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THE LAKE ELLEN KIMBERLITE, MICHIGAN, U.S.A.

by E. S. McGee and B, C. Hearn, Jr.

ABSTRACT

The recently discovered Lake Ellen kimberlite, in northern Michigan,
indicates that bedrock sources of diamonds found in glacial deposits in the
Great Lakes area could lie within the northern U.S. Magnetic surveys show a
main kimberlite 200 m in diameter and an adjacent body 25 x 90 m(?). The
kimberlite cuts Proterozoic volcanic rocks that overlie Archean basement, but
is post-Ordovician in age based on abundant Ordovician(?) dolomite inclusions.
Xenocrysts and megacrysts are ilmenite (abundant, 12.5-19% Mg0), pyrope-
almandine and Cr-pyrope (up to 9.3% Crp03), Cr-diopside (up to 4.5% Cry03),
olivine (Fo 91), enstatite and phlogopite. The kimberlite contains fragments
of crustal schist and granulite, as well as disaggregated crystals and rare
xenoliths of eclogites, garnet pyroxenites and garnet peridotites from a
heterogeneous upper mantle., Eclogites, up to 3 cm size, show granoblastic
equant or tabular textures and consist of jadeitic cpx (up to 8.4% Na»0, 15.3%
A1203), pyrope-almandine, + rutile + kyanite + sanidine + sulfide. Garnet
pyroxenite contains pyrope (0.44% Crp03) + cpx (0.85% Nap0, 0.53% Crp03) + Mg-
Al spinel, Mineral compositions of rare composite xenocrysts of garnet + cpx
are distinctively peridotitic, pyroxenitic or eclogitic. Calculated temperatures
of equilibration are 920-1060 °C for the eclogites and 820-910 °C for the
garnet pyroxenite using the Ellis-Green method. Five peridotite garnet-clino-
pyroxene composite xenocrysts have calculated temperatures of 980-1120 °C
using the Lindsley-Dixon 20 kb solvus. Spinel pyroxenite and clinopyroxene-
orthopyroxene composites have lower calculated temperatures of 735 °C and
820-900 °C, respectively. Kyanite-bearing eclogites must have formed at
pressures greater than 18-20 kb. Using the present shield geotherm with a
heat flow value of 44mW/m2 for the time of kimberlite emplacement, the eclogite
temperatures imply pressures of 35-48 kb (105-140 km) and the garnet pyroxenite
temperatures indicate pressures of 24-29 kb (75-90 km). Temperatures of
two peridotitic garnet-cpx composite xenocrysts if on a shield geotherm,
imply pressures within the diamond stability field.

INTRODUCTION

The Lake Ellen kimberlite is located in the upper peninsula of Michigan,
near the Wisconsin-Michigan border (Fig. 1), It is about 15 km northeast of
Crystal Falls, Michigan and about 1.5 km west of Lake Ellen. The kimberlite
was first recognized about 15 years ago by an exploration geologist. A recent
description of the kimberlite, its geologic setting, and magnetic and gravity
traverses (Cannon and Mudrey, 1981) emphasizes its significance as indicative
of possible bedrock sources of the widespread diamond finds in alluvial and
glacial deposits in the Great Lakes area. Cannon and Mudrey (1981) also
summarize other occurrences of localized subsidence or intense deformation in



the region that may be related to emplacement of kimberlite or to other diatreme-
forming processes. In the early 1950's, a ground magnetometer survey found
erratic high values over part of the kimberlite, but there were no exposures

of kimberlite at that time and the erratic values were ascribed to the common
problem of boulders of iron formation in the glacial deposits (Gair and Wier,
1956).

The kimberlite cuts across lower Proterozoic X metavolcanic rocks, southeast
of the Amasa dome of Archean gneiss. The age of the kimberlite has not yet
been determined, but it is post-Ordovician as it contains abundant inclusions
of fossiliferous Ordovician(?) dolomite similar to the Black River Group. The
nearest exposure of the Black River Group is now about 60 km away, and the
Black River Group would have been at least 200 m stratigraphically above the
present surface when the kimberlite was intruded (Cannon and Mudrey, 1981).

