(200) R290 no. 83-549

MAP SHOWING COAL DEPOSITS, OIL AND GAS WELLS AND SEEPS,
AND TAR SANDSTONE OCCURRENCES IN THE BASIN AND
RANGE PROVINCE

3 1818 00069800

U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 83-549

tuanal

UNITED STATES DEPARTMENT OF THE INTERIO

MAP SHOWING COAL DEPOSITS, OIL AND GAS WELLS AND SEEPS,
AND TAR SANDSTONE OCCURRENCES IN THE BASIN
AND RANGE PROVINCE

By B. T. Brady

U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 83-549

Geological Survey

Por additional information write to:

0.S. Geological Survey Box 25046 - MS 417

Denver, CO 80225

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Mogorlon Rim-----

Open-file reneral (Geological Survey (U.S.))

For additional information write to:

M. S. Bedinger
U.S. Geological Survey
Box 25046 - MS 417
Federal Center
Denver, CO 80225

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch Box 25425, Federal Center Denver, CO 80225 (Telephone: (303) 234-5888)

CONTENTS

Introduct	ion
and the second second	f selected data for coal fields and
occurr	ences
Ariz	ona Station
	Chiricahua Mountains
	Deer Creek Field
	Mogollon Rim
	Pinedale Field
	Whetstone Mountains
	General references selected for coal in
	Paha Arizona
Cali	fornia
	Colorado Camp Group (Gerbracht Camp,
	French Deposit, Randsburg Coal)
	General references selected for coal
	in California
Idaho	
	Goose Creek Field
	Willow Creek-Caribou District
	General references selected for coal in
	Corr Idaho
Nevada	Datil Mountain Fleld
	Bald Mountain
	Carlin
	Cherry Creek
	Carl Carel

CONTENTS (Continued)

		Page
Nevada	a (Continued)	
	Coaldale Field	19
	Easton coal mining district (Buckland's	
	Station)	21
	Eldorado Canyon Mine	22
	Elko	24
	Gamma Prospects (Gamma No. 1, Gamma	
	Gene No. 2)	25
	Goose Creek Field	26
	Lewis Coal Mine	27
	Pahranagat	28
	Palisade	29
	Pancake Coal Mine	30
	Table Mountain	31
	Verdi	32
	Wilson District (Pine Grove district)	33
	General references selected for coal	
	in Nevada	34
New M	exico	
	Carthage Field	42
	Cerrillos Field	43
	Datil Mountain Field	45
	Engle Field	47
	Hagen Field (Una del Gato)	48
	Jornada del Muerto Field	

CONTENTS (Continued)

		Page
New Mexic	o (Continued)	
	os River (Gould and Thomas,	
	El Porvenir, Cowles Mines)	50
Rio	Puerco Field	51
San	ta Fe	54
Sie	rra Blanca Field	55
Neve Tij	eras Field	56
Gen	eral references selected for coal in	
	New Mexico	57
Oregon		59
Texas		
Eag	gle Spring	60
San	Carlos Field	63
Ter	lingua Field (Big Bend area)	66
Gen	meral references selected for coal in	
	Texas	68
Utah		
Coa	alville Field	69
Good Goo	ose Creek - Grouse Creek Fields	71
Наг	mony Field	72
Kol	ob Field	74
Wal	es Field	76
Ger	neral references selected for coal in	
	Utah	78

CONTENTS (Continued)

	Page
General references selected for coal in the	
Basin and Range Province	79
Selected references for oil and gas	
Arizona	80
California	82
Idaho	83
Nevada	84
New Mexico	85
Oregon	86
Texas	87
Utah	88
Selected references for oil and gas seeps	
Arizona	89
California	89
New Mexico	90
Selected references for tar sandstones	
Arizona	91
Utah	91
General references selected for tar sandstones	
in the Basin and Range Province	92

ILLUSTRATIONS

Page

Plate 1.--Map showing coal deposits, oil and gas wells

and seeps, and tar sandstone occurrences

in the Basin and Range Province----- (In pocket)

2.326

0.307

1,609

V

CONVERSION FACTORS

For use of readers who prefer to use metric units, conversion factors for terms used in this report are listed below:

Multiply	By	To Obtain
foot (ft)	0.3048	meter (m) of selected
inch (in.)	25.40	millimeter (mm) Pleistoc
British thermal		
unit per pound		
(Btu/lb)	2.326	kilojoules per kilogram
		(kJ/kg)
tons (short)	0.907	metric tons (t)
miles ad Read 1983	1.609	kilometers

This map and companion text were prepared from published,

Mariana barancas, managana rangamentan, no broketorally deca

the occurrence of resources on Indian lands or local fee lands

was used in its compilation, wherever these data were readily

watishle.

Introduction

This map report is one of a series of geologic and hydrologic maps for States in the Basin and Range province. The map reports contain detailed information on subjects including ground-water hydrology, ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysical data, Pleistocene hydrologic features, and mineral resources that characterize the Basin and Range province. This work is a part of the U.S. Geological Survey's program for geologic and hydrologic evaluation of broad physiographic provinces to identify potentially suitable environments for storage of high-level nuclear waste (Bedinger, Sargent, and Reed, 1983).

This map and companion text were prepared from published, or otherwise publically available information, no proprietary data were used in these compilations. Geologic information, that pertains to the occurrence of resources on Indian lands or local fee lands, was used in its compilation, wherever these data were readily available.

Coal data shown on the map include the location of prospects, mines and principal fields. No attempt was made to determine the extent of coal-bearing strata in the subsurface by using data from coal test holes. Occurrences of coal or potentially coal-bearing rock were plotted outside of the Basin and Range boundary when these areas occur within hydrologic units that are included as part of the project study area. The coal data summaries provide a very general description of the geologic character for each mapped occurrence of coal. No attempt was made to outline the producton history for individual areas, or to tabulate coal quality data.

Oil and gas wells were mapped as producing wells or dry holes. Holes with shows of oil or gas were not mapped separately, because the task of verifying this information is beyond the present scope of the project. Published sources, which describe similar data, are commonly contradictory and frequently not verified. The most recent posting date for wells in each State is as follows:

Arizona June 1, 1982

California April 18, 1981

Idaho January, 1982

Nevada September 22, 1982

New Mexico March 10, 1983

Oregon April 1, 1982

Texas July 1, 1981

Utah January, 1982

Oil and gas seeps and tar sandstone occurrences were also plotted as an indication of petroleum or hydrocarbon impregnated rock deposits.

The classification of leasable mineral lands within the public domain was not depicted, because these areas are continually redefined.

Chiricahua, Mountains near Cochise Head.

Bedinger, M. S., Sargent, K. A., and Reed, J. E., 1983, Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste--Part I, Introduction and guide-lines: U.S. Geological Survey Circular 904-A, 67 p.

3

Summary of selected data for coal fields

Arizona:

Chiricahua Mountains

Location: Cochise County, at the northern end of the Chiricahua Mountains near Cochise Head.

Age: Originally described to be Carboniferous (Dumble, 1902, p. 230); now believed to be Cretaceous (Hayes in Averitt and O'Sullivan, 1969, p. 67).

Rank: No analyses available; coal described as glossy-black graphitic anthracite.

Comments: High ash content, difficult to ignite. Selected ReThickness locally exceeds 12 ft.

Selected References:

Averitt, Paul, and O'Sullivan, R. B., 1969, Coal, in Mineral and water resources of Arizona: Arizona Bureau of Mines Bulletin 180, p. 59-69.

Blake, W. P., 1898, Anthracite coal in Arizona: American Geologist, v. 21, p. 345-346.

Dumble, E. T., 1902, A carboniferous coal in Arizona: American Geologist, v. 30, p. 270.

Deer Creek Field

Location: Pinal County (eastern).

Age: Late Cretaceous.

Rank: Bituminous. Coal makes a low-grade coke: ash content is high (18.7-54.4 percent), Campbell (1904, p. 254-256).

Comments: Two principal beds 24 in. to 30 in. thick.

Beds of clean coal average 12 in. to 15
in. maximum thickness. Several thin beds.

Coal is not laterally extensive.

- Averitt, Paul, and O'Sullivan, R.B., 1969, Coal, in Mineral and water resources of Arizona: Arizona Bureau of Mines Bulletin 180, p. 59-69.
- Campbell, M.R., 1904, The Deer Creek coal field, Arizona: U.S. Geological Survey Bulletin 225-G, p. 240-258.
- Devereaux, W.B., 1881, The Deer Creek coal fields, Arizona: Engineering Mining Journal, v. 32, p. 404-405.
- Ross, C.P., 1925, Geology and ore deposits of the Aravaipa and Stanley Mining districts, Graham County, Arizona: U.S. Geological Survey Bulletin 763, 120 p.
- Simons, F. S., 1964, Geology of the Klondyke Quadrangle, Graham and Pinal Counties, Arizona: U.S. Geological Survey Professional Paper 461, 173 p.
- Walcott, C. D., and Bannon, Michael, 1885, Deer Creek coal field, White Mountain Indian Reservation, Arizona: U.S. 48th Congress, 2d Session, Senate Executive Document 20, p. 2-7.
- Willden, Ronald, 1964, Geology of the Christmas Quadrangle, Gila and Pinal Counties, Arizona: U.S. Geological Survey Bulletin 1161-E, 64 p.

Mogollon Rim

- Location: Gila County (northwest part), between Fossil Creek Canyon (to northwest) and Canyon Creek (to southwest).
- Age: Permian (lower Wolfcampian), 3 "coaly" units occur within a 30 ft section of light gray shales about 600 ft to 800 ft below Fort Apache Member of Supai Formation (McGoon, 1962, p. 89).
- Rank: Estimated to be lignite (Ransome, 1916).
 Bituminous (10,000 Btu/lb.) for oxidized
 material (McGoon, 1962, p. 89). Likely
 to be highly variable throughout extent of
 occurrence.
- Comments: Maximum coal bed thickness 15 in. Associated with minor amounts of copper and uranium.

- Averitt, Paul, and O'Sullivan, R. B., 1969, Coal, in Mineral and water resources of Arizona: Arizona Bureau of Mines Bulletin 180, p. 59-69.
- Gerrard, T. A., 1964, Environmental studies of the Fort Apache Member, Supai Formation (Permian), east-central Arizona: Tucson, Arizona, University of Arizona, Unpublished Ph.D. thesis, 187 p.
- McGoon, D. O., Jr., 1962, Occurrences of Paleozoic carbonaceous deposits in the Mogollon Rim region, in Weber, R. H., and Peirce, H. W., eds., Mogollon Rim region, east-central Arizona: Arizona: New Mexico Geological Society Annual Field Conference, 13th, 1962, Guidebook, p. 89-91.
- Miller, H. W., Jr., 1962, Cretaceous rocks of the Mogollon Rim area in Arizona, in Weber, R. H., and Peirce, H. W., ed.s, Mogollon Rim region, east-central Arizona: New Mexico Geological Society Annual Field Conference, 13th, 1962, Guidebook, p. 93.
- Ransome, F. L., 1916, Some Paleozoic sections in Arizona and their correlation: U.S. Geological Survey Professional Paper 98-K, p. 113-166.

Pinedale Field

- Location: Navajo County, extends into northern part of the Fort Apache Indian Reservation.
- Age: Cretaceous, Mesaverde Group, Mancos Shale equivalent (Miller, 1966, p. 93).
- Rank: Variable. Impure, subbituminous to high-volatile bituminous coal. High sulfur, volatile content. Cooper (1947, p. 32).
- Comments: Coals are generally 3 ft to 4 ft thick, and locally very dirty coal may attain 6 ft thickness within a 12 ft thick section of bony coal and carbonaceous materials.

- Averitt, Paul, and O'Sullivan, R. B., 1969, Coal, in Mineral and water resources of Arizona: Arizona Bureau of Mines Bulletin 180, p. 59-69.
- Cooper, H. M., Snyder, N. H., Abernathy, R. F.,
 Tarpley, E. C., and Swingle, R. J., 1947, Analyses
 of mine, tipple, and delivered samples, in
 Analyses of Arizona, California, Idaho, Nevada,
 and Oregon coals: U.S. Bureau of Mines Technical
 Paper 696, p. 27-47.
- Darton, N. H., 1925, A resume of Arizona geology: Arizona Bureau of Mines Bulletin 119, 298 p.
- Finnell, T. L., 1966, Geologic map of the Cibecue Quadrangle, Navajo County, Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-545, scale 1:24,000.
- Miller, H. W., Jr., 1962, Cretaceous rocks of the Mogollon Rim area in Arizona, in Weber, R. H., and Pierce, H. W., eds., Mogollon Rim region, east-central Arizona: New Mexico Geological Society, Annual Field Conference, 13th, Guidebook, p. 93.
- Moore, R. T., 1968, Mineral deposits of the Fort Apache Indian Reservation, Arizona: Arizona Bureau of Mines Bulletin 177, 84 p.
- Reagan, A. B., 1911, Coal near Pinedale, Navajo County, Arizona: Science, v. 34, New Series, p. 271-272.
- Veatch, A. C., 1911, Coal deposits near Pinedale, Navajo County, Arizona: U.S. Geological Survey Bulletin 431-B, p. 239-243.
- Wilson, E. D., Moore, R. T., and O'Haire, R. T., 1960, Geologic map of Navajo and Apache Counties, Arizona: Arizona Bureau of Mines, scale 1:375,000.

Arizona:

Whetstone Mountains

Location: Pima County, southwestern part of Whetstone

Mountains (Schrader, 1915).

Age: Early Cretaceous Contact Called Margary of Mines

Rank: Lignite. No analyses available.

Comments: Coal occurs within a 40 ft section of sandstone, shale, and siliceous claystone.

Exploratory workings were developed for 1,000 ft along outcrop of 4 in. thick beds.

Animal and plant remains, as well as large

Animal and plant remains, as well as large petrified trees, occur near the coal-bearing

Arizona rocks. a Bureau of Mines Bulletin 182.

Selected References:

Schrader, F. C., 1915, Mineral deposits of the Santa Rita and Patagonia Mountains, Arizona with contributions by J. M. Hill: U.S. Geological Survey Bulletin 582, 373 p.

Black Mess, Arizona: Pan-Am Geologist, v. 44,

General References Selected for Coal in Arizona

- Andrews, D. A., Hendricks, T. A., and Huddle, J. W., 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 4-6.
- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geological Survey Bulletin 1275, 116 p.
- Peirce, H. W., Keith, S. B., and Wilt, J. C., 1970, Coal, oil, natural gas, helium, and uranium in Arizona: Arizona Bureau of Mines Bulletin 182, 289 p.
- Pike, W. S., Jr., 1947, Intertonguing marine and nonmarine Upper Cretaceous deposits of New Mexico, Arizona, and southwestern Colorado: Geological Society of America Memoir 24, 103 p.
- Reagan, A. B., 1925, Late Cretaceous formations of Black Mesa, Arizona: Pan-Am Geologist, v. 44, p. 285-294.
- Rubel, A.C., 1916, Coal in Arizona: Arizona Bureau of Mines Bulletin 17, 12 p.
- U.S. Bureau of Mines, 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, 83 p.

California:

Colorado Camp Group (Gerbracht Camp, French Deposit, Randsburg Coal).

Location: Kern County, El Paso Mountains, SE1/4 sec. 36, T. 28 S., R. 38 E.

Age: Paleocene and Eocene (lower part of Goler Formation)

Rank: Sandy lignite. No analyses available.

Comments: Four beds of coal 22 in., 26 in., 14 in., and 18 in., were mined from 3 shafts at depths of 60 ft, 100 ft, and 145 ft.

Production was limited to 220 tons in 1898.

Selected References:

- Boalich, E. S., 1922, Bibliography of coal in California, in Report XVIII of the State Mineralogist: California State Mining Bureau, v. 18, p. 152-157.
 - California Division of Mines and Geology, 1976, History of coal in California: California Geology, v. 29, no. 9, p. 202-203.
- Dibblee, T. W., Jr., 1952, Geology of the Saltdale Quadrangle, Kern County, California: California Division of Mines Bulletin 160, p. 19-25.
- Troxel, B. W., and Morton, P. K., 1962, Mines and mineral resources of Kern County, California: California Division of Mines and Geology, County Report 1, 370 p.

Bureau of Kines Decker of Paper 196, 83 p.

