
	

	

Open—File Report

83-276

AGRAM a Series of Computer Programs for

Processing Digitized Strong — Motion

Accelerograms

Version 1.0

0-1-OGIC
iltSTON, VAL

APR 2 51983 *

`t /BRA /

liniied States Department of the Interior

Geological Survey

4

•

4-,

4%.

•
pf

;4

t

•

era

United States Department of the Interior
Geological Survey

VOW

ACRAM: a Series of Computer Programs for Processing

Digitized Strong-Motion Accelerograms

Version 1.0

Compiled by
April Converse

07 February 1983

Open-File Report
83-276 -&"

This report is preliminary and has not been
reviewed for conformity with U. S. Geological
Survey editorial standards.

Any use of trade names is for descriptive
purposes only and does not imply endorsement by
the USGS.

This text is stored in the file named 31427C.I,
DR2:[110,110]AGRAM.DOC in the PDP 11/70 at the
National Strong Motion Data Center. The task
files for all the programs are also in
DR2: [110,110].

e rer (rt
(Geological &Nov

Open—File Reports are Distributed by:

Open—File Services Section
Branch of Distribution
U. S. Geological Survey
Box 25425, Federal Center
Denver, Colorado 80225

(303) 234-5888

	

	
	
	
	
	

	
	
	
	
	

	

	
	
	
	
	

	

	
	
	
	

	

	
	

	

TABLE OF CONTENTS

page

PREFACE

ACKNOWLEDGMENTS ii

CHAPTERS
1.0 Introduction

1.1 Overview 1-1
1.2 Data Sources 1-1
1.3 Background 1-4
1.4 Invoking the Programs 1-4

1.5 Warnings 1-5

2.0 Data Files

2.1 Overview 2-1
2.2 Raw Data 2-2
2.3 DR100, HIFRIC and CORAVD files 2-2
2.4 BUTTER and SCALE files 2-2
2.5 File Names 2-3

3.0 BUTTER Program 3-1

4.0 SCALE Program

4.1 Overview 4-1
4.2 SCALE process for each trace 4-1
4.3 To invoke SCALE 4-2
4.4 SCALE still needs work 4-3
4.5 Differences between SCALE and PHASEI 4-3

5.0 HIFRIC Program

5.1 Overview 5-1
5.2 Differences between HIFRIC and the

instrument correction in PHASE2 5-2
5.3 Standard HIFRIC process 5-3
5.4 To invoke HIFRIC 5-3
5.5 HIFRIC still needs work 5-4

6.0 CORAVD Program

6.1 Overview 6-1
6.2 Guidelines for selecting CORAVD

options 6-2
6.3 Standard CORAVD process 6-3
6.4 Differences between CORAVD and the

baseline correction in PHASE2 6-3

	
	

	

	
	
	
	

	
	

	
	
	
	

	

6.5 To invoke CORAVD 6-5
6.6 CORAVD still needs work 6-7

7.0 PHASE3, 4, 5, and 6 Programs 7-1

8.0 Support Programs

8.1 Time Series Plotter, TSPLOT 8-1
8.2 Data File Dumper, BBFILE 8-4
8.3 Header Block Changer, WRITE 8-5
8.4 Data File Reformatter, REFORM 8-6

APPENDICES
A Examples A-1
B Contents of Data File Header Blocks B-1
C Printouts of Central Subroutines

C.1 Overview C-1
C.2 Non-standard, Site-dependent Code C-4
C.3 Coding Conventions C-5
C.4 Code Listings C-6

REFERENCES and BIBILIOGRAPHY R-1

PREFACE

This report presents a preliminary description of the
computer programs that are used for processing digitized
strong-motion accelerograms by the U.S. Geological Survey.
Recent improvements to the programs provide an improved
instrument correction, maximum use of densely digitized
data, and freedom to choose interactively from a variety of
long-period filtering schemes. The programs are still in
the development process; many of the options they provide
have yet to he evaluated and many other features intended
for the programs have yet to be implemented. With
continued support and further development, however, the
programs will evolve into a comprehensive series of
relatively transportable FORTRAN 77 computer programs
available to any investigators who require strong-motion
data processing software.

The programs and report are changing continuously as
their development progresses. The current version of the
report is intended for use as an interim user's guide for
members of the USGS. As vet, it is incomplete and often
merely provides names of those people within the USGS who
can provide guidance for aspects of the programs that this
author has not considered yet. The report is published as
an open file report to inform organizations outside the
USGS of the goals for the completed project and of the
project's current status, but the report will become
outdated as the capabilities of the programs continue to
expand.

07 February 1983

April Converse
U. S. Geological Survey
Mail Stop 78
345 Middlefield Road
Menlo Park, CA, 94025

telephone: (415) 323-8111
extension 2881

or FTS 467-2881

ACKNOWLEDGMENTS

This report and the computer programs it describes are
compilations of techniques and recommendations devised
through cooperative efforts of many members of the USGS.
A. Gerald Brady, William Joyner, Peter Mork, Virgilio Perez
and Michael Raugh have all made substantial contributions.

Many of the techniques used in these programs, even
the names of some of the programs, were adapted from a
series of programs that were originally developed at the
Earthquake Engineering Research Laboratory of the
California Institute of Technology during the years 1968 to
1972.

This work was funded in part by National Science
Foundation Grant CA-114, under interagency agreement with
the USGS through 1982. Support for subsequent development
has been assumed by the USGS.

PAGE 1-1

CHAPTER 1

Introduction

1.1 Overview

The computer programs described in this report are those
that are used to process analog strong-motion accelerograms that
have been digitized by IOM/TOWILL Corporation in Santa Clara,
California. The programs will also accept data that have been
recorded in digital form by a Sprengnether DR100 recorder and
they will eventually accept data that have been acquired by other
types of digital recorders or by manual digitization.

The contents of a tape written at the digitizing facility
are processed at the National Strong motion Data Center (NSMDC)
at the USGS offices in Menlo Park, California. First, the BUTTER
program is used to rejoin the separately digitized frames of an
accelerogram into one continuous record. The SCALE program then
scales the data to represent time and acceleration rather than
digitizer units. Next, HIFRIC interpolates the data, applies an
instrument correction and filters high frequencies from the data.
CORAVD integrates acceleration to obtain velocity and
displacement and optionally performs a linear base line
correction or filters out long-period content. The PHASE3, 4, 5
and 6 programs perform spectral analyses of the CORAVD results.

1.2 Data Sources

1.2.1 Analog Records

Most of the strong-motion recording instruments that provide
the raw data to be processed by the AGRAM programs discussed in
this report are analog accelerographs that record on 70mm film.
Older accelerographs record on 12-inch paper and a few
multi-channel accelerographs record on 7-inch film.
Strong-motion accelerographs do not record continuously but begin
recording only after earthquake motion has reached a significant
level. Recorders are usually set to trigger with approximately
.01g in the vertical direction and are designed to be up to speed
in, at most, 0.1 second.

PAGE 1-2

Most records contain three accelerometer traces, one or more
reference (or "fixed") traces, and one or more time traces. The
three accelerometer traces correspond to orthogonal components of
motion. The first (topmost) accelerometer trace of the most
prevalant records represents horizontal motion, the second
represents vertical motion, and the third represents horizontal
motion perpendicular to that of the first trace. The reference
traces are produced by "fixed" mirrors rigidly attached to the
accelerograph frame; they are used to correct for film
distortion or transverse slippage of the film as it moved through
the accelerograph. Time traces show a pulse approximately every
half centimeter, the distance between pulses representing a
half-second time interval. The time traces are generated by an
internal timer that is more accurate than the recording speed is
constant. Some accelerograms also show WWVB time code traces
with which the date and time of motion can be determined. All
these analog traces (except the WWVB trace) must be digitized
before they can be processed by the computer programs.

Digitization is currently performed at IOM-TOWILL
corporation in Santa Clara, California with automatic
trace-following, laser scanning equipment. The laser scanner
provides much better resolution than can be attained with the
manual digitization that was used in the past, hut it can
digitize at most a 10 square centimeter area at one time.
Between 500 and 800 points per centimeter of trace length are
digitized with a resolution of 1 micron (10**-6 meter) and an RMS
error of the order of 10 microns. Records longer than 10
centimeters are divided into two or more "frames" that are
digitized independently. Transverse "butt" lines are scribed
onto such records as dividers between frames. All the continuous
traces on each frame are digitized with half an inch of overlap
beyond the butt lines and the butt lines are also digitized. The
overlap and butt lines are used by the BUTTER program to rejoin
the separately digitized frames.

The scanning laser automatically digitizes the main and
reference traces once the operator starts it on each trace in
turn. A manual intervention is required for handling decision
making such as crossing intersecting traces, getting over a gap
or faint area in the trace, or resolving the effect of dirt and
scratches on the film. The time trace is also measured manually
at the leading edge (or any repeating clearly-defined corner) of
each time mark.

IOM-TOWILL produces 9-track tapes to transfer the data to
NSMDC. The laser scanner measures on the order of 6,000 points
(12,000 numbers) per trace per 10-centimeter frame. Each frame
is written to tape as a separate file. Each trace within that
frame is preceeded by a 60-word header. The numbers are written
in binary form and must be converted from the binary form used by
the IOM-TOWILL computer to the internal binary form used by
whichever computer will read the data. (Why wasn't the data
formatted to ASCII or EBCDIC characters? Too much data?)

PAGE 1-3

The tape is read by the MTDUP tape utility program on the
PDP 11/70 computer at NSMDC. Then the BUTTER program reformats
each number to PDP internal format and realigns adjacent frames.
Next, the REFORM program must reformat BUTTER output so it can be
read by SCALE. (The messy MTDUP-BUTTER-REFORM sequence will be
revised just as soon as April can get time to do it.) The whole
sequence of programs for processing data that has been digitized
at IOM/TOWILL is:

MTDUP
BUTTER
REFORM
SCALE
HIFRIC
CORAVD
PHASE3
PHASE4

and PHASE6.

The support programs TSPLOT, BBFILE, REFORM and BWRITE can
be used at various stages in this process. Note that the PHASES
program is not available at NSMDC yet.

1.2.2 Digital Records

Recently developed instruments record directly onto digital
magnetic tape. These instruments acquire data continuously,
always saving the last several seconds of data in a buffer so
that motion leading to instrument triggering can he captured with
the rest of the record.

The computer programs described in this report were
established to process digitized analog records, but they can be
used to process digitally recorded data as well, once the data
has been read and converted to an appropriate format. The
programs have been used to process data from Sprengnether DR100
instruments and will he modified as necessary in the future to
accommodate data from other digital recording instruments. DR100
tape cassettes are read using the program DR11K, next, the
several components of motion that were recorded together are
separated ("demultiplexed") by the CRTAPE program, and the data
are then reformatted by the program named DR100. These three
programs are not described in this report. For more information
about them, refer to the text files at DRO:[2,2]DR11K.DOC,
DRO:[2,2]CRTAPE.TXT and DRO:[2,2]DR100.DOC or talk with Ed
Cranswick, Chuck Mueller, or Joe Fletcher.

DR100 recorders are either connected to velocity transducers
or to force-balance accelerometers. The instrument correcting
algorithms in HIFRIC are inappropriate for the velocity data and
they aren't entirely suitable for the force-balance
accelerometers either. Bill Joyner and Chuck Mueller have
considered algorithms that can be incorporated into HIFRIC

PAGE 1-4

eventually if we ever need them, but since the instrument
responses for both types of DR100 transducers are flat from 2 to
50 Hertz, no instrument correction is necessary as long as
frequencies outside 2 to 50 Hertz are beyond the range of
interest. Thus, the data files generated by the DR100 program
should enter the AGRAM processing at CORAVD.

The sequence of programs for processing digital
accelerometer data is7

DR11K
CRTAPE
DR100
CORAVD
PHASE3
PHASE4

and PHASE6.

?'.3 Background

The AGRAM programs are revisions or rewrites of the BUTTER
and PHASE1 through PHASE6 programs that were installed at the
Lawrence Berkeley Laboratory (LBL) computing center long before
the National Strong Motion Data Center (NSMDC) existed. The LBL
versions of the programs were used from 1974 through 1981 in
preparing the strong motion data reports published by the Seismic
Engineering Branch of the USGS. The PHASE1 through PHASE4
programs were originally developed at the Earthquake Engineering
Research Laboratory of California Institute of Technology
although modifications were made by Seismic Engineering Branch to
upgrade procedures and to adapt the programs for use with the
computers at LBL. PHASES and 6 were developed by Virg Perez.
BUTTER was developed by Gerry Brady and by W.R. Roseman of
IOM-TOWILL.

All the programs were revised in order to transport them
from the CDC 7600 computer at LBL to the PDP 11/70 at the NSMDC,
and although they were changed a great deal in the process, they
retained the same names as the programs had at the LBL computing
center. Now the programs are being revised to use a new data
file format, to separate the processing functions into smaller
and more independent programs, and to use new processing
algorithms that have been developed by Michael Raugh and others.

Those programs that have been revised to the point where
they produce blocked binary data files rather than the card-image
text files produced by the LBL programs have been renamed as a
reminder that the programs are now really quite different from
their PHASE counterparts at LBL or CalTech. SCALE has replaced
PHASE1 and HIFRIC and CORAVD have replaced PHASE2. BUTTER,
BWRITE, and the PHASEs have yet to be revised to the same extent
as SCALE, HIFRIC and CORAVD have been. They are documented only

PAGE 1-5

briefly here, but their documentation will improve when the
programs themselves do.

1.4 Invoking the programs

The programs are not installed yet since they are still
changing so frequently. Until they are installed, you must type
the directory identification along with the program name to
invoke any of them. The disk, directory and program names for
all the programs discussed in this report are the following:

DR2:[110,110]TSPLOT, STSP, VTSP, CTSP, and ITSP
DR2:[110,110]BBFILE
DR2:[110,110]BWRITE
DR2:[110,110]REFORM
DR2:[110,110]BUTTER
DR2:[110,110]SCALE
DR2:[110,110]HIFRIC
DR2:[110,110]CORAVD
DR2:[110,110]SLOWAVD
DR2:[110,110]PHASE3
DR2:[110,110]PHASE4

Most of these programs (and all of them, eventually) receive
their run parameters from the command line in which they are
invoked although other means for providing run parameters to the
programs may be added in the future. At present, if no run
parameters are given on a command line that invokes an AGRAM
program, the program will display instructions. In the
instructions displayed by the programs and in the instructions
given in this report, items that the user must provide are shown
in brackets. (Note that you do not type the brackets when
providing such an item.) Items in square brackets ([]) are
required, items in angle brackets (<>) are optional. Items in
quotes ("") are literals.

The command lines for these programs are arranged similarly
to those for the "MCR" commands provided by the RSX operating
system in use at NSMDC. Output files are listed on the left-hand
side of an equal sign and input files are listed on the
right-hand side of the equal sign. The file names may be
abbreviated as in MCR commands: if the directory is not
specified for the first file name given on the command line, the
user's current working directory is assumed; if the directory or
directory and file name prefix is not specified for any but the
first name given, the directory and prefix used for the
preceeding file name is assumed. If neither the first file name
prefix nor the input file name prefix is specified, "TEMPORARY."
will be used. If a file name suffix is not specified, a default
will be selected that depends on which program and which file is
involved.

PAGE 1-6

Any other run parameters a program requires are listed on
the command line after the file names. (Unlike the MCR command
lines in which run parameters are appended to the file names as
"switches".)

Commands that do not fit on one line can be continued by
using a hyphen (—) as the last character on the line to he
continued.

1.5 Warnings

The file names given in command lines must not include
version numbers. If this restriction causes problems, it can be
changed. The file names cannot include wildcards ("*") either.

The programs that don't interpret their command lines at all
yet are: BUTTER, BWRITE, and the PHASEs. BUTTER and BWRITE get
their run parameters by prompting the user. The PHASEs get their
run parameters from the header lines in their data files.

Some of these programs have sections of code that haven't
been tested yet. If you receive a message stating that you are
using untested code, please show April how the program was run so
she can use your files and command lines for a test case.

PACE 2-1

CHAPTER 2

Data Files

2.1 Overview

The data files processed by the AGRAM programs conform to a
standard file organization intended for all time-series disk
files at the NSMDC. These files are referred to as "blocked
binary" data files. Their contents are in binary form and are
arranged as a series of fixed-length, 512-byte blocks that may be
accessed randomly or sequentially. The first few blocks of each
file are reserved for auxiliary information that supplements or
describes the time-series data in the remainder of the file.
Refer to appendix B for description of the content of the header
blocks.

Each blocked binary file contains time-series data for a
single component of motion and a single type (acceleration,
velocity or displacement) of motion. The NSMDC data file czar
(Ed Cranswick) wants to change this, however, and eventually
store data for three components in each file as was done earlier.

Input/output operations are much faster with the blocked
binary files than with the card-image text files that had been
processed by the PHASE programs since there is no translation
back and forth between internal (binary) form and external
(character code) form when reading or writing binary files. The
blocked binary files take less disk space than did the card-image
text files too. Blocked binary files are also arranged to take
advantage of the direct, disk-to-memory transfers provided by
some operating systems like the RSX operating system at NSMDC.
This method avoids the transfer time and memory space required
with the intermediate buffers used by standard FORTRAN
input/output operations. The input/output can still be done with
standard FORTRAN, though, as is done in the versions of the AGRAM
programs on the VAX at NSMDC.

Since the data is in binary form, the blocked binary files
must be formatted somehow before their contents can he displayed,
processed with a text-editor, or transported to another computer.
The BBFILE and REFORM programs do such formatting although they
still aren't as versatile as they need to be. BBFILE prepares a
text-file dump of all or part of a blocked binary file. REFORM
reformats between various types of text data files and blocked

PAGE 2-2

binary data files.

2.2 Raw Data

Raw data comes from the digitizing facilities or recording
instruments in a variety of formats and on a variety of media.
IOM—TOWILL digitized data is written on magnetic tape, DR100 data
is recorded on tape cassettes, manually digitized data from Willy
Lee's digitizer downstairs is written on a floppy disk, and we
still occasionally receive data on punched cards. Each type of
incoming data requires a special program or programs to read and
translate the data. Talk with Gerry Brady to learn the format of
the TOM—TOWILL tapes; they are read by the MTDUP program and are
translated by the BUTTER program. Talk with Joe Fletcher or
Larry Baker to learn the format of the DR100 cassettes; they are
read by the DR11K program and are translated by the program named
DR100. Talk with Jack Boatwright to learn the format of the
floppy disks from the digitizer downstairs. Jack has a program
that will read the disks, but it does not write blocked binary
data files (yet).

2.3 DR100, HIFRIC and CORAVD files

Time—series data in files generated by the DR100 program are
integers (256 2—byte values per block) and time series data
generated by the AGRAM programs are reals (128 4—byte values per
block). DR100, HIFRIC and CORAVD output files contain
acceleration, velocity or displacement values only: time is at
even intervals, the time interval being stored in a header block.

Some of the recording instrument characteristics that were
once intended to be stored in header blocks are now stored in a
separate, "DBS", file for DR100 data. Ed Cranswick and Chuck
Mueller oversee the DR100 and DBS files. Instrument
characteristic items are still stored in the header blocks of
AGRAM files.

2.4 BUTTER and SCALE files

The time—series data in BUTTER and SCALE output files
include the abscissa for each sample since the data are not at
even intervals. Data items are real and occur as a series of
(x,y) pairs. In BUTTER files, x and y are in digitization units
(=microns if the digitization was done at IOM/TOWILL). In SCALE
files, x is in seconds, and v is scaled, uncorrected instrument
response in cm/sec/sec offset by a constant value (the constant

	

PAGE 2-3

being in a header block).

A BUTTER output file contains data for all the traces on a
digitized record, but a SCALE output file contains the data for
just a single accelerometer trace.

2.5 File Names

DR100 File names have the form JJJHHMMSC.STA, where JJJ is
the Julian day, HH is the hour, MM is the minute, S is a letter A
through T, C is the component number, and STA is the 3 letter
station name. The second, S, is represented as the letters A—T,
each letter representing a 3 second interval. The component
number, C, is 1,2, or 3 for acceleration; 4,5, or 6 for
velocity; and 7,8, or 9 for displacement.

AGRAM output files may he renamed according to the DR100
convention once processing is complete, but during processing,
another convention is used which allows us to distinguish from
which stage (or PHASE) in the processing the file comes.

There is no convention for AGRAM file name prefixes,
although "TEMPORARY." is often used since that is the prefix the
programs assign by default. In the suffix, however, the first
character indicates what sort of data is in the file and the
second and third characters are numeric digits that indicate
which trace from among the several traces that were recorded
together is contained in the file. SMA records usually consist
of traces from three orthogonal transducers with the first and
third traces for horizontally oriented transducers and the second
trace for a vertically oriented transducer. But things are not
always so simple! There are remote recorders in the field that
can record up to 16 traces on a single record. Transducers are
not always arranged in orthogonal triplets, either.

PAGE 2-4

Here follows a table relating the AGRAM file name suffixes
and the programs that produce and read those files. The TINKER
program shown in the table is not discussed elsewhere in this
report; it is primarily used to process DR100 data.

file producing
suffix program

.BUT BUTTER

.R01 SCALE

.I01 HIFRIC

.001 HIFRIC

.A01 CORAVD or
SLOWAVD

.V01 11

.D01 11

file
content

Butted TOM digitized
frames.
UninterPolated
instrument response.
Interpolated
instrument response.
Interpolated,
instrument corrected
case acceleration.
Baseline corrected
acceleration.
Velocity.
Displacement.

reading
program

REFORM, then
SCALE
HIFRIC

TINKER

CORAVD, or
TINKER

phase 3,4,6,
or TINKER

CHAPTER 3

RUTTER program

BUTTER reformats data read from an IOM-TOWILL tape and butts
separately digitized frames together. It hasn't been changed to
generate blocked binary output files yet. Ask Pete Mork or Chuck
Mueller how to use it.

BUTTER needs work!

- The IOM-TOWILL equipment can digitize an area 10 by 10
centimeters. For those records that are longer than 10 cm.,
BUTTER reconnects several separately digitzed frames. The
program does not yet have the capability to reassemble records
that are wider than 10 cm., but it will need to do so to
process records from the newer remote recording instruments
(up to 16 accelerometer traces on a 7-inch wide record).

- Output from BUTTER is given in text files rather than the
blocked binary data files processed by the other programs in
the series. These text files must be sent through the REFORM
program to reformat them to the blocked binary files SCALE
reads. (Internally, BUTTER processes the data in blocked
binary files, but it formats the data just for output!)

- This version of BUTTER, unlike the one at LBL, discards all
but one reference trace.

- The current version cannot generate a dummy reference trace
properly when processing multi-frame records.

- The prompts BUTTER gives the user are not very clear.
Commonly used run parameters ought to come from the command
line and prompts for nonstandard situations ought to be easier
to understand.

- BUTTER hasn't been revised much at all since Adolf Oliver and
Larry Baker first adapted it for the PDP 11/70 computer. It
uses outdated i/o subroutines, prompting subroutines and task
building techniques that can be cleaned up to make the program
smaller and more consistent with the other programs in the
series.

PAGE 4-1

CHAPTER 4

SCALE program

4.1 Overview

SCALE scales digitized accelerometer traces to seconds and
cm/sec/sec. It transfers data from reformatted BUTTER files to
files suitable for input to the HIFRIC program, separating the
data into a separate file for each accelerometer trace given in
the BUTTER file.

In addition to the accelerometer traces, most records
contain timing marks and several fixed reference traces that are
also digitized. SCALE makes longitudinal time corrections based
on the timing marks (assuming that the clock runs more accurately
than the transport mechanism) and corrects for possible
transverse slippage by subtracting the reference trace from all
accelerometer traces. For digitizations of records that have
been photographically reduced, optical distortions are minimized
by subtracting the reference trace.

The results from SCALE are often referred to as
"uncorrected" data in the sense that no modifications have been
made that involve any hypotheses as to the character of the
ground motions or instruments involved. The data have been
corrected merely for uneven film transport and for transverse
slippage of the film as it moved through the recorder.

4.2 SCALE process for each accelerometer trace:
...

- Identify the reference trace nearest the accelerometer trace
being processed by comparing the differences between the
ordinates of the first point in the accelerometer trace and
the first point in all the reference traces given.

- If the first point in the accelerometer trace occurs before
the first point in the reference trace, extend the reference
trace along the line defined by the first and second points in
the reference trace. Extend the reference trace at the end of
the record too, if necessary.

- Smooth the values of the time tick abscissas with a 1/4, 1/2,
1/4 running mean (also called a Hanning filter.)

PAGE 4-2

- If the first point in the accelerometer trace occurs before
the first time tick, use the interval between the first and
second time ticks to extend hypothetical time ticks back
beyond the beginning of the accelerometer trace. Use the
interval between the last two actual time ticks to extend the
time ticks beyond the end of the record too, if necessary.

- Perform the following steps for each point in the
accelerometer trace.
.Subtract the reference trace as follows: Identify the two

reference trace points that bracket the data point. Use
linear interpolation between the two reference trace points
to calculate a reference trace ordinate value at the same
abscissa as the data point. Subtract calculated reference
trace ordinate from the data ordinate.
.Subtract a constant also, to avoid numeric overflow

problems while calculating the mean value of the trace.
Use the difference between the first ordinate of the
acceleration trace and the first ordinate of the reference
trace as the constant.
.Convert ordinate value from digitzer units to cm/sec/sec.

Use the sensitivity of the recording transducer (cm/g) and
the digitization units per centimeter in this conversion.
(The default value for digitization units per centimeter is
10,000 microns/cm which is appropriate for IOM/TOWILL
digitizations)
.Convert abscissa from digitizer units to seconds using the

two time ticks that bracket the data point. Calculate the
time at the two ticks using the first point in the data
trace as time zero, and using the time between consecutive
ticks (usually 0.5 second) given as an input parameter.
Interpolate linearly to calculate the time at the data
point.

- Calculate the mean value of the entire accelerometer trace.
The mean is saved in a header block in the output file and is
subtracted from the ordinate of every point in the trace by
the next program (HIFRIC, TSPLOT, or REFORM) to process the
data.

4.3 To invoke SCALE, type --

[110,110]SCA1.E <output file(s)>,<user msg>=
<butter file>,[time between ticks], -
[sens1],[sens2],[sens3]

Where :
<butter file> is a data file produced by BUTTER then reformatted

by REFORM into a blocked binary file.
[time between ticks] is the time, in seconds, between the tick

marks on the record. Usually 0.5.
[sees...] are the recording transducer's sensitivities in cm/g,

and are given in the same order as the
transducer's traces occur on the digitized
record. First transducer corresponds to the

PAGE 4-3

top-most accelerometer trace, last transducer to
the bottom-most trace.

Example:
[110,1101SCALE temp.=butter.tmp,0.5,1.92,1.85,1.77

4.4 SCALE Still needs work:

- If there is no reference line, use the time ticks as a
reference line. If the time ticks are missing too, use the
linear least squares fit to the data as a reference line and
assume the recorder progressed at a constant one centimeter
per second.

- If the data trace extends beyond the first or last point in
the reference trace, SCALE extends the reference line using
the first or last pair of points in the reference trace.
Program aborts (zero divide) if the pair are not really
distinct points but just multiple digitizations of the same
point. Similar problems occur if the first or last time tick
is digitized more than once too. Pete Mork gets around this
bug by editing BUTTER's text output file, but once BUTTER is
changed to produce blocked binary data files, this problem had
better get fixed!

