-386</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>A. Centeno</td>
<td>140</td>
<td>2</td>
<td>90 765 03/10/75</td>
</tr>
<tr>
<td>He-387</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. M. Yeomens</td>
<td>136</td>
<td>2</td>
<td>50 830 03/10/75 D</td>
</tr>
<tr>
<td>He-388</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>B. Maddox</td>
<td>18</td>
<td>6 -4.54 03/10/75</td>
<td>40 660 24.0 03/10/75</td>
</tr>
<tr>
<td>He-389</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>E. Brown</td>
<td>153</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>He-390</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>E. Brown</td>
<td>155</td>
<td>2</td>
<td>110 890 03/12/75 Ir H₂S</td>
</tr>
</tbody>
</table>
Table 1. Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
<th>Owner or tenant</th>
<th>Depth of Well (feet)</th>
<th>Diameter (inches)</th>
<th>Water level (feet) above land surface</th>
<th>Water quality</th>
<th>Date of measurement</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-391</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>L. Walston</td>
<td>2</td>
<td></td>
<td>100</td>
<td>H₂S</td>
<td>03/12/75</td>
<td>Ir</td>
</tr>
<tr>
<td>He-392</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. L. Hay</td>
<td>80</td>
<td>2</td>
<td>100</td>
<td>H₂S</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-393</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Hite</td>
<td>2</td>
<td></td>
<td>120</td>
<td>H₂S</td>
<td>03/12/75</td>
<td>D</td>
</tr>
<tr>
<td>He-394</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Albritton</td>
<td>21</td>
<td>2</td>
<td>40</td>
<td>H₂S</td>
<td>03/12/75</td>
<td>Fe, yellow-colored water</td>
</tr>
<tr>
<td>He-395</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>T. Bruznell</td>
<td>2</td>
<td></td>
<td>30</td>
<td>Fe</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-396</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>O. D. Coleman</td>
<td>2</td>
<td></td>
<td>80</td>
<td>H₂S</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-397</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>O. Spraggins</td>
<td>75</td>
<td>2</td>
<td>50</td>
<td>Fe</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-398</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. C. Hicks</td>
<td>100</td>
<td></td>
<td>100</td>
<td>H₂S</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-399</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. Green</td>
<td>27</td>
<td>2</td>
<td>40</td>
<td>Ir</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-400</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. Green</td>
<td>2</td>
<td></td>
<td>40</td>
<td>Fe</td>
<td>03/12/75</td>
<td></td>
</tr>
<tr>
<td>He-401</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>20</td>
<td>1.25</td>
<td>16 - 6.82</td>
<td>03/13/75</td>
<td>40</td>
<td>26.0 03/13/75 0</td>
</tr>
<tr>
<td>He-402</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>20</td>
<td>1.25</td>
<td>16 - 6.77</td>
<td>03/14/75</td>
<td>14</td>
<td>26.0 03/14/75 0</td>
</tr>
<tr>
<td>He-403</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>20</td>
<td>1.25</td>
<td>16 - 6.96</td>
<td>03/14/75</td>
<td>26.5 03/14/75 0</td>
<td></td>
</tr>
<tr>
<td>He-404</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>13</td>
<td>1.25</td>
<td>9 - 8.45</td>
<td>03/14/75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Local Well Number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner or Tenant</td>
<td>Depth of Well (feet)</td>
<td>Diameter (inches)</td>
<td>Water Level (feet)</td>
<td>Date of Measurement</td>
<td>Chloride Concentration</td>
<td>Specific Conductance</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>He-405</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>12</td>
<td>1.25</td>
<td>8 - 7.98</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-406</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>19</td>
<td>4</td>
<td>- 6.94</td>
<td>03/28/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-407</td>
<td>31</td>
<td>45</td>
<td>28</td>
<td>Fla. Dept. Nat. Resources</td>
<td>20</td>
<td>1.25</td>
<td>16 - 6.85</td>
<td>03/17/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-408</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Hanel</td>
<td>35</td>
<td>2</td>
<td>26</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-409</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. Stubby Field</td>
<td>2</td>
<td></td>
<td>24</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-410</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>W. A. Murphy</td>
<td>2</td>
<td></td>
<td>48</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-411</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>E. Ford</td>
<td>2</td>
<td></td>
<td>115</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-412</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Powers</td>
<td>2</td>
<td></td>
<td>145</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-413</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>D. Trey</td>
<td>25</td>
<td>2</td>
<td>36</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-414</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. Mace</td>
<td>110</td>
<td>1,280</td>
<td>27.0</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-415</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Ingram</td>
<td>45</td>
<td>4</td>
<td>54</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-416</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>J. Bowkamp</td>
<td>2</td>
<td></td>
<td>60</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-417</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>160</td>
<td>2</td>
<td>240</td>
<td>03/14/75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-418</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>I. V. Burke</td>
<td>16</td>
<td>2</td>
<td>10</td>
<td>03/18/75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas—Continued
Table 1.---Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (south)</th>
<th>Range (east)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Depth (feet) below or above land surface</th>
<th>Water level</th>
<th>Date of measurement</th>
<th>Date of measurement</th>
<th>Water quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-419</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>I. V. Burke</td>
<td>240</td>
<td>1.50</td>
<td>120</td>
<td>230</td>
<td>03/18/75</td>
<td>04/01/75</td>
<td>D, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-420</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>C. Thomas</td>
<td>45</td>
<td>2</td>
<td>40</td>
<td>66</td>
<td>03/18/75</td>
<td></td>
<td></td>
<td>Fe</td>
</tr>
<tr>
<td>He-421</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Anderson</td>
<td>2</td>
<td></td>
<td></td>
<td>35</td>
<td>03/18/75</td>
<td>04/01/75</td>
<td>Fe, yellow-colored water</td>
<td></td>
</tr>
<tr>
<td>He-422</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Bradford</td>
<td>16</td>
<td>1.50</td>
<td></td>
<td>25</td>
<td>03/18/75</td>
<td></td>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>He-423</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Thompson</td>
<td>209</td>
<td>2</td>
<td></td>
<td>120</td>
<td>03/18/75</td>
<td></td>
<td>D, H₂S</td>
<td></td>
</tr>
<tr>
<td>He-424</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>R. Pelliccia</td>
<td>220</td>
<td>2</td>
<td></td>
<td>96</td>
<td>03/18/75</td>
<td></td>
<td>D, H₂S</td>
<td></td>
</tr>
<tr>
<td>He-425</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>R. Pelliccia</td>
<td>2</td>
<td></td>
<td></td>
<td>32</td>
<td>03/18/75</td>
<td></td>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>He-426</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Hoges</td>
<td>2</td>
<td></td>
<td></td>
<td>32</td>
<td>03/18/75</td>
<td></td>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>He-427</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Durrance</td>
<td>8</td>
<td></td>
<td></td>
<td>33</td>
<td>04/01/75</td>
<td></td>
<td>Ir</td>
<td>800 gal/min</td>
</tr>
<tr>
<td>He-428</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>2</td>
<td></td>
<td></td>
<td>780</td>
<td>04/16/75</td>
<td></td>
<td>Ir</td>
<td>Flows, 15 gal/min</td>
</tr>
<tr>
<td>He-429</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Hendry County</td>
<td>303</td>
<td></td>
<td></td>
<td>303</td>
<td>03/17/77</td>
<td></td>
<td>T, Plugged</td>
<td></td>
</tr>
<tr>
<td>He-430</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>G. Haas</td>
<td>325</td>
<td>2</td>
<td>302</td>
<td>110</td>
<td>03/17/77</td>
<td></td>
<td>D, Plugged</td>
<td></td>
</tr>
<tr>
<td>He-431</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Hendry County</td>
<td>323</td>
<td></td>
<td></td>
<td>323</td>
<td></td>
<td></td>
<td>T, Plugged</td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Township (north)</td>
<td>Range (east)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-432</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>58</td>
<td>2</td>
<td>110</td>
<td>870</td>
<td>03/31/75</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-433</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Long</td>
<td>2</td>
<td>110</td>
<td>910</td>
<td>03/31/75</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-434</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>M. G. Davis</td>
<td>2</td>
<td>125</td>
<td>980</td>
<td>03/31/75</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-435</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>D. Byrd</td>
<td>200</td>
<td>100</td>
<td>1,200</td>
<td>03/31/75</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-436</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>C. P. Gaulding</td>
<td>90</td>
<td>160</td>
<td>1,220</td>
<td>03/31/75</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-437</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>M. G. Davis</td>
<td>108</td>
<td>120</td>
<td>970</td>
<td>03/31/75</td>
<td>D,Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-438</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>108</td>
<td>120</td>
<td>910</td>
<td>03/31/75</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-439</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Keller</td>
<td>20</td>
<td>56</td>
<td>1,230</td>
<td>03/31/75</td>
<td>Ir</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-440</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>J. B. Rudd</td>
<td>91</td>
<td>270</td>
<td>1,530</td>
<td>03/31/75</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-441</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Jones</td>
<td>20</td>
<td>52</td>
<td>1,040</td>
<td>03/31/75</td>
<td>Ir</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-442</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>60</td>
<td>130</td>
<td>1,120</td>
<td>03/31/75</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-443</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>G. A. Hill</td>
<td>30</td>
<td>49</td>
<td>795</td>
<td>03/31/75</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-444</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Harris</td>
<td>99</td>
<td>125</td>
<td>941</td>
<td>04/02/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-445</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>J. Higgins</td>
<td>50</td>
<td>24</td>
<td>930</td>
<td>04/02/75</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-446</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Woosley</td>
<td>180</td>
<td>125</td>
<td>999</td>
<td>04/02/75</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td>Chloride concentration</td>
<td>Temperature</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>He-447</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>Lucia</td>
<td>2</td>
<td></td>
<td></td>
<td>100</td>
<td>844</td>
<td>04/02/75</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-448</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>McDannel</td>
<td>100</td>
<td>2</td>
<td></td>
<td>115</td>
<td>940</td>
<td>04/07/75</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-449</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Vaughn</td>
<td>2</td>
<td></td>
<td></td>
<td>16</td>
<td>500</td>
<td>04/07/75</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>He-450</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Hanshaw</td>
<td>100</td>
<td></td>
<td></td>
<td>125</td>
<td>941</td>
<td>04/07/75</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-451</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>J. Hoge</td>
<td>2</td>
<td></td>
<td></td>
<td>125</td>
<td>939</td>
<td>04/07/75</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-452</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Gray</td>
<td>100</td>
<td>2</td>
<td></td>
<td>64</td>
<td>799</td>
<td>04/07/75</td>
<td>D, Ir</td>
<td></td>
</tr>
<tr>
<td>He-453</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>T. W. Jenkins</td>
<td>100</td>
<td>1.25</td>
<td></td>
<td>70</td>
<td>805</td>
<td>04/07/75</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-454</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Farabee</td>
<td>100</td>
<td>2</td>
<td></td>
<td>60</td>
<td>802</td>
<td>04/07/75</td>
<td>D, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-455</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>150</td>
<td>2</td>
<td></td>
<td>40</td>
<td>694</td>
<td>04/07/75</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-456</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Harn</td>
<td>150</td>
<td>2</td>
<td></td>
<td>24</td>
<td>689</td>
<td>04/07/75</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-458</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Wilson</td>
<td>97</td>
<td>1.25</td>
<td></td>
<td>36</td>
<td>682</td>
<td>04/14/75</td>
<td>D</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-459</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Wilson</td>
<td>97</td>
<td>1.25</td>
<td></td>
<td>36</td>
<td>679</td>
<td>04/14/75</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-460</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Marktoole</td>
<td>92</td>
<td>2</td>
<td></td>
<td>20</td>
<td>529</td>
<td>04/14/75</td>
<td>D</td>
<td>Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>510</td>
<td>06/16/75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (East)</th>
<th>Range (West)</th>
<th>Water level (feet)</th>
<th>Diameter (inches)</th>
<th>Depth (feet)</th>
<th>Below surface</th>
<th>Date of measurement</th>
<th>Chloride concentration (mg/l)</th>
<th>Specific conductance (uS/cm)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-461</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>16</td>
<td>2</td>
<td></td>
<td>20/639</td>
<td>28/660</td>
<td>27.5/06/16/75</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-462</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Wilson</td>
<td>100</td>
<td>1.25</td>
<td></td>
<td>36/780</td>
<td>04/14/75 D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-463</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>100</td>
<td>1.25</td>
<td></td>
<td>30/661</td>
<td>04/14/75</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-464</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>H. E. Holcomb</td>
<td>22</td>
<td>2</td>
<td></td>
<td>19/647</td>
<td>04/14/75</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-465</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>B. Matusiak</td>
<td>90</td>
<td>1.25</td>
<td></td>
<td>82/795</td>
<td>04/14/75 D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-466</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>S. Self</td>
<td>100</td>
<td>1.50</td>
<td>65</td>
<td>32/659</td>
<td>04/14/75 Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-467</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>B. McCormack</td>
<td>100</td>
<td>1.25</td>
<td></td>
<td>84/799</td>
<td>04/14/75 Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-468</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Barren</td>
<td>150</td>
<td>1.50</td>
<td></td>
<td>125/960</td>
<td>04/15/75</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-469</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>O. B. Risher</td>
<td>105</td>
<td>1.25</td>
<td></td>
<td>96/900</td>
<td>04/15/75 Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-470</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Featherston</td>
<td>22</td>
<td>2</td>
<td></td>
<td>32/845</td>
<td>04/15/75 Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-471</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>N. Johnson</td>
<td>86</td>
<td>2</td>
<td></td>
<td>70/755</td>
<td>04/15/75 Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-472</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Williams</td>
<td>65</td>
<td>1.50</td>
<td></td>
<td>100/1,320</td>
<td>04/15/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-473</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Mattice</td>
<td>65</td>
<td>1.25</td>
<td></td>
<td>195/1,850</td>
<td>04/15/75 Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-474</td>
<td>4</td>
<td>47</td>
<td>33</td>
<td>Unknown</td>
<td>16</td>
<td>4</td>
<td></td>
<td>- 8.91</td>
<td>04/24/75</td>
<td>108/951</td>
<td>04/24/75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Depth (feet) below land surface</td>
<td>Date of measurement</td>
<td>Casing</td>
<td>Water level</td>
<td>Date of measurement</td>
<td>Water quality</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>He-475</td>
<td>4</td>
<td>47</td>
<td>33</td>
<td>Unknown</td>
<td>6</td>
<td></td>
<td></td>
<td>04/24/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-476</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Rider</td>
<td>150</td>
<td>1.50</td>
<td></td>
<td>04/30/75</td>
<td>70</td>
<td>921</td>
<td>04/30/75</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-477</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>O'Bannon</td>
<td>49</td>
<td>1.50</td>
<td></td>
<td>04/30/75</td>
<td>78</td>
<td>797</td>
<td>04/30/75</td>
<td>H₂S,Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-478</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Holland</td>
<td>1.25</td>
<td></td>
<td></td>
<td>04/30/75</td>
<td>64</td>
<td>561</td>
<td>04/30/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-479</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Smeleer</td>
<td>17</td>
<td>1.75</td>
<td></td>
<td>04/30/75</td>
<td>27</td>
<td>540</td>
<td>04/30/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-480</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Bennett</td>
<td>18</td>
<td>2</td>
<td></td>
<td>04/30/75</td>
<td>31</td>
<td>402</td>
<td>04/30/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-481</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>20</td>
<td>2</td>
<td></td>
<td>04/30/75</td>
<td>24</td>
<td>493</td>
<td>04/30/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-482</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>Jackson</td>
<td>40</td>
<td>2</td>
<td></td>
<td>04/30/75</td>
<td>27</td>
<td>451</td>
<td>04/30/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-483</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Hendry County</td>
<td></td>
<td></td>
<td></td>
<td>04/30/75</td>
<td>34</td>
<td>710</td>
<td>04/30/75</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-484</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Rodriguez</td>
<td></td>
<td></td>
<td></td>
<td>05/01/75</td>
<td>510</td>
<td>2,080</td>
<td>05/01/75</td>
<td>Flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-485</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Alan</td>
<td>20</td>
<td>1.25</td>
<td></td>
<td>05/01/75</td>
<td>20</td>
<td></td>
<td>05/01/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-486</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>Hansen</td>
<td>92</td>
<td>2</td>
<td></td>
<td>05/01/75</td>
<td>115</td>
<td>879</td>
<td>05/01/75</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-487</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>H. B. Tillman</td>
<td>85</td>
<td>1.25</td>
<td></td>
<td>06/16/75</td>
<td>100</td>
<td>985</td>
<td>05/01/75</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-488</td>
<td>4</td>
<td>43</td>
<td>29</td>
<td>C. Fry</td>
<td>20</td>
<td>1.50</td>
<td></td>
<td>05/01/75</td>
<td>135</td>
<td>1,280</td>
<td>05/01/75</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (South)</td>
<td>Range (East)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Water level (ft. GP)</td>
<td>Date of measurement</td>
<td>Date of measurement</td>
<td>Date of measurement</td>
<td>Date of measurement</td>
<td>Casing</td>
<td>Water quality</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>He-489</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>A. Saddlemire</td>
<td>79</td>
<td>1.25</td>
<td>510</td>
<td>05/01/75</td>
<td>D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-490</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>E. A. Brungard</td>
<td>80</td>
<td>6</td>
<td>200</td>
<td>05/01/75</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-491</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>First Baptist Church</td>
<td>140</td>
<td>1.25</td>
<td>410</td>
<td>06/16/75</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-492</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Messer</td>
<td>80</td>
<td>1.25</td>
<td>60</td>
<td>05/02/75</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-493</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Messer</td>
<td>95</td>
<td>1.25</td>
<td>120</td>
<td>05/02/75</td>
<td>D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-494</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Messer</td>
<td>160</td>
<td>2</td>
<td>140</td>
<td>05/02/75</td>
<td>D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-495</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>83</td>
<td>1.25</td>
<td>300</td>
<td>05/02/75</td>
<td>Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-496</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>A. Ward</td>
<td>97</td>
<td>1.25</td>
<td>36</td>
<td>05/02/75</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-497</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Dana</td>
<td>76</td>
<td>1.25</td>
<td>116</td>
<td>05/02/75</td>
<td>D,Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-498</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>G. L. Lanham</td>
<td>100</td>
<td>1.25</td>
<td>120</td>
<td>05/02/75</td>
<td>D</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-499</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>R. B. Waldron</td>
<td>110</td>
<td></td>
<td>100</td>
<td>05/02/75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-500</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>La Belle</td>
<td>16</td>
<td>4</td>
<td>6 - 4.65</td>
<td>06/10/74</td>
<td></td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-501</td>
<td>9</td>
<td>43</td>
<td>29</td>
<td>La Belle</td>
<td>42</td>
<td>2</td>
<td>24 - 4.65</td>
<td>06/10/74</td>
<td></td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-502</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Mills</td>
<td>97</td>
<td>1.25</td>
<td>200</td>
<td>05/02/75</td>
<td>Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-503</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>76</td>
<td>1.50</td>
<td>230</td>
<td>05/06/75</td>
<td>Ir</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of measurement</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-504</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>76</td>
<td>2</td>
<td>05/06/75</td>
<td>Ir</td>
<td>200</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-505</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Lucky</td>
<td>1.25</td>
<td>170</td>
<td>05/06/75</td>
<td>D</td>
<td>1,100</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-506</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Wayman</td>
<td>1.25</td>
<td>156</td>
<td>05/06/75</td>
<td>D</td>
<td>1,010</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-507</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Swain</td>
<td>18</td>
<td>72</td>
<td>05/06/75</td>
<td>Ir</td>
<td>780</td>
<td>Fe</td>
</tr>
<tr>
<td>He-508</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>Byron</td>
<td>81</td>
<td>140</td>
<td>05/06/75</td>
<td>H₂S</td>
<td>1,110</td>
<td></td>
</tr>
<tr>
<td>He-509</td>
<td>6</td>
<td>43</td>
<td>29</td>
<td>Baldwin</td>
<td>60</td>
<td>160</td>
<td>05/06/75</td>
<td>D</td>
<td>1,090</td>
<td></td>
</tr>
<tr>
<td>He-510</td>
<td>6</td>
<td>43</td>
<td>29</td>
<td>Baldwin</td>
<td>150</td>
<td>180</td>
<td>05/06/75</td>
<td>Ir</td>
<td>1,180</td>
<td></td>
</tr>
<tr>
<td>He-511</td>
<td>6</td>
<td>43</td>
<td>29</td>
<td>Baldwin</td>
<td>90</td>
<td>165</td>
<td>05/06/75</td>
<td></td>
<td>1,090</td>
<td></td>
</tr>
<tr>
<td>He-512</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>D. E. Christie</td>
<td>1.25</td>
<td>160</td>
<td>05/06/75</td>
<td>Ir</td>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td>He-513</td>
<td>5</td>
<td>43</td>
<td>29</td>
<td>H. Ahlefeldt</td>
<td>72</td>
<td>160</td>
<td>05/06/75</td>
<td></td>
<td>1,070</td>
<td></td>
</tr>
<tr>
<td>He-514</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>D. Bailey</td>
<td>82</td>
<td>120</td>
<td>05/02/75</td>
<td></td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>He-515</td>
<td>1</td>
<td>43</td>
<td>29</td>
<td>General Development Utility</td>
<td>300</td>
<td>8</td>
<td>110</td>
<td>01/07/76</td>
<td>1,200</td>
<td>P</td>
</tr>
<tr>
<td>He-516</td>
<td>1</td>
<td>43</td>
<td>29</td>
<td>General Development Utility</td>
<td>273</td>
<td>2</td>
<td>270 - 5.60</td>
<td>09/30/75</td>
<td>01/07/76</td>
<td></td>
</tr>
<tr>
<td>He-518</td>
<td>6</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Well number</td>
<td>Section Township Range (South)</td>
<td>Owner or lessee</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td>Water use</td>
<td>Remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-519</td>
<td>29 45 28</td>
<td>Sun Oil Co.</td>
<td>11,000</td>
<td>11,000</td>
<td></td>
<td></td>
<td>T</td>
<td>Oil test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-521</td>
<td>6 43 29</td>
<td>J. R. Paul</td>
<td>180</td>
<td>1,25</td>
<td>84</td>
<td>05/12/75</td>
<td>T</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-522</td>
<td>5 43 29</td>
<td>Davis</td>
<td>69</td>
<td>2</td>
<td>110</td>
<td>05/12/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-523</td>
<td>5 43 29</td>
<td>J. E. Moody</td>
<td>70</td>
<td>2</td>
<td>80</td>
<td>05/12/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-525</td>
<td>6 43 29</td>
<td>Schriner</td>
<td>85</td>
<td>80</td>
<td>828</td>
<td>05/12/75</td>
<td>D,Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-526</td>
<td>6 43 29</td>
<td>E. C. Lape</td>
<td>92</td>
<td>1.50</td>
<td>112</td>
<td>05/12/75</td>
<td>D</td>
<td>H₂S,Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-527</td>
<td>6 43 29</td>
<td>E. T. Knight</td>
<td>60</td>
<td>1.25</td>
<td>90</td>
<td>05/12/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-528</td>
<td>6 43 29</td>
<td>Spang</td>
<td>90</td>
<td>2</td>
<td>76</td>
<td>05/12/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-529</td>
<td>22 45 29</td>
<td>Hendry County</td>
<td>155</td>
<td>4</td>
<td>135 - 1.99</td>
<td>10/23/75</td>
<td>0,T</td>
<td>Drilled to 413 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-530</td>
<td>28 43 29</td>
<td>E. M. Anderson</td>
<td>160</td>
<td>2</td>
<td>145</td>
<td>10/02/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-531</td>
<td>28 43 29</td>
<td>E. M. Anderson</td>
<td>70</td>
<td>2</td>
<td>62</td>
<td>10/02/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-532</td>
<td>4 44 29</td>
<td>Citrus Belle</td>
<td>185</td>
<td>10</td>
<td>140</td>
<td>10/03/75</td>
<td>In</td>
<td>H₂S, 800 gal/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-533</td>
<td>5 44 29</td>
<td>Citrus Belle</td>
<td>185</td>
<td>4</td>
<td>140</td>
<td>10/03/75</td>
<td>In</td>
<td>H₂S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Township (north)</td>
<td>Range (east)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Above or below land surface</td>
<td>Date of measurement</td>
<td>Chloride concentration (ppm)</td>
<td>Specific conductance (μS/cm)</td>
<td>Temperature</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>He-534</td>
<td>25</td>
<td>43</td>
<td>28</td>
<td>Bob, Paul, Inc.</td>
<td>200</td>
<td>4</td>
<td>320</td>
<td>10/03/75</td>
<td>Ir</td>
<td>H2S</td>
</tr>
<tr>
<td>He-535</td>
<td>33</td>
<td>43</td>
<td>29</td>
<td>J. White</td>
<td>200</td>
<td>2</td>
<td>240</td>
<td>10/03/75</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-536</td>
<td>33</td>
<td>43</td>
<td>29</td>
<td>G. Wood</td>
<td>200</td>
<td>2</td>
<td>300</td>
<td>10/03/75</td>
<td>D</td>
<td>Fe</td>
</tr>
<tr>
<td>He-537</td>
<td>33</td>
<td>43</td>
<td>29</td>
<td>L. Gonzales</td>
<td>181</td>
<td>2</td>
<td>130</td>
<td>10/03/75</td>
<td>D</td>
<td>H2S, Fe</td>
</tr>
<tr>
<td>He-540</td>
<td>23</td>
<td>43</td>
<td>28</td>
<td>Berry Citrus Products</td>
<td>30</td>
<td>4</td>
<td>50</td>
<td>10/07/75</td>
<td>In</td>
<td>H2S</td>
</tr>
<tr>
<td>He-541</td>
<td>14</td>
<td>43</td>
<td>28</td>
<td>Mills</td>
<td>2</td>
<td>2</td>
<td>630</td>
<td>11/07/75</td>
<td>Ir</td>
<td>Flows in rainy season, H2S</td>
</tr>
<tr>
<td>He-543</td>
<td>14</td>
<td>43</td>
<td>28</td>
<td>O. Murry</td>
<td>109</td>
<td>1.50</td>
<td>750</td>
<td>11/07/75</td>
<td></td>
<td>Flows in rainy season, H2S</td>
</tr>
<tr>
<td>He-544</td>
<td>14</td>
<td>43</td>
<td>28</td>
<td>O. Murry</td>
<td>109</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Flows in rainy season</td>
</tr>
<tr>
<td>He-545</td>
<td>10</td>
<td>43</td>
<td>28</td>
<td>B. Rasmussen</td>
<td>8</td>
<td>6</td>
<td>950</td>
<td>11/10/75</td>
<td>28.5</td>
<td>Flows, H2S</td>
</tr>
<tr>
<td>He-546</td>
<td>10</td>
<td>43</td>
<td>28</td>
<td>D. Pinks</td>
<td>6</td>
<td>6</td>
<td>1,100</td>
<td>11/12/75</td>
<td>28.0</td>
<td>Flows, H2S</td>
</tr>
<tr>
<td>He-547</td>
<td>1</td>
<td>43</td>
<td>28</td>
<td>Am. Agronomistor</td>
<td>10</td>
<td>14</td>
<td>850</td>
<td>11/12/75</td>
<td>28.0</td>
<td>Over 100 gal/min, H2S</td>
</tr>
<tr>
<td>He-550</td>
<td>13</td>
<td>43</td>
<td>29</td>
<td>General Development Utilities</td>
<td>14</td>
<td>2</td>
<td>37</td>
<td>10/19/70</td>
<td></td>
<td>50 gal/min</td>
</tr>
<tr>
<td>He-551</td>
<td>13</td>
<td>43</td>
<td>29</td>
<td>General Development Utilities</td>
<td>24</td>
<td>2</td>
<td>40</td>
<td>10/70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>He-552</td>
<td>7</td>
<td>43</td>
<td>30</td>
<td>General Development Utilities</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-553</td>
<td>8</td>
<td>43</td>
<td>30</td>
<td>General Development Utilities</td>
<td>250</td>
<td>4</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-554</td>
<td>22</td>
<td>45</td>
<td>29</td>
<td>Hendry County</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>1.96</td>
<td>10/23/75 26.0 10/23/75 10/07/75 0</td>
<td></td>
</tr>
<tr>
<td>He-555</td>
<td>21</td>
<td>44</td>
<td>29</td>
<td>Hendry County</td>
<td>270</td>
<td>4</td>
<td>250</td>
<td>5.21</td>
<td>10/23/75 210 1,380 27.0 06/16/76 0,T Drilled to 440 feet</td>
<td></td>
</tr>
<tr>
<td>He-556</td>
<td>21</td>
<td>44</td>
<td>29</td>
<td>Hendry County</td>
<td>155</td>
<td>4</td>
<td>135</td>
<td>5.32</td>
<td>10/23/75 180 1,300 25.5 04/16/74 0</td>
<td></td>
</tr>
<tr>
<td>He-557</td>
<td>28</td>
<td>43</td>
<td>28</td>
<td>Hendry County</td>
<td>102</td>
<td>4</td>
<td>80</td>
<td>1.81</td>
<td>10/24/75 1,140 4,350 26.0 10/24/75 0,T Drilled to 340 feet</td>
<td></td>
</tr>
<tr>
<td>He-558</td>
<td>28</td>
<td>43</td>
<td>28</td>
<td>Hendry County</td>
<td>14</td>
<td>4</td>
<td>3</td>
<td>3.22</td>
<td>10/24/75 180 1,220 26.0 10/18/75 0</td>
<td></td>
</tr>
<tr>
<td>He-559</td>
<td>10</td>
<td>44</td>
<td>28</td>
<td>Hendry County</td>
<td>175</td>
<td>4</td>
<td>155</td>
<td>6.00</td>
<td>10/21/75 880 980 3,500 25.5 04/16/76 0,T Drilled to 344 feet</td>
<td></td>
</tr>
<tr>
<td>He-560</td>
<td>10</td>
<td>44</td>
<td>28</td>
<td>Hendry County</td>
<td>87</td>
<td>4</td>
<td>70</td>
<td>6.64</td>
<td>10/21/75 490 2,300 26.0 06/14/75 0</td>
<td></td>
</tr>
<tr>
<td>He-561</td>
<td>23</td>
<td>43</td>
<td>28</td>
<td>Berry Citrus Products</td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
<td>10/07/75 50 26.5 Fe</td>
<td></td>
</tr>
<tr>
<td>He-562</td>
<td>4</td>
<td>44</td>
<td>29</td>
<td>L. A. Taylor</td>
<td>196</td>
<td>2</td>
<td>60</td>
<td></td>
<td>10/07/75 180 D H₂S</td>
<td></td>
</tr>
<tr>
<td>He-563</td>
<td>4</td>
<td>44</td>
<td>29</td>
<td>A. A. Spencer</td>
<td>187</td>
<td>2</td>
<td>60</td>
<td></td>
<td>10/07/75 240 26.5 H₂S</td>
<td></td>
</tr>
<tr>
<td>He-564</td>
<td>4</td>
<td>44</td>
<td>29</td>
<td>L. Cowan</td>
<td>190</td>
<td>2</td>
<td></td>
<td></td>
<td>10/07/75 240 D H₂S</td>
<td></td>
</tr>
</tbody>
</table>