General References Selected for Coal in California

- Andrews, D. A., Hendricks, T. A., and Huddle, J. W., 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 4-6.
- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geologial Survey Bulletin 1275, 116 p.
- Goodyear, W. A., 1877, The coal mines of the western coast of the United States: San Francisco, California, S. F. Bancroft and Company, 153 p.
- Hill, J. H., 1923, Clay deposits of the Alberhill Coal and Clay Company, in Report XIX of the State Mineralogist: California State Mining Bureau, v. 19, no. 4, p. 185-210.
- Jennings, C. W., 1957, Coal, in Wright, L. A., ed.,
 Mineral commodities of California: California
 Division of Mines Bulletin 176, p. 153-164.
- Karp, S. F., 1949, California coal: Compass, v. 26, no. 4, p. 341-344.
- Moore, G. W., and Stephans, J. G., 1954, Reconnaissance for uranium-bearing carbonaceous rocks in California and adjacent parts of Oregon and Nevada: U.S. Geological Survey Circular 313, p. 5-7.
- Smith, G. O., 1900, The Pacific Coals coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, p. 473-513.
- Turner, H. W., 1893, The coal deposits of California: U.S. Geological Survey Mineral Resources of the United States, p. 308-310.
- U.S. Bureau of Mines, 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, 83 p.

Goose Creek Field

Location: Cassia County Idaho.

Age: Miocene and Pliocene(?), Payette Formation; Miocene and Pliocene, Salt Lake Formation.

Rank: Lignite.

Comments: Lignite has been mined in small quantities for local use from both formations. High ash content. Some uranium mineralization occurs locally in lignite (Idaho, T. 16 S., R. 21 E.) along the flanks and trough of a shallow syncline.

- Bowen, C. F., 1913, Lignite in the Goose Creek district, Cassia County, Idaho: U.S. Geological Survey Bulletin 531-H, p. 252-262.
- Breckenridge, R. M., Bennett, E. H., and Harbour, J. L., 1980, Energy resources of Idaho: Idaho Bureau of Mines and Geology, Map 3, scale 1:1,000,000.
- Doelling, H. H., and Graham, R. L., 1972, Southwestern Utah coal fields—Alton Kaiparowits Plateau and Kolob-Harmony: Utah Geological and Mineralogical Survey, Monograph Series, no. 1, 333 p.
- Mapel, W. J., and Hail, W. J., Jr., 1956, Tertiary stratigraphy of the Goose Creek district, Cassia County, Idaho, and adjacent parts of Utah and Nevada, in Geology parts of northwestern Utah: Utah Geological Society Guidebook 11, p. 1-16.
- --- 1959, Tertiary geology of the Goose Creek district, Cassia County, Idaho, Box Elder County, Utah, and Idaho County, Nevada: U.S. Geological Survey Bulletin 1055-H, p. 217-254.
- Stokes, W. L., 1962, Geologic map of Utah, northwest quarter: Idaho State Land Board, scale 1:250,000.

Willow Creek-Caribou District

Location: Bingham, Bonneville Counties.

Age: Early Cretaceous; Bear River and Wayan Formation.

Rank: Lignite.

Comments: Carbonaceous shale and lenticular units of lignite occur as thin beds, that range in thickness from a few inches to more than 7 ft. Coals are very high in ash and moisture content. Exploration in the area occurred during the early 1900's. The Cloward, Brimson [Miller mine of Schultz (1918)], and Croley mines were adits that were driven for short distances to explore carbonaceous and lignitic shales. Thickest coal encountered in any of these prospects was about 1 ft. No production has been recorded from any of these mines.

- Breckenridge, R. M., Bennett, E. H., and Harbour, J. L., 1980, Energy resources of Idaho: Idaho Bureau of Mines and Geology, Map 3, scale 1:1,000,000.
- Mansfield, G. R., 1921, Coal in eastern Idaho: U.S. Geological Survey Bulletin 716-F, p. 123-153.
 - Pampeyan, E. H., Schroeder, M. L., Schnell, E. M., and Cressman, E. R., 1967, Geologic map of the Driggs Quadrangle, Bonneville and Teton Counties, Idaho and Teton County, Wyoming: U.S. Geological Survey Mineral Investigations Map MF-300, scale 1:31,680.
 - Vine, J. D., and Moore, G. W., 1952, Uranium-bearing coal and carbonaceous rocks in the Fall Creek area, Bonneville County, Idaho: U.S. Geological Survey Circular 212, 10 p.
 - --- 1959, Geology and uranium deposits in carbonaceous rocks of the Fall Creek area, Bonneville County, Idaho: U.S. Geological Survey Bulletin 1055-I, p. 255-294.

General References Selected for Coal in Idaho

- Andrews, D. A., Hendricks, T. A., and Huddle, J. W., 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 4-6.
- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geological Survey Bulletin 1275, 116 p.
- Breckenridge, R. M., Bennett, E. H., and Harbour, J. L., 1980, Energy resources of Idaho: Idaho Bureau of Mines and Geology, Map 3, scale 1:1,000,000.
- Ross, C. P., The metal and coal mining districts of Idaho with notes on the nonmetallic mineral resources of the state: Idaho Bureau of Mines and Geology, Pamphlet 457, 263 p.
- Schultz, A. Z., 1918, A geologic reconnaissance for phosphate and coal in southwestern Idaho and western Wyoming: U.S. Geological Survey Bulletin 680, 84 p.
- Staley, W. W., 1945, Coal in Idaho: Idaho Bureau of Mines and Geology, Mineral Resources Report no. 1, 3 p.
- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report 1900-1901, pt. 3-j, p. 415-471.
- U.S. Bureau of Mines, 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, 83 p.

Bald Mountain

Humboldt County, southern end of the Location:

Humboldt Range.

Mississippian; Diamond Peak Formation. Age:

Subbituminous; high ash and volatile Rank:

content.

Coal bed thickness is generally between 2 to Comments: 7 in. Workings are limited to a single adit about 160 ft deep. Mississippian outcrops in the vicinity of Bald Mountain are limited in areal extent to a few square miles. No resource or production information is

currently available for coal at Bald

Mountain.

Selected References: Was Gales Bases and others 1915

Hose, R. K., Blake, M. C., and Smith, R. M., 1976, Geology and mineral resources of White Pine County: Nevada Bureau of Mines and Geology Bulletin 85, 105 p. Journal, v. 4, no. 51, p. n/a.

Carlin

Location: Elko County, south side of the Humboldt River, 2.5 miles east of Carlin. T. 33 N., R. 53 E., section 13.

Age: Tertiary.

Rank: Not available.

Comments: The Humboldt Coal Company was formed in 1870 to develop this property. A short adit was driven 15 ft below the surface into the river bank. No production is reported from the area.

Selected References: Geological Survey

- Lee, W. T., Stone, R. W., Gale, H. S., and others, 1915, Guidebook of the western United States, Part B, the Overland Route: U.S. Geological Survey Bulletin 612, 244 p.
- Mining and Scientific Press, 1873, Nevada coal: Nevada State Journal, v. 4, no. 51, p. n/a.
- Smith, J. F., Jr., and Ketner, K. B., 1976, Stratigraphy of Post Paleozoic rocks and summary of resources in the Carlin-Pinyon Range area, Nevada: U.S. Geological Survey Professional Paper 867-B, 48 p.
- Smith, R. M., 1976, Mineral resources of Elko County, Nevada: U.S. Geological Survey Open-File Report 76-56, 194 p.
- Storrs, L. S., 1910, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.

Cherry Creek

Location: White Pine County, southern end of the

Cherry Creek Range, NE1/4 section 24,

T. 25 N., R. 62 E.

Age: Mississippian.

Rank: High-volatile C bituminous.

Comments: Limited workings in single adit. No

resource or production information is

presently available.

Selected References:

Poole, F. G., 1982, U.S. Geological Survey, Oral communication. levada:

Coal Creek

Location: Washoe County, Pah Rah Range.

Age: Tertiary.

Rank: Lignite.

Comments: A single coal bed, which is 4 ft thick, is reported to occur 30 ft below the surface. This coal is associated with carbonaceous shale, and the coal-bearing strata is overlain by ash-flow tuffs.

Selected References:

Moore, J. G., and Archbold, N. L., 1969, Geology and mineral resources of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 75, p. 40-41.

Nevada State Journal, 1875, Vein of coal southeast of Carson Sink, Nevada: Nevada State Journal, v. 3, no. 12, p. n/a.

Hance, J. H., 1913, The Coaldale coal field, Esmeralds County, Nevada: U.S. Geological Survey Bulletin 531-K. D. 313-322

Hutchings, W., 1862, Pioneer Company's coal mine: . Mining and Scientific Press, v. 5, no. 3, p. 1.

Johnson, V. B., and Robeck, R. C., 1944, Geology of the Coaldale mining district, Esmeralda County, Nevada: U.S. Geological Survey Files, unpublished

Knapp, M. A., 1873, The coal fields of Esmeralda County, Nevada: Mining and Scientific Press, v. 74, no. 7,

--- 1897, The coal fields of Esseralda County Nevada: Mining and Scientific Press, v. 54, no. 7, p. 133

Mining and Scientific Press, 1913, Sevada coal from Coaldale, Esmeralda County, Nevada: Mining and Scientific Press, v. 186, pp. 8, p. 125

Spurr, J. E., 1904, Coal deposits between Silver Peak and Candelsria, Esmeralda County, Nevada: U.S. Geological Survey Bulletin 125-G. p. 789-292.

Coaldale Field

Location: Esmeralda County.

Age: Tertiary.

Rank: Bituminous. High percentage of ash, sulfur, and volatile matter.

Comments: Thin coals are associated with volcanic ash, bentonite and shale. Coal beds are usually between 3 ft and 7 ft thick, and occur at 4 horizons in moderately inclined, extensively fractured and faulted rocks. Production was very limited.

- Duncan, D. C., 1952, Preliminary report on a uranium-bearing rhyolitic tuff deposit near Coaldale, Esmeralda County, Nevada: U.S. Geological Survey Trace Element Memorandum Report 336, p. 7.
- Ferguson, H. G., Muller, S. W., and Cathcart, S. H., 1953, Geologic map of the Coaldale Quadrangle, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ-23, scale 1:24,000.
- Hance, J. H., 1913, The Coaldale coal field, Esmeralda County, Nevada: U.S. Geological Survey Bulletin 531-K, p. 313-322.
- Hutchings, W., 1862, Pioneer Company's coal mine: Mining and Scientific Press, v. 5, no. 3, p. 1.
- Johnson, V. H., and Robeck, R. C., 1944, Geology of the Coaldale mining district, Esmeralda County, Nevada: U.S. Geological Survey Files, unpublished manuscript and maps, p. n/a.
- Knapp, M. A., 1873, The coal fields of Esmeralda County, Nevada: Mining and Scientific Press, v. 74, no. 7, p. 133.
- ---- 1897, The coal fields of Esmeralda County Nevada: Mining and Scientific Press, v. 54, no. 7, p. 133.
- Mining and Scientific Press, 1913, Nevada coal from Coaldale, Esmeralda County, Nevada: Mining and Scientific Press, v. 106, no. 8, p. 325.
- Spurr, J. E., 1904, Coal deposits between Silver Peak and Candelaria, Esmeralda County, Nevada: U.S. Geological Survey Bulletin 225-G, p. 289-292.

Vevada:

Coaldale Field

References: (continued)

Toenges, A. L., Turnbull, L. A., Schopf, J. M., Yancy, H. F., Johnson, K. A., Geer, M. R., and Newman, L. L., 1946, Exploration, composition, and washing, burning, and gas-producer tests of a coal occurring near Coaldale, Esmeralda County, Nevada: U.S. Bureau of Mines Technical Paper 687, 79 p.

Turner, H. W., 1900, The Esmeralda Formation, a fresh-water lake deposit, with a description of the fossil plants by F. H. Knowlton, and of a fossil fish, by F. R. Lucas: U.S. Geological Survey Twenty-first Annual Report, 1899-1900, pt. 2, p. 191-226.

Easton Coal Mining district (Buckland's Station)

Location: Churchill County, 1.5 miles south of Fort

Churchill.

Age: Tertiary.

Comments: This occurrence is mentioned in a newspaper

article. No information for the rank or mode of occurrence of this reported coal is available in the original description.

Selected References:

Mining and Scientific Press, 1862, Nevada Territory (coal): Mining and Scientific Press, v. 5, no. 9, p. 5.

and Scientific Press, v. 18, no. 8, p. 122.

--- 1874, Mayada cool: Mining and Scientific Press,

--- 1875, Coal in Newsday Mining and Scientific Pres

Mining and Scient (14 Trape, 1862, Cost at Virginia (

Nevada: Mining and Schembific Press, v. 5, no.

-- 1852. Coel Their bl siles southeast of Victimis

City, neverth Mining and Scientific Frequ, V. 4,

-- 1862. Gos: sink to Catson Valley, Nevada: Mining

---- 1862. Deutse was demonstry Wining and Scientific

Press, a de de la de la de

--- 1861, Taylor, type County, coal deposit: Mining

--- 1861, El Deresto Canyon emal depositi Mining and

Scientific 5-ere, 7. 5, 80. 14, p. 5.

- 1862, Minimo chains in the Whitman coal field, Lyon County, Newsday Minimo and Scientific Press

V. 4, so. 23, p. 1.

---- 1862, Figner Cowl Company: Mining and Scientifi Press, v. 1. nd. 8. s. 5.

Eldorado Canyon Mine

Location: Carson City area. Southeast of Dayton, section 6, T. 14 N., R. 22 E.

Age: Tertiary, Miocene.

Coal beds are asssociated with claystones, Comments: tuffs, and andesites. The property has been developed by 2 shafts. No production data have been published to date.

- Carson Tribune, 1875, Coal: Mining and Scientific Press, v. 3, no. 51, p. n/a.
- Gold Hill News, 1874, Black Diamond coal mine: Mining and Scientific Press, v. 29, no. 8, p. 122.
- ---- 1874, Nevada coal: Mining and Scientific Press, v. 29, no. 6, p. 86.
- ---- 1875, Coal in Nevada: Mining and Scientific Press, v. 30, no. 19, p. 302.
- Mining and Scientific Press, 1862, Coal at Virginia City, Nevada: Mining and Scientific Press, v. 5, no. 11,
- ---- 1862, Coal fields 12 miles southeast of Virginia City, Nevada: Mining and Scientific Press, v. 4, no. 20, p. 5.
- ---- 1862, Coal mine in Carson Valley, Nevada: Mining and Scientific Press, v. 4, no. 8, p. 4.
- ---- 1862, Dayton coal deposit: Mining and Scientific Press, v. 4, no. 11, p. 8.
- ---- 1862, Dayton, Lyon County, coal deposit: Mining and Scientific Press, v. 5, no. 11, p. 3.
- ---- 1862, El Dorado Canyon coal deposit: Mining and Scientific Press, v. 5, no. 14, p. 5.
- ---- 1862, Mining claims in the Whitman coal field, Lyon County, Nevada: Mining and Scientific Press, v. 4, no. 23, p. 1.
- ---- 1862, Pioneer Coal Company: Mining and Scientific Press, v. 5, no. 6, p. 5.

Eldorado Canyon Mine

References: (continued)

- ---- 1862, Silver City, Nevada coal for fuel: Mining and Scientific Press, v. 4, no. 15, p. 5.
- Territorial Enterprise, 1862, Coal localities in Nevada: Mining and Scientific Press, v. 5, no. 16, p. 5.
- ---- 1862, Nevada Territory coal mines: Mining and Scientific Press, v. 5, no. 12, p. 5.
- ---- 1873, Washoe Coal: Mining and Scientific Press, v. 27, no. 8, p. 122.
- ---- 1874, The Washoe Coal Mine: Mining and Scientific Press, v. 28, no. 21, p. 330.
- ---- 1874, Virginia City Coal Company: Mining and Scientific Press, v. 29, no. 8, p. 374.
- --- 1875, A wonderful coal discovery near Dayton. Nevada: Mining and Scientific Press, v. 30, no. 10, p. 150.
- Thompson, T. H., and West, A. H., 1881, History of Nevada: Berkeley, California, Howell-North Books, 664 p.
- Virginia Chronicle, 1875, Nevada Coal Mines: mining and Scientific Press, v. 30, no. 5, p. 70.
- Virginia Enterprise, 1874, A singular geological freak: Mining and Scientific Press, v. 29, no. 9, p. 134.
- ---- 1874, The El Dorado Canyon coal mines: Mining and Scientific Press, v. 29, no. 14, p. 214.
- Virginia Independent, 1874, A valuable coal mine: Mining and Scientific Press, v. 29, no. 8, p. 114.
- Whitman, G. W., 1862, Coal beds in Washoe County, Nevada: Mining and Scientific Press, v. 4, no. 4, p. 5.

