USES, FUNDING, AND AVAILABILITY OF CONTINUOUS
STREAMFLOW DATA IN MONTANA

By Ronald R. Shields and Melvin K. White

U.S. Geological Survey

Open-File Report 84-862

Helena, Montana
February 1985
USES, FUNDING, AND AVAILABILITY OF CONTINUOUS STREAMFLOW DATA IN MONTANA

By

Ronald R. Shields and Melvin K. White

ABSTRACT

This report documents the results of a study of the uses, funding, and availability of continuous streamflow data collected and published by the U.S. Geological Survey in Montana. Data uses and funding sources are identified for the 218 continuous streamflow gages currently (1984) being operated. These stations are supported by 18 different funding sources at a budget for the 1984 water year of $1,065,000.

The streamflow-gaging program in Montana has evolved through the years as Federal, State, and local needs for surface-water data have increased. Continuous streamflow records for periods ranging from less than 1 year to more than 90 years have been collected.

This report describes phase 1 of a cost-effectiveness study of the streamflow-gaging program in Montana. Evaluation of the program indicates that numerous agencies use the data for studies involving regional hydrology, hydrologic systems, and planning and design. They also use the data for operations of existing hydroelectric and irrigation dams, forecasting flood and seasonal flows, water-quality monitoring, research studies for fish habitat, and other uses such as recreational management.

INTRODUCTION

The U.S. Geological Survey is the principal Federal agency collecting surface-water data in the Nation. The collection of these data is a major activity of the Geological Survey. The data are collected in cooperation with State and local governments and other Federal agencies. The Survey is presently (1984) operating about 8,000 continuous-record gaging stations nationwide. Some of these records extend back to the turn of the century. Any activity of long standing, such as the collection of surface-water data, needs to be reexamined at intervals, if not continuously, because of changes in objectives, technology, or external constraints. The last systematic nationwide evaluation of the streamflow-information program was completed in 1970 and is documented by Benson and Carter (1973). The Survey is presently (1984) undertaking another nationwide analysis of the streamflow-gaging program that will be completed during a 5-year period, with 20 percent of the program being analyzed each year. This report deals with the first aspect of that analysis, which is data use and availability. The purpose of this report is to define and document the current streamflow-data collection program in Montana and to briefly discuss the history of its development.
For every continuous-record gaging station operated during the 1984 water year, the analysis identifies the principal uses of the data and relates these uses to the funding sources. In addition, gaging stations are categorized as to whether the data are available to users in a real-time sense, on a daily basis during floods, on a periodic basis, or at the end of the water year.

This report is patterned after a pilot study for the State of Maine (Fontaine and others, 1984). Much of the material describing the general methodology is taken from the report by Fontaine and others (1984). This report is organized into two sections; the first is an introduction to the streamflow-gaging activities in Montana and the second describes the current Montana streamflow-gaging program.

History of the streamflow-gaging program in Montana

The streamflow-gaging program has evolved through the years as Federal, State, and local needs for surface-water data have increased. Continuous streamflow records for periods ranging from less than 1 year to more than 90 years have been collected. The earliest known records of river stage in Montana are for the station Missouri River at Fort Benton (06090800). Gage-height records were collected at this station during the summers of 1873-76, 1881-99, and 1901-09 by the Missouri River Commission, the U.S. Army Corps of Engineers, and the U.S. Weather Bureau. Although river-stage records have been collected in Montana since 1873, a systematic collection of streamflow records was not begun by the Geological Survey until 1889 as a part of the work being conducted by the Irrigation Survey. In 1889 the Survey established gaging stations at sites on the Gallatin River at Gallatin Gateway, Missouri River at Canyon Ferry, Sun River near Augusta, and the Yellowstone River at Corwin Springs. These early gages were serviced by observers who read staff and wire-weight gages, and the data were primarily collected to determine the availability of water to satisfy irrigation needs of a particular area.

The depression of 1893 and the severe droughts of the late 1890’s pointed out the need for irrigating the arid lands of the Western States, and various appropriations were sought from Congress for making hydrologic surveys and for water availability and potential reservoir-site studies. In 1902, Congress adopted the Reclamation Act. The Director of the Geological Survey was given the authority to collect hydrologic records needed by the public and the scientific community. The number of streamflow-gaging stations increased each year as the irrigation investigations identified data requirements. In 1906, the Montana State Legislature created the Carey Land Act Board, which resulted in the Geological Survey and the State of Montana entering into a Federal-State cooperative agreement. In 1907 the Survey operated 87 gaging stations.

Further expansion of the streamflow-gaging program in Montana resulted from (1) The beginning of international coordination and cooperation with the Canadian Irrigation Office in 1913, as the result of a treaty, which directed the International Joint Commission to supervise the division of waters in the St. Mary and Milk River basins, and (2) the establishment of gaging stations within the national parks starting in 1916. In 1928, the U.S. Department of State expanded their cooperative programs in connection with studies of international streams along the Canadian boundary. In the same year the U.S. Army Corps of Engineers expanded their comprehensive studies of major rivers with emphasis on flood control (Boner and Buswell, 1970). The result was an increase in number of gaging stations from 72 in 1927 to 114 in 1929.
The work continued and by September 30, 1938, records for varying time periods had been collected by the Geological Survey and cooperating agencies at 372 gaging stations, of which 145 were in operation on September 30, 1938. On December 31, 1943, a total of 154 stations were in operation. About one-half of these stations were maintained under cooperative agreements with the State of Montana.