Drilled to 440 feet
Drilled to 340 feet
Drilled to 344 feet
<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner of tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (feet)</th>
<th>Water level (feet)</th>
<th>Date of measurement</th>
<th>Water quality</th>
<th>Chloride concentration</th>
<th>Specific conductance</th>
<th>Temperature</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-565</td>
<td>26</td>
<td>43</td>
<td>29</td>
<td>N. Taylor</td>
<td>180</td>
<td>2</td>
<td>250</td>
<td>10/07/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-566</td>
<td>26</td>
<td>43</td>
<td>29</td>
<td>D. Fussell</td>
<td>2</td>
<td>191</td>
<td>220</td>
<td>10/07/75</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-567</td>
<td>25</td>
<td>43</td>
<td>29</td>
<td>F. Timmons</td>
<td>145</td>
<td>2</td>
<td>280</td>
<td>10/07/75</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-568</td>
<td>26</td>
<td>43</td>
<td>29</td>
<td>F. L. Williams</td>
<td>187</td>
<td>2</td>
<td>180</td>
<td>10/07/75</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-569</td>
<td>10</td>
<td>44</td>
<td>28</td>
<td>Hendry County</td>
<td>17</td>
<td>4</td>
<td>11 - 4.34</td>
<td>10/07/75</td>
<td>2</td>
<td>675</td>
<td>26.5</td>
<td>12/08/75</td>
<td>01/09/76</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>He-570</td>
<td>2</td>
<td>45</td>
<td>28</td>
<td>Hendry County</td>
<td>202</td>
<td>5</td>
<td>500</td>
<td>28.5</td>
<td>11/07/75</td>
<td>Flows, H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-571</td>
<td>12</td>
<td>43</td>
<td>28</td>
<td>Wilson</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>He-573</td>
<td>6</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>674</td>
<td>6</td>
<td>292</td>
<td>1,160</td>
<td>11/07/75</td>
<td>Plugged in 1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-575</td>
<td>1</td>
<td>45</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>700</td>
<td>6</td>
<td>342</td>
<td>2,000</td>
<td>11/07/75</td>
<td>Plugged from 316-228 feet, possibly same as He-121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-577</td>
<td>31</td>
<td>42</td>
<td>29</td>
<td>A. Wilson</td>
<td>6</td>
<td>6</td>
<td>680</td>
<td>28.0</td>
<td>11/07/75</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-578</td>
<td>17</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>551</td>
<td>6</td>
<td>346</td>
<td>2,000</td>
<td>11/07/75</td>
<td>Plugged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-589</td>
<td>16</td>
<td>43</td>
<td>28</td>
<td>F. Niclos</td>
<td>6</td>
<td>6</td>
<td>1,140</td>
<td>12/02/75</td>
<td>Flows, H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well No.</td>
<td>Section</td>
<td>Township</td>
<td>Range</td>
<td>Owner or Tenant</td>
<td>Depth of Well (Feet)</td>
<td>Diameter (Inches)</td>
<td>Above or Below Ground Surface</td>
<td>Date of Measurement</td>
<td>Chloride Concentration</td>
<td>Specific Conductance</td>
<td>Temperature</td>
<td>Date of Measurement</td>
<td>Water Use</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>He-590</td>
<td>16</td>
<td>43</td>
<td>28</td>
<td>F. Niclos</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>He-591</td>
<td>21</td>
<td>46</td>
<td>34</td>
<td>Sugarland Ranch Southern Division</td>
<td>100</td>
<td>3</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-592</td>
<td>28</td>
<td>43</td>
<td>29</td>
<td>Unknown</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>He-593</td>
<td>3</td>
<td>44</td>
<td>28</td>
<td>Congen Properties</td>
<td>546</td>
<td>6</td>
<td>240 +27.2 12/07/77</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-594</td>
<td>28</td>
<td>43</td>
<td>31</td>
<td>U.S. Geological Survey</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>He-600</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Fla. Dept. of Agriculture</td>
<td>465</td>
<td>4</td>
<td>202</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-601</td>
<td>16</td>
<td>43</td>
<td>29</td>
<td>Fla. Dept. of Agriculture</td>
<td>36</td>
<td>4</td>
<td>-4.38 01/27/76</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-608</td>
<td>7</td>
<td>43</td>
<td>32</td>
<td>M. Carlton</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>He-609</td>
<td>7</td>
<td>43</td>
<td>32</td>
<td>Unknown</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>He-610</td>
<td>2</td>
<td>42</td>
<td>31</td>
<td>Unknown</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-611</td>
<td>15</td>
<td>43</td>
<td>32</td>
<td>Unknown</td>
<td>50</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-615</td>
<td>33</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Flows
- He-591: 100 gal/min, H2S, plugged
- He-601: 20 gal/min, H2S

