


ELECTRICAL RESISTIVITY

GEOPHYSICS

GRAVITY

[Modified from Telford and others (1976, p. 24-25) and Mabey (1976, p. 55). Values are in grams per cubic centimeter.]

Rock unit	Average density	Density contrasts used for modeling
Quaternary basalt	1.98	-0.67
Tertiary basalt	2.95	.30
Granite	2.65	0
Undifferentiated pre-Tertiary rocks	2.65	0
Basalt and intercalated sedimentary rocks	1.98	-.67
Consolidated sedimentary rocks	2.45	-.20
Unconsolidated sedimentary rocks	2.20	-.45
Upper unit, silicic volcanic rocks	2.43	-.22
Lower unit, silicic	2.53	-.12

ASSUMPTION OF DENSITY VALUES FOR ROCK TYPES UNDERLYING THE SNAKE RIVER PLAIN IS A CRITICAL STEP IN THIS MODELING PROCESS. A constant density value of 2.65 g/cm^3 was assumed to represent undifferentiated pre-Tertiary rocks. Assumed values of density differences for these and other associated rocks underlying the plain are shown in the table above.

SUMMARY

q, J. W., and Thiruvathuskal, J. K., 1967, Complete Bouguer gravity anomaly map of Oregon: Portland, Oregon Department of Geology and Mineral Resources, Map GMS-4b.

d, J. G., and others, 1978, Geologic map of Idaho: Idaho Department of Lands, Idaho Bureau of Mines and Geology, scale 1:500,000.

ille, L. W., and others, 1981, The Yellowstone-Snake River Plain seismic profiling experiment - crustal structure of the eastern Snake River Plain: U.S. Geological Survey Open-File Report (Purdue University), Grant No. 14-08-0001-G-532, about 300 p.

orman, S. L., and Ralston, D. R., 1970, Ground-water resources of the Blue Gulch area in eastern Owyhee and western Twin Falls Counties, Idaho: Idaho Department of Water Administration, Water Information Bulletin no. 20, 36 p.

sthwaite, E. G., 1974, A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho, part 3, Lake Walcott-Bonanza Lake area: Idaho Department of Water Resources, Water Information Bulletin no. 38, 20 p.

rin, M. B., 1952, Introduction to geophysical prospecting: New York, McGraw-Hill, 433 p.

neman, N. M., 1931, Physiography of the Western United States: New York, McGraw-Hill, 534 p.

nt, F. S., and West, G. F., 1965, Interpretation theory in applied geophysics: New York, McGraw-Hill, 584 p.

len, F. V., 1883, A report of progress of the exploration in Wyoming and Idaho for the year 1878: U.S. Geological and Geographical Survey of the Territories, Twelfth Annual Report, Part I, 809 p.

l, D. P., 1963, Gravity and crustal structure in the western Snake River Plain, Idaho: Journal of Geophysical Research, v. 68, no. 20, p. 5807-5819.

Kuntz, M. A., and Dalrymple, G. B., 1979, Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho: U.S. Geological Survey Open-File Report 79-1657, 66 p.

LaFehr, T. R., and Pakiser, L. C., 1962, Gravity, volcanism, and crustal deformation in the eastern Snake River Plain, Idaho: U.S. Geological Survey Professional Paper 450-D, p. D75-D77.

Lewis, B. D., and Goldstein, F. J., 1982, Evaluation of a predictive ground-water solute-transport model at the Idaho National Engineering Laboratory, Idaho: U.S. Geological Survey Water-Resources Investigations 82-25, 71 p.

Lewis, R. E., and Young, H. W., 1982, Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho: U.S. Geological Survey Water-Supply Paper 2186, 27 p.

Lindgren, Waldemar, 1898, Description of the Boise quadrangle [Idaho]: U.S. Geological Survey Geologic Atlas, Folio 45, 4 pls., 7 p.

