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INTRODUCTION

This report summarizes our general knowledge of the geology and petroleum
potential, as well as potential problems and hazards associated with
development of petroleum resources, within the area proposed for nominations
for lease sale number 90. This area includes the U.S. eastern continental
margin from Raleigh Bay, just south of Cape Hatteras, to southern Florida,
including the upper Continental Slope and inner Blake Plateau. The area for
possible sales for lease sale number 90, as well as the area for lease sale
number 78 and the previous areas leased are shown in figure 1; physiographic
features of the region are shown in figure 2.

Six exploration wells have been drilled within the proposed lease area
(figs. 3 and 4), but no commercial discoveries have been made. All six wells
were drilled on the Continental Shelf. No commercial production has been
obtained onshore in the region. The areas already drilled have thin
sedimentary rock sections, and the deeper strata are dominantly of continental
facies. Petroleum formation may have been hindered by a lack of organic
material and lack of sufficient burial for thermal maturation. However,
analyses of drilling and seismic profiling data presented here indicate that a
nuch thicker section of sedimentary rocks containing a much higher proportion
of marine deposits, exists seaward of the Continental Shelf. These geologic
conditions imply that the basins farther offshore may be more favorable

environments for generating petroleum.
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CHAPTER I
REGIONAL GEOLOGY AND PETROLEUM POTENTIAL
By

William P. Dillon

Two major zones of offshore continental margin subsidence, which are
floored, presumably, by rift-stage crust, exist in the area proposed for
nominations (fig. I-1* ). These are the Blake Plateau Basin, beneath the
Blake Plateau east of Florida and Georgia, and the Carolina Trough beneath the
Continental Slope east of South Carolina and North Carolina (Klitgord and
Behrendt, 1979). The Southeast Georgia Embayment 1is a minor sag of
continental basement that extends onshore beneath the Coastal Plain (fig. I-
1). This discussion will be based primarily on the U.S. Geological Survey”s
(USGS) grid of multichannel, common-depth—-point seismic profiles shown in
figure 1I-2. Single-channel seismic profiling, gravity and magnetic surveys
and stratigraphic drilling also have been carried out by the USGS. These data,
plus other stratigraphic drilling carried out for petroleum exploration have
all contributed to our interpretation.

Total thickness of sedimentary rock for the continental margin off the
southeastern United States is shown in figure I-3. The isopachs are based on
data from the multichannel profiles (fig. I-2). The two main basins are very
clearly defined, and are separated by a northwest-trending ridge along the
extension of a deep-sea fracture 2zone (the Blake Spur Fracture Zone). The
basins”® landward margins are quite 1linear and generally are aligned

northeasterly, normal to the direction of ocean opening. In the following

*Figures I-1 to I-43 are grouped at the end of
this chapter, beginning on p. 24.



pages, a discussion of the southern part of the region (Southeast Georgia
Embayment and Blake Plateau Basin, fig. I-1) precedes a discussion of the

northern part (Carolina Platform and Carolina Trough).

BLAKE PLATEAU BASIN AND SOUTHEAST GEORGIA EMBAYMENT

Structure and Stratigraphy

The general structure of the Blake Plateau is shown by seismic profile
FC3 (location, fig. I-2; structural interpretation fig. I-4) The plateau
probably formed as a broad flat carbonate platform (Dillon and others, 1979a,
Schlee and others 1979). Thicknesses of sedimentary units do not vary
greatly, but maximum thickness of Jurassic units occurs in the mid-basin,
whereas younger depocenters are shifted landward. This landward shift implies
that the center of subsidence shifted westward as time passed and accounts for
the general landward dip of strata across most of the basin.

Profile TD5 (fig. 1I-5; location, fig. TI-2) allows a more precise
stratigraphic and paleoenvironmental analysis than FC3 (Dillon and others,
1979a, b), as it was collected across the drill sites of the COST No. GE-1
well (Poag and Hall, 1979, Valentine, 1979) and Deep Sea Drilling Project No.
390 well (Benson, Sheridan, and others, 1978). A lithologic log for the COST
No. GE-1 well is shown in figure I-6. Detailed velocity logging of the well
allowed precise correlation of reflection events to depths of biostratigraphic
age and paleocenvironmental estimates (fig. I-7). By extrapolating along
reflections, we see that different major depositional environments, that were
recognized in samples from the well, result in distinctive reflection

characteristics. Open-marine shelf deposits produce strong continuous



reflections; continental deposits produce strong discontinuous reflections;
slope-depth chalks and marls produce very weak reflections (Fig. 1I-8).
Extrapolation of these reflection patterns through the seismic record, known
as the seismic stratigraphic approach (Payton, 1977), allows analysis of
facies distribution along profile TD5 as indicated in figure I-5, and in more
diagrammatic form in figure I-9. The paleodepth pattern at the COST No. GE-1
well (Poag and Hall, 1979) and the transgression-regression pattern identified
in the profile (fig. I-9) show close correlation to the proposed worldwide
coastal onlap-offlap pattern of Vail and others (1977). Therefore, that curve
was used as a key to assign ages to episodes of transgression-regression
identified in the profile but not penetrated at the well because of its updip
position (fig. I-9). An indication that this approach produces reasonable
(not necessarily accurate) results 1is provided by a comparison of the
subsidence curve implied by these age assignments to a known curve for a well
on the U.S. east coast, the COST No. B2 well in the Baltimore Canyon Trough
(fig. I-10). A generalized section for the Blake Plateau Basin at the site of

profile TD-5 is presented in Figure I-11.

Geologic History

The stratigraphic framework devised above, combined with the seismic
profiling data, allows construction of a model of the history of the Blake
Plateau Basin to arrive at the structure shown in Figure I-11. In Triassic-
Early Jurassic time, rifting, stretching, and intrusion began in a broad zone
of continental crust that would become the basement of the Blake Plateau
Basin. In Jurassic time (perhaps 170 million years [m.y.] ago) the geometric

center of the rifting jumped eastward (Vogt, 1973). Subsequently, the new



spreading center generated oceanic crust as Africa and North America drifted
apart (fig. I-12). ©Early subsidence of the Blake Plateau Basin was rapid
(fig. 1-10). Reefs probably formed on the seaward edge of the carbonate
platform that existed in Early Cretaceous and, probably, in Late Jurassic
time. Several profiles show that the reefs apparently died at the end of
Neocomian time, but that new reefs developed to the west. Seismic profiles
and samples that we obtained using a submersible, show that these are rudist
reefs that flourished in Aptian and Albian time (fig. I-11). Meanwhile, the
shoreline migrated back and forth across the western Blake Plateau Basin (fig.
I-9). At the end of Early Cretaceous time, reef growth ceased and
sedimentation rate decreased markedly, although the continental margin
continued to subside. This resulted in the onset of water depths of several
hundreds of meters across the former shelf and in the accumulation of chalks
and marls extending westward into the Southeast Georgia Embayment. After the
Paleocene, the Gulf Stream began to flow actively across the present Blake
Plateau, eroding the inner plateau and preventing thick accumulation on the
outer plateau. The seaward edge of the present Continental Shelf 1is
restricted in further seaward growth by the flank of the Gulf Stream (Paull

and Dillon, 1980).

Relation of Regional Geology to Petroleum Potential

Six dry holes (figs. 3, 4) have been drilled on the Continental Shelf in
the southern part of the sale area (Southeast Georgia Embayment). Possible
petroleum trapping structures are not well developed beneath the shelf, as
indicated by profiles FC4-FC5-FC6 (fig. 1I-13), that form a strike 1line

extending along the shelf from the Southeast Georgia Embayment northeastward



onto the Carolina Platform (fig. I-2). Minor reef structure seems to exist in
the Southeast Georgia Embayment (km 10-20, fig. I-13). Minor drape structure
occurs to the northeast (km 220, fig. I-13), where crystalline basement is
inferred to project above a smooth layer of volcanic rock; the seismic record
for the latter feature is shown in figure I-14. 1In addition to an apparent
dearth of traps, as observed on the broadly spaced, publicly available seismic
profiles, source beds are poorly developed beneath the Shelf. The deeper
strata penetrated by the COST No. GE-1 well (fig. I-6), which show thermal
maturity, are continental, and probably are poor hydrocarbon sources. The
richest potential source rocks penetrated by the well are Upper Cretaceous
chalks and marls (Miller and others, 1979). Unfortunately, these chalks and
marls are buried to depths of less than 1,000 m beneath the shelf and are
hardly covered across the Blake Plateau (fig. I-11l) so they probably are
thermally immature.

