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EXECUTIVE SUMMARY

The U.S. Bureau of Land Management (BLM) has adopted a multi-phase
procedure for the integration of geological, energy, and mineral (GEM)
resources data for suitability decisions for wilderness study areas. Phase 1
included the gathering of historical GEM resource data and was carried out by
WGM, Inc. (1983). Phase 2 is designed to generate new data to support GEM
resource recommendations and was contracted to the U.S. Geological Survey.

This report is the result of a Phase 2 study of the Eighteenmile
Wilderness Study Area (WSA) conducted in July of 1983 by personnel from the
Central Regional and Exploration Geochemistry Branches of the U.S. Geological
Survey. The mineral resource appraisal of the WSA consisted of geologic
mapping at a scale of 1:62,500, combined with stream—-sediment and rock
sampling, and subsequent analysis of the samples.

The Eighteenmile WSA (ID-43-3) covers about 25,000 acres in the central
Beaverhead Mountains of east-central Idaho in Lemhi County (fig. 1), and the
northern border of the area lies 6 mi southeast of Leadore, Idaho. Parts of
the eastern border of the study area lie along the Continental Divide along
which peaks rise to more than 11,000 ft. Total maximum relief is about 4,000
ft along the steep western flank of the mountains into which steep valleys and
canyons have been carved by Pleistocene alpine glaciers, their meltwaters, and
fast-moving steep-gradient streams. Most of these valleys and canyons are now
either dry or contain relatively small perennial streams.

Allochthonous marine sedimentary rocks ranging in age from Proterozoic to
Permian, and granite and syenite of an Ordovician pluton make up three major
thrust plates in the Eighteenmile WSA. Rocks of the thrust plates, emplaced
during Late Cretaceous to Paleocene time, are complexly folded and faulted.
Two major thrusts, the Hawley Creek and the Fritz Creek, are exposed in the
area. The thrust plates have been offset by extension faults ranging in age
from early Eocene(?) to Holocene. Autochthonous rocks include Tertiary
volcanics and Quaternary glacial and alluvial deposits that lap onto the
western flank of the mountains and occupy many of the major valleys and
canyons. Landslide deposits of carbonate rocks are common, and one major
tectonic slide block extends into the Lemhi Valley.

A total of 173 geochemical samples were collected from within the WSA and
surrounding areas. Of these, 34 were sieved sediments, 32 were nonmagnetic
heavy mineral concentrates, 79 were rocks, 21 were water samples, and 7 were
soil samples. Panned concentrate samples were processed both by heavy liquid
and by electro-magnetic separation. The nonmagnetic fraction was analyzed for
31 elements by semiquantitative emission spectrography. Rock samples were
crushed and pulverized; sieved-sediment and soil samples were sieved to minus-
80 mesh and pulverized, and all were analyzed for 31 elements by
semiquantitative emission spectrography. The fine fraction of sieved sediment
samples was analyzed for uranium using fluorimetric techniques. Water samples
were analyzed for major constituents and for Cu, Mo, and U. 1In addition, data
for 29 stream—sediment, 13 panned concentrate, and 102 rock samples collected
in 1981 and 1982 for a mineral resource analysis of the contiguous Italian
Peak and Italian Peak Middle Roadless Areas were used in the interpretation of
the geochemistry of the WSA.

A wide variety of elements are present in anomalous amounts in samples
from the Eighteenmile WSA. Paleozoic rock units and stream sediments derived
from them are enriched in Ag, B, Ba, Cr, Mo, Ni, Pb, Mn, Cu, and Zn. One
Proterozoic rock sample contained Au. Although sediment samples from streams
draining the Proterozoic rocks were enriched in Ag and Cu, among other

elements, a Proterozoic source cannot be proven.
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The Beaverhead Mountains pluton is a geochemically specialized granitoid
containing anomalous amounts of B, Be, La, Nb, Mo, Sn, and U, in addition to base
and precious metals. Many of the rock samples contain Sn values and Zr/Sn and V/Nb
ratios that meet the criteria for recognizing granitoid complexes parent to deposits
of rare metals.,

Small gypsum deposits are the only known mineral deposits in the Eighteenmile
WSA. Gypsum has been mined from the Clear Creek mine one-half mile west of the WSA,
and fault-controlled Neogene hydrothermal sulphate and sulphide mineralization
extends into the WSA in the area surrounding the mine., Phosphate has been mined
from the Phosphoria Formation in the Hawley Creek area north of the WSA, but the
Phosphoria Formation is not present in the Eighteenmile area. Lead-silver-zinc
stratabound ores were mined from dolomite of the Devonian Jefferson Formation in the
northern part of the Birch Creek mining district about two miles southeast of the
WSA.,

The Clear Creek area has high resource potential for hydrothermal gypsum
and associated Ag, Cu, Mo, Pb, and Zn mineralization. Granite of the Beaverhead
Mountains pluton has moderate potential for base and precious metal fracture
mineralization., Although granite of the pluton is tin rich, a resource
potential for tin is low. Concentrations in sediments derived from the granite
have a low resource potential for uranium. Paleozoic carbonate rocks have a
moderate mineral resource potential for base and precious metals. The resource
potential for oil is low for depths below the surface of less than 10,000 ft,
and the potential for gas is moderate.

INTRODUCTION

The Wilderness Act of 1964 (PL-577) mandated the withdrawal of major
portions of the federal lands in the National Forest System for inclusion into
the National Wilderness Preservation System (NWPS). Federal mineral
assessments were required to be conducted on lands affected as part of the
wilderness land review process.

In 1976, the Federal Land Policy and Management Act (FLPMA, PL94-579)
extended the wilderness review program to the lands administered by the U.S.
Bureau of Land Management (BLM). Provisions in this act require the Secretary
of the Interior to cause mineral surveys to be conducted prior to his making
wilderness recommendations to Congress. Natural or Primitive areas formally
identified prior to November 1, 1975, were termed Instant Study Areas.
Wilderness recommendations for these areas were presented to the President
prior to July 1, 1980, The remainder of the BLM lands are under review by the
BIM to determine which are suitable as wilderness areas for inclusion into the
NWPS. The wilderness land review process is being conducted in three steps:
inventory, study, and report.

The inventory of BLM lands meeting wilderness criteria was completed for
the state of Idaho in April, 1980, at which time the Wilderness Study Areas
were designated. The study step in the wilderness review process includes
mineral resource appraisal of the Eighteenmile Wilderness Study Area. The BLM
has adopted a multi-phase procedure for the integration of geological, energy,
and mineral (GEM) resource data into the suitable/unsuitable decision process
on the Wilderness Study Areas. The multi-phase approach allows termination of
the mineral resource appraisal at the end of Phase 1, which consists mainly of
compilation of existing information. If the data gathered in Phase 1 is not
adequate, then Phase 2 would generate new GEM resources data needed to permit
an assessment of the potential for GEM resources. This report is the result
of a Phase 2 study of the Eighteenmile WSA conducted in July of 1983 by the

U.S. Geological Survey.



