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Introduction

The north American Cordillera, west of the miogeoclinal margin, is a 
collage of suspect terranes. These terranes are fault bounded geological 
entities characterized by internal stratigraphies and geological histories 
that are different from those of surrounding terranes. In addition, suspect 
terranes cannot be easily related in a paleogeographic sense through facies 
changes to the Cordilleran miogeocline (Coney, and others, 1980). 
Paleomagnetic studies on rocks from within these suspect terranes commonly 
yield discordant directions that imply significant tectonic translations 
and/or rotations (Beck, 1976, 1980). Although allochthoneity is not implicit 
when a terrane is labeled as suspect, the paleomagnetic data in conjunction 
with paleobiogeographic evidence strongly suggest that the present 
architecture of the western Cordillera is the result of a complex history of 
terrane motion, accretion, and post-accretion or intraplate disruption. 
Paleomagnetic poles from suspect terranes must be treated as terrane-specific 
or amalgam-specific data. This includes nearly all of the paleomagnetic data 
from Mexico which comes from terranes whose Paleozoic and Mesozoic histories 
are poorly understood.

The timing of accretion, defined paleomagnetically as the age of 
attainment of relative latitudinal stasis, must be reconciled with geological 
evidence from overlap assemblages, deformed flysch sequences, and igneous and 
metamorphic events.

The purpose of this map is to document all known reliable paleomagnetic 
directions from Cordilleran suspect terranes and to portray their concordance 
or discordance with respect to directions predictd from "stable" North 
America. The map is intended not as a final synthesis, but as a working base 
on which new data points can be added and from which the motion histories of 
various terranes can be interpreted. The map is also useful in conveying the 
extent of our present knowledge and illustrating where future work might be 
directed. There are numerous terranes for which no paleopoles are 
available. This, of course, is in part due to the lack of suitable rock types 
in some terranes for paleomagnetic analysis, but in other cases, such as the 
Mexican terranes there is a clear need for intensified research. An ultimate 
goal of individual apparent polar wander (APW) paths for each terrane is 
unrealistic, but in conjunction with absolute plate motion studies, the motion 
histories of suspect terranes can be reconstructed and a dynamic history of 
Cordilleran growth can be developed.

Discussion of Map

The geographic base used for this map was the 1:5,000,000 scale Tectonic 
Map of North America (King, 1969). Suspect terrane boundaries were taken from 
Jones, and others (1981), Berg, and others (1980), Coney (1981), Campa and 
Coney (1983), M. C. Blake, D. G. Howell, D. L. Jones (written comm., 1982), 
J. W. H. Monger (written comm., 1982), and N. J. Silberling (written comm., 
1982). The reader is urged to consult these sources for terrane names and 
boundaries not shown on this map and for discussions of terrane 
stratigraphies.



Also shown are major sedimentary and volcanic overlap assemblages and 
plutonic complexes that hide significant parts of terrane boundaries. Other 
overlap assemblages are left off for cartographic simplicity, but 
paleomagnetic directions from such assemblages are generally listed in the 
table under the terrane within whose projected boundaries the study site would 
be included. For example, numbers 10 and 11 are listed under Wrangellia even 
though they represent data from overlap assemblages. This simply reflects 
present geography rather than any tectonic model.

Paleomagnetic directions are shown graphically at each locality by two 
vectors. The thinner vector represents the expected direction calculated from 
the list of North American reference poles in Irving and Irving (1982)  . The 
azimuth of the vector represents declination and the vector length is 
arbitrary (although generally 15 mm). The thicker vector represents the 
observed direction with azimuth portraying declination and length reflecting 
inclination relative to an expected value. Discordancy in observed mean 
inclination is scaled linearly such that 1mm in length is equivalent to 2° in 
inclination. Too shallow inclinations (i.e., + F values) are represented as 
longer vectors and vice-versa. For example given and expected inclination of 
40° and an observed inclination of 30° then the observed vector length is

liO° 30°drawn    JW  = 5mm longer than the expected direction vector. 
2° /mm

In most cases, the positive inclination direction for a given study is 
portrayed on the map, however, the actual observed direction is listed in the 
table.

At some localities, multiple observed direction vectors are shown for a 
single expected direction (e.g., #15). These represent multiple results from 
rocks of both temporal and geographic proximity but with directions too 
divergent to meaningfully average. In some cases, this divergence is 
primarily in declination and this may be attributable to "real" block 
rotations. In a few cases, however, the same age rocks show very divergent 
inclinations which is somewhat puzzling. We consider the latter to be suspect 
paleomagnetic results from suspect terranes.

A series of numbers and letters next to each vector set indicate 
respectively: (1) reference number for the table, (2) approximate age in 
million years, and (3) acknowledgment of statistical concordancy with the 
expected direction in either the rotation value "Cr," the flattening value 
"Cf," or both "Crf." Conventions and equations for calculating the 
concordance/discordance statistics are the same as those presented by Beck 
(1980). Clockwise rotations are positive, counterclockwise are negative, and 
declinations are considered discordant when R> A R. Too shallow (i.e., 
flattened) inclinations are positive, too steep are negative, and inclinations 
are considered discordant when F> A F. All directions shown in this 
compilation have been corrected for local structures in the individual study 
areas so that significant R and F values are considered to reflect rigid-body 
rotation and/or translation.

  Reference poles for Paleozoic directions from the Alexander terrane were 
taken from Van der Voo, and others (1980) and from Van der Voo and French 
(1974).



The table on the map provides all of the necessary values for evaluation 
of concordance/discordance statistics. In a few cases, mean directions were 
recalculated from original data or were calculated from the virtual 
geomagnetic pole (VGP) position. Individual studies are grouped by terrane or 
by some other convenient assemblage (e.g., Trans-Mexican volcanic belt) and 
are listed by age from youngest to oldest.

In screening the paleomagnetic literature we applied only general 
criteria for the acceptance of a direction as "reliable:"

1) No data from abstracts.
2) The age of the rocks studied to yield a paleopole had to be known 

within ± 10 million years.
3) Alpha-95 had to be less than 20°.
4) Description of sampling procedure and/or statistical parameters

(i.e., k values) indicating that secular variation had been averaged.
5) Demonstration of standard demagnetization techniques.

A northern hemisphere origin is assumed in all calculations of the 
concordance/discordance values except where we considered there to be 
compelling evidence to the contrary. Using the data provided in the table, it 
is a simple task to recalculate flattening values (F ± A F) if a southern 
hemisphere origin is preferred. A F does not change so that all one needs to 
do is double the absolute value of IQ and add this to the F value given in the 
table. The latitudinal discrepency indicated by discordant inclination values 
may be calculated from the data in the table and the dipole equation:

tan 1=2 tan 9

I is inclination (either Ix or IQ ) and 9 is paleolatitude (9X or 9Q 

respectively). The latitudinal translation would then be | 9X - 9Q | .

Note: Vector pair "77" represents data from Wells, (1982): 

No. Age \ s <f> s D° 1° a

77 Crescent Formation Eocene 46.5 123.5 42.0 59.8 7.6 
S.W. Washington

Ref. pole age DY T AQR R±AR F±AF'x Ax "95

50 m.y. 351.6 66.0 4 51.5 ± 16.5 8.5 ± 8.1

Other data from Wells (1982) was unfortunately omitted for cartographic 
simplicity.
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