Water Quality
- He-590: Fe
- He-609: H2S
- He-611: Fe

Former Use
- He-590: Sugarland Ranch Southern Division
- He-593: Congen Properties
- He-600: U.S. Geological Survey
- He-610: Unknown
- He-615: City of La Belle
Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas--Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Pleatmeter depth (feet)</th>
<th>Above or below land surface</th>
<th>Date of measurement</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (μS/cm)</th>
<th>Temperature (º F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-616</td>
<td>26</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>323</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-617</td>
<td>10</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-618</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>City of La Belle</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-619</td>
<td>25</td>
<td>43</td>
<td>28</td>
<td>City of La Belle</td>
<td>349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-620</td>
<td>19</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>350 2 171</td>
<td>310</td>
<td>1,610</td>
<td>04/10/76</td>
<td>T,0</td>
<td>35 gal/min</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-621</td>
<td>30</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>350 2 169</td>
<td>300</td>
<td>1,580</td>
<td>04/19/76</td>
<td>T,0</td>
<td>25 gal/min</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-622</td>
<td>19</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>340 2 175</td>
<td>280</td>
<td>1,540</td>
<td>04/20/76</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>He-623</td>
<td>24</td>
<td>44</td>
<td>29</td>
<td>Barfield</td>
<td>128 9 123 - 6.6</td>
<td>300</td>
<td>1,580</td>
<td>27.0</td>
<td>03/09/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-624</td>
<td>24</td>
<td>44</td>
<td>29</td>
<td>Barfield</td>
<td>185 6 147 - 6.2</td>
<td>300</td>
<td>1,580</td>
<td>24.5</td>
<td>07/15/76</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-625</td>
<td>14</td>
<td>44</td>
<td>29</td>
<td>Barfield</td>
<td>9 -13.13</td>
<td>320</td>
<td>1,700</td>
<td>25.5</td>
<td>03/09/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-626</td>
<td>24</td>
<td>44</td>
<td>29</td>
<td>Barfield</td>
<td>128 9 119 -12.20</td>
<td>1,730</td>
<td>24.5</td>
<td>07/15/76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-627</td>
<td>24</td>
<td>44</td>
<td>29</td>
<td>Barfield</td>
<td>130</td>
<td>1,700</td>
<td>25.5</td>
<td>03/09/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-628</td>
<td>18</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>21 12 13 - 4.34</td>
<td>27</td>
<td>500</td>
<td>10/29/76</td>
<td>T</td>
<td>275 gal/min; specific capacity 30.6 gal/min/ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (east)</th>
<th>Owner or tenant</th>
<th>Diameter (inches)</th>
<th>Depth (feet)</th>
<th>Date of measurement</th>
<th>Water level</th>
<th>Date of measurement</th>
<th>Water quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-629</td>
<td>6</td>
<td>44</td>
<td>33</td>
<td>Girl Scouts</td>
<td>144</td>
<td>2</td>
<td>-1.90</td>
<td>11/01/76</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>He-630</td>
<td>6</td>
<td>44</td>
<td>33</td>
<td>Girl Scouts</td>
<td>75</td>
<td>2</td>
<td>70</td>
<td></td>
<td>140</td>
<td>1,060</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>01/06/77</td>
</tr>
<tr>
<td>He-633</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>Shupe</td>
<td>100</td>
<td>2</td>
<td></td>
<td></td>
<td>90</td>
<td>1,030</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>01/06/77</td>
<td>H2S</td>
</tr>
<tr>
<td>He-634</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>Lamb</td>
<td>70</td>
<td>2</td>
<td></td>
<td></td>
<td>100</td>
<td>1,010</td>
<td>01/06/77</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
</tr>
<tr>
<td>He-635</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>E. F. Collins</td>
<td>80</td>
<td>1.50</td>
<td></td>
<td></td>
<td>100</td>
<td>1,020</td>
<td>01/06/77</td>
</tr>
<tr>
<td></td>
<td>01/06/77</td>
<td>H2S</td>
</tr>
<tr>
<td>He-636</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>O. H. Sheppard</td>
<td>47</td>
<td>2</td>
<td></td>
<td></td>
<td>95</td>
<td>1,030</td>
<td>01/06/77</td>
</tr>
<tr>
<td></td>
<td>01/06/77</td>
<td>H2S</td>
</tr>
<tr>
<td>He-637</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>Vaughn</td>
<td>108</td>
<td>2</td>
<td></td>
<td></td>
<td>80</td>
<td>1,030</td>
<td>01/06/77</td>
</tr>
<tr>
<td></td>
<td>01/06/77</td>
<td>H2S</td>
</tr>
<tr>
<td>He-638</td>
<td>10</td>
<td>43</td>
<td>34</td>
<td>Irimia, Jr.</td>
<td>2</td>
<td>27</td>
<td></td>
<td></td>
<td>95</td>
<td>1,140</td>
<td>01/06/77</td>
</tr>
<tr>
<td></td>
<td>01/06/77</td>
<td>H2S</td>
</tr>
<tr>
<td>He-639</td>
<td>15</td>
<td>43</td>
<td>34</td>
<td>H. Mitchell</td>
<td>78</td>
<td>1.50</td>
<td></td>
<td></td>
<td>95</td>
<td>1,110</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>01/11/77</td>
<td>H2S</td>
</tr>
<tr>
<td>He-640</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>Hendry General Hospital</td>
<td>120</td>
<td>6</td>
<td>100</td>
<td>180</td>
<td>1,280</td>
<td>24.5</td>
<td>03/09/77</td>
</tr>
<tr>
<td>He-641</td>
<td>17</td>
<td>43</td>
<td>34</td>
<td>Q. Westberry</td>
<td>2</td>
<td>40</td>
<td></td>
<td></td>
<td>45</td>
<td>765</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>01/11/77</td>
<td>Fe</td>
</tr>
<tr>
<td>He-642</td>
<td>17</td>
<td>43</td>
<td>34</td>
<td>Swindle</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td>45</td>
<td>735</td>
<td>01/11/77</td>
</tr>
<tr>
<td></td>
<td>01/11/77</td>
<td>Fe</td>
</tr>
<tr>
<td>He-643</td>
<td>8</td>
<td>44</td>
<td>30</td>
<td>Gutwain Groves</td>
<td>175</td>
<td>2</td>
<td>830</td>
<td>4,460</td>
<td>01/13/77</td>
<td>D</td>
<td>Fe</td>
</tr>
<tr>
<td>He-644</td>
<td>8</td>
<td>44</td>
<td>30</td>
<td>Gutwain Groves</td>
<td>2</td>
<td>680</td>
<td>3,270</td>
<td>01/13/77</td>
<td>D, Ir</td>
<td>H2S</td>
<td></td>
</tr>
</tbody>
</table>

- **Table Column Titles:**
 - Casing
 - Water level
 - Water quality
 - Date of measurement
 - Water use

- **Additional Notes:**
 - Water quality: H2S, Fe, HoS
 - Water use: 60 gal/min, H2S