Elko

Elko County, NW1/4 NE1/4 section 27, Location: T. 34 N., R. 55 E.

Age: Tertiary.

Rank: Lignite.

Comments: A thin coal bed, which is 0.5 ft thick,

is associated with an oil shale sequence

in the Eocene and Oligocene(?) Elko Formation.

Coal-bearing strata are overlain by a

thick tuff unit.

Selected References: Selected References:

Schilling, J. H., 1980, A preliminary first stage study of Nevada coal resources: Nevada Bureau of Mines and Geology Open-File Report 80-05, 73 p.

Solomon, B. J., and Moore, S. W., 1982, Geologic map and oil shale deposits of the Elko West Quadrangle, Elko County, Nevada: U.S. Geological Survey Miscellaneous Field Studies Map MF-1410, 1 sheet, scale 1:24,000.

from four Testiary lake bed deposits in western

Gamma Prospects (Gamma No. 1, Gamma No. 2)

Location: Churchill County, west side of the Desatoya Mountains, T. 16 N., R. 37 E.

Age: Tertiary. Williams Edit Lake Formetion

Rank: Lignite; very high ash content, which ranges from 59 to 75 percent.

Comments: Coal-bearing strata generally strike
east and dip north from 2 to 21 degrees.
Folding and faulting are not common in
the area. The coals are associated with
claystones and sandstones, and extend
laterally along the outcrop for 1285 ft.
There are five thin beds exposed near
the base of the sedimentary section.
Thicknesses for these lignite beds from
top to bottom are: 0.3 ft, 0.1 ft,
0.6 ft, 0.1 ft, and 3.5 ft. The
thickest coal bed is associated
with varying amounts of uranium.

- Barrows, K. J., 1971, Geology of the southern
 Desatoya Mountains, Churchill and Lander
 Counties, Nevada: Los Angeles, California,
 University of California, Ph.D. thesis, 199 p.
- Garside, L. J., 1973, Radioactive mineral occurrences in Nevada: Nevada Bureau of Mines and Geology Bulletin 81, p. 18-19.
- Staatz, M. H., and Bauer, H. L., 1951, Uranium-bearing lignite beds at the Gamma property, Churchill County, Nevada: U.S. Geological Survey Trace Elements Memorandum Report 226, p. 21.
- Smedman, Gunilla, 1969, An investigation of the diatoms from four Tertiary lake bed deposits in western Nevada: University of California, Museum of Paleontology, Berkeley, California, Paleobios, no. 9, 16 p.

Goose Creek Field

Location: Elko County, Nevada.

Age: Miocene and Pliocene(?); Payette Formation; Miocene and Pliocene; Salt Lake Formation.

Rank: Lignite.

Comments: Lignite has been mined in small quantities for local use from both formations. High ash content. Some uranium mineralization occurs locally in lignite (Idaho, T. 16 S., R. 21 E.) along the flanks and trough of a shallow syncline.

- Bowen, C. F., 1913, Lignite in the Goose Creek district, Cassia County, Idaho: U.S. Geological Survey Bulletin 531-H, p. 252-262.
- Breckenridge, R. M., Bennett, E. H., and Harbour, J. L., 1980, Energy resources of Idaho: Idaho Bureau of Mines and Geology, Map 3, scale 1:1,000,000.
- Doelling, H. H., and Graham, R. L., 1972, Southwestern Utah coal fields--Alton Kaiparowits Plateau and Kolob-Harmony: Utah Geological and Mineralogical Survey, Monograph Series, no. 1, 333 p.
- Mapel, W. J., and Hail, W. J., Jr., 1956, Tertiary stratigraphy of the Goose Creek district, Cassia County, Idaho, and adjacent parts of Utah and Nevada, in Geology parts of northwestern Utah: Utah Geological Society Guidebook 11, p. 1-16.
- ---- 1959, Tertiary geology of the Goose Creek district, Cassia County, Idaho, Box Elder County, Utah, and Idaho County, Nevada: U.S. Geological Survey Bulletin 1055-H, p. 217-254.
- Stokes, W. L., 1962, Geologic map of Utah, northwest quarter: Idaho State Land Board, scale 1:250,000.

levada:

Lewis Coal Mine

Location: Lyon County; Coal Valley south of Yerrington, and 18 miles north of Aurora.

Section 36, T. 8 N., R. 27 E., and section 1, T. 7 N., R. 27 E.

Age: Tertiary. The burning in a mutile furnace.

Rank: Subbituminous. Ash content averages 16 percent, moisture 14 percent, and volatile hydrocarbons 30 percent.

Coal beds vary from 3 ft to 8 ft thick. The Nevada Coal and Oil Company developed Comments: the property with 2 adits 700 ft and 900 ft long, and an inclined shaft 400 ft deep. No coal production data are available at present.

- Anonymous, 1862, Coal on the Walker River, Nevada: Mining and Scientific Press, v. 5, no. 5, p. 2.
- Berry, E. W., 1927, Flora of the Esmeralda Formation in western Nevada: U.S. National Museum Proceedings, v. 72, article 23, p. 15.
- Lincoln, F. C., 1923, Mining districts and mineral resources of Nevada: Newsletter Publication Company, Reno, Nevada, p. 157.
- Lintz, Joseph, Jr., 1957, Nevada oil and gas drilling data, 1906-1953: Nevada Bureau of Mines and Geology Bulletin 52, p. 44.
- Mining and Scientific Press, 1862, Nevada Territory, Walker River coal: Mining and Scientific Press, v. 5, no. 15, p. 5.
- Papke, K. J., 1965, Coal deposits in Washington district, Lyon County, Nevada: Reno, Nevada, University of Nevada, K. J. Papke Unpublished Report, Nevada Bureau of Mines and Geology, p. n/a.

Nevada:

Pahranagat

Location: Lincoln County; 15 miles from Hiko.

Rank: No data available. Originally described as anthracite. Ash residue less than 3 percent after burning in a muffle furnace.

Comments: Surface exposure of 15 ft thick bed mentioned in original description. No additional information is currently available:

- Mining and Scientific Press, 1862, Formation of a new coal company: Mining and Scientific Press, v. 4, no. 24, p. 4 and p. 8.
- ---- 1867, Coal in Pahranagat: Mining and Scientific Press, v. 15, no. 8, p. 123.
- --- 1869, Coal on the Pacific Railroad, Nevada: Mining and Scientific Press, v. 17, no. 7, p. 97.

Nevada:

Palisade Coll Mine

Location: Eureka County; T. 32 N., R. 51 E,

section 25.

Tertiary. Age:

Not available; possibly lignite. Rank:

The area was explored by a 30 ft shaft

and a drift 175 ft long. No information pertaining to the extent, quality, or production of coal is available.

Selected References:

Eureka Sentinel, 1877, The Palisade coal vein: Mining and Scientific Press, v. 34, no. 26, p. 410.

Eureka Sentinel, 1878, Palisade Coal Company: Engineering and Mining Journal, v. 25, no. 13, p. 223.

Sly Daily Times, 1976, Coal deposit reinvestigated: Ely,

Pancake Coal Mine

Location: Western White Pine County.

Age: Mississippian.

Rank: No analyses available; probably bituminous.

Comments: Thin coals, generally 10 to 18 inches thick crop out for 150 ft along strike. The maximum thickness of coal is reported to be 5 ft. Coal and the enclosing strata are fractured and displaced by faulting. Some mining has occurred; however, no production information is available at present.

- Brown, A. J., 1874, Carboniferous coal in Nevada: Engineering and Mining Journal, v. 18, no. 1, p. 2-3.
- Ely Daily Times, 1976, Coal deposit reinvestigated: Ely, Nevada, Ely Daily Times, October 1, 1976.
- Emersley, J. D., 1875, Pancake coal mine: Engineering and Mining Journal, v. 19, no. 10, p. 150.
- Hague, Arnold, 1892, Geology of the Eureka district, Nevada: U.S. Geological Survey Monograph 20, p. 95-98.
- Hose, R. K., Blake, M. C., and Smith, R. M., 1976,
 Geology and mineral resources of White Pine County:
 Nevada Bureau of Mines and Geology Bulletin 85,
 105 p.
- Nevada State Journal, 1873, Coal prospects at Pancake Mountain: Nevada State Journal, v. 3, no. 37.
- ---- 1873, Coal vein near Eureka, Nevada: Nevada State Journal, v. 3, no. 34.
- --- 1873, Pancake coal mine: Nevada State Journal, v. 3, no. 44.
- --- 1875, Coal discovery, Pyramid Lake area: Nevada State Journal, v. 3, no. 136.
- White Pine News, 1874, Pancake coal mine: Nevada State Journal, v. 62, no. 1.

Nevada:

Table Mountain

Location: Not known.

Age: Tertiary.

Rank: Lignite. High in ash content and volatile

Comments: Coal has been reported from the vicinity of Table Mountain. No surface exposures or evidence of any workings are apparent; however, coal may be present in small amounts in the local Tertiary sediments.

Selected References:

Schrader, F. C., 1947, Carson Sink area, Nevada: U.S. Geological Survey unpublished report, p. 332-333.

Bonham, H. P., and Papke, K. G., 1976, Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70, p. 115.

agineering and Mining Journal, 1855, Coal discovered at Verdi: Engineering and Mining Journal, v. 40, no. 22, p. 373.

Verdi

Location: Washoe County, T. 19 N., R. 18 E., section 9.

Age: Tertiary.

Rank: Lignite. High in ash content and volatile matter.

Comments: The property was explored by the Nevada Carbon Company in the early 1940's. No data are available for coal resources or production.

Selected References:

Anonymous, 1865, Explorations of coal at Crystal Peak, Nevada: Mining and Scientific Press, v. 11, no. 16, p. 242.

Bonham, H. F., and Papke, K. G., 1970, Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70, p. 115.

Engineering and Mining Journal, 1855, Coal discovered at Verdi: Engineering and Mining Journal, v. 40, no. 22, p. 373.

Nevada:

Wilson District (Pine Grove District)

Location: Lyon County, 2 miles from Pine Grove.

Age: Late Miocene to Middle Pliocene; Coal Valley

Formation.

Andrew Rank: Lignite. Grant A., and Huddley J. W.

Comments: Coal with numerous claystone partings is

associated with shale near Pine Grove.

The thin beds, which are between 6 in. and 2 ft thick, crop out for 100 ft, and there is no evidence of any workings.

Selected References:

Territorial Enterprise, 1867, Important coal discovery, Pine Grove, Wilson district, Nedvada: Mining and Scientific Press, v. 15, no. 19, p. 299.

Oregon coals: U.S. Bureau of Mines Technical Pape 696, p. 57-60.

xelrod, D. I., 1956, Mic-Pliocene floras from west-central Nevada: California University

Barrows, E. J., 1970, Geology of the southern Desatoy

University of California, Los Angeles, Ph.D. thes. p. 5.

Berry, E. W., 1927, Plora of the Esmeralda Formation in western Nevada: U.S. National Museum Proceedings.

Bonham, B. F., and Papke, R. G., 1970, Geology and mineral deposits of Mashos and Storey Counties, Nevada:

Nevada Bureau of Mines and Geology Bulletin 70,

Bowen, C. F., 1913, Lignite in the Goose Creek district, Cassia County, Idaho: U.S. Geological Survey Bulletin

Brown, A. J., 1874, Carboniferous coal in Neveda: Engineering and Mining Journal, v. 18, no. 1,

Carson Tribune, 1875, Coal: Mining and Scientific Press,

General References Selected for Coal in Nevada

- Andrews, D. A., Hendricks, T. A., and Huddle, J. W., 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, 47 p.
- Andrews, D. A., Hendricks, T. A., and Huddle, J. W., 1947, The coal fields of Arizona, California, Idaho, Nevada, and Oregon, in Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 9.
- Anonymous, 1862, Coal on the Walker River, Nevada: Mining and Scientific Press, v. 5, no. 5, p. 2.
- ---- 1865, Explorations for coal at Crystal Peak, Nevada: Mining and Scientific Press, v. 11, no. 16, p. 242.
- --- 1920, Oil wildcatting in Nevada: Engineering and Mining Journal, v. 109, p. 665.
- --- 1947, Analysis of Arizona, California, Idaho, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 57-60.
- Axelrod, D. I., 1956, Mio-Pliocene floras from west-central Nevada: California University Publication, Geological Science, v. 33, p. 29-33.
- Barrows, K. J., 1970, Geology of the southern Desatoya Mountains, Churchill and Lander Counties, Nevada: University of California, Los Angeles, Ph.D. thesis, p. 5.
- Berry, E. W., 1927, Flora of the Esmeralda Formation in western Nevada: U.S. National Museum Proceedings, v. 72, article 23, p. 15.
- Bonham, H. F., and Papke, K. G., 1970, Geology and mineral deposits of Washoe and Storey Counties, Nevada:
 Nevada Bureau of Mines and Geology Bulletin 70, p.
 115.
- Bowen, C. F., 1913, Lignite in the Goose Creek district, Cassia County, Idaho: U.S. Geological Survey Bulletin 531-H, p. 252-262.
- Brown, A. J., 1874, Carboniferous coal in Nevada: Engineering and Mining Journal, v. 18, no. 1, p. 2-3.
- Carson Tribune, 1875, Coal: Mining and Scientific Press, v. 3, no. 51, p. n/a.

- Cooper, H. M., Snyder, N. H., Abernathy, R. F., Tarpley, E. C., and Swingle, R. J., 1947, Analyses of mine, tipple, and delivered samples, in Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 27-47.
- Decker, R. W., 1962, Geology of the Bull Run Quadrangle, Elko County, Nevada: Nevada Bureau of Mines and Geology Bulletin 60, p. 65.
- Duncan, D. C., 1952, Preliminary report on a uranium-bearing rhyolitic tuff deposit near Coaldale, Esmeralda County, Nevada: U.S. Geological Survey Trace Element Memorandum Report 336, p. 7.
- Ely Daily Time, 1976, Coal deposit reinvestigated: Ely, Nevada, Ely Daily Times, October 1, 1976, p. n/a.
- Emersley, J. D., 1875, Pancake coal mine: Engineering and Mining Journal, v. 19, no. 10, p. 150.
- Engineering and Mining Journal, 1855, Coal discovered at Verdi: Engineering and Mining Journal, v. 40, no. 22, p. 373.
- ---- 1876, El Dorado Coal Company, Nevada: Engineering and Mining Journal, v. 22, p. 301.
- --- 1876, Pancake coal mine, White Pine County, Nevada: Engineering and Mining Journal, v. 21, April 8th issue, p. 349.
- ---- 1887, Humboldt Coal Company: Engineering and Mining Journal, v. 44, no. 17, p. 300.
- Esmeralda, Herald, 1878, Coal discovery at Aurora, Nevada: Engineering and Mining Journal, v. 26, no. 6, p. 100.
- Eureka Sentinel, 1877, The Palisade coal vein: Mining and Scientific Press, v. 34, no. 26, p. 410.
- Garside, L. J., 1973, Radioactive mineral occurrences in Nevada: Nevada Bureau of Mines and Geology Bulletin 81, p. 18-19.
- Gold Hills News, 1874, Black Diamond coal mine: Mining and Scientific Press, v. 29, no. 8, p. 122.
- ---- 1874, Nevada coal: Mining and Scientific Press, v. 29, no. 6, p. 86.

- --- 1875, Coal in Nevada: Mining and Scientific Press, v. 30, no. 19, p. 302.
- Goodyear, W. A., 1877, The coal mines of the western coast of the United States: San Francisco, California, S. F. Bancroft and Company, 153 p.
- Hague, Arnold, 1892, Geology of the Eureka district, Nevada: U.S. Geological Survey Monograph 20, p. 95-98.
- Hance, J. H., 1913, The Coaldale coal field, Esmeralda County, Nevada: U.S. Geological Survey Bulletin 531-K, p. 313-322.
- Horton, R. C., 1964, Mineral fuels--Coal, in Mineral and water resources of Nevada: Nevada Bureau of Mines and Geology Bulletin 65, p. 51-53.
- Hose, R. K., Blake, M. C., Jr., and Smith, R. M., 1976, Geology and mineral resources of White Pine County, Nevada: Nevada Bureau of Mines and Geology Bulletin 85, p. 63.
- Hutchings, W., 1862, Pioneer Company's coal mine: Mining and Scientific Press, v. 5, no. 3, p. 1.
- Johnson, V. H., and Robeck, R. C., 1944, Geology of the Coaldale mining district, Esmeralda County, Nevada: U.S. Geological Survey, unpublished manuscript and maps, p. n/a.
- Knapp, M. A., 1873, The coal fields of Esmeralda County, Nevada: Mining and Scientific Press, v. 74, no. 7, p. 133.
- --- 1897, The coal fields of Esmeralda County, Nevada: Mining and Scientific Press, v. 54, no. 7, p. 133.
- Lee, W. T., Stone, R. W., Gale, H. S., and others, Guidebook of the western United States, Part B, the Overland Route: U.S. Geological Survey Bulletin 612, 244 p.
- Lincoln, F. C., 1923, Mining districts and mineral resources of Nevada: Newsletter Publication Company, Reno, Nevada, p. 157.
- Lintz, Joseph, Jr., 1957, Nevada oil and gas drilling data, 1906-1953: Nevada Bureau of Mines and Geology Bulletin 52, p. 44.