- instead of extending the reference trace with the slope of the
first or last pair of reference points, use the slope of the
first or last 1 centimeter worth of reference line. But if
using time ticks as reference, continue to use the slope of
the first or last pair.

- Extend time ticks with average of the nearest few intervals
rather than just the one nearest interval?

- Add an option to allow smoothing the reference trace for use
when dealing with hand digitized data? Also, may want to
subtract out the llsqf of the reference line from everything
in a hand-digitized data file as is done in BUTTER for the IOM
digitized data. These functions probably should be performed
in a separate program, a BUTTER counterpart for hand digitzed
data.

- WW, the tick varying diagnostic, is calculated from the
smoothed tick values. It should really be done on the
unsmoothed values. And once its fixed, increase the warning
level from 2.57 back to 57.

- Get time between ticks, sensitivity values, and digitization
units/cm from the input file's header blocks. Must decide
where and how to put them into the headers first, though.

https://temp.=butter.tmp,0.5,1.92,1.85,1.77

PAGE 4-4

4.5 Differences between SCALE and PHASE1

- SCALE input and output files are blocked binary files:
PHASE1 input and output files were card-image text files.
Input files for BOP1, an intermediate version of the program,
were text files, output files were blocked binary files, but
with non-standard headers.

- PHASE1 resets backstepppin2 points, SCALE does not.
- SCALE should operate on data that BUTTER has not decimated so

that HIFRIC can make best use of the densely digitized data.
PHASE1 usually processed data on which the decimation option
in BUTTER had been applied.

- PHASE1 smoothed the reference trace, SCALE does not.
- When a data trace extends beyond the first or last time tick,

PHASE1 extended the ticks by using the average of all the tick
intervals, SCALE uses the nearest (first or last) interval.

PAGE 5-1

CHAPTER 5

HIFRIC program

5.1 Overview

HIFRIC applies interpolation, instrument correction and a
high-cut filter to SCALE data. Options provide alternative
instrument-correcting and filtering algorithms. With the
standard option, HIFRIC applies Mike Raugh's time-domain
algorithm; with another option it applies Bill Joyner's
frequency domain algorithm; and with a third option the
instrument correction and filter are suppressed altogether,
providing interpolated, uncorrected data.

Both correcting algorithms apply a second-order differential
equation representing motion of a viscously-damped,
one-degree-of-freedom oscillator (see page 46 of reference
[1].) The two algorithms produce almost identical results when
applied to densely digitized SMA data with standard filter
parameters, but the standard time-domain method runs Faster than
the frequency domain method. More investigation needs to he done
with both methods before we understand what their limitations are
when used with other types of data, with non-standard filter
parameters, and with which situations, if any, one method is more
appropriate than the other.

With the time domain algorithm, the data are interpolated to
an even sampling of 600 samples per second, then the frequencies
from zero to Nyquist are divided into six equal-width bands. The
first band is that in which instrument correction is performed.
The second is a transition band providing a cosine taper from
full to zero frequency response. The remaining bands are
anti-aliasing (i.e., near-zero frequency response). After
filtering, the data are decimated by removing 2 out of every 3
points, reducing the sampling density from 600 samples per second
to 200 samples per second. The dense sample rate of 600 and
decimation factor of 3 are used in routine processing, but
different values for these two parameters may be provided for
non-standard processing.

The time-domain method imposes more restrictions on its
input parameters than does the frequency-domain method. These
restrictions aren't inherent in the method (according to Rill

PAGE 5-2

Joyner), but stem from the way it was coded. The restrictions
are:

- The width of the filter's transition band must he the same as
the width of the pass band. If the program is to allow a
transition band smaller than the pass hand, more weights may
be needed for the convolution operators than the program now
provides. With more weights, the program will run more
slowly.

- The band width (cycles per second) must divide evenly into
the sampling rate (samples per second).

- The number of bands (6 in standard processing) must he an
even multiple of two if decimation is performed, and the
ratio of dense to decimated data must equal hands/2.

With the frequency domain method, equal-lengthed segments of
densely interpolated time series data are transformed to the
frequency domain with a Fast Fourier Transform. Transformed
values are instrument corrected, filtered, then transformed hack
to the time domain. The separately filtered segments of data are
fitted back together using an "overlap-add" method similar to
that described in reference [9].

As is the case with the time-domain method, the range of
parameters for which the frequency-domain method is appropriate
has not been investigated carefully yet. The lengths of the
separate segments of data and their overlapping area are set by
the program to be 1024 points and 256 points respectively. These
lengths may not be suitable for atypical data or atypical filter
bands. Until the code is changed to allow the user to specify
the segment and overlap lengths, users should beware of results
unless run parameters are such that:

- The cutoff frequency at which the filter's transition taper
begins should be less than or equal to half the frequency at
which the taper ends.

- Frequency at the end of the taper should be less than half
the sampling rate.

- Sampling rate between 50 and 1000 samples per second.
- Instrument period and damping are values typical of SMA

accelerographs (period between 0.04 and 0.1 second: damning
about 0.6 of critical damping).

HIFRIC will process DR100 data but the frequency response of
the DR100 force-balance accelerometers are not accurately
represented by the damped harmonic oscillator equation. And the
equation is not at all appropriate for the DR100 velocity
transducers. Bill Joyner and Chuck Mueller have devised a method
for correcting the velocity data, but it has not been coded
(yet?) since they feel that the correction would make very little
difference in the data.

PAGE 5-3

5.2 Differences between HIFRIC and the instrument correction in

PHASE2

The differentiations required by the damped harmonic
oscillator equation were calculated using a centered-difference
method in the PHASE2 program. More accurate approximations of
the derivatives are used in HIFRIC. The standard method
incorporates Fourier differentiation (i.e.,
d(e**iwt)/dt = iw e**iwt) in convolution operators, which are
applied in the time-domain, to approximate the first and second
derivatives required. The alternative method applies Fourier
differentiation in the frequency domain.

An anti-alias filter was applied in PHASE2 with an Ormsby
convolution. In HIFRIC, a filter is incorporated in the same
convolution that calculates the derivatives in the time domain.
With the alternative method, the high frequency content is simply
set to zero in the frequency domain.

5.3 Standard HIFRIC process:

1)Calculate weights for three convolution operators. Each
operator has 61 weights which will span 0.1 second of 600
sample-per-second data.

2)Adjust input data by subtracting out the SCALE offset or by
applying the DR100 coil constant and gain. The data now
represents measured instrument response that has been scaled
to approximate the acceleration of the instrument case. For
a linear damped harmonic oscillator whose relative
displacement is x(t), and whose natural frequency, w, is
sufficiently high, the approximate case acceleration, v(t),
is -w**2 * x(t). The instrument response is not entirely
proportional to the acceleration of the instrument case,
however, especially at high frequencies, so instrument
correction is applied in step 4.

3)Interpolate linearly to 600 samples per second.
4)Apply convolution operators at every third sample of the

input data (reducing the density to 200 samples per second),
to compute z, z', and z" at that point, where z is a high-cut
filtered version of the approximate case acceleration, v.
Combine z and its two derivatives according to the damped
harmonic oscillator equation, where corrected acceleration =

z + 2*z"*n/w + z"/w**2

n is the fraction of critical damping of the
instrument, and

w is the natural frequency of the instrument in
radians per second.

PAGE 5-4

This 4-th step simultaneously provides:
.instrument correction between 0 and 50 Hertz;
.anti-alias filter with cosine taper between 50 and 100

Hertz, and stop band from 100 to 300 Hertz;
.decimation to 200 samples per second.
The high-cut filter removes any noise in the digital data
between 100 Hertz and 300 Hertz, including that which could
have been aliased into this range by the earlier
interpolation to 600 sps. It also guarantees that there is
negligible energy transferred to the 0 to 100 Hertz range by
the subsequent decimation.

To use HIFRIC, type --

[110,110]HIFRIC <output file>,<usermsg>=
[SCALE file],[period],[damping], -
<sps>,<ndense>,<fc>,<fz>, -
<non-standard flag>

[period] is the period of the recording transducer, in seconds.

[damping] is the damping of the recording transducer, as a
fraction of critical damping.

[period] and [damping] are required on the command line only if
the period and damping values in the header block in the input
file are incorrect or missing.

<sps> is the intended sample rate for the output data in samples
per second. Default =200.

<ndense> is the ratio of the dense sample rate to the final
sample rate, <sps>. <ndense> must be an integer. Default=3.
(The instrument correction and filter are applied to the more
densely sampled data.)

<fc> to <fz> is the transition band, in Hertz., for the filter's
taper. Default = 50. to 100.

The optional non-standard flags are "INTERP" and "FDIC". With
INTERP in the command line, HIFRIC will interpolate, but not
instrument correct, in which case the [period] and [damping]
values need not be given. With FDIC, HIFRIC will use the
alternative frequency-domain instrument correcting method rather
than the standard time-domain method.

The meaning of the numeric parameters ([period],[damping],
<sps>,<ndense>,<fc> and <fz>) depend on the order in which they
are given, so give a null value (two consecutive commas) if you
wish to use a default value among other numeric parameters you
wish to set.

PAGE 5-5

Examples
[110,110]HIFRIC fromf2a.c01=fromfl.r01,.040,.570
[110,110]HIFRIC fromf2a.c01=fromfl.r01,interp
[110,110]HIFRIC fromf2a.c01=fromfl.r01,.040,.570, -

„40,90,fdic

5.5 HIFRIC still needs work:

- Some records require that an operator manually digitize a
sharp peak where the trace is too faint for the laser scanner
to follow. The operator cannot digitize as densely as the
automatic scanner can, so the peak will appear sharper and
will contain higher frequency Fourier components than it would
have if its two neighboring points were more closely spaced.
The high frequency components, even those falling in the lower
portion of the transition band, are amplified by the
instrument correction. Amplification of almost five times
will occur in frequencies between 60 and 70 Hertz! Perhaps
the interpolation in HIFRIC should not be linear about a
manually digitized peak.

- The subroutines (SETWTS and FDIC) that apply the two
alternative correction algorithms can be modified to alter
characteristics like the number of convolution weights, the
overlap and segment size, and so forth. Some of the choices
for tuning these algorithms should he run options rather than
predetermined code in order to handle atypical data.

- Both algorithms assume that the time series is zero before the
first sample of actual data. Perhaps leading points should he
set to a cosine taper to zero. Or perhaps the first few
points should be dropped (M. Raugh did delete NWTS points from
the end of the series.)

- The convolutions done in subroutine OPRTR should accumulate
positive and negative sums separately, then add the two sums
together at the end (according to M. Raugh.)

PACE 6-1

CHAPTER 6

CORAVD program

6.1 Overview

CORAVD calculates velocity and displacement from
acceleration and optionally performs baseline correction of two
possible types. One option makes a linear correction to the
velocity and another option filters long periods from velocity
and acceleration.

Analog records do not begin instantaneously with the
beginning of the earthquake motion, but only after the motion has
become strong enough to trigger the recorder. The linear
baseline correction option establishes a reasonable value for the
acceleration and velocity at the beginning of such a record
provided that a least squares straight line fitted to some
portion (or all) of the velocity time series is a reasonable
representation of the trend of the velocity. The fitted line is
subtracted from the velocity and a constant, equal to the slope
of the line, is subtracted from the acceleration. The portion of
the velocity to be fitted is specified as a run parameter. No
attempt is made to estimate an initial value for the
displacement. The displacement is calculated from the velocity
after the velocity has been corrected.

Digital recorders with pre-event memory show, in their
records, several seconds of motion that occurred before
triggering. Initial values of zero for acceleration, velocity
and displacement are appropriate for these records (provided the
recording system operated as designed) and the linear correction
should not be made for them.

The linear correction gives good results for some accurately
digitized records, but many records will require that long
periods he filtered from the data before reasonable displacements
can be calculated or before reasonable spectra can be calculated
in the PHASE3, 4 and 5 programs. Several different filtering
schemes are provided by the program, but for routine processing a
bidirectional Butterworth filter is used. The other filter
algorithms that are available are a unidirectional Butterworth
filter, an FFT filter, and an Ormsby filter. (The Ormsby filter
is incredibly slow the way it is coded now, though. Please don't

PAGE 6-2

submit any jobs that use Ormsby during regular work
hours.) Although high frequencies have usually been filtered
from the data in HIFRIC, CORAVT) provides an option for high-cut
filtering for those situations in which the HIFRIC processing has
been bypassed. Beware against refiltering high frequencies if

they've already been filtered in HIFRIC though; it would distort
the data unnecessarily.

SLOWAVD is a slower, virtual-array version of CORAVD that
can filter much longer records than can he filtered by CORAVI).
Although a future version of CORAVI) may provide for filtering
long records, at least with the Butterworth filters, the current
versions of the filtering routines will truncate a time series if
all the data and necessary work space will not fit in main memory
at one time.

6.2 Guidelines for selecting CORAVD options

By default, CORAVD does no filtering and applies the linear
baseline correction, fitting the entire length of the velocity
time series. Users must reconsider for each particular
earthquake, or perhaps for each particular record, whether or not
such processing is appropriate. The need for different handling
will often show in a plot of the results from CORAVT) where long
period waves that were not apparent in the uncorrected
acceleration can be seen in the integrated velocity or
displacement or when the displacement at the end of the plot is
much different than could really have occurred. more subtle long
period noise will show in plots of PHASE3 results although an
inexperienced user would have difficulty recognizing whether or
not the long period response spectra from unfiltered data were
misleading.

Once a need for filtering is recognized, the user must
select a filter that cuts out unwanted low frequencies but that
also cuts out (or distorts) as little of the remaining higher
frequencies as possible. This requires some compromise and
experimentation since a filter with a steep cutoff introduces
inaccuracies in the frequencies that pass through the filter.
Although accuracy in the passband is better with a filter that
gradually tapers the cutoff, a wide transition (or "roll-off")
band may retain too much of the unwanted frequencies or too
little of the higher frequencies. Guidelines for selecting a
cut-off frequency and transition bandwidth are given in reference
[10]. It is necessary to rely on experience, to experiment with
the filter parameters (filter, check the plotted results and
refilter the original input if necessary), and to rely on advice
from seismologists and geophysicists to obtain realistic
displacements. See references [4] and [5] for a detailed
description of the decisions made while processing a recent set
of records.

Special studies may require the use of a different filtering

PAGE 6-3

algorithm than the bidirectional Butterworth filter used in
routine processing. The several other filter algorithms are
provided for this purpose, but none of them have been tested yet.

A time series that clearly requires long—period removal is
not suitable for straight line fitting if periods longer than
about a quarter the duration of the line are present. The
orientation of such a line would depend substantially on the
position of the line within the long period cycles and would not
represent a baseline for the time series. Conseauently, routine
use of the linear baseline correction is not recommended when the
low—cut filter option is used, though there may be cases where
that is appropriate.

6.3 Standard CORAVD process:

1)Integrate acceleration to compute velocity. Use trapezoidal
integration and use zero as the initial velocity.

2)Subtract the linear least squares fit of the velocity from
the velocity to establish an initial value for the velocity.
Fit the entire velocity time—series unless user has specified
that just a portion of the velocity, maybe just the Quiet
period at the end of the time—series, he used.

3)Subtract a constant from the acceleration, the constant being
the slope of the line fitted to velocity.

4)Filter low frequencies from velocity and acceleration, if
necessary. Use the same filter parameters for both.

5)Integrate velocity to compute displacement, using zero as the
initial displacement.

6.4 Differences Between CORAVD and the baseline correction in

7HASF2

PHASE2 calculated velocity from a filtered version of the
acceleration, filtered the velocity, calculated displacement from
the filtered velocity and filtered the displacement. This
refiltering of a time series determined from an already filtered
time series magnifies any distortion inherent in the filter, so
CORAVD filters each time series just once, or preferably not at
all. When filtering is used in CORAVD, velocity is calculated
from acceleration before acceleration is filtered; displacement
is calculated from the filtered velocity and is not refiltered
itself. PHASE2 used the Ormsby filtering algorithm hut in
routine processing CORAVD uses the significantly faster
bidirectional Butterworth filter algorithm. A brief discussion
of the advantages of the Butterworth filter in addition to its
increased speed is given in reference [11].

The table on the following page compares the processing
steps once used in PHASE2 to the steps now used in CORAVD. In

PAGE 6-4

the table, "llsqf" refers to a linear least-square fit, "acc(t)"
refers to acceleration as a function of time, "vel" refers to
velocity, "disp" refers to displacement, and y(t) refers to a
straight line function. "Option A" is the linear correction
option and "option B" is the low-cut filter option.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
�

PAGE 6-5

Step PHASE2

1 Interpolate to 100 equally spaced saliaoles
per second, filter out high frequency noise,
and perform instrument correction.

2 Remove linear trend from acceleration:
llsqf [acc(t)] = y(t) = mt +
acc(t) = acc(t) - y(t)

3 Calculate velocity from acceleration:

vel(t) a jacc(t) dt

4 Fit a straight line to the velocity:
llsqf Lvel(t)] = y(t) • mt + b

5 Subtract the slope of the line fitted to
velocity from the acceleration:
acc(t) • acc(t) - m

6 Subtract a baseline from acceleration:
acc(t) • acc(t) - baseline(t)
where the baseline is acc(t) processed as
follows:

pad both ends of the curve with a mirror
image of itself,
.smooth with a 0.4-second, equal-weight

running average,
. decimate, retaining every 10th point,

.apply low-pass Ormsby filter.

7 Recompute velocity from the corrected
acceleration:

vel(t) = jacc(t) dt

8 Fit another straight line to the recomputed
velocity:
llsqf [vel(t)] • y(t) • mt 1. 0

9 Subtract the linear trend from velocity:
vel(t) • vel(t) - y(t)

10 Subtract the slope of the line fitted to
velocity from the acceleration (a second
time;

acc(t) • acc(t) - m

11 Subtract a baseline from velocity:
vel(t) • vel(t) - baseline(t)
where the baseline is determined from
velocity as it was for acceleration.

12 Calculate displacement from velocity:

disp(t) = vel(t) dt

13 Subtract a baseline from displacement:
disp(t) disp(t) - baseline(t)
where the baseline is determined from
displacement as It was for velocity
and acceleration.

CORAVO

- No. The counterparts of these calculations arE
done in HIFRIC now. The interpolation is
now at 200 samples per second.

- No. This has already been done in BUTTER.

- Yes.

- Yes, with option A.

- Yes, with option A.

- Option B filters long perioos from
acceleration, but uses:

. Padding with zeros,

. No smoothing,

. No decimation,

. Butterworth high-pass filter applied

directly to acceleration rather tnan Ormsby
low-pass filter applied to a baseline.

- No.

- No. Already have a fit from step 4 since
CORAVO velocity is not recomputed in step 7.

- Yes, with option A.

- No.

- Option B applies the same filter to velocity

as it noes to acceleration.

- Yes.

- No.

figure 6a: Compare processing steps in PHASE2 and CORAVD.

PAGE 6-6

6.5 To use CORAVD, type --

[110,110]CORAVD <output files>,<usermsg>=[input file],
<begin fit>,<end fit>,<taper fit>,

For SLOWAVD, type --
[110,110]SLOWAVD <output files>,<usermsg>=[input file],

<begin fit>,<end fit>,<taper fit>,
<filter type>,<filter parameters>,
<filter type>,<filter parameters>

Examples:
[110,110]CORAVD temp.=fromf2a.c03, 6.0,40.0

[110,110]SLOWAVD temp.=fromf2a.c03, 0,0, RI,0.17,2

<output files> =
names for the 3 output files. If these aren't given on the
command line, or if just the prefix or just the _suffix is given,
missing parts of the file names will be selected by the program.
If missing, the output files' prefix will be the same as the
input file's prefix. If the output files' suffixes are missing,
the first character in the suffix will be 'A', 'V', and 'D'. The
second and third characters in the suffixes will be the same as
in the input file's suffix and are assumed to be a number that
indicates which component the data is for.

<usermsg> =
Name of an optional disk file to contain run messages and
diagnostics that would normally go to an interactive user's
terminal or to a batch job's log file.

[input file] =
Name of the input file. This file should be an output file from
the RIFRIC or DR100 programs.

<begin fit> and <end fit> specify the endpoints, in seconds, of
the least squares fit line to be used for the linear base line
correction. If these are not given, the entire velocity trace
will be fitted. If they are both given as zero, then no linear
correction will be performed.

<taper fit> specifies the fraction of the least-squares fit range
in which to apply a cosine tapered weighting factor. The taper
is applied to both ends of the fit range. <taper fit> must be
between 0.0 and 0.5. Default value =0.0.

<filter type> =
"BI", "UNI", "FFT", or "ORM" for bidirectional Butterworth
filter, unidirectional Butterworth filter, FFT filter, or Ormbsy
filter.

If two sets of filter types and filter parameters are given, the
first is for a low cut (or high pass) filter and the second is

PAGE 6-7

for a high cut (or low pass) filter.

<filter parameters>
Filter parameters are somewhat different for each type of filter.
They specify the transition band between the pass band and stop
band of the filter. (Although other filter tuning parameters may
be added later.)

For the FFT and Ormsby filters, the transition is specified
by giving a corner frequency, <corner>, at which the filter
should start to roll off and a transition bandwidth, <tband>,
after which the response is zero. The transition is a cosine
taper in the FFT filter. In the ORM filter, the transition is a
linear ramp with a short parabolic section on both ends where the
ramp meets the pass band on one end and the stop band on the
other end.

For the Butterworth filters, the transition is given as a
corner frequency, <corner>, and a rolloff order, <n>. Unlike the
corner frequency given for FFT and ORM filters, <corner> for the
BI filter is the frequency at which the filter gain is down by 6
decibels from the pass band and <corner> for the UNI filter is
where the gain is down by 3 dB. The rolloff order represents the
order of a Butterworth polynomial and the corresponding rollof
rate is <n>*24 decibels/octave for the TIT filter and <n>*12
dB/octave for the UNI filter. A report relating a Butterworth
rolloff order to the boundaries within which a desired filter
should fit is given in reference [12].

For a RI directional Butterworth filter, give
BI,<corner>,<n>

where
<corner> = corner frequency in Hertz. Default=O.1.
<n> = rolloff order, an integer. Default=2.

For a UNI directional Butterworth filter, give
UNI,<corner>,<n>

For an FFT filter, give
FFT,<corner>,<tband>

where
<tband> = width of the transition band, in Hertz.
Default=0.1.

For an ORMsby filter, give
ORM,<corner>,<tband>,<ormk>

where
<ormk> = a fraction of the rolloff ramp width in which to
apply parabolic smoothing. Each end of the linear rolloff
ramp is tapered with a parabola to avoid discontinuities
where the ramp meets the pass hand and the stop hand.

PAGE 6-8

Default value for <ormk> =0.1.

6.6 CORAVD still needs work:

- FFT and ORM filters need to be tested.
- The ORM filter would be faster for low cut filters if we

provided an option for smoothing and decimating the baseline
before it was filtered as was done in the PHASE2 program.

- Relative advantages and disadvantages of all the filters need
to be evaluated.

- In order to avoid a wrap-around effect from the filters, the
actual data is padded with trailing zeros before filtering.
(Except when using the UNI filter which doesn't require
padding.) We must consider how large an area should be padded
with the BI and FFT filters. At present, the FFT filter pads
the data enough to extend the number of samples out to the
nearest power of 2. The BI filter pads with an area half the
length of the actual data. Bill Joyner warns that both these
pad lengths can be too short in some situations. Bill has
some rules of thumb for choosing pad lengths that have not
been incorporated into CORAVD yet.

- The zero padding will create a sharp step in a time series if
the series does not begin and end at zero. This step may
cause problems if the high-cut filter option is ever used.
This same problem needs to be considered with respect to the
high-cut filter in HIFRIC too. In Joe Fletcher's programs, he
usually uses a tapering function before applying the BI or UNI
filters. The function weights a small section of each end of
the time series with a cosine taper to bring the value at the
first and last point in the series to zero. Another option
could provide a narrow section of the pad area (rather than in
the actual data as with Joe's scheme) containing a taper from
the last point of actual data down to zero. In either case,
Bill Joyner suggests that a suitable width for such a taper
would be 1.0/(corner frequency of the high-cut filter).

These two options have been coded, but not tested. To
try them, give DATATAPER or PADTAPER among the filter options.

PAGE 7-1

CHAPTER 7

PHASE3, 4, 5, and 6 Programs

PHASE3

PHASE3 calculates response spectra and Fourier amplitude
spectra. The Fourier spectrum is calculated (from its
definition) at those frequencies used in the response spectrum
calculations. The relative velocity response spectrum and the
Fourier spectrum appear in the same plot with linear axes. The
pseudo—velocity response spectrum is plotted with tripartite
log—log axes.

Ask Pete Mork or Virg Perez for instructions.

PHASE3 needs work:
— The program assumes that the initial velocity is zero.
— Program should get run parameters from the command line.

PHASE4

PHASE4 calculates the Fourier spectrum by the Fast Fourier
Transform. Results are plotted with linear axes and also with
log—log axes.

Ask Pete Mork for instructions.

PHASE4 needs work:
— Roger Borchert, Bill Joyner and Chuck Mueller feel that before
applying the FFT the time series data sould be zero—filled to
the nearest 2**M points rather than reinterpolating the data
to fill completely the 2**M points.

— They also feel that the spectrum should not be smoothed.
(Allow alternative options?)

— Program should get its run parameters from the command line
rather than by prompting the user.

PAGE 7-2

PHASE5

PHASE5 plots the envelope of the velocity response as a
function of time for various periods in the form of contour
shaded areas indicating different amplitude levels. A second
plot indicates the total duration for each level. See reference
[14].

PHASE5 has not been installed at NSMDC yet, but Virg Perez
plans to install it in the future and to describe the program in
a separate report.

PHASE6

PHASE6 calculates the amplitudes of pseudo—velocity response
that are sustained for various cycles and plots these amplitudes
with tripartite log—log axes. See reference [13].

Virg Perez plans to describe the PHASE6 program in a
separate, as yet unwritten report.

PAGE, 8-1

CHAPTER 8

Support Programs

8.1 Time Series Plotter, TSPLOT

TSPLOT plots time series data from DR100, SCALE, HIFRIC, or
CORAVD. It cannot plot BUTTER output files yet.

There are four different versions: STSP plots on the
teck—tubes or green screens, VTSP on the Versatec, CTSP on the
Calcomp, and ITSP plots through the device—independent VIEWER
software available at NSMDC.

To run TSPLOT, type the name of the version you wish,
followed by a list of file names. The file names specify the
data files you wish to have plotted. You may also include the
name of a text file that contains a top—of—plot title.

Example:

[110,110]STSP [123,501mydata.r01,.r02,.r03,topplot.ttl

The example above uses default scaling and labeling options.
Each plot page will show 20 seconds of each curve (one curve for
each file given on the command line). The curves are shown in
separate strips across the page, each strip with its own y—axis,
and the width of the strips (length of the Y—axes) depending on
the number of curves on the page. The first two significant
digits, plus one, of the peak value of a curve are used for the
scale on that curve's y—axis. The title at the top of the plot
will come from the text file specified in the command line, or if
there was no text file, the title will consist of the names of
the data files.

To alter the size of the axes, you may include up to five
numeric parameters after the file names on the command line. The
meaning of these numbers depends on the order in which they are
given, so give a null value (two consecutive commas) if you wish
to use a default value among other parameters you wish to set.
The numeric parameters and the order in which they must be given
are: <tbegin>,<tend>,<spp>,<ysize>,<yspace>.