In 1946 gaging stations were starting to be established in connection with reservoir projects under consideration in the upper Missouri River basin by the U.S. Bureau of Reclamation. Other stations were established for the Montana State Engineer and the Montana State Water Conservation Board (presently the Montana Department of Natural Resources and Conservation) in connection with project studies and the expansion of a hydrologic network to obtain streamflow data.

On July 1, 1955, a study of the magnitude and frequency of floods from small drainages was begun in cooperation with the Montana State Highway Commission. This initial program consisting of 45 crest-stage gaging stations was expanded to 138 gages in 1959 and to 202 gages in 1963. About 200 crest-stage gages were in operation from 1963 to 1967, and 185 in 1968 and 1969. At present (1984) 166 crest-stage gages are still in operation.

In 1958, in cooperation with the Montana Water Resources Board, nine sites were designated to define low-flow characteristics; peak-flow data were also collected to aid in defining flood-frequency relations in prairie areas. Ten additional sites were added in 1961. In addition to these nineteen sites, thousands of base-flow measurements have been made at miscellaneous sites throughout the State for various projects and special studies (Boner and Buswell, 1970). These data are published in the report, "Water Resources Data, Montana" (U.S. Geological Survey, issued annually).

The study by Boner and Buswell (1970) described the development of Montana's surface-water program to meet the future needs of water-data users. At the time of that study, the Montana program had 160 continuous-record gages. Not included in that count were 35 stations (generally seasonal) in the Milk River basin within Canada and 58 reservoir gages. At present (1984) there are 218 continuous-record gaging stations being operated on rivers and streams in Montana, by the Geological Survey. This number does not include Canadian and reservoir stations that are published in the annual report. The historical number of stream-gaging stations published by Montana each year is shown in figure 1.

Hydrologic setting

The Hudson Bay and upper Missouri River basins in Montana drain about 83 percent of the State and provide slightly less than 50 percent of the State's total streamflow. The location of the major river basins is shown in figure 2. The Hudson Bay basin comprises less than 1 percent of the drainage area; the major river in the basin is the St. Mary River, which flows from Montana's Glacier National Park northward into Canada to the Saskatchewan River and then into Hudson Bay. The Missouri River, which is formed by the confluence of the Jefferson, Madison, and Gallatin Rivers in southwestern Montana, flows through the northeastern part of the State and into North Dakota. Its major tributaries are the Dearborn, Smith, Sun, Teton, Marias, Judith, Musselshell, Milk, Redwater, and Poplar Rivers. The Milk River originates in Montana, flows north into Canada, and then flows southeastward back into Montana. The Poplar River flows from its source in Canada.
southward into Montana. The Yellowstone River, which originates in Wyoming, drains the south-central and southeastern sections of Montana; it joins the Missouri River just east of the Montana–North Dakota line. The major tributaries to the Yellowstone are the Shields, Boulder, and Stillwater Rivers that originate in Montana and the Clarks Fork Yellowstone, Bighorn, Tongue, and Powder Rivers that have their source in Wyoming and then flow northward into Montana.

The western and southwestern parts of the upper Missouri River basin are in the Northern Rocky Mountain physiographic province. The northern and eastern parts are in the Great Plains province. Climatic and hydrologic conditions differ significantly between the two provinces. The elevation ranges from about 10,000 feet at the Continental Divide in Glacier National Park and in the headwaters of the Yellowstone River in Yellowstone National Park to about 1,880 feet where the Missouri and Yellowstone Rivers flow from the State (Shields and others, 1984a).
Figure 2.—Location of surface-water gaging stations, 1984 water year.
The upper Columbia River basin in western Montana is composed of three major river systems. They are: the Kootenai River, which flows through Montana from its headwaters in British Columbia, Canada; the Clark Fork (River) that originates in Montana; and the Flathead River, whose North Fork headwaters are in British Columbia. The Flathead River joins with the Clark Fork near Plains, Mont., and flows northwest from the State as the Clark Fork. The upper Columbia River basin lies in the Northern Rocky Mountain physiographic province, which is characterized by densely forested mountains and intermontane valleys where most of the area's population has settled. The range in elevation of the basin is dramatic. Where the Kootenai River flows from the State, the elevation is about 1,800 feet above sea level in contrast to an elevation of about 10,000 feet at the Continental Divide in Glacier National Park. The upper Columbia River basin occupies about 17 percent of the State; however, runoff from the basin is greater that 50 percent of the State's total streamflow (Shields and others, 1984b).

Over 2.5 million acres are fully or partially irrigated. Surface water sources yield 99 percent of this water, whereas 1 percent is obtained from groundwater sources (Montana Department of Natural Resources and Conservation, 1975).

Current Montana stream-gaging program

The location of the gaging stations in operation during the 1984 water year is shown in figure 2. The cost of operating the 218 stations within Montana during the 1984 water year was $1,065,000.