Our profiles show that the sedimentary section underlying the inner Blake
Plateau is much thicker than that underlying the present shelf, and that rocks
under the Blake Plateau are dominantly marine (fig. I-11), perhaps forming
better source rocks than the rocks of continental facies beneath the present
shelf. Stratigraphic traps might be associated with o0ld shoreline features
(such as barrier islands) that might be found at the contact between
continental facies and open marine shelf facies. Pinchouts against basement
might also form traps for locally generated petroleum. The regional landward
dip across the Blake Plateau Basin (figs. I-4,I-5) would result in a general
seaward migration of hydrocarbons, if long-distance migration took place.
Such hydrocarbons could be trapped in reef and carbonate bank structures of

the outer Blake Plateau, but these are outside the proposed sale area.
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CAROLINA TROUGH AND CAROLINA PLATFORM

Structure and Stratigraphy

Only the western half of the Blake Plateau basin is included in the
proposed sale area. However, because of the shape of the proposed area (fi§>\
1) and locations of the basins (fig. I-3), almost the entire Carolina Trough
is included in the call area, as is the saddle between the two basins.

The saddle between the major basins is covered by more than 7 km of
sedimentary rock, so it should not be discounted for petroleum. Structure
along the saddle is shown by profile BT4 off Charleston (location fig. 1-2,
structure and stratigraphy, fig. I-15). The structure beneath the Continental
Shelf is similar to that seen in the Southeast Georgia Embayment (fig. I-5),
but the sedimentary section is thinner, and strata probably onlap a volcanic
layer that covers the postrift unconformity (Dillon and others, 1979¢c)
(seismic section of shelf, Fig. I-16, location shown in interpretation, fig.
I-15). Seaward of the volcanic layer, older strata onlap across an angular
unconformity cut on Triassic or Paleozoic rocks (seismic section, fig. I-17,
location shown in interpretation, fig. I-15).

Basement structure of the Carolina Trough and Carolina Platform is shown
in figure I-18. The trough is long, narrow, and linear, unlike the other east
coast basins; it 1is about 450 km long and 40 km wide. A major system of
normal faults extends for more than 300 km along the northwestern (landward)
side of the basin, and a linear group of diapirs is on its southeastern side.
An idealized cross section of the trough is shown in figure I-19. Because of
the distinct chlorinity gradient increasing downward in short sediment cores

taken on top of them, the diapirs are assumed to be cored by salt (F.T.
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Manheim, unpublished data). Distribution of diapirs indicated in figure I-18
is based on the multichannel seismic data collected along tracklines shown,
plus a much more dense grid of single-channel seismic lines and a long-range
sidescan-sonar survey, discussed by Popenoe and others in Chapter IT of this
report. The structure of the Carolina Trough is shown by three adjacent
multichannel seismic lines -- BT1l, 32 and TD6, locations for which are shown
in figures I-2 and I-18. The parts of the profiles that cross the Carolina
Trough, and that are shown as seismic records and interpretations in figures
1-20, 1-21, 1-23, 1I-24, 1-27, and I-28 are indicated by heavy lines on the
profile tracks in figure I-18.

The Carolina Trough part of seismic record BT1 is shown in figure I-20
and its interpretation is shown in figure I-21. An unconformity, marked by
diffractions, dips to the southeast at the left side of the profile segment
and extends beneath a set of very strong subhorizontal reflections at 6 to 7
seconds. The unconformity is considered to be the postrift unconformity and
the strong subhorizontal reflections are thought to arise from evaporite
deposits. Several faults are indicated in figure I1-21. The dominant fault on
the left of the figure 1is observable in many profiles. Its near-surface
location is mapped in figure I-18 on the basis of both multichannel profiles
and the single-channel profiling grid shown by Popenoe and others (Chapter 11,
this report). 1In figure I-18, hachures on the faults show downthrown side and
also the locations of profile crossings. Several episodes of erosion of the
Continental Slope are evident and a major progradational wedge appears (fig.
I-22, location shown on fig. I-21).

Profile 32 (figs. I-23,I-24) also shows the major fault at the landward
side of the Carolina Trough and the strong reflections inferred to come from

salt. An upwarp at the seaward end of the section probably represents an
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incipient salt diapir. Details of the seismic record at the main fault on
profile 32 are shown in figure I-25. On this crossing, as on other profiles,
the fault seems to continue steeply to the interpreted salt layer. The fault
is well landward of the paleoshelf-slope break, it does not appear to curve
and flatten into bedding, and it does not seem to have associated antithetic
faults that would be expected if the fault plane had flattened downward. Thus
it is not characterized by features of ordinary slump-type faults of the
continental margin. Certain distinctive packages of reflection events seem to
be matchable across the main fault on all three CDP (common-depth-point)
seismic profiles considered here. This ability to match reflectors allows us
to calculate throws at various depths. A plot of these data (fig. I-26) shows
that throw increases fairly smoothly as depth increases, indicating that this
is a growth fault —-— one that was active during sediment deposition.
Stratigraphic estimates are not sufficiently controlled in this area for throw
to be plotted versus age. However, if long-term sedimentation rate varied
fairly smoothly, figure 1I-26 suggests that rate of movement on the growth
fault at the three locations graphed was approximately constant. Throw is
observed to increase downward at least as deep as a horizon inferred to be the
top of Jurassic. Below that level, reflectors cannot be matched across the
fault, although the fault clearly is traceable to the evaporite(?) layer.
Thus the fault has been active at least since the end of Jurassic and probably
earlier.

Seismic profile TD6 (figs. I-27, I-28) shows a general structure similar
to that of the other profiles across the Carolina Trough. This profile
crosses one of the salt diapirs, apparent at the right side of figures I-27

and I-28.
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Geologic History

The Carolina Trough began to form as a result of the same Triassic-Early
Jurassic rifting and stretching of continental crust that initiated
development of the Blake Plateau Basin and affected all the eastern United
States (top diagram, fig. I-29). As the stretching went on, the zone of
continental crust that was converted to rift-stage crust was much narrower in
the Carolina Trough than in the Blake Plateau Basin, but the thinning of this
narrow strip in the Carolina Trough was much more intensive. Models of
crustal thicknesses along eastern North America, based on gravity and
refraction data, show that basement thicknesses are much less in the Carolina
Trough and Scotian Basin than elsewhere along the margin (fig. I-30). These
two margin basins are also the sites of most of the salt diapirism off eastern
North America (fig. I-31). The basins that had thinner, initially perhaps
hotter, rift—-stage basements, probably subsided isostatically much faster than
the others and sank below sea level sooner, creating opportunity for salt
deposition. Thus, they received thicker salt layers, resulting in the
creation of numerous diapirs (Dillon and others, in press).

Conversion from rifting to generation of new oceanic crust at a spreading
center took place much sooner at the Carolina Trough than to the south.
Therefore, by the time of the spreading-center jump, a considerable amount of
new oceanic crust had been generated in the Carolina Trough, whereas little
seems to have been produced before then off the Blake Plateau Basin (fig. I-
12). Open-marine circulation probably was instituted by the time oceanic
crust began to form off the Carolina Trough. After the rifted blocks and
graben deposits were beveled to form the postrift unconformity, basaltic flows

spread across part of the Carolina Platform.
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Rapid subsidence of the Carolina Trough during Jurassic, accompanied by
accumulation of a thick continental margin wedge, resulted in loading of the
salt, which began to flow seaward and to rise into diapirs (140 m.y. ago, fig.
I-29). Continual removal of the salt from the main part of the basin, where
it formed, caused the overlying block of sedimentary rock to subside,
generating a growth fault. The disruption of the sea floor by diapirs and
observation of fault offsets to within a few tens of meters of the sediment
surface (Dillon and others, 1in press; Popenoe, Chapt. II, this report)
demonstrate that salt diapirism and attendant subsidence of the trough block
continue.