- Lyon County Times, 1878, A new coal field in Nevada, 5-6 miles from Wellington, Nevada: Engineering and Mining Journal, v. 25, no. 4, p. 58.
- Mapel, W. J., and Hail, W. J., Jr., 1959, Tertiary geology of the Goose Creek district, Cassia County, Idaho, Box Elder County, Utah, and Elko County, Nevada: U.S. Geological Survey Bulletin 1055-H, p. 217-309.
- Mining and Scientific Press, 1860, Coal 90 miles from Carson City on road to Salt Lake: Mining and Scientific Press, v. 2, no. 39, p. 3.
- --- 1862, Chinatown coal beds: Mining and Scientific rress, v. 4, no. 2, p. 5.
- ---- 1862, Coal at Virginia City, Nevada: Mining and Scientific Press, v. 5, no. 11, p. 5.
- --- 1862, Coal fields 12 miles southeast of Virginia City, Nevada: Mining and Scientific Press, v. 4, no. 20, p. 5.
- ---- 1862, Coal in Humboldt: Mining and Scientific Press, v. 4, no. 8, p. 5.
- ---- 1862, Coal mine in Carson Valley, Nevada: Mining and Scientific Press, v. 4, no. 8, p. 4.
- ---- 1862, Dayton coal deposit: Mining and Scientific Press, v. 4, no. 11, p. 8.
- --- 1862, Dayton, Lyon County, coal deposit: Mining and Scientific Press, v. 5, no. 11, p. 3.
- --- 1862, El Dorado Canyon coal deposit: Mining and Scientific Press, v. 5, no. 14, p. 5.
- ---- 1862, El Dorado Canyon coal discovery: Mining and Scientific Press, v. 5, no. 20, p. 5.
- ---- 1862, Formation of a new coal company: Mining and Scientific Press, v. 4, no. 24, p. 4,8.
- ---- 1862, Mining claims in the Whitman coal field, Lyon County, Nevada: Mining and Scientific Press, v. 4, no. 23, p. 1.
- --- 1862, Nevada Territory (coal): Mining and Scientific Press, v. 5, no. 9, p. 5.
- --- 1862, Nevada Territory, Walker River coal: Mining and Scientific Press, v. 5, no. 15, p. 5.

- ---- 1862, Pioneer Coal Company: Mining and Scientific Press, v. 5, no. 6, p. 5.
- ---- 1862, Silver City, Nevada coal for fuel: Mining and Scientific Press, v. 4, no. 15, p. 5.
- --- 1865, Coal in Reese River country: Mining and Scientific Press, v. 11, no. 23, p. 354.
- --- 1867, Coal in Pahranagat: Mining and Scientific Press, v. 15, no. 8, p. 123.
- ---- 1868, Discovery of coal on the Humboldt: Mining and Scientific Press, v. 17, no. 20, p. 314.
- --- 1869, Coal on the Pacific Railroad, Nevada: Mining and Scientific Press, v. 17, no. 7, p. 97.
- ---- 1873, Nevada Coal: Nevada State Journal, v. 4, no. 51, p. n/a.
- --- 1873, Proposed mining legislation, Nevada: Mining and Scientific Press, v. 26, no. 6, p. 88.
- --- 1897, Coal discovery near White Horse district, Washoe County, Nevada: Mining and Scientific Press, v. 74, no. 11, p. 211.
- --- 1913, Nevada coal from Coaldale, Esmeralda County, Nevada: Mining and Scientific Press, v. 106, no. 8, p. 325.
- Moore, G. W., and Stephans, J. G., 1954, Reconnaissance for uranium-bearing carbonaceous rocks in California and adjacent parts of Oregon and Nevada: U.S. Geological Circular 313, p. 5-7.
- Moore, J. G., and Archbold, N. L., 1969, Geology and mineral resources of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 75, p. 40-41.
- Nevada Bureau of Mines and Geology, 1980, A preliminary first stage study of Nevada coal resources: Nevada Bureau of Mines and Geology Open-file Report 80-5, 73 p.
- Nevada State Journal, 1873, Coal prospects at Pancake Mountain: Nevada State Journal, v. 3, no. 37, n/a.
- ---- 1873, Coal vein near Eureka, Nevada: Nevada State Journal, v. 3, no. 34, p. n/a.

- --- 1873, Pancake Coal mine: Nevada State Journal, v. 3, no. 44, p. n/a.
- --- 1875, Coal discovery, Pyramid Lake area: Nevada State Journal, v. 3, no. 136, p. n/a.
- --- 1875, Vein of coal southeast of Carson Sink, Nevada: Nevada State Journal, v. 3, no. 12, p. n/a.
- Overton, T. D., 1947, Mineral resources of Douglas, Ormsby, and Washoe Counties: Nevada Bureau of Mines and Geology Bulletin 46, p. 77.
- Paher, S. W., 1970, Nevada Ghost Towns and Mining Camps: Berkeley, California, Howell-North Books, 492 p.
- Papke, K. J., 1965, Coal deposits in Washington district, Lyon County, Nevada: Reno, Nevada, University of Nevada, K. J. Papke Unpublished Report, Nevada Bureau of Mines and Geology, p. n/a.
- Parker, E. W., 1901, Coal: in U.S. Geological Survey, Mineral Resources of the United States, 1900, p. 273-457.
- --- 1902, Coal: in U.S Geological Survey Mineral Resources, of the United States, 1901, p. 279-449.
- --- 1908, Coal: in U.S. Geological Survey Mineral Resources of the United States, 1907, pt. II, p. 5-222.
- --- 1912, Coal: in U.S. Geological Survey Mineral Resources, of the United States, 1911, pt. II, p. 155.
- Schilling, J. H., 1980, A preliminary first stage study of Nevada coal resources: Nevada Bureau of Mines and Geology Open-File Report 80-05, 73 p.
- Schrader, F. C., 1947, Carson Sink Area, Nevada: U.S. Geological Survey Unpublished Report, p. 332-333.
- Smith, R. M., 1976, Mineral Resources of Elko County, Nevada: U.S. Geological Survey Open-file Report 76-56, 194 p.
- Staatz, M. H., and Bauer, H. L., 1951, Uranium-bearing lignite beds at the Gamma property, Churchill County, Nevada: U.S. Geological Survey Trace Elements Memorandum Report 226, p. 21.

- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.
- Territorial Enterprise, 1862, Coal localities in Nevada: Mining and Scientific Press, v. 5, no. 16, p. 5.
- --- 1862, Nevada Territory coal mines: Mining and Scientific Press, v. 5, no. 12, p. 5.
- ---- 1867, Important coal discovery, Pine Grove, Wilson district, Nevada: Mining and Scientific Press, v. 15, no. 19, p. 299.
- --- 1873, Washoe Coal: Mining and Scientific Press, v. 27, no. 8, p. 122.
- --- 1874, The Washoe Coal Mine: Mining and Scientific Press, v. 28, no. 21, p. 330.
- --- 1874, Virginia City Coal Company: Mining and Scientific Press, v. 29, no. 8, p. 374.
- --- 1875, A wonderful coal discovery near Dayton, Nevada: Mining and Scientific Press, v. 30, no. 10, p. 150.
- Thompson, T. H., and West, A. H., 1881, History of Nevada: Berkeley, California, Howell-North Books, 664 p.
- Toenges, A. L., Turnbull, L. A., Schopf, J. M., Yancey, H. F., Johnson, K. A., Geer, M. R., and Newman, L. L., 1946, Exploration, composition, and washing, burning, and gas-producer tests of a coal occurring near Coaldale, Esmeralda County, Nevada: U.S. Bureau of Mines Technical Paper 687, 79 p.
- Trumbull, J. V. A., (1959), 1960, Map of coal fields of United States: U.S. Geological Survey, scale 1:5,000,000.
- Turner, H. W., 1900, The Esmeralda Formation, a fresh-water lake deposit, with a description of The fossil plants by F. H. Knowlton, and of A fossil fish, by F. R. Lucas: Twenty-First Annual Report of the U.S. Geological Survey, 1899-1900, pt. 2, p. 191-226.
- U.S. Bureau of Mines, 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, 83 p.

- Virginia Chronicle, 1875, Nevada Coal Mines: Mining and Scientific Press, v. 30, no. 5, p. 70.
- Virginia Enterprise, 1874, A singular geological freak: Mining and Scientific Press, v. 29, no. 9, p. 134.
- --- 1874, The El Dorado Canyon coal mines: Mining and Scientific Press, v. 29, no. 14, p. 214.
- Virginia Independent, 1874, A valuable coal mine: Mining and Scientific Press, v. 29, no. 8, p. 114.
- White Pine News, 1874, Pancake coal mine: Nevada State Journal, v. 62, no. 1, p. n/a.
- Whitehill, H. R., 1875, Biennial report of the State Mineralogist of Nevada for the years 1873 and 1874: Carson City, Nevada, 191 p.
- Whitman, G. W., 1862, Coal beds in Washoe County, Nevada: Mining and Scientific Press, v. 4, no. 4, p. 5.
- Winnemucca Silver State, 1876, Nevada coal discovery: Engineering and Mining Journal, v. 22, p. 413.

Additional resources possible, east a south of mined-out areas.

Blis. R. W., 1936, Analyses of New Mexico coals: Q.S. Bureau of Mines Technical Paper 569,

Gardner, J. H., 1910, The Carthage coal field, No. Maxico: U.S. Gaological Survey Bulletin 381-

Stores, L. S., 1910, The Rocky Mountain coal field p.s. Geological Survey Twenty-second Annual Report, pt. 3, Goal, oil, cament, p. 415-471.

Mexico:

Carthage Field

Location: East-central Socorro County.

Age: Late Cretaceous; Mesaverde Formation.

Rank: High-volatile C bituminous. This coal makes an excellent coke, and was used by New Mexico smelters during the late 1800's and early 1900's.

Comments: Two coal beds occur in the lower 100 ft of the Mesaverde Formation. The Carthage coal bed, which occurs 40 to 60 ft above the base of the Mesaverde, attains a maximum thickness of 6 ft, and was mined from 1861 through the mid 1950's.

The coal-bearing strata occurs along an extensively faulted nose of a south plunging anticline. Fault-bounded blocks are uplifted, and internally fractured.

Structure controls, mining which is limited to single-fault blocks.

Most easily mined coal has been removed.

Additional resources possible, east and south of mined-out areas.

Selected References:

Ellis, R. W., 1936, Analyses of New Mexico coals: U.S. Bureau of Mines Technical Paper 569, p. 1-112.

Gardner, J. H., 1910, The Carthage coal field, New Mexico: U.S. Geological Survey Bulletin 381-C, p. 452-460.

Storrs, L. S., 1910, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.

Les, W. T., 1913, The Certillos coal field, Santa Fa

New Mexico:

Cerrillos Field

Location: South-central Santa Fe County.

Age: Late Cretaceous; Mesaverde Formation.

Rank: Variable; primarily bituminous. Range is from bituminous to anthracite. Most bituminous coal is non-agglomerating: however, some coking coal has been mined.

Comments: The three principal beds that have been mined in the area are, from oldest to youngest: Miller Gulch, Cook and White, and White Ash coal beds. The last two beds were the principal mining targets near Madrid.

The area is structurally complex. Faults, sills and dike swarms are common. The White Ash coal bed has been metamorphosed to anthracite near intrusives. Coal, which was produced from more than 30 mines during the period 1888-1957, was shipped throughout the central and western U.S.

- Briggs, J. P., and Maxwell, C. H., 1979, Status of mineral resource information for the Jemez and Zia Indian Reservations, New Mexico: U.S. Geological Survey and U.S. Bureau of Mines Administrative Report BIA-51, 51 p.
- Ellis, R. W., 1936, Analyses of New Mexico coals: U.S. Bureau of Mines Technical Paper 569, p. 1-112.
- Gardner, J. H., 1910, Isolated coal fields in Santa Fe and San Miguel Counties, New Mexico: U.S. Geological Survey Bulletin 381-C, p. 447-451.
- Lakes, A., 1901, The Cerrillos anthracite mines: Mines and Minerals, v. 21, p. 341-342.
- Lee, W. T., 1913, The Cerrillos coal field, Santa Fe County, New Mexico: U.S. Geological Survey Bulletin 531-J, p. 285-312.
- Read, C. B., Duffner, R. T., Wood, G. H., and Zapp, A. D., 1950, Coal resources of New Mexico: U.S. Geological Survey Circular 89, 24 p.

Cerrillos Field

References (continued)

- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3: Coal, oil, cement, p. 415-471.
- Toenges, A. L., Mould, E. H., and Turnbull, L. A., 1943, Bed characteristics and coking properties of coal from Cook and White and Miller Gulch beds, Santa Fe County, New Mexico: U.S. Bureau of Mines War Minerals Report 100, 24 p.
- Turnbull, L. A., and others, 1951, Miller Gulch and Cook and White coal beds near Cerrillos, Santa Fe County, New Mexico--Reserves, coking, petrographic, and chemical properties: U.S. Bureau of Mines Report Investigations 4814, 29 p.

little coal has been mined.

the coal-bearing rocks toward the south.

Selected References:

Campbell, M. H., 1914, Analyses of coal samples from various fields of the United States: U.S.

Campbell, M. R., and Clark, F. R., 1916, Analyses of coal samples from various parts of the United States: U.S. Geological Bulletin 621, p. 251-370

Chapin, C. E., Osburn, G. R., Hook, S. C., Massingill, G. L., and Frost, S. J., 1979, Coal, uranium, oil and gas potential of the Riley-Puertecito area, socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report

Osburn, J. C., 1982, Geology and coal resources of the Alamo Band Navajo Reservation, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-File Report 168, 60 p.

- 1982, Geology and coal resources of three Quadrangles in the central Datil Mountains coal field, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report 164, 82 p.

Datil Mountain Field

Location: Valencia, Socorro, and Catron Counties.

Age: Late Cretaceous. Gallup Sandstone, and Crevasse Canyon Formation. Lower part of Mesaverde Group.

Rank: Primarily subbituminous; locally bituminous.

Comments: Coal and carbonaceous shale occur at several stratigraphic horizons. Most coal is very thin, and single coal beds rarely exceed 3 ft in thickness.

Locally coal may be 5 ft thick. The area is characterized by a synclinal stucture, which has been subjected to folding, faulting, and igneous intrusion. A thick sequence of volcanic rocks covers the coal-bearing rocks toward the south.

Access to the area is very difficult, and little coal has been mined.

- Campbell, M. R., 1914, Analyses of coal samples from various fields of the United States: U.S. Geological Survey Bulletin 541-K, p. 491-526.
- Campbell, M. R., and Clark, F. R., 1916, Analyses of coal samples from various parts of the United States: U.S. Geological Bulletin 621, p. 251-370.
- Chapin, C. E., Osburn, G. R., Hook, S. C., Massingill, G. L., and Frost, S. J., 1979, Coal, uranium, oil, and gas potential of the Riley-Puertecito area, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report 103, 33 p.
- Osburn, J. C., 1982, Geology and coal resources of the Alamo Band Navajo Reservation, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Open-File Report 160, 60 p.
- --- 1982, Geology and coal resources of three Quadrangles in the central Datil Mountains coal field, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report 164, 82 p.

Datil Mountain Field

References (continued)

- Read, C. B., Duffner, R. T., Wood, G. H., and Zapp, A. D., 1950, Coal resources of New Mexico: U.S. Geological Survey Circular 89, 24 p.
- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey, Twenty-second Annual Report, pt. 3: Coal, oil, cement, p. 415-471.
- Winchester, D. E., 1921, Geology of Alamosa Creek Valley, Socorro County, New Mexico, with special reference to the occurrence of oil and gas: U.S. Geological Survey Bulletin 716-A, p. 1-15.

less than 5 ft thick.