Selected hydrologic data, including drainage area, period of record, and mean annual flow for the 218 stations are listed in table 1. The official name of each stream gage is also given in the table. Because Montana has three major hydrologic drainage basins, station-identification numbers used in this report will include the entire Geological Survey's eight-digit station number, except in the illustrations. Abbreviated station numbers are used on maps to eliminate crowding of numbers. The station-identification number is assigned according to downstream order.

USES, FUNDING, AND AVAILABILITY OF CONTINUOUS STREAMFLOW DATA

The relevance of a stream gage is defined by the uses made of the data obtained from the gage. The uses of the data from each gage in the Montana program were identified by a survey of known data users. The survey documented the importance of each gage and identified gaging stations that might be considered for discontinuation.

Data uses identified by the survey were categorized into nine classes, defined below. The sources of funding for each gage and the frequency at which data are provided to the users were also compiled and are described later.

Data-use classes

The following definitions were used to categorize each known use of streamflow data for each continuous stream gage.
Regional hydrology

For data to be useful in defining regional hydrology, a stream gage must be largely unaffected by manmade storage or diversion. In this class of use, the effects of man on streamflow are not necessarily small, but the effects are limited to those caused primarily by land-use and climate changes. Large amounts of manmade storage may exist in the basin providing the outflow is uncontrolled. These stations are useful in developing regionally transferable information about the relationship between basin characteristics and streamflow.

Seventy-six stations in the Montana network are classified in the regional hydrology data-use category. Seven of the stations are special in that they are designated bench-mark or index stations. Hydrologic bench-mark stations are part of a national network of 57 stations operated in watersheds that are relatively free from manmade alterations; the network is intended to define long-term trends. Index stations are used to prepare a national monthly summary of water conditions. Of the 76 stations in the regional hydrology category, 2 are hydrologic bench-mark stations and 5 are index stations. The location of stream gages that provide information about regional hydrology is shown in figure 3.

Hydrologic systems

Stations that can be used for accounting, that is, to define current hydrologic conditions and the sources, sinks, and fluxes of water through hydrologic systems including regulated systems, are designated as hydrologic systems stations. These stations record diversions and return flows that are useful for defining the interaction of water systems.

Bench-mark and index stations are included in the hydrologic systems category, because they are accounting for current and long-term conditions of the hydrologic systems that they gage. International gaging stations, located on significant drainages that cross the international boundary, are also included. Depending on streamflow conditions in any particular year, water may have to be allocated among users by the Montana Department of Natural Resources and Conservation. Many stations are used by that agency for administration of water rights throughout the State. Also included in this category are stations used for accounting of flows in U.S. Bureau of Reclamation irrigation project areas and of flood-control projects developed by the U.S. Army Corps of Engineers.

Legal obligations

Some stations provide records of flow for the verification or enforcement of existing treaties, compacts, and decrees. This category contains those stations that the Geological Survey is required to operate to satisfy a legal responsibility. The International Joint Commission designates the Survey to operate gaging stations needed for the equitable distribution of water along the Canadian boundary (Article VI, Treaty Between the United States and Great Britain Relating to Boundary Waters and Questions Arising Between the United States and Canada). Forty gaging stations either in Montana or in Canadian provinces north of Montana are used for this purpose. Reservoirs are not included in this count. Only 15 of the 40 international stations were considered near enough to the international boundary (within 3 miles) to be included in table 1. Also included in this category are four Yellowstone River
Figure 3.—Location of regional hydrology gaging stations, 1984 water year.
Compact gaging stations used to apportion the waters of certain interstate tributaries of the Yellowstone River (Yellowstone River Compact Commission, 1983).

Planning and design

Gaging stations in this data-use category are used for the planning and design of a specific project (for example, a dam, levee, floodwall, navigation system, water-supply diversion, hydropower plant, or waste-treatment facility) or group of structures. The planning and design category is limited to those stations that were instituted for such purposes and where this purpose is still valid.

Twenty-five stations are included in this category. Twelve stations with less than 2 years of record (as of 1984) are used by the U.S. Bureau of Indian Affairs to plan and design water-use projects on Montana Indian reservations; ten stations in north-central Montana are used to determine water availability for stock reservoirs; two Muddy Creek stations near Vaughn (06088300 and 06088500) are used to monitor return flows from an irrigation project; and one station Willow Creek near Glasgow (06174000), is used in an independent basin study to determine efficiency of existing retention reservoirs.

Project operation

Gaging stations in this category are used, on a continuing basis, to assist water managers in making operational decisions such as reservoir releases, hydropower operations, or diversions. The project operation use generally implies that the data are routinely available to the operators on a rapid-reporting basis. For projects on large streams, data may be needed only every few days.

There are 71 stations being operated in this category. Thirty-nine of these are used to aid operators in the management of reservoirs and control structures that are part of hydropower production systems. The remaining 32 stations are: 13 stations used by the International Joint Commission to administer distribution of water in the St. Mary basin or to assist irrigation districts in project areas; 8 stations being operated to facilitate operation of the Missouri River system; 7 stations used to determine the Milk River natural flow; 2 stations used to quantify inflow-outflow determinations; and 2 stations operated to meet Federal Energy Regulatory Commission licensing requirements.