The Continental Shelf of the Carolina Trough continued to build during
Cretaceous, and episodes of extensive progradation alternated with periods of
retreat by erosion. The Gulf Stream inhibited sedimentation during the
Cenozoic in this region, as well as to the south. The most intense erosion,
however, was the deep-sea erosion that created horizon AY, approximately
during Oligocene time (Tucholke, 1979). Finally, off the southern Carolina
Trough, Neogene deposition resulted in a large sedimentary accumulation on the

AY unconformity (the Blake Ridge, fig. 2).

Relation of Regional Geology to Petroleum Potential

No wells have been drilled in the Carolina Trough for petroleum. The
Esso Hatteras Light well, a dry hole drilled on the tip of Cape Hatteras, was
closest but should be considered a Carolina Platform, rather than a Carolina
Trough well. The trough seems to have subsided rapidly in Jurassic and thus
may be likely to have a deeply buried marine section above deposits of the

hypersaline episode.
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Perhaps the most obvious sorts of traps in the Carolina Trough would be
those associated with salt domes. Unfortunately, most of the domes are in
water depths of more than 3,000 m (fig. I-18). The growth fault associated
with salt withdrawal may provide traps. The structures associated with these
probably would be different from ordinary roll-overs into listric, down-to-
basin, faults, however. Because the faults probably are generated by removal
of material from beneath the block, rather than by a seaward gliding of the
block, the fault planes are steep and do not seem to flatten into bedding, as
shown in a depth converted section (fig. I-32). Antithetic normal faults are
rare.

Pinchouts against basement and shelf-edge carbonate banks may form
traps. The episodes of progradation and erosion of the Jurassic-Early
Cretaceous shelf edge (fig. 1-22) may have generated traps, but the
possibility exists that any petroleum that was trapped escaped during the deep
erosion that created the AY unconformity (during Oligocene time).

Subsidence of the axial region of the Carolina Trough, caused by
lithospheric cooling, sediment loading, and salt withdrawal has generated
landward dips in the strata of the outer paleoshelf. Seaward dips beneath the
paleoslope are depositional. The result is an anticline beneath the outer
paleoshelf that is apparent in the depth-corrected section (fig. I-32) and in
structure contours on the Aptian surface (figs. I-33). This anticline is very
large in area and may, in some locations, form a petroleum trap.

A series of sediment-filled submarine canyons are noted in seismic
profiles at the south end of the Carolina Trough region (fig. I-34). These
canyons, were eroded during approximately Oligocene time and subsequently
filled. They form a complex sub-bottom horizon as shown in figure I-35.

Lobate tongues of sand in these seaward-dipping channels could form petroleum

16



traps.

Gas hydrates, solid, crystalline water—-gas combinations (clathrate
compounds) are stable in the pressure—temperature conditions just below the
sea floor within the deeper—water parts of the lease area and these materials
will form where sufficient gas is available. A reflection event in seismic
profiles, that nearly parallels the sea floor, called a bottom simulating
reflector or BSR, has been ascribed to gas hydrate formation in the sediments
(Tucholke and others, 1977; Shipley and others, 1979; Dillon and others, 1980;
Paull and Dillon, 1981). The BSR can be seen in the profiles of figures I-20
and I-23 (note identification in profile interpretations, figures I-21 and I-
24). The area covered by the BSR off the southeastern U.S. is shown in figure
I-36 and other examples of BSRs observed in seismic profiles are shown in
figures I-37 and I-38. The BSR is believed to be produced at the velocity
change that occurs at the base of the zone in which gas hydrate has formed.
Above the BSR, gas hydrate (and water) fills the pores of the sediment; below,
the pores contain water or possibly water plus free gas. Therefore, the BSR
is an acoustical surface generated by a phase boundary. The phase diagram is
shown in figure 1-39A with the pressure axis converted to water depth. This
shows that at a normal sea-floor temperature of 0° C, gas hydrate would be
stable at depths exceeding about 0.3 km. Consider what happens if a sea floor
is postulated at 2 km and a normal temperature profile is superimposed, as
indicated in figure I-39B. At depths where the temperature curve falls below
the phase boundary, gas hydrate will be stable. Thus it will be stable in the
sea water below several hundred meters depth, although it will not be present
because too little gas is available to form it. Within the sediment, however,
biogenic generation of methane from organic matter can produce enough gas to-

create significant amounts of gas hydrate. Thus gas hydrate is likely to be
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present within the sediments down to the depth where the phase boundary curve
is intersected by the temperature curve as the temperature rises rapidly along
the geothermal gradient (figure I-39B). Below that depth, any gas would be
dissolved or present as free gas. Because the geothermal gradient is fairly
constant for a small area, the temperature at which gas hydrate becomes
unstable will occur at an approximately constant subbottom depth. Therefore,
the reflection generated at the phase boundary (the BSR) will nearly parallel
the sea floor, as we see in the seismic profiles.

Although it ultimately may be possible to produce gas from the sea-floor
gas hydrate, the introduction of heat into sediment to break down the hydrate
or of other chemicals to act as antifreezes presents considerable technical
difficulties. Gas hydrate-saturated sediments may be far more important in a
role as seals for gas traps (Dillon and others, 1980). Examples of several
possible gas traps with gas hydrate seals are shown in figure I-41. The
simplest case (figure I-41, upper left) occurs when the sea floor is formed
into a dome. In such a case, the gas hydrate layer (parallelling the sea
floor topography) will also form a dome and can trap gas. For example, figure
I-38 shows a crossing of the Blake Ridge where the BSR is well developed. The
profile of figure I-37 was run axially down the ridge and intersects the
profile shown in figure I-38. It is apparent that the BSR is exceptionally
strong near the ridge crest, indicating a very large change of velocity (or
density) at that 1level. A velocity analysis near the crest of the ridge
(figure 1-40) indicates high velocities above the BSR that probably are
produced by gas hydrate cementation of near-bottom sediments. Below the BSR,
velocity drops abruptly to values 1less than sound velocity in water,
accounting for the very 1large reflection. The only reasonable means of

creating such 1low velocity is by the presence of gas bubbles in the
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sediment. Such gas bubbles presumably are trapped beneath the sealing layer
of gas hydrate-—cemented sediment at the top of the ridge. This accounts for
the exceptional strength of the reflection at that location. It is apparent
that any dome on the sea floor (as in this case on the Blake Ridge) can form a
gas trap with a gas hydrate seal. On the Blake Ridge, the gas may not be
producible, however, because of anticipated low permeability in the mudstones
of the ridge sampled in the limited drilling that has been carried out
(Hollister, Ewing, and others, 1972, K. Kvenvolden, oral communication,
1981). Another circumstance in which gas hydrates might seal gas is where
permeable beds, interlayered with impermeable beds, dip back into the
Continental Slope and are sealed at their updip ends by gas hydrate. Such a
situation is shown in a diagrammatic manner in figure I-41 (right) and, in a
profile, in figure I-42. 1In the profile, bright spots on beds dipping back
into the continental margin suggest presence of gas. A final possible type of
gas hydrate-sealed trap is produced where a gas hydrate layer crosses a salt
diapir. The salt diffusing from the diapir will act as an antifreeze for the
hydrate and the diapir will conduct heat wupward more effectively than
surrounding sediments because salt has a higher heat conductivity. Both
factors will inhibit gas hydrate formation above the salt diapir and produce a
dome in the base of the gas hydrate layer, which might be called a geochemical
gas trap. An example is shown in figure I-43. Such traps would probably be
small and non-commercial, but such shallow gas could be a hazard to drilling

