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ESTIMATION OF DISTRIBUTIONAL PARAMETERS FOR 
CENSORED TRACE-LEVEL WATER-QUALITY DATA

I. Estimation Techniques 

by Robert J. Gilliom and Dennis R. Helsel 

ABSTRACT

A recurring difficulty encountered in investigations of many metals and 
organic contaminants in ambient waters is that a substantial portion of water- 
sample concentrations are below limits of detection established by analytical 
laboratories. Several methods were evaluated for estimating distributional 
parameters for such censored data sets using only uncensored observations. 
Their reliabilities were evaluated by a Monte Carlo experiment in which small 
samples were generated from a wide range of parent distributions and censored 
at varying levels. Eight methods were used to estimate the mean, standard 
deviation, median, and interquartile range. Criteria were developed, based on 
the distribution of uncensored observations, for determining the best-performing 
parameter estimation method for any particular data set. The most robust method 
for minimizing error in censored-sample estimates of the four distributional 
parameters over all simulation conditions was the log-probability regression 
method. With this method, censored observations are assumed to follow the 
zero-to-censoring level portion of a lognormal distribution obtained by a 
least-squares regression between logarithms of uncensored concentration observa­ 
tions and their z scores. When method performance was separately evaluated 
for each distributional parameter over all simulation conditions, the log- 
probability regression method still had the smallest errors for the mean and 
standard deviation, but the lognormal maximum likelihood method had the smallest 
errors for the median and interquartile range. When data sets were classified 
prior to parameter estimation into groups reflecting their probable parent 
distributions, the ranking of estimation methods was similar, but the accuracy 
of error estimates was markedly improved over those without classification.

INTRODUCTION

Interest in the occurrence of trace levels of toxic substances in surface 
and ground waters and their effects on human health and aquatic ecosystems has 
increased during the last 10 years. However, investigations of trace substances 
in ambient waters have encountered a recurring difficulty: a substantial portion 
of water-sample concentrations are below the limits of detection established by 
analytical laboratories. Measurements below the detection limit are generally 
reported as "less than the detection limit" rather than as numerical values. 
Data sets with "less-than" observations are termed "censored data" in statistical 
terminology. Censored data do not present a serious interpretation problem if 
concentrations of primary interest are well above the detection limit, but this 
is often not the case. For some chemicals, established water-quality criteria 
are below commonly applied detection limits. For many others, the great uncer­ 
tainty in the effects of long-term exposure to very low levels also make it 
desirable to assess the frequency of occurrence of concentrations below the 
detection limit. In short, there is a need to estimate the frequency distri­ 
bution of concentrations above, near, and below detection limits using only 
data above the detection limit.



The purpose of this study is to address several key aspects of estimating 
distributional parameters from censored data. These include:

  The performance of several estimation methods when estimating distri­ 
butional parameters from small samples drawn from a wide range of 
underlying distributions and censored to varying degrees.

  Criteria for determining, based only on attributes of data remaining 
after censoring, which estimation method is most likely to be best 
for each data set.

  The reliability of estimates from censored data of four distributional 
parameters: the mean, standard deviation, median, and interquartile 
range.

PREVIOUS STUDIES

There have been extensive investigations of methods for estimating location 
and scale parameters for censored data drawn from specific parent distributions 
(David, 1981). There have been far fewer studies of the application of these 
methods to environmental data for which parent distributions are unknown and 
sample sizes are small.

One of the first applications of censored data analysis in the environmental 
field was by Leese (1973), who applied censored data techniques to flood fre­ 
quency analysis. She found that standard errors of mean annual flood estimates 
could be reduced by using the maximum likelihood estimates (MLE) for censored 
Gumbel distributions. Recently, Condie and Lee (1982) showed that maximum like­ 
lihood estimators for small censored samples from the three parameter lognormal 
and the log-Pearson type III distributions improved flood frequency estimates.

Owen and DeRouen (1980) addressed the problem of estimating a mean from 
censored air contaminant data. They used Monte Carlo techniques to evaluate 
the performance of MLE methods derived for lognormal and delta (lognormal 
augmented by some percentage of zeros) distributions when estimating the mean 
of censored data drawn from a combination of lognormal and delta distributions. 
For the range of sample sizes (n=5 to n=50), population coefficients of variation 
(CV = 0.8-1.6), and degrees of type II censoring (5-25%) that they investigated, 
the delta MLE usually had lower mean square errors than the lognormal MLE. 
Type II censoring fixes the proportion of data censored in each data set, 
while type I censors all data below a fixed value (David, 1981). Most recently, 
Hashimoto and Trussell (1983) compared several estimators of the mean for 
censored water-quality data. Their examples illustrate the bias caused by 
three commonly used methods: discarding censored observations, setting all 
censored observations equal to zero, or assigning the detection limit to all 
censored observations. Their examples also included a comparison of estimates 
of the mean from the lognormal MLE to estimates made by filling in censored 
observations from a least-squares regression relationship fit to uncensored 
observations plotted on a log-probability scale. That comparison suggested 
that the regression approach yields results very similar to those of the MLE 
method.