- **Remarks:**
 - Hendry General Hospital: 03/09/77
 - Q. Westberry: 01/11/77
 - Swindle: 01/11/77
 - Gutwain Groves: 01/13/77
 - Gutwain Groves: 01/13/77
<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (north)</th>
<th>Range (east)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Casing (inches)</th>
<th>Casing depth (feet)</th>
<th>Date of measurement</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-645</td>
<td>8</td>
<td>44</td>
<td>30</td>
<td>Gutwain Groves</td>
<td>6</td>
<td></td>
<td></td>
<td>01/13/77</td>
<td>580</td>
<td>2,750</td>
</tr>
<tr>
<td>He-646</td>
<td>33</td>
<td>43</td>
<td>30</td>
<td>J. Carmona</td>
<td>80</td>
<td>8</td>
<td></td>
<td>01/13/77</td>
<td>70</td>
<td>840</td>
</tr>
<tr>
<td>He-647</td>
<td>33</td>
<td>43</td>
<td>30</td>
<td>R. McClurg</td>
<td>35</td>
<td>2</td>
<td></td>
<td>01/13/77</td>
<td>28</td>
<td>430</td>
</tr>
<tr>
<td>He-648</td>
<td>33</td>
<td>43</td>
<td>30</td>
<td>DeBruyn</td>
<td>98</td>
<td>2</td>
<td></td>
<td>02/02/77</td>
<td>67</td>
<td>1,000</td>
</tr>
<tr>
<td>He-649</td>
<td>17</td>
<td>43</td>
<td>34</td>
<td>Sugarland Ranch</td>
<td>50</td>
<td>2</td>
<td></td>
<td>02/02/77</td>
<td>190</td>
<td>1,410</td>
</tr>
<tr>
<td>He-650</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>Keri Fire Tower</td>
<td>2</td>
<td></td>
<td></td>
<td>02/02/77</td>
<td>114</td>
<td>1,240</td>
</tr>
<tr>
<td>He-651</td>
<td>18</td>
<td>43</td>
<td>34</td>
<td>Sugarland Ranch</td>
<td>50</td>
<td>2</td>
<td></td>
<td>02/02/77</td>
<td>125</td>
<td>1,050</td>
</tr>
<tr>
<td>He-652</td>
<td>19</td>
<td>43</td>
<td>34</td>
<td>Sugarland Ranch</td>
<td>50</td>
<td>1.50</td>
<td></td>
<td>02/02/77</td>
<td>50</td>
<td>860</td>
</tr>
<tr>
<td>He-653</td>
<td>30</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>50</td>
<td>2</td>
<td></td>
<td>02/02/77</td>
<td>90</td>
<td>1,010</td>
</tr>
<tr>
<td>He-654</td>
<td>33</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>80</td>
<td>6</td>
<td>02/02/77</td>
<td>S, Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-655</td>
<td>4</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>300</td>
<td>4</td>
<td>02/02/77</td>
<td>S</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-656</td>
<td>4</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>40</td>
<td>1.50</td>
<td>02/02/77</td>
<td>S</td>
<td>H₂S</td>
<td></td>
</tr>
<tr>
<td>He-658</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>Roberts</td>
<td>34</td>
<td>2</td>
<td></td>
<td>01/18/77</td>
<td>70</td>
<td>885</td>
</tr>
</tbody>
</table>
Table 1. Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (South)</th>
<th>Range (East)</th>
<th>Owner or cement</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Water level</th>
<th>Water quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-659</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>T. Taylor</td>
<td>20</td>
<td>2</td>
<td>20</td>
<td>70</td>
<td>775</td>
</tr>
<tr>
<td>He-660</td>
<td>20</td>
<td>43</td>
<td>34</td>
<td>R. Weikely</td>
<td>44</td>
<td>2</td>
<td>44</td>
<td>75</td>
<td>885</td>
</tr>
<tr>
<td>He-661</td>
<td>17</td>
<td>43</td>
<td>33</td>
<td>Air Glades Air Park</td>
<td>90</td>
<td>6</td>
<td>40</td>
<td>01/18/77</td>
<td>P</td>
</tr>
<tr>
<td>He-662</td>
<td>9</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>100</td>
<td>2</td>
<td>65</td>
<td>980</td>
<td>01/20/77</td>
</tr>
<tr>
<td>He-663</td>
<td>22</td>
<td>43</td>
<td>31</td>
<td>E. Dooley</td>
<td>37</td>
<td>2</td>
<td>25</td>
<td>470</td>
<td>01/20/77 D</td>
</tr>
<tr>
<td>He-664</td>
<td>22</td>
<td>43</td>
<td>31</td>
<td>J. Walters</td>
<td>11</td>
<td>2</td>
<td>40</td>
<td>600</td>
<td>01/24/77</td>
</tr>
<tr>
<td>He-665</td>
<td>34</td>
<td>43</td>
<td>31</td>
<td>J. W. Carter</td>
<td>83</td>
<td>2</td>
<td>40</td>
<td>1,080</td>
<td>01/24/77</td>
</tr>
<tr>
<td>He-666</td>
<td>34</td>
<td>43</td>
<td>31</td>
<td>J. W. Carter</td>
<td>20</td>
<td>2</td>
<td>40</td>
<td>635</td>
<td>25.0</td>
</tr>
<tr>
<td>He-667</td>
<td>34</td>
<td>43</td>
<td>31</td>
<td>Pioneer General Store</td>
<td>43</td>
<td>2</td>
<td>45</td>
<td>680</td>
<td>01/24/77</td>
</tr>
<tr>
<td>He-668</td>
<td>22</td>
<td>43</td>
<td>31</td>
<td>G. Austra</td>
<td>20</td>
<td>2</td>
<td>80</td>
<td>790</td>
<td>01/24/77</td>
</tr>
<tr>
<td>He-669</td>
<td>18</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>2</td>
<td>2</td>
<td>90</td>
<td>1,090</td>
<td>02/11/77 S</td>
</tr>
<tr>
<td>He-670</td>
<td>20</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>2</td>
<td>2</td>
<td>75</td>
<td>850</td>
<td>02/11/77 S</td>
</tr>
<tr>
<td>He-671</td>
<td>20</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>2</td>
<td>2</td>
<td>65</td>
<td>915</td>
<td>02/11/77 S</td>
</tr>
<tr>
<td>He-672</td>
<td>19</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>1.50</td>
<td>70</td>
<td>885</td>
<td>02/11/77 S</td>
<td>Fe</td>
</tr>
<tr>
<td>Local Well number</td>
<td>Section</td>
<td>Township (South)</td>
<td>Range (East)</td>
<td>Owner or tenant</td>
<td>Casing</td>
<td>Water level</td>
<td>Date of measurement</td>
<td>Water quality</td>
<td>Water use</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>He-673</td>
<td>19</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>1.50</td>
<td>130</td>
<td>02/11/77</td>
<td>S</td>
<td>500 gal/min</td>
</tr>
<tr>
<td>He-674</td>
<td>19</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>1.50</td>
<td>80</td>
<td>02/11/77</td>
<td>S</td>
<td>Fe</td>
</tr>
<tr>
<td>He-676</td>
<td>25</td>
<td>43</td>
<td>33</td>
<td>U.S. Sugar Corp.</td>
<td>2</td>
<td>120</td>
<td>02/11/77</td>
<td>S</td>
<td>Fe</td>
</tr>
<tr>
<td>He-680</td>
<td>18</td>
<td>43</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>2</td>
<td>40</td>
<td>02/11/77</td>
<td>Fe</td>
<td>Fe</td>
</tr>
<tr>
<td>He-681</td>
<td>22</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>50</td>
<td>02/15/77</td>
<td>Ir</td>
<td>500 gal/min</td>
</tr>
<tr>
<td>He-682</td>
<td>11</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>65</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-683</td>
<td>11</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>62</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-684</td>
<td>10</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>90</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-685</td>
<td>9</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>60</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-686</td>
<td>8</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>52</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-687</td>
<td>8</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>55</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
<tr>
<td>He-688</td>
<td>8</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>60</td>
<td>02/15/77</td>
<td>Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-689</td>
<td>8</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>75</td>
<td>02/15/77</td>
<td>Ir</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner of tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
<th>Date of measurement</th>
<th>Specific conductance (mS/cm)</th>
<th>Chloride concentration (mg/L)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-690</td>
<td>21</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>85</td>
<td>6</td>
<td>-9.44</td>
<td>02/17/77</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-691</td>
<td>34</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>126</td>
<td>6</td>
<td>-3.36</td>
<td>02/17/77</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-692</td>
<td>3</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>65</td>
<td>02/17/77</td>
<td>S</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-693</td>
<td>5</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>85</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-694</td>
<td>2</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>65</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-695</td>
<td>10</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>55</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-696</td>
<td>4</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>70</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-697</td>
<td>4</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>60</td>
<td>02/17/77</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-698</td>
<td>5</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>85</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-699</td>
<td>9</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>80</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-700</td>
<td>5</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>95</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-701</td>
<td>6</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-702</td>
<td>3</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>55</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-703</td>
<td>2</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>80</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-704</td>
<td>10</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td>6</td>
<td>65</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (North)</th>
<th>Range (East)</th>
<th>Owner of record</th>
<th>Depth in well (Feet)</th>
<th>Diameter (Inches)</th>
<th>Date of measurement</th>
<th>Chloride concentration</th>
<th>Specific conductivity</th>
<th>Temperature</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-705</td>
<td>33</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>105</td>
<td>770</td>
<td>25.5</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-706</td>
<td>3</td>
<td>48</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>60</td>
<td>805</td>
<td>25.5</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-707</td>
<td>34</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>60</td>
<td>835</td>
<td>25.5</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-708</td>
<td>34</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>70</td>
<td>845</td>
<td>25.0</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>Slight H₂S</td>
</tr>
<tr>
<td>He-709</td>
<td>21</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>35</td>
<td>615</td>
<td>25.5</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td></td>
</tr>
<tr>
<td>He-710</td>
<td>18</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>35</td>
<td>620</td>
<td>25.0</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td></td>
</tr>
<tr>
<td>He-711</td>
<td>16</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>35</td>
<td>580</td>
<td>25.5</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td></td>
</tr>
<tr>
<td>He-712</td>
<td>8</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>10</td>
<td></td>
<td></td>
<td>30</td>
<td>530</td>
<td>25.0</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-713</td>
<td>7</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>6</td>
<td></td>
<td></td>
<td>30</td>
<td>560</td>
<td>25.0</td>
<td>02/17/77</td>
<td>S, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-714</td>
<td>6</td>
<td>47</td>
<td>34</td>
<td>U.S. Sugar Corp.</td>
<td>4</td>
<td></td>
<td></td>
<td>65</td>
<td>740</td>
<td>25.0</td>
<td>02/17/77</td>
<td>D, Ir</td>
<td>H₂S</td>
</tr>
<tr>
<td>He-715</td>
<td>17</td>
<td>43</td>
<td>29</td>
<td>W. G. Woosley</td>
<td>34</td>
<td>6</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-716</td>
<td>11</td>
<td>44</td>
<td>29</td>
<td>P. O'Bannon</td>
<td>150</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-717</td>
<td>11</td>
<td>44</td>
<td>29</td>
<td>P. O'Bannon</td>
<td>150</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-718</td>
<td>11</td>
<td>44</td>
<td>29</td>
<td>P. O'Bannon</td>
<td>20</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas--Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner of record</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-719</td>
<td>11</td>
<td>44</td>
<td>29</td>
<td>P. O'Bannon</td>
<td>20</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>He-720</td>
<td>11</td>
<td>44</td>
<td>29</td>
<td>P. O'Bannon</td>
<td>150</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>He-721</td>
<td>11</td>
<td>43</td>
<td>28</td>
<td>G. Austin</td>
<td>140</td>
<td>6</td>
<td>Ir</td>
</tr>
<tr>
<td>He-722</td>
<td>11</td>
<td>43</td>
<td>28</td>
<td>G. Austin</td>
<td>20</td>
<td>4</td>
<td>Ir</td>
</tr>
<tr>
<td>He-723</td>
<td>4</td>
<td>46</td>
<td>33</td>
<td>E. C. Mills</td>
<td>109</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>He-724</td>
<td>4</td>
<td>46</td>
<td>33</td>
<td>E. C. Mills</td>
<td>109</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>He-725</td>
<td>4</td>
<td>46</td>
<td>33</td>
<td>E. C. Mills</td>
<td>109</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>He-726</td>
<td>9</td>
<td>46</td>
<td>34</td>
<td>J. W. Davis</td>
<td>70</td>
<td>8</td>
<td>54</td>
</tr>
<tr>
<td>He-727</td>
<td>9</td>
<td>46</td>
<td>34</td>
<td>J. W. Davis</td>
<td>70</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>He-728</td>
<td>9</td>
<td>46</td>
<td>34</td>
<td>J. W. Davis</td>
<td>70</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>He-729</td>
<td>16</td>
<td>46</td>
<td>34</td>
<td>J. W. Davis</td>
<td>70</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>He-731</td>
<td>1</td>
<td>43</td>
<td>28</td>
<td>Bowman's Farms</td>
<td>150</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>He-732</td>
<td>28</td>
<td>45</td>
<td>34</td>
<td>E. C. Mills</td>
<td>109</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>He-733</td>
<td>9</td>
<td>45</td>
<td>34</td>
<td>B. F. Paige</td>
<td>110</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner of tenure</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>He-735</td>
<td>34</td>
<td>45</td>
<td>29</td>
<td>J. E. Charlton</td>
<td>30</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>He-736</td>
<td>34</td>
<td>45</td>
<td>29</td>
<td>J. E. Charlton</td>
<td>26</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>He-737</td>
<td>34</td>
<td>45</td>
<td>29</td>
<td>J. E. Charlton</td>
<td>58</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>He-738</td>
<td>34</td>
<td>45</td>
<td>29</td>
<td>J. E. Charlton</td>
<td>58</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>He-739</td>
<td>34</td>
<td>45</td>
<td>29</td>
<td>J. E. Charlton</td>
<td>58</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>He-740</td>
<td>12</td>
<td>43</td>
<td>29</td>
<td>Hendry Fruit Co.</td>
<td>50</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>He-741</td>
<td>12</td>
<td>43</td>
<td>29</td>
<td>Hendry Fruit Co.</td>
<td>50</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>He-742</td>
<td>12</td>
<td>43</td>
<td>29</td>
<td>Hendry Fruit Co.</td>
<td>50</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>He-743</td>
<td>12</td>
<td>43</td>
<td>29</td>
<td>Hendry Fruit Co.</td>
<td>50</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>He-744</td>
<td>12</td>
<td>43</td>
<td>29</td>
<td>Hendry Fruit Co.</td>
<td>50</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>He-745</td>
<td>20</td>
<td>45</td>
<td>29</td>
<td>Felda Ranch</td>
<td>33</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>He-746</td>
<td>20</td>
<td>45</td>
<td>29</td>
<td>Felda Ranch</td>
<td>33</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>He-747</td>
<td>26</td>
<td>43</td>
<td>29</td>
<td>R. Crawford</td>
<td>47</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>He-750</td>
<td>4</td>
<td>43</td>
<td>28</td>
<td>C. Jones</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (east)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inch)</th>
<th>Hole (feet) or below (-)</th>
<th>Date of measurement</th>
<th>Chloride concentration</th>
<th>Specific conductance</th>
<th>Temperature</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Water quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-751</td>
<td>4</td>
<td>43</td>
<td>28</td>
<td>C. Jones</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-752</td>
<td>3</td>
<td>45</td>
<td>34</td>
<td>J. Hillard</td>
<td>150</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-753</td>
<td>3</td>
<td>45</td>
<td>34</td>
<td>J. Hillard</td>
<td>150</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-754</td>
<td>3</td>
<td>45</td>
<td>34</td>
<td>J. Hillard</td>
<td>150</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-755</td>
<td>4</td>
<td>45</td>
<td>34</td>
<td>J. Hillard</td>
<td>150</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-757</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>La Belle Porta Room</td>
<td>52</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-758</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>S. Johnson</td>
<td></td>
<td>Ir</td>
</tr>
<tr>
<td>He-759</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>Hoopman</td>
<td>10</td>
<td>2</td>
<td>- 5.25 03/17/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>He-760</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>J. H. Jones</td>
<td>190</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S</td>
</tr>
<tr>
<td>He-761</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>M. Benedetta</td>
<td>210</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S</td>
</tr>
<tr>
<td>He-762</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>M. R. Smith</td>
<td>60</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S, Fe</td>
</tr>
<tr>
<td>He-763</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>J. Sellers</td>
<td>79</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>He-764</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>J. L. Moss</td>
<td>68</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S</td>
</tr>
<tr>
<td>He-765</td>
<td>29</td>
<td>43</td>
<td>28</td>
<td>Cotton Cuttrelle</td>
<td>18</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>He-766</td>
<td>28</td>
<td>43</td>
<td>29</td>
<td>G. Jeffords</td>
<td>65</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range (West)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Depth (feet)</td>
<td>Above ("C")</td>
<td>Date of measurement</td>
<td>Chlorides concentration</td>
<td>Specific conductance</td>
<td>Temperature</td>
<td>Date of measurement</td>
<td>Water use</td>
<td>Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>He-767</td>
<td>28</td>
<td>43</td>
<td>28</td>
<td>G. Jeffords</td>
<td>65</td>
<td>3</td>
<td></td>
<td></td>
<td>03/17/77</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-768</td>
<td>27</td>
<td>43</td>
<td>28</td>
<td>Congen Properties</td>
<td>24</td>
<td>2</td>
<td>12</td>
<td></td>
<td>03/31/77</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-769</td>
<td>34</td>
<td>43</td>
<td>28</td>
<td>Congen Properties</td>
<td>50</td>
<td>2</td>
<td>42</td>
<td></td>
<td>03/31/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-770</td>
<td>27</td>
<td>43</td>
<td>28</td>
<td>Congen Properties</td>
<td>116</td>
<td>2</td>
<td></td>
<td></td>
<td>03/31/77</td>
<td>In, Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-771</td>
<td>27</td>
<td>43</td>
<td>28</td>
<td>Congen Properties</td>
<td>46</td>
<td>2</td>
<td></td>
<td></td>
<td>03/31/77</td>
<td>D, Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-772</td>
<td>8</td>
<td>43</td>
<td>29</td>
<td>D. Scroggins</td>
<td>120</td>
<td>2</td>
<td>90</td>
<td></td>
<td>03/31/77</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-774</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>Beacloaves Ralliastate</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>04/12/77</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-775</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>R. Holt</td>
<td>95</td>
<td>1</td>
<td></td>
<td></td>
<td>04/12/77</td>
<td>D</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-776</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>Unknown</td>
<td>70</td>
<td>2</td>
<td></td>
<td>7.80</td>
<td>04/12/77</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-777</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>L. J. Nobles</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td>04/12/77</td>
<td>Ir</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-778</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>County Line Trailer Court</td>
<td>196</td>
<td>1.25</td>
<td></td>
<td></td>
<td>04/12/77</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-779</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>J. F. Doub</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td>04/12/77</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-780</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>P. Reynolds</td>
<td>145</td>
<td>2</td>
<td>85</td>
<td></td>
<td>04/12/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-781</td>
<td>32</td>
<td>42</td>
<td>29</td>
<td>E. Newsome</td>
<td>45</td>
<td>1.75</td>
<td></td>
<td></td>
<td>04/12/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.--Records of selected wells and test holes in Hendry County and adjacent areas--Continued

