Selected bibliography on the association of petroliferous
and non-petroliferous organic materials with uranium
and other metal deposits in sedimentary rocks

by

Leonard J. Schmitt

Open-File Report 84-508

This report is preliminary and has not been reviewed for conformity
with U.S. Geological Survey editorial standards and stratigraphic
nomenclature.

1USGS Lakewood, Colo.

1984
Selected bibliography on the association of petroliferous and non-petroliferous organic materials with uranium and other metal deposits in sedimentary rocks

by

Leonard J. Schmitt

INTRODUCTION

A relationship between carbonaceous material and most sandstone-type uranium deposits has been generally established in the literature, but a relationship between petroliferous material and sandstone-type uranium deposits is less certain.

The intent of this bibliography is not to be exhaustive of the subject materials, but rather to provide a representative cross section of available literature. Nevertheless, minor occurrences as well as producing districts are covered. Although the primary emphasis of the bibliography is on uranium, some copper, silver and lead-zinc deposits are included.

There are several processes, both direct and indirect, that relate petroliferous materials to metalliferous deposits. One direct process is the precipitation of metals by organic materials resulting in uraniferous asphaltite like that at Temple Mountain, Utah. Uraniferous asphaltite is considered to be petroleum-derived by some authors (Curiale, 1983; Handford and Granata, 1979; Hawley and others, 1965; Kerr and others, 1955; Pierce and others, 1958, 1964; and Wyant, 1953) and coal-derived by others (Breger, 1955; Breger and Deul, 1955b, 1959; and Haji-Vassiliou and Kerr, 1973). The material is nearly insoluble. It must, to some degree, have suffered in situ radiation damage. It has characteristics that relate it to both coal and petroleum.
Another direct process is for petroleum to act as an ore-bearing medium. This mechanism is especially conjectural because the uranium content of most petroleums is generally considered too low to form uranium deposits.

An indirect process is that hydrogen sulfide migrating from oil or gas pools through faults and fractures precipitates metals in traps. The Palangana salt dome uranium deposits and some of the other south Texas uranium deposits may be examples of this type of mechanism.

Another indirect process is the relation between oil field brines and ore deposits. Such brines have been proposed as ore formers in some Mississippi Valley lead-zinc deposits.

Cox, G. H., 1911a, The origin of the lead and zinc ores of the upper Mississippi Valley district. Part I: Economic Geology, v. 6, no. 5, p. 427-448.

____1911b, The origin of the lead and zinc ores of the upper Mississippi Valley district. Part II: Economic Geology, v. 6, no. 6, p. 582-603.

Davidson, C. F., 1955, Concentration of uranium by carbon compounds: Economic Geology, v. 50, no. 8, p. 879-880.

Germanov, A. I., 1961, Geochemical and hydrodynamic conditions of epigenetic uranium mineralization in petroleum-water zones: Geochemistry, no. 2, p. 107-120 (translated from Geokhimiya).

Intermountain Association of Petroleum Geologists, 1961, Lisbon field, San Juan County, Utah, Preston, Don, ed., A symposium of the oil and gas fields of Utah.

____1980b, Uranium and organic matter - recent experiments and the problems remaining, in Geochemistry of organic matter in ore deposits: Carnegie Institute of Washington, Geophysical Laboratory, p. 87-89.

____, 1964, Cation exchange properties of humic acids and their importance in the geochemical enrichment of \(\text{UO}_2^{2+} \) and other cations: Geochimica et Cosmochimica Acta, v. 28, p. 1605-1614.