APPROACH

1. Generation of data. Sixteen parent distributions were selected as 
representative of the range of frequency distributions that is typical of trace 
water-quality data. Five hundred data sets of sample sizes 10, 25, and 50 obser­ 
vations were generated from each distribution. Each data set was censored at 
the 20th, 40th, 60th, and 80th percentiles of the parent distribution. Parameter 
estimation methods could then be evaluated for different sample sizes and degrees 
of censoring.

2. Parameter Estimation Methods. Eight methods were evaluated for esti­ 
mating the mean, standard deviation, median, and interquartile range of censored 
data. The reliability and relative performance of methods was evaluated based 
on their root mean squared errors (RMSE's).

3. Estimation without classification. For each censoring level and 
sample size, all data sets from the 16 parent distributions were combined for 
computation of RMSE's for each method and distribution parameter. Best methods, 
based on minimum RMSE, were identified for each parameter for every combination 
of censoring level and sample-size. RMSE's of these best methods for each such 
combination were evaluated in relation to the most robust method over all 
simulation conditions.

4. Estimation with classification. A goal was to improve method selection 
and the accuracy of RMSE's by classifying data sets based on attributes of data 
above the detection limit. Several sample statistics were computed for each 
data set and the one which best indicated the parent distribution was selected. 
Discriminant analysis by this variable determined criteria for identifying the 
most probable parent distribution(s) of a censored data set. All data sets 
were then classified using these criteria. Benefits in method selection and 
improved accuracies of RMSE's were evaluated.

GENERATION OF DATA

In designing the Monte Carlo experiments, a primary goal was to mimic as 
closely as possible the types of data that actually occur for concentrations 
of trace constituents in water. Hundreds of uncensoned data sets for trace 
constituents were evaluated, including visual inspection of shapes and evaluation 
of the frequency distributions for the sample coefficients of variation (CV) and 
skewness. Coefficients of variation for 482 uncensoned data sets (no measured 
concentrations were below the detection limit) for trace elements at U.S. 
Geological Survey river-quality monitoring stations ranged from 0.15 to 3.2, 
with a median of 0.52. For the same data sets, sample skews ranged from -0.8 
to 5.2 (6% were negative) with a median of 1.8.

Based on the sample properties and the visual inspection of sample 
histograms, four parent distributions with positive skew were chosen: lognormal, 
contaminated lognormal (mixture of two lognormals), gamma, and delta (lognormal 
augmented by zeros). Four variants of each distribution were considered, 
having CV's of 0.25, 0.50, 1.0, and 2.0. The resulting 16 parent distributions 
are herein abbreviated as LN(0.25), LN(0.50), LN(l.O), LN(2.0), CT(0.25)...., 
GM(0.25)...., DT(0.25)...., and DT(2.0). In all cases, the means equaled 1.0.



The density function for each distribution is shown in figure 1. The relation­ 
ships used to generate data from these distributions are summarized below, 
followed by a brief description of the sizes and censoring of data sets. All 
x's refer to real-space values and all y's refer to log-space values.

Lognormal Distribution

When y = In x is normally distributed with mean yy , and variance a^ 
a set of concentrations, x-j, 1=1,...n can be generated using equation l: y *

X-j = 6Xp(Uy + CTy»£i) (1)

where e-j is a randomly chosen value from a normal distribution with a mean 
of zero and variance of one.

Contaminated Lognormal Distribution

The contaminated lognormal distribution used in this study consists of a 
mixture of one predominant lognormal (ux i, axi), which describes 80 percent of 
the overall population, and a contaminant lognormal (uX2» cr X2), which describes 
20 percent of the overall population. The approach to determining the character­ 
istics of the two sub-populations was to specify proportional relationships 
between the parameters of the two distributions, which would allow unique 
solutions for their exact parameters for any overall distribution specified by

CT x2 a xl 
ux and ax . The conditions imposed were: uX2 = 1.5   u x i and    = 2.0  

Under these conditions the relationships for yx and ax are given in the appendix.

Gamma Distribution

Two-parameter gamma distributions, characterized by a shape parameter, 
ax , and a scale parameter, $x were generated using the International Mathematical 
and Statistical Libraries generating routine.

Delta Distribution

The delta distribution is a mixture of a lognormal distribution (uxl» axl) 
and some portion (p) of zero values. For all our simulations, the portion of 
zeros was 5 percent (p=.05). The mean and standard deviation of the overall 
distribution were given by Aitchison (1955).

Sample Sizes and Censoring

Of interest was the effect of censoring on data sets of varying sample 
sizes. Therefore, three separate simulations were conducted, with data sets 
of 10, 25, and 50 observations. In each simulation, 500 data sets were gener­ 
ated from each of the 16 parent distributions. All data sets were censored at 
four different levels (detection limits) the 20th, 40th, 60th, and 80th per- 
centiles of the parent distributions. Such high percentages of censoring are 
common in trace-level water-quality data. With this "type I" censoring (David, 
1981), the actual percentage of observations censored varied for each data set
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due to sample variability. For the gamma distribution with CV=2.0, the 20th 
and 40th percentiles were so close to zero (0.0043 and 0.070) that they were 
discarded as being unrealistic detection limits.