<tbegin> is the time at which the plot will begin.

	

	

	

PAGE 8-2

Default=0.0.
<tend> is the time at which the plot will end. Default=

ending time of the longest curve.
<spp> are the number of seconds to appear across each plot

page. Default =20.0. If <tend> - <tbegin> is
greater than <spp>, more than one page will be
plotted.

<ysize> is the size of the y-axes, given as a fraction of
the plot page.

<yspace> is the size of the space to he left between the plot
strips, given as a fraction of the plot page.

To alter the vertical scale for any curve, You may include
the maximum range for that curve's y-axis in parentheses after
the file name. The Y-axis will range from minus to plus the
value in parenthesis. If You wish to use the peak value of the
curve, include the letter "p" in the parentheses rather than a
number.

To alter the way peaks are labeled, include the keyword
"ARROW" or "NOPEAK" in the command line. ARROW will plot a
little arrow that points to the peak, and NOPEAK will not put any
label at all next to the peak.

To alter the other labels, include one of the following
keywords in the command line: "SEB", "NOLABELS", or "AXESONLY".
With SEB, the top of plot titles will appear in the format used
in the data reports published by the Seismic Engineering Branch.
(Talk with Pete Mork to learn more about this format.) NOLABELS
and AXESONLY are intended for use with ITSP and Larry's VIEWER
programs. With NOLABELS, no labels will be plotted, except
perhaps those next to the peaks. AXESONLY is like NOLABELS
except that the axes are plotted along with the curves.

More examples:

[110,110]STSP mydata.r01(500.),.r02(300.),.r03(500.) -
topplot.ttl,SEB, 3.0,10.0,7.0

[110,110]STSP mydata.r01(p),.r02(p),.r03(p)„„0.18

To compare the shapes of curves plotted in several different
TSPLOT runs, it is a good idea to provide a value for <vsize> so
that all the curves to be compared use a y-axis of the same size.
If <ysize> is not specified, TSPLOT will choose a value that
depends on the number of lines in the top-of-plot title and on
the number of curves to be plotted on the page. <Ysize> values
of 0.7, 0.3, 0.2, and 0.14 work well for one, two, three, and
four curves per plot page, respectively. To be more precise in
choosing a value for <ysize>, divide up the vertical plotting
space by the number of curves to be plotted and subtract a hit
(0.04) for space between the curves. The vertical space left for
plotting after labels and margins are allowed is (0.85 - 0.01*(3
+ number of top-of-plot title lines)).

https://mydata.r01(p),.r02(p),.r03(p)��0.18

?AGE 8-3

CTSP requires two pens in the Calcomp plotter. The first
(right-most) pen is used for the curves and axis lines, the
second pen is used for characters. Characters plotted with a
felt tip pen make better ZEROX copies than those done with a ball
point pen.

The Calcomp plotter won't automatically reposition a new
frame to the right-hand side of the paper after three frames have
been plotted across the paper. Hence, if you are plotting more
than three frames, use ITSP and VIEWERC rather than CTSP.

ITSP and the VIEWER programs allow users to display a TSPLOT
plot on a screen, then to choose whether to reproduce the same
plot on a hard-copy device. ITSP and VIEWERs also allow users to
combine several TSPLOT pages into a new display. ITSP is run
just like the other versions of TSPLOT except that the user must
respond to prompts asking for VIEWER operating modes. ITSP will
generate a disk file named BATCH.PLT that VIEWER will need to
access. After running ITSP, run one of the VIEWERs:
1b0: [7,11]VIEWER for screen plots, 1b0:[7,11]VIEWERV for Versatec
plots, LBO:[7,11]VIEWERC for Calcomp plots (and there are other
versions too). Once VIEWER begins to prompt you with "viewer>",
type "help" to learn how to proceed. If you need more help with
the VIEWERs, talk to Larry Baker, Pete Mork, or Chuck Mueller.

TSPLOT still needs work:

- A bug in ITSP or VIEWER causes the Calcomp plotter to leave a
blank frame between consecutive plot frames.

- The portion of the page to he left for margins could be
specified at run time. Allow four more numeric run parameters
to represent the left, right, top and bottom margins in terms
of fractions of the plot page. All the code for this is in
place except for command line interpretation.

- Need an option to specify the plot scale in centimeters rather
than in fractions of the plot page so we can reproduce a trace
in the same scale as the original (or an enlarged original).
Most of the code for this is in place except for command line
interpretation. Maybe if <ysize> is given greater than 1.0,
TSPLOT should interpret the <ysize> value as the v-axis length
in centimeters and interpret the <spp> value as the length in
centimeters for each second along the x-axis.

- Chuck Mueller asks for more control over what does and does
not get labeled with options liked NOLABELS and AXESONLY.

PAGE 8-4

8.2 Data File Dumper, BBFILE

BBFILE will display the contents of all header blocks and
selected data blocks in a blocked binary data file. A short
description of what the value represents is shown alongside each
standard header block value. A more complete description of the
header block values is given in appendix B.

To use BBFILE, type --

[110,110]BBFILE [blocked binary file]
or [110,110]BBFILE <text file>=[blocked binary file],<list>

Where:
[blocked binary file] is the name of the blocked binary

file to be dumped.
<text file> is the name of the text file in which the

blocked binary file's contents will be displayed.
The display will appear at the user's terminal if
<text file> is not specified.

<list> is an optional list of numbers of the data blocks
to be displayed. Dashes may he used to indicate a
range of numbers.

Example:
[110,110]BBFILE mylist.tmp=DR2:[123,100]gooddata.r01,1-4,20

PAGE 8-5

8.3 Header Block Changing Program, BWRITE

BWRITE allows a user to alter the contents of the header
blocks in a blocked binary data file.

To use BWRITE, type --
=============

[110,110]BWRITE

BWRITE, unlike the other AGRAM programs, will prompt the user for
instructions.

BWRITE still needs work:
=======================

- Interaction between a user and the BWRITE program is slow and
awkward. If a header changing program is going to be used
very frequently, other ways of directing the program should be
established. One method for providing new or altered header
information to a header changing program would be to present
an edited BBFILE dump file as input to the header changer
(call it CHNGBF).

Example --
[110,110]BBFILE mylist.tmp=DR2:[123,100]gooddata.r01
EDT MYLIST.TMP

*EXIT
[110,110]CHNGBF bestdata.r01=mylist.tmp, -

DR2:[123,100]gooddata.r01

- Someday we should be able to fill in header information with
something like this BWRITE program early in the process. Then
any AGRAM program that found its run parameters in the header
blocks in its input file would not need to get run parameters
from the command line.

	

	

	

PAGE 8-6

8.4 Data File Reformatter, REFORM

REFORM reformats data files back and forth between blocked
binary data files and card-image text files. REFORM will
eventually perform a variety of reformatting functions, but at
present it can only perform three:
- reformat BUTTER's card-image output files to blocked binary

files that can be input to SCALE
- reformat PHASE1 card-image output files to blocked binary

HIFRIC input files
- reformat SCALE, HIFRIC and/or CORAVD blocked binary files to

text files suitable for export to the EDIS archive in
Colorado.

To use REFORM, type --

[110,110]REFORM <outfile>,<usermsg>=[infile] -
[text file type]

Where:
<outfile> is the name of the reformatted output file to

be created.
<usermsg> is the file to receive diagnostic messages.

These messages go to the user s terminal if
<usermsg> isn t given.

[infile] is the file that contains the data to be
reformatted. There may be several [infile]s
when [text file type] = "EDIS". See Pete Mork
to learn EDIS requirements.

[text file type] ="BUTTER", "BKY-BUTTEP","PHASE1",or "EDIS"
to indicate the type of text file to be read
or created.

Example --
[110,110]REFORM forSCALE.tmp= -

DR2:[122,201]elcdamain.but,butter

REFORM still needs work:

- Need to reformat blocked binary data files to a compact text
file, complete with summary, for use in disseminating the data
to Willy Lee's archive system at SLAC similarly to the way
it's done for EDIS.

- Need routines to reformat EDIS or Willy Lee archive data back
into blocked binary files.

- Need to reformat data from Willy Lee's digitizer downstairs to
SCALE input files. Jack Boatwright has a program that will
reformat the data to look like BUTTER's output files.

A-1

APPENDIX A
Examples

Sample plots and run messages from SCALE, HIFRIC, CORAVD,
PHASE3, PHASE4, TSPLOT and BBFILE programs are given in this
appendix. The examples process the first component of the 1979
Imperial Valley main shock data recorded at the EDA station (the
70-mm film recorder located near the El Centro Differential
Array.) The commands used to generate the examples are listed
below. They are followed by a copy of the plots and most of the
run messages generated by the commands.

Results from PHASE3 and PHASE4 are included in the examples
even though instructions for running these programs are not given
in this report. These two programs will be reorganized in the
near future and will he discussed in more detail in the next
version of the report.

The commands are arranged to be run in batch mode on the
POP 11/70. Batch mode comands on this computer are constructed
just like interactive mode commands except that a dollar sign (S)
is added as the first character. Comment lines have a dollar
sign followed by an exclamation mark (S!) as the first two
characters. Comments in this deck indicate the purpose of the
commands that follow the comments.

The command deck shows VTSP, the Versatec version of TSPLOT,
as the plotting program. VTSP is a good plotting program for
batch mode use because it does not require any user interaction,
but plots from the Versatec equipment at NSMDC are not as good
quality as those from the Calcomp. Better quality plots could be
drawn with the Calcomp plotter using CTSP or ITSP and the
device-independent VIEWER software. ITSP, VIEWER, and the NSMDC
Calcomp equipment require user interaction, however, and they are
unique to the NSMDC site, so they aren't used as the plotting
method in this appendix.

	
	
	
	
	

	
	

	
	
	

	
	
	
	
	

	

	
	
	

	
	
	
	
	

A-2

Sample Command Deck

$JOB/TIME:400

$!
$! DR2:[110,50]APPA.BAT
$! Illustrate the AGRAM programs for Appendix A of the
$1 User's Guide.
$! Submit this deck to run in the evening with:
$! >SUBMIT/AFTER:20:00 =APPA.BAT
$!
$ON WARNING THEN GOTO END
$CWD DR2:[123,5]
$!
$!
$! Reformat butter output. (This step won't be necessary once
$! the BUTTER program is reorganized.)
$!
$1
$[110,110]REFORM temp.ref=dk3:[122,201]elcdamain.but,butter
$!
$!
$! Run SCALE to get scaled, uncorrected data in three files
$! (temp.r01, temp.r02, and temp.r03) corresponding to the
$! three accelerometer traces on the original record.
$!
$! Note that the first time coordinate in each trace is given
5! the value of zero. Since the three traces do not have
$! precisely the same horizontal coordinate in their first
$! digitized sample, the three traces are not completely
$! synchronous.
$!
$! Plot results for the first trace.
$1
$!
$[110,110]SCALE temp.=temp.ref,0.5,1.92,1.85,1.77
$[110,110]VTSP temp.r01„,20.0,0.3
$!
$!
S! Run HIFRIC for the first trace to get interpolated,
$! high-cut filtered and instrument-corrected data.
$! Plot results.
$!
5!
$[110,110]HIFRIC temp.c01=temp.r01,.040,.570
$[110,110]VTSP temp.c01„„0.3
$!
$!
$! Compare the effects of the interpolation, instrument
$! correction and high-cut filter applied in HIFRIC
$! to uninterpolated, uncorrected data produced by SCALE.
$! Also compare these to interpolated but uncorrected data.
$! To do so, rerun HIFRIC with interpolation only, no

	
	
	

	

	

	

	
	

A-3

instrument correction or filter, then plot two seconds of
$! (1) uncorrected (SCALE) data,

9! (2) interplolated (HIFRIC with INTERP) data, and
$! (3) filtered, instrument corrected (standard HIFRIC) data

with an exaggerated scale to illustrate how the peak value
was affected by processing.

$!
$!
$[110,110]HIFRIC temp.i01=temp.r01,INTERP
$[110,110]VTSP temp.r01,.i01,.c01, 5.0,7.0,2.0
$!
$!

Notice the little indentations introduced by the standard
HIFRIC process to the trough and peak at about 5.7 seconds.
The indentations illustrate the effect of approximating
derivatives about a very sharp peak during instrument
correction. The same difficulty, though more pronounced,
occurred with the older centered-difference differentiation
method.

$!
The BBFILE program can be used to examine the contents of

$! the data files near these two sharp peaks. Data for 5.7
seconds is in block 9 of the HIFRIC output file and, if
approximately 600 samples per centimeter were digitized,

$! data for 5.7 seconds would be in or near block 54 of the
SCALE output file.
(block 9 is determined from 8.9 = 5.7 seconds * 200 samples
per second / 128 samples per block.)

$! (block 54 is determined from 53.4 = 5.7 seconds * 600
samples per second * 2 items (x and y) per sample
/ 128 items per block.)

$!
$!
$[110,110]BBFILE temp.c01,9
$[110,110]BBFILE temp.r01,52-54
$!
$!

Notice that the frequency-domain instrument correcting
algorithm has nearly the same effect as the time-domain
algorithm.

$!
$!
$[110,110]HIFRIC temp2.c01=temp.r01,.040,.570,FDIC
$[110,110]VTSP temp.c01,temp2.c01, 5.0,7.0,2.0
$!
$!
$! Run CORAVD with linear baseline correction to the velocity

$! and without long-period filtering. Plot results.
$!
$!
$[110,110]CORAVD temp.a01=temp.c01
$(110,110WTSP temp.aOl,temp.vOl,temp.dOl
$!

	
	

	
	

	

	

	

	

	

A-4

1

8!
$! Run CORAVD with long-period filtering but no linear
$! baseline correction and plot results.

S!

$!
$[110,110]SLOWAVD temp2.a01=temp.c01,0,0,BI,.17,2
$[110,110]VTSP temp2.a01,.v01,.d01

$!
S!
8! Run PHASE3 to calculate relative response spectra, then
S! plot results. Let PHASE3 and 4 process the unfiltered

8! version of acceleration since there is little long-period

5! noise in this data.
9!
S!
8[110,110]bwrite
temp.a01

SPIP temp.a02/nv=temp.a01
SPIP temp.a03/nv=temp.a01
$PIP temp.tit/nv=temptit.sav

$[110,110]PHASE3
temp
temp.ph3

$(110,1101PH3PLT
temp.ph3
8!

S!
$! Run PHASE4 to calculate FFT spectrum, then
$! plot results.

S!

S[110,110]PHASE4
temp
temp.ph4

temp.plt
Spip /nv=lb0:[7,11]VIEWERV.TSK
$VIEWERV
Plot temp.plt

quit
$pip VIEWERV.TSK;*/de

$!
$!
$! How many temporary files are left? They should either

$! be renamed or deleted.

5!
S!
$PIP temp.*,temp2.*/li
$PIP temp.*;*,temp2.*;*/de

S!

	
$!
$! end of job.
$!
$END: CONTINUE
$EOJ

	

	 	

	
	

	
	

	

	

	

A-6

Output From the Sample Commands

$JOB/TIME:400

User Job - Terminal VT1:
UIC = [123,I]

RSX-IIM-PLUS V02 BL10 [1,54] System GSRSXO

S!
$! DR2:(110,50]APPA.BAT
$! Illustrate the AGRAM programs for Appendix A of the

User's Guide.
$! Submit this deck to run in the evening with:
$! >SUBMIT/AFTER:20:00 =APPA.BAT
$!

$ON WARNING THEN GOTO END
$CWD DR2:[123,5]
DR2: is 95.7% full (21625. blocks free)

$!
$! Reformat butter output. (This step won't be necessary once

$! the BUTTER program is reorganized.)

$!

$[110,110]REFORM TEMP.REF=DK3:[122,201]ELCDAMAIN.BUT,BUTTER

The first 3 lines of the butter file are --
Final BUTTER data traces

El Centro DA, Main Shock: Tape IV913, frames 32- Time trace

Number of time marks= 76
Component 1

23458 samples in the data trace, and

4474 samples in the reference trace.

Component 2
22645 samples in the data trace, and

4474 samples in the reference trace.
Component 3
23301 samples in the data trace, and

4474 samples in the reference trace.

	

	

		 			

A-7

$!
$!

Run SCALE to get scaled, uncorrected data in three files
$! (temp.r01, temp.r02, and temp.r03) corresponding to the

three accelerometer traces on the original record.
$!

Note that the first time coordinate in each trace is given
the value of zero. Since the three traces do not have
precisely the same horizontal coordinate in their first
digitized sample, the three traces are not completely
synchronous.

$!
S! Plot results for the first trace.
$!
$!
$[110,1101SCALE TEMP.=TEMP.REF,0.5,1.92,1.85,1.77

SCALE, Iljan83 version.

Input file = TEMP.REF
digitization scale = 10000. units/cm.
time-tick interval = 0.50 seconds.

Output file = TEMP.R01, recorder sensitivity = 1.9200 cm/g.
There are 23458 points in the trace.
Trace length = 39.104 seconds.
Mean value = 0.37255E+00 cm/sec**2.
Max. value = 0.48747E+03 at 5.557 seconds.
Min. value = -0.39278E+03 at 7.755 seconds.
There are 15 back-stepping points, the largest of which is for

0.00040 seconds at time = 5.586 seconds.
The largest difference between two consecutive time-tick

intervals was 1.216 % at tick number 2.
The first data point (at 0.000 sec.) occurred before

the first time tick (at 0.011 sec.).
The last data point (at 39.104 sec.) occurred after

the last time tick (at 37.011 sec.).
The last point in the reference trace (at 39.100 sec.)

occurred before the last point in the data trace (at 39.104 sec.),
so the reference line was extended with the slope (= 0.10870E-01)
of the last two points given in the reference trace.

Output file = TEMP.R02, recorder sensitivity = 1.8500 cm/g.
DEBUG, backstep one reference point:

x,rxl,rx2,ir,irb= 52766.00 52770.00 52776.00 918 1
There are 22645 points in the trace.
Trace length = 39.085 seconds.
Mean value = -0.16772E+02 cm/sec**2.
Max. value = 0.89331E+03 at 3.564 seconds.
Min. value = -0.72426E+03 at 3.537 seconds.
There are 154 back-stepping points, the largest of which is for

0.00169 seconds at time = 2.541 seconds.
The largest difference between two consecutive time-tick

A-8

intervals was 1.216 % at tick number 2.
The last data point (at 39.085 sec.) occurred after

the last time tick (at 37.000 sec.).

Output file = TEMP.R03, recorder sensitivity = 1.7700 cm/g.
There are 23301 points in the trace.
Trace length = 39.113 seconds.
Mean value = 0.80066E+00 cm/sec**2.
Max. value = 0.35460E+03 at 5.648 seconds.
Min. value = -0.33434E+03 at 9.036 seconds.
There are 22 back-stepping points, the largest of which is for

0.00130 seconds at time = 9.012 seconds.
The largest difference between two consecutive time-tick

intervals was 1.216 % at tick number 2.
The last data point (at 39.113 sec.) occurred after

the last time tick (at 36.991 sec.).
The last point in the reference trace (at 39.081 sec.)

occurred before the last point in the data trace (at 39.113 sec.'
so the reference line was extended with the slope (= 0.10870E-01'
of the last two points given in the reference trace.

$[110,1101VTSP TEMP.R01„,20.0,0.3

TSPLOT.
Time series plotting program for AGRAM data,
09dec82 version.

		

	 	

	

	
	
		

					
	

							
						
					

				
		

490. -,

1

k\I o
4 \i'CAMI

i -11 1
1 I 1

-490. — 1 16 I 118 II 1 12 I 1 4 20
6 8 io

2 LI

1CCO1NUEDIOHL-

I 1
1 1 1 1 1 1 38 401 1 1 1

-490. -1 1 1 I I 361 1 1 32 34
24 26 20 30

20 22

SECONDS

	
	
	

A-10

$!

9! Run HIFRIC for the first trace to get interpolated,
S! high-cut filtered and instrument-corrected data.
$! Plot results.
S!

S[110,110]HIFRIC TEMP.001=TEMP.R01,.040,.570

HIFRIC, 11jan83 version.

Input file = TEMP.R01

Output file = TEMP.CO1

Instrument period = 0.040 seconds,
instrument damping= 0.570 of critical damping.

Instrument correction and anti-alias filter performed on densely
interpolated data at 600.0 samples per second.

Transition band for the anti-alias filter = 50.00 to 100.00 hz.
Corrected, filtered data have been decimated by 1/3 to 200.0 samples

per second.

There are 7811 points in the trace.
First value = 0.54643E+01 at 0.000 seconds.
Last value = 0.46125E+01 at 39.050 seconds.
Max. value = 0.48396E+03 at 5.550 seconds.
Min. value = -0.39513E+03 at 7.745 seconds.

$[110,110]VTSP TEMP.001„„0.3

TSPLOT.
Time series plotting program for AGRAM data,
09dec82 version.

			 				

							

IEMP.001

484.o

'Du

-0
as,
WuW W
JUI
• N.,
IU X
U
a

1/4

2 6 8 10 12 14 16 18 20

km.- (CONTINUED)

z
O U
I- Li)
a
M
W w

U)
11.1
U r
U
a

-490.-
20 22 26 28 30 32 34 36 38 40

SECONDS

	
	

	

	

	
	
	

	
	

	

A-12

$!

$! Compare the effects of the interpolation, instrument
$! correction and high-cut filter applied in HIFRIC

to uninterpolated, uncorrected data produced by SCALE.

5! Also compare these to interpolated but uncorrected data.
$! To do so, rerun HIFRIC with interpolation only, no

$! instrument correction or filter, then plot two seconds of

$! (1) uncorrected (SCALE) data,
S! (2) interplolated (HIFRIC with INTERP) data, and
$! (3) filtered, instrument corrected (standard HIFRIC) data

S! with an exaggerated scale to illustrate how the peak value

$! was affected by processing.

$!
$!
$[110,110]11IFRIC TEMP.I01=TEMP.R01,INTERP

HIFRIC, 11jan83 version.

Input file = TEMP.R01

Output file = TEMP.I01

Interpolate to 200.0 samples per second without instrument correctioT1

There are 7821 points in the trace.
First value = -0.35906E+00 at 0.000 seconds.
Last value = 0.51901E+01 at 39.100 seconds.
Max. value = 0.48438E+03 at 5.555 seconds.
Min. value = -0.39305E+03 at 7.755 seconds.

$1110,110PITSP TEMP.R01,.I01,.001, 5.0,7.0,2.0

TSPLOT.
Time series plotting program for AGRAM data,
09dec82 version.

	
	 	
	
	
	

	

•
•
 •

I
N
S
T
R
U
M
E
N
T

I
N
S
T
R
U
M
E
N
T

A
C
C
E
L
E
R
A
T
I
O
N

R
E
S
P
O
N
S
E

R
E
S
P
O
N
S
E

1
C
M
/
S
E
C
/
S
E
C

=

C
M
/
S
E
C
/
S
E
C

C
M
/
S
E
C
/
S
E
C

.c

=

ca

ca

co

w
c)

m

m

1

a
)

--4
 --

4
--4

0"
)

rn
rn

rn
rr

1

3
 3

-13

 —
0
70

CQ

C
D

0

 0
 0

-
C

T
)-

C
f)

 -

	
	
	
	
	

	

	
	
	
	
	
	

	
	
	

	

A-14

$!

$!
$! Notice the little indentations introduced by the standard
$! HIFRIC process to the trough and peak at about 5.7 seconds.
$! The indentations illustrate the effect of approximating
$! derivatives about a very sharp peak during instrument
$! correction. The same difficulty, though more pronounced,

occurred with the older centered-difference differentiation
method.$!

$!

$! The BBFILE program can be used to examine the contents of
the data files near these two sharp peaks. Data for 5.7$!

$! seconds is in block 9 of the HIFRIC output file and, if
approximately 600 samples per centimeter were digitized,$!
data for 5.7 seconds would be in or near block 54 of the
SCALE output file.

$!
$!

(block 9 is determined from 8.9 = 5.7 seconds * 200 samples
per second / 128 samples per block.)$!

(block 54 is determined from 53.4 = 5.7 seconds * 600$!
samples per second * 2 items (x and y) per sample$!
/ 128 items per block.)

$!
$!
$[110,110]BBFILE TEMP.001,9

TEMP.001 has
I integer he ad er blocks, using -32768 as "undefined",
1 real header blocks, using -0.30000E-38 as "undefined",
0 text header blocks,

and 62 data blocks , each containing 128 real
acceleration values.

Integer header block:
location content meaning

1 0 number of integer headers, less one, in the file
2 0 number of text headers in the file
4 1 =1 if real data, undefined if integer data

31 62 number of data blocks.
32 3 index of the last data point within the last bloc
41 90 vertical orientation, 0 to 180 from up.
43 AC type of data (BU, IR, AC, VL or DP)

Real header block:
location content meaning

1 0.00000E+00 number of real headers, less one.
5 0.20000E+03 sampling rate in samples per second

46 0.10000E+05 digitizer output in digitization units/cm.
47 0.50000E+02 corner frequency used in anti alias filter
48 0.50000E+02 rolloff bandwith used in anti alias filter
49 0.40000E-01 instrument period in seconds

			

	 	

		

	

		

			 		

	

	

	

	

	

	 	

	

A-15

50 0.57000E+00 instrument damping
51 0.19200E+01 SMA recorder sensitivity or DR100 coil constant
90 0.00000E+00 time of the first data point
91 0.54643E+01 value of the first data point
92 0.39050E+02 time of the last data point
93 0.46125E+01 value of the last data point
94 0.55500E+01 time of the max. value
95 0.48396E+03 max. value
96 0.77450E+01 time of the min. value
97 -0.39513E+03 min. value
98 0.37255E+00 data offset for SCALE data
99 0.00000E+00 begin time for CORAVD llsqf baseline correction
100 0.39050E+02 end time for CORAVD llsqf baseline correction
101 -0.42748E-01 slope of CORAVD linear baseline correction
102 0.22372E+01 intercept of CORAVD linear baseline correction
103 0.21000E+01 source of data: 1.0,2.1,2.2,3.0,3.1, or 3.2

Data block 9:
-0. 96203E+02 -0.94562E+02 -0.85350E+02 -0.68872E+02 -0.48027E+02
-0.27848E+02 -0.42156E+01 0.32427E+02 0.66180E+02 0.92291E+02
0.10853E+03 0.12237E+03 0.13416E+03 0.12770E+03 0.10711E+03
0.79117E+02 0.56060E+02 0.35781E+02 0.87723E+01 -0.17698E+02
-0.41793E+02 -0.61205E+02 -0.73483E+02 -0.85145E+02 -0. 90141E+02
-0.89273E+02 -0.88101E+02 -0.83104E+02 -0.80112E+02 -0.84695E+02
-0.90655E+02 -0.97345E+02 -0.10356E+03 -0.10954E+03 -0.12044E+03
-0.13097E+03 -0.14335E+03 -0.15830E+03 -0.17365E+03 -0.18247E+03
-0.18521E+03 -0.19001E+03 -0.19756E+03 -0.20646E+03 -0.21461E+03
-0.22534E+03 -0.23270E+03 -0.23276E+03 -0.22679E+03 -0.21462E+03
-0.20264E+03 -0.18098E+03 -0.14725E+03 -0. 12443E+03 -0.88164E+02
-0.44988E+02 -0.28581E+02 0.30271E+01 0.22837E+02 0.17512E+02
0.23767E+02 0. 13457E+02 -0.13829E+00 -0.42880E+01 -0.22559E+02
-0.36343E+02 -0.37780E+02 -0.38345E+02 -0.36723E+02 -0.28956E+02
-0.12704E+02 0.11962E+02 0.45791E+02 0.82265E+02 0.13640E+03
0.18611E+03 0.22173E+03 1 0.26299E+03 4̀4 0.29618E+03 0.32686E+03
0.36071E+0 0.40300E+03,1L0.43919E+031 0.45180E+03 0.46394E+03
0.48091E+031 10.48396E+03tJ 0.47492E+03, 0.46833E+03 0.43456E+03
0.37481E+03 0.32707E+03 0.28942E+03 ri 0.24291E+03 0. 16662E+03
0.97642E+021 0.48270E+02 0.55141E+010.32778E+02 -0.66154E+02
-0.10105E+03 -0.11070E+03 1777TT255E+031-)-0.12952E+03 -0.72724E+02
-0.19980E+02 0.12801E+02 0.10536E+03 0.16442E+03 0.23808E+03
0.30642E+03..0.29437E+03.0. 32673E+03 0. 34687E+03 0.28592E+03
0.23962E+03 0.21625E+03 0.18340E+03 0.15067E+03 0.12761E+03
0.10970E+03 0.96466E+02 0.95348E+02 0.96465E+02 0.10026E+03
0.11349E+03 0.12415E+03 0.13168E+03

s[110,110]138FILE TEMP.R01,52-54
TEMP.R01 has

1 integer header blocks, using -32768 as "undefined",
1 real header blocks, using -0.30000E-38 as "undefined",
0 text header blocks,

and 367 data blocks, each containing 128 real
uninterpolated instrument response values.

