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VERTICAL ELECTRICAL SOUNDINGS INDICATE THAT QUATERN- L
alls g

ARY BASALT OF THE SNAKE RIVER GROUP UNDERLYING THE SNAKE
RIVER PLAIN MAY BE AS MUCH AS 5,000 FEET THICK. To help
define areal variations in basalt thickness, the U.S.
Geological Survey, Geologic Division, Branch of Electro-
magnetism and Geomagnetism, completed 221 vertical elec-
trical soundings as part of the Snake River Plain RASA
study. These soundings, along with an equal number of
soundings made for previous studies (Zohdy and Stanley,
1973; Crosthwaite, 1974; Jackson, 1974; Zohdy, Bisdorf,
and Jackson, 1978; and Robinette and Matzner, 1980), pro-
vided sufficient regional coverage for mapping approximate
thickness of Guaternary basalt. Zohdy (1974, p. 5) states:
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Gravity data from Mabey, Peterson, and Wilson (1974),
and Berg and Thiruvathuskal (1967).
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The electrical properties of most rocks in the
upper part of the Earth's crust are dependent
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primarily on the amount of water in the rock, the 3000 @ B
salinity of the water, and the distribution kY )
of the water in the rock. Saturated rocks have i T
" lower resistivities than unsaturated or dry 6000 e o) 0 0 20 MILES 5000 o
rock. The higher the porosity of the saturated i ? S Fas g S b 3 v Jj
rock, the lower its resistivity, and the higher 9000 9000 - - “ - y T 5
the salinity of the saturating fluid, the lower ; % 10 O 10 20 30 KILOMETERS 1
the resistivity. The presence of clays and : iy
conductive minerals also reduces the resistivity M' N T N‘ 10000 2 10000
of the rock. | 0 i : Test hole )
Electrical resistivity soundings were made using a -
symmetric Schlumberger array; current electrode spacings =
ranged from 4,000 to 28,000 ft; apparent resistivities E
ranged from 3.5 to 4,750 ohm-meters. Vertical electrical ~
sounding curves were computer processed and interpreted B
using a modified version of Zohdy's (1973) inversion pro- [
gram. Computer-generated profiles were created for each of
the traverse lines made during the present study and for the
Arco to Blacl_tfoot 11ne'fFom an earlier study. A tota% of [Modified from Telford and others (1976, p. 24-25) and Mabey
about 450 mi of profiling was completed. Generalized (1976, p. 55). Values are in grams per cubic centimeter.]
computer-generated profiles are shown at right (K-K' through =
W-W').
Because young basalts of the Snake River Group have g Average Density contrasts
a high resistance to electrical current even when saturated A SR MAJORGl‘G};:‘gIL%%IZOggiiugg:E UASIEID egztslgatlgriziil;lzigion OF terial with increasing depth of burial is negligible. The ReAk it densi?:y RO fgr modeling
with water (because of low salinity), the vertical elec- B elpi 3 F - uence nolygon's gravitational effects are calculated in the
trical sounding profiles were used to help estimate basalt /‘(:i\::\\\ T S gravity fMmeasurements. quever. the bu'lk of the Earth's program and a su}nmation of' these effects is plotted against
distribution thickness (sheet 2). Eocrelstion of the L gravitational force has 1little to do guth.crustal tock§. the measured residual gravity anomaly. Quaternary basalt 1.98 -0.67
profiles with several deep drill holes indicated that g:}quial?t?::d Ob.;)sts:rgte);:rog :l:\kileogrz;t:i;iozaolckf?zcreants Polygons are changed, deleted, or added as necessary
5 s = 5 E = ,  » e ec -
;:f_:sglf‘ntthl:sst‘;gtfggap%rfg mseetcetrisonar;dergrgzgggatlir;etl:; ;gg:; P V v' 1965, p. 199). _ Most important is the fact .that this very to comply with known geologic and physical constraints Tertiary basalt 2.95 ~30
basalts of Quaternary age. To verify vertical electrical 0 0 g L: small .contnbuuon can bt'e detected by gravity meters and until a best fit between the gravity field curve and the Charite 2.65 0
sounding interpretations, a 1,123-ft test hole was drilled = s :ccordmg}y ma;med(.i t?‘q:avn:y geasuremin_ts ,mubstf be s;::jected theoretical curve is obtained. ~
X = e o a series of reductions and corrections before ey are : ; ; 3 i
g.misn%f‘):heaaIZEgof;r:feinldeelti-N('rfEkNg:ss\y—;‘drsii]‘.:i.nglzt'esil‘:.ltz ir-mc'] 3000 + T suitable for interpretation of geologic features. 5 Gravity modeling of the western plain was done using Und1ff;rent‘:1ated 3 2.65 0
geologic and hydrologic implications of the test hole were = E Mggiuleirnqangrfna:tl:}k:eva::se:e::t?lnaeidnd::eit'lridfr:: :h:habosve 7o U e
: ! R q : Al - i iati i . i a e Bouguer