if not recognized.
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Figure I-6 Lithologic log and biostratigraphic age estimates for rocks from COST
No. GE-1 well. Ages marked with asterisks were not datable by the
paleontological methods employed, and inferred ages are based on
extrapolation of sedimentation rates.
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Figure I-10 Inferred subsidence curve for the Blake Plateau Basin compared to
known curve for the COST No. B2 site in the Baltimore Canyon Trough
(Steckler and Watts, 1978) and to the subsidence pattern of the North
Atlantic oceanic crust (Parsons and Sclater, 1977).
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Figure I-29.--Diagrams showing inferred stages in the geologic history of the
Carolina Trough. Symbols are applied only to rocks formed after

the previous stage except for salt, because the salt migrated
throughout margin history.
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Figure I-30.--Crustal sections across basins of eastern North America
based on gravity and refraction (Keen and others, 1975;
Grow and others, 1979; Kent and others, 1979; Grow, 1980;
Hutchinson and others, in press). The numbers represent
basement thickness near *he centers of the basins, at the
locations where the numbers are written. Profiles are
aligned by the East Coast Magnetic Anomaly (ECMA), exXcept
for the Blake Plateau Basin profile, where no ECMA exists.
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Figure I-40.--Velocity analysis from seismic profile shown in figure I-38,
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CHAPTER II
ENVIRONMENTAL CONSIDERATIONS FOR OCS DEVELOPMENT,
LEASE SALE 90 CALL AREA
By
Peter Popenoe

The U.S. Geological Survey (USGS) in cooperation with the U.S. Bureau of
Land Management (BLM) has carried out regional ‘investigations of geologic
hazards to and limitations on offshore petroleum exploration and development
on the southeastern United States Atlantic Outer Continental Shelf (0CS) since
1976. Track 1lines of  Thigh-resolution seismic-reflection profiling
accomplished under this program are shown on fig. II-1. Results of the USGS-
BLM studies through Fiscal Year-1980 have been released in five open-file
reports (Dillon, 1981, 1982; Popenoe, 1980, 1981; Popenoe and others, 1982)
and one Miscellaneous Field Investigation report (Popenoe and others,
1981la). Regional environmental hazards maps have been made for three large
areas of the southeastern Atlantic Margin (Ball and others, 1980; Pinet and
others, 1981; Popenoe and others, 198la, 1982) covering much of the Sale 90
area (figs. II-2, II-3, II-4). Additional data and illustrations on regional
hazards were submitted for the Draft Environmental Impact Statement, OCS
Sale 56 (U.S. Bureau of Land Management, 1980). Many networks of high-
resolution seismic-reflection and sidescan-sonar surveys were performed within
nominated tract areas for Lease Sales 43 and 56 (McCarthy and others, 1980;
Carpenter, 198la, b; Popenoe and others, 1981b). The USGS, in cooperation
with the British Institute of Oceanographic Sciences, completed a long-range

sidescan-sonar survey (GLORIA: Geologic LOng Range Inclined Asdic) of the

Figures II-1 to II-20 are grouped at the end of this chapter beginning on
p. 88 except for figures II-2 and II-4 located in pocket.
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lower Continental Slope and rise off Cape Hatteras in October 1979. A mid-
range sidescan-sonar survey in cooperation with the USGS-BLM program and
Lamont-Doherty Geological Observatory (LDGO) was completed in October 1980
(Popenoe and others, 1981b). In general our coverage by seismic-reflection
surveys of the Florida-Hatteras shelf and central and northern Blake Plateau
is good. However, we have very little data on the Continental Rise and deeper
areas of Sale 90 or the area of the Blake Plateau south of 30°N. latitude.
The findings of our surveys, and of other investigations reported in the

recent literature, are summarized below.

CONTINENTAL SHELF AND BLAKE PLATEAU BOTTOM CONDITIONS

Middle and outer shelf surficial sediments are sands (Pilkey and others,
1980). Regional transport does not appear to be an important process (Doyle
and others, 1981). The presence of primary structures such as crossbedding,
ripple marks, and graded bedding 1indicates that active deposition or
redeposition is going on. However, shallow seismic-reflection data (Edsall,
1978) show that in most areas, only the top few meters of sediment are
actively reworked by current scour. Exceptions to this occur in the high-
energy zones near the capes, particularly Cape Hatteras, Cape Lookout, and
Cape Romain, where 1large sand-wave fields are present which move during
storms. The medium to coarse sands that predominate on the shelf are well
compacted as a result of reworking by both currents and benthic infauna and
thus should offer good support (McClelland, 1974). However, dense sands
typically provide great resistance to pile penetration. Patches of lagoonal
muds and peats, stream and tidal-channel fillings, and areas of submarine cut
and fill occur on the shelf (McCarthy and others, 1980; Carpenter, 1981la;

Henry and others, 1981; Pilkey and others, 1981l; Henry and others, 1982),
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which would result in scattered areas in which support capabilities could be
poor, or could vary laterally in short distances. As channels and cut-and-
fi1l structures on the shelf are patchy in their distribution, a site-specific
engineering survey to determine their presence should be performed prior to
rig placement.

The inner Blake Plateau is severely scoured by Gulf Stream currents
(Pinet and others, 1981). Throughout most of the Tertiary and Quaternary
periods, sediments were not deposited on the southern plateau because of
nondeposition and erosional conditions. As a result, the bottom in much of
the southern and central plateau is an eroded terrace of Upper Cretaceous,
Paleocene, and Oligocene-age rocks (fig. II-5) that are covered by a thick
pavement of phosphorite and swept by only a thin and drifting sheet of
pteropod sands. Slopes are steep in places, maintained and protected from
further erosion by the pavement of phosphorite (Ayers and Pilkey, 1981;
Manheim and others, 1982). Problems in the setting of risers and other
structures in strong currents and through the very hard phosphorite pavement
layer should be expected on the inner Blake Plateau. In addition, the setting
of anchors will be extremely difficult on the very hard and smooth bottom.

Marine Habitats and Live Bottoms

The unconsolidated sand cover on the Florida-Hatteras shelf is absent in
places, and a harder substrate of cemented sand is exposed. These areas of
hard bottom are patchy and scattered. Their surfaces are smooth or roughly
broken and have relief as great as 15 m (Continental Shelf Associates, 1979;
Henry and Giles, 1980; Henry and others, 1981). The hard or rocky bottoms
provide a place of attachment for a variety of sessile invertebrates such as
sea fans, sea whips, hydroids, anemones, sponges, bryozoans, and soft and hard

corals; these invertebrates offer shelter and forage for a variety of reef-
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type fish and crustaceans and are commonly referred to as "live” or "hard"
bottoms which constitute both recreational and commercial fishing areas. The
more prominent of these areas occur near the top of the slope, where they are
known as the shelf-edge ridges and reefs. Figures II-2 and II-4 (in pocket at
rear of volume) show the regional distribution of the shelf-edge reefs from
regional high-resolution seismic-reflection surveys shown in figure II-1 and
prominent hard grounds reported from literature (Continental Shelf Associates,
1979).