<table>
<thead>
<tr>
<th>Local number</th>
<th>Section</th>
<th>Township (East)</th>
<th>Range (East)</th>
<th>Depth of wall (feet)</th>
<th>Diameter (inches)</th>
<th>Above surface</th>
<th>Date of measurement</th>
<th>Date of measurement</th>
<th>Chloride concentration</th>
<th>Specific conductance</th>
<th>Temperature</th>
<th>Water use</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-782</td>
<td>32 42</td>
<td>29</td>
<td></td>
<td>75</td>
<td>2</td>
<td></td>
<td>45</td>
<td>04/12/77 D</td>
<td>685</td>
<td></td>
<td>04/12/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-783</td>
<td>32 42</td>
<td>29</td>
<td></td>
<td>68</td>
<td>2</td>
<td></td>
<td>40</td>
<td>04/12/77 D</td>
<td>700</td>
<td></td>
<td>04/12/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-784</td>
<td>31 42</td>
<td>29 P. Alberry</td>
<td></td>
<td>85</td>
<td>2</td>
<td></td>
<td>45</td>
<td>04/12/77 Ir</td>
<td>530</td>
<td></td>
<td>04/12/77 D</td>
<td>Ir</td>
<td>H2S</td>
</tr>
<tr>
<td>He-785</td>
<td>31 42</td>
<td>29 Tucker</td>
<td></td>
<td>100 100</td>
<td>2 100</td>
<td></td>
<td>40</td>
<td>04/12/77 D</td>
<td>675</td>
<td></td>
<td>04/12/77 D</td>
<td>H2S</td>
<td></td>
</tr>
<tr>
<td>He-787</td>
<td>1 43</td>
<td>28 Yarbridge</td>
<td></td>
<td>100 120</td>
<td>2 21</td>
<td></td>
<td>12</td>
<td>04/13/77 D</td>
<td>430</td>
<td></td>
<td>04/13/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-788</td>
<td>1 43</td>
<td>28 Howard Slater House</td>
<td></td>
<td>182 20</td>
<td>2 21</td>
<td></td>
<td>70</td>
<td>04/13/77 D</td>
<td>705</td>
<td></td>
<td>04/13/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-789</td>
<td>1 43</td>
<td>28 E. Snider</td>
<td></td>
<td>48 20</td>
<td>2 21</td>
<td></td>
<td>20</td>
<td>04/13/77 D</td>
<td>640</td>
<td></td>
<td>04/13/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-790</td>
<td>11 43</td>
<td>28 A. E. Wilson Realty</td>
<td></td>
<td>90 210</td>
<td>6 210</td>
<td></td>
<td>210 1,240</td>
<td>04/13/77 D</td>
<td>1,240</td>
<td></td>
<td>04/13/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-791</td>
<td>11 43</td>
<td>28 S. Parson</td>
<td></td>
<td>112 55</td>
<td>2 21</td>
<td></td>
<td>55</td>
<td>04/13/77 D</td>
<td>680</td>
<td></td>
<td>04/13/77 D</td>
<td>D</td>
<td>Flows, H2S</td>
</tr>
<tr>
<td>He-792</td>
<td>2 43</td>
<td>28 G. Mayberry</td>
<td></td>
<td>28 30</td>
<td>2 21</td>
<td></td>
<td>30</td>
<td>04/13/77 D, Ir</td>
<td>540</td>
<td></td>
<td>04/13/77 D</td>
<td>D, Ir</td>
<td>Fe</td>
</tr>
<tr>
<td>He-793</td>
<td>2 43</td>
<td>28 J. Alley</td>
<td></td>
<td>120 45</td>
<td>2 21</td>
<td></td>
<td>45</td>
<td>04/13/77 D, Ir</td>
<td>635</td>
<td></td>
<td>04/13/77 D</td>
<td>D, Ir</td>
<td>H2S</td>
</tr>
<tr>
<td>He-794</td>
<td>2 43</td>
<td>28 E. J. Croft</td>
<td></td>
<td>120 40</td>
<td>2 21</td>
<td></td>
<td>40</td>
<td>04/13/77 D</td>
<td>595</td>
<td></td>
<td>04/13/77 D</td>
<td>D</td>
<td>H2S</td>
</tr>
<tr>
<td>He-795</td>
<td>2 43</td>
<td>28 E. J. Croft</td>
<td></td>
<td>120 25</td>
<td>2 21</td>
<td></td>
<td>25</td>
<td>04/13/77 Ir</td>
<td>515</td>
<td></td>
<td>04/13/77 D</td>
<td>Ir</td>
<td>Fe</td>
</tr>
<tr>
<td>He-799</td>
<td>10 43</td>
<td>28 Ft. Denaud Cemetary</td>
<td></td>
<td>6 180</td>
<td>2 21</td>
<td></td>
<td>180 1,120</td>
<td>04/13/77 D, Ir</td>
<td>1,120</td>
<td></td>
<td>04/13/77 D</td>
<td>Ir</td>
<td>H2S</td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (south)</td>
<td>Range (east)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Water level</td>
<td>Date of measurement</td>
<td>Water quality</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-800</td>
<td>7</td>
<td>45</td>
<td>29</td>
<td>A. Duda & Sons</td>
<td>100</td>
<td>1.50</td>
<td>25</td>
<td>04/19/77</td>
<td>D,In</td>
<td>H2S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-801</td>
<td>7</td>
<td>45</td>
<td>29</td>
<td>A. Duda & Sons</td>
<td>100</td>
<td>1.25</td>
<td>28</td>
<td>04/19/77</td>
<td>D,S</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-802</td>
<td>12</td>
<td>45</td>
<td>28</td>
<td>A. Duda & Sons</td>
<td>100</td>
<td>4</td>
<td>50</td>
<td>04/19/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-803</td>
<td>6</td>
<td>45</td>
<td>29</td>
<td>A. Duda & Sons</td>
<td>100</td>
<td>1.25</td>
<td>30</td>
<td>04/19/77</td>
<td>D,S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-806</td>
<td>46</td>
<td>32</td>
<td></td>
<td>Collier Corp.</td>
<td>80</td>
<td>13</td>
<td>100</td>
<td>04/21/77</td>
<td>Ir</td>
<td>H2S, not shown on map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-807</td>
<td>46</td>
<td>32</td>
<td></td>
<td>Collier Corp.</td>
<td>70</td>
<td>8</td>
<td>70</td>
<td>04/21/77</td>
<td>Ir</td>
<td>H2S, greenish-colored water, 300 gal/min, not shown on map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-808</td>
<td>46</td>
<td>32</td>
<td></td>
<td>Collier Corp.</td>
<td>70</td>
<td>8</td>
<td>40</td>
<td>04/21/77</td>
<td>Ir</td>
<td>H2S, 350 gal/min, not shown on map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-809</td>
<td>46</td>
<td>32</td>
<td></td>
<td>Collier Corp.</td>
<td>70</td>
<td>8</td>
<td>180</td>
<td>04/21/77</td>
<td>Ir</td>
<td>H2S, 300 gal/min, not shown on map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-810</td>
<td>46</td>
<td>30</td>
<td></td>
<td>Collier Corp.</td>
<td>70</td>
<td>8</td>
<td>120</td>
<td>04/21/77</td>
<td>Ir</td>
<td>H2S, 400 gal/min, not shown on map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-811</td>
<td>6</td>
<td>46</td>
<td>31</td>
<td>Collier Corp.</td>
<td>70</td>
<td>8</td>
<td>-5.07</td>
<td>03/17/77</td>
<td>Ir</td>
<td>H2S, 400 gal/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-812</td>
<td>6</td>
<td>47</td>
<td>31</td>
<td>Collier Corp.</td>
<td>6</td>
<td>6</td>
<td>55</td>
<td>05/17/77</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-813</td>
<td>7</td>
<td>47</td>
<td>31</td>
<td>Collier Corp.</td>
<td>35</td>
<td>8</td>
<td>-4.02</td>
<td>05/17/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township</td>
<td>Range</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>--------------------</td>
<td>------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>He-814</td>
<td>5</td>
<td>47</td>
<td>31</td>
<td>43</td>
<td>8</td>
<td>-5.67</td>
<td>05/17/77</td>
<td>66</td>
<td>725</td>
<td>05/18/77</td>
<td>24.5</td>
<td>05/18/77</td>
<td>24.5</td>
</tr>
<tr>
<td>He-819</td>
<td>6</td>
<td>47</td>
<td>31</td>
<td>53</td>
<td>8</td>
<td>5.87</td>
<td>05/17/77</td>
<td>45</td>
<td>610</td>
<td>05/18/77</td>
<td>25.5</td>
<td>05/18/77</td>
<td>25.5</td>
</tr>
<tr>
<td>He-820</td>
<td>31</td>
<td>46</td>
<td>31</td>
<td>8</td>
<td></td>
<td>120</td>
<td>05/17/77</td>
<td>1,080</td>
<td>25.0</td>
<td>05/18/77</td>
<td>130</td>
<td>1,180</td>
<td>25.0</td>
</tr>
<tr>
<td>He-821</td>
<td>31</td>
<td>46</td>
<td>31</td>
<td>59</td>
<td>8</td>
<td>5.12</td>
<td>05/18/77</td>
<td>130</td>
<td>1,180</td>
<td>25.0</td>
<td>05/18/77</td>
<td>25.0</td>
<td>05/18/77</td>
</tr>
<tr>
<td>He-830</td>
<td>7</td>
<td>48</td>
<td>31</td>
<td>45</td>
<td>8</td>
<td>4.63</td>
<td>06/08/77</td>
<td>36</td>
<td>680</td>
<td>06/08/77</td>
<td>24.5</td>
<td>06/08/77</td>
<td>24.5</td>
</tr>
<tr>
<td>He-831</td>
<td>8</td>
<td>48</td>
<td>31</td>
<td>148</td>
<td>8</td>
<td>5.73</td>
<td>06/08/77</td>
<td>56</td>
<td>770</td>
<td>06/08/77</td>
<td>23.0</td>
<td>06/08/77</td>
<td>23.0</td>
</tr>
<tr>
<td>He-832</td>
<td>8</td>
<td>48</td>
<td>31</td>
<td>63</td>
<td>6</td>
<td>6.23</td>
<td>06/08/77</td>
<td>100</td>
<td>950</td>
<td>06/08/77</td>
<td>24.0</td>
<td>06/08/77</td>
<td>24.0</td>
</tr>
<tr>
<td>He-833</td>
<td>15</td>
<td>48</td>
<td>31</td>
<td>67</td>
<td>6</td>
<td>4.46</td>
<td>06/08/77</td>
<td>40</td>
<td>790</td>
<td>06/08/77</td>
<td>24.0</td>
<td>06/08/77</td>
<td>24.0</td>
</tr>
<tr>
<td>He-834</td>
<td>14</td>
<td>48</td>
<td>31</td>
<td>55</td>
<td>8</td>
<td>3.85</td>
<td>06/09/77</td>
<td>34</td>
<td>780</td>
<td>06/09/77</td>
<td>24.0</td>
<td>06/09/77</td>
<td>24.0</td>
</tr>
<tr>
<td>He-835</td>
<td>13</td>
<td>48</td>
<td>31</td>
<td>65</td>
<td>8</td>
<td>4.06</td>
<td>06/08/77</td>
<td>32</td>
<td>715</td>
<td>06/08/77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-836</td>
<td>12</td>
<td>48</td>
<td>31</td>
<td>78</td>
<td>8</td>
<td>3.82</td>
<td>06/08/77</td>
<td>32</td>
<td>610</td>
<td>06/08/77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-837</td>
<td>1</td>
<td>48</td>
<td>31</td>
<td>79</td>
<td>10</td>
<td>3.57</td>
<td>06/08/77</td>
<td>40</td>
<td>820</td>
<td>06/08/77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-838</td>
<td>2</td>
<td>48</td>
<td>31</td>
<td>63</td>
<td>6</td>
<td>3.26</td>
<td>06/08/77</td>
<td>39</td>
<td>770</td>
<td>06/08/77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-839</td>
<td>11</td>
<td>48</td>
<td>31</td>
<td>48</td>
<td>8</td>
<td>4.25</td>
<td>06/08/77</td>
<td>31</td>
<td>750</td>
<td>06/08/77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (South)</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (inches)</th>
<th>Date of measurement of below grade</th>
<th>Water level</th>
<th>Casing</th>
<th>Chloride concentration</th>
<th>Specific conductance</th>
<th>Water temperature</th>
<th>Date of measurement</th>
<th>Water use</th>
<th>Owner of well</th>
<th>Water quality</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-840</td>
<td>3</td>
<td>48</td>
<td>31</td>
<td>Baron Collier III Trust</td>
<td>42</td>
<td>8</td>
<td>4.45</td>
<td>06/08/77</td>
<td>34</td>
<td>780</td>
<td>06/08/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-841</td>
<td>4</td>
<td>48</td>
<td>31</td>
<td>Collier Group</td>
<td>69</td>
<td>6</td>
<td>5.03</td>
<td>06/09/77</td>
<td>35</td>
<td>830</td>
<td>06/09/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-842</td>
<td>5</td>
<td>48</td>
<td>31</td>
<td>Collier Group</td>
<td></td>
<td></td>
<td>1,260</td>
<td>06/09/77</td>
<td>30</td>
<td>740</td>
<td>24.5</td>
<td>06/09/77</td>
<td>Flows wild</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-843</td>
<td>5</td>
<td>48</td>
<td>31</td>
<td>Collier Group</td>
<td>39</td>
<td>6</td>
<td>4.20</td>
<td>06/09/77</td>
<td>30</td>
<td>740</td>
<td>24.5</td>
<td>06/09/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-844</td>
<td>31</td>
<td>47</td>
<td>31</td>
<td>Collier Group</td>
<td>35</td>
<td>8</td>
<td>5.15</td>
<td>06/09/77</td>
<td>36</td>
<td>730</td>
<td>24.5</td>
<td>06/09/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-845</td>
<td>6</td>
<td>48</td>
<td>31</td>
<td>Collier Group</td>
<td>55</td>
<td>8</td>
<td>5.11</td>
<td>06/09/77</td>
<td>38</td>
<td>760</td>
<td>06/09/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-846</td>
<td>28</td>
<td>47</td>
<td>31</td>
<td>Collier Group</td>
<td>46</td>
<td>8</td>
<td>2.00</td>
<td>08/03/77</td>
<td>35</td>
<td>685</td>
<td>24.5</td>
<td>08/03/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-847</td>
<td>27</td>
<td>47</td>
<td>31</td>
<td>Collier Group</td>
<td>51</td>
<td>6</td>
<td>1.98</td>
<td>08/03/77</td>
<td>30</td>
<td>680</td>
<td>24.5</td>
<td>08/03/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-848</td>
<td>23</td>
<td>47</td>
<td>31</td>
<td>Collier Group</td>
<td>62</td>
<td>13</td>
<td>2.64</td>
<td>08/03/77</td>
<td>35</td>
<td>675</td>
<td>24.5</td>
<td>08/03/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-849</td>
<td>15</td>
<td>47</td>
<td>31</td>
<td>Baron Collier III Trust</td>
<td>34</td>
<td>8</td>
<td>2.88</td>
<td>08/03/77</td>
<td>30</td>
<td>640</td>
<td>23.5</td>
<td>08/03/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-851</td>
<td>21</td>
<td>44</td>
<td>29</td>
<td>Hendry County</td>
<td>13</td>
<td>4</td>
<td>0.90</td>
<td>08/25/77</td>
<td>200</td>
<td>1,590</td>
<td>24.0</td>
<td>02/22/78</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-852</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>Hendry County</td>
<td>17</td>
<td>4</td>
<td>1.37</td>
<td>09/07/77</td>
<td>60</td>
<td>710</td>
<td>08/12/77</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-853</td>
<td>32</td>
<td>44</td>
<td>31</td>
<td>Hendry County</td>
<td>61</td>
<td>4</td>
<td>2.61</td>
<td>08/25/77</td>
<td>50</td>
<td>760</td>
<td>08/12/77</td>
<td>O</td>
<td>80 gal/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-854</td>
<td>10</td>
<td>45</td>
<td>33</td>
<td>Hendry County</td>
<td>14</td>
<td>4</td>
<td>1.00</td>
<td>08/31/77</td>
<td>22</td>
<td>840</td>
<td>24.5</td>
<td>02/25/78</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Well Number</td>
<td>Section</td>
<td>Township</td>
<td>Range (East)</td>
<td>Owner or Tenant</td>
<td>Depth of Well (Feet)</td>
<td>Diameter (Inches)</td>
<td>Depth Above or Below Land Surface</td>
<td>Date of Measurement</td>
<td>Chloride Concentration</td>
<td>Specific Conductance</td>
<td>Date of Measurement</td>
<td>Water Use</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-855</td>
<td>34</td>
<td>45</td>
<td>32</td>
<td>Hendry County</td>
<td>90</td>
<td>4</td>
<td>70 - 1.97</td>
<td>08/31/77</td>
<td>110</td>
<td>940</td>
<td>08/12/77</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-856</td>
<td>34</td>
<td>45</td>
<td>32</td>
<td>Hendry County</td>
<td>11</td>
<td>4</td>
<td>4 - 0.74</td>
<td>08/31/77</td>
<td>21</td>
<td>332</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-857</td>
<td>10</td>
<td>43</td>
<td>31</td>
<td>U.S. Geological Survey</td>
<td>20</td>
<td>4</td>
<td>20 - 2.96</td>
<td>08/22/77</td>
<td>0</td>
<td>4 gal/min</td>
<td>02/22/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-858</td>
<td>27</td>
<td>43</td>
<td>32</td>
<td>U.S. Geological Survey</td>
<td>20</td>
<td>4</td>
<td>2.27</td>
<td>09/07/77</td>
<td>96</td>
<td>675</td>
<td>02/22/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>46</td>
<td>32</td>
<td>Hendry County</td>
<td>59</td>
<td>4</td>
<td>58 - 1.18</td>
<td>09/07/77</td>
<td>0</td>
<td>0</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-860</td>
<td>24</td>
<td>46</td>
<td>32</td>
<td>Hendry County</td>
<td>17</td>
<td>4</td>
<td>9 - 1.06</td>
<td>09/07/77</td>
<td>32</td>
<td>630</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-861</td>
<td>24</td>
<td>48</td>
<td>34</td>
<td>Hendry County</td>
<td>70</td>
<td>4</td>
<td>37 - 3.18</td>
<td>09/01/77</td>
<td>65</td>
<td>854</td>
<td>02/25/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-862</td>
<td>24</td>
<td>48</td>
<td>34</td>
<td>Hendry County</td>
<td>11</td>
<td>4</td>
<td>7 - 1.67</td>
<td>09/01/77</td>
<td>27</td>
<td>620</td>
<td>02/25/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-863</td>
<td>22</td>
<td>44</td>
<td>32</td>
<td>R. S. Iglesias</td>
<td>26</td>
<td>2</td>
<td>114</td>
<td>09/08/77</td>
<td>Ir</td>
<td>Fe</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-864</td>
<td>15</td>
<td>44</td>
<td>32</td>
<td>S. Rodriguez</td>
<td>25</td>
<td>1.50</td>
<td>55</td>
<td>09/08/77</td>
<td>D,Ir</td>
<td>Fe</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-865</td>
<td>25</td>
<td>44</td>
<td>32</td>
<td>Unknown</td>
<td>2</td>
<td>1</td>
<td>55</td>
<td>09/08/77</td>
<td>D,Ir</td>
<td>Fe</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-866</td>
<td>31</td>
<td>44</td>
<td>33</td>
<td>T. Pinero</td>
<td>93</td>
<td>2</td>
<td>200</td>
<td>09/08/77</td>
<td>D</td>
<td>H₂S</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-867</td>
<td>26</td>
<td>44</td>
<td>32</td>
<td>O. Arrue</td>
<td>61</td>
<td>1.50</td>
<td>150</td>
<td>09/08/77</td>
<td>D,Ir</td>
<td>D,Ir</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-868</td>
<td>27</td>
<td>47</td>
<td>33</td>
<td>Hendry County</td>
<td>97</td>
<td>4</td>
<td>84 + 1.44</td>
<td>09/28/77</td>
<td>100</td>
<td>0</td>
<td>02/23/78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township (East)</th>
<th>Range (West)</th>
<th>Owner of tenant</th>
<th>Depth of well (feet)</th>
<th>Diameter (Inches)</th>
<th>Above (-) or below land surface</th>
<th>Date of measurement</th>
<th>Chloride concentration (ppm)</th>
<th>Specific conductance (microsiemens per cm)</th>
<th>Temperature (°F)</th>
<th>Date of measurement</th>
<th>Water level</th>
<th>Water quality</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-869</td>
<td>7</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>34 6</td>
<td>-0.92</td>
<td>09/14/77</td>
<td>40 610 24.5 09/14/77</td>
<td>Ir</td>
<td>Slight H₂S, Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-870</td>
<td>28</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>26 6</td>
<td>-4.84</td>
<td>09/14/77</td>
<td>20 670 24.0 09/14/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-871</td>
<td>35</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>73 6</td>
<td>-2.55</td>
<td>09/14/77</td>
<td>60 1,220 24.5 09/14/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-872</td>
<td>36</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>72 6</td>
<td></td>
<td>09/14/77</td>
<td>60 1,220 24.5 09/14/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-873</td>
<td>36</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>68 6</td>
<td></td>
<td>09/14/77</td>
<td>60 1,220 24.5 09/14/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-874</td>
<td>36</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>70 6</td>
<td>59</td>
<td>09/14/77</td>
<td>40 610 24.5 09/14/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-875</td>
<td>36</td>
<td>45</td>
<td>31</td>
<td>Atlantic Land and Improvement Co.</td>
<td>80 6</td>
<td>39</td>
<td>09/14/77</td>
<td>40 610 24.5 09/14/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-876</td>
<td>19</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>79 8</td>
<td>-1.93</td>
<td>09/14/77</td>
<td>105 1,320 25.0 09/15/77</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-877</td>
<td>29</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>73 6</td>
<td>-2.46</td>
<td>09/20/77</td>
<td>150 1,180 24.0 09/20/77</td>
<td>Ir</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-878</td>
<td>29</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>80 6</td>
<td>50</td>
<td>09/20/77</td>
<td>150 1,180 24.0 09/20/77</td>
<td>Ir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (south)</td>
<td>Range (east)</td>
<td>Owner or tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
<td>Date of measurement</td>
<td>Chloride concentration (mg/L)</td>
<td>Specific conductance (microsiemens/cm)</td>
<td>Temperature</td>
<td>Date of measurement</td>
<td>Water use</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>He-880</td>
<td>13</td>
<td>48</td>
<td>34</td>
<td>Seminole Indian Tribe</td>
<td>95</td>
<td>6</td>
<td>-0.06</td>
<td>09/13/77</td>
<td>60</td>
<td>840</td>
<td>24.0</td>
<td>09/13/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-881</td>
<td>25</td>
<td>48</td>
<td>34</td>
<td>Seminole Indian Tribe</td>
<td>108</td>
<td>8</td>
<td>-0.73</td>
<td>09/13/77</td>
<td>60</td>
<td>840</td>
<td>24.5</td>
<td>09/13/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-882</td>
<td>30</td>
<td>48</td>
<td>34</td>
<td>Seminole Indian Tribe</td>
<td>103</td>
<td>6</td>
<td>-0.96</td>
<td>09/13/77</td>
<td>80</td>
<td>1,000</td>
<td>24.5</td>
<td>09/13/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-883</td>
<td>23</td>
<td>48</td>
<td>33</td>
<td>Seminole Indian Tribe</td>
<td>105</td>
<td>6</td>
<td>-1.52</td>
<td>09/13/77</td>
<td>115</td>
<td>970</td>
<td>24.5</td>
<td>09/13/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-884</td>
<td>18</td>
<td>48</td>
<td>33</td>
<td>Seminole Indian Tribe</td>
<td>67</td>
<td>4</td>
<td>62</td>
<td>02/25/78</td>
<td>62</td>
<td>675</td>
<td>24.0</td>
<td>02/25/78</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-885</td>
<td>6</td>
<td>45</td>
<td>32</td>
<td>Hendry County</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-886</td>
<td>34</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>85</td>
<td>6</td>
<td>-1.70</td>
<td>09/20/77</td>
<td>230</td>
<td>1,480</td>
<td>24.0</td>
<td>09/20/77</td>
<td>Ir H2S, Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-887</td>
<td>1</td>
<td>45</td>
<td>32</td>
<td>Atlantic Land and Improvement Co.</td>
<td>134</td>
<td>6</td>
<td>-2.17</td>
<td>09/20/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir H2S, Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-888</td>
<td>28</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>130</td>
<td>6</td>
<td>97</td>
<td>09/20/77</td>
<td>280</td>
<td>1,620</td>
<td>25.0</td>
<td>09/20/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-889</td>
<td>36</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>88</td>
<td>6</td>
<td>0.7</td>
<td>09/20/77</td>
<td>50</td>
<td>600</td>
<td>24.5</td>
<td>09/20/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-890</td>
<td>1</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>125</td>
<td>8</td>
<td>-0.66</td>
<td>09/20/77</td>
<td>210</td>
<td>1,300</td>
<td>24.5</td>
<td>09/20/77</td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He-891</td>
<td>10</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>105</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of selected wells and test holes in Hendry County and adjacent areas—Continued