	

	

	 	

	

		

	

	 	

	

		

	

		

	

	 	

	

	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Integer header block:
location content meaning

1 0 number of integer headers, less one, in the file
2 0 number of text headers in the file
4 1 =1 if real data, undefined if integer data
31 367 number of data blocks.
32 68 index of the last data point within the last block
41 90 vertical orientation, 0 to 180 from up.
43 IR type of data (BU, IR, AC, VL or DP)

Real header block:
location content

1 0.00000E+00
46 0.10000E+05
51 0.19200E+01
90 0.00000E+00
91 0.13492E-01
92 0.39104E+02
93 0.54418E+01
94 0.55574E+01
95 0.48747E+03
96 0.77555E+01
97 -0.39278E+03
98 15.37255E+001
103 0.10000E+01

meaning

number of real headers, less one.
digitizer output in digitization units/cm.
SMA recorder sensitivity or DR100 coil constant
time of the first data point
value of the first data point
time of the last data point
value of the last data point
time of the max. value
max. value
time of the min. value
min. value
dataLoffseZ for SCALE data
source of data: 1.0,2.1,2.2,3.0,3.1, or 3.2

Data block 52:
0.54770E+01 -0.15782E+02
-0.44898E+01 0.54812E+01
0.54837E+01
0.35348E+02
0.54904E+01
0.88727E+02
0.54970E+01
0.15315E+03
0.55039E+01
0.22377E+03
0.55125E+01
0.29768E+03
0.55238E+01
0.36870E+03
0.55341E+01
0.44182E+03
0.55505E+01
0.47070E+03
0.55705E+01
0.42810E+03
0.55754E+01

0.18042E+02
0.54882E+01
0.65998E+02
0.54948E+01
0. 12545E+03
0.55006E+01
0.19511E+03
0.55090E+01
0.26815E+03
0.55192E+01
0.33971E+03
0.55300E+01
0.41345E+03
0.55421E+01
0.47979E+03
0.55687E+01
0.44369E+03
0.55737E+01
0.40738E+03

0.54782E+01
0.25126E+01
0.54848E+01
0.45093E+02
0.54917E+01
0.10020E+03
0.54983E+01
0.16713E+03
0.55050E+01
0.23858E+03
0.55151E+01
0.31129E+03
0.55259E+01
0.38430E+03
0.55363E+01
0.45373E+03
0 55574E+01
0.45959E+03
0.55717E+01
0.42502E+03
0.55771E+01

-0.10641E+02
0.54823E+01
0.27040E+02
0.54891E+01
0.77184E+02
0.54956E+01
0.13913E+03
0.55033E+01
0.20951E+03
0.55107E+01

0.54800E+01
0.10077E+02
0.54866E+01
0.55323E+02
0. 54930E+01
0.11319E+03
0.54988E+01
0.18068E+03
0.55074E+01
0.25308E+03

0.28230E+03 0.55167E+01
0.55213E+01 40.32646E+03
0.35510E+03 4-0.55280E+01
0.55321E+01'L 0.39775E+03
0.42657E+03 0.55387E+01
0.55457E+01 0.46769E+03

\0.4.8747E+6.VJ 0.55678E+01
0.55695E+01 0.45797E+03
0.44195E+03 0.55730E+01
0.55753E+01 0.41239E+03
0.39587E+03 0.55779E+01

A-17

0.39014E+03 0.55779E+01 0.37737E+03 0.55788E+01 0.37103E+03
0.55802E+01 0.35881E+03 0.55813E+01 0.35241E+03 0.55825E+01
0.34039E+03 0.55831E+01 0.33308E+03 0.55845E+01 0.32183E+03
0.55845E+01 0.31228E+03 0.55863E+01 0.30205E+03 0.55859E+01
0.29056E+03 0.55884E+01 0.28220E+03

Data block 53:
0.55897E+01 0.26760E+03 0.55906E+01 0.25902E+03 0.55916E+01
0.24489E+03 0.55924E+01 0.23611E+03 0.55936E+01 0.21743E+03
0.55946E+01 0.20855E+03 0.55953E+01 0.19017E+03 0.55976E+01
0.18228E+03 0.55981E+01 0.16385E+03 0.55987E+01 0.15170E+03
0.55997E+01 0.13444E+03 0.56015E+01 0.12306E+03 0.56020E+01
0.10575E+03 0.56038E+01 0.95186E+02 0.56047E+01 0.77978E+02
0.56058E+01 0.65726E+02 0.56073E+01 0.49441E+02 0.56080E+01
0.37109E+02 0.56101E+01 0.21858E+02 0.56118E+01 0.10249E+02
0.56130E+01 -0.46102E+01 0.56141E+01 -0.15890E+02 0.56162E+01

-0.29404E+02 0.56173E+01 -0.40464E+02 0.56191E+01 -0.52906E+02
0.56214E+01 -0.62495E+02 0.56229E+01 -0.74217E+02 0.56243E+01
-0.83332E+02 0.56262E+01 -0.93941E+02 0.56276E+01 -0.10271E+03
0,56306E+01 -0.11066E+03 0.5635,5E+01 -0.11825E+03 0.56406E+01

.--0.12654E+03k 0.56439E+01 -0.11360E+03 0.56446E+01 -0.9924 5E+02
0.56453E+01 -0.97154E+02 0.56480E+01 -0.83532E+02 0.56480E+01
-0.78680E+02 0.56501E+01 -0.65003E+02 0.56503E+01 -0.57700E+02
0.56517E+01 -0.42947E+02 0.56529E+01 -0.34679E+02 0.56538E+01
-0.18644E+02 0.56553E+01 -0.99146E+01 0.56570E+01 0.67316E+01
0.56574E+01 0.18172E+02 0.56587E+01 0.35738E+02 0.56597E+01
0.48351E+02 0.56604E+01 0.67145E+02 0.56608E+01 0.81037E+02
0.56631E+01 0.99623E+02 0.56640E+01 0.11489E+03 0.56655E+01
0.13353E+03 0.56670E+01 0.15769E+03 0.56683E+01 0.17091E+03
0.56691E+01 0.18879E+03 0.56714E+01 0.22591E+03 0.56753E+01
0.27739E+03 0.56811E+01 0.31644E+03 0.56889E+01 A6.34691E+031
0.56965E+01 0.32513E+03 0.56966E+01 0.31196E+03 0.56963E+01
0.30884E+03 0.56982E+01 0.29729E+03

Data block 54:
0.56986E+01 0.29234E+03 0.57007E+01 0.28288E+03 0.57008E+01
0.27573E+03 0.57021E+01 0.26664E+03 0.57026E+01 0.25846E+03
0.57044E+01 0.25044E+03 0.57046E+01 0.24094E+03 0.57057E+01
0.23271E+03 0.57067E+01 0.22300E+03 0.57080E+01 0.21488E+03
0.57094E+01 0.20574E+03 0.57104E+01 0.19738E+03 0.57115E+01
0.18825E+03 0.57121E+01 0.17916E+03 0.57137E+01 0.17065E+03
0.57154E+01 0.16265E+03 0.57165E+01 0.15383E+03 0.57175E+01
0.14577E+03 0.57195E+01 0.13833E+03 0.57207E+01 0.13023E+03
0.57224E+01 0.12366E+03 0.57242E+01 0.11673E+03 0.57257E+01
0.11057E+03 0.57274E+01 0.10492E+03 0.57292E+01 0.99880E+02
0.57312E+01 0.96020E+02 0.57334E+01 0.93032E+02 0.57354E+01
0.91573E+02 0.57373E+01 0.90624E+02 0.57390E+01 0.90848E+02
0.57407E+01 0.91378E+02 0.57423E+01 0.92520E+02 0.57439E+01
0.94581E+02 0.57456E+01 0.96337E+02 0.57474E+01 0.98707E+02
0.57488E+01 0.10245E+03 0.57505E+01 0.10589E+03 0.57523E+01
0.11025E+03 0.57538E+01 0.11461E+03 0.57558E+01 0.11862E+03

0.57579E+01
0.13094E+03
0.57674E+01
0.14592E+03
0.57766E+01
0.15585E+03
0.57850E+01
0.17413E+03
0.57926E+01
0.20577E+03

0.12227E+03
0.57634E+01
0.14184E+03
0.57731E+01
0.15230E+03
0.57820E+01
0.16517E+03
0.57899E+01
0.19118E+03
0.57976E+01

0.57595E+01
0.13484E+03
0.57692E+01
0.14814E+03
0.57784E+01
0.15793E+03
0.57867E+01
0.17871E+03
0.57939E+01
0.21389E+03

0.12693E+03
0.57655E+01
0.14385E+03
0.57749E+01
0.15418E+03
0.57836E+01
0.16903E+03
0.57915E+01
0.19904E+03

0.57613E+01
0.13788E+03
0.57714E+01
0.15002E+03
0.57802E+01
0.16114E+03
0.57882E+01
0.18482E+03
0.57957E+01

	
	
	

A-19

$!
$!
$! Notice that the frequency-domain instrument correcting
$! algorithm has nearly the same effect as the time-domain
$! algorithm.
$!

$[110,110]HIFRIC TEMP2.001=TEMP.R01,.040,.570,FDIC

HIFRIC, 11jan83 version.

Input file = TEMP.R01

Output file = TEMP2.001

Instrument period = 0.040 seconds,
instrument damping= 0.570 of critical damping.

Instrument correction and anti-alias filter performed on densely
interpolated data at 600.0 samples per second.

Frequency domain instrument correction method used.
Transition band for the anti-alias filter = 50.00 to 100.00 hz.
Corrected, filtered data have been decimated by 1/3 to 200.0 samples

per second.

There are 7821 points in the trace.
First value = 0.54676E+01 at 0.000 seconds.
Last value = -0.36864E+01 at 39.100 seconds.
Max. value = 0.48303E+03 at 5.550 seconds.
Min. value = -0.39476E-H33 at 7.745 seconds.

S[110,110]VTSP TEMP.001,TEMP2.001, 5.0,7.0,2.0

TSPLOT.
Time series plotting program for AGRAM data,
09dec82 version.

TEMP.001
TEMP2.001

484.0

z

ED 0

6-4 w

a -,
cc u
.LJ w
--I VI
IL) -N.
L.) x
Li IL)
a

1
6

463. 0

SECONDS

6

	

	

	

A-21

$!
$!

$! Run CORAVD with linear baseline correction to the velocity

$! and without long-period filtering. Plot results.

$!

$!
$(110,110)CORAVD TEMP.A01=TEMP.001

CORAVD, 20jan82 version.
Integrating and Baseline correcting program for AGRAM data.

Input file = TEMP.001

Output acceleration file= TEMP.A01
velocity file= TEMP.V01

displacement file= TEMP.D01

Acceleration corrected by subtracting -0.043,
Velocity corrected by subtracting the line with slope= -0.043

and intercept= 2.237.
Slope and intercept were calculated (in HIFRIC) as the linear least

squares fit to the velocity between 0.000 and 39.050 seconds.

No filtering performed.

There are 7811 data points in the acceleration file.
First value = 0.55071E+01 at 0.000 seconds.
Last value = 0.46552E+01 at 39.050 seconds.
Max. value = 0.48400E+03 at 5.550 seconds.
Min. value = -0.39509E+03 at 7.745 seconds.

There are 7811 data points in the velocity file.
First value = -0.22235E+01 at 0.000 seconds.
Last value = -0.89635E+00 at 39.050 seconds.
Max. value = 0.40599E+02 at 5.895 seconds.

Min. value = -0.40472E+02 at 5.475 seconds.

There are 7811 data points in the displacement file.
First value = -0.55588E-02 at 0.000 seconds.
Last value = 0.22427E-02 at 39.050 seconds.
Max. value = 0.14264E+02 at 7.770 seconds.

Min. value = -0.15696E+02 at 11.725 seconds.
$(110,110]VTSP TEMP.A01,TEMP.V01,TEMP.D01

TSPLOT.

Time series plotting program for AGRAM data,
09dec82 version.

	
	
	 	
	
			

					
		 	 		

TEMP.R01
TEMP,V01
TEMP.D01

484.0
1490.-

Ir \,1 ,rvv,f".zvVnAr\r'st'A,A,-rv\.

41.0-

2

40.60

1
8

I
t o

1
11

I
1 1.1

I IB
I

1 I
20

2 8 I
I

I o
I I

12
I I

Id
I

IL
I

1 8 I 20

-16.0- 1 1-15.70
16 182 '1 6 8 10 12 14

SECONDS

	 		
	

		

	

	

	

	

	 		 		 					

	

			 		

		 	 	
	
			
	
		
	
				

TEMP.A01
TEMP.V01
TEMP.001

490. - ICONT I NUED)

z ou•-•
Na

f u
W
-.I In
U
U
CE

-490.-
2

1 12
2

1 14
2

1
26

1 18
2

1
310

1 J
32

I
Jid

I I
36

I I
38

I 6
4

41.0- ICONT I NUED)

I I 11 111 I I I I I I
22 2U 26 28 30 32 36 38 110

16.0- (CONT I NUED)

-16.0-
I I I I I I I I I I

20 22 26 28 30 32 311 36 38 116

SECONDS

	

A-2 4

$!

Run CORAVD with long-period filtering but no linear
baseline correction and plot results.

$[110,110]SLOWAVD TEMP2.A01=TEMP.001,0,0,BI,.17,2

SLOWAVD, 20jan82 version.
Integrating, Baseline correcting and long-period filtering
program for AGRAM data.

Input file = TEMP.001

Output acceleration file= TEMP2.A01
velocity file= TEMP2.V01
displacement file= TEMP2.D01

No linear baseline correction performed.

Velocity filtered with
bidirectional, hipas Butterworth filter,
corner frequency = 0.170 cps, and rolloff order = 2
The data was padded during the filtering process
with 3905 trailing points
containing zeros.

Acceleration filtered with
bidirectional, hipas Butterworth filter,
corner frequency = 0.170 cps, and rolloff order = 2
The data was padded during the filtering process
with 3905 trailing points
containing zeros.

There are 7811 data points in the acceleration file.
First value = 0.47242E+01 at 0.000 seconds.
Last value = 0.46585E+01 at 39.050 seconds.
Max. value = 0.48192E+03 at 5.550 seconds.
Min. value = -0.39066E+03 at 7.745 seconds.

There are 7811 data points in the velocity file.
First value = -0.37285E+00 at 0.000 seconds.
Last value = 0.12452E+00 at 39.050 seconds.
Max. value = 0.37381E+02 at 5.895 seconds.
Min. value = -0.42851E+02 at 5.475 seconds.

There are 7811 data points in the displacement file.
First value = -0.93212E-03 at 0.000 seconds.
Last value = -0.61490E+00 at 39.050 seconds.
Max. value = 0.82418E+01 at 9.060 seconds.
Min. value = -0.12313E+02 at 5.685 seconds.

$[110,110]VTSP TEMP2.A01,.V01,.D01

TSPLOT.
Time series plotting program for AGRAM data,
09dec82 version.

		
 				 					

	 	

	

				
	
	

	 	 	 	

										
	 			

TEMP2.1101
TEMP2.V01
TEMP2.D01

481.
490.

4

1

-490. -
2 6

I
8

1
1 2

1411 1 1
16

1 1
18

I 1
20

43.0-

>-

_J
W I

-43.0- I I
2

I u -142.851
6

I I
8

I I
io

I I
12
II I 16

I
18 20

z

13.0-

az
a_
(r)

10-4

0

-13.0
2

1-12.31
6

I I
8

I I
lo

I I
12

I I
14

I I
16 18 20

SECONDS

	

	

	
		 					

				 			

	

		
		

		

						 												
	 	 		 	 	 	 	 	

TEMP2.A01
TEMP2.V01
TEMP2.D01

490.- (CONTINUED)

-490.-
20

1 121
2 214

11
26
11111

28 30.
12

3
1 111

3
1 1

36
I 1

38
I 6

4

'13.0- (CONTINUED)

-43.0-
20 22

1 1
26

1 1
28

i 61
3

12
3

i !I
311

1 16
3

1 1
38

1 6
4

1 3 .0_ WONT I NUED)

1-
Z
W

til
U
a X
--1 U
IL
0
.-.
0

--------------___----' `..--....-.....

-13.0- I I I I I i I 1 1 I I I I I I I I I I
20 22 24 26 20 30 32 34 36 38 46

SECONDS

	
	
	
	

	
		 	

A-2 8

9!
$!
$! Run PHASE3 to calculate relative response spectra, then
$! plot results. Let PHASE3 and 4 process the unfiltered
$! version of acceleration since there is little long-period
$! noise in this data.

$[110,110]BWRITE

Type the name of file (<CR>=quit): temp.a01
Do you want to change the integer (=I), real (=R), or text (=A) header,
or quit (=Q)? q
Type the name of file (<CR>=quit):
VT1 -- STOP
$PIP TEMP.A02/NV=TEMP.A01
$PIP TEMP.A03/NV=TEMP.A01
SPIP TEMP.TIT/NV=TEMPTIT.SAV
$[110,110]PHASE3

This is program Phase3.
Enter Phase2 output file to be processed by Phase3:
(If Faze2b output files, enter prefix only.) .

temp
ENTER NAME OF OUTPUT FILE.

temp.ph3
DIAGNOSTIC FILE=DIAGN.PH3
CALCULATING SPECTRA FOR DAMPING =0.00 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.02 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.05 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.10 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.20 OF CRITICAL.
FINISHED TRACE NO. 1.
CALCULATING SPECTRA FOR DAMPING =0.00 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.02 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.05 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.10 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.20 OF CRITICAL.
FINISHED TRACE NO. 2.
CALCULATING SPECTRA FOR DAMPING =0.00 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.02 OF CRITICAL.
CALCULATING SPECTRA FOR DAMPING =0.05 OF CRITICAL.

CALCULATING SPECTRA FOR DAMPING =0.10 OF CRITICAL.

CALCULATING SPECTRA FOR DAMPING =0.20 OF CRITICAL.
FINISHED TRACE NO. 3.

VT1 -- STOP
$[110,110]PH3PLT
THIS IS PROGRAM PH3PLT.
ENTER PHASE3 OUTPUT FILE TO BE PLOTTED BY PH3PLT:

temp.ph3
MAPPED - VECTOR

FINISHED TRACE NO. 1.
FINISHED TRACE NO. 2.
FINISHED TRACE NO. 3.

VT1 - STOP

	

	

RELATIVE VELOCITY RESPONSE SPECTRUM
EL CENTRO, DIFFERENTIAL ARRAY

0,2,5,10,20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 0, 0.000 HZ; ANTIALIAS 50 -

SEISMIC ENGINEERING SRPNCH/USGS250

111_11_,1_11111111111 , 11_1111

0.5 1.0 1.5 2.0 2.5 3.0 3 7 11 15
UNDAMPED NATURAL PERIOD-SECONDS

	

	
	

	

	

	

	
	

	
						

	

A-31

RESPONSE SPECTRA
EL CENTRO, DIFFERENTIAL ARRAY

0,2,5,10,20 PERCENTICRITICAL CAMPING
FILTERS; BUTTERWORTH, ORDER 0, 0.000 HZ; ANTIRLIRS 50 - 100 HZ

SEISMIC ENGINEERING BRAN H/USGS1 O0-00.00 y /r
& A 1

144 9 S

4000.00p 4 4 ilw e. \,
2000.00:00 • 1.41; 3t4
1000.00me 4001H

Pvi LA%
-400.00 p+ plpiNk 4

SH 444,0\
200.00 4, vio ;1101,004,mplikoote" I100.00

-01 taivAiAI _ .16,-.41iAlh.
A

40.00 WM STA r4 Voll
LIJ

C

ur pwrW e 41h" • NN*
20.00

110114,111"0SAOmMI 4i.
10.00 . . atigbAbloAdik Ad\Pr 11"1 Irialr 1
4.00

RI'414 %Y 40 liKe(41
2.50

0.04 0.1 0.2 0.4 1 2 4 10 20

UNORmPED NATURAL PERIOD-SECONDS

R
E

s P
o

N
s L

-c
H

/s
L
c

https://O0-00.00

	

	

	

A-32

$!
$!
$! Run PHASE4 to calculate FFT spectrum, then
$! plot results.

S!

$!
S! +++ S[110,110]PHASE4
$[110,110]PH4TST

This is program Phase4.
Enter Phase2 output file to be processed by Phase4:

(If Faze2b output files, enter prefix only.)
temp
Enter name of output file.

temp.ph4

Plot options available:

1 = Terminal only
2 = Batch only
3 = Preview and prompt (1 2)

4 = No plots

Option? [I10;CR= 3]? 2

Batch devices available:

1 = Disk file

Device? [I10;CR= 1]? 1
Enter name for plot file [CR=SY:BATCH.PLT] temp.plt
TRACE 1 FFT IS FINISHED

TRACE 2 FFT IS FINISHED

TRACE 3 FFT IS FINISHED

VT1 -- STOP
$PIP /NV=LBO:[7,11]VIEWERV.TSK
SVIEWERV

Viewer>Plot temp.plt

MAPPED - VECTOR

Viewer>quit
SPIP VIEWERV.TSK;*/DE

			

FOURIER AMPLITUDE SPECTRUM OF ACCELERATION
EL CENFRO, DIFFEHINEIHL ARRAY

BRNO PASSED FROM 0.000 HZ. N=1, COS 1HPER FROM 50 TO 100 HZ (NYOU15T1
SEISMIC LEGINEERING_EUNCH/U5G52. 5

2.0

1.5

1.0

0.5

cc 0.0

ED
-0.5

lL
tO

- 1. 0

-1-J,)_). 0 - 1.5 - 1.0 -0.'i 0. n 11. T1. U 2 0
LOb OF FHFOPENO-CPS

	 				

	250

FOUPIER AMPLITUDE SPECTRUM OF ACCELERATION
EL CENTRO, OIFFEHI- NlIAL ARHRT

BAND PASSED FROM 0.000 Hi, N=1, COS TAPER FROM 50 TO 100 HZ (NTOUIST)
5E15MLL LNGINtLaiNa_abONCULUSG5

200

150

100

CC
UJ

CC

50

d). o 1 d. o _ 20.0 2 .0 3
FREQUENCY-CP5

	
	

	

	

	

$!
$!
$! How many temporary files are left? They should either
$! be renamed or deleted.
$!
$!
$PIP TEMP.*,TEMP2.*/LI

Directory DR2:[123,51
16-JAN-83 16:18

TEMP.REF;1 1160.
TEMP.R01;1 377.
TEMP.R02;1 377.
TEMP.R03;1 377.
TEMP.001;1 68.
TEMP.I01;1 68.
TEMP.A01;1 64.
TEMP.V01;1 64.
TEMP.D01;1 64.
TEMP.A02;1 64.
TEMP.A03;1 64.
TEMP.TIT;1 1.
TEMP.PH3;1 152.
TEMP.PH4;1 1077.
TEMP.PLT;1 439.
TEMP2.001;1 68.
TEMP2.A01;1 64.
TEMP2.V01;1 64.
TEMP2.D01;1 64.

16-JAN-83 15:03
16-JAN-83 15:08
16-JAN-83 15:08
16-JAN-83 15:08
16-JAN-83 15:09
16-JAN-83 15:10

C 16-JAN-83 15:12
C 16-JAN-83 15:12
C 16-JAN-83 15:12
C 16-JAN-83 15:15
C 16-JAN-83 15:15

16-JAN-83 15:15
16-JAN-83 15:15
16-JAN-83 16:04
16-JAN-83 16:04
16-JAN-83 15:10

C 16-JAN-83 15:12
C 16-JAN-83 15:12
C 16-JAN-83 15:12

Total of 4676./4676. blocks in 19. files
$PIP TEMP.*;*,TEMP2.*;*/DE
$!
$!
$! end of job.
$!
$END: CONTINUE
$EOJ
Connect time: 76 minutes
CPU time used: 4047 seconds
Task total: 80

	

	

	

	

	

	

B-1

APPENDIX B
Contents of Data File Header Blocks

A blocked binary data file generated by the AGRAM programs
contains at least two blocks of auxiliary data at the beginning
of the file. The first header block contains integer items, the
second contains real items. Most of the locations in the first
two header blocks are reserved for specific information as shown
in the table below. The locations were assigned according to an
organization originally established for DR100 data files with
requirements for AGRAM files fitted in later. Many of the
locations reserved for DR100 files are not used at all by AGRAM
programs and many new locations were assigned in the "scratch"
area to accomodate AGRAM data. The table identifies all reserved
locations. Those locations that are actually set or read by any
of the AGRAM programs are shown with a leading asterisk.

FIRST INTEGER HEADER BLOCK, 256 (2-BYTE) ELEMENTS LONG

*(1) Number of optional integer header blocks that
follow this one.

*(2) Number of optional ASCII header blocks that follow
the real header blocks.

*(3) Integer value that represents "undefined" (usually
= -32768).

*(4) Real or integer data flag;
= 1 if each data block contains 128 real (4-byte)
elements,
= item (3) if each data block contains 256 integer
(2-byte) elements.

(10) Year of the event
(11) Julian day
(12) Hour
(13) Minute
(14) Second
(15) Millisecond
(16) microsecond.
(17) Sample number of first time mark
(20) Serial number
(21) Event number
(30) Number of components recorded with (and including)

this one.
*(31) Number of data blocks (without headers).
*(32) Index of the last sample in the last data block.
(40) 'FB' or 'VT' (fba or velocity transducer)
*(41) Vertical orientation, a value between 0 and 180

degrees from up. This item will be 90 in data

	

	

	

	

B-2

files representing horizontal motion.
Note that before November 1982, this element was set
to 'HR' or 'VR' to indicate whether the time
series data represents horizontal or vertical
motion.