Hydrologic forecasts

Gaging stations in this category are regularly used to provide information for hydrologic forecasting. These might be flood forecasts for a specific river reach, or periodic (daily, weekly, monthly, or seasonal) flow-volume forecasts for a specific site or region. The hydrologic forecasts use generally implies that the data are routinely available to the forecasters on a rapid-reporting basis. On large streams, data may be needed only every few days.

Most stations in the Montana program included in this category are those used for flood forecasting by the National Weather Service, and those used for predicting irrigation season streamflow runoff based on snow-survey data collected and forecasted by the U.S. Soil Conservation Service. During some part of the year 45 stations provide direct access to river-stage data using satellite telemetry equipment.
Water-quality monitoring

Gaging stations where regular water-quality or sediment-transport monitoring is being conducted and where the availability of streamflow data contributes to the utility or is essential to the interpretation of the water-quality or sediment data are designated as water-quality-monitoring sites. Stations operated as part of the National Stream-Quality Accounting Network (NASQAN) are included in this category. NASQAN stations are operated to define both areal variability and trends in stream quality. There are 19 NASQAN stations in Montana.

In addition to the NASQAN stations, water-quality data are being collected at other stations as follows: (1) Baseline hydrologic data at 19 stations in eastern Montana as part of regional coal studies, (2) annual daily or seasonal daily suspended-sediment sampling at 6 stations, (3) continuous temperature and specific conductance monitoring at 6 stations in Yellowstone National Park as part of a geothermal study being conducted jointly by the National Park Service and the Geological Survey, (4) data collection at 2 stations at the international boundary in the Poplar River basin as part of a U.S. and Canadian monitoring agreement, and (5) continuous monitoring of temperature at 10 stations under a cooperative program with the Montana Department of Fish, Wildlife and Parks. Also about 30 other stations have water-quality data being collected for miscellaneous purposes. Those sites can generally be categorized as follows: baseline hydrology on Montana Indian reservations, requests from Interior Department agencies for Missouri River basin water-quality work, and data collection for planning by the U.S. Army Corps of Engineers.

Research

Gaging stations in this category are operated for a particular research or water investigations study. The largest user of surface-water data for research is the Montana Department of Fish, Wildlife and Parks. Seventy stations, although not primarily funded for research, are used in compiling data on fisheries habitat. The next largest user of data for research is the Montana Department of State Lands. Twelve stations are included in this category. Generally these stations are established on small drainage basins and data are collected to determine water availability for basin modeling and regional planning. Finally, data are collected at six stations in or near Yellowstone National Park for the purpose of developing a baseline hydrologic data base.

Other

In addition to the eight classes above, several Montana stations are used to provide other information. Twenty-five stations are used to provide recreational planning and river floating information by the Montana Department of Fish, Wildlife and Parks. These stations are primarily located in western Montana or just east of the Continental Divide. Seven other stations, located on lower Yellowstone River basin tributaries, are used by the Office of Surface Mining to assess the cumulative hydrologic impact of coal mining in these areas. Seven stations located on the Clark Fork are being used by the Montana Department of Fish, Wildlife and Parks in their study to request in-stream reserve water rights to protect fisheries. Also three Missouri River mainstem stations upstream from Fort Peck Reservoir are used by the U.S. Bureau of Land Management in water-resource management of the Wild and Scenic Rivers Act as approved by Congress.
Funding

The four sources of funding for the streamflow-data program are:

1. Federal program.—Funds that have been directly allocated to the Geological Survey.

2. Other Federal agency (OFA) program.—Funds that have been transferred to the Geological Survey by other Federal agencies.

3. Cooperative program.—Funds that come jointly from Geological Survey cooperative-designated funding and from a non-Federal cooperating agency. Cooperating agency funds may be in the form of direct services or cash.

4. Other non-Federal programs.—Funds that are provided entirely by a non-Federal agency or a private concern under the auspices of a Federal agency. In this study, funding from private concerns was limited to licensing and permitting requirements for hydropower development by the Federal Energy Regulatory Commission. Funds in this category are not matched by Geological Survey cooperative funds.

In all four categories, the identified sources of funding pertain only to the collection of streamflow data; sources of funding for other activities, particularly collection of water-quality samples, that might be conducted at the site may not necessarily be the same as those identified herein. Eighteen organizations currently are contributing funds to the Montana streamflow-gaging program.

Frequency of data availability

Frequency of data availability refers to the times at which the streamflow data can be furnished to the users. In this category, three distinct possibilities exist. Data can be furnished by direct-access telemetry equipment for immediate use, by periodic release of provisional data, or in publication format through the annual data report for Montana published by the Geological Survey. These three categories are designated T, P, A, respectively, in table 2. In the current Montana program, data for all 218 stations are made available through the annual report, data from 73 stations are available on a real-time basis, and data for 39 stations are released on a provisional basis.

Data-use presentation

Data-use and ancillary information is presented for each continuous-recording gaging station in table 2, which is replete with footnotes to expand the information conveyed. The entry of an asterisk in the table indicates that no footnote is required.