<table>
<thead>
<tr>
<th>Local well number</th>
<th>Section</th>
<th>Township</th>
<th>Range (East)</th>
<th>Owner or tenant</th>
<th>Casing</th>
<th>Water level</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>He-892</td>
<td>15</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>115</td>
<td>6</td>
<td>Ir</td>
</tr>
<tr>
<td>He-893</td>
<td>15</td>
<td>45</td>
<td>33</td>
<td>Atlantic Land and Improvement Co.</td>
<td>120</td>
<td>6</td>
<td>Ir</td>
</tr>
<tr>
<td>He-894</td>
<td>9</td>
<td>48</td>
<td>33</td>
<td>Seminole Indian Tribe</td>
<td>53</td>
<td>6</td>
<td>-1.12 09/13/77 70 820 24.5 09/13/77 Ir</td>
</tr>
<tr>
<td>He-900</td>
<td>10</td>
<td>45</td>
<td>33</td>
<td>Hendry County</td>
<td>285</td>
<td></td>
<td>T,0</td>
</tr>
<tr>
<td>He-901</td>
<td>35</td>
<td>46</td>
<td>31</td>
<td>Hendry County</td>
<td>300</td>
<td></td>
<td>T,0</td>
</tr>
<tr>
<td>He-902</td>
<td>36</td>
<td>46</td>
<td>33</td>
<td>Hendry County</td>
<td>280</td>
<td></td>
<td>T,0 Lost circulation at 100 feet</td>
</tr>
<tr>
<td>He-907</td>
<td>16</td>
<td>43</td>
<td>34</td>
<td>U.S. Geological Survey</td>
<td>250</td>
<td>4</td>
<td>169</td>
</tr>
<tr>
<td>He-908</td>
<td>33</td>
<td>46</td>
<td>32</td>
<td>U.S. Geological Survey</td>
<td>165</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>He-909</td>
<td>11</td>
<td>45</td>
<td>30</td>
<td>U.S. Geological Survey</td>
<td>190</td>
<td>4</td>
<td>122</td>
</tr>
<tr>
<td>He-910</td>
<td>18</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>25</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>He-911</td>
<td>18</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>30</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>He-912</td>
<td>18</td>
<td>43</td>
<td>29</td>
<td>City of La Belle</td>
<td>37</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (South)</td>
<td>Range (East)</td>
<td>Owner or tenant</td>
<td>Casing</td>
<td>Water level</td>
<td>Water quality</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>C-632</td>
<td>31</td>
<td>46</td>
<td>29</td>
<td>Immokalee Utilities</td>
<td>340</td>
<td>1.25</td>
<td>225 - 6.50</td>
</tr>
<tr>
<td>C-875</td>
<td>1</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>615</td>
<td>4</td>
<td>306</td>
</tr>
<tr>
<td>C-876</td>
<td>12</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>593</td>
<td>4</td>
<td>305</td>
</tr>
<tr>
<td>C-877</td>
<td>2</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C-878</td>
<td>1</td>
<td>45</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>1,100</td>
<td>28.0</td>
<td>11/13/75</td>
</tr>
<tr>
<td>C-879</td>
<td>1</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>6</td>
<td>1,130</td>
<td>27.5</td>
</tr>
<tr>
<td>C-880</td>
<td>2</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>4</td>
<td>980</td>
<td>28.0</td>
</tr>
<tr>
<td>C-881</td>
<td>2</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>4</td>
<td>1,000</td>
<td>27.5</td>
</tr>
<tr>
<td>C-882</td>
<td>2</td>
<td>46</td>
<td>29</td>
<td>Atlantic Land and Improvement Co.</td>
<td>4</td>
<td>1,000</td>
<td>28.0</td>
</tr>
<tr>
<td>C-883</td>
<td>3</td>
<td>46</td>
<td>28</td>
<td>Atlantic Land and Improvement Co.</td>
<td>327+</td>
<td>6</td>
<td>210</td>
</tr>
<tr>
<td>Local well number</td>
<td>Section</td>
<td>Township (north)</td>
<td>Range (East)</td>
<td>Owner of tenant</td>
<td>Depth of well (feet)</td>
<td>Diameter (inches)</td>
<td>Above (-) or below (+) land surface</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Gl-517</td>
<td>36 42</td>
<td>29</td>
<td>General Development Utilities</td>
<td>138 8</td>
<td>128 - 4.65</td>
<td>09/30/75</td>
<td>P O</td>
</tr>
<tr>
<td>Gl-315</td>
<td>36 42</td>
<td>29</td>
<td>Nicoll</td>
<td>120 2</td>
<td>90</td>
<td>02/16/76 D</td>
<td>H2S, same as He-602</td>
</tr>
<tr>
<td>Gl-316</td>
<td>34 42</td>
<td>30</td>
<td>McGill</td>
<td>76 1.50</td>
<td>60</td>
<td>02/16/76 D</td>
<td>H2S, same as He-603</td>
</tr>
<tr>
<td>Gl-317</td>
<td>34 42</td>
<td>30</td>
<td>H. Cross</td>
<td>100+ 2</td>
<td>60</td>
<td>02/16/76 D</td>
<td>H2S, same as He-604</td>
</tr>
<tr>
<td>Gl-318</td>
<td>28 42</td>
<td>31</td>
<td>McNaughton</td>
<td>78 1.50</td>
<td>45</td>
<td>02/15/76 D</td>
<td>H2S, same as He-605</td>
</tr>
<tr>
<td>Gl-319</td>
<td>28 42</td>
<td>31</td>
<td>R. Keith</td>
<td>72 2</td>
<td>40</td>
<td>02/16/76 D</td>
<td>H2S, same as He-606</td>
</tr>
<tr>
<td>Gl-320</td>
<td>28 42</td>
<td>31</td>
<td>J. Seay</td>
<td>85 2</td>
<td>45</td>
<td>02/16/76 D</td>
<td>H2S, same as He-607</td>
</tr>
<tr>
<td>Gl-321</td>
<td>28 42</td>
<td>31</td>
<td>J. B. Hendry</td>
<td>80 4</td>
<td>34</td>
<td>720</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Table 1. Records of selected wells and test holes in Hendry County and adjacent areas—Continued.
Table 2.—Lithologic logs of test holes

He-429
Lat 26°44'48", long 81°26'16"
sec.9, T.43 S., R.29 E.

(Numbers in parentheses correspond to numbers used in the Rock-Color Chart by Goddard and others, 1948)

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, very pale-orange (10 YR 8/2); quartz, fine to medium, well sorted,</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>subrounded; abundant shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, white (N 9); packed biomicrite, sandy; well consolidated</td>
<td>44</td>
<td>47</td>
</tr>
<tr>
<td>Limestone, very light-gray (N 8); poorly washed biosparite, sandy; well</td>
<td>16</td>
<td>63</td>
</tr>
<tr>
<td>consolidated; some shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); poorly washed biosparite, sandy;</td>
<td>20</td>
<td>83</td>
</tr>
<tr>
<td>well consolidated; some shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, olive-gray (5 Y 4/1); quartz, very fine to fine, well sorted, angular</td>
<td>45</td>
<td>128</td>
</tr>
<tr>
<td>to subangular; clayey; some shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand as above; some limestone, yellowish-gray (5 Y 8/1); sparse biomicrite,</td>
<td>5</td>
<td>133</td>
</tr>
<tr>
<td>silty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty, slightly</td>
<td>10</td>
<td>143</td>
</tr>
<tr>
<td>phosphatic; loosely consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy, slightly</td>
<td>20</td>
<td>163</td>
</tr>
<tr>
<td>phosphatic; loosely consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, white (N 9); fossiliferous micrite, slightly phosphatic; loosely</td>
<td>15</td>
<td>178</td>
</tr>
<tr>
<td>consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, white (N 9); sparse biomicrite, sandy, slightly phosphatic;</td>
<td>25</td>
<td>203</td>
</tr>
<tr>
<td>loosely consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to fine, well sorted,</td>
<td>5</td>
<td>208</td>
</tr>
<tr>
<td>angular to subangular; traces of phosphorite; clayey, slightly calcareous;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>some shell fragments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-429—Continued
Lat 26°44'48", long 81°26'16"
sec.9, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy, slightly phosphatic; loosely consolidated</td>
<td>7</td>
<td>215</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, slightly phosphatic; loosely consolidated</td>
<td>16</td>
<td>231</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy, slightly phosphatic; loosely consolidated; minor phosphorite pebbles</td>
<td>7</td>
<td>238</td>
</tr>
<tr>
<td>Sandstone, yellowish-gray (5 Y 8/1); quartzose, fine grained, well sorted, very angular to subangular; silty; clayey, calcareous; well consolidated</td>
<td>10</td>
<td>248</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); sparse biomicrite, phosphatic; loosely consolidated</td>
<td>32</td>
<td>280</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); packed biomicrite, slightly phosphatic; loosely consolidated</td>
<td>8</td>
<td>288</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, slightly phosphatic, silty; loosely consolidated</td>
<td>15</td>
<td>303</td>
</tr>
</tbody>
</table>
Table 2.--Lithologic logs of test holes--Continued

He-431
Lat 26°43'57", long 81°26'16"
sec.16, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, dark-yellowish-brown (10 YR 4/2); quartz, fine to medium, moderately sorted, subangular to subrounded; some shell fragments</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; moderately consolidated; abundant shell fragments</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, fine to medium, well sorted, angular to subrounded; clayey, calcareous; slightly phosphatic; some shell fragments; some limestone, yellowish-grey (5 Y 8/1); fossiliferous micrite</td>
<td>64</td>
<td>115</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); poorly washed biosparite; well consolidated; abundant shell fragments</td>
<td>8</td>
<td>123</td>
</tr>
<tr>
<td>Claystone, light-olive-gray (5 Y 5/2); sandy; some limestone, micrite; well consolidated; some shell fragments</td>
<td>5</td>
<td>128</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz, granules to pebbles, moderately sorted, rounded to well rounded, some slightly phosphatized; quartz conglomerate, carbonaceous-calcareous cement</td>
<td>15</td>
<td>143</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite; well consolidated; molds are evident</td>
<td>16</td>
<td>159</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty; loosely consolidated</td>
<td>9</td>
<td>168</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy; loosely consolidated</td>
<td>25</td>
<td>193</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite; loosely consolidated</td>
<td>15</td>
<td>208</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-431—Continued
Lat 26°43'57", long 81°26'16"
sec.16, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy, slightly phosphatic below 223 feet; loosely consolidated</td>
<td>50</td>
<td>258</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy, phosphatic; loosely consolidated</td>
<td>5</td>
<td>263</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); silty; some phosphorite granules, decreasing in quantity below 283 feet; some shell fragments</td>
<td>40</td>
<td>303</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); sparse biomicrite, silty, phosphatic; moderately consolidated</td>
<td>20</td>
<td>323</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-519
Lat 26°31'57", long 81°32'06"
sec.29, T.45 S., R.28 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; well consolidated; some phosphorite granules; some clay</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, silty; well consolidated; molds are evident; some limestone as above</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Same as 0 to 50 feet</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, coarse sand to pebbles, poorly sorted, subrounded to well rounded</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite; well consolidated; molds are evident, porous</td>
<td>60</td>
<td>210</td>
</tr>
<tr>
<td>Missing</td>
<td>10</td>
<td>220</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite, slightly phosphatic; loosely consolidated</td>
<td>50</td>
<td>270</td>
</tr>
<tr>
<td>Lime mud, white (N 9); micrite, silty, phosphatic; traces of clay; unconsolidated</td>
<td>20</td>
<td>290</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, slightly phosphatic, silty; loosely consolidated</td>
<td>30</td>
<td>320</td>
</tr>
<tr>
<td>Same as 270 to 290 feet</td>
<td>10</td>
<td>330</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, slightly phosphatic, silty; traces of clay; loosely consolidated</td>
<td>20</td>
<td>350</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, slightly phosphatic; well consolidated</td>
<td>100</td>
<td>450</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, phosphatic; loosely consolidated</td>
<td>20</td>
<td>470</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, phosphatic; moderately consolidated; molds are evident; porous</td>
<td>50</td>
<td>520</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, slightly phosphatic, silty; loosely consolidated</td>
<td>50</td>
<td>570</td>
</tr>
<tr>
<td>As above; some phosphorite granules; some limestone, yellowish-gray (5 Y 8/1); sparite</td>
<td>20</td>
<td>590</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite; loosely consolidated; some sparite; phosphatized molds are evident; some phosphorite granules</td>
<td>20</td>
<td>610</td>
</tr>
<tr>
<td>Same as 520 to 570 feet; some phosphorite granules</td>
<td>40</td>
<td>650</td>
</tr>
</tbody>
</table>
Table 2.--Lithologic logs of test holes--Continued

He-529
Lat 26°33'10", long 81°25'09"
sec.22, T.45 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, fine to medium, moderately sorted, subangular to subrounded; some clay and muck</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Sand, very pale-orange (10 YR 8/2); quartz, fine to medium, well sorted, subangular to subrounded; shelly; some calcareous clay</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>As above; some limestone, yellowish-gray (5 Y 8/1), sandy micrite</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy; loosely consolidated</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, coarse to granules, well sorted, subrounded to rounded; some limestone, yellowish-gray (5 Y 8/1); sandy micrite</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to coarse, poorly sorted, subangular to rounded; some calcareous clay</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to fine, well sorted, angular to subangular; clayey, calcareous; some phosphorite</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>Sand, olive-gray (5 Y 4/1); quartz, fine to coarse, moderately sorted, angular to subrounded; some clay; some phosphorite; some shell fragments</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/); quartz, very fine to medium, well sorted, angular to rounded; clayey; some phosphorite</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>Sand, variable in color; quartz, coarse to granules, well sorted, subrounded to well rounded; some phosphorite granules</td>
<td>10</td>
<td>120</td>
</tr>
</tbody>
</table>
Table 2. Lithologic logs of test holes—Continued

He-529—Continued
Lat 26°33'10", long 81°25'09"
sec. 22, T. 45 S., R. 29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, white (N 9); micrite; loosely consolidated; some quartz and phosphorite granules</td>
<td>15</td>
<td>135</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite; moderately consolidated</td>
<td>30</td>
<td>165</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite, silty; loosely consolidated; some quartz sand and granules</td>
<td>30</td>
<td>195</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite, silty; moderately consolidated; some quartz sand</td>
<td>10</td>
<td>205</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite, silty; loosely consolidated</td>
<td>45</td>
<td>250</td>
</tr>
<tr>
<td>Siltstone, yellowish-gray (5 Y 7/2); quartzose; calcareous clay; some coarse grains of phosphorite at 300 to 315 feet</td>
<td>65</td>
<td>315</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, phosphatic; some shell fragments</td>
<td>65</td>
<td>380</td>
</tr>
<tr>
<td>Limestone, pale-olive-green (10 Y 6/2); micrite, silty; some shell fragments</td>
<td>10</td>
<td>390</td>
</tr>
<tr>
<td>Same as 315 to 380 feet</td>
<td>20</td>
<td>410</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, very pale-orange (10 YR 8/2); quartz, fine to medium, moderately sorted, subangular to subrounded; some quartzose sandstone; traces of shell fragments</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Shells; some limestone, yellowish-gray (5 Y 8/1); sand micrite; loosely consolidated</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; well consolidated</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); fossiliferous dismicrite, sandy; well consolidated</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, clayey, sandy; moderately consolidated</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); fossiliferous dismicrite, sandy; well consolidated</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); fossiliferous dismicrite, sandy; well consolidated; some calcareous clay</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); calcareous</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); silty, calcareous; traces of phosphorite</td>
<td>45</td>
<td>110</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, coarse sand to pebbles, poorly sorted, rounded to well rounded</td>
<td>15</td>
<td>125</td>
</tr>
<tr>
<td>Clay, yellowish-gray (5 Y 7/2); silty, calcareous; quartz and phosphorite ranging in size from coarse sand to pebbles, poorly sorted, rounded to well rounded</td>
<td>10</td>
<td>135</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite; moderately consolidated</td>
<td>25</td>
<td>160</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-555—Continued
Lat 26°38'43", long 81°26'07"
sec.21, T.44 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, silty; moderately consolidated</td>
<td>5</td>
<td>165</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, silty, traces of carbonaceous material; moderately consolidated</td>
<td>5</td>
<td>170</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, silty, clayey, traces of carbonaceous material; moderately consolidated</td>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, silty, sandy, slightly phosphatic; moderately consolidated</td>
<td>35</td>
<td>210</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, silty, slightly phosphatic; loosely to moderately consolidated</td>
<td>15</td>
<td>225</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty; loosely consolidated; some quartz and phosphorite sand, coarse grained</td>
<td>5</td>
<td>230</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; loosely consolidated; abundant quartz sand, ranging in size from coarse to granules</td>
<td>45</td>
<td>275</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); biomicrite, silty to sandy, phosphatic; loosely consolidated</td>
<td>10</td>
<td>285</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite silty, phosphatic, clayey; loosely consolidated</td>
<td>10</td>
<td>295</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); biomicrite silty, phosphatic, clayey; loosely consolidated</td>
<td>25</td>
<td>320</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-555—Continued
Lat 26°38'43", long 81°26'07"
sec.21, T.44 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siltstone, yellowish-gray (5 Y 7/2); quartzose, clayey, calcareous; loosely consolidated; some quartz and phosphorite sand towards the base, fine to coarse, poorly sorted; some shell fragments</td>
<td>20</td>
<td>340</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); silty, phosphatic; moderately consolidated</td>
<td>70</td>
<td>410</td>
</tr>
<tr>
<td>Siltstone, light-olive-gray (5 Y 6/1); quartzose, clayey, calcareous; loosely consolidated</td>
<td>5</td>
<td>415</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, phosphatic; well consolidated</td>
<td>25</td>
<td>440</td>
</tr>
</tbody>
</table>
Table 2—Lithologic logs of test holes—Continued