The Eighteenmile WSA covers about 25,000 acres in the central Beaverhead
Mountains in Lemhi County, Idaho (fig. 1). The northern border of the area
lies 6 mi southeast of Leadore, Idaho, and much of the eastern border lies
along the Continental Divide, which is also the Idaho-Montana State
boundary. Lemhi Valley borders the WSA on the west, and Willow Creek and Dry
Canyon are the southern and northern boundaries, respectively. Access to the
western side of the WSA is provided by gravel roads that exit from paved Idaho
State Highways 28 and 29. No maintained trails are present in the WSA,

A mineral resource appraisal of the Eighteenmile WSA was undertaken by
the U.S. Geological Survey that utilized geologic mapping at a scale of
1:62,500 with reference to both recent color, and black and white aerial
photographs, and stream—sediment and rock sampling with subsequent analysis of
the samples.

GEOLOGY
Physiography

The Eighteenmile WSA is comprised of the steep western flank of the
central Beaverhead Mountains. The area is about 14 mi long and only 5 mi wide
at its widest point. Elevations range from 7,100 ft at the northwest corner
to 11,141 ft at Eighteenmile Peak along the Continental Divide in the
southeastern part of the WSA, Deep valleys and canyons of the area were
sculptured by Pleistocene alpine glaciers, their meltwaters, and steep
gradient, fast-moving streams. These valleys and canyons now are either dry
or are occupied by intermittent or relatively small perennial streams that
reflect the much drier Holocene climate., Peaks along the eastern border of
the WSA lie above timberline which is at about 9,600 ft. The western border
is flanked by large aprons of alluvial gravels that make up much of the Lemhi
Valley.

Description of rock units

More than 9,000 ft of Proterozoic to Permian marine sedimentary rocks and
an Ordovician pluton underlie the Eighteenmile WSA. All of these rocks are
allochthonous, and were moved from their western places of intrusion or
deposition on the outer cratonic platform or shelf margin eastward into the
Beaverhead Mountains in Late Cretaceous or early Tertiary time. They make up
parts of three major thrust sheets, the Hawley Creek, the Fritz Creek, and the
Cabin (fig. 2).

Shallow marine Proterozoic sandstone and minor siliceous mudstone in the
WSA form the steep-walled lower canyons of Chamberlain Creek and Horsethief
Canyon. A smaller outcrop is present at the mouth of Clear Creek about a mile
west of the Eighteenmile WSA boundary. The sandstone is mostly pale red,
grayish-green, and light- to dark-gray, fine- to coarse-grained, quartzose,
feldspathic or micaceous, and consists of angular to subrounded grains of
quartz, altered feldspar, some calcic plagioclase, and lithic fragments
including chert, quartzite and gneiss (Scholten and Ramspott, 1968). The
sandstone is medium— to thick-bedded, locally crossbedded or laminated, and
forms steep cliffs and slopes covered with angular rubble., Shear zones are
common.

The shallow marine Middle Ordovician Kinnikinic Quartzite, at least
800 ft thick (Scholten and Ramspott, 1968) consists of light gray to
yellowish-gray, medium— to fine-grained, medium— to thick-bedded, pure
orthoquartzite composed of subrounded to well-rounded, vitreous quartz grains
cemented by authigenic quartz overgrowths. Spotty brown or yellowish-brown

limonitic stains and blotches are common. The quartzite is brecciated in much
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of the outcrop area where it forms cliffs and ledges. In several places in
the WSA, the quartzite is overlain unconformably by the Upper Devonian
Jefferson Formation.

The Ordovician Beaverhead Mountains pluton consists mostly of granite and
minor syenite that intrude the Kinnikinic Quartzite. The granite makes up
most of the steep craggy ridges and grus-~covered slopes above Eighteenmile
Creek. It is grayish-orange to light brown, holocrystalline, medium— to
coarse~grained, and consists of both one- and two-feldspar rocks. Unaltered
rocks contain more than 23 percent quartz, and 65 percent alkali feldspar; in
two-feldspar rock, albite commonly makes up less than one-third total
feldspar. Biotite, opaque minerals, zircon, and apatite constitute 5 percent
of rock (Ramspott, 1962; Scholten and Ramspott, 1968), Fine-grained, dusky
yellow—green chill zone facies are present next to Kinnikinic Quartzite on
Eighteenmile Peak. Altered rocks of the pluton are made of quartz, sericite,
and magnetite with no relict structures. Syenite or leucosyenite present
above Willow Creek in the south end of the WSA is pale red and weathers to
shades of brown. The syenite is medium— to coarse-grained, holocrystalline,
phaneritic, and is composed of 80-95 percent feldspar, 0-16 percent quartz,
less than 5 percent biotite, opaque minerals, zircon, apatite, and as much as
10 percent altered actinolitic amphibole (Ramspott, 1962; Scholten and
Ramspott, 1968). Both the granite and syenite are intruded by numerous aplite
bodies. Geochemical results based on 40 samples show the granite to be a tin-
and niobium-rich granite. This geochemical specialization implies that the
granite is a multi-phase granitic complex.

The shallow marine Upper Devonian Jefferson Formation depositionally
overlies either Proterozoic sandstone or Kinnikinic Quartzite. Near Pass
Creek it is in fault contact with granite. About 100 to 200 ft of dolomite,
limestone, limestone-dolomite breccia and a basal conglomeratic sandstone make
up the formation. Dolomite is light gray to medium dark gray, finely
crystalline, and is thin- to medium-bedded. Medium gray limestone is porous
locally with cubic solution cavities filled with a silty limy matrix. Both
the angular solution cavities and the limestone-dolomite breccia are evaporite
solution features (Poole and others, 1977). Lead-silver-zinc ores from the
Viola mine 1 1/2 to 2 mi south of the Eighteenmile WSA boundary (fig. 2) are
thought to have been stratabound in dolomite of the Jefferson Formation of the
Hawley Creek thrust plate (Skipp and others, 1983). One of four samples of
dolomite collected for stratigraphic data contained an anomalous concentration
of lead, although the sample presented no outward appearance of alteration or
mineralization. This sample came from the Hawley Creek thrust sheet.

The Upper Devonian Sappington Member of the Three Forks Formation
unconformably overlies the Jefferson Formation and consists of 75 to 100 ft of
grayish~black to yellowish-brown laminated siltstone and mudstone. Basal dark
gray, silty, even-bedded limestone of the Lower Mississippian McGowan Creek
Formation unconformably overlies the Sappington Member and contains
Kinderhookian conodonts (B. R, Wardlaw, written commun., 1982) with a color
alteration index (CAI) value of 4 (Epstein and others, 1977). The limestone
is from 150 to 400 ft thick, contains common trace fossils, and is overlain by
150 to 250 ft of siltstone and mudstone that resembles the lithologies of the
Sappington Member. These siltstones and mudstones were erroneously assigned to
the Upper Mississippian Big Snowy Formation in Scholten and Ramspott (1968).
Both siltstone and mudstone units have reported stratabound U and Th anomalies
southeast of the WSA (Skipp and others, 1983; Wodzicki and Krason, 1981), but
no such anomalies have been found in the study area itself. Three of four

samples of mudstones of the McGowan Creek/Three Forks interval collected for



stratigraphic data from were found to contain weakly anomalous concentrations
of Ag, Mo, and Zn, but presented no visual indication of alteration or
mineralization.