Most of the area is covered by glacial till and alluvium, and the kim-
berlite has only four outcrops, three of which are in a logging road. The
largest outcrop is 2 by 4 m in size, and like the others, consists mainly of
small fragments of altered kimberlite.

A ground magnetometer survey was done by the authors July 12-15 and August
12, 1980, and August 9, 1981 using a Geometrics model G-812/826 proton
magnetometer, A grid of stations at intervals of 50 feet (15 m) and locally
25 feet (7.5 m) or less, was marked by measuring distances with a tape along
lines established using a Brunton compass. East-west lines 100 feet (30.5 m)
apart were surveyed on each side of a central north-south line. Additional
stations halfway between those east-west lines were located by tape measurement
from each line. Readings every 1-1.5 hours at a primary base station 370 feet
(115 m) south of the kimberlite, or at a secondary base station, were used to
make linear corrections for diurnal variations. Magnetic values are believed
to be accurate to + 3 gammas. Two pipes have been identified and contoured
(fig. 2) from the survey. The main pipe is roughly circular and about 200 m
in diameter. A smaller, satellitic body to the northeast is less well defined,
but is about 25 by 90 m in size.

The kimberlite in the outcrops is mainly a rubbly, partially clayey material
with many xenocrysts, lithic inclusions from shallow levels, and a few xenoliths
of deeper origin., Several shallow pits were dug, and in a few, hard kimberlite
was reached. The hard kimberlite is extensively serpentinized, and contains
xenocrysts and xenoliths like those found in the loose rubble of the outcrops.

MEGACRYST-XENOCRYST SUITE

The suite of megacrysts (greater than 1 cm) are distinguished from the
suite of xenocrysts (less than 1 cm) by their grain size., Megacrysts and
xenocrysts which are contained in the kimberlite have been primarily selected
from panned concentrates and from bag samples of loose material. Xenocrysts
average 2-4 mm in size., The megacryst suite is composed of ilmenite,
clinopyroxene, and garnet. Representative analyses of each are shown in Table
1. The xenocryst suite is more diverse, being composed of: ilmenite, garnet,
clinopyroxene, orthopyroxene, phlogopite, and olivine. In addition, several
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composite xenocrysts of garnet-clinopyroxene and clinopyroxene-orthopyroxene
have been found. These composites are equant mineral pairs, 1-2mm in size,
which are embedded in each other as coexisting grains and are not intergrowths.

ILMENITES

The ilmenites analyzed thus far are mainly megacrysts. The megacrysts
range in size from 1-3 cm, with most falling in the range 1-1.5 cm. The
megacrysts are both multigranular and single grains. Many of the ilmenite
megacrysts have a single grain 'core' surrounded by a multigranular rim. Four
xenocrysts from panned concentrate (2-4 mm) and 5 xenocrysts (1 mm) picked
from the kimberlite matrix have been analyzed. The Mg0 content in megacrysts
and xenocrysts is high, ranging from 12,54 to 19.10 wt. %. The ilmenite grains
have 45-60% geikelite component and 2-7% hematite component (Fig. 3A). This
hematite component is slightly lower than other ilmenites from North American
kimberlites (Fig. 3B). There is no distinct difference between Lake Ellen
xenocryst and megacryst compositions, indicating that they may have been
derived from the same region at depth. Cry03 - Mg0 compositions (Fig. 4)
show a wide range of Crp03 contents (0.35-1.52 wt. %), and are more Mg0
rich than the ilmenites used by Haggerty (1975) in constructing the ilmenite
parabola. Again, the ilmenite xenocrysts and megacrysts are not compositionally
distinct. The Mg0-rich, and FepO3-poor nature of these ilmenites indicates
that they formed under reducing conditions and have not undergone extensive
oxidation.