He-557
Lat 26°42'35", long 81°31'06"
sec.28, T.43 S., R.28 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, moderate-yellowish-brown (10 YR 5/4); quartz, fine to medium, well sorted, subangular to rounded; traces of quartzose sandstone-----------------------------------</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Shells; some quartz sand; clayey, calcareous----------------------------------</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Claystone, light-olive-gray (5 Y 6/1)---</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, silt to coarse, poorly sorted, very angular to well rounded; clayey; some phosphorite------------------------------</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Sand, very pale-orange (10 YR 8/2); quartz, very fine to fine, well sorted, very angular to subrounded; clayey, calcareous-----------------------------------</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); sparse biomicrite, sandy; well consolidated; some calcareous quartzose sandstone; some shell fragments---------------------------------</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Claystone, light-olive-gray (5 Y 6/1); sandy, slightly phosphatic; some limestone as above; traces of limestone, sandy sparite-------------------------------</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite; well consolidated-----------------</td>
<td>15</td>
<td>140</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite; well consolidated; some biosparite-------------------</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); biosparite---------------------------------</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite; well consolidated, becoming loosely consolidated at 155 to 160 feet------------------------------------</td>
<td>20</td>
<td>170</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-557—Continued
Lat 26°42'35", long 81°31'06"
sec.28, T.43 S., R.28 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, slightly phosphatic; moderately consolidated</td>
<td>45</td>
<td>215</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); silty, slightly phosphatic, calcareous; some shell fragments</td>
<td>65</td>
<td>280</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, phosphatic; loosely consolidated; some shell fragments</td>
<td>60</td>
<td>340</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-594
Lat 26°43'18", long 81°14'36"
sec.28, T.43 S., R.31 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, fine to medium, moderately sorted, subangular to subrounded; some quartzose sandstone; some muck; traces of phosphorite</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>As above; some limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy; well consolidated; porous</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, fine to medium, moderately sorted, subangular to subrounded; some shell fragments and micritic limestone</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous dismicrite; well consolidated; porous; molds are evident; some shell fragments</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); micrite, clayey, slightly phosphatic; loosely consolidated; some shell fragments; some sparse biomicrite and sand</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); micrite, silty to sandy, slightly phosphatic; loosely consolidated</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); sparse biomicrite, sandy; loosely consolidated</td>
<td>25</td>
<td>95</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to fine, well sorted, very angular to subangular; clayey, slightly calcareous</td>
<td>205</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-600
Lat 26°44'30", long 81°25'45"
sec.16, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, grayish-orange (10 YR 7/4); quartz, fine to medium, well sorted, subangular to subrounded; traces of limestone</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Shells; quartz sand, fine to medium, well sorted, angular to subrounded</td>
<td>47</td>
<td>65</td>
</tr>
<tr>
<td>Shells; some limestone, sparite</td>
<td>54</td>
<td>119</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to fine, well sorted, angular to subangular; clayey, calcareous; some shells</td>
<td>11</td>
<td>130</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy; well consolidated; some sand as above</td>
<td>9</td>
<td>139</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite, sandy, slightly phosphatic; moderately consolidated</td>
<td>100</td>
<td>239</td>
</tr>
<tr>
<td>Phosphorite, ranging in size from medium sand to pebbles, poorly sorted, subangular to well rounded</td>
<td>10</td>
<td>249</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); silty, some shell fragments</td>
<td>10</td>
<td>259</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, phosphatic; loosely to moderately consolidated; shell fragments are abundant</td>
<td>204</td>
<td>463</td>
</tr>
<tr>
<td>Dolomite, pale-yellowish-brown (10 YR 6/2); crystalline texture; porous; some coral and bryozoan fragments; some limestone as above</td>
<td>2</td>
<td>465</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-615
Lat 26°42'00", long 81°26'12"
sec.33, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, medium, well sorted, subrounded; traces of organic soil</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Limestone, grayish-orange (10 YR 7/4); micrite, sandy; well consolidated</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Limestone, grayish-orange (10 YR 7/4); micrite, silty to sandy; loosely consolidated</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, silt to fine, well sorted, very angular to subangular; clayey, calcareous</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Claystone, olive-gray (5 Y 4/1); sandy, slightly phosphatic; some shell fragments; loosely consolidated</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to fine, well sorted, very angular to subangular; clayey, slightly calcareous; some shell fragments</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, granules to pebbles, poorly sorted, rounded to well rounded; same sand as above</td>
<td>20</td>
<td>170</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, slightly phosphatic; well consolidated</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy, slightly phosphatic; well consolidated to moderately consolidated below 230 feet</td>
<td>57</td>
<td>257</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite; well consolidated</td>
<td>13</td>
<td>270</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy, slightly phosphatic; loosely consolidated</td>
<td>30</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 2.--Lithologic logs of test holes--Continued

He-616
Lat 26°43'02", long 81°23'35"
sec.26, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil and muck, dusky-brown (5 YR 2/2); sandy</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sand, brownish-gray (5 YR 4/1); quartz, fine to medium, well sorted, subangular to sub-rounded</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Shells; some quartz sand; traces of clay</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1), unsorted biosparite, sandy; well consolidated; some shell fragments</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); biomicrite, sandy; unconsolidated to loosely consolidated</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; loosely consolidated</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); sandy; some shell fragments; traces of phosphorite</td>
<td>100</td>
<td>160</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphomite, fine sand to pebbles, poorly sorted, subangular to well rounded; traces of clay</td>
<td>20</td>
<td>180</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; loosely consolidated; some clay, slightly phosphatic; some shell fragments</td>
<td>50</td>
<td>230</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); calcareous; sandy, phosphatic; some shell fragments</td>
<td>60</td>
<td>290</td>
</tr>
<tr>
<td>Shells; some phosphorite; traces of micrite</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy, phosphatic; loosely consolidated; abundant shells</td>
<td>12</td>
<td>312</td>
</tr>
<tr>
<td>Same as 290 to 300 feet</td>
<td>11</td>
<td>323</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-617
Lat 26°45'42", long 81°24'48"
sec.10, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil, dark-gray (N 3); sandy; some shell fragments</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); micrite, sandy; well consolidated</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); sparse biomicrite, sandy; loosely consolidated</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty; loosely consolidated</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, silty; loosely consolidated</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Shells</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to fine, well sorted, very angular to subrounded; some phosphorite; some shell fragments</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Sand, olive-gray (5 Y 4/1); quartz, very fine to fine, well sorted, very angular to angular; some phosphorite; some shell fragments; some clay</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Sand, olive-gray (5 Y 4/1); quartz, very fine to granules, poorly sorted, very angular to rounded; some phosphorite; some shell fragments; some clay</td>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, traces of phosphorite; loosely consolidated</td>
<td>60</td>
<td>165</td>
</tr>
<tr>
<td>Shells; some sandy calcareous clay</td>
<td>50</td>
<td>215</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to fine, well sorted; shelly; slightly phosphatic; clayey</td>
<td>15</td>
<td>230</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, phosphatic; loosely consolidated</td>
<td>42</td>
<td>272</td>
</tr>
<tr>
<td>Shells; clayey, light-olive-gray (5 Y 6/1); calcareous, sandy, phosphatic</td>
<td>15</td>
<td>287</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); biomicrite, silty to sandy, phosphatic; loosely consolidated</td>
<td>15</td>
<td>302</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-618
Lat 26°46'48", long 81°26'17"
sec.32, T.42 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone, moderate-yellowish-brown (5 YR 5/4); quartzose, fine to medium,</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>moderately sorted, very angular to subrounded; slightly phosphatic; traces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of limestone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandstone, yellowish-gray (5 Y 7/2); quartzose, very fine to medium grained,</td>
<td>18</td>
<td>38</td>
</tr>
<tr>
<td>well sorted, very angular to subangular; calcareous clay matrix; loosely</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, very fine to fine, well sorted,</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td>angular to subangular; clayey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, very fine to small pebbles,</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>moderately sorted, angular to rounded; clayey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite; well consolidated</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, slightly phosphatic;</td>
<td>9</td>
<td>75</td>
</tr>
<tr>
<td>loosely consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy, slightly phosphatic;</td>
<td>45</td>
<td>120</td>
</tr>
<tr>
<td>moderately consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy; loosely</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, phosphatic, sandy;</td>
<td>5</td>
<td>165</td>
</tr>
<tr>
<td>loosely consolidated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as 120 to 160 feet</td>
<td>15</td>
<td>180</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); sparse biomicrite, phosphatic</td>
<td>5</td>
<td>185</td>
</tr>
<tr>
<td>Same as 120 to 160 feet</td>
<td>5</td>
<td>190</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); sparse biomicrite, phosphatic, sandy; loosely consolidated</td>
<td>20</td>
<td>210</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty, phosphatic; loosely consolidated</td>
<td>15</td>
<td>225</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, slightly phosphatic; loosely consolidated</td>
<td>5</td>
<td>230</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, slightly phosphatic</td>
<td>5</td>
<td>235</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, silty, slightly phosphatic; loosely consolidated</td>
<td>15</td>
<td>250</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty, phosphatic; loosely consolidated</td>
<td>10</td>
<td>260</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, silty, phosphatic; loosely consolidated</td>
<td>40</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 2.--Lithologic logs of test holes—Continued

He-619
Lat 26°46'48", long 81°26'17"
sec.25, T.43 S., R.28 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, moderate-yellowish-brown (10 YR 5/4); quartz, fine to medium, moderately sorted, subangular to subrounded; limestone, very pale-orange (10 YR 8/2); micrite, sandy; well consolidated; some limonite; some peat and muck</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); micrite, sandy; well consolidated; some limonite; some shell fragments</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, well sorted, subangular to angular; some clay, calcareous; traces of shell fragments</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, clayey; moderately consolidated; some sand, quartz and phosphorite; some shell fragments</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); micrite, silty; moderately consolidated</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); traces of quartz, phosphorite, and shell fragments</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, ranging in size from medium sand to pebbles, poorly sorted, rounded to well rounded</td>
<td>45</td>
<td>145</td>
</tr>
<tr>
<td>As above; some limestone, white (N 9); micrite</td>
<td>20</td>
<td>165</td>
</tr>
<tr>
<td>Limestone, white (N 9); biomicrite; loosely consolidated</td>
<td>10</td>
<td>175</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite; moderately consolidated</td>
<td>55</td>
<td>230</td>
</tr>
</tbody>
</table>
Table 2.--Lithologic logs of test holes--Continued
He-619--Continued
Lat 26°46'48", long 81°26'17"
sec.25, T.43 S., R.28 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; loosely consolidated</td>
<td>50</td>
<td>280</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty, phosphatic;</td>
<td>45</td>
<td>325</td>
</tr>
<tr>
<td>moderately consolidated; some sand, quartz, and phosphorite, coarse--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty; loosely consolidated;</td>
<td>21</td>
<td>346</td>
</tr>
<tr>
<td>sand, quartz, and phosphorite, coarse to granules--------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-620
Lat 26°43'53", long 81°28'11"
sec.19, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2), micrite; well consolidated</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; well consolidated; some shell fragments</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite; well consolidated; some limestone as above</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite; loosely consolidated; some shell fragments</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, clayey; well consolidated</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, silty, clayey; well consolidated</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, silt to medium, well sorted, angular to subrounded; some calcareous clay; some phosphorite; some shell fragments</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to very fine sand, well sorted, very angular to angular; some clay</td>
<td>25</td>
<td>115</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to coarse, moderately sorted, very angular to rounded; some coarse phosphorite grains; clayey; some shell fragments</td>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, fine sand to pebbles, poorly sorted, angular to well rounded; some clay</td>
<td>10</td>
<td>135</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-620—Continued
Lat 26°43′53″, long 81°28′11″
sec.19, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, coarse sand to pebbles, poorly sorted, rounded to well rounded</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, silt to granules, moderately sorted, very angular to well rounded; some clay; traces of shell fragments</td>
<td>5</td>
<td>155</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, silt to pebbles, poorly sorted, very angular to well rounded; some clay; traces of shell fragments</td>
<td>10</td>
<td>165</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, medium to pebbles, poorly sorted, subrounded to well rounded; limestone, micrite; some shell fragments</td>
<td>5</td>
<td>170</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite; well consolidated; some quartz sand; traces of clay</td>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite; well consolidated</td>
<td>50</td>
<td>225</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite; silty; moderately consolidated</td>
<td>15</td>
<td>240</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; moderately consolidated; traces of shell fragments</td>
<td>15</td>
<td>255</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite; well consolidated; some quartz and phosphorite</td>
<td>20</td>
<td>275</td>
</tr>
<tr>
<td>Limestone, white (N 9); sparse biomicrite; traces of phosphorite and quartz</td>
<td>15</td>
<td>290</td>
</tr>
<tr>
<td>Shells; some limestone, yellowish-gray (5 Y 8/1); micrite, sandy, traces of phosphorite</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy, phosphatic; increase in phosphorite at 330 to 340 feet</td>
<td>40</td>
<td>340</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-621
Lat 26°42'58", long 81°27'57"
sec.30, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, grayish-orange (10 YR 7/4); fossiliferous dismicrite, sandy; well consolidated; some shell fragments</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; loosely consolidated</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine, well sorted, angular to subangular; clayey; calcareous; some shell fragments; traces of phosphorite granules</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, sandy, clayey; loosely consolidated</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, silty, clayey; loosely consolidated; some shell fragments</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Claystone, light-olive-gray (5 Y 6/1); calcareous, silty; moderately consolidated</td>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>Gravel, variable in color; quartz and phosphorite, coarse sand to pebbles, poorly sorted, rounded to well rounded</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>As above; some limestone, white (N 9); biomicrite, silty; loosely consolidated</td>
<td>10</td>
<td>160</td>
</tr>
<tr>
<td>Limestone, white (N 9); biomicrite, silty; loosely consolidated</td>
<td>30</td>
<td>190</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite; well consolidated; molds are evident; porous</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite; loosely consolidated</td>
<td>20</td>
<td>220</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty; loosely consolidated</td>
<td>90</td>
<td>310</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, clayey, slightly phosphatic</td>
<td>20</td>
<td>330</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, phosphatic, clayey; some phosphorite granules</td>
<td>20</td>
<td>350</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); micrite, sandy, clayey; loosely consolidated; shell fragments</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Shells, very pale-orange (10 YR 8/2); some limestone, packed bioracicrite, sandy, clayey</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); packed bioracicrite, clayey, sandy; well consolidated</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse bioracicrite, clayey; some embedded quartz grains; well consolidated</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Limestone, white (N 9); micrite; well consolidated</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>Limestone, white (N 9); sparse bioracicrite; well consolidated</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, clayey; loosely consolidated; silt; shell fragments</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); packed bioracicrite, clayey; well consolidated</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); micrite, clayey; well consolidated; some shell fragments</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); sparse bioracicrite, clayey</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to fine, well sorted, angular to subangular; clayey, calcareous; some shell fragments; some phosphorite</td>
<td>15</td>
<td>105</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-622—Continued
Lat 26°43'53", long 81°27'27"
sec.19, T.43 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, very fine to fine, moderately sorted, angular to subrounded; clayey; some shell fragments; some phosphorite</td>
<td>25</td>
<td>130</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, fine to medium, moderately sorted, angular to rounded; some phosphorite and quartz pebbles; clayey; shell fragments</td>
<td>8</td>
<td>138</td>
</tr>
<tr>
<td>Shells; some quartz sand, yellowish-gray (5 Y 7/2), very fine to medium, moderately sorted, angular to rounded; some micrite; some phosphorite and quartz granules to pebbles</td>
<td>17</td>
<td>155</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine grained to granules, moderately sorted, angular to rounded; some phosphorite granules; micrite, unconsolidated; some shell fragments</td>
<td>20</td>
<td>175</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to medium, moderately sorted, angular to rounded; some quartz granules; shelly; some micrite</td>
<td>5</td>
<td>180</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); sparse biomicrite; moderately consolidated; some phosphorite and quartz granules; some shell fragments</td>
<td>10</td>
<td>190</td>
</tr>
<tr>
<td>Limestone, white (N 9); sparse biomicrite, sandy, some phosphorite; moderately consolidated</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy, slightly phosphatic; moderately consolidated; some shell fragments</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty; moderately consolidated</td>
<td>10</td>
<td>220</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-622—Continued
Lat 26°43'53", long 81°27'27"
sec. 19, T. 43 S., R. 29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; moderately consolidated; some quartz granules</td>
<td>30</td>
<td>250</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty, sandy, slightly phosphatic; moderately consolidated; some shell fragments</td>
<td>40</td>
<td>290</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy, moderately consolidated, slightly phosphatic</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, moderately sorted, angular to subangular; some unconsolidated micrite, shelly, phosphatic</td>
<td>40</td>
<td>340</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-630
Lat 26°41'33", long 81°04'08"
sec.6, T.44 S., R.33 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous dismircite, sandy; well consolidated</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, silty; loosely consolidated; some phosphorite and quartz sand</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to coarse, moderately sorted, angular to rounded; shell fragments; some clay, calcareous</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to granule size, poorly sorted, angular to well rounded; some clay, calcareous; some phosphorite; some shell fragments</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>As 20 to 65 feet; rounded quartz pebbles</td>
<td>15</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-885
Lat 26°36'20", long 81°09'44"
sec.6, T.45 S., R.32 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, fine to medium, moderately sorted, angular to rounded; some muck traces of limestone</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); micrite, sandy, traces of phosphorite; moderately consolidated</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); dismicrite, sandy, slightly phosphatic; well consolidated</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); micrite, sandy; well consolidated; molds are evident</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, fine, well sorted, angular to subangular; clayey; some phosphorite; some shell fragments; limestone at 130 to 145 feet, micrite, sandy</td>
<td>225</td>
<td>275</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, fine to medium, moderately sorted, angular to rounded; clayey; some phosphorite; some shell fragments</td>
<td>25</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-900
Lat 26°35'15", long 81°01'20"
sec.10, T.45 S., R.33 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, dark-yellowish-orange (10 YR 6/6); quartz, fine to coarse, poorly sorted, subangular to well rounded; some sandstone, quartzose, calcareous; some shell fragments and muck</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to coarse, moderately sorted, subangular to well rounded; some sandstone, quartzose, calcareous; some limestone; traces of shell fragments</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Sand, moderate-yellowish-brown (10 YR 5/4); quartz, very fine to fine, well sorted, very angular to angular; some sandstone, quartzose, calcareous; some clay</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Sand, moderate-yellowish-brown (10 YR 5/4); quartz, fine to coarse, well sorted, angular to rounded; some phosphorite; some clay</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Sandstone, yellowish-gray (5 Y 8/1); quartzose; very fine to fine grained, well sorted, very angular to angular; calcareous</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to fine, well sorted, very angular to angular; traces of phosphorite</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; loosely consolidated</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy; loosely consolidated</td>
<td>55</td>
<td>150</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; loosely consolidated</td>
<td>35</td>
<td>185</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); sandy, slightly phosphatic; some shell fragments</td>
<td>100</td>
<td>285</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, dark-yellowish-brown (10 YR 4/2); quartz, fine to medium, moderately sorted, subangular to rounded; traces of limestone and limonite</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); packed biomicrite, silty, traces of phosphorite; well consolidated</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite; loosely consolidated; molds are evident</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty, loosely consolidated; molds are evident</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy, well consolidated; molds are evident; porous</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); packed biomicrite, sandy, slightly phosphatic; well consolidated</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy, slightly phosphatic; loosely consolidated; some clay</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to very fine, well sorted, very angular to subangular; phosphatic; some shell fragments</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Claystone, light-olive-gray (5 Y 6/1); some shell fragments; traces of quartz and phosphorite</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 6/1); sandy, some shell fragments</td>
<td>10</td>
<td>120</td>
</tr>
</tbody>
</table>
Table 2.--Lithologic logs of test holes--Continued