The surface of the Blake Plateau 1s covered in many areas by hummocks and
mounds that represent carbonate buildups produced by thriving deepwater coral
reefs (figs. II-2 through II-6) (Stetson and others, 1962; Ayers and Pilkey,
1981; Pinet and others, 1981; Popenoe and others, 1982). These reefs attach
to the hard phosphorite pavement. Bottom photographs and dredge samples
reveal that chiefly two species of branching coral produce reef banks on the

Blake Plateau: Lophelia prolifera and Dendrophyllia profunda, although as

many as 20 species may be present (Ayers and Pilkey, 1981). Other species
appear to dominate in the Straits of Florida (Reed, 1980). Deep-water reef
buildups are common in three areas on the plateau. The main area lies on the
central plateau at about lat 32°N. Smaller areas are on the western plateau
between lat 30°N. and 31°N. and along its eastern margin at the same latitude
(figs. II-2, 1I-3, T1I-4) (Pinet and others, 1981). The reefs generally
underlie the track of the Gulf Stream and trend northward across the southern

plateau and northeastward across the central plateau.
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SUB-BOTTOM CONDITIONS

Faults Related to Compaction of Soft Sediments

Many shallow faults with very small displacement (1-3 m) have been
observed on the Florida-Hatteras shelf offsetting Miocene and Oligocene rocks
within the Southeast Georgia Embayment (figs. II-2, II-3, II-4) (Ball and
others, 1980; McCarthy and others, 1980; Carpenter, 198la, b; Popenoe and
others, 1981a, 1982). With one possible exception (McCarthy and others, 1980)
these faults do not appear to reach the sea floor. On the inner Blake Plateau
and beneath the outer shelf, many faults having larger displacement (10-30 m)
have been observed offsetting rocks of Upper Cretaceous age (fig. II-5).
These faults also appear to die out at depth and terminate upwards against
Paleocene rocks. Both types of faults are believed due to sediment compaction
or to subsidence rather than tectonism (Paull and Dillon, 1979; Ball and
others, 1980).

Faults of Possible Tectonic Origin

Two faults that have been traced seismically may result from basement
tectonism. Behrendt and others (1981) have traced an east-northeast-trending
fault, the Helena Banks Fault (fig. II-4), offshore of Charleston, S.C., and
Cape Romain, S.C., for a distance of about 30 km and possibly 70 km. This
fault displaces basement about 80 m, and appears to be a.high—angle reverse
fault down to the southeast. Behrendt and others (1981) described near-
surface "warping"” or monoclinal flexure indicating post-Pliocene movement.

A similar fault or structural lineament (fig. IT-4) has been traced in
selsmic-reflection profiles in near-surface middle Miocene sediments in Onslow
Bay, N.C. southwest of Cape Lookout (Snyder and others, in press). This
feature, named the White Oak Lineament, strikes almost N.-S. along the 77°W.

meridian and is expressed by a monoclinal structure in Bogue Sound, an abrupt
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thickening of the Pungo River Formation offshore, and a subsurface scarp
having more than 25 m of relief further offshore. Our seismic-reflection
profiles show a possible small offset of basement rocks associated with the
feature mapped by Snyder and others (in press) in the shallow subsurface.
This feature appears to be a hinge zone across which basement declivity
increases into the Carolina Trough. Analyses of deeper penetrating CDP
(common—-depth-point) data (Dillon and others, 1981) indicate that Aptian-age
rocks terminate against basement along the lineament (fig. I-33, chpt. I)

supporting a history of minor downwarp along the feature.

Faults Related to the Movement of Salt in the Carolina Trough

A major growth fault occurs off the North and South Carolina coast near
the eastern edge of the Blake Plateau and beneath the Continental Slope
(Sylwester and others, 1979; Dillon and others, 1981; Popenoe and others,
1982). This fault, which has been traced for more than 350 km (figs. II-3,
I1-4, II-7) shows increasing throw with depth from about 1 m at 10 m depth to
450 m at 5 km depth (Dillon and others, 1981). The movement of salt at depth
from the western Carolina Trough into salt diapirs on the Continental Rise,
thereby removing support for the overlying block of sedimentary rock at the
shelf edge, has been proposed as the mechanism of faulting (Sylwester and
others, 1979; Dillon and others, 1981; Popenoe and others, 1982; Dillon,
chpt. I, this report). A large number of small-displacement splay faults
extending many kilometers west (fig. II-4) and east are associated with the
main growth fault (Carpenter, 198la; Popenoe and others, 1982).

There is no known seismicity associated with any of the above-described
faults. A lack of recorded seismicity offshore is notable both historically

(Bollinger, 1977) and in recent studies (J. W. Dewey, unpublished data,
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1981). Seismicity associated with the two possible tectonic faults cannot be
discounted entirely; however, the lack of historical seismicity suggests that
if events do take place on the shelf, they are infrequent. On this basis,
ground accelerations associated with seismicity would appear to constitute a
low risk to offshore operatioms.

All of these faults are considered of environmental concern as they could
cause loss of drilling fluids or serve as avenues for the escape of high-
pressure gas from depth, if penetrated during drilling. If the locations of
the faults are known during drilling operations, the risk they pose can be
mitigated through design and drilling procedures.

Collapse Structures and Cavernous Porosity

In Florida, extensive networks of caves and solution-riddled limestone
are known to be present extending from the land surface to depths of about
3,500 m in southern Florida. These caves are part of both the Floridan
aquifer system and the deeper "Boulder Zone" (Kohout, 1965; Freeman-Lynde and
others, 1982). Cavernous limestones have caused problems in drilling
exploratory wells onshore; however, the extent of cavernous porosity offshore
is less known. The two best known areas of cavernous porosity on the Florida
Shelf are the sink holes known as the Crescent Beach Spring (Brooks, 1961) and
Red Snapper Sink (Wilcove, 1975; Kohout and others, 1977). Karstic caves or
"blue holes” are common in the Bahamas, and during the drilling of the Bahamas
0il Andros Island well, circulation was lost in about 15 zones (Meyerhoff and
Hatten, 1974).

Regional high-resolution seismic-reflection surveys taken offshore
southern Georgia and Florida indicate that the Red Snapper Sink and Crescent
Beach Spring occur on a regional high on the subsurface Eocene limestones,

which has placed these karstic units in a relatively elevated position under
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the shelf which has allowed these sinkholes to breach the surface of the sea
floor. Seismic data show evidence for numerous sink holes and extensive karst
topography in the subsurface of the shelf. The solution features are so
developed off northern Florida that the limestone units appear to be folded
(fig. 11-8). Subsurface solution features occur as far north as Savannah,
Georgia, and south at least to the Florida Keys, which is the southern limit
of our survey area. The shallowest horizon associated with karst development
in northern Florida is the Oligocene unconformity, which dips to the north
into the Southeast Georgia Embayment from the Crescent Beach-Red Snapper Sink
high, and to the south into the South Florida Embayment. Figures I1I-8 and II-
9 show the nature of this surface 45 km south of Red Snapper Sink on the
central shelf off Daytona Beach, Florida. Just south of Daytona Beach,
Florida, high-resolution seismic-reflection surveys have shown one other sink
hole into which overlying sediments have collapsed to within 15 m of the sea
floor (Cruise GS 7903-6, just south of fig. II-9), thus constituting a rig-
support hazard. Offshore development in this area should include a site-
specific survey to determine if such features underlie lease tracts.

On the northern Blake Plateau between lat 33°N. and 34°N., a number of
large buried collapse structures as wide as 2 km have been noted in regional
high-resolution seismic-reflection survey records (figs. II-4, II-10) (Popenoe
and others, 1982). The structures occur over deep erosional pits in the mid-
Oligocene unconformity and affect overlying strata of early Miocene age but do
not appear to affect strata above the middle Miocene unconformity or below the
Eocene. Multiple track crossings of the structures show that they are
elongate in a north-northeast direction, trending essentially parallel to the
major growth fault on the outer Blake Plateau. This parallelism suggests that

the trend and location of the collapse structures are controlled by splay
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faults of the growth-fault system described above (fig. II-7) along which
strong erosion or solution has taken place. The seismic character of the
Eocene-0ligocene strata and deep erosional pits in the top of this wunit
suggest limestone or karst solution (sink holes) occurring along the fault
zone, or collapse into the fault zone. Cavernous porosity associated with
lower Cretaceous carbonates caused lost circulation between depths of 2,550
and 2,575 m during the drilling of the ESSO Hatteras Light well (Maher,
1971). New data indicate that cavernous porosity may be a problem in younger
rocks offshore, particularly the Oligocene and Eocene.