Lindgren, Waldemar, and Drake, N. F., 1904a, Description of the Nampa quadrangle [Idaho-Oregon]: U.S. Geological Survey Geologic Atlas, Folio 103, 5 p.

1904b, Description of the Silver City quadrangle [Idaho]: U.S. Geological Survey Geologic Atlas, Folio 104, 6 p.

Lindholm, G. F., 1981, Plan of study for the regional aquifer system analysis of the Snake River Plain, Idaho and eastern Oregon: U.S. Geological Survey Open-File Report 81-689, 21 p.

Lindholm, G. F., Garabedian, S. P., Newton, G. D., and Whitehead, R. L., 1983, Configuration of the water table, March 1980, in the Snake River Plain regional aquifer system, Idaho and eastern Oregon: U.S. Geological Survey Open-File Report 82-1022, scale 1:500,000.

Love, J. D., Weitz, J. L., and Hose, R. K., 1952, Geologic map of Wyoming: U.S. Geological Survey, scale 1:500,000

REFERENCES CITED

Mabey, D. R., 1976, Interpretation of a gravity profile across the western Snake River Plain, Idaho: *Geology*, v. 4, no. 1, p. 53-55.

— 1978, Regional gravity and magnetic anomalies in the eastern Snake River Plain, Idaho: *U.S. Geological Survey Journal of Research*, v. 6, no. 5, p. 553-562.

Mabey, D. R., Peterson, D. L., and Wilson, C. W., 1974, Preliminary gravity map of southern Idaho: *U.S. Geological Survey Open-File Report 74-78*, scale 1:500,000.

Malde, H. E., 1959, Fault zone along the northern boundary of the western Snake River Plain: *Science*, v. 130, no. 3370, 272 p.

— 1965, Snake River Plain, in *The Quaternary of the United States*: New Jersey, Princeton University Press, p. 255-263.

— 1968, The catastrophic late Pleistocene Bonneville flood in the Snake River Plain, Idaho: *U.S. Geological Survey Professional Paper 596*, 52 p.

Malde, H. E., and Powers, H. A., 1962, Upper Cenozoic stratigraphy of the western Snake River Plain, Idaho: *Geological Society of America Bulletin*, v. 73, no. 10, p. 1197-1219.

Mansfield, G. R., 1920, Geography, geology, and mineral resources of the Fort Hall Indian Reservation, Idaho: *U.S. Geological Survey Bulletin 713*, 152 p.

— 1927, Geography, geology, and mineral resources of part of southeastern Idaho: *U.S. Geological Survey Professional Paper 152*, 53 p.

— 1929, Geography, geology, and mineral resources of the Portneuf quadrangle, Idaho: *U.S. Geological Survey Bulletin 803*, 110 p.

Mundorff, M. J., Crosthwaite, E. G., and Kilburn, Chabot, 1964, Ground water for irrigation in the Snake River basin in Idaho: *U.S. Geological Survey Water-Supply*

Piper, A. M., 1923, Geology and water resources of the Goose Creek basin, Cassia County, Idaho: *Moscow, Idaho Bureau of Mines and Geology Bulletin no. 6*, 78 p.

— 1924, Geology and water resources of the Bruneau River basin, Owyhee County, Idaho: *Moscow, Idaho Bureau of Mines and Geology Pamphlet no. 11*, 56 p.

— 1925, Ground water for irrigation on Camas Prairie, Camas and Elmore Counties, Idaho: *Moscow, Idaho Bureau of Mines and Geology Pamphlet no. 15*, 46 p.

Robertson, J. B., Schoen, Robert, and Barracough, J. T., 1974, The influence of liquid waste disposal on the geochemistry of water at the National Reactor Testing Station, Idaho, 1952-70: *U.S. Geological Survey Open-File Report IDO-22053*, 210 p.

Robinette, M. S., and Matzner, R. A., 1980, Electrical resistivity investigations of the Springfield-Blackfoot area, Idaho: *U.S. Water and Power Resources Service [U.S. Bureau of Reclamation], Project Completion Report*, 119 p.