SUMMARY

Currently, 218 continuous-record stream gages are being operated by the Geological Survey in Montana. The cost of their operation for the 1984 water year was $1,065,000. Eighteen individual organizations contributed to the support of the program.
The streamflow-gaging program in Montana has evolved through the years as Federal, State, and local needs for surface-water data have increased. Continuous streamflow records for periods ranging from less than 1 year to more than 90 years have been collected. Streamflow data obtained from the program are used by numerous State, Federal, and private organizations. Nine identified uses were regional hydrology, hydrologic systems, legal obligations, planning and design, project operation, hydrologic forecasts, water-quality monitoring, research, and a category described as other. Much of the data from individual stations is put to multiple use. All stations have sufficient use to justify their continued operation.

Data are available on a real-time basis from 45 gages. Information for the remaining 173 stations may be obtained from the annual publication "Water Resources Data, Montana," volumes 1 and 2, or on a provisional monthly basis from the District office in Helena.

REFERENCES CITED

Table 1.—Selected hydrologic data for stations in the surface-water program

[All stations are located in Montana except as noted. Symbol: P, Present-1984]

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow ¹ (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05014500</td>
<td>Swiftcurrent Creek at Many Glacier.</td>
<td>30.9</td>
<td>June 1912-P</td>
<td>144</td>
</tr>
<tr>
<td>05016000</td>
<td>Swiftcurrent Creek at Sherburne.</td>
<td>64.3</td>
<td>July 1912 - Nov. 1915; Mar. 1916 - Oct. 1923; May 1924 - Sept. 1981; Mar. 1984-P</td>
<td>199</td>
</tr>
<tr>
<td>05017500</td>
<td>St. Mary River near Babb</td>
<td>276</td>
<td>July 1901 - Oct. 1902; May 1910 - Sept. 1925; Oct. 1950-P</td>
<td>782</td>
</tr>
<tr>
<td>05018500</td>
<td>St. Mary Canal at St. Mary Crossing, near Babb.</td>
<td>---</td>
<td>July 1918-P</td>
<td>(2)</td>
</tr>
<tr>
<td>05020500</td>
<td>St. Mary River at international boundary.</td>
<td>465</td>
<td>Sept. 1902 - Sept. 1916; Oct. 1916-P</td>
<td>31,003</td>
</tr>
<tr>
<td>06016000</td>
<td>Beaverhead River at Barretts</td>
<td>2,737</td>
<td>Aug. 1907-P</td>
<td>430</td>
</tr>
<tr>
<td>06018500</td>
<td>Beaverhead River near Twin Bridges.</td>
<td>3,619</td>
<td>Aug. 1935-P</td>
<td>419</td>
</tr>
<tr>
<td>06019500</td>
<td>Ruby River above reservoir, near Alder.</td>
<td>538</td>
<td>May 1938-P</td>
<td>181</td>
</tr>
<tr>
<td>06020600</td>
<td>Ruby River below reservoir, near Alder.</td>
<td>596</td>
<td>Nov. 1962-P</td>
<td>224</td>
</tr>
<tr>
<td>06024590</td>
<td>Wise River near Wise River</td>
<td>214</td>
<td>Oct. 1972-P</td>
<td>188</td>
</tr>
<tr>
<td>06025500</td>
<td>Big Hole River near Melrose</td>
<td>2,476</td>
<td>Oct. 1923-P</td>
<td>1,173</td>
</tr>
<tr>
<td>06035000</td>
<td>Willow Creek near Harrison</td>
<td>83.8</td>
<td>Apr. 1938 - Sept. 1982; Oct. 1982-P</td>
<td>40.7</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06036650</td>
<td>Jefferson River near Three Forks.</td>
<td>9,532</td>
<td>Oct. 1978-P</td>
<td>2,553</td>
</tr>
<tr>
<td>06036905</td>
<td>Firehole River near West Yellowstone.</td>
<td>282</td>
<td>Oct. 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06037000</td>
<td>Gibbon River near West Yellowstone.</td>
<td>111</td>
<td>Oct. 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06038500</td>
<td>Madison River below Hebgen Lake, near Grayling.</td>
<td>905</td>
<td>June 1909-P</td>
<td>1,000</td>
</tr>
<tr>
<td>06038800</td>
<td>Madison River at Kirby Ranch, near Cameron.</td>
<td>1,065</td>
<td>Sept. 1959 - Sept. 1963; May 1978-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06040300</td>
<td>Jack Creek near Ennis</td>
<td>51.5</td>
<td>Sept. 1973-P</td>
<td>47.4</td>
</tr>
<tr>
<td>06041000</td>
<td>Madison River below Ennis Lake, near McAllister.</td>
<td>2,186</td>
<td>Oct. 1901 - Dec. 1905; Oct. 1906-P</td>
<td>1,766</td>
</tr>
<tr>
<td>06050000</td>