*(42) Horizontal orientation, a value between 0 and 360
degrees clockwise from north. This item will be 0
in data files representing vertical motion.

*(43) 'AC', 'VL', or 'DP' (acc, vel, or disp) or 'BU'
for BUTTER data, 'IR' for SCALE data

(44) This item is no longer used. Before November 1982, it
was set to + or - 1 to indicate polarity of
vertical motion. Vertical motion is now described
by item (41).

*(200-256) Scratch area.

Scratch locations used in (REFORMatted) BUTTER
files --

*(200) Number of digitized traces in the
file. (There are usually 3 data
traces, 1 or 2 reference traces, and 1
time tick trace.)

*(201) Type of trace,
1-> time-tick,
2-> reference line, and
3-> data.

*(202) Number of the first data block for the
trace.

*(203) Number of data blocks for the trace.
*(204-?) Repeat items (201),(202), and (203)

for each trace.

SECOND HEADER BLOCK, 128 REAL (4-BYTE) ELEMENTS LONG

*(1) Number of optional real header blocks that follow
this one.

*(2) Real value that represents "undefined" (usually
=-0.3e-38).

*(5) Sampling rate, samples/second. If undefined, then
it's output data from BUTTER or SCALE.

(10) Quake or shot tat, deg
(11) , min
(12) long, deg

IT(13) , min
(14) Depth in kilometers
(15) Magnitude
(16) Moment
(17) Shot weight
(18) Quake or shot origin time
(19) Distance from station to epicenter

	

B-3

(20)
(21)
(40)
(41)
(42)
(43)
(44)
(45)
*(46)

*(47)

*(48)
*(49)

*(50)

*(51)

(52)
*(60)
(70-71)
*(90-128)

Azimuth of station from epicenter
Takeoff angle
Instr latitude, degrees

, minutes
longitude, degrees

, minutes
Instr altitude
Voltage input
Digitizer output, digitization units/volt for
DR100 data, digitization units/cm for SMA data.
Anti-alias filter's corner frequency, cps. (in
AGRAM files, this is the freqency used with the
combined instrument correction and anti-alias
filter in HIFRIC. Other high-cut filters may be
applied in CORAVD, but those filter
characteristics are described in items (105)
through (113).)
Anti-alias filter's rolloff bandwidth, cps.
Natural period of an SMA transducer, in seconds;
or natural frequency of a DR100 transducer.
Damping coefficient of the transducer, fraction of
critical damping.
Coil constant (volts/cm/sec/sec) for DR100 data,
or Recorder sensitivity (cm/g) for SMA data.
Gain of a DR100 amplifier (volts/volt).
Clock correction, seconds
P and S wave picks
Scratch area

Scratch locations filled in SCALE, HIFRIC, and
CORAVD output files --

*(90) Time of the first data point, not
including item(60), in seconds.
(usually =0.0)

*(91) Value of the first data point, in
cm/sec/sec.

*(92) Time of the last data point.
*(93) Value
*(94) Time of the maximum value.
*(95) Value
*(96) Time of the minimum value.
*(97) Value
*(98) Offset of SCALE data. This value is

subtracted from all data items in
HIFRIC.

*(103) Source-of-data indicator:
1.0 if from SCALE;
2.0 if from HIFRIC, with interpolation

only;
2.1 if from HIFRIC, with Mike Raugh's

instrument correction and anti-alias
filter;

	

2.2 if from HIFRIC, with Bill Joyner's
frequency-domain instrument
correction;

3.0 if from CORAVD, without long-period
filter or linear baseline correction
to velocity;

3.1 if from CORAVD, without filter, with
linear baseline correction;

3.2 if from CORAVD (or SLOWAVD) with
filter and linear baseline
correction.

Additional scratch locations filled in CORAVD
files --

*(99) Beginning time for the least squares fit
baseline correction.

*(100) Ending
*(101) Slope of the linear baseline correction.
*(102) Intercept

Additional scratch locations filled in SLOWAVD
files --

*(104) Low frequency filter cut off, cps.
*(105) High It

*(106) Low frequency filter rolloff,
*(107) High

cps or integer rolloff order.
*(108) Low frequency filter type,
*(109) High

=1.,2.,3. or 4. to indicate
unidirectional Butterworth filter,
bidirectional Butterworth filter, Ormsby
filter, or FFT filter.

*(110) Low frequency filter data extension
identifier (1.=> zero fill, 2.=> cosine
fill, ... others, too)

*(111) High f
*(112) Low frequency Ormsby filter option,
*(113) High frequency Ormsby filter option,

(not included in the AGRAM package yet).

	

	

	

	

C-1

APPENDIX C
Printouts of Central Subroutines

C.1 Overview

The central, computational subroutines from the AGRAM
programs are given in this appendix. Subroutines that perform
other functions such as data handling, user-program interaction,
or non-standard calculations are not printed here although all
the subroutines are available for distribution on magnetic tape.
The programs (BUTTER and PHASEs) that have not been reorganized
recently are not printed here either. They will be given in
future versions of this report, however, once the programs have
been revised to isolate their computational processes from the
rest of the code.

The contents of several "included files", as they are called
in the RSX operating system in use at NSMDC, are given in this
appendix too. These "included files" contain sections of code,
usually common block specifications or definitions of constants,
that are included in more than one subroutine or in more than one
program. All the "i ncluded file" names have a ".inc" suffix.

Names of the subroutines and "included files" that are
printed in this appendix are given in the table that follows.
Wherever a subroutine that is not printed in this appendix is
mentioned in the table, the purpose of that subroutine is
described in parentheses following the subroutine name.

"included file"
or

program subroutine description

SCALE SCALC performs SCALE calculations for a
single accelerometer trace. Calls
READ and NOY.

SCALE READ reads the input file for SCALC.

SCALE NOY processes time-tick data for SCALC.

HIFRIC ACALC interpolates, instrument corrects,
anti-alias filters, and decimates an
acceleration time series generated by
SCALE. Calls SETWTS, OPRTR, AFDIC,

		

		

		

	 	

		

		

	 	

C-2

READXY (to read the input data), and
HIOUT (to write output data).

HIFRIC SETWTS prepares weights for the combined
instrument correction and anti-alias
convolution. Calls SX1SIN, SX2COS,
and SlCOS, all of which are
trigonometric functions whose code is
given in the same deck with SETWTS.

HIFRIC OPRTR applies the weights calculated in
SETWTS.

HIFRIC AFDIC applies frequency-domain instrument
correction and anti-alias filter to
acceleration. Calls VFORK (to
transform a time series to a
frequency-based series) and UFORK (to
transform back to time.)

CORAVD array.inc This "included file" specifies the
working storage array used in CORAVD
and SLOWAVD and establishes the major
distinction between the two programs.
There are two versions: SARRAY.INC
declares a standard array for CORAVD
and VARRAY.INC declares a virtual
array for SLOWAVD. Before subroutines
are compiled, either SARRAY.INC or
VARRAY.INC is copied to ARRAY.INC.

CORAVD LLSQF calculates coefficients of the linear
least-squares fit to some portion of a
time-series. Calls READY (to read the
input file)

CORAVD AVD Calculates velocity and displacement
and applies optional linear baseline
correction. Calls READY (to read the
input file) and FILLER (to fill out
the last data block in the output
files.)

CORAVD FLTAVD is an alternative version of AVD that
can apply a filter to the acceleration
and velocity in addition to the other
AVD calculations. Calls FILTER, READY
(to read the input file), OUTPUT (to
write output files), and NOROOM (to
truncate a time series that doesn't
fit in the working storage space
available).

		

		

		

		

		

	
	

	

C-3

CORAVD FILTER selects one of several filter
algorithms. Calls BIHIP, UNIHIP
(unidirectional high—pass Butterworth
filter), FFTFLT (FFT filter), ORMFLT
(Ormsby filter), NOROOM (to truncate a
time series that doesn't fit in
working storage), SHORTP (to give user
notice that working storage space is
not large enough to pad the data as
much as needed), PAD (to pad the data
wih trailing zeros), and NPWR2 (to
calculate the nearest power of 2).

CORAVD BIHIP applies a bidirectional, high—pass
Butterworth recursive filter.

library RFFT Computes the finite Fourier transform
of a real array. Calls FOUR1.

library RFFTI Computes the inverse finite Fourier
transform, returning a real array.
Calls FOUR1.

library FOUR1 This subroutine does the FFT for the
FFT filter in CORAVD and for PHASE4.
It will also eventually replace the
FORK subroutine that now does the FFT
in HIFRIC. FOUR1 is called through
subroutines RFFT and RFFTI. There are
two versions of these three
subroutines on the library. RFFT,
RFFTI and FOUR1 are the versions shown
in this appendix; they operate on
data in a standard array. The other
version (VRFFT,VRFFTI and VFOUR1)
operates on data in a virtual array.

library files.inc This "included file" defines various
constants that may be used in calls to
subroutines (e.g. SCLOSE, BIO) that
do input/output operations.

library headerloc.inc This "included file" defines constants
that serve as indices into arrays
containing data file header blocks.

Several general support subroutines are called from so many
of the subroutines listed in the table above that they are not
included in their lists of called subroutines. These support
subroutines are not printed in this appendix, but their functions
are as follows:

	
	

	
	
	

	

C-4

10E (traps coding errors.)
310 (performs input, output, or positioning

operations on blocked binary data files.)
BCLOSE (closes a blocked binary data file.)
SCLOSE (closes a standard Fortran file.)
IUNDEF (returns the value used to signify an undefined

item in an integer header block of a blocked
binary data file.)

RUNDEF (returns the value used to signify an undefined
item in a real header block.)

C.2 Non-Standard, Site-Dependent Code

If the programs are to be conveniently used outside the
U.S.G.S., they must run on a variety of computers with a variety
of operating systems. For this reason, FORTRAN 77 was chosen as
the programming language and most site-dependent code was
isolated in separate subroutines so the remainder of the code
could be easily transported to other computers. Although
transportability is an important goal in the development of these
programs, it is rather low on the stack of priorities during
early stages of program development and all the existing code
still needs a thorough review of its portability.

The programs were written originally for a DEC PDP 11/70
computer with the RSX M-PLUS operating system. Some of the
features this system provides that are not included in the ANSI
FORTRAN standard are used in the AGRAM programs. The magnetic
tape available for distribution that contains a copy of all the
programs discused in this report also contains a text file named
PROGAGRAN.NTS in which a list of the non-standard features used
in the programs is given. Non-standard features used in the
subroutines printed in this appendix are:

- "Included files".
An "included file" is used to insert the same lines of

code into several different subroutines. The contents of
such a file are incorporated into a subroutine via an INCLUDE
statement in the subroutine.

- Virtual arrays.
A virtual array is a special array whose storage is

allocated outside a program's directly addressable main
memory. Access to these arrays is considerably slower than
to standard arrays but they allow a program to process a long
array without needing to break the data into several sections
to be processed one at a time. Virtual arrays are used in
SLOWAVD and the PHASEs although these programs should be
rewritten in the future to use smaller, standard arrays.

Virtual arrays are declared with a VIRTUAL statement

C-5

used in place of a DIMENSION statement.

- Debug statements.
Statements used while debugging the programs are often

left in the code for a long while, just in case they'll be
useful again. Non-standard features used in debug statements
include:
.a D in column 1 indicates that the statement is compiled
only during debug and is treated as a comment otherwise.
.TYPE * statements are often used in debug as a convenient

form of a WRITE statement.
.comments following an exclamation sign (!) may be appended

to a line of code.

- INTEGER*4 statements.
On the PDP 11/70, an integer variable is ordinarily only

half the length of a real variable. Unless declared
differently, real variables are 4 bytes (32 bits) long and
integer variables are 2 bytes (16 bits) long. A few integer
variables in the programs that can become too large (>32767)
to be stored in the two-byte integers have been declared to
be 4 bytes long with an INTEGER*4 statement; these integers
are usually those that count the number of data samples.

- PARAMETER statements.
The compiler at NSMDC does not always process

parentheses in PARAMETER statements properly. The
parentheses have been omitted from almost all parameter
statememts in the AGRAM code even though standard FORTRAN 77
requires them.

C.3 Coding Conventions

The following conventions were established to organize the
code in a consistent manner:

-`lost work space is allocated in a main program and passed to
its subroutines through the argument lists. This makes it
easy to adjust the size of the work space whenever necessary,
as when adding new subroutines, rearranging the overlay
structure of a program, or moving the program to another
computer having a different amount of memory available to the
program.

- Each subroutine statement is followed by declaration
statements for the variables received through the argument
list. Next are comments describing the subroutine's function
and its argument list. The comments are followed by
declaration statements for common blocks and for variables

C-6

local to the subroutine.

- Symbols defined with parameter statements in "included files"
often start with the letter X, Y or Z as a reminder that they
are names of constants, not variables. The X, Y or Z serves
as a reminder that the constant is used primarily as an index
(X), an array length(Y), or an assignment value (Z).
Constants defined in local parameter statements often start
with a W. Constants defined in HEADERLOC.INC all begin with
an H as a reminder that they are header block locations.

- Subroutine WOE is used to abort a run when a coding error has
been detected. Some errors that a user might make in
specifying the run parameters are trapped with a call to WOE
also. All user errors should eventually be given nice
diagnostic messages, but a call to WOE serves in the
meantime.

- Three asterisks (***) are used in comments in the code to
attract a programmer's attention to code that needs to be
added or rewritten. Three plus-signs (+++) are used to
attract attention to less important problems. For instance,
there are a lot of integer*4 declarations commented out with
"C +++" in SLOWAVD to remind a programmer of variables that
may need to be declared integer*4 once the program is moved
to a machine (the VAX) that will allow arrays longer than the
maximum of 32K elements allowed in arrays on the PDP 11/70.

- Singly-dimensioned arrays are occasionally used where
multiply-dimensioned arrays would have been more
straight-forward. There is no reason for doing this with
FORTRAN 77, but some of the AGRAM code was written before
FORTRAN 77 standardized the order of subscript progression.

C.4 Code Listings

	
	
	
	
	
	

	

	
		
	
		
	
	
	
	
		
	
		
		
	
	
		
	

		
		
	
		
		

	 	
	
	
	

	 	
	
	
	

	
	
	
	
	
	

C-7
subroutine SCALC

program SCALE

subroutine scalc(luser,ttick,smooth,x0time,dcm,sens,drdel,
1 iddin,iddout,
2 nrefb,iref0, ref, lref,
3 ntickb,itick0,tick,ltick,
4 ndatab,idata0,data,ldata,
5 offset,iend,
6 vmax,tmax,vmin,tmin,vbeg,tbeg,vend,tend
7
logical smooth
dimension data (ldata), ref(lref), tick(-1:ltick)

cc
c SCALC: perform SCALE calculations for a single data trace.

c On entry --
c luser =logical unit number for the user's teminal or
c run messages file.
c ttick =seconds between time ticks (usually 0.5).
c smooth =.true. if time-tick ordinates should be smoothed
c with a (1/4, 1/2, 1/4) running average.
c (usually =.true.)
c xOtime =time of the first data point (usually =0.0)
c dcm =digitization units/cm. IOM-TOWILL digitized data
c is in microns, so dcm is usually 10000.
c sens =instrument sensitivity in cm/g
c drdel =vertical difference, in digitization units, between
c the first point in the data trace and the first point
c in the reference trace.
c iddin =bbfile id for the input file
c iddout =bbfile id for the output file.
c
c nrefb =number of reference trace blocks in the iddin file.
c iref0 =number of the block before the first reference trace
c block on the iddin file.
c ref i/o buffer for the reference trace data.
c lref =length of ref.
c
c ntickb = ...time-tick trace.
c itick0
c tick
c ltick

c ndatab = ...data trace.
c idata0
c data
c ldata

c On return --
c The iddout file contains SCALE data suitable for input to
c HIFRIC or TSPLOT. Data is unevenly sampled and undecimated.
c Data are in cm/sec**2 and seconds, although abscissas include
c an offset equal to the mean value of the whole trace.
c Header blocks still need to be filled.

	
	
	

	
	

	
	
	

	
	
	
	
	
	

	
	
	

C-8
subroutine SCALC
program SCALE

c offset,iend,vmax,tmax,vmin,tmin,vbeg,tbeg,vend,tend
c have been given values which should be inserted
c into the header blocks of the output files.
cc

include 'files.inc'
integer*4 ntot
logical warntl,warnrl
parameter huge=1.0e30, tiny=1.0e-30

cc
c Make sure i/o buffer lengths are even multiples of YFBLK, the size
c of the blocks in blocked binary data files.
cc

msized=ldata/yfblk
msizer=lref /yfblk
msizet=ltick/yfblk
if(msized.lt.1 .or. msizer.lt.1 .or. msizet.lt.1) call woe(0)
ldbuf=msized*yfblk
lrbuf=msizer*yfblk
ltbuf=msizet*yfblk
idtick=iddin
idref=iddin

cc
c Vertical scale factor=
c (cm per sec-squared/g)/((instrument sensitivity in cm/g)
c *(digitization units/cm))
cc

scalef=980.665/(sens*dcm)
cc
c Get ready. Read first reference trace block
c Read first time tick block
c Read first data trace block
c Position output file
c etc.
c Note that the first point in the reference trace is sometimes
c digitized several times. Set IR accordingly. The time ticks
c are also sometimes digitized more than once, hut the BUTTER
c program has already removed those extra time tick values.
cc

irb=1
call read(idref,nrefb, iref0,irb , ref(1),lrbuf, nr)

if(nr.lt.4) call woe(0)
rx1=ref(1)
ryl=ref(2)
do 10 ir=4,nr,2

rx2=ref(ir-1)
ry2=ref(ir)
if(rx2.gt.rx1) go to 11

10 continue
call woe(0)

11 continue
slopel=(ry2-ry1)/(rx2-rx1)
slope t=0.0
warnr1=.false.

	

	
	

C-9
subroutine SCALC

program SCALE

rbig = ref(nr-1)-rx1
CC

itb=1
call read(idtick, ntickb,itick0,itb ,tick(1),ltbuf, nt)

if(nt.lt.4) call woe(0)
if(smooth .and. nt.1t.6) call woe(0)

call noy(tick(1),nt)
tx1=tick(1)
tx2=tick(2)
if(txl.ge.tx2) call woe(0)

it=2
if(smooth) tx2=0.5*tx2 + 0.25*(tick(it-1)+tick(it+1))

tdel=tx2-tx1
tick(0)=tick(1)-tdel
tick(-1)=tick(0)-tdel
warnt1=.false.
ttt=0.0
hltbuf=ltbuf/2

fulltb=ttick*float(yfblk/2)

CC

inone=iundef(iddin)
rnone=rundef(iddin)
if(inone.ne. iundef(iddout)) call woe(0)

if(rnone.ne. rundef(iddout)) call woe(0)
call bio(iddout,zpos,zwaita,zdatal,zf, data(1),ldbuf, nd)

if(nd.lt.0) call woe(0)
idb=1
call read(iddin, ndatab,idata0,idb ,data(1),ldbuf, nd)

cc
c Set diagnostic variables

cc
ylast=0.0
tlast=-tiny
if(xOtime.ne.0.0) tlast=x0time*0.9999999
kbs=0
bsmax=0.0
ww=0.0
dtot=0.0

ntot=0
vmin=huge
vmax=-huge
tbeg=x0time

tearly=x0time
tlate=-huge

cc
c Calculate TTICK1 as the time at the first tick given in

c the time-tick trace. Set other timing variables too.

cc
x=data(1)

tfactr= ttick/tdel
ttickl= xOtime - (x-tx1)*tfactr
timtx1=ttickl
trefl= xOtime - (x-rx1)*tfactr

https://if(rnone.ne
https://if(inone.ne

	

	
	
	
	
	

	

	

	
	

	

C-10
subroutine SCALC
program SCALE

xtickl=tx1
xrefl =rxl
ttickn=0.0
trefn =0.0
xtickn=huge
xrefn =huge

cc
c Loop over all data points in all blocks for the trace --
cc

nloops =1 + (ndatab-1)/msized
do 100 loop=1,nloops
do 110 idx =1,nd,2
idy=idx+1
x=data(idx)

cc
c a) Find the two time-ticks that bracket the current data point.
c If the data point falls beyond the digitized time ticks,
c continue using the nearest time tick interval.
c Watch that time-tick intervals don't vary much.
c And smooth time-ticks if requested.
cc
c *** proof-read paragraphs a) and b) once more
c *** consider especially whether all is Ok with reread forward
c *** after having backed up one block.

if(x.ge.txl .and. x.le.tx2) go to 120
121 if(x.ge.txl) go to 125

if(txl.eq.xtickl) then
warnt1=.true.

d type *, 'DEBUG, extend leading ticks.'
go to 129

end if
type *, 'DEBUG, backup one tick: x,txl,tx2,it,itb='
type *, ' x,txl,tx2,it,itb
tx2=tx1
it=it-1
if(it.lt.1) then
type *, 'Warning: back stepped into the previous tick block.'
type *, Using code I haven t tested yet. -- April.'
type *, ' x,txl,it,itb,timtxl=', x,txl,it,itb,timtxl

itb=itb-msizet
ttt=fulltb*(itb-1)
if(itb.lt.1) call woe(0)
call read(idtick, ntickb,itick0,itb, tick(1),1tbuf, nt)
call noy(tick(1),nt)
tdel=tick(2)-tick(1)
tick(0)=tick(1)-tdel
tick(-1)=tick(0)-tdel
it=nt

end if
tx1=tick(it-1)
if(smooth .and. txl.ne.xtickl)

1 tx1=0.5*tx1 + 0.25*(tick(it-2)+tick(it))
tdel=tx2-tx1

	
	

	

	
	
	
	

	

C-11
subroutine SCALC

program SCALE

go to 121
125 continue

if(x.le.tx2) go to 129
if(tx2.eq.xtickn) go to 129
txl=tx2
it=it+1
if(it.ge.nt) then

if(itb+msizet.le.ntickb) then
itb=itb+msizet
ttt=fulltb*(itb-1)
it=it-nt
tick(-1)=tick(nt-1)
tick(0) =tick(nt)
call read(idtick, ntickb,itick0,itb, tick(1),ltbuf, nt)
call noy(tick(1),nt)

else
if(xtickn.lt.huge) call woe(0)
xtickn= tick(nt)
ttickn= timtxl + ttick

d type *, 'DEBUG, extending trailing ticks:
d type *, txl,tx2,xtickn,ttickn,it,itb,x,idx,idb

endif
endif
tx2=tick(it)
if(tdel.le.tiny) then

type *, 'tdel=0.0 ???', tdel,x,idx,idb,txl,tx2,it,nt,itb
call woe(0)

endif
w=(tx2-txl-tdel)/tdel
if(abs(w).gt.abs(ww))then

ww=w
nww= it-1 + (itb-1)*YFBLK

endif
if(smooth .and. tx2.ne.xtickn)

1 tx2=0.5*tx2 + 0.25*(tick(it-1)+tick(it+1))
tdel=tx2-tx1
go to 125

129 continue
if(txl.ge.tx2) call woe(0)
timtxl = ttickl + ttt + ttick*float(it-2)
tfactr = ttick/tdel

120 continue
cc
c b) Find two reference points that bracket the current data point.
c If the data point extends beyond the digitized reference
c trace, continue using the slope of the nearest two
c reference points.
cc

if(x.ge.rxl .and. x.le.rx2) go to 130
131 if(x.ge.rxi) go to 135

if(rxl.eq.xrefl) then
warnr1=.true.

d type *, ' DEBUG, extending leading reference line.'

https://if(it.ge.nt

	

	
	

	
	 	

C-12
subroutine SCALC
program SCALE

go to 135
endif
type *, 'DEBUG, backstep one reference point:'
type *, x,rxl,rx2,ir,irb=', x,rxl,rx2,ir,irb
rx2=rx1
ry2=ryl
ir=ir-2
if(ir.ge.4) then

rxl = ref(ir-3)
ryl = ref(ir-2)

else
type *, 'Warning: back stepped into the previous ref. block.'
type *, ' Using code I haven t tested yet. -- April.'
type *, ' x,rxl,rx2,ir,irb=', x,rxl,rx2,ir,irb

if(irb.le.msizer) call woe(0)
irb=irb-msizer
call read(idref, nrefb,iref0,irb ,ref(1),lrbuf, nr)
ir=nr
rxl = ref(ir-1)
ryl = ref(ir)

endif
go to 131

135 if(x.le.rx2) go to 139
if(rx2.eq.xrefn) go to 139
rx1=rx2
ryl=ry2
ir=ir+2
if(ir.le.nr) then

rx2=ref(ir-1)
ry2=ref(ir)

else
if(irb+msizer.le.nrefb) then

irb=irb + msizer
call read(idref, nrefb,iref0,irb, ref(1),lrbuf, nr)
ir=2
rx2=ref(1)
ry2=ref(2)

else
rx1=ref(nr-3)
ryl=ref(nr-2)

d type *, 'DEBUG, extending trailing reference line.'
d type *, ',x,idx,nd,idb,rxl,rx2,ryl,ry2,ir,nr,irb

if(xrefn.lt.huge) call woe(0)
slopet = (ry2-ry1)/(rx2-rxl)
trefn = timtxl + (rx2-tx1)*tfactr
xrefn = rx2

endif
endif
go to 135

139 continue
if(rxl.ge.rx2) call woe(9)

130 continue
cc

https://if(ir.le.nr

	
	
	

	

	

	

	

	
	
	

	

C-13
subroutine SCALC

program SCALE

c c) Subtract reference trace from data trace.
c Subtract their beginning difference too, just to keep
c the values near zero.
cc

r=ryl + (x-rx1)*(ry2-ry1)/(rx2-rx1)
data(idy) = data(idy) -r-drdel

cc
c d) Convert abscissa to cm/sec**2.
cc

data(idy)=data(idy)*scalef
cc
c e) Convert ordinate to seconds.
CC

t = timtxl + (x-tx1)*tfactr
data(idx) = t

cc
c f) Count number of back-stepping points.
cc

if(t.le.tlast)then
kbs=kbs + 1
if (tlast-t .gt. bsmax) then

bsmax=tlast-t
tbsmax= tlast

endif
if(tlast.gt.tlate) tlate=tlast
if(t.lt.tearly) tearly=t

endif
cc
c g) Calculate the mean value of the whole trace
c so it can be subtracted out by the next program.
c Get min and max values too
cc

if(abs(dtot) .gt. huge) call woe(0)
dtot=dtot + (data(idy) + ylast)*(t-tlast)
tlast=t
ylast=data(idy)
ntot=ntot +1
if(vmin.gt.data(idy)) then

min=data(idy)
tmin=data(idx)

endif
if(vmax.lt.data(idy)) then

vmax=data(idy)
tmax=data(idx)

endif
cc
c End loops.
cc

110 continue
call bio(iddout,zwrite,zwaita,znextb,zf, data(1),1dbuf, nd)

if(nd.lt.0) call woe(0)
idb=idb+msized
if(loop.eq.1) vbeg=data(2)

	

		
	
		

	

		

C-14
subroutine SCALC
program SCALE

if(loop.ne.nloops)
lcall read(iddin, ndatab,idata0,idb , data(1),ldbuf, nd)

100 continue
vend=data(idy)
tend=data(idy-1)
fend= mod(idy,yfblk)
if(tlate.lt.tend) tlate=tend
offset =dtot*0.5/(tend-tbeg)

cc
c Report to user.
cc

write(luser,1001) ntot,tend,offset,VMAX,TMAX,VMIN,TMIN
if (abs(bsmax).gt.0.01) write(luser,1000)
if(kbs.gt.0) write(luser,1002) kbs, bsmax,tbsmax
if(abs(ww).gt.0.025) write(luser,1000)
write(luser,1003) ww*100. ,nww
if(warntl) write(luser,1004) tearlv,ttickl
if(ttickn.ne.0.0) write(luser,1005) tlate,ttickn
if(warnrl) then

if(abs(slopel).gt.0.025) write(luser,1000)
write(luser,1006) trefl,tearly,slopel

end if
if(trefn.ne. 0.0) then

if(abs(slopet).gt.0.025) write(luser,1000)
write(luser,1007) trefn,tlate,slopet

endif
return

cc
1000 format (5x,'*** Warning:')
1001 format (8x, 'There are', i6, ' points in the trace,"

1/8x, 'Trace length =',f7.3, ' seconds.'
2/8x, 'Mean value = e12.5, cm/sec**2.'
3/8x, 'Max. value = e12.5,' at',f7.3,' seconds.'
4/8x, 'Min. value = e12.5,' seconds.')