in good agreement with resistivity interpretations. 6000 1 & £ is eq?:ixar\a,i:r):t ‘Lzrlaat;t,(;zz :;eacl::;::::fonlgf g:nles 'ceﬁtr:‘ieme%.::' anomalies be adjusted to cqmpensateqfor the regional effgects Basalt and intercalated 1.98 -.67
In some areas, particularly near the margins of the 9000 b : 9000‘ per second per second. The Earth's average gravitational :f, a iar_"ge bodf'i of rock e}ther more areally eg:tensive than sedimentary rocks
plain; gndonsslidated and:unssturated gravels hive & resis- force is about 980 gals. Owing to the very small magnitude & piota or deeply buried (more tham 3 wi) under the i £
tivit}'( ke, fagbrsndeibl otels Do dhid = R - of variations measured, milligals (1/1,000 of a gal) are plain (Mabey,. 1978, p. 557). Data from a seismic refraction - Conso%mated 2.45 .20
sedimentary rocks are intercalated with b:'.-lsalt, an apparent used for computational purposes. i::td-_zr (:Parél;ns .asnd_ otheis.l'i981, p- 53) suggest that the sedlmentary rocks
resistivity of 100 ohm-meters or greater was interpreted as ; ; ; used as yal:’obase:is1 folts t"r'is re ]}.oila%. ‘:-:rsifiit.l SThesetg]ata w;;e Unconsolidated 2.20 -.45
basalt. Drillers' logs were available to aid in interpreta- o The above Bouguer gravity anomaly map is a summation - Separation was mad i sl etaer Sl % sedimentary rocks
Ehbi bo Wi of thebe avers. of all gravity effects in the area. Corrections for most Bay as made using several methods suggested by b4
‘ major nongeologic effects are incorporated in the map. Eggr];;agiezz'bo?x;ldastG;BBL.t ACtuia_t moielmg. gxtenged beyom'i Upper unit, silicic 2.43 22
iah ST 3000 + but results shown in sections X-X T * 5
G LTS e AR Of e 2wy thropan EEEE' are only for that par: within the boundary.
volcanic rocks. Where high resistivity zones apparently 6000 eling was used only as a gulde_ o }_1e1p define major geologic tgctxobn§1 g SlmPllfled eeim e rflodelmg LS et L it, silicic 2.53 -.12
Wera ceht inucus from the surtscs to depthi in syeast ot the features where no other definitive data were available. 5 e abllity to simulate several rock units of different owe;‘ Yhisy i % i 8
area average, an arbitrary cutoff was made at the average S ensities exceeds present understanding of the subsurface volcanic rocks
depth to regionalize the interpretation. The modeling program is based on a two-dimensional distribution of rock units in the study area.
polygon method (Talwani and others, 1959). The program uses i ; :
Although vertical electrical soundings are apparently ; polygons of varying sizes, shapes, and assumed density Delineation of major rock types by gravity modeling : ,
useful to approximate basalt distribution and thickness), R W contrasts (table at right) to represent possible geological was marginally successful but did aid in understanding the ASSUMPTION OF DENSITY VALUES FOR ROCK TYPES UNDERLYING
some complications in interpretation were noted. Lowest @ — 0 << bodies inferred from available information. The following regional Stf“Ct“re- Seismic section J-J' and gravity THE SNARKE RIVER PLAIN IS A CRITICAL STEP IN THIS MODELING
resistivities (less than 7 ohm-meters, not shown on pro- ; 2 5 i L assumptions were made: (1) Subsurface density varia- sectlon Y-Y' show good agreement in delineation of the PROCESS. A constant density value of 2.65 g/cm  was
files) appear to be indicative of fine-grained sedimentary 3000 2 NG T Ll BN & 3000 430 tions are modeled using polygonal bodies of infinite strike sediment and Tertiary (Miocene) basalt unit contact. assumed to represent undifferentiated pre-Tertiary rocks.
rocks, thermal waters, or a combination of the two. Zones < Bk b N - = length; (2) each polygon is of a constant assumed density Although not shown on modified resistivity section K-K', ascumed walues of ' density ditferences for thise and other
of faulting associated with the thermal water also may be ] Loeiieena N - 6000::: contrast (compared to an average for crustal rocks of 2.65 this contact was suggested by the original resistivity data associated rocks underlying the plain are shown in the
surmised. The effect of thermal waters may mask lithologic 6000 M o T 3 AT NN g/cm ®, see table at right); and (3) compaction of ma- as well. table above.
variations (Jackson, 1974), as evidenced by the low resis- < seailiiiiiil Sialntt & L N i3 S :
tivity of faulted areas flanking the western plain, where 9000 G A T = = 9000 :
thermal waters occur in both sedimentary and volcanic :
ek Electrical resistivity data from R. J. Bisdorf (U.S.
Geological Survey, Denver, Colo., written commun., 1983).
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