The McGowan Creek Formation is overlain gradationally by about 500 ft of
medium- to dark-gray, cherty, thin-bedded limestone of the Upper and Lower
Mississippian Middle Canyon Formation, the basal formation of the Carboniferous
and Lower Permian carbonate bank sequences that make up the Continental Divide
and other high peaks of the area. In ascending stratigraphic order, the
formations comprising the carbonate bank are the Middle Canyon, Scott Peak,
South Creek, Surrett Canyon, Big Snowy, Bluebird Mountain, and Snaky Canyon
Formations. The Scott Peak and Surrett Canyon Formations, about 2,000 ft and
100 to 400 ft thick, respectively, consist mostly of medium—-dark gray, medium-
to thick-bedded, fossiliferous (corals, brachiopods, and mollusks), relatively
pure limestone of Late Mississippian age. The South Creek Formation is a thin
(200 ft) silty, thin-bedded, Upper Mississippian limestone that separates the
Scott Peak from the Surrett Canyon Formation. The Big Snowy Formation, about
800 ft thick, also of Late Mississippian age, contains some sandy limestone and
limestone conglomerate beds, but about half the formation is medium—-gray and
grayish-black mudstone with scattered limestone concretions and calcareous
sandstone. The Mississippian-Pennsylvanian boundary is in the Bluebird
Mountain Formation that overlies the Big Snowy and consists of 300 to 500 ft of
medium-gray, very fine- to medium-grained, thick- to medium—-bedded sandstone
with minor thin beds of dolomite and limestone (Skipp and others, 1979; Skipp
and others, 1981)., The Bluebird Mountain Formation is overlain gradationally
by the Lower Permian to Lower Pennsylvanian Snaky Canyon Formation, a thick
(2,000 ft) sequence of thin- to thick-bedded, light- to dark-gray limestone
and dolomite, much of it very sandy.

The Upper to Lower Permian Phosphoria Formation disconformably overlies
the Snaky Canyon Formation, and consists of dolomite, sandstone, phosphatic
siltstone, and bedded chert (Lucchitta, 1966). The Phosphoria Formation is not
present within the WSA.

Moderately anomalous councentrations of Ag, Co, and Cu were identified in 3
of 13 rock samples of the Scott Peak Formation collected for stratigraphic
data, and one of the three was from outside the WSA near the Clear Creek gypsum
mine. One sample of mudstone and one of limestone from the Big Snowy Formation
contained weakly anomalous concentrations of Ag and Co. No anomalous
concentrations were noted in 10 samples of the other carbonate bank formations
collected for stratigraphic data.

Autochthonous rocks in the WSA include the following: the Middle Eocene
intermediate Challis Volcanics consisting of rhyodacite tuff and volcanic
breccia, tuffaceous sandstone and conglomerate, and latite flows; intermediate
to basic dikes and sills (Chamberlain Canyon Sheet of Scholten and Ramspott,
1968) that may have been feeders to the Challis Volcanics; Quaternary to
Tertiary alluvial gravels; Quaternary till and outwash of the Pinedale
glaciation; and Quaternary surficial deposits including alluvium, colluvium,
landslide deposits, and fan gravels (plate l; fig. 2). Several landslide
deposits consist of semi-coherent debris derived largely from a single
stratigraphic unit.

Structure
The Eighteenmile WSA is a part of both the Cordilleran Overthrust and the
Basin-Range structural provinces.
Rocks of the Hawley Creek, the Fritz Creek, and the Cabin thrust plates

underlie the area (fig. 2). The Hawley Creek thrust, the basal thrust of the



structurally highest Hawley Creek plate, was named for exposures immediately
north of the WSA (Lucchitta, 1966), and a segment of that thrust extends into
the area of plate 1 near Dry Canyon. Two southern segments of this thrust
along the western margin of the range from Clear Creek south to Poison Creek
were named the Poison Creek thrust by Scholten and Ramspott (1968), but are
designated the Hawley Creek Thrust in this report (fig. 2). The Pass Creek
fault is interpreted to be a primary tear fault that offsets the Hawley Creek
thrust plate to the east, south of Pass Creek. Thus, rocks of the Hawley
Creek thrust plate underlie the surface of the WSA south of Pass Creek and are
exposed only along the western margin of the Beaverhead Mountains north of
Pass Creek. Proterozoic sandstone, the Ordovician Beaverhead Mountains
pluton, the Ordovician Kinnikinic Quartzite, and the Devonian Jefferson
Formation make up the Hawley Creek plate in the WSA.

Rocks of the Fritz Creek thrust plate below the Hawley Creek plate
underlie most of the WSA north of Pass Creek (fig. 2) where they consist of
Proterozoic marine sandstone, Devonian carbonates, siltstones and mudstones,
the Jefferson and Three Forks Formations, Lower Mississippian limestones and
siltstones and mudstones of the McGowan Creek Formation, and Upper
Mississippian limestones of the Middle Canyon through Surrett Canyon
Formations. The Fritz Creek thrust, named for exposures south of the WSA
(Scholten and Ramspott, 1968; Skipp and others, 1983), crops out between Clear
and Tenmile Creeks (fig. 2) where folded Upper Mississippian limestones
override intensely deformed Upper Mississippian through Permian rocks of the
underlying Cabin thrust plate. Part of the Fritz Creek thrust plate has been
buried beneath, or extended by, the Clear Creek slide block (fig. 2) that
protrudes westward into the Lemhi Valley between Clear and Tenmile Creeks.

One smaller slide block is south of Clear Creek (fig. 2). A southern
extension of the Fritz Creek thrust tentatively is shown to appear near the
Continental Divide at the head of Chamberlain Creek, but mapping in this area
is incomplete. A klippe of the Fritz Creek plate is present near the
Continental Divide at the head of Clear Creek (fig. 2), and a northern part of
the plate is present at the mouth of Dry Canyon.

Rocks of the Cabin thrust plate, named for the Cabin thrust exposed east
of Nicholia Basin (fig. 1; Scholten and others, 1955), make up the northern
segment of the WSA., Limestones, mudstones, sandstones, and sandy limestones
of the Scott Peak through Snaky Canyon Formations crop out on the Cabin plate
in the WSA and are folded and thrust faulted. Axes of folds, some overturned,
trend east-west to west-northwest, and one thrust appears to be a footwall
imbricate of the Fritz Creek thrust. Rocks of the Cabin plate must underlie
the entire WSA below the Fritz Creek and Hawley Creek plates.