The first shaft in the area was sunk in 1905; 3 mines operated briefly during the height of development. The coal was used by miners near Palomas Can to reduce

ward toward the central

Selected References.

Melley, V. C., and Silver, Caswell, 1952, Geology of the Caballo Mountains; with special references to regional stratigraphy and structure and to mineral resources, including oil and gas: University of New Mexico Publications in Geology, no. 4, 286 p.

Lee, W. T., 1906, The Engle coal field, New Mexico: U.S. Geological Survey Bulletin 285-F, p. 240.

Tabet, D. E., 1980, Summary of the geology of the Engle coal field: New Mexico Bureau of Mines and Mineral Resources Open-File Report 115. 9 New Mexico:

Engle Field

Location: Central Sierra County.

Age: Cretaceous; lower part of the Mesaverde

Group.

Subbituminous. Rank:

Thin coal beds, that are associated with Comments: carbonaceous shales crop out along the western edge of the Jornada del Muerto syncline. Coal-bearing strata dip steeply eastward along the eastern side of the Fra Cristobal and Caballo Mountains. Dips flatten eastward toward the central part of the valley. Coal is generally less than 5 ft thick.

The first shaft in the area was sunk in 1905; 3 mines operated briefly during the height of development. The coal was used by miners near Palomas Gap to reduce metallic ores. Sandowi County New

Selected References: 974 Gu debook of 145-370

- Kelley, V. C., and Silver, Caswell, 1952, Geology of the Caballo Mountains; with special references to regional stratigraphy and structure and to mineral resources, including oil and gas: University of New Mexico Publications in Geology, no. 4, 286 p.
- Lee, W. T., 1906, The Engle coal field, New Mexico: U.S. Geological Survey Bulletin 285-F, p. 240.
- Tabet, D. E., 1980, Summary of the geology of the Engle coal field: New Mexico Bureau of Mines and Mineral Resources Open-File Report 115, 9 p.

Hagen Field (Una del Gato)

Location: South-central Sandoval County.

Age: Late Cretaceous; Mesaverde Formation.

Rank: High-volatile C bituminous.

Comments: Development is limited because of very common faulting and abundant intrusions along the coal-bearing homoclinal structure. The maximum coal bed thickness is 5 ft, however, most beds are less than 4 ft thick.

Four small underground mines operated between 1900 and 1939. Production ceased because of transportation problems and difficult mining conditions.

Selected References: Management | New | 1965 | Coals New

- Black, B. A., and Hiss, W. L., 1974, Structure and stratigraphy in the Shell Oil Co. Santa Fe Pacific no. 1 test well, southern Sandoval County, New Mexico: New Mexico Geological Society Field Conference, 25th, 1974, Guidebook, p. 365-370.
- Briggs, J. P., and Maxwell, C. H., 1979, Status of mineral resource information for the Jemez and Zia Indian Reservations, New Mexico: U.S. Geological Survey and U.S. Bureau of Mines Administrative Report BIA-51, 51 p.
- Campbell, M. R., 1907, The Una del Gato coal field, Sandoval County, New Mexico: U.S. Geological Survey Bulletin 316-F, p. 427-430.
- Gardner, J. H., 1910, Isolated coal fields in Santa Fe and San Miguel Counties, New Mexico: U.S. Geological Survey Bulletin 381-C, p. 447-451.
- Keyes, C. R., 1904, The Hagen coal field, Sandoval County, New Mexico: Engineering and Mineral Journal, v. 78, no. 17, p. 670-671.

ragion from Socures and San Antonio east of Churadera

- Location: Eastern Socorro County.
 - Age: Late Cretaceous; Mesaverde Formation.
 - Rank: High-volatile C bituminous. Coal from the Law mine makes a poor to fair coke.
 - Comments: Coal-bearing strata occur along the western limb of the Prairie Springs anticline. Coal beds are lenticular, and are commonly less than 3 ft thick. The southern part of the field is covered by gravel and wind-blown sand. There is no recorded production.

- DeCarlo, J. A., Sheridan, E. T., and Murphy, Z. E., 1966, Sulfur content of United States coals: U.S. Bureau of Mines Information Circular 8312, 44 p.
- Kottlowski, F. E., and Beaumont, E. C., 1965, Coal: New Mexico Bureau of Mines and Mineral Resources Bulletin 87, p. 100-116.
- Kottlowski, F. E., Beaumont, E. C., and Shomaker, J. W., 1974, Description of seams in New Mexico: Keystone Coal Industry Manual, p. 522-529.
- Logsdon, M. J., 1982, Active mines and processing plants in New Mexico--Text to accompany Resource Map 14: New Mexico Bureau of Mines and Mineral Resources, 4 p.
- --- Active mines and processing plants in New Mexico:
 New Mexico Bureau of Mines and Mineral Resources,
 Mineral Resource Map 14, [in press], scale
 1:500,000.
- Read, C. B., Duffner, R. T., Wood, G. H., and Zapp, A. D., 1950, Coal resources of New Mexico: U.S. Geological Survey Circular 89, 24 p.
- Reynolds, D. A., Davis, J. D., Brewer, R. E., Ode, W. H., Wolfson, D. E., and Birge, G. W., 1946, Carbonizing properties of western coals: U.S. Bureau of Mines Technical Paper 692, 79 p.
- Tabet, D. E., 1979, Geology of Jornada del Muerto coal field, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Circular 168, 20 p.
- Wilpolt, R. H., and Wanek, A. A., 1951, Geology of the region from Socorro and San Antonio east of Chupadera Mesa, Socorro County, New Mexico: U.S. Geological Survey Oil and Gas Investigations Map, OM 121.

Pecos River (Gould and Thomas, El Porvenir, Cowles Mines). The majority of these occurrences are immediately adjacent to the Basin and Range study area.

Location: Santa Fe, San Miguel Counties.

Age: Pennsylvanian.

Rank: Bituminous (?).

Comments: Isolated occurrences of bituminous coals, which are generally less than 40 in. thick, occur in the Lower and Middle Pennsylvanian La Pasada Formation east of Santa Fe. These coals were explored by three short drifts called the Gould and Thomas, (section 5, T. 16 N., R. 12 E.)
El Porvenir, (sections 12 and 13, T. 17 N., R. 14 E.) and Cowles mines, (section 28, T. 18 N., R. 12 E.). Data for these coals is scarce and no resource information is currently available.

Selected References: Mines for local consumption.

Gardner, J. H., 1910, Carboniferous coal in New Mexico: Mines and Minerals, v. 30, p. 570-571.

____1910, Isolated coal fields in Santa Fe and San Miguel Counties, New Mexico:
U.S. Geological Survey Bulletin 381, p. 447-451.

Hemphill, W. R., 1959, Photogeologic map of the

Rio Puerco Field

Location: Bernallilo, Sandoval, and Valencia Counties.

Age: Cretaceous; Gibson Coal Member of the Crevasse Canyon Formation; Menefee Formation; and an undivided Gibson-Menefee unit.

Rank: High-volatile C bituminous.

Comments: The coal field lies west of the Rio Grande depression within the Rio Puerco fault zone. The few faults in the area are usually short, trend northeast, and dip between 45 degrees to 85 degrees westward.

Coal beds are lenticular, and the stratigraphic units, which contain the most
coal, are the Menefee Formation and the
middle to upper part of the Gibson Coal
Member of the Crevasse Canyon Formation.
Coals commonly vary from 1 to 3 ft
in thickness; however, locally one bed
attains a maximum thickness of 12 ft
Coal has been produced in small amounts
from a few mines for local consumption.

- Bryan, Kirk, and McCann, F. T., 1937, The Ceja del Rio Puerco: A border feature of the Basin and Range Province in New Mexico, part 1, Stratigraphy and structure: Journal of Geology, v. 45, no. 8, p. 801-828.
- ---- 1939, the Ceja del Rio Puerco--A border feature of the Basin and Range Province in New Mexico, part 2, Geomorphology: Journal of Geology, v. 46, no.1, p. 1-16.
- Cambell, J. A., 1967, Geology and structure of a portion of the Rio Puerco fault belt, western Bernalillo County, New Mexico: Albuquerbue, New Mexico, University of New Mexico Master's thesis, 89 p.
- Hemphill, W. R., 1959, Photogeologic map of the Bernalillo-3 Quadrangle, Bernalillo and Sandoval Counties, New Mexico: U.S. Geological Survey, unpublished map.
- ---- 1967, Photogeologic map of the east half of the Laguna-4 Quadrangle, Bernalillo, Sandoval, and Valencia Counties, New Mexico: U.S. Geological Survey Open-file map, scale 1:62,500.

Rio Puerco Field

- References: (continued)
 - Hunt, C. B., 1936, Geology and fuel resources of the southern part of the San Juan Basin, New Mexico part 2--The Mount Taylor coal field: U.S. Geological Survey Bulletin 860-B, p. 31-80.
 - Kelley, V. C., 1977, Geology of Albuquerque Basin, New Mexico: New Mexico Bureau of Mines and Mineral Resources Memoir 33, 60 p.
 - Kottlowski, F. E., Beaumont, E. C., and Parkhill, T. A., 1971, East Mount Taylor Crevasse Canyon area, in Schomaker, J. W., and others, Strippable low-sulphur coal resources of the San Juan Basin in New Mexico and Colorado: New Mexico Bureau of Mines and Mineral Resources Memoir 25, p. 89-92.
 - Lee, W. T., and Knowlton, F. H., 1917, Geology and paleontology of the Raton Mesa and other areas in Colorado and New Mexico: U.S. Geological Survey Professional Paper 101, p. 195-198.
 - Maxwell, C. H., and Hibpshman, M. H., 1977, Status of mineral resource information for the Canoncito Indian Reservation, New Mexico: Administrative Report of the U.S. Geological Survey to the Bureau of Indian Affairs, 28 p.
 - Moench, R. H., and Puffett, W. P., 1963, Geologic map of the Arch Mesa Quadrangle, New Mexico: U.S. Geological Survey Quadrangle Map GQ-211, scale 1:24,000, 1 sheet.
 - --- 1963, Geologic map of the Mesa Gigante Quadrangle, New Mexico: U.S. Geological Survey Geologic Quadrangle Map GQ-212, scale 1:24,000.
 - Moench, R. H., and Schlee, J. S., 1967, Geology and uranium deposits of the Laguna district, New Mexico: U.S. Geological Survey Professional Paper 519, 117 p.
 - Olson, A. B., 1982, Cretaceous formations and coal resources on the Canoncito Indian Reservation in Bernalillo, Sandoval, and Valencia Counties, New Mexico: U.S. Geological Survey Administrative Report, 42 p.
 - Sabins, F. F., Jr., 1964, Symmetry, stratigraphy, and petrography of cyclic Cretaceous deposits in San Juan Basin: American Association of Petroleum Geologists, v. 48, no. 3, p. 292-316.

Rio Puerco Field

References: (continued)

- Sears, J. D., 1934, The coal field from Gallup eastward toward Mount Taylor, Part 1 of geology and fuel resources of the southern part of the San Juan Basin, New Mexico: U.S. Geological Survey Bulletin 860-A, 29 p.
- Wright, H. E., Jr., 1946, Tertiary and Quaternary geology of the lower Rio Puerco area, New Mexico: Geological Society of America Bulletin, v. 57, p. 383-456.
- Wyant, D. G., and Olson, A. G., 1978, Preliminary geologic map of the Albuquerque 1 degree by 2 degree Quadrangle, northwestern New Mexico: U.S. Geological Survey Open-File Report 78-476, scale 1:250,000.

Plake, W. P., 1859, Observations on the mineral resources of the Rocky Mountain chain, near Sant Fe, and the probable extent mouthwards of the Rocky Mountain gold field: Boston Society Natural History Proceedings, v. 7, p. 68-69.

and water resources of the Sants Pe area, New Mexico: U.S. Geological Survey Water-Supply Saper 1525. p. 83-84. New Mexico:

Santa Fe Los Southwest Lincoln and northern District

Location: Northeast of Santa Fe, SEl/4, SWl/4, sec. 9, T. 17 N., R. 10 E. This area is just outside of the study area boundary.

Age: Pennsylvanian, upper clastic part of the Sandia Formation of the Magdalena Group.

Rank: Subbituminous. Coal is impure, contains much bone, and carbonaceous shale is also present.

Comments: Kottlowski (in Spiegel and Baldwin, 1963, p. 83) estimated several hundred tons of coal and-carbonaceous shale were mined from limited underground workings in the SE1/4 SW1/4 sec. 9, T. 17 N., R. 10 E. The lenticular coal attains a maximum thickness of 5 ft, and dips 44 degrees east. This coal occurrence occupies the same stratigraphic position as coal beds, which occur nearby along the banks of the Pecos River.

References: References: New Mexicol

Blake, W. P., 1859, Observations on the mineral resources of the Rocky Mountain chain, near Santa Fe, and the probable extent southwards of the Rocky Mountain gold field: Boston Society Natural History Proceedings, v. 7, p. 68-69.

Spiegel, Zane, and Baldwin, Brewster, 1963, Geology and water resources of the Santa Fe area, New Mexico: U.S. Geological Survey Water-Supply Paper 1525, p. 83-84.

pt. 3, Coal, cil, cement, p. 415-471.

Geological Survey, 1913, Aiscellandous analyses of coal samples from various fields of the Unit

the Sierra Blanca coal field, Lincoln and Otaro Counties, New Mexico: D.S. Geological Survey

Sierra Blanca Field

Location: Southwest Lincoln and northern Otero Counties.

Age: Late Cretaceous; Mesaverde Formation.

Rank: Variable; principally bituminous.

Comments: Coal beds from 2 ft to 7 ft thick were mined from several mines between 1885 and 1939. Production declined substantially after 1910. Faulting and intrusions, which are common in the area, have limited development.

- Bodine, M. W., 1956, Geology of Capitan coal field, Lincoln County, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Circular 35, 27 p.
- Campbell, M. R., 1907, Coal in the vicinity of Fort Stanton Reservation, Lincoln County, New Mexico: U.S. Geological Survey Bulletin 316-F, p. 431-434.
- Ellis, R. W., 1936, Analyses of New Mexico coals: U.S. Bureau of Mines Technical Paper 569, p. 1-112.
- Fisher, C. A., 1904, Coal fields of the White Mountain region, New Mexico: U.S. Geological Survey Bulletin 225, p. 293-294.
- Griswold, G. B., 1959, Mineral deposits of Lincoln County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 67, 117 p.
- Read, C. B., Duffner, R. T., Wood, G. H., and Zapp, A. D., 1950, Coal resources of New Mexico: U.S. Geological Survey Circular 89, 24 p.
- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.
- U.S. Geological Survey, 1913, Miscellaneous analyses of coal samples from various fields of the United States: U.S. Geological Survey Bulletin 531-M, p. 331-355.
- Wegemann, C. H., 1914, Geology and coal resources of the Sierra Blanca coal field, Lincoln and Otero Counties, New Mexico: U.S. Geological Survey Bulletin 541, p. 419-452.

Tijeras Field

Location: Northeastern Bernalillo County.

Age: Late Cretaceous; Mesaverde Formation.

Rank: Bituminous.

Comments: Coal-bearing strata occur in a syncline within the Tijeras graben. The coal beds are generally 1 to 2.5 ft in thickness.

Three small mines produced small quantities of coal for local use during the early 1900's.

Selected References:

- Ellis, R. W., 1936, Analyses of New Mexico coals: U.S. Bureau of Mines Technical Paper 569, p. 1-112.
- Gardner, J. H., 1910, Isolated coal fields in Santa Fe and San Miguel Counties, New Mexico: U.S. Geological Survey Bulletin 381-C, p. 447-451.
- Lee, W.T., 1912, Stratigraphy of the coal fields of northern central New Mexico: Geological Society of America Bulletin, v. 23, p. 571-686.

the Caballo Mountains: with special references to

- --- 1912, The Tijeras coal field, Bernalillo County, New Mexico: U.S. Geological Survey Bulletin 471-H, 575-578.
 - Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey, Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.