We required the condition that at least three observations be present in 
each data set after censoring or the data set was discarded. For n=10, this 
eliminated about 1 percent of data sets censored at the 40th percentile, about 
18 percent at the 60th percentile, and about 72 percent at the 80th percentile. 
Results for censoring at the 80th percentile were therefore not considered mean­ 
ingful for n=10. For n=25, less than 1 percent of data sets were eliminated at 
the 60th percentile censoring level and about 11 percent at the 80th percentile 
level. For n=50, less than 1 percent of data sets censored at the 80th percent­ 
ile were discarded.

PARAMETER ESTIMATION METHODS

There are many possible ways to estimate distributional parameters of 
censored data. Among the most commonly applied are ignoring censored observa­ 
tions, setting all censored observations equal to zero, or setting all censored 
observations equal to the detection limit, and then using traditional computa­ 
tional methods. Another approach is to estimate the missing observations 
based on an assumed distribution of data between zero and the detection limit 
and then use traditional computational methods. Or, based on an assumption of 
the underlying distribution of the entire data set, maximum likelihood estimates 
of distributional parameters can be derived from the uncensored observations. 
In our experiments we evaluated eight methods for estimating the population 
mean, standard deviation, median, and interquartile range, representing all of 
these approaches. These are listed below along with their abbreviations used 
in this report.

(1) ZE: Censored observations were assumed to equal zero.

(2) DL: Censored observations were assumed to equal the detection limit.

(3) UN: Censored observations were assumed to follow a uniform distribu­ 
tion between zero and the detection limit.

(4) NR: Censored observations were assumed to follow the zero-to-detec­ 
tion limit portion of a normal distribution which was fit to 
the uncensored observations using least squares regression as 
follows. "Normal scores," z, were computed for each uncensored 
observation using

where *~ is the inverse cumulative normal distribution 
function, r is the observation rank (r=nc+l,...n, where nc = 
number of data censored), and n is the sample size for the 
entire data set. A least-squares regression of concentration 
on normal scores for all data above the detection limit was 
extrapolated to estimate censored observations (ranks r=l,...nc). 
Any estimated values falling below zero were set equal to zero.



(5) LR: Censored observations are assumed to follow the zero-to-detection 
limit portion of a lognormal distribution fit to the uncensored 
observations by least squares regression. The method is identi­ 
cal to NR, except that concentrations were log-transformed prior 
to analysis.

(6) NM: Concentrations are assumed to be normally distributed with para­ 
meters estimated from the uncensored observations by the maximum 
likelihood method for a censored normal distribution (Cohen, 
1959).

(7) LM: Concentrations are assumed to be lognormally distributed with
parameters estimated using logarithms of the uncensored observa­ 
tions in Cohen 1 s (1959) maximum likelihood method. The mean 
and standard deviation of the untransformed concentrations are 
then estimated using the equations given by Aitchison and Brown 
(1957).

(8) DT: Censored observations are assumed to be zero and uncensored 
observations are assumed to follow a lognormal distribution. 
Estimates of parameters of the overall delta distribution are 
obtained by computing maximum likelihood estimates of parameters 
of the uncensored lognormal portion and using relationships 
between these and the overall delta distribution described by 
Aitchison (1955).

The commonly used method of discarding censored observations prior to 
calculating parameter estimates was not included in this study. Discarding 
censored observations will always result in both higher bias and higher RMSE 
than the DL method. Because this can never be the most appropriate (minimum 
RMSE) method, it was not considered here.

The evaluation of the reliability of estimation methods was based on RMSE's 
computed from actual parameters of the underlying distribution. RMSE's for each 
parameter were computed for each estimation method and for each parent distrib­ 
ution. Deviations between the parameter values estimated from each censored 
data set and those of the underlying distribution were divided by the true 
population values to express RMSE's as fractions of the true values. For 
example, the equation for the RMSE of the mean is

RMSE =
1/2

(21)

,thwhere x.j is the estimate of the mean for the i ul of N data sets. We also 
computed the bias portion of the RMSE and the standard error of the RMSE, 
which describes the reliability of our RMSE estimates.

ESTIMATION WITHOUT CLASSIFICATION

Simulation results without classification of data sets are given in table 1 
for data sets of size n=25 to show the typical pattern of results for all para­ 
meter estimation methods. Though RMSE's are higher and lower for n=10 and n=50,



Table l.--Root mean squared errors (RMSE's) of estimation methods for data 
sets of size n = 25, in percent of true value. Methods are ranked 
by RMSE.