On the inner Blake Plateau near lat 31°15°N., long 79°15°W., the presence
of cavernous porosity and freshwater outflow was inferred from a 1loss of
buoyancy of a submersible and a change in water temperature near a 50-m-deep
depression (Manheim, 1967). This cavernous porosity occurs in Upper
Cretaceous rocks (Paull and Dillon, 1979). Subsurface karst topography and
solution features of Paleocene limestones have been inferred on the southern
Blake Plateau from high-resolution seismic-reflection analyses (fig. II-3)
(Pinet and others, 1981). A large sink hole off Miami Beach in the area of
the Straits of Florida was documented by a high-resolution seismic survey
during the cruise of the R.V. GYRE, September 18-October 14, 1980 (Popenoe,
unpublished data, 1980; Freeman-Lynde and others, 1982).

Thus, caverns may exist throughout the Sale 90 area and may constitute a
threat to bottom—-mounted platforms and structures or cause drilling problems.

The Offshore Aquifer

The offshore extent of the Tertiary freshwater aquifer is poorly known,
but this aquifer is one of the major resources of the Coastal Plain in the
Southeastern United States. Onshore, the aquifer is primarily developed in

Eocene—-age rocks, but its boundaries overlap into Oligocene and Paleocene
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rocks throughout its entire geographic range (Counts and Donsky, 1963). The
aquifer probably remains in these same units offshore (Paull and Dillon,
1982). Off northern Florida, the JOIDES drilling (holes J-1, J-2) found
freshwater within these wunits almost out to the shelf break. However,
AMCOR 6002 which was drilled at mid-shelf off central Georgia encountered
water having salinities greater than that of normal seawater within the units
(Manheim and Paull, 1982). A 1line that separates the Tertiary strata
containing water of salinity of less than 10 parts/thousand from those with
greater than 10 parts/thousand has been drawn by F. A. Kohout (unpub. data,
1978) and is shown in figure II-11. This contour, although it is based on
somewhat sparse data, is probably the best estimate of the offshore extent of
the aquifer. Tertiary sections of wells on the shelf should probably be cased
in order to prevent contaminating the aquifer.

CONTINENTAL SLOPE AND UPPER RISE

Slope Instability and Mass Wasting

The Florida-Hatteras slope, which divides the shelf from the Blake
Plateau, locally shows some evidence of instability features, but such
features appear to be rare. This rareness is probably due to a low declivity,
a winnowing of fine-grained materials from slope sediments by the currents of
the Gulf Stream, and a low rate of deposition on the slope. Probable slope
instability features were noted on only two of thirty-two regional high-
resolution seismic-reflection lines that cross the Florida-Hatteras slope at
20-km intervals (fig. II-2). These two features are normal faulting of the
slope south of Jacksonville and a possible slump mass and scar at the base of
the slope due east of Savannah, Georgia (fig. II-2) (Ball and others, 1980;
Ayers and Pilkey, 1981; Popenoe and others, 1982). Radiocarbon dates of mud

taken from the postulated slump mass off Savannah, Georgia, ranged from 31,290
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to 20,225 years B.P., suggesting a late Quaternary age for the slumping (Ayers
and Pilkey, 1981). The presence of only a subdued possible slump scar upslope
suggests that the feature is relatively old or that the mapped feature may not
be a slump.

Slope instability features appear to be common along the Continental
Slope between the Blake Escarpment and Virginia. One area of particularly
pronounced slumping is due east of Cape Romain, South Carolina (fig. II-4) on
the Continental Slope in and below nominated lease blocks, OCS Sale 56, in the
Cape Fear OCS Topographic-bathymetric Series quadrangle and contiguous area to
the southeast which centers on 76° W long., 33° N. lat. Here, steep scarps
having as much as 80 m of relief truncate bedding on the slope (fig. II-12),
and rotational slump faults are evident upslope of the scarps. Interpreted
long-range sidescan (GLORIA) sonographs in the area of slumping (fig. II-13)
show that an arcuate area of the slope more than 40 km in width has been
removed. Mid-range sidescan sonographs (Popenoe and others, 1981b, 1982)
(fig. II-14) indicate that large blocks 3-10 km wide probably moved downslope
as relatively coherent masses, cutting deep furrows in the bottom. Furrows
that cross each other downslope of the scar indicate more than a single
episode of downslope movement of major blocks. The slump scar wraps around
two breached salt diapirs downslope suggesting that this slumping is due to
oversteepening of the slope by subsidence caused by submarine leaching of salt
from two large breached diapirs near the Continental Slope-Rise boundary
(Popenoce and others, 1982). 1t is also possible that the rising salt pillow
may have uplifted part of the slope initiating the rotational faulting.

A large slump scar on the outer Blake Plateau, which has been desribed by
Carpenter (1981b),lies within the Lease Sale 56 nominated blocks. This slump
scar lies upslope of the larger scar described above (Figure II-4), suggesting

that it also is related to salt tectonism.
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A third area of sharply truncated bedding suggesting massive slumping
occurs on the slope at about lat 36°15°N. offshore of the Virginia-North
Carolina border (fig. II-15) (McGregor, 1981; Popenoe and others, 1982).
Here, a large block of Pleistocene sediments has apparently been removed.
Although the USGS does not have detailed data on this feature, an inspection
of the recent Currituck Sound Topographic-Bathymetric Series Map (NJ 18-11)
(fig. II-16) indicates that canyon drainage exists in the slump scar,
suggesting a late Pleistocene or early Holocene age for the feature.

At the top of the Continental Slope between lat 31°N. and 32°N., the
bottom is offset as much as 75 m along the upper slope for a distance of more
than 60 km by a normal fault (figs. II-3, II-17) (Pinet and others, 1981).
CDP seismic-reflection profiles across this fault show it to be a listric
fault, which flattens with depth and shows at least four antithetic faults
seaward of the normal fault (Dillon and Paull, 1978). Chaotic reflectors
downslope and at depth suggest a long history of instability movement
resulting in slumping. No cores have been taken in this area, however, offset
bottom and lack of sedimentation in the offset area suggest relatively recent
movement on the gravity fault.

The Continental Slope south of 1lat 31°N. and the Blake Spur and
Escarpment appear to be dominated chiefly by processes associated with shelf-
edge spillover, erosion, and biogenic degradation. Minor slumping is shown in
seismic records collected north of the Blake Spur (Pinet and others, 1981);
however, the steep declitivity of the slope and the lack of detailed surveys
prevent the delineation of unequivocal slump-related features. Submersible
dives with the ALVIN (W. P. Dillon and others, unpub. data) on the Blake Spur
and Escarpment have shown vertical cliffs having as much as 1,000 m of relief

on the escarpment: the cliffs are apparently maintained by both current and
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biologic erosion. Piles of rubble at the based of outcrops indicate that
large blocks of material have broken off periodically and tumbled downslope.

Submarine Canyons

Off Cape Hatteras and Virginia, mass wasting and slumping associated with
submarine canyons appear to be the dominant downslope processes of sediment
movement on the slope and upper rise. The slope is highly dissected along the
edge of the northern Blake Plateau and north of Cape Hatteras by submarine
canyons, and relief between thalwegs and ridges is as much as 500-700 m.
Sonograms from the mid-range sidescan-sonar system in the Lease Sale 56 area
show both sharp divides and undissected slope between canyons (figs. II-18,
11-19). Geomorphic patterns of canyons are best described as pinnate,
reflecting the steep slopes on which the canyons are developed (12°). The
probable mechanism of downslope movement is undercutting at the thalweg and
slumping down chutes, thus causing headwall erosion. The canyons are cut into
both Pleistocene and underlying Miocene and older rocks, indicating that they

are late Pleistocene and perhaps Holocene features.