The stack of thrust plates that make up the central Beaverhead Mountains
have been extended by several generations of Tertiary and Quaternary low-angle
normal faults (Skipp and Hait, 1984). Within the WSA, prominent Neogene or
younger extension faults include the Crooked Creek, the Powderhorn, the
enigmatic oval fault zone north of Chamberlain Creek, the north-trending
faults in the Beaverhead Mountains pluton, and the Beaverhead fault zone
(fig. 2). The southern extension of the Crooked Creek fault in the Italian
Peak Roadless Areas (fig. 1) cuts gravels as young as Early Pleistocene (Skipp
and Hait, 1984), but in the WSA, the Crooked Creek fault is concealed by
gravels of that age, indicating that movement on this segment of the fault
ceased earlier in this area than in areas to the south. The westward
extension of the Powderhorn fault also is concealed beneath older fan
gravels. The oval fault zone formed before emplacement of the Clear Creek

slide block, and the Clear Creek slide block seems to have formed after early



movements on the major range front fault system. Additional extension of the
area probably was accomplished through secondary normal movements on one or
more of the thrust faults. The Beaverhead fault zone present in the
southwestern corner of the WSA is of Holocene to Pleistocene age (Skipp and
Hait, 1984).

The southern part of a large positive aeromagnetic anomaly was identified
in the vicinity of Clear Creek by an aeromagnetic study of the Italian Peak
and Italian Peak Middle Roadless Areas adjacent on the south (U.S.G.S.,

1981). The positive anomaly of more than 500 gammas (fig. 2) probably
indicates the presence of a magnetic intrusive body intruded along the range
front (Crooked Creek) fault in Neogene time. Such an intrusion probably was
the source of heat and mineralizing fluids for the hydrothermal mineralization
of the Clear Creek area, and may have '"locked" this segment of the Crooked
Creek fault.

Geologic History

Proterozoic and Paleozoic rocks presently at the surface of the
Eighteenmile WSA were deposited near the Cordilleran hingeline on the outer
cratonic platform. Proterozoic-marine sandstones deposited in shallow
subtidal environments were uplifted, gently folded and eroded during Late
Proterozoic or Cambrian time. In Middle Ordovician time, the clean sands of
the Kinnikinic Formation, and, possibly the dolomites of the Fish Haven
Formation were deposited across much of the area. In Middle to Late
Ordovician time, the existing sedimentary cover was intruded by the granites
and syenites of the Beaverhead Mountains pluton, and once again the area was
uplifted; the pluton was unroofed, and much of the Ordovician and older
sedimentary cover was removed by erosion. In early Late Devonian time shallow
seas once again covered the area resulting in the deposition of the Jefferson
Formation. Uplift and erosion ensued in Late Devonian time before deposition
of the Late Devonian mudstones and siltstones of the Sappington Member of the
Three Forks Formation. Much of the Jefferson Formation was removed. The
gentle uplift that followed deposition of the Three Forks Formation in latest
Devonian time resulted in the removal of parts of that formation. At the
close of the Devonian period and the onset of the Mississippian period,
western orogenic movements of the Antler highland accompanied the return of
the seas to the area. Deeper water limestones and fine terrigenous sediments
of the Early Mississippian McGowan Creek Formation were laid down, followed by
the deposition of a thick carbonate bank succession in seas that shoaled
gradually from Late Mississippian into Lower Permian time. A period of
emergence and nondeposition or erosion preceded deposition of the cherts and
phosphatic sediments of the Permian Phosphoria Formation. A period of uplift
and erosion probably related to the western Sonoma orogeny, closed the
Paleozoic Era in the region. In Early Triassic time, shallow seas once again
covered the area and fine-grained detrital sediments of the Dinwoody Formation
were laid down. The Dinwoody is the last record of Mesozoic sedimentation
present in the area. The Cordilleran thrust belt began to form in Middle
Jurassic time, and by Late Cretaceous or early Tertiary time, the thrust
plates of the Beaverhead Mountains were in place. Thrusting was followed
closely by the first phase of extension faulting that preceded extrusion of
the middle Eocene Challis Volcanics. Challis volcanism was accompanied and
followed by the development of regional continental basins. In middle Miocene
time, basin-range extension disrupted former basins, formed new ones, and
broke the crust into long, narrow, eastward tilted blocks that evolved in

Pleistocene time into the Lost River and Lemhi Ranges, and the Beaverhead



Mountains. Formation of the ranges was accompanied in Miocene and Pliocene
time by the downwarping of the Snake River Plain and the extrusion of great
volumes of bimodal volcanics, some of which were erupted into the valleys that
formed between the tilted crustal blocks far north of the Plain itself. The
intrusive body thought to be present at depth in the Clear Creek area probably
was a part of the Neogene bimodal magmatism.

GEOCHEMISTRY
Introduction

A geochemical reconnaissance investigation was undertaken in the WSA and
vicinity in July, 1983. The chief purpose of this investigation was to
provide a geochemical basis for the mineral resource appraisal of the WSA.

A total of 34 sieved-sediment samples (Plate 3), 32 nommagnetic, heavy-
mineral concentrate samples (Plate 3), 79 rock samples (Plate 2), 21 water
samples (Plate 4), and 7 soil samples (Plate 4) were collected and analyzed.
Analytical data for these samples are presented in the Appendix. Additional
data from a recent USGS study of the contiguous Italian Peak Roadless Areas
(fig. 1) were used in the interpretation because many of the samples collected
in that study came from the Eighteenmile WSA. Plates 2 and 3 show the
location of 29 stream-sediment, 13 panned-concentrate, and 102 rock samples.
Complete analytical data from that study is presented in Hopkins and others
(in press) and interpretations in Antweiler and others (in press). Discussion
of the mineral resource potential of the Italian Peak Roadless Areas may be
found in Skipp and others (1983).

Sample Collection

Stream-sediment samples

The ma jority of the alluvial samples were collected from small streams
and tributaries in the WSA (Plate 3) for an average density of one sample site
per square mile. At most sample sites, two samples were taken. The first
sample consisted of about 12 1b of bulk alluvium collected for the purpose of
panning a heavy-mineral concentrate. The second sample consisted of about 1
1b of alluvial material collected for the purpose of obtaining a sieved-
sediment (fine-grained) fraction. Where possible, the sediment was collected
across the full width of the active drainage channel, and as deep and close to
underlying bedrock as practicable. If the active sediment channel was more
than 1 foot wide, the sample was composited from a series of random sites
across the full width., Parts of the stream bed most likely characterized by
minimal gravity sorting were preferentially sampled to obtain the maximum
variety (widest range of specific gravities) of heavy minerals conveniently
obtainable.
Heavy-mineral concentrates. A heavy-mineral concentrate was obtained by
panning the bulk alluvial sample either at the sample site or at the nearest
convenient stream. Panning is the first of a number of processing steps and
is performed for three reasons: first, panning removes the organic, and fine-
to clay-sized materials which otherwise might act as a cement to bind the
heavy-mineral grains together, or which might act as a coating agent and
prevent the identification of the mineral grains. Second, the panning greatly
reduces the volume of material that needs to be processed during a subsequent
heavy-liquid separation step. Finally and most importantly, panning reduces
the proportions of barren material relative to ore-related minerals that
generally have a high specific gravity. By physically concentrating those
minerals related to mineralization, the metal values obtained are greatly

enhanced.
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Sieved sediment. A sieved stream-sediment fraction was obtained by collecting
about 1 1b of alluvial material from which the larger pebbles were removed.
The sieved-sediment sample was taken for two reasons: it may contain fine-
grained clastic material from mineralized outcrop; and, it may contain metals
adsorbed on silt and clay-sized particles.