Mean

Method RMSE

DL 
LR 
UN 
NR 
LM 
DT 
NM 
ZE

LR
UN 
DL 
NR 
DT 
ZE 
LM

UN 
LR 
LM 
NR 
DT 
ZE 
DL

20
20
21
21
21
22
22
23

LR
DL
UN
LM
NR
DT
ZE
NM

20
21
22
22
23
31
32
42

23
25
29
29
45
45
79

104

29
30
31
35
60
60
61

224

Standard Deviation

Method RMSE

Median

Method RMSE

Interquartile 
Range

Method RMSE

Censored at 20th percentile: 7500 data sets

UN
NR
LR
DL
NM
ZE
LM
DT

Censored

LR
NR
DL
UN
NM
ZE
DT
LM

Censored

LR
NR
UN
DL
ZE
NM
DT
LM

Censored

LR
UN
NR
DL
ZE
DT
NM
LM

42
42
42
43
45
58
76
84

at 40th

43
45
47
48
56
76
90
92

at 60th

45
50
52
53
80
82
106
108

at 80th

48
54
55
63
72

118
138

1300

LM
DT
LR
DL
UN
NR
ZE
NM

percentile: 7500

LM
DL
UN
LR
NR
ZE
DT
NM

percentile: 7994

LM
UN
DL
NR
LR
DT
ZE
NM

percentile: 7148

DT
ZE
NR
LM
LR
UN
DL
NM

16
19
19
19
19
19
19
41

data sets

17
18
19
20
30
45
47
52

data sets

63
75
87
90
98

107
107
403

data sets

100
100
113
141
201
229
369

1000

LR 
LM 
DL 
NR 
UN 
NM 
ZE 
DT

LM 
LR 
DL 
NR 
UN 
NM 
ZE 
DT

LM 
LR 
NR 
DL 
UN 
ZE 
DT

30
30
30
34
38
52

138
143

LM
LR
DL
NR
UN
NM
ZE
DT

30
32
41
57
83

110
237
248

36
40
69
83

121
207
229
237

41
45
94
96

133
138
139
366



respectively, the same estimation methods always perform well for a particular 
combination of censoring level and distributional parameter.

There are several ways to approach identifying the "best" estimation 
method(s) from results such as those in table 1. One approach would be to 
designate a best method for every single combination of censoring level, para­ 
meter, and sample size. Alternatively, a single robust method could be chosen 
that works well over the entire range of conditions simulated. Figure 2 illus­ 
trates these two method-selection approaches. The best overall method was 
chosen by summing the ranks of RMSE's for each method over all sample sizes, 
censoring levels, and parameters. The method with the smallest sum of ranks, 
LR, was considered best. RMSE's for LR are shown for all parameters in figure 
2, along with those for any other methods having RMSE's significantly (a=0.05) 
lower than that of LR. Little reduction in RMSE for the mean and standard 
deviation is accomplished by considering different sample sizes and censoring 
levels separately. The RMSE's of LR are lowest, or not significantly different 
than the lowest, in virtually every situation.

For the median and interquartile range, on the other hand, significant 
reductions in RMSE can be achieved by using the best method for a particular 
set of conditions rather than using LR for all (fig. 2). The largest reductions 
in RMSE occur for small sample sizes and high censoring. For all but four 
combinations of censoring level and sample size, the best method for estimating 
the median and interquartile range is LM. For the interquartile range at 20 
percent censoring, LM is tied with LR for n=25 and n=50. For the median at 
80 percent censoring and n=25 and n=50, LM is a close second to NR. For this 
latter case, DT and ZE results are ignored. These methods produced zero as 
the estimate of the median for every data set, merely an obvious lower bound. 
The resulting 100% bias and RMSE are totally uninformative.

Figure 2, while showing the extremes of method selection approaches, 
suggests an effective third course selecting LR for the mean and standard 
deviation and LM for the median and interquartile range. In fact, LR has the 
lowest sum of ranks (lowest rank with lowest RMSE) of any method for the mean 
and standard deviation over all censoring levels and sample sizes while LM has 
the lowest sum of ranks for the median and interquartile range. Little reduc­ 
tion in RMSE is accomplished by using other methods for differing sample sizes 
or censoring levels.

The LM method has been noted in table 1 to produce some erratically high 
estimates of the mean and standard deviation, particularly for higher censoring 
levels. This occurred for the same data sets for which LM generally produced 
the best estimates of the median and interquartile range. Figure 3 shows an 
example of the estimated probability distributions produced by the LM and LR 
methods, compared to the parent distribution for one data set generated from 
GM (2.0). The data set of 25 observations was censored at the 60th percentile. 
Figure 3 illustrates that the LM method produced an estimated distribution that 
more closely mimics the parent distribution than the LR method. This results in 
accurate estimates of percent!*les. To do this, however, the mean and standard 
deviation were grossly overestimated at 4.7 and 453, respectively. The LR 
method, though not mimicking the shape of the parent distribution, produced 
accurate estimates of the mean (1.09) and standard deviation (2.10). Because
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the LR, NR, and UN methods involve simply calculating sample parameter statis­ 
tics after estimating censored observations, they rarely produce wild estimates 
of distributional parameters.

The delta estimator (DT) was recommended by Owen and DeRouen (1980) for 
estimates of the mean in comparison to the LM method. However, their percent 
of data censored was known (type II censoring) and never exceeded 25 percent. 
With type I censoring at the 20th percentile, DT and LM give identical results 
(table 1) for the mean, though not for other parameters or censoring levels. 
Both DT and LM are sensitive to extreme values at these small sample sizes, 
and therefore have higher errors than does LR.

ESTIMATION WITH CLASSIFICATION

Rankings and RMSE's were previously presented in table 1 with all 16 
parent distributions equally represented. If the parent distribution were 
known, however, the other 15 could be ignored, with the resulting method 
ranking and RMSE magnitudes possibly quite different than table 1. For 
example, table 2 separately presents RMSE's for data sets from each of the 
four lognormal distributions. All data sets consisted of 25 observations and 
were censored at the 80th percentile. For a lognormal distribution with 
CV=0.25, the lowest ranked estimation method (LM) for the mean has an RMSE of 
9 percent, while for CV=2.0 it is either the UN or LR methods with an RMSE of 
39 percent (table 2). Table 1, on the other hand, shows that over all 16 
distributions the UN method is ranked lowest for estimating the mean, with an 
RMSE of 29 percent. Therefore, if the parent distribution of a data set could 
be inferred from attributes of data above the detection limit, improved method 
selection and estimates of RMSE magnitude should result. This is the goal of 
classification.