GARNETS

Garnets from Lake Ellen are predominantly found as xenocrysts. These
xenocrysts encompass a range of colors and have been subdivided on the basis
of color to identify any relationships or trends. The techniques of sorting
and constraints on identifying the colors of the garnets were the same as
those discussed by Hearn and McGee (1982). The color groupings used were:
purple, red, pink, orange, red-orange, and light orange. The purple, red, and
pink garnet groups tend to be more Mg-and Cr-rich than the three orange garnet
groups (Figs 5 & 6). The orange, red-orange, and 1ight orange garnets are
close in Ca-Mg-Fe composition to the garnets from eclogite xenoliths (Fig. 5)
and many are probably fragments from disaggregated eclogite inclusions., All
of the purple, red, and pink garnets fall within the Ca-Mg-Fe field of garnets
from Montana garnet peridotites (fig. 5) which is similar to peridotite garnets
from other kimberlites. The purple, red, and pink garnets also are within or
close to the Ca0-Crp03 field of Therzolitic garnets (Sobolev, et. al, 1973)
(Fig 6). This, combined with the higher Mg content (Fig. 5) indicates a
peridotitic affinity for the purple, red, and pink garnets. No Cr-rich,
Ca-poor garnets typical of garnets from diamond-bearing harzburgites (Boyd
and Finnerty, 1980) have been found at Lake Ellen, perhaps because of the
somewhat limited sampling of garnet xenocrysts and megacrysts.

Garnet megacrysts, not as abundant as xenocrysts, have been found in the
1oose rubbly material of the outcrops and in chunks of the hard kimberlite,
dug from shallow pits. The megacryst analyzed so far is more similar to the
peridotitic than to the eclogitic garnets (Figs. 5 and 6).
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PYROXENES

The xenocryst suite from Lake Ellen includes abundant clinopyroxene and
rare orthopyroxene. Several clinopyroxene megacrysts have also been analyzed
(Table 1). The Nap0 and Crp03 contents of the megacryst and xenocryst clino-
pyroxenes can be used to distinguish associated xenolith types. The clinopy-
roxenes are eclogitic, pyroxenitic, and peridotitic in affinity (Fig. 7).
Clinopyroxenes from eclogites have Naj0 contents which range from 4-8 wt. %
and low Cry03 (less than 0.5 wt. %). Peridotitic clinopyroxenes have lower
Napo0 (less than 5 wt. %) and high Crp03 contents (0.5-4.5 wt. %). Pyroxenitic
clinopyroxenes have low Nas0 (less than 1 wt. %) and low Cr203 ( about 0.5 wt.
%) which respectively distinguishes them from eclogitic and peridotitic clino-
pyroxenes. Two groups of clinopyroxene xenocrysts, shown as dashed-line fields
in Fig. 7, are similar, particularly in Crp03 content, to the clinopyroxenes
from peridotites or to the clinopyroxenes from pyroxenites and megacrysts.

Orthopyroxene xenocrysts are rare compared to the clinopyroxenes. They
contain about 4 wt. % A1203 and about 0.5 wt. % Ca0. One orthopyroxene
xenocryst appears anomalous because it contains 1.2 wt. % Al203 and 1.5 wt.
% Ca0, which is unlike any other orthopyroxene analyzed thus far from this
kimberlite. The high Ca0 content indicates a high temperature of crystalli-
zation. Al1 of the orthopyroxenes contain approximately 1 wt. % Cr203, sug-
gesting disaggregation from a Cr-rich assemblage similar to that of the Cr-
rich composite garnet-clinopyroxene xenocrysts.

OLIVINES

Most of the olivines in the kimberlite have been serpentinized, but a few
fresh olivines have been found in kimberlite matrix and in panned concentrates.
The olivines have a narrow range of forsterite content from Fogg,5 to Fogi,(s
and contain an average of 0.38 wt. % Ni0, suggesting that they are xenocrysts
rather than phenocrysts (Dawson, 1980). They show no zonation from core to rim.