General References Selected for Coal in New Mexico

- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geological Survey Bulletin 1275, 116 p.
- Averitt, Paul, and Lopez, Lorreda, 1982, 1982-1970,
 Bibliography and index of U.S. Geological Survey
 publications relating to coal: U.S. Geological
 Survey Bulletin 1377, 173 p.
- Bates, R. L., 1943, Selected bibliography on coal in New Mexico: New Mexico Bureau of Mines and Mineral Resources Circular 8, 4 p.
- Briggs, J. P., and Maxwell, C. H., 1979, Status of mineral resource information for the Jemez and Zia Indian Reservations, New Mexico: U.S. Geological Survey and U.S. Bureau of Mines Administrative Report BIA-51, 51 p.
- Campbell, M. R., 1914, Analyses of coal samples from various fields of the United States: U.S. Geoloigcal Survey Bulletin 541-K, p. 491-526.
- Campbell, M. R., and Clark, F. R., 1916, Analyses of coal samples from various parts of the United States: U.S. Geological Survey Bulletin 621, p. 251-370.
- Ellis, R. W., 1936, Analyses of New Mexico coals: U.S. Bureau of Mines Technical Paper 569, p. 112.
- Gardner, J. H., 1910, Carboniferous coal in New Mexico: Mines and Minerals, v. 30, p. 570-571.
- Kelley, V. C., and Silver, Caswell, 1952, Geology of the Caballo Mountains; with special references to regional stratigraphy and structure and to mineral resources, including oil and gas: University of New Mexico Publications in Geology no. 4, 286 p.
- Kottlowski, F. E., 1964, The economic geology of coal in New Mexico: New Mexico Business, v. 17, no. 2, p. 2-11.
- Kottlowski, F. E., and Beaumont, E. C., 1965, Coal in mineral and water resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin 87, p. 100-116.

General References Selected for Coal in New Mexico (continued)

- Kottlowski, F. E., Campbell, F. W., Royball, G. R.,
 and Martinez, L. B., 1982, New Mexico 1982
 Keystone Coal Industry Manual, McGraw-Hill, New
 York, p. 586-595.
- Osburn, J. C., 1982, Geology and coal resources of three Quadrangles in the central Datil Mountains coal field, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-File Report 164, 82 p.
- Pike, W. S., Jr., 1947, Intertonguing marine and non-marine Upper Cretaceous deposits of New Mexico, Arizona, and southwestern Colorado: Geological Society of America Memoir 24, 103 p.
- Read, C. B., Duffner, R. T., Wood, G. H., and Zapp, A. D., 1950, Coal resources of New Mexico: U.S. Geological Survey Circular 89, 24 p.
- Reynolds, D. A., Davis, J. D., Brewer, R. E., Ode, W. H., Wolfson, D. E., and Birge, G. W., 1946, Carbonizing properties of western coals: U.S. Bureau of Mines Technical Paper 692, 79 p.
- Storrs, L. S., 1902, The Rocky Mountian coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.
- Tabet, D. E., and Frost, S. J., 1978, Coal fields and mines of New Mexico: New Mexico Bureau of Mines and Mineral Resources Map 10, scale 1:1,000,000.
- U.S. Geological Survey, 1913, Miscellaneous analyses of coal samples from various fields of the United States: U.S. Geological Survey Bulletin 531-M, p. 331-355.
- U.S. Geological Survey and New Mexico Bureau of Mines and Mineral Resources, 1981, Energy resources map of New Mexico: U.S. Geological Survey Miscellaneous Investigations Map I-1327, scale 1:500,000.

Lignitic units, generally less than 1 meter thick, presumably occur in the Miocene and Pliocene(?) Payette Formation equivalents in the area of the Alvord Desert, where they yield natural gas shows when penetrated by drill holes (Fouch, T. D., 1983, personal communication). There is currently no commercial production of coal in the Basin and Range province in Oregon.

- Andrews, D. A., Hendricks, T. A., and Huddle, J. W., 1947, The coal fields of Arizona, California, Idaho, Nevada, and Oregon, in Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 4-6.
- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geological Survey Bulletin 1275, 116 p.
- Brownfield, M. E., 1981, Oregon's coal and its economic future: Oregon Geology, v. 43, no. 5, p. 59-67.
- Fouch, T. D., 1980, personal communication.
- Mason, R. S., 1969, Coal in Mineral and water resources of Oregon: Oregon Department of Geology and Mineral Industries Bulletin 64, in cooperation with U.S. Geological Survey, p. 272-278.
- Mason, R. S., and Erwin, M. I., 1955, Coal resources of Oregon: U. S. Geological Survey Circular 362, 7 p.
- Moore, G. W., and Stephans, J. G., 1954, Reconnaissance for uranium-bearing carbonaceos rocks in California and adjacent parts of Oregon and Nevada: U.S. Geological Circular 313, p. 5-7.
- Stovall, D. H., 1905, Coal mining in Oregon: Mines and Minerals, v. 26, no. 5, p. 203.
- U.S. Bureau of Mines, 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, 83 p.
- Yancey, H. F., and Geer, M. R., 1940, Analyses and other properties of Oregon coals as related to their utilization: Oregon Department of Geology and Mineral Industries Bulletin 20, 38 p.

Eagle Spring

- Location: Hudspeth County, Eagle Mountains.
- Age: Late Cretaceous, Chispa Summit Formation of Adkins (1933).
- Rank: Probably bituminous. Information scarce, contradictory. High ash and volatite content. Some coal metamorphosed to anthracite.
- Comments: Four principal coal beds which range from 20 in. to 7 ft in thickness. Average thickness, 3.5 ft.

Coal was most likely deposited in stagnant lagoons. The area is structurally complex, and the coal-bearing strata dip steeply. A 230 ft shaft was driven along "Big Seam Number II", which was the only coal bed developed in this area. Production prior to 1887 was about 100 tons.

- Adkins, W. S., 1933, The geology of Texas, Part 2, The Mesozoic systems of Texas: Texas University Bulletin, 3232, 239-518.
- Ashburner, C. A., 1887, Coal, in U.S. Geological Survey Mineral Resources of the United States, 1886: p. 224-377.
- ---- 1881, Brazos coal field, Texas: American Institute of Mining Engineers Transactions, v. 9, p. 495-506.
- ---- 1888, Coal, in U.S. Geological Survey Mineral resources of the United States, 1887: p. 168-382.
- ---- 1889, Coal, in U.S. Geological Survey Mineral resources of the United States, 1888: p. 168-394.
- Baker, C. L., 1927, Exploratory geology of a part of southwestern Trans-pecos Texas: University of Texas Bulletin 2745, 70 p.
- ---- 1934, Construction materials, mineral, stone, and clay products, coal, lignite, and water supplies, in Sellards, E. H., and Baker, C. L., The geology of Texas, v. II, Structural and economic geology: University of Texas Bulletin 3401, p. 223-402.

Eagle Spring

- References: (continued)
- Campbell, M. R., and Parker, E. W., 1909, Coal fields of the United States, in Papers on the Conservation of mineral resources: U.S. Geological Survey Bulletin 394, p. 7-26.
- Gillerman, Elliot, 1953, Fluorspar deposits of the Eagle Mountains, Trans-Pecos Texas: U.S. Geological Survey Bulletin 987, 98 p.
- Mapel, W. J., 1967, Bituminous coal resources of Texas: U.S. Geological Survey Bulletin 1242-D, 28 p.
- Parker, E. W., 1892, Coal, in U.S. Geological Survey, Mineral resources of the United States, 1889-1890: p. 145-286.
- --- 1893, Coal, in U.S. Geological Survey, Mineral resources of the United States, 1892: p. 263-550.
- Phillips, W. B., 1902, Coal, lignite, and asphalt rocks: University of Texas Bulletin 15, 137 p.
- Schmitz, E. J., 1885, Geology and mineral resources of the Rio Grande region in Texas and Coahuila: American Institute of Mining Engineers Transactions, v. 13, p. 388-405.
- Shumard, B. F., 1859, First report of progress of the Geological and Agricultural Survey of Texas:
 Austin, Texas, 17 p.
- Smith, J. F., Jr., 1940, Stratigraphy and structure of the Devil Ridge area, Texas: Geological Society of America Bulletin, v. 51, pt. 2, p. 70-79.
- --- 1941, Geology of the Eagle Spring area, Eagle Mountain, Hudspeth County, Texas: Field and Laboratory, v. 9, no. 2, p. 70-79.
- Streeruwitz, W. H. von, 1889, Report of geologist for western Texas, in Dumble, E. T., First report of progress, 1888: Texas Geological and Mineralogical Survey, p. 31-44.
- --- 1890, Geology of Trans-Pecos Texas, preliminary statement, in First Annual Report of the Texas Geological Survey, 1889: p. 217-135.

Eagle Spring:

References: (continued) ______ San Carlos 21 miles

Underwood, J. R., Jr., 1962, Geology of Eagle Mountains and vicinity, Trans-Pecos Texas: University of Texas Austin, Ph.D. dissertation, 560 p.

---- 1963, Geology of Eagle Mountains and vicinity, Hudspeth County, Texas: University of Texas, Austin Bureau of Economic Geology Quadrangle Map 26, scale 1:48,000.

an adit 100 ft deep, and a 175 ft shaft.

e sharrow

Selected References:

in Sellard, E. H., Adkins, W. S., and Plumm F. B., eds., The Geology of Taxas, v. 1

Stratigraphy: University of Texas Bulletin 323:

Baker, C. L., 1927, Exploratory geology of a part of southwestern Trans-Pecos Texas: University of Texas Bullettn 2745, 70 m

Baker, C. L., 1934, Construction materials, mineral stone, and clay products, coal, lighte, and water supplies, in Sellards, E. H., and Baker, C. L., eds., The geology of Texas, v. II., structural and economic geology: University of

Texas Sullerin 3401, p. 223-402.

Billbrey, D. G., 1957, Economic geology of Rim Rock country, Presidio County, Trans-Pecos, Texas: Austin, Texas, University of Texas, Naster's

DeFord, R. R., 1958, Tertiary formations of Rim Rock country, Presidio County, Trans-Pecos, Texas: Austin, Texas, University of Texas, Bureau of Economic Geology Report Investigations 36, 37 o

Dumble, E. T., 1891, Second annual report of the Geological Survey of Texas, 1890: Texas Geological Survey, v. 2. 56 p.

Dumble, E. T., 1895, Cretaceous of western Texas and Combuila, Mexico: Geological Society of America Bulletin 6, p. 375-388.

San Carlos Field

Location: Presidio County, near San Carlos, 21 miles NNW of Candelaria.

Age: Late Cretaceous, San Carlos Formation.

Rank: Bituminous. High volatile content.

Comments: The San Carlos Coal Company, which was formed in 1893, mined coal for 6 months during 1896. The area, which is structurally complex, was developed by an adit 100 ft deep, and a 175 ft shaft. Coal in the area is generally 8-10 in. thick, and was most likely deposited in a shallow lagoon or estuary.

- Selected References: Adkins, W. S., 1932, The Mesozoic systems in Texas, in Sellard, E. H., Adkins, W. S., and Plummer, F. B., eds., The Geology of Texas, v. 1, Stratigraphy: University of Texas Bulletin 3232, p. 239-518.
- Baker, C. L., 1927, Exploratory geology of a part of southwestern Trans-Pecos Texas: University of Texas Bulletin 2745, 70 p.
- Baker, C. L., 1934, Construction materials, mineral, stone, and clay products, coal, lignite, and water supplies, in Sellards, E. H., and Baker, C. L., eds., The geology of Texas, v. II, structural and economic geology: University of Texas Bulletin 3401, p. 223-402.
- Billbrey, D. G., 1957, Economic geology of Rim Rock country, Presidio County, Trans-Pecos, Texas: Austin, Texas, University of Texas, Master's thesis, 114 p.
- DeFord, R. K., 1958, Tertiary formations of Rim Rock country, Presidio County, Trans-Pecos, Texas: Austin, Texas, University of Texas, Bureau of Economic Geology Report Investigations 36, 37 p.
- Dumble, E. T., 1891, Second annual report of the Geological Survey of Texas, 1890: Texas Geological Survey, v. 2, 56 p.
- Dumble, E. T., 1895, Cretaceous of western Texas and Coahuila, Mexico: Geological Society of America Bulletin 6, p. 375-388.

San Carlos Field

- References: (continued)
- Ferguson, J. D., 1959, Structure of Porvenir area,
 Presidio County, Trans-Pecos Texas: Austin,
 Texas, University of Texas, Master's thesis,
 46 p.
- Mapel, W. J., 1967, Bituminous coal resources of Texas: U.S. Geological Survey Bulletin 1242-D, 28 p.
- Miller, W. D., 1957, Pre-Cenozoic stratigraphy of Porvenir area, Presidio County, Trans-Pecos Texas: Austin, Texas, University of Texas, Master's thesis, 95 p.
- Owen, J., 1888, Notes on the geology of the Rio Grande valley: Houston, Texas, State Geological and Scientific Association Bulletin, v. 1, p. 1888-1889.
- Parker, E. W., 1894, Coal, in U.S. Geologial Survey Mineral resources of the United States, 1893: p. 187-414.
- --- 1896, Coal, in Seventeenth Annual Report of the U.S. Geological Survey, 1895-96: U.S. Geological Survey Mineral Resources of the United States, 1895, pt. 3, Metallic Products and Coal, p. 285-542.
- Stenzel, H. B., 1944, Coals, in Drummond, Lorena, ed., Texas looks ahead, v. l, the resources of Texas: Austin, Texas, University of Texas, p. 173-184.
- Udden, J. A., 1907, Report on a geological survey of the lands belonging to the New York and Texas Land Company, Ltd., in the upper Rio Grande embayment in Texas: Augustana Library Publication 6, p. 51-107.
- Udden, J. A., 1913, Report on the San Carlos coal lands in Block 3, D. & P. Railway land, Presidio County, Texas: Austin, Texas, University of Texas, Bureau of Economic Geology, Letter to Director, 15 p.
- Vaughn, T. W., 1896, Notes on the geology of the San Carlos coal field, Trans-Pecos Texas [abs.]: Science, New Series 3, v. 3, p. 375.

San Carlos Field

References: (continued)

- ---- 1900, Reconnaissance in the Rio Grande coal fields of Texas: U.S. Geological Survey Bulletin 164, 100 p.
- White, C. A., 1887, On the age of the coal found in the region traversed by the Rio Grande: American Journal of Science, New Series 3, v. 3, p. 18-20.
- Wollenben, J. A., 1966, Biostratigraphy of the Ojinaga and San Carlos Formations of west Texas and norhteastern Chihuahua: Austin, Texas, University of Texas, Ph.D. dissertation, 63 p.

probably formed in coastal swamp daposits. The Chisos Mining Company attempted to mine coal in this area during the 1930's and 1940's; however, no production information

Selected References:

Adkins, W. S., 1932. The Mesozoic systems in Texas, in Sellards, E. S., Adkins, W. S., and Plummer, F. B., eds., The geology of Texas, v. 1, Stratigraphy: University of Texas Bulletin 3232. p. 239-518.

Ashburner, C. A., 1887, Cosl, in Mineral resources of the United States, 1886: U.S. Geological Survey, p. 224-377

Baker, C. L., 1934, Construction materials, mineral, stone, and clay products, coal, lignite, and water supplies, in Sellards, E. H., and Baker, C. L., eds., The geology of Texas, v. II, structura and aconomic geology: University of Texas Bulletin 3401, p. 223-402.

Buckley, S. B., 1876, Second annual report of the geological and agricultural survey of Texas: Rousto Texas Geological and Agricultrual Survey, 96 p.

Hill, B. F., 1902, The Terlingua quicksilver district Brewster County: University of Texas Bullletin 15

Hopkins, E. M., 1965, Sedimentology of the Aguja Formation, Big Bend National Park, Brewster County, Texas: Austin, Texas, University of Texas, Master's thesis, 165 n Terlingua Field (Big Bend area)

Location: Brewster County.

Age: Late Cretaceous, Gulfian Series.

Rank: Variable. Unoxidized material from the Chisos mine is subbituminous coal with a high content of moisture, ash, sulfur. Resinous pods are common. Locally, near shallow intrusives, coal is anthracite.

Comments: Coal beds generally range from a few inches to 3 ft in thickness.

Maximum bed thickness is about 4 ft. Coals are locally associated with carbonaceous shale sections 20 ft thick. Coals were probably formed in coastal swamp deposits. The Chisos Mining Company attempted to mine coal in this area during the 1930's and 1940's; however, no production information is available.

- Adkins, W. S., 1932, The Mesozoic systems in Texas, in Sellards, E. H., Adkins, W. S., and Plummer, F. B., eds., The geology of Texas, v. 1, stratigraphy: University of Texas Bulletin 3232, p. 239-518.
- Ashburner, C. A., 1887, Coal, in Mineral resources of the United States, 1886: U.S. Geological Survey, p. 224-377.
- Baker, C. L., 1934, Construction materials, mineral, stone, and clay products, coal, lignite, and water supplies, in Sellards, E. H., and Baker, C. L., eds., The geology of Texas, v. II, structural and economic geology: University of Texas Bulletin 3401, p. 223-402.
- Buckley, S. B., 1876, Second annual report of the geological and agricultural survey of Texas: Houston, Texas Geological and Agricultrual Survey, 96 p.
- Hill, B. F., 1902, The Terlingua quicksilver district Brewster County: University of Texas Bullletin 15, 74 p.
- Hopkins, E. M., 1965, Sedimentology of the Aguja Formation, Big Bend National Park, Brewster County, Texas: Austin, Texas, University of Texas, Master's thesis, 165 p.