<td>Hyalite Creek at Hyalite Ranger Station, near Bozeman.</td>
<td>48.2</td>
<td>Aug. 1895 - Oct. 1896; Apr. 1898 - Oct. 1899; June - Oct. 1900; May - Sept. 1902; Sept. - Dec. 1904; Sept. 1934-P</td>
<td>67.4</td>
</tr>
<tr>
<td>06052500</td>
<td>Gallatin River at Logan</td>
<td>1,795</td>
<td>Sept. 1893 - Dec. 1905; Aug. 1928-P</td>
<td>1,073</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow ¹ (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06054500</td>
<td>Missouri River at Toston</td>
<td>14,669</td>
<td>Apr. 1890 - Feb. 1891; Apr. 1910 - Dec. 1916; Apr. 1941-P</td>
<td>5,414</td>
</tr>
<tr>
<td>06062500</td>
<td>Tenmile Creek near Rimini</td>
<td>32.7</td>
<td>Oct. 1914-P</td>
<td>18.0</td>
</tr>
<tr>
<td>06066500</td>
<td>Missouri River below Holter Dam, near Wolf Creek.</td>
<td>17,149</td>
<td>Oct. 1945-P</td>
<td>5,673</td>
</tr>
<tr>
<td>06076690</td>
<td>Smith River near Fort Logan</td>
<td>846</td>
<td>Oct. 1977-P</td>
<td>200</td>
</tr>
<tr>
<td>06078200</td>
<td>Missouri River near Ulm</td>
<td>20,941</td>
<td>Aug. 1957-P</td>
<td>6,878</td>
</tr>
<tr>
<td>06088300</td>
<td>Muddy Creek near Vaughn</td>
<td>282</td>
<td>June 1968-P</td>
<td>120</td>
</tr>
<tr>
<td>06088500</td>
<td>Muddy Creek at Vaughn</td>
<td>314</td>
<td>May 1925 - Feb. 1926; Apr. 1934 - Sept. 1968; July 1971-P</td>
<td>128</td>
</tr>
<tr>
<td>06089000</td>
<td>Sun River near Vaughn</td>
<td>1,854</td>
<td>July - Oct. 1897; Apr. 1934-P</td>
<td>726</td>
</tr>
<tr>
<td>06090300</td>
<td>Missouri River near Great Falls.</td>
<td>23,292</td>
<td>May - July 1953; Oct. 1956-P</td>
<td>8,034</td>
</tr>
<tr>
<td>06090800</td>
<td>Missouri River at Fort Benton</td>
<td>24,749</td>
<td>Oct. 1890-P</td>
<td>7,827</td>
</tr>
<tr>
<td>06091700</td>
<td>Two Medicine River below South Fork, near Browning</td>
<td>250</td>
<td>May 1977-P</td>
<td>324</td>
</tr>
</tbody>
</table>
Table 1.--Selected hydrologic data for stations in the surface-water program--Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi2)</th>
<th>Period of record</th>
<th>Mean annual flow1 (ft3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06093200</td>
<td>Badger Creek below Four Horns Canal, near Browning.</td>
<td>152</td>
<td>Oct. 1951-P</td>
<td>5227</td>
</tr>
<tr>
<td>06099500</td>
<td>Marias River near Shelby</td>
<td>3,242</td>
<td>Apr. 1902 - Dec. 1904; May 1905 - Dec. 1906; May 1907 - Jan. 1908; Apr. 1911-P</td>
<td>940</td>
</tr>
<tr>
<td>06101560</td>
<td>Pondera Coulee near Chester</td>
<td>598</td>
<td>Oct. 1975-P</td>
<td>16.1</td>
</tr>
<tr>
<td>06108000</td>
<td>Teton River near Dutton</td>
<td>1,307</td>
<td>Aug. 1954-P</td>
<td>161</td>
</tr>
<tr>
<td>06109500</td>
<td>Missouri River at Virgelle</td>
<td>34,379</td>
<td>Feb. 1935-P</td>
<td>8,708</td>
</tr>
<tr>
<td>06115200</td>
<td>Missouri River near Landusky</td>
<td>40,987</td>
<td>Feb. 1934-P</td>
<td>9,470</td>
</tr>
<tr>
<td>06120500</td>
<td>Musselshell River at Harlowton</td>
<td>1,125</td>
<td>July 1907 - Nov. 1929; Mar. 1930 - Dec. 1932; Apr. - Aug. 1933; Feb. 1934-P</td>
<td>167</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow¹ (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06126470</td>
<td>Halfbreed Creek near Klein</td>
<td>53.2</td>
<td>Oct. 1977-P</td>
<td>1.34</td>
</tr>
<tr>
<td>06126500</td>
<td>Musselshell River near Roundup.</td>
<td>4,023</td>
<td>May 1946-P</td>
<td>238</td>
</tr>
<tr>
<td>06130500</td>
<td>Musselshell River at Mosby</td>
<td>7,846</td>
<td>May – Nov. 1929; Mar. 1930–Sept. 1932; Feb. 1934-P</td>
<td>301</td>
</tr>
<tr>
<td>06131000</td>
<td>Big Dry Creek near Van Norman</td>
<td>2,554</td>
<td>Oct. 1939–July 1969; July 1970-P</td>
<td>55.8</td>
</tr>
<tr>
<td>06131120</td>
<td>Timber Creek near Van Norman</td>
<td>287</td>
<td>Mar. 1982-P</td>
<td>(⁴)</td>
</tr>
<tr>
<td>06131200</td>
<td>Nelson Creek near Van Norman</td>
<td>100</td>
<td>Oct. 1975-P</td>
<td>2.24</td>
</tr>
<tr>
<td>06132000</td>
<td>Missouri River below Fort Peck Dam.</td>
<td>57,556</td>
<td>Mar. 1934–Sept. 1939; Oct. 1943-P</td>
<td>66,347 710,000</td>
</tr>
<tr>
<td>06132200</td>
<td>South Fork Milk River near Babb.</td>
<td>70.4</td>