Rock samples. Rock samples consisted of grab and composite chip samples
collected across the stratigraphic sequence, where appearance or structure
indicated the possiblity of detecting mineralization, or for the purpose of
determining the suites of elements involved in obviously mineralized rocks.

No attempt to systematically sample rocks was made in this reconnaissance
study.

Water samples. Water samples were collected at stream—sediment sites where
flowing water was present. Two springs also were sampled (NI 015 and 018,
Plate 3). At each sample site, a portion of the water was filtered through a
0.45-micron filter and collected into an acid-rinsed polyethylene bottle.

This sample was immediately acidified to pH<2 by the addition of a few drops
of Ultrex nitric acid. This sample was later used for trace element

analysis. A second portion of water was collected untreated into a
polyethylene bottle that had been rinsed with the sample water for later
analysis of major constituents. Temperature, pH, and specific conductance
were measured at each site.

Soil samples. Soil samples were collected from the B horizon at 20-ft
intervals perpendicular to structural trends indicated by Scholten and
Ramspott (1968) at two localities: ML 009, near Clear Creek, and NI 014, near
Eighteenmile Creek. The purpose of this sampling was to detect potential
metal leakage from these structures which may have acted as permeable pathways
for metal-rich solutions.

Sample Preparation
Sieved-sediment samples. The alluvial material collected for a sieved-
sediment sample was air-dried, sieved to <80 mesh using a mechanical sieve
shaker and stainless steel sieves, and then analyzed.
Heavy-mineral concentrates. Subsequent to panning, the concentrate samples
were further processed by: (1) sieving to <12 mesh, discarding coarse
material; (2) bromoform separation, discarding light fraction (specific
gravity <2.85); and, (3) electromagnetic separation using a Frantz Isodynamic
Separator at 0.1 amp and 1.0 amp (forward setting 25°, side setting 15°). The
fraction magnetic at 0.1 amp (largely magnetite) and the fraction magnetic at
1.0 amp (largely ferromagnesian silicates and iron oxides) were stored for
possible future analysis.

The nonmagnetic at 1,0-amp (NM-1) sample is a sample where most of the
ma jor rock-forming minerals have been removed. In theory, such minerals as
sphene, apatite, and zircon are left in unmineralized areas, while in
mineralized zones, most of the common, primary and secondary ore minerals are
left--sulfides, sulfates, sulfosalts, carbonates, and halides. The NM-1
sample further underwent: a microscopic examination for mineralogy (in
general, a brief scan) and assessment of processing quality; pulverization to
<200 mesh using an agate mortar and pestle; and, analysis by semiquantitative
emission spectrography.

Rock samples. Rock samples were mechanically crushed using steel jaw crushers
then pulverized to <150 mesh using ceramic plates.

Water samples. Water samples required no preparation beyond that done in the
collection process.

11



Soil samples. Soil samples were air-dried, sieved to <80 mesh using a
mechanical sieve shaker and stainless steel sieves, and pulverized to
<150 mesh using ceramic plates.

Analytical Methods
Emission-spectrography analyses

All sediment, rock, and soil samples were analyzed by semiquantitative
emission spectrography using the field method of Grimes and Marranzino
(1968). Results of these spectrographic analyses for all of the sample media
were measured within geometric intervals (for example, boundaries at 1,200,
830, 560, 380, 260, 180, 120, and 83 in ppm) but were reported as the
approximate geometric midpoints (1,000, 700, 500, 300, 200, 150, and 100 ppm
in the example given above). Thus, the values are reported as a series of six
steps per order of magnitude.

Table 1 gives the upper and lower limits of determination for
semiquantitative emission spectrographic analyses of rocks, sieved stream
sediments, and soils. Both the upper and lower limits of determination of the
nonmagnetic fraction of heavy-mineral concentrates are two spectrographic
intervals higher than those listed in table 1. These changes are made because
the standard weight of 10 mg of sample used in conventional analyses is
lowered to 5 mg of heavy-mineral concentrate to reduce spectral interferences
inherent to the analysis of heavy-mineral concentrates.

For purposes of geochemical exploration, experience has shown that the
analytical precision of semiquantitative emission-spectrographic analysis is
well within practical requirements for most of the elements, especially with
the enhanced values possible from the analysis of concentrate fractions. The
studies of Motooka and Grimes (1976), making use of repeat analyses by a
number of analysts and instruments, show that reported values fall within omne
adjoining report interval 83 percent of the time and within two adjoining
report intervals 96 percent of the time for all of the elements.

Uranium analyses.

Fluorometric analyses for uranium were performed on the <80-mesh sediment
sample using slightly modified versions of procedures described by Grimaldi
and others (1952) and Centanni and others (1956). The detection limit of this
method is 0,05 ppm.

Water analyses.

Water temperature, pH, and specific conductance were measured at the
sample site, all other determinations were made in the laboratory in Denver,
Colo. Alkalinity, chloride, fluoride, nitrate, potassium, sodium, and sulfate
were determined using untreated water. Analyses of copper, molybdenum, and
uranium were performed using the filtered and acidified sample. The
analytical methods used for water analyses are shown in Table 2, detection
limits and report parameters are shown in Table 3.

Analysts
Spectrographic analyses were performed by D. E, Detra. Uranium analyses
were performed by J. D. Sharkey. Water analyses were performed by W. H.
Ficklin, J. R. Hassemer, and J. B. McHugh. Preparation of sieved-sediment,
soil, and rock samples was performed under the direction of J. E. Kilburn.

Results
Analytical data from the geochemical survey are presented in the
appendix and in figures 3-13. The appendix also contains data for samples

collected in nearby mining districts discussed in the Phase I report (WGM,
Inc., 1983).
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Table l.--Lower and upper limits of determination for semiquantitative emission
spectrographic analyses of rocks, sieved (<80-mesh) stream sediments,
and soils,.

Elements Lower determination limit Upper determination limit
Percent Percent
Iron (Fe) 0.05 20
Magnesium (Mg) .02 10
Calcium (Ca) .05 20
Titanium (Ti) .002 1
Parts per million Parts per million
Manganese (Mn) 10 5,000
Silver (Ag) 0.5 5,000
Arsenic (As) 200 10,000
Gold (Au) 10 500
Boron (B) 10 2,000
Barium (Ba) 20 5,000
Beryllium (Be) 1 1,000
Bismuth (Bi) 10 1,000
Cadmium (Cd) 20 500
Cobalt (Co) 5 2,000
Chromium (Cr) 10 5,000
Copper (Cu) 5 20,000
Lanthanum (La) 20 1,000
Molybdenum (Mo) 5 2,000
Niobium (Nb) 20 2,000
Nickel (Ni) 5 5,000
Lead (Pb) 10 20,000
Antimony (Sb) 100 10,000
Scandium (Sc) 5 100
Tin (Sn) 10 1,000
Strontium (Sr) 100 5,000
Vanadium (V) 10 10,000
Tungsten (W) 50 10,000
Yttrium (Y) 10 2,000
Zinc (Zn) 200 10,000
Zirconium (Zr) 10 1,000
Thorium (Th) 100 2,000
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Table 3.--Detection limits and report parameters for water samples