COMPOSITE XENOCRYSTS

The composite xenocryst suite is composed of two types of pairs: clinopy-
roxene-garnet and clinopyroxene-orthopyroxene. Although the grain size of the
members of the pairs is rarely equal, they appear to be in equilibrium with
one another. They are most likely grains from disaggregated xenoliths because
1) there is no alteration or kimberlite matrix between the grains, 2) they
have an equant rather than intergrowth texture, and 3) neither is totally
surrounded by the other as an inclusion. The compositions (Table 2) of the
composite xenocrysts indicate derivation from eclogites, garnet pyroxenites,
and peridotites.

In the garnet-clinopyroxene composites the color of the garnet grains was
used as a guide to the xenolith type: purple garnets for peridotitic composites,
and orange garnets for eclogitic composites. A greater number of peridotitic
pairs were selected for analysis because garnet peridotite xenoliths have
not yet been found and the composite grains have been used to represent a
'missing portion’' of the xenolith population. As with the xenocrysts, the

4



chromium content of both the garnet and clinopyroxene, and the sodium in

the clinopyroxene are characteristic of the rock type from which they were
derived. The clinopyroxenes from the garnet-clinopyroxene composites are
higher in Nag0 and Cr03 than the clinopyroxene xenocrysts which have been
analyzed (Fig. 7). This is most likely a result of limited or biased selec-
tion of the xenocrysts. Four of the five clinopyroxenes from composites

are also distinctly more Cr-rich and Na-rich than clinopyroxenes from
Montana garnet peridotites (Fig. 7) (Hearn and McGee, 1983), indicating an
unusually Cr-Na-rich bulk composition for garnet peridotites represented in
the Lake Ellen kimberlite.

The clinopyroxene-orthopyroxene pairs are peridotitic in nature with the
clinopyroxenes containing about 1 wt. % Nag0 and 1 wt. % Cro03. The orthopyroxenes
are very similar in composition to most of the orthopyroxenes found as xenocrysts
(A1203 = 4 wt. %; Ca0 = 0.5 wt. %). On a Crp03 vs Nap0 plot (Fig. 7) the clino-
pyroxenes from cpx-opx composites fall within the field of clinopyroxenes from
Montana garnet peridotites, unlike the clinopyroxenes from the clinopyroxene-
garnet pairs which are much richer in both Naz0 and Crp03. These clinopyroxenes
indicate two groups of peridotites at the Lake Ellen kimberlite,

The composite xenocrysts have been included with the xenoliths in plots
and in temperature-pressure calculations. Although the composite xenocrysts
give limited information compared to the complete mineral assemblage in
xenoliths, the composite xenocrysts represent rock types which must also be
present in the upper mantle.

LITHIC INCLUSIONS

Lithic inclusions in the Lake Ellen kimberlite consist of both crustal
and upper mantle rock types. The crustal inclusion suite predominates and
consists of dolomite, phyllite, amphibolite, altered gabbro, and a few
granulites. This study has concentrated on the less abundant upper mantle
inclusion suite consisting of eclogite, garnet pyroxenite, a spinel pyroxenite-
peridotite, and a serpentinized peridotite inclusion containing clinopyroxene
as the only remaining fresh phase. Representative analyses of phases are
given in Tables 3,4,5, and 6.

ECLOGITE INCLUSIONS

The eclogite suite is the largest group of xenoliths collected from
Lake Ellen, comprising about 85% of all the upper mantle xenoliths collected.
The eclogites range in size from 0.5 cm fragments of inclusions to 3.0 cm
inclusions. They have a granulitic texture, and most show a distinctive
alteration of the clinopyroxenes. The eclogite assemblage consists of
garnet + clinopyroxene + rutile + kyanite + sanidine + corundum + sulfide,
The majority of eclogite samples contain only garnet, clinopyroxene, and
rutile. The compositions of the garnets and clinopyroxenes in the eclogites
are not significantly different when kyanite or sanidine are also present,

The garnets in the eclogites are generally orange, contain more iron
than magnesium, and are widely scattered near the central part of a Ca-Mg-Fe



ternary (Fig. 5), showing a range of 30% Fe component. This lack of clus-
tering of garnet compositions from eclogites has been observed in other kim-
berlites as well (Meyer, 1977). The chromium content of the garnets is low
(about 0.1 wt. %).