1002 format (8x, "There are', i4
1,' back-stepping points, the largest of which is for',
2/11x, f7.5,' seconds at time =', f7.3,' seconds.')

1003 format (8x, 'The largest difference between two consecutive'
1,' time-tick'
2/1 1x,' intervals was', f6.3, ' % at tick number',i2,'.')

1004 format (8x, 'The first data point (at', f6.3
1, ' sec.) occurred before'
2/11x, 'the first time tick (at ',f6.3, ' sec.).')

1005 format (8x, 'The last data point (at ', f6.3
1, ' sec.) occurred after'
2/11x, 'the last time tick (at ',f6.3, sec.).')

1006 format (8x, 'The first point in the reference trace (at '
1 ,f6.3, ' sec.)'
2/llx,'occurred after the first point in the data trace (at'
3 ,f6.3, " sec.),"
4/1 1x,'so the reference line was extended with the slope (='
5, f6.3, ')'
3/11x,'of the first two points given in the reference trace.')

	
	

	
		
	
	
	
	

C-15
subroutine SCALC

program SCALE

1007 format (8x, 'The last point in the reference trace (at '
1 ,f6.3, ' sec.)'
2/llx,'occurred before the last point in the data trace (at '
3 ,f6.3, ' sec.):
4/llx,'so the reference line was extended with the slope (='
5, e12.5, ')'
3/1 1x:of the last two points given in the reference trace.')

cc
c
cccccccccccccccccccc (end of scalc) cccccccccccccccccccccccccccc

end
subroutine read(idbbf, nbtot,ib0,iblock, array, larray, nd)
dimension array(larray)

cc
c READ is called from SCALC to read data into a buffer and check
c for undefined values at the end.
cc

include 'files.inc'
cc

nread=larray
if(iblock + (larray-1)/YFBLK .gt.nbtot)
1 nread=(nbtot-iblock+1)*YFBLK
call bio(idbbf,zread,zwaita,ib0+iblock,zf, array(1),nread, nd)

if(nd.lt.yfblk) call woe(0)
rnone=rundef(idbbf)
do 9 j=YFBLK,nd,YFBLK
if(array(j).ne.rnone) go to 9
do 10 i=j,l, -1
if(array(i).ne.rnone) go to 11

10 continue
call woe(0)

11 continue
nd=i
go to 12

9 continue
12 continue

return
cccccccccccccccccccc (end of read/scalc) cccccccccccccccccccccc

end
subroutine noy(tick,nt)
dimension tick(1)

cc
c NOY is called from SCALC to squish y values out of the time-tick
c array. (+++ NOY is needed only because I wrote SCALC assuming
c that y values wouldn't be in the time tick trace, then changed
c my mind. If we do continue to give x and y coordinates in the
c time tick trace, we should rewrite SCALC to get rid of NOY.
c -- April. +*+)
cc

nt=nt/2
if(nt.le.1) return
do 10 i=2,nt

10 tick(i)=tick(1 + (i-1)*2)

C-16
subroutine SCALC
program SCALE

return
cccccccccccccccccccc (end of noy/scalc) cccccccccccccccccccccccccc

end

	
	
	

	

	

	

	

	

		

	

		

	

		

	

		

	

	
	

	

		

	

		

	

		

	

	

		
	

	
	

	

	

C-17
subroutine ACALC

program HIFRIC

subroutine ACALC(luser,
1 ictype,period,sdamp,sps2,ndense,kbands,fc,fz,
2 iddin,iddout,offset,dr100f,dr100s,
3 ndblks,ilst,xy,11xy,acc,llacc,buf,lbuf)
dimension xy(11xy),acc(llacc),buf(lbuf)

cc
c ACALC: Interpolate, instrument correct, anti alias filter, and

decimate an acceleration time series for program HIFRIC.

c On entry --
c luser =logical unit number for dignostics and run messages.
c ictype =instrument correction algorithm indicator.

=0 if no instrument correction is wanted, just
interpolation.

=1 (=wTDIC) if Mike Raugh's time-domain instrument
correction shall be applied.

=2 (=wFDIC) if Bill Joyner's frequency-domain
instrument correction shall be applied.

c period =recording instrument's period, seconds.
c sdamp =recording instrument's damping, as a fraction of

critical damping.
c sps2 =final sample rate, after interpolation and decimation.

(usually =200).
c ndense =ratio of dense to decimated sample rates. (usually=3).

The sample rate at which instrument correction and
filter are applied = SPS2*NDENSE, then data are
decimated by removing NDENSE-1 out of every NDENSE
points.

c fc,fz =roll-off band for anti-alias filter.
(Usually =50. and 100.).

c kbands is used to determine FC and FZ when ICTYPE =wTDIC.
=number of equal-width bands in which to divide
frequencies from 0 to nyquist.
(Nyquist = SPS2*NDENSE/2, KBANDS usually =6, so
bandwidths usually =50hz.)

iddin,iddout blocked binary file identifiers for the input and
output data files.

offset,dr100f,dr100s are adjusting factors for the input data.
See comments in subroutine readxv.

c ndblks Number of data blocks in the input file
ilst Index of the last data item in the last data block.

c xy(llxy) space for an input data buffer. It will contain
uninterpolated data, as (x,y) pairs of values.

c acc(llacc) space for an output buffer. It will contain
interpolated data, as y-values only.
LLXY and LLACC should be even multiples of the
datafile blocking factor, YFBLK. If not, the excess
just goes unused. LLXY should be at least 4*YFBLK if
the DR100 data is to be read.

c buf(lbuf) space for an intermediate data buffer. It will
contain densely sampled, interpolated data.
The minimum length for buf depends on which instrument
correcting algorigthm is used.

	
	
	
	 	
	 		
	
	 	

	
	
	

	
	

	

C-18
subroutine ACALC
program HIFRIC

c For TDIC, LBUF must he at least 61, but the more the
c better.
c For FDIC, LBUF must be at least 1154. That is:
c 128 (=nlap in subroutine AFDIC)
c + 2 (for the 2 extra cells required by the
c FFT used in AFDIC)
c +1024 (=amount of data processed with each call

to the FFT in AFDIC.)

c On return --
c The iddout file contains uniformly sampled, decimated,
c instrument corrected data.
cc
c Convolution operator arrays and their size are defined here
c although they may become input arguments someday.
cc

parameter (nwts=30, nwts2=2*nwts)
double precision bn(nwts+1), cn(nwts+1), an(nwts+1)

CC

include 'files.inc/nolist'
double precision time, deltl, delt2, dr100t, dr1001
integer*4 ntot
parameter (wNOIC=0, wTDIC=1, wFDIC=2)
parameter (small=1.0e-5)

CC

nbxy=11xy/YFBLK
if(nbxy.lt.1) call woe(0)
lxy=nbxy*YFBLK

CC

nbacc=llacc/YFBLK
if(nbacc.lt.1) call woe(0)
lacc=nbacc*YFBLK

CC

if(lbuf.lt.nwts2+1) call woe(0)
CC

ntot=0
dr100i=1.0
if(dr100s.ne.0.0) dr100i=dr100i/dr100s
dr100t=-dr100i

CC

delt2=sps2
deltl=delt2
delt2=1.0/delt2
delt1=deltl*ndense
sps1=delt1
delt1=1.0/delt1

CC

assign 7011 to lblic
assign 7002 to label
m0 = 0
m2 =0

cc
c Distinguish between the 3 alternate instrument correcting

	
	
	

	

	

	

	

	

	
	

	
	

	

	
	

C-19
subroutine ACALC

program HIFRIC

options --
c a) time-domain instrument correction.
c Set convolution operator's weights,
c arrange the first NWTS2 loctions of the intermediate buffer

c For wrap-around space while applying the weights.
cc

If (ictype.eq.wTDIC) then

Call SetWts (nwts, kbands, 2, deltl, an, bn, cn)
w0 = (2.0*3.1415926536)/period

if(mod(kbands,2).gt.0 .and. ndense.gt.1) call woe(0)
if(ndense.ne.1 .and. ndense.ne.kbands/2) call woe(0)

bandw = spsl/float(2*kbands)
if(abs(bandw-fc).gt.small) call woe(0)

if(abs(2.0*bandw-fz).gt.small) call woe(0)
fc=bandw
fz=2.0*bandw
do 10 m0=1,nwts2

10 buf(m0)= 0.0

m0 = nwts2
m2 = -nwts
nweed = 0

cc
c b) frequency-domain instrument correction.
cc

else if(ictype.eq. wFDIC) then
assign 7012 to lblic
ndata=lbuf
ndone=-1

nstart=1
cc

c c) no instrument correction, just interpolate.
cc

else if(ictype.eq.wNOIC) then
assign 7001 to label

else
call woe(0)

endif
cc
c Begin outer loop to process each buffer full of data from
c the input file.
c The loops process three buffers.
c IY references the input data buffer, XY(IY),
c MO references the intermediate data buffer, BUF(M0),

c M2 references the output data buffer, ACC(M2).
cc

nxy=lxy
nreads=1 + (ndblks-1)/nbxy

nxylst= ilst + YFBLK*(ndblks-1 -(nreads-1)*nbxy)
if(nreads.le.0) call woe(0)
do 200 j=1,nreads

cc

c Read next buffer full of data.
c (Note that READXY may reset NXY when reading the last

https://if(ictype.eq

	

	

	

	
	

	
	

	
	
	

C-20
subroutine ACALC
program HIFRIC

c bufferful of DR100 data.)
cc

if (j.eq.nreads) nxy=nxylst
call readxy(iddin,offset,dr100f,dr100i,dr100t,

1 xy,xy,lxy,nxy)
cc
c If it's the first buffer full, catch the first point.
cc

If (j.GT.1) then
iy=0

else
iy=2
xl = xy(1)
yl = xy(2)
time = xl
tfirst=time

endif
go to 110

cc
c Begin inner loop to process each undecimated, interpolated
c sample within the range of the data in the input buffer.
cc

100 continue
cc
c Find the two input points that bracket the time for the next
c interpolated sample, then interpolate.
CC

time = time + deltl
if (xl.gt.time) Go To 120

110 continue
iy=iy+2
if (iy.GT.nxy) then

if(j.lt.nreads) go to 200
if(ictvpe.ne.wFDIC) go to 200
if(m0.eq.ndone) go to 200
ndata=m0
go to 7012

endif
x0 = xl
y0 = yl
xl = xy(iy-1)
yl = xy(iy)
If (x0.eq.x1) then

Go to 110
endif
IF (xl.gt.time) Go To 120
Go To 110

120 continue
v = (time-x0)*(yl-y0)/(xl-x0) + y0

cc
c If using interpolation without instrument correction, move
c interpolated value to output buffer.
c Otherwise, move value to the intermediate buffer.

https://x0.eq.x1

	

	

	

	

	
	

	

	

	
	

	
	

	
	

	

	

	

	

C-21
subroutine ACALC

program HIFRIC

cc
go to label (7001,7002)

7001 continue
m2 =m2+1

acc(m2)= v

if(m2.eq.lacc)
1 call HIOUT(luser,iddout,ntot,m2,1acc,acc,acc
2 tfirst,ictype,period,sdamp,sps2,fc,fz)

go to 100
7002 continue

m0 = m0+1
buf(m0) = v

cc
c If using time domain instrument correction algorithm --
c
c a) Instrument correct, filter, and decimate by applying

c convolution operator at every ndense-th point, beginning
c with point 1. Load results into the output buffer.
cc

go to lblic(7011,7012)
7011 continue

nweed = nweed+1
If (nweed .GT. ndense) nweed = 1

If (nweed .NE. 1) Go To 130

m2 = m2+1
If (m2 .LT. 1) nweed = 0
If (m2 .LT. 1) Go To 130

acc(m2) = Oprtr(m0-nwts, nwts, sdamp, wO, an.bn,cn, buf)
cc
c b) Whenever the output buffer is full, move buffer's

c contents to the output file.
cc

Lf(m2.eq.lacc)
1 call HIOUT(luser,iddout,ntot,m2,lacc,acc,acc,
2 tfirst,ictype,period,sdamp,sps2,fc,fz)

cc
c c) Whenever the intermediate buffer is full, shift the last

c NWTS2 values in the buffer to beginning of buffer.

cc
130 continue

If (m0 .eq. lbuf) then

n=lbuf - nwts2
Do 131 i = 1, nwts2

131 Buf(i) = buf (n + i)
m0 = nwts2

end if
go to 100

cc
c If using frequency domain instrument correction, wait

c until the intermediate buffer is full, then --
c
c a) apply correction to as much of the data as is now

available in the intermediate buffer. c

	
	

	
	

	
	

	

	
	

	

C-22

cc

subroutine ACALC
program HIFRIC

7012 continue
if(m0 .ne.ndata) go to 100
call AFDIC(buf,ndata,ndone,lbuf,deltl,period,sdamp,fc,fz)

cc
c b) Decimate and, whenever the output buffer is full, write
c to output file.
cc

do 150 i=nstart,ndone,ndense
m2=m2+1
acc(m2)=buf(i)
if(m2.eq.lacc)

1 call HIOUT(luser,iddout,ntot,m2,1acc,acc,acc,
2 tfirst,ictype,period,sdamp,sps2,fc,fz)

150 continue
nstart=nstart + ndense*(1+ (ndone-nstart)/ndense) - ndone

cc
c c) Shift the data at the end of the buffer that hasn't been
c completely processed yet to the beginning of the buffer.
cc

if(ndone.eq.ndata) go to 200
do 151 i=ndone+1,ndata

151 buf(i-ndone)=buf(i)
m0= ndata-ndone
ndone=0

cc
c End of loops.
cc

go to 100
200 Continue

cc
c Fill out last data block and header blocks in the output file.
c Report min, max ,etc. values to user.
cc

call HIOUT(luser,iddout,ntot,m2,lacc,acc,acc,
1 tfirst,ictype,period,sdamp,sps2,fc,fz)

ccccccccccccccccccccc (end of ACALC) ccccccccccccccccccccccccccccccc
END

	
	
	

	

		 	
	 	

	

	

	

	

	

	

	

	

C-23
subroutine SETWTS

program HIFRIC

Subroutine SetWts
1 (n, ksegs, ntype, delt, an, bn, cn)
Double Precision delt, bn(n+1), cn(n+1), an(n+1)

Double Precision pi, pi2, a, h
cc
c SETWTS.ftn:
c Routines for approximation of first and second derivatives
c by difference operators.
c
c Written by Michael ?laugh of USGS in 1981.
c
c Ntype = 1 (analytic) Prepares Fourier coefficients for expansion
c of 1, x, x**2 with cosine bells for a < x < b < pi. Anti-
c alias filter (i.e. null frequency response) for b < x < pi.
c Ntype = 2 (empiric) Prepares weights for instrument correction
c convolution operator
cc

pi = 3.1415926536
pi2 = pi**2

a = pi/ksegs
b = 2.*pi/ksegs

an(1) = 1.
bn(1) = 0.
cn(1) = 0.

Do 10 i = 1,n
an(i+1) =-1/pi*(

1 SlCos(i3 O,a)+SlCos(i3 O,b)
2 -0.5*(S1Cos(i+ksegs,a,b)+SlCos(i-ksegs,a,b)))

bn(i+1) = 1/pi*(
1 Sx1Sin(i3 O,a)+Sx1Sin(i3 O,b)
2 -0.5*(Sx1Sin(i+ksegs,a,b)+Sx1Sin(i-ksegs,a,b)))

cn(i+1) =-1/pi*(
1 Sx2Cos(i3 O,a)+Sx2Cos(i3 O,b)
2 -0.5*(Sx2Cos(i+ksegs,a,b)+Sx2Cos(i-ksegs,a,b)))

C Special additional term for coefficient of Cos(Ksegs*x):
If (i .NE. ksegs) Go To 4

an(i+1) = an(i+1) + 0.5/ksegs
cn(i+1) = cn(i+1) + (7./6.)*pi2/ksegs**3

4 If (ntype .EQ. 1) Go To 10
C Adjust Fourier coefficients for use as convolution weights
C in instrument correction operator

an(i+1) = - 0.5*an(i+1)
bn(i+1) = 0.5*bn(i+1)/delt

	

	10

C-24
subroutine SETWTS
program HIFRIC

cn(i+1) = 0.5*cn(i+1)/delt**2
an(1) = an(1)-2.*an(i+1)
cn(1) = cn(1)-2.*cn(i+1)
Continue

Return
End

Double Precision Function SlCos (n, a, b)
Double Precision a, b, xn
SlCos = snl(n, a, b)
Return
End

Double Precision Function Sx1Sin (n, a, b)
Double Precision a, b, xn
Sx1Sin = sn2(n, a, b) - cnl(n, a, b)
Return
End

Double Precision Function Sx2Cos (n, a, h)
Double Precision a, h, xn
Sx2Cos = cn2(n, a, b) + sn3(n, a, b)
Return
End

Double Precision Function cnl (n, a, b)
Double Precision a, b, xn
cnl = 0
If (n .EQ.0) Return
xn = n
cnl =-(a*dcos(n*a)-b*dcos(n*b))/xn
Return
End

Double Precision Function cn2 (n, a, b)
Double Precision a, b, xn
cn2 = 0
If (n .EQ.0) Return
xn = n**2
cn2 =-2.*(a*dcos(n*a)-b*dcos(n*b))/xn
Return
End

Double Precision Function snl (n, a, b)

Double Precision a, b, xn
snl = 0
If (n .EQ.0) Return
xn = n
snl =-(dsin(n*a)-dsin(n*b))/xn
Return
End

C-25
subroutine SETWTS

program HIFRIC

Double Precision Function sn2 (n, a, b)
Double Precision a, b, xn
sn2 = 0
If (n .EQ.0) Return
xn = n**2
sn2 =-(dsin(n*a)-dsin(n*b))/xn
Return
End

Double Precision Function sn3 (n, a, b)
Double Precision a, b, xn
sn3 = 0
If (n .EQ.0) Return
xn = n
sn3 =-((xn**2*a**2-2.)*dsin(n*a)-(xn**2*b**2-2.)*dsin(n*b))/xn**3
Return
End

	

C-26
subroutine OPRTR
program HIFRIC

Function Oprtr(i, nwts, sdamp, w, an. bn, cn, data)
dimension data(1)
Double Precision delt, an(1), bn(1), cn(1)

Double Precision asym, sym, dO,dl,d2

dO = an(1)*data(i)
dl = 0
d2 = cn(1)*data(i)

Do 10 j = 1, nwts
ipj = i+j
imj = i-j
sym = data(ipj) + data(imj)
asym = data(ipj) - data(imj)
dO = dO + an(j+l)*sym
dl = dl + bn(j+1)*asym
d2 = d2 + cn(j+1)*sym

10 Continue

Oprtr = dO + 2.0*sdamp/w*dl + d2/w**2

Return
END

	

	
	
	
	
	
	
	
	
	
	
	

	
		
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
		
	
		
	
		

	
	 	
	
	

	
	
	
	

	

	

C-27
subroutine AFDIC

program HIFRIC

subroutine afdic (x,ndata.ndone,lx,delt,tins,h,fhl,fh2)
dimension x(lx)

cc
c AFDIC applies Bill Joyner's frequency-domain instrument correcting
c and anti-alias filtering algorithm to acceleration data.
c WARNING: Bill chose the NLAP value (see below) as something very
c much longer than the time it would take the instrument
c response from a single pulse to decay to (close to) zero. If
c very different instrument or filter characteristics are given
c than those that are usually given, the NLAP value may not be
c appropriate. Until more analysis and experiments are
c performed with this algorithm, Bill recommends the following.
c fh2 < 1.0/(2*delt)
c fhl <= fh2/2
c and tins < 1.0
c
c On entry --
c x() contains acceleration time series data.
c ndata = number of values in x().
c if ndata < lx, then ***
c Excess beyond NDATA will be filled with zeros.
c ndone = location of the last x-value to have been completely
c processed during a previous call to FDIC.
c NDONE must= -1 in the first call to FDIC.
c NDONE will be reset during the current call. Caller
c may dispose of x(1 through !ZONE), shift the uncompleted
c x-values to the beginning of x(), reset NDONE, then
c add more x-values into the end of x() for processing
c in a subsequent call to FDIC.
c lx = length of the array x(). Must be NDONE+ 2 + (an even
c multiple of) 1024.
c delt = time interval between x-values, in seconds, usually 1/600.
c tins = instrument period, in seconds, usually about 0.06.
c h = instrument damping as fraction of critical damping,
c usually about 0.6
c fhl = beginning-of-taper frequency for cosine taper in the high
c cut filter, hz, usually 50.
c fh2 = end-of-taper frequency for cosine taper, hz, usually 100.
c
c On return --
c x(1 to ndone) contains intrument corrected time series data.
c ndone = location of the last x-value completely processed during
c the current call to FDIC.
cc
c Use "overlap-add method" for fitting separately filtered
c segments of the data back together. See section 3.8,
c pages 110 to 113 in 'Digital Signal Processing' by
c A.V. Oppenheim and R.W. Schafer; Prentice-Hal1,1975.
c
c Illustration of "overlap-add" method:

c 1) Divide x() into equal-lengthed segments:

	 		
		
		 		
	
		 		

	
	
	

	
	
	
	
	

	
	
		 	
	
	

	

	
	
	
	
	
		
	
	
	
	
	
	
	
		
	

	

C-28
subroutine AFDIC
program HIFRIC

c last seg>< current segment >< next segment
c x():
c length: < nxseg >< nzeros
c <nlap><nlap>< nxseg-nlap ><nlap><nlap><2>
c name: < A >< B >< C >< D >< E>

c 2) Before transforming each segment to the frequency domain,
c save x-values from the nzeros area of the next segment
c in XSAVE(), then set the area to 0.0.

c 3) Transform B,C,D,E area to frequency domain, instrument
c correct and filter, then transform back to time domain.
c Resulting sequence represents one cycle of a periodic sequence
c and is longer than the original NXSEG points, extending into
c the NZEROS area from both directions.

c 4) Add results in overlapping areas after transforming back to
c the time domain.
c A=A+E 3=B+ENDLAP C=C D is saved in ENDLAP
c to be added into B
c area of the next seg.
c
c 5) Restore XSAVE back into the NZEROS area, then repeat 2) through

5) for the next segment.
cc
c Sizes used in the overlap method are defined here although NTOT2
c and NLAP may become input parameters someday.
c nxseg =number of x-values in each segment
c nzeros =number of trailing zeros appended to the x-values
c before filtering
c nlap =length of overlap extending on each side of
c the NXSEG values after filtering.
c NZEROS includes space for 2*NLAP (unlike the 1*NLAP
c used in the example in the textbook cited) because
c the instrument response function has non-zero values
c on both sides of zero.
c ntot2 =number of real, time-domain, values that can be
c accepted by UFORK.

c nf+1 =number of complex, frequency-domain, values returned
c by UFORK. The first pair are for zero-frequency.
cc

parameter (m=9)
parameter (nf=2**m)
parameter (ntot2=2*nf)
parameter (nlap=128)
parameter (n2lap=nlap*2)
parameter (nzeros=n2lap+2)
parameter (nxseg =ntot2-n2lap)
logical first,last

cc
c Save info. between calls --
cc

common /svfdic/ init,last,fun,nhl,nh2,

	

	

	

	

	

	

	
	
	

C-2 9
subroutine AFDIC

program HIFRIC

1 xsave(nzeros) ,endlap(nlap)
CC

if(ndone.ge.0) then
next0=ndone+nlap
if(init.ne.-1234) call woe(0)
if(last) call woe(0)
first=.false.

else
ndone=0
first=.true.
last=.false.
next0=0
init=-1234
do 302 i=1,nzeros

302 xsave(i)=x(i)
do 303 i=1,nlap

303 endlap(i)=0.0
t=float(ntot2)*delt
fun=1.0/t
nhl=ifix(fhl*t)
nh2=ifix(fh2*t)
if(nh2.gt.nf) call woe(0)

endif
nsegs=(ndata-ndone)/nxseg
if(ndata.lt.lx) then

last=.true.
nsegs=1+(ndata-ndone-1)/nxseg
do 301 i=ndata+1,1x

301 x(i)=0.0
if(ndata.le.next0) then

c *** or is there stuff left in endlap(?) ***
ndone=ndata
return

endif
endif
nn= next0 + nsegs*nxseg + nzeros
if(nn.gt.lx) call woe(0)
if(ndata.gt.lx) call woe(0)

cc
c Loop for each segment of x, x(now0+1) through x(next0)
cc

DO 102 iseg=1,nsegs
now0=next0
next0=next0+nxseg

cc
c Save the part of x in the next segment that needs to be
c zeroed out for the overlap method. Also replace
c saved x from the last segment.
cc

do 103 i=1,nzeros
x(now0+0 =xsave(i)
xsave(i) =x(next0+i)

103 x(next0+0=0.0

https://if(ndata.gt.lx
https://if(nn.gt.lx
https://if(ndata.lt.lx
https://if(nh2.gt.nf

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

C-30
subroutine AFDIC
program HIFRIC

cc
c Transform current segment of x along with its trailing zeros
c from time to frequency. Odd locations in the returned x
c are real, even locations are imaginary.
cc

CALL vfork(x(now0+1) ,M)
cc
c Instrument correct.
cc

do 3 i=1,nh2
j=2*i+1
f=fun*float(i)
fr=1.0-f*f*tins*tins
fi=2.0*h*f*tins
TE-M131=FR*X(now0+J)-FI*X(noTil0+J+1)
TEMP2=FR*X(now0+J+1)+FI*X(now0+J)
X(now0+J)=TEMP1
X(now0+J+1)=TEMP2

cc
c Apply cosine taper from frequency = fhl to fh2.
cc

if(i.le.nhl) go to 3
factor=0.5*(1.0+cos(3.14159*(f-fhl)/(fh2-fhl)))
X(now0+J)=FACTOR*X(now0+J)
X(now0+J+1)=FACTOR*X(now0+J+1)

3 continue
cc
c filter gain =0.0 for frequencies above fh2.
cc

if(nh2.ge.nf) go to 5
nn=1+2*(nh2+1)
do 4 i=nn,ntot2+2

4 X(now0+i)=0.0
5 continue

cc
c transform back to time.
cc

CALL ufork(x(now0+1),M)
cc
c Overlap these results with results from the last segment.
cc

do 304 i=1,nlap
ii=now0+i
x(ii)=x(ii) + endlap(i)