Note that if the true distribution were LN (2.0), the RMSE of 39 percent 
would be greater than that estimated in table 1, and yet would be more accurate, 
because table 1 incorporates RMSE's from lower error distributions.

Selection of Class Boundaries

To define class boundaries for estimation method selection, the following 
procedure was repeated for each of the four censoring levels:

1. The performance of parameter estimation methods was evaluated separately 
for data sets (n=25) from each of the 16 parent distributions at each 
censoring level. For each censoring level, individual parent distribu­ 
tions with similar best-performing estimation methods and similar RMSE's 
were grouped together. These groups of similar distributions, which 
reflect the dominant effect of population coefficient of variation on 
estimation error, are given in table 3.

2. Four dimensionless sample statistics were computed from the data above 
the detection limit for all simulated data sets. These sample statistics 
were:

12



Table 2.--RMSE's for data sets of size n = 25 from four lognormal parent distributions
censored at the 80th percentile, in percent of true value. Methods are 

_______ranked by RMSE._______________________________

Mean

Method RMSE

LM 
LR 
NM 
NR 
DL 
UN 
ZE 
DT

UN 
LM 
LR 
NR 
DL 
ZE 
DT 
NM

UN 
LM 
LR 
NR 
ZE 
DT 
DL 
NM

UN 
LR 
NR 
LM 
DT 
ZE 
DL 
NM

9
12
17
22
23
24
71
71

13
14
20
33
43
64
64
64

20
22
29
37
52
53
67

178

39
39
42
47
48
49
77

366

LN (.25) n = 443 

Standard Deviation Median 

Method RMSE

LM 32
LR 36
NM 62
DL 63
NR 64
UN 84
DT 97
ZE 127

LN (.50) n =

UN
LR
LM
NR
ZE
DL
DT
NM

30
36
41
47
55
57
90

112

	LN (1.0) n =

UN 39
ZE 42
NR 44
LR 47
DL 58
LM 75
DT 87
NM 158

	LN (2.0) n =

ZE 53
NR 53
UN 56
LR 57
DL 65
DT 125
NM 156
LM 866

Method

LM
LR
NM
UN
DL
NR
ZE
DT

450

UN
LM
LR
DL
NR
NM
ZE
DT

458

UN
LM
LR
NR
ZE
DT
DL
NM

457

LM
LR
UN
NR
ZE
DT
DL
NM

RMSE

11
15
17
22
23
26

100
100

10
21
29
49
56
65
100
100

33
36
53
85

100
100
101
225

57
84
90

100
100
100
191
734

Interquartile Range 

Method RMSE

LM 
LR 
NM 
NR 
DL 
UN 
ZE 
DT

UN 
LM 
LR 
NR 
DL 
ZE 
DT

UN 
LM 
LR 
NR 
DL 
ZE 
DT

30
34
66
81
97

133
168
169

LM
LR
UN
NR
DL
ZE
DT
NM

25
27
48
73
97

112
113
139

22
29
32
72
95

101
103
294

29
40
43
84
94

101
103
620

13



Table 3. Groups of parent distributions for which best-performing methods and 
their RMSE's were similar.

Population Percentile Group 
of Censoring Level I

20 LN(0.25)

GM(0.25)

DT(0.25)

CT(0.25)

40 LN(0.25)

GM(0.25)

DT(0.25)

CT(0.25)

60 LN(0.25)

GM(0.25)

DT(0.25)

80 LN(0.25)

GM(0.25)

DT(0.25)

Group 
II

LN(0.50)

GM(0.50)

DT(0.50)

CT(0.50)

LN(0.50)

GM(0.50)

DT(0.50)

CT(0.50)

CT(0.25)

CT(0.25)

Group 
III

LN(l.O)

GM(l.O)

DT(l.O)

CT(l.O)

LN(l.O)

GM(l.O)

DT(l.O)

CT(l.O)

LN(0.50)

GM(0.50)

DT(0.50)

CT(0.50)

LN(0.50)

GM(0.50)

DT(0.50)

CT(0.50)

Group Group Group 
IV V VI

LN(2.0)

DT(2.0)

CT(2.0)

LN(2.0)

DT(2.0)

CT(2.0)

LN(l.O) LN(2.0) GM(2.0)

GM(l.O) DT(2.0)

DT(l.O) CT(2.0)

CT(l.O)

LN(l.O) LN(2.0) GM(2.0)

GM(l.O) DT(2.0)

DT(l.O) CT(2.0)

CT(l.O)

LN = Lognormal

CT = Contaminated lognormal

DT = Delta

GM = Gamma
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I I (X1-X U )3
k 1=1 

a) coefficient of skewness: g =          

b) coefficient of variation: CV =  
xu

c) quartile estimate of skew: qs =
q 3 - 2q 2 + q

qs - qi

d) relative quartile range: rqr =     
d

where: k = number of uncensored observations

x-j = individual observation in data set

xu = sample mean of uncensored observations

su = sample standard deviation of uncensored observations

q , q , q = 25th, 50th, and 75th sample percentiles of uncensored observations

d = detection limit

3. The effectiveness of these four statistics for classifing each data set 
into the correct group of parent distributions was evaluated using boxplots 
of the distribution of each sample statistic for each group. The most 
effective statistic was the relative quartile range (rqr), a measure of the 
dispersion of data above the detection limit relative to the magnitude of 
the detection limit. Boxplots of rqr for data sets from each group of 
parent distributions are shown in figure 4.