Russell, I. C., 1902, Geology and water resources of the Snake River Plain of Idaho: *U.S. Geological Survey Bulletin 199*, 192 p.

— 1903, Notes on the geology of southwestern Idaho and southeastern Oregon: *U.S. Geological Survey Bulletin 217*, 83 p.

Sparlin, M. A., Braile, L. W., and Smith, R. B., 1981, Crustal structure of the eastern Snake River Plain determined from ray-trace modeling of seismic refraction data in the 1978 Yellowstone-Snake River Plain seismic profiling experiment: *U.S. Geological Survey and Purdue University, Grant No. 14-08-0001-G-532*, 54 p.

Stearns, H. T., and Bryan, L. L., 1925 [1926], Preliminary report on the geology and water resources of the Mud Lake basin, Idaho: *U.S. Geological Survey Water-Supply Paper 560-D*, 51 p.

Stearns, H. T., Bryan, L. L., and Crandall, Lynn, 1939, Geology and water resources of the Mud Lake region, Idaho, including the Island Park area: *U.S. Geological Survey Water-Supply Paper 818*, 125 p.

Stearns, H. T., Crandall, Lynn, and Steward, W. G., 1938, Geology and ground-water resources of the Snake River Plain in southeastern Idaho: *U.S. Geological Survey Water-Supply Paper 774*, 268 p.

Stewart, J. H., and Carlson, J. E., 1978, Geologic map of Nevada: *U.S. Geological Survey*, scale 1:500,000.

Stokes, W. L., 1963, Geologic map of Utah, northwest section: *Utah State Land Board*, scale 1:250,000.

Talwani, Manik, Worzel, J. L., and Landisman, M., 1959, Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone: *Journal of Geophysical Research*, v. 64, p. 49-59.

Telford, W. M., Geldart, L. P., Sheriff, R. E., and Keip, D. A., 1976, *Applied geophysics*: Cambridge, England, Cambridge University Press, 860 p.

Walker, G. W., 1977, Geologic map of Oregon east of the 121st meridian: *U.S. Geological Survey Miscellaneous Investigations Map I-902*, scale 1:500,000, 2 sheets.

Whitehead, R. L., 1978, Water resources of the upper Henrys Fork basin in eastern Idaho: *Idaho Department of Water Resources, Water Information Bulletin no. 46*, 91 p.

Wood, S. H., and Anderson, J. E., 1981, Chapter 2, Geology, in Mitchell, J. C., ed., *Geological, hydrological, geochemical, and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho: Idaho Department of Water Resources, Water Information Bulletin no. 30*, p. 9-31.

Wood, S. H., Applegate, J. K., and Donaldson, P. R., 1981, Chapter 6, *Geophysics*, in Mitchell, J. C., ed., *Geological, hydrological, geochemical, and geophysical investi-*

Zohdy, A. A. R., 1973, A computer programmatic interpretation of Schlumberger over horizontally stratified media: *U.S. Department of Commerce, National Information Service, Report USGS-6-74-01*, 25 p.

— 1974, Electrical methods, in Zohdy, G. P., and Mabey, D. R., *Application of ics to ground-water investigations: Survey Techniques of Water-Resources Book 2, Chapter 1*, p. 6-6.

Zohdy, A. A. R., Bisdorf, R. J., and Jackson, Simple total field and Schlumberger Sugar City, Idaho: *U.S. Geological Report 78-709*, 10 p.

Zohdy, A. A. R., Eaton, G. P., and Mabey, Application of surface geophysics investigation: *U.S. Geological Survey Water-Resources Investigations, Book 116*, p.

Zohdy, A. A. R., and Stanley, W. D., 1973, Preparation of electrical sounding curves the Snake River Plain from Blackfoot U.S. Geological Survey Open-File Report,

GEOHYDROLOGIC FRAMEWORK OF THE SNAKE RIVER PLAIN, IDAHO AND EASTERN OREGON