<td>May 1961-P</td>
<td>(²)</td>
</tr>
<tr>
<td>06133000</td>
<td>Milk River at western crossing of international boundary.</td>
<td>401</td>
<td>Mar. 1931-P</td>
<td>(²)</td>
</tr>
<tr>
<td>06133500</td>
<td>North Fork Milk River above St. Mary Canal, near Browning.</td>
<td>60.2</td>
<td>May 1911–July 1912; June – July 1918; May 1919-P</td>
<td>(²)</td>
</tr>
</tbody>
</table>
Table 1.--Selected hydrologic data for stations in the surface-water program--Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06134000</td>
<td>North Milk River near international boundary.</td>
<td>91.6</td>
<td>July 1909 - Oct. 1912; Jan. 1913 - Oct. 1922; Mar. 1923-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06135000</td>
<td>Milk River at eastern crossing of international boundary.</td>
<td>2,506</td>
<td>Aug. 1909-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06137400</td>
<td>Big Sandy Creek at reservation boundary, near Rocky Boy.</td>
<td>24.7</td>
<td>May 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06137570</td>
<td>Boxelder Creek near Rocky Boy</td>
<td>48.2</td>
<td>Oct. 1975-P</td>
<td>9.40</td>
</tr>
<tr>
<td>06139500</td>
<td>Big Sandy Creek near Havre</td>
<td>1,805</td>
<td>May 1984-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06140500</td>
<td>Milk River at Havre</td>
<td>5,785</td>
<td>May - Nov. 1898; Apr. 1899 - Sept. 1916; Oct. 1916 - Nov. 1922; Mar., Apr. 1923; Mar., Apr. 1952; June 1953; Aug. 1954-P</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>430</td>
</tr>
<tr>
<td>06142400</td>
<td>Clear Creek near Chinook</td>
<td>135</td>
<td>June 1984-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06145500</td>
<td>Lodge Creek below McRae Creek, at international boundary.</td>
<td>825</td>
<td>Oct. 1951-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06149500</td>
<td>Battle Creek at international boundary.</td>
<td>997</td>
<td>Apr. 1917-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06151000</td>
<td>Lyons Creek at international boundary.</td>
<td>66.7</td>
<td>Mar. 1927-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06151500</td>
<td>Battle Creek near Chinook</td>
<td>1,539</td>
<td>June 1984-P</td>
<td>(4)</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06154140</td>
<td>Fifteenmile Creek tributary near Harlem.</td>
<td>2.31</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06154400</td>
<td>Peoples Creek near Hays</td>
<td>220</td>
<td>Dec. 1966-P</td>
<td>17.5</td>
</tr>
<tr>
<td>06154410</td>
<td>Little Peoples Creek near Hays</td>
<td>13.0</td>
<td>Aug. 1972-P</td>
<td>5.22</td>
</tr>
<tr>
<td>06154490</td>
<td>Willow Coulee near Dodson</td>
<td>5.16</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06154500</td>
<td>Peoples Creek near Dodson</td>
<td>670</td>
<td>Apr. 1918 - Nov. 1921; June 1951 - Sept. 1973; Oct. 1981-P</td>
<td>32.1</td>
</tr>
<tr>
<td>06154510</td>
<td>Kuhr Coulee tributary near Dodson.</td>
<td>1.25</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06155030</td>
<td>Milk River near Dodson</td>
<td>11,192</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06164000</td>
<td>Frenchman River at international boundary.</td>
<td>2,120</td>
<td>Apr. 1917-P</td>
<td>(2)</td>
</tr>
<tr>
<td>06164510</td>
<td>Milk River at Juneberg Bridge, near Saco.</td>
<td>17,670</td>
<td>Oct. 1977-P</td>
<td>530</td>
</tr>
<tr>
<td>06164590</td>
<td>Beaver Creek near Zortman</td>
<td>10.1</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06164615</td>
<td>Little Warm Creek at reservation boundary, near Zortman.</td>
<td>6.31</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06164623</td>
<td>Little Warm Creek tributary near Lodge Pole.</td>
<td>2.42</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06164630</td>
<td>Big Warm Creek near Zortman</td>
<td>53.8</td>
<td>May 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>06166000</td>
<td>Beaver Creek below Guston Coulee, near Saco.</td>
<td>1,208</td>
<td>Apr. 1981-P</td>
<td>(4)</td>
</tr>
</tbody>
</table>
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06169600</td>
<td>South Creek tributary near Opheim.</td>
<td>2.15</td>