The clinopyroxenes in the eclogites, are mostly altered, appearing
cloudy light green or almost white in hand specimen, and showing a very
fine network of alteration in thin section (Fig. 8A). In most samples the
grains still have unaltered cores which are visible in thin section and can
be analyzed. The clinopyroxenes are very rich in sodium and aluminum. The
sodium content ranges from 3-8 wt. % with most falling between 6 and 7 wt.
% (Fig. 7). The aluminum content parallels the sodium, ranging from 10-16
wt. % with the average around 14 wt. % Al203. Chromium content of eclogitic
clinopyroxenes is low, rarely reaching 0.10 wt. % (Fig. 7).

Rutile ranges in size from grains nearly 1.5 mm long to tiny needles
included in clinopyroxenes. The rutile is red-brown to yellow-brown and
is fairly pure although some contain as much as 1.5 wt. % FeO (Table 5).
Kyanite occurs as small (1 mm), bladed grains which are very pale blue to
white. In one sample (KB2-3), the kyanite has a preferred orientation (Fig.
8B). Kyanite contains approximately 0.3 wt. % FeO and up to 0.2 wt. %
Crp03 (Table 5). Corundum has been found in only two samples so far,
both of which also contain kyanite. The corundum occurs as small (0.05-0.6
mm) blades near kyanite and may be part of a reaction occurring during kimber-
lite ascent. It contains only minor amounts of Crp03 (0.2 wt. %), TiO2
(0.2 wt. %), and Fe0 (0.3 wt. %). Sulfides occur as rounded grains (up to
0.8 mm size) and as smaller patches within the alteration between pyroxenes.
They have not yet been analyzed but preliminary observations indicate that
they contain more than one phase.

Potassium feldspar is present in 5 of the eclogites studied. The grains
are up to 1.8 mm in size. A few of the feldspars show twinning, and a few
also have minor alteration along the edges. The feldspar is very potassium-
rich, containing 14-16 wt. % K20 and only 0.3-1.3 wt. % Nao0 (Table 6).
Barium content of these feldspars is significant; in four samples Ba0 is about
0.5 wt. % and in one it is about 2.0 wt. % (Table 6). Within each eclogite
the barium in the feldspars is constant from grain to grain, and it does not
appear to be zoned within the grains. The small grain size of the feldspars
has precluded study by x-ray diffraction to determine the structural state.
Based on the findings of other workers (Smyth and Hatton, 1977; Prinz, et al,
1975) and on the high calculated temperatures from garnet-pyroxene pairs, the
feldspar is probably sanidine rather than orthoclase.

GARNET PYROXENITE

Garnet pyroxenite (1.5 cm size) has a granulitic texture and is partially
serpentinized (Fig. 8C). It consists of garnet + clinopyroxene + spinel +
sulfide. Although the garnet is slightly richer in Mg0 than many of the
eclogitic garnets, it is not clearly distinguishable from them. However,
the pyroxene can be used to distinguish the garnet pyroxenite and eclogite
xenoliths because sodium is 0.8 wt. % and aluminum is 4 wt. % in the garnet
pyroxenitic clinopyroxenes, much lower than they are in the eclogitic



clinopyroxenes (Fig. 7; Table 4). The low chromium content of the pyroxene
in garnet pyroxenite, 0.5 wt. %, distinguishes it from peridotitic clino-
pyroxene. The spinel in the garnet pyroxenite is red-brown to dark brown,
has a grain size of 0.5 mm, and is nearly surrounded by garnet in the sample
(Fig. 8C). It is Al-rich and Cr-poor, containing 55.7 wt. % Al203 and 9.7
wt. % Crp03 (Table 5).