304 endlap(i)=x(next0+0
if(.not. first) then

nn=now0 -nlap
mm=next0+nlap
do 305 i=1,nlap
ii=nn+i

305 x(ii)=x(ii)+x(mm+i)
endif

102 CONTINUE

https://if(nh2.ge.nf

	
	

	

C-31
subroutine AFDIC

program HIFRIC

ndone =next0-nlap
cc
c If the last segment processed is the last in the time series,
c set x() to zero beyond ndata and set ndone=ndata.
cc

if(last) then
if(next0.1e.ndata) call woe(0) !if so, I'm confused.
ndone=ndata
do 310 ixindata+1,1x

310 x(i)=0.0
endif
return

cccccccccccccccccccc (end of afdic) ccccccccccccccccccccccccccccccccc
end

	

	

C-32
include files
program CORAVD

c --- begin sarray.inc ---
dimension array(larray)

c --- end sarray.inc

c --- begin varray.inc ---
virtual array(larray)

c --- end varray.inc

	
	
	

	
	
	
	
	
	

	
		
	
	
	
		
	
	
	
	
		
	
	
	
	
	
	
		
	
	
	
	
		
		

	

	
	

C-33
subroutine LLSQF

program CORAVD

subroutine llsqf(iddin,intype ndblks,ilst,
1 array,larray,
2 dr100f,delt,tbegin.fitbeg,fitend,taper,
2 nreads,slope,y0)
include 'array.inc'
double precision delt

cc
c LLSQF
c Calculate the coefficients YO and SLOPE for the line
c Y = YO +SLOPE*X
c which best fits the integral (=velocity) of the points on the
c input file in the least squares sense.
c If intype=2, then fit the input data itself, don't integrate
c first.
c
c on entry --
c iddin =blocked binary file identifier for the input file.
c intype =1 if the input data is acceleration,
c =2 if the input data is velocity.
c ndblks = number of data blocks on the input file.
c ilst = index of the last data item in the last data block.
c array() = array into which the data will be read.
c larray = length of array
c dr100f = DR100 data conversion factor, = 0.0 if the data comes
c from an AGRAM program rather than from DR100.
c delt = time increment, in seconds, between data samples.
c tbegin =time corresponding to the first point in the data file.
c fitbeg =time of the first point to inclue in the fit.
c fitend .=time of the last point to include in the fit.
c *** tbegin doesn't include the syncronizing time offset
c that may have been given in the header. Will fitbeg
c and fitend?? Assume not, for now. ***
c taper =portion of the fitrange in which to apply a cosine
c taper. (0.0 <= taper >=0.5)
c on return --
c nreads =1 if all the input data is in array, so subsequent
c subroutines need'nt reread it.
c slope =slope of the llsqf line.
c y0 =intercept of the llsqf line.
cc

double precision x,y, time0,tabuf
double precision d,sumx,sumxx,sumy,sumxy
include 'files.inc/nolist'

c +++ integer*4 npts
CC

pi =3.1415926536
sumx =0.0
sumxx =0.0
sumy =0.0
sumxy =0.0

CC

nbab = larray/YFBLK
la = YFBLK*nbab

	

	

	
	

	

	

	

	

	

	

C-34
subroutine LLSQF
program CORAVD

tabuf = delt * la
time() = tbegin -delt
y = 0.0
alast = 0.0
hdt = 0.5*delt

ti = fitbeg-hdt
t2 = fitend+hdt

npts = 0

points =0.0
ttaper =taper*(fitend-fitbeg)
tapere =fitbeg + ttaper

taperb =fitend - ttaper
assign 20 to JMP
if(taper.gt.0.0 .and. taper.le.0.5) assign 21 to JMP
assign 302 to JUMP
if(intype.eq.2) assign 301 to JUMP

cc
c Loop for each bufferful of data on the input file, then

c Loop for each data point in the buffer.
cc

nreads = 1 + (ndblks-1)/nbab
if(nreads.le.0) call woe(0)

nlast = ilst + YFBLK*(ndblks-1 -(nreads-1)*nbab)

n =la
if(nbab.ge.ndblks) n=ndblks*YFBLK
do 100 ibuf=1,nreads
call ready(iddin,array,larray, n ,dr100f)

if(ibuf.eq.nreads) n=nlast
do 101 i=1,n
go to JUMP,(301,302)

301 continue
y=array(i)
go to 303

302 continue

y= y + hdt*(alast array(i))
alast =array(i)

c +++ would be faster to get space for acc(0) instead of using alast
303 continue

x= delt*float(i) + tirne0
if(x.lt.tl) go to 101
if(x.gt.t2) go to 102

cc
c a) taper the effect of the points near the end of the fit range.
cc

go to JMP,(20,21,22,23)
21 continue

wt=(x-fitbeg)/ttaper
if(x.le.tapere) go to 103
assign 22 to JMP

22 continue

if(x.lt.taperb) go to 20
assign 23 to JMP

23 continue

https://if(x.gt.t2
https://if(x.lt.tl

	

	

	

	

	
	 	

C-35
subroutine LLSQF

program CORAVD

wt=(fitend-x)/ttaper
103 continue

wt=0.5 *(1.0 - cos(pi*wt))
points= points +wt
sumx = sumx + x *wt
sumxx = sumxx + x*x *wt
sumy = sumy + y *wt
sumxy = sumxy + y*x *wt
go to 101

cc
c b) Weight the points in the middle of the fit range evenly.
cc

20 continue
npts=npts + 1
sumx = sumx + x
sumxx = sumxx + X*X
sumy = sumy + y
sumxy = sumxy + y*x

101 continue
time0 = time0 + tabuf

100 continue
102 continue

cc
c end loop.
cc

points = points + float(npts)
d = points*sumxx - sumx*sumx
y0 = (sumy*sumxx - sumx*sumxy)/d
slope= (points*sumxy - sumx*sumy)/d
return

cccccccccccccccccccc (end of llsqf) cccccccccccccccccccccccccccc
end

	
	
	
	
	
	 	

	

C-36
subroutine AVD
program CORAVD

subroutine AVD (
1 acc.vel,dis,lla,llv,lld,
2 dr100f,tbegin,delt,slope,v0,
2 intype,iddin,ndblks,ilst,inmem,
3 iddout,ndbout,ilout,
3 vbeg,vend,vmin,vmax,
4 tbeg, tmin,tmax)
dimension acc(lla) , vel(11v), dis(lld)
double precision delt
parameter nout=3
dimension iddout(nout),ndbout(nout),ilout(nout)
dimension vbeg(nout),tbeg(nout),vend(nout)
dimension vmin(nout),vmax(nout), tmin(nout),tmax(nout)

CC

AVD:
Calculate velocity and displacement from acceleration.
If requested, subtract a line (the llsqf of some portion of the

c velocity) from the velocity and a constant (the slope of the
llsqf line) from the acceleration.

AVD if an alternative version of FLTAVD that does no filtering,
and will NOT truncate the data even if it won't fit in
working storage space all at once.

On entry
acc() = i/o buffer for acceleration data.
lla = length of acc().

c vel() = i/o buffer for velocity data.
llv = length of vel().
dis() = output buffer for displacement data.
lld = length of dis().
dr100f = DR100 data conversion factor. (=0.0 if the data

comes from an AGRAM program rather than from
DR100.)

tbeg in = time corresponding to the first sample in the
data file.

delt = time increment between data samples, in seconds.
slope = slope of the llsqf to velocity.

= intercept "
intype = 1 if input file contains acceleration,

= 2 if input file contains velocity.
iddin = blocked binary file identifier for the input file .
ndblks = number of data blocks on the input file.
ilst = index of the last data sample in the last data

block on the input file.
inmem = 1 if the data has already been read into array and

it all fits.
iddout() = blocked binary file identifier for the three output

files.
(1)=> acceleration file,
(2)=> velocity,
(3)=> displacement.

	
	
	
	

	

	

	
	

C-37
subroutine AVD
program CORAVD

c on return --
c ndbout(),ilout() = ndblks and ilst for the three output files.
c vbeg(),vend(),vmin(),vmax(),tbeg(),tmin(), and tmax()
c have been given values which should be inserted

into the header blocks of the output files.
cc

include 'files.inc/nolist'
double precision dpv,dpd, hdt
double precision a0time, vOtime, dOtime
double precision tabuf, tvbuf, tdbuf
parameter huge = 1.0e30

cc
c Worry about buffer siZes
cc

ld=(lld/YFBLK)*YFBLK
lv=(11v/YFFILK)*YFBLK
nbab = lla/YFBLK
la=nbab*YFBLK

cc
c initialize
cc

do 10 j=1,nout
vbeg(j)=0.0
vend(j)=0.0
vmin(j)= huge
vmax(j)=-huge
tmin(j)=0.0
tmax(j)=0.0
ndbout(j)=ndblks
ilout(j) =ilst
tbeg(j) =tbegin

10 continue
a0time =-delt +tbegin
vOtime = a0time
dOtime = a0time
tabuf = delt*la
tvbuf = delt*lv
tdbuf = delt*ld
idacc =iddout(1)
idvel =iddout(2)
iddis =iddout(3)
ivy
id =0
dpv =0.0
dpd =0.0
hdt=0.5*delt
alast=0.0
vlast=0.0
assign 302 to JUMP
if(intype.eq.2) assign 301 to JUMP

cc
c Loop for each bufferful of data on the input file, then
c Loop for each data point in the buffer.

	
	
	
	
	

	 	

	

	

C-3 8
subroutine AVD
program CORAVD

CC

nreads = 1 + (ndblks-1)/nbab
if(nreads.le.0) call woe(0)
nlast = ilst + YFBLK*(ndblks-1 -(nreads-1)*nbab)
n =la
if(nbab.ge.ndblks) n=ndblks*YFBLK
do 100 ibuf=1.nreads
if(inmem.ne.1) call ready(iddin,acc,lla, n ,dr100f)
if(ibuf.eq.nreads) n=nlast
do 101 i=1,n

cc
c Integrate input acceleration for velocity,
c or, if input data is velocity, just move the data from
c input array to vel array.
c Then subtract linear correction from velocity and
c subtract a constant, =slope of the line, from acceleration.
cc

iv=iv+1
go to JUMP,(301,302)

301 continue
dpv= acc(i)
go to 303

302 continue
dpv=dpv + (acc(i) + alast) *hdt
alast=acc(i)
acc(i)=acc(i)-slope

303 continue
vel(iv)=dpv

1 - y0 -slope*(vOtime float(iv)*delt)
cc
c integrate corrected velocity for displacement.
cc

id= id+1
dpd =dpd + (vel(iv) + vlast)*hdt
vlast=vel(iv)
dis(id)=dpd

cc
c find min and max values of each curve
cc

if(acc(i) .gt.vmax(1)) then
vmax(1)=acc(i)
tmax(1)=delt*float(i) + aOtime

endif
if(acc(i).lt.vmin(1)) then

vimin(1)=acc(i)
tmin(1)=delt*float(i) + aOtime

endif
if(vel(iv) .gt.vmax(2)) then

vmax(2)=vel(iv)
tmax(2)=delt*float(iv) + vOtime

endif
if(vel(iv).1t.vmin(2)) then

vmin(2)=vel(iv)

	

	

C-39
subroutine AVD
program CORAVD

tmin(2)=delt*float(iv) + vOtime
endif
if(dis(id) .gt.vmax(3)) then

vmax(3)=dis(id)
tmax(3)=delt*float(id) + dOtime

endif
if(dis(id).1t.vmin(3)) then

vimin(3)=dis(id)
tmin(3)=delt*float(id) + dOtime

endif
cc
c Write to output files whenever buffers are full
cc

if(iv .eq. 1v) then
call bio(idvel,ZWRITE,zwaita.ZNEXTB,zf,vel,lv,ntrans)
if(ntrans.lt.1v) call woe(0)
if(vOtime.lt.tvbuf-delt) vbeg(2) = vel(1)
iv=0
vOtime = vOtime + tvbuf

endif
if(id.eq.ld) then

call bio(iddis,ZWRITE,zwaita,ZNEXTB,zf,dis,1d,ntrans)
if(ntrans.lt.ld) call woe(0)
if(d0time.lt.tdbuf-delt) vbeg(3) = dis(1)
id=0
dOtime = dOtime + tdbuf

endif
101 continue

if(ibuf.lt.nreads .and. intype.eq.1) then
call bio(idacc,ZWRITE,zwaita,ZNEXTB,zf,acc,la,ntrans)
if(ntrans.lt.la) call woe(0)
if(ibuf.eq.1) vbeg(1)=acc(1)
a0time =a0time + tabuf

endif
100 continue

cc
c Write out the last bufferful for each data file
cc

vend(1)=acc(n)
vend(2)=vel(iv)
vend(3)=dis(id)
if(intype.eq.1)
lcall filler(idacc,acc,nlast,la)
call filler(idvel,vel iv,1v)
call filler(iddis,dis,id.1d)
return

cccccccccccccccccccc (end of AVD) cccccccccccccccccccccccccc
end
subroutine filler (idbbf,array,last,lend)
dimension array(lend)
include 'files.inc/nolist'

CC

if(last.eq.0) return

https://filler(iddis,dis,id.1d
https://if(ntrans.lt.la
https://if(ntrans.lt.ld
https://if(id.eq.ld
https://if(ntrans.lt.1v

C-40
subroutine FILLER/AVD
program CORAVD

1= (1 + (last-1)/YFBLK)*YFBLK
if(l.gt.lend) call woe(0)
if(l.eq.last) go to 11
rnone =rundef(idbbf)
DO 10 I= last+1,L

10 ARRAY(I)=rnone
11 continue

call bio(idbbf,zwrite zwaita,ZNEXTB,zf,array,l,ntrans)
return

cccccccccccccccccccc (end of filler/AVD) ccccccccccccccccccc
end

	
	
	
	
	
	

	
	

	

	
	 	
	

	

	 	

	
		
	

	
	

	
	
	

		

C-41
subroutine FLTAVD

program CORAVD

subroutine FLTAVD (luser kfiltr,fcornr,framp,noptn,option,ixtend,
1 array,larray,
2 dr100f,tbegin,delt,slope,y0,
2 intype,iddin,ndblks,ilst.inmem,
3 iddout,ndbout,ilout,
3 vbeg vend,vmin,vmax,
4 tbeg,tend,tmin.tmax)

c +++ integer*4 larray
include 'array.inc'
double precision delt
dimension kfiltr(2),fcornr(2),framp(2)
dimension noptn(2),option(2),ixtend(2)
parameter nout=3
dimension iddout(nout),ndbout(nout), ilout(nout)
dimension vbeg(nout),theg(nout),vend(nout)
dimension tend(nout)
dimension vmin(nout),vmax(nout), tmin(nout),tmax(nout)

CC

c FLTAVD!
c Calculate velocity and displacement from acceleration.

If requested, subtract a line (the llsqf of some portion of the
velocity) from the velocity and a constant (the slope of the
llsqf line) from the acceleration.

If requested, filter acceleration and velocity.

c FLTAVD is an alternative version of WD that can also apply a
filter to the accleration and velocity. Unlike AVD, however,
FLTAVD will truncate a time series if all the data and necessary
scratch space will not fit in array all at once.

CC

c
c on entry --
c luser

kfiltr()
fcornr()

c framp()
noptn()
option()
ixtend()

c array()

c
c larray

dr100f

c
tbegin

c
delt
slope

c y0

= LUN for diagnostic and run messages.
= filter parameters, see subroutine filter.

= array to contain the data to he manipulated
(in locations 1 through ndata) plus working
space (in locations ndata+l through larray).
The amount of work space required depends on
the type of filter used.

= length of array.
= DR100 data conversion factor. (=0.0 if the data

comes from another AGRAM program rather than from
DR100.)

= time corresponding to the first sample in the
data file.

= time increment between data samples in seconds.
slope of the llsqf to velocity.

= intercept "

		
	
		
		
		

	
		
	
	 	
	

	
	

	
	
	
	
	
	
	
	

	

	

C-42
subroutine FLTAVD
program CORAVD

c intype
c
c iddin
c ndblks
c ilst
c
c inmem
c
c iddout()
c

c
c

c on return --

= 1 if input file contains acceleration,
= 2 if input file contains velocity.
= blocked binary file identifier for the input file.
= number of data blocks on the input file.
= index of the last data sample in the last data

block on the input file.
= 1 if the data has already been read into array and

it all fits.
= blocked binary file identifier for the three output

files.
(1) => acceleration file,
(2) => velocity,
(3) => displacement.

c ndbout(),ilout() = ndblks and ilst for the three output files.
c Note that the output files will be shorter than the
c input file if the data were truncated here or in
c subroutine filter.
c vbeg(),vend(),vmin(),vmax(),tbeg(),tend(),tmin(), and tmax()
c have been given values which should be inserted
c into the header blocks of the output files.
cc

include 'files.inc/nolist'
cc

double precision dpv,dpd
c +++ integer*4 npts, nn, nread, need nptwas
cc

do 10 j=1,nout
vbeg(j)=0.0
vend(j)=0.0
vmin(j)= huge
vmax(j)=-huge
tmin(j)=0.0
tmax(j)=0.0
ndbout(j)=ndblks
ilout(j) =ilst
tbeg(j) =tbegin

10 continue
aOtime =-delt +tbegin
vOtime = aOtime
dOtime = aOtime
idacc =iddout(1)
idvel =iddout(2)
iddis =iddout(3)
dpv =0.0
dpd =0.0
hdt=0.5*delt
alast=0.0
vlast=0.0

cc
c is array big enough for the data?
cc

	

	

	

	

	

	

	
	

	

	

	

	

	

	

	

	

	

	 	

	

	

	

C-43
subroutine FLTAVD

program CORAVD

nread=ndblks
nread=nread *YFBLK
npts= nread -YFBLK + ilst
nptwas=npts
if(nread.gt.larray) then

nread= (larray/YFBLK) *YFBLK
call noroom(luser.0,npts.nread.delt)

endif
cc
c read input data into array unless subroutine llsqf has

already put it there. Data is either acceleration or
c velocity.
cc

if(inmem.ne.1) call ready (iddin,array,larray,nread,dr1000
cc
c Integrate input acceleration for velocity.
cc

if (intype.eq.1) then
do 110 nn=1,npts
dpv=dpv + (array(nn) + alast) *hdt
alast = array(nn)
array(nn)=dpv

110 continue
endif

cc
c Subtract linear correction from velocity.
cc

if (slope.ne.0.0 .or. y0 .ne.0.0) then
do 111 nn=1,npts
array(nn)=array(nn)

1 - y0 -slope*(vOtime + float(nn)*delt)
111 continue

endif
cc
c filter baseline corrected velocity
cc

if(kfiltr(1).ne.0 .or.kfiltr(2).ne.0)
1 call filter(luser,2,array npts,larray delt,
2 kfiltr,fcornr,framp,noptn,option,ixtend)

cc
c write corrected, filtered velocity
cc

call output(idvel,array,nread,npts,nptwas v0time,delt.
1 vmax(2),tmax(2), vmin(2).tmin(2),
2 vbeg(2) vend(2),tend(2).
3 ndbout(2).ilout(2))

cc
c integrate corrected, filtered velocity for displacement.
cc

vlast=0.0
do 120 nn=1 npts
dpd =dpd + (array(nn) + vlast)*hdt

https://or.kfiltr(2).ne

	

	
	 	
	

	

	

	

	
	

	

	
	 	
	

	
	

	

C-44
subroutine FLTAVD
program CORAVD

vlast= array(nn)
array(nn)=dpd

120 continue
cc
c write displacement
cc

call output(iddis.array,nread,npts,nptwas,d0time,delt,
1 vmax(3),tmax(3), vmin(3),tmin(3),
2 vbeg(3), vend(3),tend(3),
3 ndbout(3).ilout(3))

cc
c reread input acceleration.
c +++ Or would it be better to use two arrays so we don't have to
c read the acceleration twice?? +++
cc

if(intype .ne.1) go to 200
call vbio(iddin,ZPOS, zwaita,ZDATA1, ZF ,array,yfblk ntrans)
call ready (iddin,array,larray,nread,dr1000

cc
c subtract a constant, =slope of the line, from acceleration
cc

do 130 nn=1,npts
130 array(nn)=array(nn)-slope

cc
c filter corrected acceleration
cc

if(kfiltr(1) ne.0 .or.kfiltr(2).ne.0)
1 call filter(luser,l,array,npts,larray,delt,
2 kfiltr,fcornr framp,noptn option,ixtend)

cc
c write filtered, corrected acceleration.
cc

call output(idacc,array,nread,npts,nptwas aOtime,delt,
1 vmax(1),tmax(1), vimin(1),tmin(1),
2 vbeg(1), vend(1),tend(1),
3 ndbout(1),ilout(1))

CC

200 continue
return

cccccccccccccccccccc (end of FLTAVD) cccccccccccccccccccccccccccccccccc
end
subroutine output(idbbf,array,larray,npts,nptwas time0.delt,

1 vmax,tmax.vmin.tmin,vbeg,vend,tend,
2 ndbout,ilout)
double precision delt

c +++ integer*4 nread,npts,nptwas
include 'array.inc'

cc
c output subroutine for FLTAVD.
cc

include 'files.inc/nolist'
c +++ integer*4 nn, nwrite
cc

https://or.kfiltr(2).ne

	

C-4 5
subroutine FLTAVD

program CORAVD

nread=larray
nwrite=nread
if(npts.lt.nptwas) nwrite=YFBLK*(1 + (npts-1)/YFBLK)
if(nwrite.gt.npts) then

rnone=rundef(idbhf)
do 10 nn = npts+1,nwrite

10 array(nn)=rnone
endif
call vbio(idbbf,ZWRITE.zwaita.ZNEXTB,zf,array,nwrite,ntrans)
if(ntrans.lt.nwrite) call woe(0)
if(npts.ne.nptwas) then

tend =time° + float(npts)*delt
ndbout=l+ (npts-1)/YFBLK
ilout = npts - YFBLK*(ndbout-1)

endif
vbeg = array(1)
vend = array(npts)
do 111 nn=1,npts
if(array(nn) .gt.vmax) then

vmax=array(nn)
tmax=delt*float(nn) + time°

endif
if(array(nn).1t.vmin) then

vmin=array(nn)
tmin=delt*float(nn) + time°

endif
111 continue

return
cccccccccccccccccccc (end of output/FLTAVD) ccccccccccccccccccccccc

end

	

	
	

	
		
		
	
	
	
	
	
	
	
	
		
	
		
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	

	
	
	

	

C-4 6
subroutine FILTER
program CORAVD

subroutine filter (luser,kind,array,ndata larray,delt,
1 kfiltr,fcornr,framp.noptn,option,ixtend)
double precision delt
dimension kfiltr(2),fcornr(2),framp(2)
dimension noptn(2) option(2),ixtend(2)
include "array.inc"

c +++ integer*4 ndata,larray
cc
c FILTER is called from FLTAVD to filter acceleration and
c velocity (in 2 separate calls) according to kfiltr option
cc
c on entry --
c luser = lun for diagnostics and run messages.
c kind indicates the type of data in array; its only use is
c for labeling the run messages.
c =1=> acceleration,
c =2=> velocity,
c =3=> displacement.
c array() = array containing the data to be filtered (in locations
c 1 through ndata) plus working space (in locations
c ndata+1 through larray). The amount of work space
c required depends on the type of filter used.
c ndata = number of data items in array.
c larray = length of array.
c delt = time increment between data items, in seconds.
c kfiltr()= filter type
c =1 => unidirectional, high-pass Butterworth filter,
c 2 => bi "
c 3 => Ormsby filter.
c 4 => FFT filter,

-1 => debuggery.
c fcornr()= corner frequency for the filter, cps.
c framp() = width of transition band extending from fcornr to
c frequency at which filter gain =0.O.
c noptn() = integer option used with some of the filters.

For Butterworth filters noptn = rolloff order which is
c used rather than framp to specify the width of the
c transition band.
c option()= real option used with some of the filters.
c For Ormsby filter, option = the ormk variable used in

calculating the convolution weights.
c ixtend()= data padding option needed for most of the filters.
c The data will be extended to npoints=nearest power of 2
c for the FFT filter; to half again its original length
c for the bidirectional Butterworth filter. For Ormsby
c filter, the data is not actually padded, but the

padding effect is incorporated during the convolution.
=1 => extend data with zeros (this may leave a sharp step

c between the data and the pad.)
c =2 => taper a small section at the beginning of the pad
c area from the last data point down to zero.