4. The best separation between groups, based on rqr at sample size 50, was 
evaluated using pairwise discriminant analysis. A lognormal distribution of 
rqr's was assumed, due to the asymmetry of the boxplots, and the probability 
density function equations for each consecutive group pair were solved. The 
point at which two densities were equal was the optimum point of separation. 
Each density was weighted by the number of data sets per group. When no 
solution occurred, the two groups could not be distinguished by rqr (for 
example, groups II and III for censoring at the 80th percentile). The 
resulting class boundaries are also shown in figure 4. Note that, since 
some distribution groups could not be discriminated, some rqr classes repre­ 
sent two predominant distribution groups.
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Censored at 20th percentile
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Figure 4. Boxplots of the relative quartlle range for N data sets (sample 
size » 50) from each group of parent distributions (table 3), and class 
boundaries determined by discriminant analysis.
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Censored at 40th percentile
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Censored at 80th percentile
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Benefits of Classification

The 500 data sets for each of the 16 parent distributions were censored 
at the four levels, and then classified using the class boundaries developed 
by discriminant analysis. Figure 5 shows the success of classifying data sets 
into the group containing their parent distribution. A decrease in classifica­ 
tion success with decreasing sample size and increasing censoring level is 
evident. This reflects the smaller amount of information contained in small 
data sets and the loss of information due to censoring. The class boundaries 
determined by discriminant analysis of rqr for data sets of 50 observations 
(and shown in figure 4) are superior or equal to those determined from data 
sets of 25 observations, with only one exception. This is not surprising, as 
more information is present at the larger sample size. Class boundaries from 
data sets of 10 observations were much less effective than either of the two 
shown in figure 5. Therefore, the boundaries determined from 50-observation 
data sets were used in all subsequent classifications.

Method Selection

The best estimation method was determined for each combination of sample 
size, censoring level and rqr class. In light of the results without classifi­ 
cation, best methods for the mean and standard deviation were determined sepa­ 
rately from those for the median and interquartile range. The best method was 
that which minimized the ranks of RMSE's across the two distributional para­ 
meters being considered. If additional methods had RMSE's not significantly 
different (t-test at a=0.05) from the best for both parameters, these were 
also included as "best." Finally, a single best method over all three sample 
sizes was selected for each rqr class. Results are given in table 4. The 
single best method was often the only method that qualified for best for all 
three sample sizes. Where more than one method qualified or where none was 
best over all sample sizes, the method which minimized the sum of squared 
RMSE's over the three sample sizes was selected.

The classification system shown in table 4 sometimes results in different 
method selection than that obtained without classification and shown in table 1, 
The LM method remains the best method for the median and interquartile range 
for all rqr classes. But, whereas results without classification indicated 
that the LR method was generally best for the mean and standard deviation, 
results in table 4 show that these distributional parameters are often best 
estimated by the LM, UN, or NR methods.

Table 5 compares RMSE's of the best methods for 7 and s for each rqr class 
(from table 4) to the corresponding RMSE's of LR, the best overall method 
without classification. This comparison shows that in most instances there 
is no significant difference (a=.05) between the RMSE of LR compared to the 
RMSE of the best method chosen according to the criteria described. Even 
where differences are statistically significant, they are not large. In 
contrast, neither LM, UN, nor NR are similarly robust over all rqr classes. 
For example, table 5 indicates that LM has a significantly lower RMSE than LR 
for both the mean and standard deviation at the 60th percentile censoring 
level and rqr = 0.25 - 0.60 (n=25). Yet LM is the worst method in the next 
highest rqr class (rqr = 0.60 - 1.4) for both the mean and standard deviation, 
with RMSE's over 100 percent of the true value for standard deviation.
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Table 4. RMSE's of best estimation methods when classified by rqr, in percent 
of true value