SPINEL PYROXENITE-PERIDOTITE

One small (about 1.5 cm) sample has a fine-grained (0.25-1 mm) tabular to
granular texture and is extensively altered to serpentine in the olivine rich
part, giving it a banded appearance (Fig. 8D). Two thirds of the sample con-
tains altered olivine, spinel, and clinopyroxene and was probably peridotitic
when fresh., The remaining third of the sample is pyroxenitic containing spinel,
clinopyroxene, orthopyroxene and a few fresh olivines. Black spinel occurs
throughout the section, and shows some tendency to be concentrated in layers
(Fig. 8D). It is an aluminum-rich spinel with about 8.5 wt. % Crp03, (Table
5) and slightly more iron than the spinel in the garnet pyroxenite. The clino-
pyroxene is fresh and its Crp03 and Nag0 contents are close to some of the
clinopyroxene megacrysts and most of the clinopyroxene xenocrysts (Fig. 7).

It contains about 1 wt. % Nap0, 4.5 wt. % Al203, and 0.35 wt. % Crp03 (Table
4). The orthopyroxene is less abundant than the clinopyroxene and contains
slightly less Alo03 and Ca0 (3 and 0.2 wt. %, respectively) than most of the
orthopyroxenes found as xenocrysts or as members of composite grains (Tables
28,4)0

TEMPERATURE AND PRESSURE CONSIDERATIONS

Temperatures were calculated for the xenoliths and composite xenocrysts
using A.A. Finnerty's TEMPEST program. The Lindsley and Dixon (1976) 20 kb
clinopyroxene thermometer was used for the peridotitic garnet-clinopyroxene
composite xenocrysts. However, the Lindsley and Dixon thermometer could not
be used for the other xenolith types because of the high Ca/(Ca+Mg) values
of the clinopyroxenes. The El11is and Green (1979) 30 kb garnet-clinopyroxene
thermometer was used for the eclogites and garnet pyroxenites. The Wells
(1977) thermometer, which does not require garnet and extends to lower temper-
atures than the Lindsley-Dixon thermometer, was used for clinopyroxene-ortho-
pyroxene composite xenocrysts and for the spinel pyroxenite-peridotite. The
Boyd and Nixon (1973) calcium in orthopyroxene thermometer was used for one
high calcium orthopyroxene xenocryst.

Pressures can be directly determined only for those samples which contain
orthopyroxene. The MacGregor (1974) barometer, which uses Al,03 in enstatite,
indicated pressure of 12.3 kb for the spinel pyroxenite-peridotite, and a
pressure range of 13 to 17 kb for the clinopyroxene-orthopyroxene composite
xenocrysts. Both are within the spinel stability field. However, because
there is disagreement about the direction of slope of the Al,03 isopleths
in the spinel stability field (MacGregor, 1974; Obata, 1976; Dixon and Presnall,
1977), the pressures estimated using MacGregor's (1974) barometer may be
incorrect or controversial. Although the pressures are useful for indicating
derivation from the spinel stability field, rather than from the garnet



stability field, the pressures were not used in constructing a pressure-
temperature diagram for inclusions in the Lake Ellen kimberlite. Only the
pressure calculated for the high calcium orthopyroxene xenocryst was used,
as it indicated derivation from the garnet stability field.

Calculated temgeratures have been projected onto the present day shield
geotherm of 44 mW/m¢ for northern Michigan (Fig. 9). Assumption of a
shield geothermal gradient is based on the lack of igneous activity in northern
Michigan after Keweenawan volcanism in the late Proterozoic, except for post-
Ordovician emplacement of kimberlite.

Highest equilibration temperatures were calculated for a clinopyroxene
from an altered peridotite (1292 °C) and for a high calcium orthopyroxene
xenocryst (1350 °C). High equilibration temperatures (980-1120 °C) were
also calculated for composite xenocrysts of garnet peridotitic affinity.

The eclogites equilibrated at intermediate temperatures (920-1060 °C), and
the garnet pyroxenites have the lowest range of calculated temperatures
(820-910 °C) for garnet-bearing samples. The clinopyroxene-orthopyroxene
composites have a temperature range (820-900 °C), which is similar to that
of the garnet pyroxenite samples. The lowest equilibration temperature was
calculated for the spinel pyroxenite-peridotite (735 °C).