=3 => taper a small section at both ends of the data to
meet the zeroed pad area. c

	
	
	

	
		
	
	
	

	
	
	

	

	
	

	

	

C-4 7
subroutine FILTER

program CORAVD

c index for kfiltr,fcornr,framp,noptn.option, and ixtend
c =1 for low frequency filter (="low cut", ="high-pass")
c =2 for high frequency filter (="high cut", ="low-pass")
c
c on return --
c ndata may have become smaller than it was on entry if there
c wasn't enough working storage space.
c array(1) through array(ndata) contain filtered data.
c array(ndata+1) through array(larray) contain garbage.
cc
c +++ integer*4 npwr2. nn, 11, npts,lcopy.lwts

parameter extend=0.5 !*** Bill Joyner has a formula for extend.
cc

if(kind.eq.1) write(luser,1001)
if(kind.eq.2) write(luser,1002)
if(kind.eq.3) write(luser,1003)

cc
c prepare for a low cut filter (nowf=1),
c but allow for concurrent high and low cut FFT filter (nowf=3)
c if the options for both are the same.
cc

nextf=2
if(kfiltr(1).eq.0) go to 10
nowf=1
kindf=kfiltr(1)
ipad=ixtend(1)
if(kindf.eq.4 .and.
1 kfiltr(2).eq.kfiltr(1) .and.
2 ixtend(2).eq.ixtend(1))then

nowf=3
nextf=0

endif
go to 20

cc
c prepare for a high cut filter (nowf=2) if it wasn t performed
c along with the low cut filter.
cc

10 continue
if(nextf.ne.2 .or. kfiltr(2).1e.0) return
next f =0
nowf =2
kindf=kfiltr(2)
ipad=ixtend(2)

cc
c choose the filter
cc

20 continue
if(ipad.le.0) ipad=1
go to (100,200,300.400), kindf

cc
c debug pad options
cc

	

	

	

	
	

	
	

	

	

	
	
	
	

c

C-4 8
subroutine FILTER
program CORAVD

type *, ' filter, debug option'
npts = ifix(float(ndata)*(1.0+extend))
if(npts.gt.larray) call shortp(luser,npts,larray)
play with seconds 3.0-5.0. fillin 0.0 to 3 and 5.0to 6.0
ndata =ifix(200. * 5.0)
npts = ifix(200. * 6.0)
11= ifix(200. * 3.0)
call pad(luser,npts, ipad,array,ll,ndata,larray)
call pad(luser,1 , ipad,array,ll,ndata,larray)

c
ndata =npts
return

cc
c unidirectional, high—pass Butterworth filter
c (from Mike laugh's PHB program)
cc

100 continue
if(nowf ne.1) then

write(luser,1011)
call woe(0)

endif
write(luser,1010) fcornr(1),noptn(1)
call UNIhip(array,ndata,fcornr(1),delt noptn(1),larray,0)
go to 10

cc
c bidirectional, high—pass Butterworth filter
c (from Mike Rough's PHB program)
cc
200 continue

if(nowf.ne.1) then
write(luser,1021)
call woe(0)

endif
write(luser,1020) fcornr(1),noptn(1)
npts =ndata

npts = ifix(float(ndata)*(1.0+extend))
if(npts.gt.larray) call shortp(luser,npts larray)

11=1
call pad(luser,npts, ipad,array,l1,ndata,larrav)
call Blhip(array,npts,dble(fcornr(1)),delt,noptn(1),larray)
go to 10

cc
c Ormsby filter
cc
300 continue

call ormflt(luser,delt,nowf,ipad,fcornr(nowf),framp(nowf),
1 option(nowf), arrav,ndata,larray)
go to 10

cc
c FFT filter. Use Jon Raggett's filter from DRAWSMR.
c Separate array space into:
c .data (1 thru ndata)

.pad out data to next power of 2 points (ndata+1 thru nn) c

	

	

	

	

C-49
subroutine FILTER

program CORAVD

c .2 extra cells needed by RFFT (nn+1 and nn+2)
cc
400 continue

fl=fcornr(1)
fh=fcornr(2)
if(nowf.eq.1) then

fh=1.0/delt
write(luser,1040) fl,framp(1)

else if(nowf.eq.2) then
f1=0.0
write(luser.1041) fh,framp(2)

else
write(luser,1042)fl, fh,framp(1).framp(2)

endif
type *, ' *** WARNING: the FFT filter hasn t been tested yet'
nn = npwr2(ndata)
if(nn .gt.larray-2) call noroom(luser,l,nn,larray-2,delt)
nn=nn+2
11=1
call pad(luser,nn-2,ipad,array,ll,ndata,larray)
call FFTflt(FL,framp(1),FH,framp(2),delt,

1 array,nn,larray)
go to 10

cc
1001 format(/5x,'Acceleration filtered with')
1002 format(/5x,'Velocity filtered with')
1003 format(/5x,'Displacement filtered with')
1010 format(8x,

l'unidirectional, high-pass Butterworth filter,'
2/8x.'corner frequency =', f 7.3,
3 ' cps and rolloff order =',i2)

1011 format(
1'*** Sorry the unidirectional high cut Butterworth filter'
2'doesn t work yet. ***')

1020 format(8x,
l'bidirectional, high-pass Butterworth filter,'
2/8x,'corner frequency =', f7.3,
3 ' cps, and rolloff order =',i2)

1021 format(
1'*** Sorry, the bidirectional high cut Butterworth filter'
2'doesn t work yet. ***')

1040 format(8x,
l'low cut FFT filter, corner frequency =', f7.3, ' cps'
2/8x, 'and rolloff band =',f7.3)

1041 format(8x,
l'high cut FFT filter, corner frequency =', f7.3, ' cps'
2/8x, 'and rolloff band =',f7.3)

1042 format(8x,
1'FFT filter, corner frequencies =', 2f7.3, ' cps'
2/8x 'and rolloff bands =',2f7.3)

cccccccccccccccccccc (end of filter) ccccccccccccccccccccccccc
end
subroutine shortp(luser,nold,nnew)

	

	

	

	

	

	

C-50
subroutine FILTER

program CORAVD

write(luser,1000) nold
nold=nnew
return

1000 format (/

1' *** WARNING: work space is too small to pad the data to',
2 i7,' points. ***')
end

cccccccccccccccccccc (end of shortp/filter) ccccccccccccccccccc
subroutine noroom(luser,iquit,nold,nnew,delt)

cc
c iquit=O: truncate data and warn user,

c 1: print diagnostic and stop.
cc

told=delt*float(nold)
tnew=delt*float(nnew)
if(iquit.gt.0 .or. nnew.le.200) then

if(nnew.gt.0) write (luser,1001) tnew,nnew,told.nold

if(nnew.le.0) write (luser,1000)
call woe(0)

else
write(luser,1002) told,nold,tnew,nnew
nold=nnew

endif
return

cc
1000 format (/

1' *** Program needs more work space. ***/)

1001 format (/
1 ' *** Program needs more work space.'

2/5x,'Have enough space for', f6.3,'seconds (',i7,' points),'
3/5x:need enough space for', f6.3,'seconds (',i7,' points).'
4 ' ***')

1002 format (/
*** WARNING '

2/5x,'Data and temporary variables won t fit in'

2, ' the work space available.'
3/5x,'Data has been truncated from',f7.3,
4 ' seconds (', i7,' points)'
5/5x:to', f7.3, ' seconds (', i7,' points). ***')

cccccccccccccccccccc (end of noroom/filter) cccccccccccccccccccccc
end
function npwr2(n)

c +++ integer*4 npwr2, n, nm
cc
c return next largest power of 2.
cc

p= log(float(n-1))/alog(2.0)

i= 1 + ifix(p)
10 continue

npwr2= 2**i
cc
c now, in case of precision problems --
cc

C-51
subroutine FILTER

program CORAVD

nm=2**(i-1)
if(n.gt.nm .and. n.le.npwr2) return
if(n.le.nm) i=i-1
if(n.gt.npwr2) i=i+1
go to 10

cccccccccccccccccccc (end of npwr2/filter) ccccccccccccccccccccccc
end

https://if(n.le.nm
https://if(n.gt.nm

	

	
	

	
	

	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	

		
		
		
	
	
		
		
	

	
		

	

	

	

	
	
	
	

C-52
subroutine BIHIP
program CORAVD

subroutine BIhip(array.ndata,fcut,dt,nfs,larray)
include 'array.inc'
double precision dt,fcut

cc
c Blhip: Bidirectional, high-pass Butterworth recursive filter.
c
c Written by Keith McCamy of Lamont-Doherty Geophysical Observatory
c of Columbia University.
c
c Installed as subroutine BUTWOR in the NSMDC user library by
c Jon Fletcher.
c
c Modified by Mike Raugh in 1981:
c - working variables are in double precision and are dimensioned
c as (11) rather than (8).
c - uses data in a virtual array
c - wrote messages to lun=5. (which April took back out again.)
c
c Modified by April Converse in 1982:
c - renamed it to BIhip so it can be distinguished from the BUTWOR
c subroutine on USERLIB.
c - made dt double precision since it is so in the calling
c subroutine.
c - renamed s() to array() and isiz to larray so array can be
c declared as a standard or a virtual array, depending on the
c contents of array.inc.
cc
c On entry --
c array() contains data to be filtered.
c ndata = number of data points, array(1) through array(ndata)
c larray = length of array.
c fcut = corner frequency in cps.
c This "corner" is the frequency at which the filter
c gain is down by 6 decibels.
c dt = time increment between data points, seconds.
c nfs = rolloff order.
c rolloff = nfs*24 decibels/octave.
c
c On return --
c array() contains filtered data.
cc
c
c was: SUBROUTINE BUTWOR (S, NDATA, FCUT, TS, NFS)
c was:C+
c was:c BUTWOR is a high pass Butterworth filter. It does
c was:c not shift frequency in the time domain (phase = 0).
c was:c
c was:c Call BUTWOR (s, ndata, fcut, ts, nfs)
c was:c
c was c s = the array of data to he filtered
c was:c ndata = the number of data points
c was•c fcut = the corner frequency
c was:c ts = the time interval (dt)

C-53
subroutine BIHIP

program CORAVD

c was:c nfs = the order of the rolloff
c was:c
c was:c-
c was:c
c was: DIMENSION S(NDATA), F(8, 3), A(8), B(8), C(8)
cc

Double Precision CS, PI, TEMP, TS, WCP
Double Precision F(11,3),A(11),B(11),C(11)

NFS1=NFS+1
if(nfsl.gt.11) call woe(0)
TS =DT
PI=3.1415926535
WCP=SIN(FCUT*PI*TS)/COS(FCUT*PI*TS)
DO 5 K=1.NFS
CS=COS(FLOAT(2*(K+NFS)-1)*PI/FLOAT(4*NFS))
A(K)=1./(1.+WCP*WCP-2.*WCP*CS)
B(K)=2.*(WCP*WCP-1.)*A(K)

5 C(K)=(1.+WCP*WCP+2.*WCP*CS)*A(K)
C...PERFORM CONVOLUTION IN TWO DIRECTIONS

DO 30 IJK=1,2
DO 6 I=1,NFS1
DO 6 J=1,2

6 F(I,J)=0.
DO 10 N=1,NDATA
F(1.3)=array(N)
DO 14 I=1,NFS
TEMP=A(I)*(F(I,3)-2.*F(I,2)+F(I,1))

14 F(I+1,3)=TEMP-B(I)*F(I+1,2)-C(I)*F(I+1.1)
DO 16 I=1,NFS1
DO 16 J=1,2

16 F(I,J)=F(I,J+1)
10 array(N)=F(NFS1,3)

NBY2=INT(FLOAT(NDATA)/2.)
DO 20 N=1,NBY2
NUM=NDATA-N+1
TEMP=array(N)
array(N)=array(NUM)

20 array(NUM)=TEMP
30 CONTINUE

Return
End

https://if(nfsl.gt.11

	
	
	

C-54
subroutine RFFT
library

SUBROUTINE RFFT(X,N)

c+

c Subroutine RFFT.

c RFFT computes the finite Fourir transform of a real
c array. The Fourier coefficients are returned as a complex
c array. RFFT calls FOUR1.
c

c Call RFFT (x, n)
c
c x = the array that will be transformed
c n = the length of x; n must be an integral power
c of 2. On return, the length of x is n/2+1.
c

-
c

REAL X(2)
NN=N/2
IS=1
CALL FOUR1(X,NN.IS)
NM=NN/2
S=X(1)
X(1)=X(1)+X(2)
X(N+1)=S-X(2)
X(2)=0.
X(N+2)=0.
X(NN+2)=-X(NN+2)
FN=N
EX=6.2831852/FN
J=NN
WR=1.
WI=O.
WR=COS(EX)
WWI=-SIN(EX)
DO 1 I=2,NM
WRR=WR*WWR-WI*WWI
WI=WR*WWI+WI*WWR
WR=WRR
K1J=2*J-1
KlI=2*I-1
K2J=2*J
K2I=2*I
A1=0.5*(X(K1I)+X(K1J))
A2=0.5*(X(K2I)-X(K2J))
B1=0.5*(-X(K1I)+X(K1J))
B2=0.5*(-X(K2I)-X(K2J))
S=B1
B1=B1*WR+B2*WI
B2=B2*WR-S*WI
X(K1I)=A1-B2
X(K2I)=-A2-31

https://FOUR1(X,NN.IS

	

C-55
subroutine RFFT

library

1

X(K1J)=A1+82
X(K2J)=A2-B1
J=J-1
RETURN
END

	

	

	

	

C-56
subroutine RFFTI
library

SUBROUTINE RFFTI(X,N)

c+

c Subroutine RFFTI.

C RFFTI computes the inverse finite Fourier transform of the
c complex array x with length n/2+1, where n is an integral power
c of 2. The transform returns a real array of length n.

c Call RFFTI (x,n)

x = complex array
c n = length of x
c
-
c

REAL X(2)
NN= N/2
S= X(1)
X(1)= .5*(X(1)+X(N+1))
x(2)= .5*(s-x(N+1))
X(NN+2)= -X(NN+2)
Is= -1
NM= NN/2
FN= N
EX= 6.2831852/FN
J = NN
WR= 1.
WI=0.
WWR= COS(EX)
WWI= -SIN(EX)
DO 1 I = 2,NM
WRR= WR*WUR-WI*WWI
WI= WR*WWI+WI*WWR
WR=WRR
K1J = 2*J-1
KlI = 2*I-1
K2J = 2*J
K21 = 2*1
Al= .5*(X(K1I)+X(K1J))
A2= .5*(X(K2I)-X(K2J))
Bl= .5*(-X(K1I)+X(K1J))
B2= .5*(-X(K2I)-X(K2J))
S= 31
31= 131*wR+B2*wi
B2= 32*WR-S*WI
X(K1I)= Al-B2
X(K2I)=-A2-B1
X(K1J)= Al+B2
X(K2J)= 12-B1

1 J= J-1
CALL FOUR1(X,NN,IS)

C-57
subroutine RFFTI

library

RETURN
END

	

	
	
	
	
	
	

	

	

	
	
	

	

	

C-58
subroutine FOUR1
library

SUBROUTINE FOUR1(DATA,N.ISIGN)
C

c+
c FOUR1 is the Cooley-Tukey fast Fourier transform.

c Call FOUR1 (data, n, isign)

c data = the 1-dimensional complex array FOUR1

c will operate on. its length is n=2**k,
c where k is >= 0 (if necessary, append
c 0's to the end of data)
c n = the number of points in data
c isign = -1 or +1; if a -1 transform is followed
c by a +1 transform or vice versa, then

c the original data reappear multiplied by n.
c
c Transform (k) = sum (data(j)*exp(isign*2*pi*sqrtz(-1)*(j-1)*(k-1)/n))

c where the sum is taken over all j and k from 1 to n. The

c transform is proportional to n*log2(n), rather than n**2. The
c RMS relative error is bounded by 6*sqrt(2)*log2(n)*2**(-B),

c where B is the number of bits in the floating point fraction.
c
c Written by Norman Brenner of MIT Laboratory, July 1967.
c
c NOTE: This is the shortest version of the FFT known to
c the author. Faster programs FOUR2 and FOURT exist that operate
c on arbitrarily sized multidimensional arrays--see IEEE Audio

c Transactions (June 1967), special issue on FFT).
c
-
c

DIMENSION DATA(1)
C

IP0=2
IP3=IPO*N
I3REV=1
DO 50 I3=1,IP3,IPO

IF(I3-I3REV)10,20,20
10 TEMPR=DATA(I3)

TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

20 IP1=IP3/2
30 IF(I3REV-IP1)50,50,40
40 I3REV=I3REV-IP1

IP1=IP1/2
IF(IP1-IP0)50,30,30

50 I3REV=I3REV+IP1
IP1=IPO

60 IF(IP1-IP3)70,100,100

	

	

C-59
subroutine FOUR1

library

70 IP2=IP1*2
THETA=6.283185307/FLOAT(ISIGN*IP2/IPO)
SINTH=SIN(THETA/2.)
WSTPR=-2.*SINTH*SINTH
WSTPI=SIN(THETA)
WR=1.
WI=0.
DO 90 I1=1,IP1.IP0
DO 80 13=11,1P3,IP2
12A=I3
I2B=I2A+IP1
TEMPR=WR*DATA(I2B)-WI*DATA(I2B+1)
TEMPI=WR*DATA(I2B+1)+WI*DATA(I2B)
DATA(I2B)=DATA(I2A)-TEMPR
DATA(I2B+1)=DATA(I2A+1)-TEMPI
DATA(I2A)=DATA(I2A)+TEMPR

80 DATA(I2A+1)=DATA(I2A+1)+TEMPI
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR

90 WI=WI*WSTPR+TEMPR*WSTPI+WI
IP1=IP2
GO TO 60

100 RETURN
END

	 	
	
		
	
		

	
	 	
	

	
	

	
		
		
	
	
	
	
	
	
	

	

	

	

	
	

C-60
files.inc
library

c begin files.inc
c Changes:
c 15dec81 Took out the smash file table definitions. Moved them
c to SFT.INC.
c 15jun81 -ZBIO was renamed to ZBBF

-YCBLK.YRBLK are new
c (get rid of ybblk and yfbllk someday?)
c 30mar81 See smashlib.aaa
c End of change list.
ccccccccccccccceccccccccccccccccccccccccccecccccccccccccccceccccccc

c FILES.INC defines constants and allocates variables (in /FILES/)
c that are used in calls to FILPKG subroutines.
c
c /FILES/ contains
c KDIAG = lun for FILPKG diagnostic messages. Set by AINIT.
c NAMFIL = Space used for constructing file names.
c (+++ NAMFIL should become a character variable since
c open statements work faster with character names
c rather than Holerith names. Need to change the
c open statements in bio and blkopn first, though.
c Maybe add NAMFIL as a character variable and
c keep FILNAM as a Hollerith variable until all
c references to it have been rewritten. +++)
cc

parameter ynamf=40
common /files/ kdiag, namfil(ynamf)
byte namfil

cc
c Constants used in calls to FILPKG subroutines.
cc
c a) FILPKG symbols used with all files
cc

parameter zsff=1, zbbf=2, zsuf=3
parameter znew=0, zold=l, zife=2, zscr=3
parameter zrw=0, zro=1
parameter zsave=1,zdelet=2
parameter znocc=0,zcc=1

cc
c b) FILPKG symbols used only with the block io files
cc

parameter zpos=0, zread=1, zwrite=2
parameter zf=3, zi=1, zc=2
parameter zwaitn=0, zwaita=1, zwaith=2, zwaitd=3
parameter znextb=-1, ZLASTB=-7
parameter zdatal=-5, ZEOD=-6
parameter zihead=-2, zrhead=-3, zthead =-4

cc
parameter ybblk=512, yfblk=128, viblk=256
parameter ycblk=512, yrblk=128

cc
c ZNEW,ZOLD,ZIFE. and ZSCR indicate whether a file that is about to

be opened shall be a new file, an old file, an old file c

	
	
	
		
	
	
	
		
	
	
	
	 	
	 	
		
	
	
	
	
	
	
	
	
	
	

	 	

C-61
files.inc
library

c if one already exists - a new file if not, or a scratch
c file.
c Note that block io files can't he opened with ZSCR.
c ZRW,ZRO indicate whether a file shall be opened for read-write or
c read-only.
c ZSAVE,ZDELET indicate whether a file shall be saved or deleted
c when it is closed.
c ZWAIT- indicate, in calls to BIO, whether and when to wait
c for the io to finish.
c N => no wait,
c B => wait before the new i/o request,
c A => after
c D => B + A
c ZNEXTB is used in calls to bio inplace of the block number when
c a file is to be accessed sequentially.
c ZDATA1, ZIHEAD, ZRHEAD, ZTHEAD
c are used in calls to BIO in place of the block number
c when a file is to be positioned to the first data block.
c the first integer header block, the first real header
c block, or the first text header block.
c ZF,ZI and ZC indicate, in calls to BIO, whether the buffer size and
c number of items transfered are counted as floating point
c words (4 bytes). integer words (2 bytes), or characters
c (1 byte).
c
c end of files.inc

	
	
		
	
		
	
		
	
	

	
	
	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
		

	
	
	
	
	
	
	
	

	

	
	

C-62
headerloc.inc
library

c begin headerloc.inc ---
c Changes:
c 08dec82 -Replaced HVH (=41) and HVERT (=42) with HUP (=41)
c according to Ed Cranswick's new convention.
c 10jan82 Added HVH,HORIEN,HVERT,HDTYPE, and all the H-FF-
c filter items. Dropped HLSQFC.
c 09oct81 =24sep81 version , but left hand of parameter
c assingment must be a number with the new compiler.
c End of change list.
ccccccccccccccccccccceccccccccccccccccccceccccccceccccccccccceccccccccc
c
c standard locations in an integer header --
c header-array (hinone) = integer value representing "undefined"
c (hnih) = number of integer headers -1 in the file
c (hnth) = number of text headers in the file
c It (hndb) = number of data blocks.
c (hilst) = index of the last data point within
c the last block.
c (hiorr) = flag to indicate whether the data blocks
c contain integer (2byte) or real (4byte)
c data.
c (havd) = 'bu' -> it's BUTTER data,
c = 'ir' -> it's instrument response from
c SCALE,
c = 'ac' -> acceleration from DR100, HIFRIC
c or CORAVD,
c = 'vl' -> velocity,
c = 'dp' -> displacement.
c (horien) = orientation of horizontal components,
c between 0 and 360 degrees from north.
c (hup) = vertical orientation, degrees from "up".
cc

parameter hinone=3 hnih=1, hnth=2, hndb=31. hilst=32
parameter hiorr =4
parameter hup =41, horien=42
parameter havd =43

cc
c SCRATCH integer header block locations used in BUTTER output
c files --
c header-array (hntrac) = number of digitized traces in the file
c then, for each trace,
c header-array (next) = type of trace. 1->time-tick,
c 2-> reference line, and 3-> data.
c header-array (next) = number of the first data block for
c the trace (this number doesn t count

the header blocks.)
c header-array (next) = number of data blocks for the trace.
c

parameter hntrac = 200
cccccccccceccccccccccceccc
cc
c standard locations in a real header block --
c header-array (hrnone) = real value representing "undefined"

	

	
	
	

	

	

C-63
headerloc.inc

library

(hnrh) number of real headers -1
(hsps) sampling rate in sanples per second.

undefined => it's butter or phasel data.
(hdunit) = digitizer output in digitization units/cm.
(hper) = instrument period in seconds
(hdamp) = instrument damping as a fraction of

critical damping.
(hcoilc) coil constant in DR100 data, or
(=hrsens) recorder sensitivity, cm/g, in AGRAM

data.
(hgain) = gain in DR100 data,

undefined for digitized data.
It (hclock) = clock correction to be added to all

the time values in the data.
(haafc) = corner frequency used in anti alias

filter.
(haafr) = rolloff bandwith used in

CC

parameter hrnone=2, hnrh = 1
parameter hsps =5, hdunit=46, hper =49, hdamp=50
parameter haafc =47, haafr =48
parameter hcoilc=51, hgain =52, hclock=60
parameter hrsens=51

CC

SCRATCH real header block locations used in SCALE, HIFRIC, CORAVD
data files --

header-array (htheg)= time of the first data point.
(hvbeg)= value of the first data point.
(htend)= time of the last data point.
(hvend)= value of the last data point.
(htmax)= time of the max. value
(hvmax)= max value
(htmin)= time of the min. value
(hvmin)= min vlaue
(hvoffs) data offset for SCALE data.
(hbfit) Beginning time for the least squares fit

baseline correction done in CORAVD
'I (hefit) = Ending

(hlsqfs) slope of the linear baseline correction
done in CORAVD.

(hlsqfi) = intercept
(hdtype) = data type indicator, 1.0,2.1,2.1,3.0,3.1,

or 3.2.
(hlffc) = corner frequency for low frequency

filter.
(hlffr) = rolloff band of order for low ff.
(hlffk) = kind of filter used for the low ff.

(=foat of zuni, zbi,zorm or zfft)
(hlfff) fill option used with the low ff.

(=0., 1., 2., ...)
(hlffo) extra option used with the low ff.

(used as the variable ORK in the ormsby
filter now.)

	

	
	

	

C-6 4
headerloc.inc
library

CC

parameter

parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter

CC

(hhffc) = corner
(hhffr)
(k)

(f)
(o)

(c)

frequency for high freq. filter.

htbeg=90, hvbeg=91, htend=92, hvend=93
htmax=94, hvmax=95, htmin=96, hvmin=97
hvoffs=98, hbfit=99, hefit=100
hlsafs=101,hlsqfi=102

hdtype=103
hlffc=104, hlffr=106, hlffk=108
hlfff=110, hlffo=112

hhffc=105, hhffr=107, hhffk=109
hhfff=111, hhffo=113

parameter zuni=1, zbi=2. zorm=3, zfft=4

c ----- end headerloc.inc

	

	

	

	 		
				

	

R-1

References and Bibliography

General

[1] Hudson, D.E. (1979). Reading And Interpreting Strong
Motion Accelerograms: Earthquake Engineering Research
Institute, 2620 Telegraph Avenue, Berkeley, CA 94704.
112 pages.

(This monograph provides an introduction to
strong-motion accelerograms. It describes the computer
processing used in the original CalTech data project.)

[2] Hudson, D.E., (1976). "Strong-Motion Earthquake
Accelerograms; Index Volume": Earthquake Engineering
Research Laboratory report number EERL 76-02,
California Institute of Technology, Pasadena, CA.

(This is the final, summarizing report from the CalTech
data project.)

[3] "Strong-Motion Earthquake Accelerograms, Digitization
and Analysis, 1971 records": USGS Open-File Report
Number 76-609, USGS, Menlo Park, CA.

(This report is the first of the series of
strong-motion data reports published by the USGS. It
summarizes the processing steps used at that time. It
also contains a longer bibliography than is given
here.)

[4] Brady, A.G.; Perez, V.; and Mork, P.N. (1982).
"Digitization and Processing of Main-shock
Ground-motion Data from the USGS Accelerograph Network"
in "The Imperial Valley, California, Earthquake of
October 15, 1979": Geological Survey Professional
Paper 1254, pp. 385-406.

(This report gives a detailed description of the
decisions made while processing the set of records
recovered from the Imperial Valley earthquake of
october 15, 1979.)

[5] Brady, A.G.; Converse, A.M.; Joyner, W.B. and Mork,
P.N. (1982). "Processed Accelerograms from the 2319hr
29.62 sec, Aftershock of the 15 October 1979 Imperial
Valley, California Earthquake": in preparation.

(This report is the most recent in the same series as

	

	

	

	

R-2

reference [3] above. It is the first report for which
the AGRAM programs were used.)

[6] Trifunac, M.D., and V.W. Lee (1979). "Automatic
Digitization and Processing of Strong Motion
Accelerograms": Department of Civil Engineering,
Report number 79-15 I and II, University of Southern
California, Los Angeles, CA.

(These reports describe a system similar to the AGRAM
programs but which is used by USC and by CDMG.)

[7] Digital Signal Processing Committee of the IEEE (1979).
Programs for Digital Signal Processing: IEEE press,
The Institute of Electrical and Electronics Engineers,
Inc., New York.

(This book presents discussions and software for
Discrete Fast Fourier Transform methods, among others.)

HIFRIC

[8] Claerbout, J.F. (1976). Fundamentals of Geophysical
Data Processing with Applications to Petroleum
Prospecting: McGraw Hill.

(The FORK subroutine used for FFT with the FDIC option
in HIFRIC is presented in this textbook.)

[9] Oppenheim, A.V., and Schafer, R.W. (1975). Digital
Signal Processing: Prentice-Hall.

(Pages 110 through 113 of this textbook describe the
overlap-add method used with the FDIC option in
HIFRIC.)

CORAVD

[10]Basili,M. and Brady, A.G., (1978). "Low frequency
Filtering and the Selection of Limits for Accelerogram
Corrections": Proc. 6th European Conf. on Earthquake
Engineering, Dubrovnik, Yugoslavia.

[11]Fletcher, J.B., Brady, A.G. and Hanks, T.C. (1980).
"Strong-Motion Accelerograms of the Oroville,
California, Aftershocks: Data Processing and the
Aftershock of 0350 August 6, 1975": Bulletin of the
Seismological Society of America, vol.70, No.1,
pp.243-267.

[12]Hageman, S. (1982). "Program Quickly Figures Complex
Filter Parameters": Electronic Design, March 31.

	 		

	

R-3

[13]Ormsby, J.F.A., (1961). "Design of Numerical Filters
with Application to Missile Data Processing": Journal
of the Association for Computing Machinery, v.8,
pp.440-446.

PHASES

[14]Perez, V., (1973). "Velocity Response Envelope
Spectrum as a Function of Time for the Pacoima Dam, San
Fernando Earthquake, February 9,1971": Bulletin of the
Seismological Society of America, vol.63, pp.299-313.

PHASE6

[15]Perez, V. (1980). "Spectra of Amplitudes Sustained
for a Given Number of Cycles: An Interpretation of
Response Duration for Strong-Motion Earthquake
Records": Bulletin of the Seismological Society of
America, vol.70, pp.1943-1954.

	

,

A
'Or

•

•

0

• 4' •

111181111"1118 0B1111111811,1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158