- Terlingua Field (Big Bend Area)
 - Selected References: (continued)
 - Lonsdale, J. T., 1959, Coal report, Brewster County, Texas, for Texas General Land Office: Letter to Bascom Giles, Commissioner of Texas General Land Office, 4 p.
- McKnight, J. F., 1968, Geology of Bofecillos Mountains area, Trans-Pecos Texas: Austin, Texas, University of Texas, Ph.D. dissertation, 198 p.
 - Maxwell, R. A., Lonsdale, J. T., Hazzard, R. T., and Wilson, J. A., 1967, Geology of Big Bend National Park, Brewster County, Texas: University of Texas Publication 6711, 320 p.
 - Phillips, W. B., 1902, Report of progress of 1902, Report of progress for 1901--Sulphur, oil, and quicksilver in Trans-Pecos Texas: University of Texas Bulletin 9, 43 p.
 - Phillips, W. B., and Worrell, S. H., 1913, The fuels used in Texas: University of Texas Bulletin 307, 287 p.
 - Udden, J. A., 1907, A sketch of the geology of the Chisos country, Brewster County, Texas: University of Texas Bulletin 93, 101 p.
 - U.S. Bureau of Mines, 1948, Analyses of Michigan, North Dakota, South Dakota and Texas coals: U.S. Bureau of Mines Technical Paper 700, 106 p.
- Yates, R. G., and Thompson, G. A., 1959, Geology and quicksilver deposits of the Terlingua district, Texas: U.S. Geological Survey Professional Paper 312, 114 p.

General References Selected for Coal in Texas

- Ashburner, C. A., 1887, Coal, in U.S. Geological Survey Mineral resources of the United States, 1886: p. 224-377.
- --- 1888, Coal, in U.S. Geological Survey Mineral resources of the United States, 1887: p. 168-382.
- --- 1889, Coal, in U.S. Geological Survey Mineral resources of the United States, 1888: p. 168-394.
- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geological Survey Bulletin 1275, 116 p.
- Evans, T. J., 1975, Native bituminous materials in Texas: Austin, Texas, University of Texas Bureau of Economic Geology Mineral Resources Circular, no. 57, 18 p.
- Garner, L. E., St Claire, A. E., and Evans, T. J., compilers, 1979, Mineral resources of Texas: Bureau of Economic Geology, University of Texas at Austin, Map scale 1:1,000,000.
- Hill, R. T., 1893, The coal fields of Texas: U.S.

 Geological Survey Mineral Resources of the United
 States, 1891, pt. g, p. 326-328.
- ---- 1893, The coal fields of Texas: U.S. Geological Survey Mineral Resources of the U.S., 1892, pt. g, p. 507-510.
- Mapel, W. J., 1967, Bituminous coal resources of Texas: U.S. Geological Survey Bulletin 1242-D, 28 p.
- Taff, J. A., 1902, The southwestern coal field: U.S. Geological Survey Twenty-second Annual Report 1900-1901, pt. 3i, p. 367-413.
- Udden, J. A., Baker, C. L., and Bose, Emil, 1916, Review of the geology of Texas: University of Texas Bulletin 44, 178 p.

Eale, L. A., 1960, Frontier Formation-Coalville,

Coalville Field

Location: Summit, Salt Lake Counties.

Age: Cretaceous. Spring Canyon Member and Coalville Member, Frontier Formation, and Dry Hollow Member, Wanship Formation.

Rank: Subbituminous. Low ash, moderate sulfur content.

Comments: The extreme western extension of the Coalville field lies within the project study area. The Cretaceous rocks may be coal-bearing in the area shown on the accompanying map.

The principal mining activity in the area has occurred in a small area east of Coalville, where Cretaceous rocks are exposed through a window in the Tertiary rocks. The Wasatch coal bed occurs in the Coalville Member of the Frontier Formation, and was the primary mining target with a thickness commonly between 8 and 10 ft. Other beds are too thin to be of economic importance. This coal is of importance only to local markets.

- Allen, C. A., 1924, Coal mining in Utah, in U.S. Bureau of Mines analyses of Utah coals: U.S. Bureau of Mines Technical Paper 345, p. 1-12.
- Campbell, M. R., 1917, Coal fields of the United States, general introduction: U.S. Geological Survey Professional Paper 100-A, 33 p.
- Doelling, H. H., and Graham, R. L., 1972, Southwestern Utah coal fields--Alton, Kaiparowits Plateau and Kolob-Harmony: Utah Geological and Mineralogical Survey, Monograph Series, no. 1, 333 p.
- Hale, L. A., 1960, Frontier Formation-Coalville, Utah and nearby areas of Wyoming and Colorado: Wyoming Geological Association Fifteenth Annual Guidebook, p. 137-146.
- Shelley, C. T., 1959, Coalville anticline, Summit County, Utah, in Geology of the Wasatch and Uinta Mountains transition area: Intermountain Association of Petroleum Geologists, Tenth Annual Field Conference, Salt Lake City, Utah, p. 189-192.

Coalville

- References: (continued)
- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.
- Taff, J. A., 1905, The Weber River Coal field, Utah: U.S. Geological Survey Bulletin 285, p. 285-288.
- Trexler, D. W., 1966, Stratigraphy and structure of the Coalville area, northeastern Utah: Colorado School of Mines Professional Contributions, no. 2, 69 p.
- Wegemann, C. H., 1915, The Coalville coal field, Utah: U.S. Geological Survey Bulletin 581, p. 161-184.

Brackenridge, R. M., Bennett, E. H., and Earbour, J. I 1980, Energy resources of Idaho: Idaho Bureau of

Doelling, H. H., and Graham, R. L., 1972, Southwestern Utah coal fields--Alton, Kaiparowits Plateau and

Solob-Harmony: Utah Geological and Mineralogical Survey Nonograph Series, no. 1, 333 p.

Mapel, W. J., and Hail, W. J., Jr., 1956, Tertiary stratigraphy of the Goose Creek district, Cassia County, Idaho, and adjacent parts of Utah and Nevada, in Geology of parts of northwestern Utah: Utah Geological Society Guidebook 11,

--- 1959, Tertisry geology of the Goose Creek district, Cassia County, Idaho, Box Elder County Utah, and Idaho County: Nevada: U.S. Geological

Stokes, W. L., 1962, Geologic map of Utah, sorthwest quarter: Idaho State Land Board, scale 1:250.000.

Goose Creek Creek

Location: Box Elder, Utah.

Age: Miocene and Pliocene, Salt Lake Formation;
Miocene and Pliocene(?), Payette Formation.

Rank: Lignite.

Comments: Lignite has been mined in small quantities for local use from both formations. High ash content. Some uranium mineralization occurs locally in lignite (Idaho, T. 16 S., R. 21 E.) along the flanks and trough of a shallow syncline.

- Bowen, C. F., 1913, Lignite in the Goose Creek district, Cassia County, Idaho: U.S. Geological Survey Bulletin 531-H, p. 252-262.
- Breckenridge, R. M., Bennett, E. H., and Harbour, J. L., 1980, Energy resources of Idaho: Idaho Bureau of Mines and Geology, Map 3, scale 1:1,000,000.
- Doelling, H. H., and Graham, R. L., 1972, Southwestern
 Utah coal fields--Alton, Kaiparowits Plateau and
 Kolob-Harmony: Utah Geological and Mineralogical
 Survey Monograph Series, no. 1, 333 p.
- Mapel, W. J., and Hail, W. J., Jr., 1956, Tertiary stratigraphy of the Goose Creek district, Cassia County, Idaho, and adjacent parts of Utah and Nevada, in Geology of parts of northwestern Utah: Utah Geological Society Guidebook 11, p. 1-16.
- ---- 1959, Tertiary geology of the Goose Creek district, Cassia County, Idaho, Box Elder County, Utah, and Idaho County, Nevada: U.S. Geological Survey Bulletin 1055-H, p. 217-254.
- Stokes, W. L., 1962, Geologic map of Utah, northwest quarter: Idaho State Land Board, scale 1:250,000.

Harmony Field

Location: Northern Washington County, southern Iron County.

Age: Late Cretaceous; Dakota Sandstone and Tropic Shale, undivided.

Rank: Variable. Locally metamorphosed to semianthracite.

Comments: At least 6 coal beds are known to occur in the units correlative with the Tropic Shale and Dakota Sandstone. The coal-bearing strata were severely deformed by igneous intrusions in the Pine Valley Mountains. The coal beds, which range from 1 to 7 ft thick, contain a high percentage of ash.

Numerous prospect pits, adits and shafts have been dug, however, production has been insignificant.

- Averitt, Paul, 1962, Geology and coal resources of Cedar Mountain Quadrangle, Iron County, Utah: U.S. Geological Survey Professional Paper 389, p. 69.
- Cook, E. F., 1957, Geology of the Pine Valley Mountains, Utah: Utah Geology and Mineralogical Survey Bulletin 58, p. 101-102.
- Doelling, H. H., and Graham, R. L., 1972, Eastern and northern Utah coal fields--Vernal, Henry Mountains, Sego, La Sal-San Juan, Tabby Mountain, Coalville, Henrys Fork, Goose Creek and Lost Creek: Utah Geological and Mineralogical Survey Monograph Series, no. 2, 411 p.
- Lee, W. T., 1906, (1907), The Iron County coal field, Utah: U.S. Geological Survey Bulletin 316, p. 359-375.
- Richardson, G. B., 1909, The Harmony, Kolob, and Kanab coal fields, southern Utah: U.S. Geological Survey Bulletin 341, p. 379-400.
- Storr, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.

Harmony Field

References: (continued)

Thompson, A. E., and Stokes, W. L., 1970, Stratigraphy of the San Rafael Group, southwest and south-central Utah: Utah Geological and Mineralogical Survey Bulletin 87, 31 p.

Zeller, H. D., 1955, Reconnaissance for uranium-bearing carbonaceous materials in southern Utah: U.S. Geological Survey Circular 349, 9 p.

73

coal fields, southern Duabi.D.S. Geological

Survey Sulletin 541, p. 379-400.

Kolob Field

Location: Southeast Iron, northeast Washington Counties.

Age: Late Cretaceous. Dakota Sandstone - Tropic Shale undifferentiated unit, Straight Cliffs Formation, Wahweap Formation.

Rank: Subbituminous to bituminous.

Comments: During the early stages of mining, coal was used primarily in local mining districts.

Pacific Utilities Company operated a steam plant with local coal between 1948-1969.

Coal from the Kolob field is generally of poor quality, and is high in sulfur and ash.

- Averitt, Paul, 1962, Geology and coal resources of Cedar Mountain Quadrangle, Iron County, Utah: U.S. Geological Survey Professional Paper 389, p. 69.
- Cashion, W. B., 1961, Geology and fuels resources of the Orderville-Glendale area, Kane county, Utah: U.S. Geological Survey Coal Investigations Map C-49, scale 1:62,500.
- Doelling, H. H., and Graham, R. L., 1972, Eastern and northern Utah coal fields--Vernal, Henry Mountains, Sego, La Sal-San Juan, Tabby Mountain, Coalville, Henrys Fork, Goose Creek and Lost Creek: Utah Geological and Mineralogical Survey Monograph Series, no. 2, 411 p.
- Gregory, H. E., 1950, Geology and geography of the Zion Park region, Utah and Arizona: U.S. Geological Survey Professional Paper 220, 200 p.
- Richardson, G. B., 1909, The Harmony, Kolob, and Kanab coal fields, southern Utah: U.S. Geological Survey Bulletin 341, p. 379-400.
- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.

Utah:

Kolob Field

References: (continued)

Thompson, A. E., and Stokes, W. L., 1970, Stratigraphy of the San Rafael Group, southwest and south-central Utah: Utah Geological and Mineralogical Survey Bulletin 87, 31 p.

Zeller, H. D., 1955, Reconnaissance for uranium-bearing carbonaceous materials in southern Utah: U.S. Geological Survey Circular 349, 9 p.

product yield which roat fields: U.S. Bursau of

Wales Field

Location: Juab, Sanpete Counties.

Age: Paleocene and Late Cretaceous, North Horn Formation.

Rank: Subbituminous.

Comments: The area shown on the accompanying map represents Cretaceous strata that may contain thin coal beds. The productive part of the Wales field lies outside of the project study area. Coal in the Wales field is generally 3 to 4 ft thick, and is overlain and underlain by limestones and oil shale. The coal beds are lenticular, and contain common shale and bony interbeds. The coal is low in moisture and high in ash and sulfur. Mines operated intermittently between 1855 and 1955; however, production was not substantial.

- Campbell, M. R., 1914, Analyses, of coal samples from various fields of the United States: U.S. Geological Survey Bulletin 541-K p. 491-526.
- Clark, F. R., 1914, Coal near Wales, Sanpete County, Utah: U.S. Geological Survey Bulletin 541, p. 478-489.
- Doelling, H. H., 1972, Central Utah coal fields--Sevier-Sanpete, Wasatch Plateau, Book Cliffs, and Emery: Utah Geological and Mineralogical Survey, Monograph Series no. 3, 571 p.
- Gomez, M., Landers, W. S., and Boyd, C. K., 1967, Estimation of low-temperature carbonization product yield--Utah coal fields: U.S. Bureau of Mines, Report Investigations 6990, p. 32.
- Hardy, C. T., and Zeller, H. D., 1953, Geology of the west-central part of the Gunnison Plateau, Utah: Geological Society of American Bulletin, v. 64, p. 1261-1278.
- Hileman, D. H., Collins, B. A., and Wilson, S. R., 1970, Coal production from the Uinta region, Colorado and Utah: U.S. Bureau of Mines Information Circular 8497, 44 p.

Wales Field

References: (continued)

- Hunt, R. E., 1948, The geology of the Dry Canyon region, Gunnison Plateau, Utah: Ohio State University, Master's thesis, unpublished, 55 p.
- --- 1950, The geology of the northern part of the Gunnison Plateau, Utah: Ohio State University, Ph.D. thesis, unpublished, 267 p.
- Richardson, G. B., 1906, Coal in Sanpete County, Utah: U.S. Geological Survey Bulletin 285, p. 280.
 - Taylor, D. A., 1948, The geology of the Gunnison Plateau from in the vicinity of Wales, Utah: Ohio State University, Master's thesis, unpublished.
- Thomson, K. C., 1970, Coal data, Sterling and Wales, Sanpete County, Utah: Utah Geological and Mineralogical Survey unpublished data, p. n/a.

and the Great Basin in central Utah: Utah Geological Society Guidebook, no. 4, 106 p.

Taff, J. A., 1905, The Weber River Coal field, Utah: U.S. Geological Survey Bulletin 285, p. 285-288.

27

General References Selected for Coal in Utah

- Averitt, Paul, 1969, Coal resources of the United States, January 1, 1967: U.S. Geological Survey Bulletin 1275, 116 p.
- Campbell, M. R., 1914, Analyses of coal samples from various fields of the United States: U.S. Geological Survey Bulletin 541-K, p. 491-526.
- Campbell, M. R., and Clark, F. R., 1916, Analyses of coal samples from various of the United States: U.S. Geological Survey Bulletin 621, p. 251-375.
- Cooper, H. M., Snyder, N. H., Abernathy, R. F., Tarpley, E. C., and Swingle, R. J., 1947, Analyses of Arizona, California, Idaho, Nevada, and Oregon coals: U.S. Bureau of Mines Technical Paper 696, p. 27-47.
- Doelling, H. H., 1970, Coal fields of Utah: Utah Geological Survey Map 20 A, scale 1:1,000,000.
- --- 1982, Coal fields of Utah: Utah Geological Survey Map 66, scale 1:1,000,000.
- Forrester, R., 1893, Coal fields of Utah: U.S. Geological Survey Mineral Resources 1892, p. 510-517.
- Spieker, E. M., 1925, Geology of coal fields of Utah: U.S. Bureau of Mines Technical Paper 345, p. 13-72.
- and the Great Basin in central Utah: Utah Geological Society Guidebook, no. 4, 106 p.
- Storrs, L. S., 1902, The Rocky Mountain coal fields: U.S. Geological Survey Twenty-second Annual Report, pt. 3, Coal, oil, cement, p. 415-471.
- Taff, J. A., 1905, The Weber River Coal field, Utah: U.S. Geological Survey Bulletin 285, p. 285-288.
- Zeller, H. D., 1955, Reconnaissance for uranium-bearing carbonaceous materials in southern Utah: U.S. Geological Survey Circular 349, 9 p.