CLATHRATES AND ACCOMPANYING TRAPPED GAS

In the shallow subsurface a bottom-simulating seismic reflector believed
to arise from the impedence contrast between the lower boundary of a frozen
gas-hydrate layer (clathrate) and unfrozen sediment have been described as
occurring beneath the slope and upper rise on the eastern edge of the Blake
Plateau (Shipley and others, 1979; Dillon and others, 1980; Paull and Dillon,
1980; Popenoe and others, 1982). Gas hydrates can form and be stable in the
marine environment at temperatures as high as 27°C if pressures are
sufficiently high (Tucholke and others, 1977; Dillon, Chapter I, this report

fig. I-39). The gas hydrate or clathrate is an icelike crystalline lattice of
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water molecules in which gas molecules become trapped. On the Blake Outer
Ridge and on the upper rise, the lower phase boundary of the clathrate
generally occurs about 0.4 to 0.6 seconds (two-way travel) subbottom, where
the gas hydrate becomes unstable owing to the geothermal gradient. At this
phase boundary gas hydrate-gas or gas hydrate-water contacts within the
sedimentary section cause "bright spots” or amplitude anomalies on seismic
profiles (figs. I-36 to I-43, figs. II-12, 1II-20). The areal distributon of
the gas-hydrate reflector has been mapped by Paull and Dillon (1980) (Fig. I-
36) and Popenoe and others, (1982) (fig. II-4).

Drilling into clathrates should not pose a threat to operations unless
substantial quantities of shallow gas (such as methane, ethane, carbon
dioxide, hydrogen sulfide) are trapped beneath the frozen layer. The
penetration of shallow gas pockets beneath permafrost off Mackenzie Delta,
Alaska has 1led to the 1loss of several drill rigs (Peter Day, Phillips
Petroleum Company, personal communication, 1980), and this danger probably
also 1s associated with gas trapped beneath clathrates. Very little is known
of the hazards associated with clathrates because these frozen layers occur in
water depths that are at the frontier of exploration of production technology
at the present time. As exploration proceeds into greater water depths,

shallow gas trapped beneath clathrates may prove to be a primary hazard.
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Environmental geology map of part of the northern Blake Plateau
based on interpretation of high-resolution seismic-reflection
data (Pinet and others, 1981). Figure numbers refer to illus-
trations in Pinet and others (1981). Identification of slump
mass field on the Continental Slope is liberal by intent on the
basis of slope instability known to be associated with steep
bottom gradients.
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CHAPTER III

PETROLEUM POTENTIAL AND ESTIMATES OF UNDISCOVERED
RECOVERABLE OIL AND GAS RESOURCES, PROPOSED OCS OIL AND GAS
LEASE SALE 90, SOUTH ATLANTIC
by

Abdul S. Khan

INTRODUCTION

Proposed O0CS 1lease Sale 90 area includes parts of five geologic
provinces: 1) the South Atlantic Continental Shelf (Southeast Georgia
Embayment), 2) the Southeast Florida Shelf, 3) the Florida Straits, 4) the
Blake Plateau, and 5) the Carolina Trough (Fig. III-1). The total area of Sale
90 covers approximately 159,000 mi2 (412,000 kmz). Estimates of undiscovered
recoverable o0il and gas resources were assessed for the shelf area (South
Atlantic Shelf and Southeast Florida Shelf; 0-200 m water depth) and for the
slope (Carolina Trough, Blake Plateau, and Florida Straits; 200-2500 m water
depth). Areas beyond 2500 m water depth that are included in the proposed
lease sale were not assessed due to insufficient geological information. The
southeast provinces were recently assessed as a part of the study of the
Nation”s undiscovered recoverable conventional o0il and gas resources (Dolton
and others, 1981).

Undiscovered recoverable resources are those quantities of crude oil and
natural gas which are estimated to exist in subsurface geologic settings in
commercial amounts. Estimates of these quantities are based on careful
geological analysis, province exploration history, analog calculations, and
volumetric yield procedures (Miller and others, 1975; Dolton and others,

1981).

Figures III-1 to III-6 are grouped at the end of this chapter, beginning

on page 120.
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ASSESSMENT PROCEDURES

Estimates of undiscovered recoverable oil and gas resources for the South
Atlantic sub-region were made by using direct subjective probability methods
as described in detail by Miller and others (1975). Dolton and others (1981),
and Powers and Pike (1981). Volumetric yields from known producing carbonate
provinces such as the Williston Basin, Salina Basin, Permian Basin, and
Florida Peninsula were used as analogs to determine scaling factors in parts
of the South Atlantic area. Arbitrary volumetric yields from the total United
States - an average, a high, and a low value were also used as a scaling
factor in this subjective assessment.

Stratigraphic analogs, such as the Scotian shelf of eastern Canads, Gulf
of Mexico provinces, North African, and eastern Atlantic margin basins were
examined to assess the petroleum potential of the south Atlantic margin.

In frontier areas, such as the offshore Atlantic margin, a certain degree
of risk exists as to whether recoverable o0il or gas are present or not.
Because of this uncertainty, each province was first assessed separately for
its potential regarding the presence of: 1) any recoverable quantity of oil,
and 2) any recoverable quantity of non-associated gas. This event is
expressed in terms of probability on a scale of O to 1, and is called the
marginal probability (MP). On the condition that commercial quantities of
hydrocarbon exist, the volumes of undiscovered hydrocarbon were expressed at
two probability levels; these are the 95th fractile (F95) and 5th fractile
(Fs). In addition, a modal or most-likely, value was estimated. Both events,
the marginal probability and the conditional estimates of volumes of
undiscovered o0il and non-associated gas, were expressed by individual
subjective judgments. The associated-dissolved gas was calculated from the

initial estimate of crude o0il by using the gas/oil ratio (GOR) for the
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province (Dolton and others, (1981).

A lognormal distribution was fitted using low, high, and modal estimates
to determine the conditional probability distribution for each province. By
applying the marginal probability to the conditional probability distribution,
the probability distribution of the quantity of undiscovered resource was
established. To obtain total resource estimates for an area, the probability
distributions for the provinces composing the area were aggregated by a Monte

Carlo technique.

CONTINENTAL SHELF DRILLING HISTORY AND PETROLEUM POTENTIAL

Federal acreage in the South Atlantic area was first offered for bid in
0CS Lease Sale 43, held in March 1978. In this sale, 43 tracts in water
depths up to 328 feet (100 m) totaling approximately 245,000 acreas were
leased for a cash bonus of over $100 million. 1In 1977, prior to Sale 43, a
group of 25 o1l companies participated in drilling a stratigraphic test well
(COST GE=1) in 131 feet (40 m) of water to a total depth of 13,245 feet (2,040
m) on Southeast Georgia Embayment Block 387. The results of this test have
been described in detail in two USGS reports (Amato and Bebout, 1978; Scholle,
1979). Since then 6 wildcats have been drilled on potential hydrocarbon-
trapping structures which proved to be dry and without any significant shows
of oil or gas. 1Interest in the Shelf area has apparently declined after these
disappointing exploratory results, and there has not been any exploratory
drilling during the past two years. However, a second sale (OCS Sale 56) was
held in August of 1981, which included the deep water parts of Blake Plateau
and Carolina Trough. This sale drew the interest of some 15 oil companies and
47 tracts in water depths up to 6,560 feet (2,000 m) were leased for a cash

bonus of $342.7 million. Results of this new interest in the area and the
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extent of drilling activity in the deep waters remain to be seen.