Constituent (Detection Limit)

Calcium (0.1), Chloride (0.1),
Fluoride (0.1), Magnesium (0.1)
Nitrate (0.1), Potassium (0.1)
Sodium (0.1)

Alkalinity (10)

pH
Specific conductance (10)
Temperature

Copper (1), Molybdenum (1),
and Uranium (0.01)

Report parameter

milligrams per liter
(ppm)

do.

pH units
microSiemans
degrees Celsius

micrograms per
liter (ppb)

Comments

Reported as bi-
carbonate (HCO3)
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Data from both this report and from Hopkins and others (in press) are
presented in the figures (see also plates 2 and 3). Except for figure 13,
uranium, only those sample sites considered anomalous are shown on figures
3-13, Table 4 lists the threshold values for the elements presented in these
figures and, for the convenience of the reader, lists average elemental
abundances for the main rock types found in the WSA., The small size of the
WSA and the concomitant small data set preclude statistical treatment of the
data.,

As a general observation, the entire WSA appears to be enriched in a wide
variety of elements resulting from several geochemical processes.

The Paleozoic rock units and the stream sediments derived from them are
enriched in Ag, B, Ba, Cr, Cu, Mn, Mo, Ni, Pb, and Zn. The structural
complexities present in outcrop areas of the Paleozoic rock units and the
reconnaissance nature of the geochemical data combine to create considerable
uncertainties in the interpretations. For example, the highest Ag value in a
rock sample, 10 ppm (excluding samples from known mining districts), was
obtained from a siltstone., Siltstones were found to be anomalous in a number
of elements in several localities. These data suggest the siltstones may have
been solution pathways for fluids that subsequently caused the mineralization
that occurs in the Paleozoic carbonate rocks. The metal content of the
mineralizing fluids could be derived from several sources: hydrothermal
fluids or enriched ground waters, both of which may have used the siltstones
as the most permeable units; and formation brines where the siltstones and
sandstones were the source of the metal-rich fluids. If such solutions were
fluids derived from formation brines (that is sedimentary or sedimentary-
exhalative fluids), then the genetic model for such mineralization would be
similar to models proposed for a number of stratabouad Pb-Zn deposits and a
model which has been proposed for the Nicholia district (Lambeth and Mayerle,
1983). However, the highest Mo value, 300 ppm, occurred in an altered and
highly brecciated carbonate rock found in a tributary of Chamberlain Canyon
suggesting that mineralization is related to faulting and, because of age
relationships, is a result of hydrothermal fluid movement along these
structures., Supporting evidence of a hydrothermal genetic model is the
spatial association of faults and mineralized rocks throughout the WSA and an
apparent tendency towards increased mineralization at structural
intersections. However, because of the reconnaissance nature of the
geochemical survey, such structures were preferentially sampled and the
spatial association may only reflect sampling bias and secondary
redistribution of pre-existing metal enrichment.

The presence of very high Cr and Ni values in many of the rock and
stream-sediment samples may be interpreted as further evidence of hydrothermal
activity. Altered limestones and dolomites frequently have much higher
coatents of Cr and Ni than samples of the mafic dikes of probable Eocene age.

A further complication in the interpretation of the geochemical data is
the near-certain preseunce of a subsurface pluton emplaced along the range
front fault. Whether or not this body is the source of the anomalous elements
is not clear. At the very least, this body acted either as a source for
hydrothermal fluids or as a heat pump for cells of circulating, heated
meteoric waters. This activity resulted in the formation of the gypsum
deposits in the Clear Creek area and probably caused considerable
redistribution of elements locally.

The presence of a subsurface igneous body and anomalous Mo values does
lead to speculation on the possibilities of porphyry molybdenum

mineralization. The data, however, are sufficient only for speculation. Age
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relationships indicate the subsurface body is Mid to Late Tertiary and most
porphyry molybdenum systems in Idaho and Montana are considered Early Tertiary
or Late Cretaceous (Armstrong and others, 1978). If emanations from the
intrusive body are the source of the high Cr and Ni contents in the rocks and
stream sediments, such data would suggest a body of basaltic composition.
Samples of Eocene dikes did contain weakly anomalous Mo values, but this may
have resulted from metal leakage along the contact. If the dike rocks or the
Mo values are related to a porphyry molybdenum system, it has been beheaded by
the thrust faulting because there is no evidence of another subsurface body
indicated by the geophysical data. As further negative evidence for a
porphyry molybdenum system, a visual search was made of the nonmagnetic
concentrate samples for fluorite, a mineral commonly associated with porphyry
molybdenite systems, but only trace amounts were found. In most samples no
fluorite was observed.

Many of the nonmagnetic concentrate samples collected between Dry Canyon
and Pass Creek, however, did contain large amounts of phosphatic material
which indicates that there are phosphate-bearing beds in Paleozoic rocks other
than the Phosphoria Formation. The Phosphoria Formation does not occur within
the WSA and thus cannot be the source of this material.

Three Proterozoic rock samples were analyzed, one of which contained 30
ppm gold. This was the only sample of any type from the Eighteenmile WSA in
which gold was found. Although sediments from streams draining Proterozoic
rocks were enriched in Ag and Cu, among other elements, a Proterozoic source
cannot be established because those streams also drain Paleozoic rocks.

The Beaverhead pluton is a geochemically specialized granitoid containing
anamolous amounts of B, Be, La, Nb, Mo, Sn, and U, in addition to base and
precious metals. Many of the rock samples (data from Hopkins and others, in
press) contain Sn values and Zr/Sn and V/Nb ratios that meet the criteria for
recognizing granitoid complexes parent to deposits of rare metals (Beus and
Grigorian, 1977, tables 20 and 21). The base and precious metal values show a
close relation to fault systems in the granite, while Sn-rich rock samples
tend not to be enriched in either base or precious metals. These indications
of separate mineralizing systems suggest that the base and precious metal
mineralization may not be genetically related to the granite, but rather a
later, superimposed mineralization.

High U values (figure 13) are definitely associated with the Beaverhead
pluton; however, none of 30 rock samples analyzed for U contained as much as 5
ppm U (Hopkins and others, in press). The source for the high U values in the
sediments remains unknown. The cause is probably precipitation of uranium on
organic matter in small localized boggy areas in the stream drainages.

A few, selected, magnetic at one-amp (M-1), heavy-mineral concentrates
were also analyzed by semiquantitative emission spectrography. This
concentrate fraction contains mafic minerals and iron and manganese oxides.
Results of the analyses yielded essentially the same interpretations as the
other sample types, although one sample site, NI 010, contained high values of
La, Y, and Th suggesting the possibility of fine-grained thorite inclusions in
hematite grains. Hematite-thorite mineralization occurs in the Lemhi Pass
disrict (Staatz, 1972; 1979) and at a thorite prospect (Staatz and others,
1972a) at Bull Canyon just north of the WSA (see site MLOOl, plate 3 and
Appendix). These deposits also contain significant amounts of rare earth
elements (Staatz and others, 1972b). The data suggest that analysis of the
M-1 fraction and analyses for rare earth elements might prove fruitful,
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ENERGY AND MINERAL DEPOSITS
Known mineral deposits

Gypsum constitutes the only known mineral deposit in the Eighteenmile
WSA. Gypsum has been mined from the Clear Creek gypsum mine in Clear Creek
about one-half mile west of the WSA (fig. 2), and small gypsum deposits have
been prospected north and south of the Clear Creek mine in the WSA.