General References Selected for Coal in the Basin and Range

- American Society for Testing Materials, 1939, Standard specifications for classification of coals by rank, (ASTM Designation: D-388-38): 1939 Book of ASTM Standards pt. 3, p. 1-6.
- Trumbull, James, 1960, Coal fields of the United States: U.S. Geological Survey, Map, scale 1:5,000,000, 2 sheets.

Summary of yearly production of oil, gas and helium 1954-1981, 12 p.

__1979, Structure map of southeastern Arizona: 2 sheets scale 1:375,000.

1977a, Location of wells penetrating subsurface basemen tocks, Arizona: Arisona Oil and Gas Conservation Commis Publication GT 3A.

___1977b, Location of walls penetrating subsurface supra-b rocks, Arizona: Arizona Oil and Gas Conservation Commis Publication GT 38.

and gas resources of northern Azizona: Arizona Oil and Gas Conservation Commission, 10 p.

__1974b, Chart of oil and secure is occurrence in Arizona: Arizona Oil and Gas Conservation Commission

Paverable and potentially describes areas the voltrecarbons and geothermal sources in mosthesessure Arizona: Arizona Gil and the power wation, he a see at

Arizona for petroleum suplerarium investigazione: arizona for petroleum suplerarium investigazione: arizona fil and Gas Conservation topotamblem, 72 p.

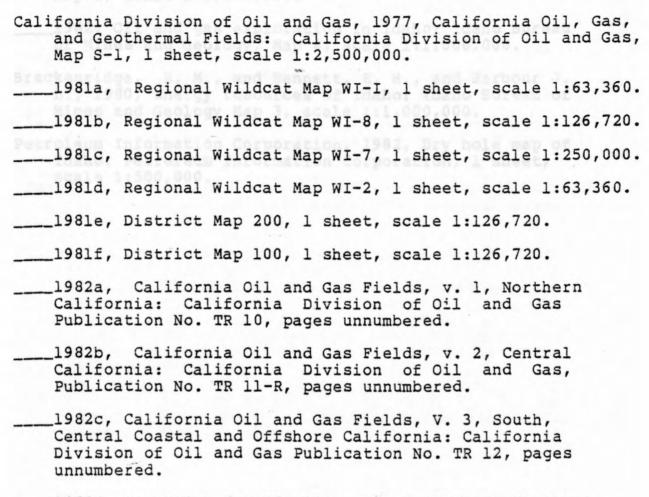
State of Arizona: Arizona Cia and Gas Conservation Commission, 23 p. 5 p. sepatement, sheet 1, scale

irce, S. W., Seith, S. S., Silb, P. C., 1970, Coal, ell natural gas, belium and problem in Arizona: Arizona Sureau of Mines Sullatio tell, 950 m.

Arizona: Arizona:

- Aiken, C. L. U., and Sumner, J. S., 1974, A geophysical and geological investigation of potentially favorable areas for petroleum exploration in southeastern Arizona: Arizona Oil and Gas Conservation Commission Report of Investigation 3, 39 p., 3 plates, scale 1:500,000.
- Arizona Oil and Gas Conservation Commission, 1981, Summary of yearly production of oil, gas and helium 1954-1981, 12 p.
- ____1979, Structure map of southeastern Arizona: 2 sheets, scale 1:375,000.
- ____1977a, Location of wells penetrating subsurface basement rocks, Arizona: Arizona Oil and Gas Conservation Commission Publication GT 3A.
- ____1977b, Location of wells penetrating subsurface supra-basement rocks, Arizona: Arizona Oil and Gas Conservation Commission Publication GT 3B.
- Conley, J. N., 1974a, Review of the development of oil and gas resources of northern Arizona: Arizona Oil and Gas Conservation Commission, 10 p.
- ____1974b, Chart of oil and natural gas occurrence in Arizona: Arizona Oil and Gas Conservation Commission.
- Conley, J. N., and Giardina, Salvatore, Jr., 1979,
 Favorable and potentially favorable areas for hydrocarbons and geothermal energy sources in northeastern
 Arizona: Arizona Oil and Gas Conservation, 56 p., 10 plates.
- Giardina, Salvatore, Jr., 1979, Geologic review of northwestern Arizona for petroleum exploration investigations: Arizona Oil and Gas Conservation Commission, 72 p.
- Conley, J. N., and Stacey, O. A., 1981, Well location map four, State of Arizona: Arizona Oil and Gas Conservation Commission, 23 p., 5 p. supplement, sheet 1, scale 1:500,000, sheet 2, scale 1:126,720.
- Peirce, H. W., Keith, S. B., Wilt, J. C., 1970, Coal, oil natural gas, helium and uranium in Arizona: Arizona Bureau of Mines Bulletin 182, 289 p.

Arizona (Continued):


unnumbered.

- Peirce, H. W., Scurlock, J. R., 1972, Arizona well information: Arizona Bureau of Mines Bulletin 185, 195 p.
- Petroleum Information Service, 1982, dry hole map of Arizona: 1 sheet, scale 1:500,000.
- Scurlock, J. R., 1973, Arizona well information, Supplement 1 Records of wells drilled for oil, natural gas, helium, and stratigraphic information since publication of Arizona Well Information: Arizona Oil and Gas Conservation Commission Report of Investigation 5, 28 p.
- Stuler, Jack, (compiler) 1982, State of Arizona wildcat map: Munger Oil Information Service, Inc., 1 sheet, scale 1:500,,000.

Division of Oil and Gas Pagiscarian No. TR 12, pages

Munger, A. H, editor, 1967, Uniformia-Alaska oil and gas fields: Munger Gil to formattich Service, Inc.,

California:

- ____1982d, unpublished 1:250,000 scale drill hole location maps A, D, E, G, F, K.
- Munger, A. H, editor, 1982, California-Alaska oil and gas fields: Munger Oil Information Service, Inc., Munger Map Book, 26th.
- Petroleum Information Corporation, 1982, west coast region report, unnumbered pages.
- Stalder, Walter, 1945, History of exploration and development of gas and oil in northern California: California Division of Mines and Geology Bulletin 118, 76 p.

Idaho:

- Breckenridge, R. M., 1980, Oil and gas exploration in Idaho, 1900-1979: Idaho Bureau of Mines and Geology Map 2, scale 1:1,000,000.
- ____1982, Oil and gas exploration in Idaho: Idaho Bureau of Mines and Geology, Map 4, scale 1:1,000,000.
- Breckenridge, R. M., and Bennett, E. H., and Harbour J. L., 1980, Energy resources of Idaho: Idaho Bureau of Mines and Geology Map 3, scale 1:1,000,000.
- Petroleum Information Corporation, 1982, Dry hole map of Idaho: Petroleum Information Corporation, 1 sheet, scale 1:500,000.

vada Bureau of Mines and Geology, 1982, List of wells drilled for oil and gas, January 1, 1977 through

September 22, 1982: Nevada Bureau of Rines and Geology List L-4, 12 p.

Petroleum Information Corporation, 1982, Dry hole map of Kayada: Petroleum Information Corporation, I sheet, scale 1:500.000.

Schilling, J. H., and Garside, L. J., 1967, Oil and gas developments in Nevada, 1953-167: Nevada Eureau of Mines and Geology, Report 18, 43 p.

Nevada:

- Garside, L. J., and Schilling, J. H., 1977, Wells drilled for oil and gas in Nevada through 1976:
 Nevada Bureau of Mines and Geology Map 56, scale 1:1,000,000.
- Garside, L. J., Weimer, B. S., and Lutsey, I. A., 1977, Oil and gas developments in Nevada, 1968-1976:
 Nevada Bureau of Mines and Geology Report 29, 32 p.
- Lintz, Joseph, Jr., 1957, Nevada oil and gas drilling data, 1906-1953: Nevada Bureau of Mines Bulletin 52, 79 p.
- Munger, A. H., 1982, compiler, State of Nevada wildcat map: Munger Oil Information Service, Inc., 1 sheet, scale 1:500,000.
- Nevada Bureau of Mines and Geology, 1982, List of wells drilled for oil and gas, January 1, 1977 through September 22, 1982: Nevada Bureau of Mines and Geology List L-4, 12 p.
- Petroleum Information Corporation, 1982, Dry hole map of Nevada: Petroleum Information Corporation, 1 sheet, scale 1:500,000.
- Schilling, J. H., and Garside, L. J., 1967, Oil and gas developments in Nevada, 1953-167: Nevada Bureau of Mines and Geology, Report 18, 43 p.

New Mexico:

- Bureau of Land Management, Regional Oil and Gas Office, Albuquerque and District Oil and Gas Offices, Farmington and Roswell New Mexico: unpublished well location maps, scale 1:126,720.
- New Mexico Bureau of Mines and Mineral Resources, petroleum exploration maps showing well location by county, scale 1:126,720.
- Petroleum Information Corporation, 1982, Dry hole map of northern New Mexico: Petroleum Information Corporation, 1 sheet, scale 1:500,000.
- U.S. Geological Survey and New Mexico Bureau of Mines and Mineral Resources, 1981, Energy resources map of New Mexico: U.S. Geological Survey Map I-1327, scale 1:500,000.

Oregon: Geology, 1981, Catalog of all wells in the catalog of all wells in the catalog of the ca

Munger Oil Information Service, Inc., 1982, State of Oregon wildcat map: Munger Oil Information Service, Inc., 1 sheet, 1:500,000.

Petroleum Information Corporation, 1982, Dry hole of Oregon: Petroleum Information Corporation, 1 sheet, 1:500,000.

Texas:

- Bureau of Economic Geology, 1981, Catalog of all wells in the Well data file, Austin, Texas, University of Texas, June, 1981 update, unpublished.
- Garner, L. E., St. Clair, A. E., and Evans, T. J., 1979,
 Mineral resources of Texas: Bureau of Economic Geology,
 Austin, Texas, University of Texas, 2 sheets, scale 1:1,000,000.
- Geomap Company, 1981a, Regional Base Map No. NM 14 C-D, west Texas/southeast New Mexico: Geomap Company, scale 1:96:000.
- _____1981b, Regional Base Map No. T 16 C-D, west Texas: Geomap Company, scale 1:96,000.
- ____1981c, Regional Base Map No. T 14 C-D, west Texas: Geomap Company, scale 1:96,000.
- ____1981d, Regional Base Map No. T 14 A-B, west Texas: Geomap Company, scale 1:96,000.
- _____1981e, Regional Base Map No. T 15 C-D, west Texas: Geomap Commpany, scale 1:96,000.
- Ulissides, S. D., 1964, Map of Texas showing oil and gas fields, pipelines, and areas of exposed basement rocks: U.S. Geological Survey Oil and Gas Investigations Map OM-214, scale 1:1,000,000.

Utah:

- Brown, K. W., and Ritzma, H. R., 1982, Oil and Gas fields and pipelines of Utah: Utah Geological and Mineral Survey Map 61, scale 1:750,000.
- Petroleum Information Corporation, 1982, Dry hole map of Utah: Petroleum Information Corporation, 1 sheet, scale 1:500,000.
- Preston, Don, editor, 1961, A symposium of the oil and gas fields of Utah: Intermountain Association of Petroleum Geologists, unnumbered pages.
- Smith, M. R., and Brown, K. W., 1981, Utah Mineral industry activity review and summary of oil and gas drilling and production, 1980: Utah Geological and Mineral Survey Circular 71, 31 p.

New Mexico Geological Society Guidebook, 9th Fiel Conference, p. 71-73.

1958, Stratigraphy, oil and gas possibilities, an exploration economics of the Black Mesa basin, Ar

Sugrand, M. F., Jr., 1982, Heavy oil in California: C

tallmark, F. O., 1981, Unconventional petroleum resou California: California Division of Oil and Gas Pu

lodgson, S. F., 1980, Onshore oil and gas seeps in Ca California Division of Oil and Gas Publication No

Tennings, C. W., 1957, Mineral commodities of Califor California Division of Mines and Geology, Bulleti

Arizona:

- Buck, L. I., 1961, Oil and gas possibilities of southeastern Arizona-Oil, gas and helium in Arizona: Arizona Development Board Special Publication, p. 22-29.
- Butler, G. M., and Tenney, J. B., 1931, Petroleum: Arizona Bureau of Mines Bulletin 130, Oil Series, No. 5, 50 p.
- Cooley, M. E., and Johnson, P. W., 1962, Road log, Globe to Flagstaff, Arizona: New Mexico Geological Society Field Conference, 13th Guidebook, p. 34-35.
- Pye, W. D., 1961, General review of Arizona oil and gas possibilities and principles controlling oil and gas accumulations—oil, gas and helium in Arizona: Arizona Development Board Special Publication, p. 42-59.
- Turner, D. S., 1958, Devonian system of the Black Mesa basin: New Mexico Geological Society Guidebook, 9th Field Conference, p. 71-73.
- ____1958, Stratigraphy, oil and gas possibilities, and exploration economics of the Black Mesa basin, Arizona: Denver, Colorado, Daniel S. Turner and Associates, 201 p.

California:

- Guerard, W. F., Jr., 1982, Heavy oil in California: California Division of Oil and Gas Publication No. TR28, 12 p.
- Hallmark, F. O., 1981, Unconventional petroleum resources in California: California Division of Oil and Gas Publication No. TR25, 17 p.
- Hodgson, S. F., 1980, Onshore oil and gas seeps in California: California Division of Oil and Gas Publication No. TR26, 97 p.
- Jennings, C. W., 1957, Mineral commodities of California: California Division of Mines and Geology, Bulletin 176, p. 59-70.

New Mexico:

- Black, B. A., 1982, Oil and Gas Exploration in the Albuquerque Basin, in Grambling, J. A., and Wells, S. G., editors, Albuquerque Country II: New Mexico Geological Society 33rd annual field conference guidebook, p. 313.
- Jones, F. A., 1934, Report of oil prospects of the north and west parts of the Tome Land Grant, Valencia County, New Mexico: unpublished private report, 3 p.

Arizona:

Bassler, Harvey, and Reeside, J. B., 1922, Oil prospects in Washington County, Utah: U.S. Geological Survey Bulletin 726-C, p. 104-105.

New Mexico:

Black, B. A., 1982, Oil and gas exploration in the Albuquerque Basin, in, Grambling, J. A., and Wells, S. G., editors, Albuquerque Country II, New Mexico Geological Society 33rd Annual Field Conference Guidebook, p. 313-324.

Utah:

- Bassler, Harvey, and Reeside, J. B., 1922, Oil prospects in Washington County, Utah: U.S. Geological Survey Bulletin 726, p. 87-107.
- Boutwell, J. M., 1904, Oil and asphalt prospects in Salt Lake Basin, Utah: U.S. Geological Survey Bulletin 260 p. 470-473.
- Bruhn, A. F., Elias, D. W., and Van de Graaf, F., 1963, Road log no. 2, in Guidebook to the geology of southwestern Utah: Intermountain Association of Petrolelum Geologists, p. 209.
- Crawford, A. L., editor, 1963, Oil and gas possibilities of Utah, Re-evaluated: Utah Geological and Mineralogical Survey Bulletin 54, 564 p.
- Eardley, A. J., and Haas, M., 1963, Oil and gas possibilities in the Great Salt Lake Basin: Utah Academy of Sciences Proceedings, v. 13, p. 61-80.
- Ritzma, H. R., 1979, Major oil-impregnated rock deposits of Utah: Utah Geological and Mineral Survey Map 47, 2 sheets, scale 1:1,000,000.
- Slentz, L. W., and Eardley, A. J., 1956, Geology of Rozel Hills, in Geology of parts of northwestern Utah, Guidebook to the Geology of Utah No. 11: Utah Geological Society, p. 32-40.
- Speiker, E. M., 1931, Bituminous sandstone near Vernal, Utah: U. S. Geological Survey Bulletin 822-C, p. 77-100.

- General Reference Selected for Oil Seeps and Tar Sandstones in the Basin and Range Province
- Ball Associates, Limited, 1965, Surface and shallow oilimpregnated rocks and shallow oil fields in the United States: Oklahoma City, Interstate Oil Compact Commission, U.S. Bureau of Mines Monograph 12, 375 p.