The sedimentary section beneath the continental shelf is relatively thin,
11,050 feet (3,369 m) in COST GE-1, and 6,986 feet (2,130 m) in the Getty No.
1 well in block No. 913, and consists mainly of sequences of sandstone and
shale with layers of coal, limestone, dolomite and anhydrite, and, for the
most part, lacks the thermal maturity for hydrocarbon generation. Most
exploratory wells were plugged and abandoned at total drilled depth of less
than 8,000 feet (2,500 m), without any commercial discoveries or significant
shows of hydrocarbon. Amato and Bebout (1978) and Scholle (1979) indicated
that only Lower Cretaceous or Jurassic sedimentary rocks below 8,000 feet
(2,500 m) in the COST GE-1 well, would attain sufficient maturation for
hydrocarbons to be generated. Younger rocks, particularly those between 2,800
feet (933 m) and 5,600 feet (1,866 m) have high organic carbon content but are
too thermally immature to be considered as probable source beds. Long-range
migration of hydrocarbons from the adjacent basins of the slope, where the
sedimentary rocks are thicker than 40,000 feet (12 m) would be necessary to
create any significant accumulation beneath the shelf. Good quality
reservoirs, effective seals, and potential structural and stratigraphic traps
are available for petroleum entrapment. However, a general lack of thermally
mature source rocks coupled with disappointing results from exploratory

drilling reflects a somewhat low hydrocarbon potential beneath the shelf.
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Estimates of Petroleum Resources for Shelf Area
Estimates of undiscovered recoverable conventional oil, associated-
dissolved gas, non-associated gas and total gas for the shelf part of Sale 90
are summarized in the following table:

0CS Lease Sale 90 Shelf (0-200 m)

Unconditional Conditional

F95 Fsg Mean MP Fgs Fg Mean
0il (BB) 0 .33 .05 .15 .04 1.16 .36
Ass./Diss. Gas (ICF) O .33 .05 .15 .04 1.16 .36
N/Ass. Diss. Gas 9CF) O .69 .1 .13 .17 1.93 74
Total Gas (TSF) 0 .95 .16 .27 .05 1.7 .58

Figure III-2 shows the probability curves for the unconditional estimates.

No significant resources are expected to be present near shore within the

three-mile limit of State waters.

Southeast Florida Shelf and Strait

Only a very small portion of these two provinces is included in the
proposed Sale area. It is among the least explored areas on the United States
Atlantic Margin. No exploratory (wildecat) drilling and very little
geophysical exploration has been carried out to date. Sedimentary strata
became thinner southeastward from the Southeast Georgia Embayment and onlap
and pinch out against the Paleozoic basement rocks (the Peninsular Arch).
Beneath the Florida Straits post-rift sediments of Triassic and early Jurassic
age (arkoses and volcaniclastics) are overlain by evaporites and dolomites,
which in turn are overlain by a thick sequence of shallow water limestones of

late Jurassic and early Cretaceous age. The upper Cretaceous and younger

111



section is composed of mostly pelagic limestones and oozes with chalk and
reffal deposits. Only negligible amounts of o0il and gas resources were

assessed in this area.

Continental Slope Drilling History and Petroleum Potential
In this assessment, the slope from 200 m to 2,500 m water depth includes
two geologic provinces, the Blake Plateau and the Carolina Trough. With the
exception of a few shallow (less than 330 m) core holes, no exploratory well
has been drilled in this area. Subsurface information is derived mostly from

seismic interpretation made by Dillon (this volume).

Blake Plateau

The Blake Plateau 1is a broad, relatively flat, physiographic feature
which extends seaward approximately 125-190 miles (200-300 km) from the shelf
break at around 600 feet (200 m) water depth to the Blake Escarpment. The
subsurface basinal structure is that of a rift-type geosyncline overlying a
block-faulted basement of partly transitional and partly oceanic crust. The
basin is filled with carbonates, evaporites, and some terrigenous clastics of
Jurassic and younger age; the total sediment thickness is estimated to be
43,000 feet (13 km). Rocks of the outer Blake Plateau are characterized by
Cretaceous and older reef banks and marginal reef-complex facies that extend
regionally through the Bahama carbonate platform to Cuba and into offshore
western Florida. Organic-rich beds of Lower Cretaceous age were reported from
DSDP 391, a shallow core hole located at the eastern edge of the Blake
Plateau. These beds, if present and buried deeply enough in other parts of
the basin, might achieve maturation and offer potential source beds. In

addition, some reefal and carbonate buildup on the basement highs,
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particularly toward the eastern margin of the Blake Plateau, might provide
favorable geologic conditions for hydrocarbon accumulation. Based on seismic
evidence, potential structures are 1larger, and there 1s every reason to
believe that the Blake Plateau province offers a better geologic setting for
0il and gas accumulations than the adjacent Continental Shelf. However, the
water depth would be an important 1limiting factor in exploration of

prospective targets.

Estimates of Petroleum Resources for the Blake Plateau Area
Estimates of undiscovered recoverable conventional oil, associated-dissolved
gas, non-associated gas and total gas for the Blake Plateau part of Sale 90

are summarized in the following table:

Blake Plateau (200-2500 m)
Unconditional Conditional
F95 FS Mean MP F95 F Mean
0il (BB) 0 1.68 .32 .26 .42 2.66 1.21
Ass./Diss. Gas (TCF) 0 1.68 A .22 .65 5.35 2.0
N/Ass. Gas (TCF) 0 2.43 .32 26 .42 2.67 1.21
Total Gas (TCF) 0 3.21 .75 .42 .55 4.84 1.8

Figure III-3 shows the probability curves for the unconditional estimates.
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Carolina Trough

The Carolina Trough, north of the Blake Plateau, is a long (280 mi; 450
km), narrow (25 mi; 40 km), linear basin characterized by a major growth-fault
system on its landward side and a salt-diapir system along its seaward edge at
around 9,800 feet (3,000 m) water depth. Apparently the two basins are
separated by the Blake Spur Fracture Zone (Dillon and others, in press).

The Carolina Trough is believed to be a zone of transition from a
predominantly carbonate facies of the Blake Plateau to a mixed carbonate-
clastic-deltaic facies in the Mid- and North Atlantic. Total sediment
thickness in the Carolina Trough is estimated to be little more tham 40,000
feet (12 km). Strata beneath the Carolina Trough are expected to include both
carbonate and noncarbonate rocks, providing ideal conditions for stratigraphic
traps. A regional unconformity at the base of the Cretaceous section overlies
Jurassic sediments that would have reached thermal maturity indicating that
possible hydrocarbon accumulations could occur beneath the unconformity.
Other possible traps would be of structural nature associated with the salt
diapirs and growth faults. The oil and gas resource potential of the Carolina
Trough is considered to be greater than that of the other geologic provinces

in the proposed Sale Area.
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Estimates of Petroleum Resources for the Carolina Trough Area
Estimates of undiscovered recoverable conventional oil, associate-dissolved
gas, non-associated gas and total gas for the Carolina Trough part of Sale 90

are summarized in the following table:

Unconditional Conditional

Fgs Fg Mean MP Fgs Fsg Mean

0il (BB) 0 2.99 .62 .36 .31 4.96 1.71
Ass./Diss. Gas (TCF) 0 3.28 .68 .36 .34 5.49 1.88
N/Ass. Gas (TCF) 0 9.64 2.14 41 1,12 14.94 5.23
Total Gas (TCF) 0 10.91 2.82 .62 .61 13.82 4.55

Figure III-4 shows the probability curve for the unconditional estimates.

115



Aggregate Estimates of Petroleum Resources for the Slope Area
Following are the estimates of undiscovered recoverable conventional oil,
associated-dissolved gas, non-associated gas and total gas for the slope part

(200-2500 m) of Sale 90 including Blake Plateau, Carolina Trough and Florida

Straits:
0CS Sale 90 Slope (200-2500 m)
Unconditional Conditional

Fgs Fg Mean MP Fgg Fg Mean
0il (BB) 0 3.71 .93 .53 .34 4.98 1.76
Ass./Dis. Gas (TCF) 0 3.97 1.0 .53 .37 5.11 1.88
N/Ass. Gas (TCF) 0 10.68 2.58 .54 .83 14.28 4.79
Total Gas (TCF) 0 12.11 3.57 .78 .65 13.65 4.58

Figure III-5 shows the aggregate probability curves for the unconditional

estimates.
Aggregate Estimates of Petroleum Resources for the
Area of Sale 90 Shelf and Slope (0-2500 m)
Unconditional Conditional

Fgg Fg Mean MP Fgg Fg Mean
0il (BB) 0 3.87 .98 .6 .15 4.75 1.64
Ass./Diss. Gas (TCF) O 3.75 1.05 .6 .17 4.69 1.75
N/Ass. Gas (TCF) 0 10.18 2.69 .6 .58 12.69 4.48
Total Gas (TCF) 0 12.22 3.73 .84 .46 13.54 4.45

Figure III-6 shows the aggregate probability curves for the unconditional

estimates.
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