Fields for garnet peridotites from Montana and garnet peridotites and
garnet pyroxenites from Colorado-Wyoming are shown for reference in Fig.
9. Two of the composite garnet-clinopyroxene pairs fall within the field
of garnet peridotites from Colorado-Wyoming. Without an independent pressure
determination for peridotitic xenocrysts, the presence of an "inflected
geotherm" of high temperature-pressure peridotites in northern Michigan is
uncertain. Two pyroxenes possibly indicate an inflected geotherm. The
clinopyroxene from an altered peridotite and the high calcium orthopyroxene
xenocryst are similar in temperature to the high temperature peridotites
from Montana and South Africa.

Within the eclogite group, the kyanite and sanidine bearing samples are
intermingled with other eclogites throughout the temperature range covered.
Based on only four samples, there is an apparent trend of increasing temper-
ature from kyanite eclogite (928 °C) to kyanite-sanidine eclogite (984 °C)
to sanidine eclogites (1044, 1058 °C). This trend suggests increasing
potassium and decreasing aluminum content with depth, indicating derivation
of the eclogites from a layered upper mantle.

Calculation of pressure remains a problem with all of these samples.
The presence of kyanite in the eclogite samples indicates pressures were at
least 18-20kb (Green, 1969). Projecting the calculated temperatures onto
the shield geotherm is reasonable if the geotherm is the same today as it
was at the time of kimberlite emplacement. If the MacGregor (1974) spinel
facies pressures are correct, the spinel pyroxenite-peridotite and the clino-
pyroxene-orthopyroxene composite xenocrysts indicate that the geotherm may
have been higher during emplacement. Without reliable pressure calculations
and with only one high temperature-pressure point the position and shape
of the emplacement geotherm cannot be adequately described.



The relationship of the Lake Ellen samples to the diamond-graphite
stability curve is of interest, particularly because diamonds have been
found in the glacial drift of Wisconsin, Michigan, I11inois, Indiana, and
Ohio. If the present day geotherm is a realistic estimate of the tempera-
tures and pressures of origin, some of the garnet-clinopyroxene pairs and
some eclogites indicate derivation from within the diamond stability field
(Fige 9). This could mean that the kimberlite could be a source for some of
the diamonds found in glacial drift in southern Wisconsin, but only if carbon
were present at depth, below about 120-135 km, and if diamond were preserved
during kimberlite ascent. A further constraint to note, is that if the
emplacement geotherm was 100 to 150 degrees higher than the present day geo-
therm, the highest temperature composite pairs and eclogites would fall
within the graphite stability field. So far, no diamonds have been found at
this kimberlite, and more conclusive evidence is needed to evaluate the
probability of their occurrence here.

The ranges of temperature for eclogites and garnet peridotitic composite
xenocrysts overlap. Two samples of garnet pyroxenite and several clinopyroxene-
orthopyroxene composite xenocrysts occupy a temperature range just below the
lowest temperature eclogite, and the lowest temperature of 750 °C is given
by a spinel pyroxenite-peridotite. Assuming that the temperatures are directly
related to depth, the upper mantle section consisted of intermixed eclogite
and garnet-peridotite overlain by garnet pyroxenite and spinel peridotite.
Potassium was high enough to form feldspar in eclogites from a range of depths
from at least 120 to 140 km, suggesting that the upper mantle in that depth
range was enriched in potassium and probably in other elements easily removed
by small degrees of partial melting. Thus the 120-140 km depth range of
the upper mantle had not undergone partial melting after eclogite formation.

CONCLUSIONS

The Lake Ellen kimberlite, although poorly exposed, contains samples which
reveal characteristics of a heterogeneous upper mantle. A wide range of
xenocryst and xenolith types and compositions indicate that the kimberlite has
sampled eclogite, garnet pyroxenite, spinel pyroxenite-peridotite, and garnet
peridotite similar to upper mantle sections in other portions of the United
States. Calculated temperatures for the inclusions show that they represent a
range of equilibration temperatures of 700-1300 °C, and thus were derived from
depths from 55 to 160 km or more assuming a shield geotherm. Some of the
higher temperature samples indicate that the kimberlite could contain diamond.
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