Phosphate has been mined from the Phosphoria Formation north of the WSA
(Oberlindacher and Hovland, 1979), but no Phosphoria Formation is present in
the WSA,

Silver-lead-zinc ores from the Viola mine in the Nicholia mining district
two miles south of the WSA (fig. 2) are thought to have been stratabound in
dolomite of the Devonian Jefferson Formation of the Hawley Creek thrust plate
(Skipp and others, 1983; Lambeth and Mayerle, 1983). No similar deposits have
been identified in the WSA,

Known prospects, mineralized areas, and mineral occurrences
Several prospects are present in the vicinity of the Clear Creek gypsum
mine (WGM, Inc., 1983). All other known prospects and mineral occurrences are
outside the WSA,

Mining claims and leases

Information on mining claims and leases within the Eighteenmile WSA was
obtained from the Phase 1 GEM report on the WSA (WGM, Inc., 1983). As
indicated in that report, six mining claims, one of them patented, the gypsum
prospect shown on figure 2, are present in the WSA in the general vicinity of
the Clear Creek gypsum mine as of June 30, 1982, A phosphate prospecting
permit application extends into the northern part of the WSA (WGM, Inc., 1983,
fig. 13). As of August 12, 1982, about 60 percent of the WSA was covered by
0il and gas leases or lease applications. The southern part and northwestern
edge of the WSA are completely leased.

Mineral resource types

Four mineral resource types are present in the Eighteenmile WSA: gypsum
and base, precious, and rare metals associated with hydrothermal
mineralization in the Clear Creek area; base and precious metals in fractures
in granite of the Ordovician Beaverhead Mountains pluton; rare metals and
uranium in granite of the pluton and sediments derived therefrom; and
stratabound or replacement precious, base, and rare metals in Paleozoic
siltstones and carbonate rocks.

Gypsum deposits are present in the WSA near the Clear Creek gypsum mine,
and geochemical sampling shows most samples from this area are anomalous in
Ag, Cu, and Mo. Fault-controlled hydrothermal mineralization probably
resulted from heat and metal ions provided by a buried Neogene intrusive
emplaced along the Crooked Creek fault near the mouth of Clear Creek. A
recent aeromagnetic map (USGS, 1981) identifies the southern part of a large
positive magnetic anomaly in this area (fig. 2).

Mineralization in the Clear Creek area is of hydrothermal origin as
suggested by E. T. Ruppel (in Withington, 1964), rather than stratabound
origins as concluded in the Phase 1 report (WGM, Inc., 1983). Mineralized
zones are not confined to a single stratigraphic unit or tectonic block, but
are present in the Mississippian Scott Peak and McGowan Creek Formations and
Eocene(?) dikes of the Fritz Creek thrust plate and the Clear Creek slide
block (fig. 2).
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Fractures in granite of the Ordovician Beaverhead Mountains pluton are
enriched in Ag, Cu, Pb, and Zn. Granite of the pluton is rich in Sn and Nb.
Sediments derived from the granite contain weakly to moderately anomalous U.

Siltstones and mudstones of the Devonian Three Forks Formation and the
Mississippian McGowan Creek and Big Snowy Formations are preferentially
enriched in Ag and Mo. These strata may have acted as conduits for
mineralizing fluids.

Dolomite of the Devonian Jefferson Formation is the host for stratabound
Ag-Pb-Zn ores in the Nicholia mining district south of the WSA (Lambeth and
Mayerle, 1983; Skipp and others, 1983). Weakly anomalous concentrations of Ag
and Pb were noted in samples of Devonian dolomite from the WSA.. Scattered
samples of Mississippian carbonate rocks are enriched in Pb, Cu, and Mo.

Mineral economics

Mineral resource types found in the Eighteenmile WSA are primarily
hydrothermal gypsum and associated base, precious, and rare metals in the
Clear Creek area; base and precious metals in fractures in granite of the
Beaverhead Mountains granite; uranium in sediments derived from the granite;
stratabound precious metals in Devonian and Mississippian siltstones and
mudstones; and stratabound base and precious metals in Devonian and
Mississippian dolomites and limestones. Access, transportation, grade,
recovery volume, extraction methods, and market value affect the economics of
mining the various deposits. The gypsum deposits and related base and
precious metal deposits in the Clear Creek area have a moderate to high
economic potential although the grades are incompletely known. All other
mineralized areas in the WSA have unknown economic potential because of lack
of data.

Land classification

Land classification decisions were made on the basis of field
investigations, geochemical study, historical research, and a partial
aeromagnetic survey. The classification scheme used by the Bureau of Land
Management is given in table 5, and the land classification decisions are
presented in table 6.

The Clear Creek area has high resource potential for hydrothermal gypsum
and a moderate resource potential for associated Ag, Cu, Mo, Pb, and Zn
mineralization. Gypsum already has been produced from the Clear Creek mine
adjacent to the WSA, and several prospects, one of them patented, are present
in an area that probably is underlain by a Neogene intrusive as a possible
source for heat and metals prerequisite to hydrothermal ore deposits. The
area 1s easily accessible along an improved gravel road that exits east from
Idaho State Highway 28. More detailed mapping, geochemical studies, a gravity
survey, and a magnetic survey would be necessary to assess the full potential
of the area.

Base and precious metal fracture mineralization in granite of the
Beaverhead Mountains pluton appears to be generally localized and of low
grade. These factors suggest moderate potential for this resource, Although
granite of the pluton is Sn-rich, concentrations are low, and a resource
potential for Sn is low. Sediments derived from the granite contain
moderately anomalous concentrations of U, but the resource potential is
considered low,

Moderately anomalous concentrations of precious and rare metals, present
in siltstones and mudstones of the Devonian Three Forks and the Mississippian

McGowan Creek and Big Snowy Formations, are not considered a resource
themselves, but they may indicate the presence of metal-rich fluids.
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Table 6.