Censoi 
20th pe

x" s

rqr< 
Best 
methods LM

n=10 11 43 
n=25 6 35 
n=50 4 32

rqr=0 
Best 
methods LM

n=10 19 40 
n=25 11 25 
n=50 7 19

rqr=l, 
Best 
methods UN

n=10 32 56 
n=25 23 47 
n=50 16 36

rqr> 
Best 
methods NR

n=10 54 65 
n=25 34 52 
n=50 25 49

*ed at 
^centile

m iqr

:0. 47 

LM

10 37 
5 26 
4 18

,47-1.2 

LM

17 38 
10 25 
7 18

,2-3.8 

LM

26 45 
19 31 
13 23

'3.8 

LM

37 77 
25 40 
18 26

Censor 
40th pef

x~ s

rqr< 

LM

13 65 
7 36 
5 33

rqr=0 

LM

20 44 
12 28 
8 20

rqr=0 

UN

29 53 
22 43 
15 35

rqr> 

NR

60 73 
35 57 
26 51

*ed at 
xentile

m iqr

:0.35 

LM

9 39 
6 27 
4 23

,35-0.84 

LM

18 39 
11 26 
8 20

,84-2.1 

LM

28 44 
20 29 
14 21

 2.1

LM

46 81 
27 41 
19 28

Best methods

n=10 
n=25 
n=50

Cense 
60th pe

x~ s

rqr< 

LM

10 51 
8 40 
6 36

rqr=0 

LM

18 45 
14 33 
9 23

rqr=0 

UN

26 52 
21 46 
15 35

rqr=l 

UN

47 64 
31 54 
25 50

)red at 
srcentile

m iqr

:0.25 

LM

14 42 
8 30 
5 26

,25-0.60 

LM

27 43 
15 35 
10 34

,6-1.4

LM

63 46 
27 33 
17 23

,4-3.7 

LM

130 70 
77 38 
46 28

rqr>3.7

NR

85 94 
45 53 
30 43

LM

240 110 
200 57 
170 39

Censored at 
80th percentile

>T s m iqr

rqr< 

LM

12 48 
9 44

rqr=0, 

LR

24 42 
18 31

rqr=0 

UN

20 46 
17 42

rqr> 

LR

44 56 
32 48

:0.16 

LM

22 39 
22 32

,16-0.41 

LM

82 44 
39 44

,41-0.92 

LM

150 43 
94 38

 0.92

LM

240 37 
200 28
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Table 5.--RMSE's of best method compared to RMSE's of LR for the mean and 
standard deviation in each rqr class

Censored at 
20th percenti le

x" s

Method

n=10 
n=25 
n=50

Method

n=10 
n=25 
n=50

Method

n=10 
n=25 
n=50

Method

n=10 
n=25 
n=50

rqr<.47

LM/LR

11/11 *43/48 
6/6 *35/37 
4/4 32/33

rqr=.47-1.2

LM/LR

19/20 40/43 
11/11 *25/32 
7/7 *19/22

rqr=1.2-3.8

UN/LR

32/32 56/57 
23/22 47/47 
16/16 36/37

rqr>3.8

NR/LR

54/55 65/65 
34/34 52/53 
25/25 49/49

Censored at 
40th percenti le

x" s

rqr<.35

LM/LR

13/13 65/52 
7/7 *36/39 
5/5 33/35

rqr=.35-.84

LM/LR

20/21 44/45 
12/12 *28/34 
8/8 *20/25

rqr=. 84-2.1

UN/LR

29/30 53/55 
22/21 43/44 
15/15 35/36

rqr>2.1

NR/LR

60/62 73/73 
35/35 57/57 
26/26 51/51

Method

*signif leant difference @ a = .05 n=10 
n=25 
n=50

Censored at 
60th percent He

x" s

rqr<.25

LM/LR

MO/13 *51/56 
* 8/9 *40/43 

6/7 36/37

rqr=.25-.60

LM/LR

*18/21 45/47 
*14/16 *33/38 
* 9/10 *23/29

rqr=.60-1.4

UN/LR

*26/31 52/53 
21/23 46/46 
15/15 35/36

rqr=1.4-3.7

UN/LR

47/51 64/65 
31/31 54/54 
25/25 50/50

rqr>3.7

NR/LR

85/93 94/93 
45/50 53/53 
30/33 43/43

Censored at 
80th percentile

x" s

rqr<.16

LM/LR

*12/19 48/50 
* 9/12 44/43

rqr=.16-.41

LR

24 42 
18 31

rqr=.41-.92

UN/LR

*20/29 46/45 
*17/22 42/40

rqr>.92

LR

44 56 
32 48
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When applying parameter estimation methods to actual water-quality data, 
an important consideration is method robustness. Given the possibility of 
mis-classifying individual data sets (fig. 5), and the small increases in RMSE 
when LR is used for any rqr class, the use of the more robust LR method is 
best for making low-risk estimates of the mean and standard deviation for all 
data sets.

Accuracy of RMSE's

Though the classification system does not, in practice, alter method 
selection compared to results with no classification, it does result in 
superior estimates of error (RMSE), by considering differences due to the 
probable parent distribution. Table 2 showed that RMSE's vary considerably 
between data sets from different parent distributions. The classification 
system was designed to indicate the types of parent distributions from which 
each data set may have originated, and therefore yield more accurate estimates 
of error (whether higher or lower) than the average RMSE for all data sets 
from all 16 parent distributions, such as given in table 1.

Table 6 shows RMSE's for the best parameter estimation methods (LR for x" 
and s, LM for m and iqr) for data sets only from parent distributions intended 
to be included in each rqr class (table 2 and figure 4). These RMSE's repre­ 
sent the reliability of parameter estimates if each data set were correctly 
classified according to its parent distribution. Also shown in table 6 for 
comparison are the previously reported RMSE's for data sets actually falling 
in each rqr c_lass during the simulation with all 16 parent distributions (from 
table 5 for x and s by the LR method, and table 4 for m and iqr by the LM 
method).