He-901--Continued
Lat 26°25'45", long 81°11'36"
sec.35, T.46 S., R.31 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to fine, well sorted,</td>
<td>15</td>
<td>135</td>
</tr>
<tr>
<td>very angular to subangular; clayey; some phosphorite; minor shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to fine, well sorted, very</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>angular to angular; clayey, calcareous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as 120 to 135 feet</td>
<td>10</td>
<td>155</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to granules, well</td>
<td>25</td>
<td>180</td>
</tr>
<tr>
<td>sorted, very angular to well rounded; clayey; some phosphorite; traces of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as 120 to 135 feet</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Same as 155 to 180 feet</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine sand to pebbles,</td>
<td>20</td>
<td>230</td>
</tr>
<tr>
<td>moderately sorted, very angular to well rounded; clayey; some phosphorite;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traces of shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to granules, well sorted,</td>
<td>30</td>
<td>260</td>
</tr>
<tr>
<td>very angular to well rounded; shelly; clayey; some phosphorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to fine, well sorted, very</td>
<td>30</td>
<td>290</td>
</tr>
<tr>
<td>angular to angular; clayey, slightly calcareous, phosphatic at 285 to 290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>feet; traces of shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to coarse, moderately</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>sorted, very angular to subrounded; clayey, slightly calcareous;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphorite, medium to coarse; traces of shell fragments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-902
Lat 26°26′12″, long 80°58′19″
sec.36, T.46 S., R.33 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, dusky-brown (5 YR 2/2); quartz, very fine to medium, poorly sorted, subangular to subrounded; some organic soil</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, fine sand to pebbles, poorly sorted, subangular to rounded</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Claystone, light-olive gray (5 Y 5/2); sandy</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to coarse, poorly sorted, very angular to subrounded; clayey; some phosphorite below 45 feet</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>As above; some limestone, fossiliferous micrite, sandy; loosely consolidated</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); fossiliferous micrite, sandy, slightly phosphatic; loosely consolidated</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to medium, well sorted, very angular to subrounded; clayey, calcareous; some phosphorite; some shell fragments</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); fossiliferous micrite, sandy, slightly phosphatic; loosely consolidated</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 7/2); packed biomicrite, sandy, slightly phosphatic; well consolidated</td>
<td>20</td>
<td>105</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse dismicrite, sandy, traces of phosphorite; well consolidated</td>
<td>85</td>
<td>190</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, silt to very fine, well sorted,</td>
<td>20</td>
<td>210</td>
</tr>
<tr>
<td>very angular to angular; clayey; phosphorite, silt to coarse; some shell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); silty, traces of shell fragments</td>
<td>25</td>
<td>235</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, silt to fine, well sorted, very</td>
<td>45</td>
<td>280</td>
</tr>
<tr>
<td>angular to angular; clayey, phosphatic; some shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, dusky-yellowish-brown (10 YR 2/2); quartz, very fine to medium, moderately sorted, very angular to rounded; some organic soil</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, very fine to medium, moderately sorted, very angular to rounded; minor phosphorite</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately sorted, very angular to rounded; some phosphorite; some shell fragments at 27 feet</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, poorly sorted, very angular to rounded; an increase in phosphorite, fine to coarse; some shell fragments</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately sorted, very angular to rounded; abundant phosphorite; shelly</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to fine, well sorted, very angular to subrounded; some phosphorite, very fine to medium; some shell fragments</td>
<td>50</td>
<td>95</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately sorted, very angular to rounded; abundant phosphorite, very fine to coarse; some shell fragments</td>
<td>10</td>
<td>105</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately sorted, very angular to rounded; abundant phosphorite, very fine to coarse; some limestone as 105 to 107 feet, dismicrite, sandy; well consolidated; some shell fragments</td>
<td>5</td>
<td>110</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-907—Continued
Lat 26°44'33", long 80°56'15"
sec.16, T.43 S., R.34 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, poorly sorted,</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>very angular to rounded; some shell fragments; some phosphorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately</td>
<td>5</td>
<td>135</td>
</tr>
<tr>
<td>sorted, very angular to rounded; some limestone as 105 to 107 feet; some</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shell fragments; some phosphorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to coarse, poorly sorted,</td>
<td>5</td>
<td>140</td>
</tr>
<tr>
<td>very angular to rounded; some phosphorite; some limestone, as 105 to 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>feet; some shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, well sorted,</td>
<td>15</td>
<td>155</td>
</tr>
<tr>
<td>very angular to rounded; an increase in phosphorite; some shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same as 135 to 140 feet</td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>Same as 140 to 155 feet</td>
<td>5</td>
<td>165</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, well sorted,</td>
<td>5</td>
<td>170</td>
</tr>
<tr>
<td>very angular to rounded; some shell fragments; some phosphorite; some</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limestone, sparite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, fine to coarse, moderately sorted,</td>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td>very angular to rounded; phosphorite, coarse; some shell fragments; some</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limestone, sparite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As above; some clay</td>
<td>5</td>
<td>185</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, silt to medium sand, moderately</td>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>sorted, very angular to subangular; phosphatic; clayey; some shell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); silty, slightly phosphatic</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>Clay as above; decrease in silt</td>
<td>40</td>
<td>250</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

He-908
Lat 26°25'43", long 81°07'41"
sec.33, T.46 S., R.32 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, grayish-brown (5 YR 3/2); quartz, fine to medium, moderately sorted,</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>very angular to rounded; traces of phosphorite__________________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, grayish-brown (5 YR 3/2); quartz, very fine to medium, well sorted,</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>very angular to subrounded; traces of phosphorite__________________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to medium, moderately</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>sorted, very angular to rounded; some shell fragments__________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shells; some quartz sand, very fine to fine, well sorted, very angular to</td>
<td>27</td>
<td>37</td>
</tr>
<tr>
<td>subangular; traces of sandy micrite at 35 to 37 feet______</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); poorly washed biosparite, sandy,</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td>traces of phosphorite; well consolidated; porous___________________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to fine, well sorted,</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>very angular to subrounded; some phosphorite; some shell fragments; some</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limestone, both poorly washed biosparite and sandy micrite________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; some shell fragments;</td>
<td>25</td>
<td>105</td>
</tr>
<tr>
<td>some sand, quartz, and phosphorite; traces of pyrite______</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); poorly washed biosparite, sandy,</td>
<td>10</td>
<td>115</td>
</tr>
<tr>
<td>slightly phosphatic; traces of pyrite________________________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand, grayish-brown (5 YR 3/2); quartz, very fine to fine, well sorted,</td>
<td>3</td>
<td>118</td>
</tr>
<tr>
<td>very angular to subangular; shelly; phosphatic; some limestone, poorly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>washed biosparite, sandy______________________</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.---Lithologic logs of test holes—Continued
He-908——Continued
Lat 26°25'43", long 81°07'41"
sec.33, T.46 S., R.32 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, grayish-brown (5 YR 3/2); quartz, very fine to medium, well sorted, angular to rounded; some phosphorite; traces of shell fragments</td>
<td>7</td>
<td>125</td>
</tr>
<tr>
<td>As above; some shell fragments; increase in phosphorite</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>Sand, grayish-brown (5 YR 3/2); quartz, very fine to medium, well sorted, very angular to subrounded; shelly; phosphatic</td>
<td>5</td>
<td>135</td>
</tr>
<tr>
<td>Same as 125 to 130 feet</td>
<td>8</td>
<td>143</td>
</tr>
<tr>
<td>Shells; some quartz sand as above</td>
<td>2</td>
<td>145</td>
</tr>
<tr>
<td>Same as 125 to 130 feet</td>
<td>2</td>
<td>147</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); silty, phosphatic; some shell fragments</td>
<td>13</td>
<td>160</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); silty to sandy, phosphatic; some shell fragments</td>
<td>5</td>
<td>165</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, brownish-black (5 YR 2/1); quartz, very fine to medium, well sorted, very angular to subrounded; some organic soil</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sand, grayish-orange (10 YR 7/4); quartz, very fine to medium, well sorted, very angular to subrounded; traces of phosphorite</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately sorted, very angular to subrounded; traces of phosphorite</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to fine, well sorted, very angular to subangular; some clay, slightly calcareous; traces of phosphorite; some shell fragments</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, well sorted, very angular to subrounded; some shells; some phosphorite; some clay, calcareous</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, well sorted, very angular to subrounded; shelly; some phosphorite</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, medium, well sorted, subangular to rounded; some shell fragments; some phosphorite</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, medium to coarse, angular to rounded; some phosphorite; some shell fragments; some dolomite</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, well sorted, angular to rounded; some shell fragments; some phosphorite; dolomite</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, moderately sorted, angular to rounded; shelly; slight increase in phosphorite</td>
<td>20</td>
<td>105</td>
</tr>
<tr>
<td>Description</td>
<td>Thickness (feet)</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, medium, well sorted, subangular to rounded, some shell fragments; some phosphorite, minor dolomite</td>
<td>30</td>
<td>135</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, well sorted, angular to rounded; minor shell fragments; minor phosphorite; trace of limestone at 140 to 145 feet</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, well sorted, angular to rounded; some shell fragments; minor phosphorite</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, well sorted, angular to rounded; some phosphorite; some shell fragments; minor limestone, micrite, well consolidated</td>
<td>15</td>
<td>165</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, very fine to medium, well sorted, very angular to subrounded; some phosphorite; minor shell fragments</td>
<td>5</td>
<td>170</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, fine, well sorted, very angular to rounded; some phosphorite; some clay</td>
<td>5</td>
<td>180</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, very fine to medium, moderately sorted, very angular to rounded; some clay; some phosphorite; some shell fragments</td>
<td>5</td>
<td>185</td>
</tr>
<tr>
<td>Sand, dark-greenish-gray (5 Gy 4/1); quartz, very fine to medium, well sorted, angular to rounded; some phosphorite; minor shell fragments; some clay</td>
<td>5</td>
<td>190</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

C-632
Lat 26°26'02", long 81°27'03"
sec.31, T.46 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, grayish-orange (10 YR 7/4); quartz, very fine to fine, moderately sorted, angular to subrounded</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); micrite, sandy; loosely consolidated; traces of phosphorite</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to medium, moderately sorted, very angular to rounded; traces of limestone, micrite; some phosphorite; minor shell fragments</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine to coarse, moderately sorted, angular to rounded; some limestone, micrite; some clay</td>
<td>15</td>
<td>135</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 8/1); quartz, very fine sand to granules, poorly sorted, very angular to well rounded; some limestone, micrite, sandy; traces of phosphorite</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Same as 120 to 135 feet</td>
<td>5</td>
<td>155</td>
</tr>
<tr>
<td>Same as 20 to 120 feet</td>
<td>35</td>
<td>190</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 5/2); quartz, very fine to medium, well sorted, angular to rounded; clayey</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); sandy, slightly phosphatic</td>
<td>15</td>
<td>215</td>
</tr>
<tr>
<td>Same as 190 to 200 feet</td>
<td>15</td>
<td>230</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; well consolidated; some claystone</td>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous, micrite, sandy; loosely consolidated</td>
<td>5</td>
<td>255</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

C-632—Continued
Lat 26°26'02", long 81°27'03''
sec.31, T.46 S., R.29 E.

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, silty; loosely consolidated</td>
<td>5</td>
<td>260</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous dismicrite; well consolidated; porous</td>
<td>20</td>
<td>280</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, silty; moderately consolidated</td>
<td>35</td>
<td>315</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); fossiliferous micrite, sandy, clayey; loosely consolidated</td>
<td>10</td>
<td>325</td>
</tr>
<tr>
<td>Clay, light-olive-gray (5 Y 5/2); sandy, calcareous; some shell fragments; traces of phosphorite</td>
<td>15</td>
<td>340</td>
</tr>
</tbody>
</table>
Table 2.—Lithologic logs of test holes—Continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (feet)</th>
<th>Depth (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, very fine to medium, moderately sorted, subangular to subrounded; some shell fragments; some phosphorite</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sand, dark-yellowish-brown (10 YR 4/2); quartz, medium, well sorted, subangular to subrounded; shelly</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sand, pale-yellowish-brown (10 YR 6/2); quartz, fine to medium, moderately sorted, angular to subrounded; shelly; traces of phosphorite</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Sand, yellowish-gray (5 Y 7/2); quartz, fine to medium, moderately sorted, subangular to subrounded; shelly; traces of phosphorite</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Limestone, yellowish-gray (5 Y 8/1); sparse biomicrite, sandy; loosely consolidated</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Limestone, very pale-orange (10 YR 8/2); micrite; unconsolidated; traces of quartz and shell fragments</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Limestone, light-olive-gray (5 Y 6/1); fossiliferous micrite, silty; loosely consolidated; some shell fragments</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to fine, well sorted, subangular to subrounded; some clay, calcareous; traces of phosphorite; some shell fragments; few quartz pebbles at 65 to 70 feet</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>Sand, light-olive-gray (5 Y 6/1); quartz, silt to granules, poorly sorted, subangular to well rounded; some clay, calcareous; shelly; some phosphorite</td>
<td>50</td>
<td>120</td>
</tr>
</tbody>
</table>