Land classification of the Eighteemmile WSA

Resource

Classification

Comments

METALS

Precious (Au, Ag)

Base (Cu, Pb, Zn)

Rare (Mo, Sn, Nb)

URANIUM-THORIUM

NONMETALLIC MINERALS
Phosphate

Gypsum

OIL AND GAS

GEOTHERMAL

3c

2C

3B

3B

3C

3B

2C

2C

3B

2C

2C

1D

4C

2D

3B

2B

Ag fracture mineralization associated
with granite of the Beaverhead
Mountains pluton

Ag mineralization associated with
siltstone and mdstone of Devonian
Three Forks, and Mississippian
McGowan Creek and Big Snowy
Formations

Ag mineralization in Devonian and
Mississippian carbonate rocks
associated with Tertiary hydro-
thermal systems

Ag mineralization stratabound in
dolomite of the Devonian Jefferson
Formation

Cu=Pb-Zn fracture mineralization
associated with granite of the
Beaverhead Mountains pluton

Cu~Pb~Zn mineralization associated
with Paleozoic carbonate rocks

Sn=Nb mineralization associated with
granite of the Beaverhead Mountains
pluton

Mo mineralization in siltstone and
mudstone of Devonian Three Forks
and Mississippian McGowan Creek
Formations (by-product associated
with possible base or precious
metal mineralization)

Mo mineralization in Mississippian
carbonate rocks (a by=-product as
above)

Mo porphyry at depth
U-Th mineralization associzted with

granite of the Beaverhead Mountains
pluton

WSA lacks Phosphoria Formation,
and phosphate=rich zones in other

Paleozoic formations are of low grade

Gypsum mineralization associated with
hydrothermal systems related to
buried Neogene intrusive

0il at depths less than 10,000 ft

Gas at depths less than 10,000 ft

WSA lacks evidence of Holocene heat-

providing bodies
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Base and precious metal geochemical anomalies in dolomites of the
Jefferson Formation are weak where sampled for this study. The resource
potential is considered moderate in the WSA,

Scattered anomalous concentrations of base and rare metals were found in
samples of Mississippian carbonate rocks, but little is known about the extent
or cause of the mineralization. This resource is classed as having a moderate
potential until more is known.

The potential for oil and gas in the WSA above a depth of 10,000 ft is
classified as low to moderate. One, two, or all three of the thrust plates
present (fig. 2) underlie the entire area of the WSA to depths of at least
10,000 ft. What lies beneath these thrust sheets remains speculative. Bore-
hole and seismic information south and east of the WSA indicate that regional
basement is deep, perhaps near 30,000 ft (Perry and others, 1981; Perry and
others, 1983; Skipp and Hait, 1977), so there may be room for one or more
thrust sheets below 10,000 ft depths that may be composed of rocks deposited
on the inner craton margin.

One conodont color alteration index (CAI) value from McGowan Creek
Formation on the Fritz Creek thrust plate just north of Pass Creek is &4 (fig.
2), indicating that these rocks have been subjected to temperatures in excess
of 190°Cc (Epstein and others, 1977), Other CAI values from limestones of the
Fritz Creek thrust plate south of the WSA are similar (Skipp and others,
1983). Any hydrocarbons present in rocks of the Fritz Creek plate would be in
a state of late postmature thermal maturity, and dry gas would be the only
possible resource (Perry and others, 1981), Similar CAI values have been
obtained from limestones of the Cabin plate southeast of the WSA. No
information on the thermal history of the rocks on the Cabin plate is
available in the WSA, but if the thermal history is similar to that of the
Fritz Creek plate, dry gas once again is the only possible resource. For
these reasons, the 0il potential for rocks at depths less than 10,000 ft is
low, and the gas potential is moderate. It is, however, very difficult to
identify structures that might contain gas in a terrane like that of the WSA,
where dense carbonate and intrusive rocks lie at the surface.

RECOMMENDATIONS FOR FURTHER WORK

The Clear Creek area containing the Clear Creek gypsum mine appears to be
underlain by a Neogene magnetic intrusive that furnished the heat and metal-
rich solutions for extensive fault-controlled hydrothermal mineralization that
extends into the WSA. More detailed geologic mapping of faults, fold axes,
and areas of altered rocks is needed in this area, along with more detailed
geochemical sampling, a gravity survey, and an aeromagnetic or ground magnetic
survey to define the northern limits of the magnetic anomaly., A gravity
survey would furnish information on the the relative density of the inferred
Neogene magnetic intrusive body. Eventually, the area probably should be
tested by drilling or less expensive specialized geophysical techniques.
Evaluation of the true potential for base and precious metals in fractures of
the granite of the Ordovician pluton would involve very detailed geologic
mapping and sampling of that body, neither of which are recommended at this
time because of the extremely localized nature of the mineralization.
Detailed field mapping and geochemical sampling to delineate in three
dimensions the different phases of the granite would be necessary to further
evaluate the Sn potential of the Beaverhead Mountains pluton (Taylor, 1979, p.
96). These are not recommended at this time largely because no other tin
deposits are known in the region.
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Specialized sampling of Devonian dolomites and siltstones and
Mississippian siltstones and limestones that have yielded anomalous
concentrations of precious, base and rare metals would allow evaluation of the
validity of the model of stratabound mineralization in this area, and might
provide the information needed to explain and identify the scattered
mineralized zones in Mississippian carbonate rocks.

Because of the numerous oil and gas leases in the WSA, it is recommended
that a few more conodont color alteration index (CAI) values be obtained for
carbonate rocks in the WSA, and that vitrinite reflectance and thermal
alteration index (TAI) values be obtained for mudstones of the Mississippian
Big Snowy and McGowan Creek Formations to determine the thermal maturity of
particulate organic matter in the fine-grained detrital rocks of the Cabin and
Fritz Creek thrust plates in the WSA. This information would allow evaluation
of the o0il and gas potential of the WSA on the basis of local, rather than
regional, data.
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Appendix 1. Explanation of data tables

The column listings in appendices 2-6 are arranged so that column 1
contains the sample identifiers. The first two numbers of the sample
identifier designate the year the sample was collected. The next 1 or 2
letters indicate the 7.5~ or 15-minute U.S. Geological Survey topograhic
quadrangle in which the sample was collected. The letter abbreviation and
corresponding quadrangles are as follows: ML, Morrison Lake; NI, Nicholia;
and SP, Scott Peak. Samples collected from mining districts outside the
Eighteenmile GRA include LE, Leadore; GI, Gilmore; LP, Lemhi Pass; SA, Salmon;
BM, Blackbird Mountain; and PA, Patterson.

The three numbers following letter abbreviations are the unique
identification of the sample site. Letter suffixes or a blank space at the
end of the sample number have the following meanings: NM, nonmagnetic (NM-1)
heavy-mineral concentrate; R, rock sample; (no suffix), <80-mesh stream
sediment; W, water sample; and S, soil sample.

Rock samples collected by B. Skipp have a single letter, S, and the year
is indicated by the last two numbers.

The latitude north and longitude west for each sample locality is shown
in degrees, minutes, and seconds in columns 2 and 3. The remaining columns
list the elements for which data are available.

The following examples illustrate the column headings for the data:

Fe-pct. U~-ppm SO,-ppm Cu-ppb
s i ic aa

The headings in this example indicate iron in percent, uranium in parts
per million, sulfate in parts per million, and copper in parts per billion,
respectively., The subheading "s" in the iron example indicates a
semiquantitative emission-spectrographic analysis; "i'", "ic", and "aa"
indicate instrumental, ion chromatographic, and atomic-absorption
spectroscopic analyses respectively.

Data qualified (censoring) codes are used with some reported values,
Symbols used are N, not detected; <, detected, but below the value shown;
>, greater than the value shown; —--, no data available.

The results given in tables should be considered as having only two
significant figures. Instrument readouts frequently give three or more
digits, especially if the data are internally processed before the readout.
Additionally, when a number such as "1200" occurs in the same column as a
number such as "3.5," the computer printout will be "1200.0," indicating a
false precision.
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