Table 6 shows that the rqr classification system results in RMSE's which 
are very similar to the best estimate of true RMSE, that of perfect classifica­ 
tion. Only at 80th percentile censoring do the RMSE values substantially 
depart from truth. This reflects the greater inability to correctly classify 
highly censored data sets previously illustrated in figure 5. Even at 80th 
percentile censoring, however, rqr classification generally improves the 
accuracy of RMSE estimates over those with no classification.

To illustrate the improvement in RMSE accuracy following classification, 
the data for 60th percentile censoring (n=25) is plotted in figure 6. Shown 
in the figure are the RMSE's for perfect classification into parent distri­ 
bution group, those for the actual classification according to rqr, and the 
RMSE without classification. When data sets are classified, more reliable 
RMSE estimates are obtained.

CONCLUSIONS

The most robust estimation method for minimizing errors in estimates of 
the mean, standard deviation, median, and interquartile range of censored data 
was the log-probability regression method (LR). This method is based on the 
assumption that censored observations follow the zero-to-censoring level 
portion of a lognormal distribution obtained by a least-squares regression 
between logarithms of uncensored concentration observations and their normal 
scores.
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Table 6.--RMSE's when all data sets (n=25) are classified correctly by distri­ 
bution group (perfect), as compared to results of actual classification 
from Tables 4 and 5. RMSE's are in percent of true value.

Censored at 
20th percentile

x" s m iqr

rqr<0.47

Method LR

Perfect 5 36 
Actual 6 37

LM

4 25 
3 26

rqr=0.47-1.2

Method LR

Perfect 10 29 
Actual 11 32

LM

10 25 
10 25

rqr=1.2-3.8

Method LR

Perfect 20 47 
Actual 22 47

rqr>

Method LR

Perfect 36 60 
Actual 34 53

LM

19 30 
19 31

'3.8

LM

25 41 
25 40

Censored at 
40th percentle

x s m iqr

rqr<0.35

LR

6 38 
7 39

LM

4 28 
6 27

rqr=0.35-0.84

LR

10 31 
12 34

LM

11 25 
11 26

rqr=0. 84-2.1

LR

20 44 
21 44

rqr>

LR

36 60 
35 57

LM

20 30 
20 29

'2.1

LM

27 41 
27 41

Method

Perfect 
Actual

Censored at 
60th percentile

x" s m iqr

rqr<0.25

LR

7 41 
9 43

LM

6 26 
8 30

rqr=0.25-0.60

LR

14 33 
16 38

LM

14 27 
15 35

rqr=0.60-1.4

LR

22 46 
23 46

L M

23 30 
27 33

rqr=1.4-3.7

LR

36 61
31 54

LM

33 40 
77 38

rqr>3.7

LR

58 43 
50 53

LM

240 41 
200 57

Censored at 
80th percentile

x s m iqr

rqr<0.16

LR

5 30 
19 50

LM

4 29 
22 39

rqr=0.16-0.41

LR

22 39 
24 42

rqr=0

LR

30 48 
29 45

LM

23 29 
82 44

.41-0.92

LM

38 24 
150 43

rqr>0.92

LR

39 61 
44 56

LM

55 35 
240 37
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RMSE, AS PERCENTAGE OF TRUE VALUE
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When method performance was evaluated separately for each distributional 
parameter, LR resulted in the lowest RMSE's for the mean and standard deviation. 
The lognormal maximum likelihood estimator for censored data (LM) produced lowest 
RMSE's for the median and interquartile range. These two methods constitute the 
best procedures for their respective parameters.

Using the relative quartile range (rqr), the interquartile range of uncensored 
observations divided by the detection limit, censored data sets can be classified 
into groups reflecting their probable parent distribution. Within these rqr groups, 
the accuracy of RMSE's substantially improved over those without classification.

These findings appear to have great potential for improving estimation of dis­ 
tributional parameters from censored water-quality data sets. However, to apply 
the results of these Monte Carlo experiments to censored trace water-quality data, 
several assumptions are required. In addition, the rqr classification system and 
RMSE's need to be verified with actual water-quality data sets. These issues are 
addressed in detail in a companion paper (Helsel and Gilliom, 1984, in press).
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Appendix: Equations for the Contaminated Lognormal Distribution 

yx = (1-p)   yx ]

gxl

= yx  

P ' ^x2

2 .. 1/2 
C 3   y x i + C2

where

Cx = (1-p + p-k) 2

C 2 = p   (1-p)   (1-k) 2

03 = 1-p + 4   p   k 2

(al) 

(a2)

(a3) 

(a4) 

(a5)

p = percent of population described by the lognormal distribution with 
yx2 and ox2

k = ratio of yx2 : Pxl*

Algebraic manipulation of (al)-(a5) leads to the following relationships 
for the two individual distributions which make up the overall contaminated 
lognormal distribution:

(1-p + p-k)

1/2

C2

= 2   y x2  

Given the specified conditions of the Monte Carlo simulation (y x and ),

(a6)

(a7)

(a8)

(a9)

(a6)-(a9) yield estimates of y x i, ax i, y x2 , and ax2 which are used to generate 
two lognormal distributions. To generate data sets from the overall distribution, 
80 percent of each data set was generated according to y x i, a x i and 20 percent 
according to yx2 , ax2 .
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