<td>May 1983-P</td>
<td>(""")</td>
</tr>
<tr>
<td>06169700</td>
<td>South Creek tributary No. 2 near Opheim.</td>
<td>1.62</td>
<td>May 1983-P</td>
<td>(""")</td>
</tr>
<tr>
<td>06169800</td>
<td>South Creek tributary No. 3 near international boundary.</td>
<td>.32</td>
<td>May 1983-P</td>
<td>(""")</td>
</tr>
<tr>
<td>06170050</td>
<td>Rock Creek below McEachern Creek, near international boundary.</td>
<td>650</td>
<td>May 1983-P</td>
<td>(""")</td>
</tr>
<tr>
<td>06170080</td>
<td>Starbuck Coulee near international boundary.</td>
<td>4.16</td>
<td>May 1983-P</td>
<td>(""")</td>
</tr>
<tr>
<td>06174000</td>
<td>Willow Creek near Glasgow</td>
<td>538</td>
<td>Oct. 1953-P</td>
<td>57.3</td>
</tr>
<tr>
<td>06174500</td>
<td>Milk River at Nashua</td>
<td>22,332</td>
<td>Oct. 1939-P</td>
<td>710</td>
</tr>
<tr>
<td>06175000</td>
<td>Porcupine Creek at Nashua</td>
<td>725</td>
<td>July 1908 - Sept. 1924; Oct. 1981-P</td>
<td>26.5</td>
</tr>
<tr>
<td>06175540</td>
<td>Prairie Elk Creek near Oswego.</td>
<td>352</td>
<td>Oct. 1975-P</td>
<td>18.6</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.--Selected hydrologic data for stations in the surface-water program--Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06177000</td>
<td>Missouri River near Wolf Point</td>
<td>82,290</td>
<td>Sept. 1928 - Sept. 1939; Oct. 1943-P</td>
<td>67,219 710,680</td>
</tr>
<tr>
<td>06177400</td>
<td>McCune Creek near Circle</td>
<td>29.9</td>
<td>Mar. 1982-P</td>
<td></td>
</tr>
<tr>
<td>06177650</td>
<td>Redwater River near Richey</td>
<td>1,071</td>
<td>May 1982-P</td>
<td></td>
</tr>
<tr>
<td>06177700</td>
<td>Cow Creek tributary near Vida</td>
<td>1.71</td>
<td>Mar. 1982-P</td>
<td></td>
</tr>
<tr>
<td>06177825</td>
<td>Redwater River near Vida</td>
<td>1,974</td>
<td>Oct. 1975-P</td>
<td>46.2</td>
</tr>
<tr>
<td>06178000</td>
<td>Poplar River at international boundary.</td>
<td>362</td>
<td>Mar. 1931-P</td>
<td></td>
</tr>
<tr>
<td>06178500</td>
<td>East Poplar River at international boundary.</td>
<td>541</td>
<td>Mar. 1931-P</td>
<td></td>
</tr>
<tr>
<td>Station No.</td>
<td>Station name</td>
<td>Drainage area (mi²)</td>
<td>Period of record</td>
<td>Mean annual flow (ft³/s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>06181995</td>
<td>Beaver Creek at international boundary.</td>
<td>149</td>
<td>July 1977 - Nov. 1982; Nov. 1982-P</td>
<td>(¹)</td>
</tr>
<tr>
<td>06183450</td>
<td>Big Muddy Creek near Antelope</td>
<td>967</td>
<td>Oct. 1978-P</td>
<td>47.9</td>
</tr>
<tr>
<td>06185110</td>
<td>Big Muddy Creek near mouth, near Culbertson.</td>
<td>2,684</td>
<td>Nov. 1981-P</td>
<td>(¹)</td>
</tr>
<tr>
<td>06135500</td>
<td>Missouri River near Culbertson.</td>
<td>91,557</td>
<td>July 1941- Dec. 1951; Apr. 1958-P</td>
<td>711,000</td>
</tr>
<tr>
<td>06187550</td>
<td>Yellowstone River near Tower Junction, Yellowstone National Park.</td>
<td>1,342</td>
<td>Oct. 1983-P</td>
<td>(¹)</td>
</tr>
<tr>
<td>06191500</td>
<td>Yellowstone River at Corwin Springs.</td>
<td>2,623</td>
<td>Aug. 1889 - Nov. 1893; Sept. 1910-P</td>
<td>3,116</td>
</tr>
<tr>
<td>06191800</td>
<td>Big Creek near Emigrant</td>
<td>60.9</td>
<td>Sept. 1973 - Sept 1979; Oct. 1982-P</td>
<td>64.8</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.--Selected hydrologic data for stations in the surface-water program--Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06195600</td>
<td>Shields River near Livingston</td>
<td>852</td>
<td>Oct. 1978-P</td>
<td>376</td>
</tr>
<tr>
<td>06200000</td>
<td>Boulder River at Big Timber</td>
<td>523</td>
<td>Apr. 1947 - Dec. 1953; Mar. 1955-P</td>
<td>543</td>
</tr>
<tr>
<td>06202510</td>
<td>Stillwater River above Nye Creek, near Nye.</td>
<td>193</td>
<td>Nov. 1979-P</td>
<td>(•)</td>
</tr>
<tr>
<td>06204050</td>
<td>West Rosebud Creek near Roscoe</td>
<td>52.1</td>
<td>Sept. 1965-P</td>
<td>129</td>
</tr>
<tr>
<td>06205000</td>
<td>Stillwater River near Absarokee</td>
<td>975</td>
<td>July 1910 - Sept. 1914; Mar. 1935-P</td>
<td>970</td>
</tr>
<tr>
<td>06207500</td>
<td>Clarks Fork Yellowstone River near Belfry.</td>
<td>1,154</td>
<td>July 1921-P</td>
<td>953</td>
</tr>
<tr>
<td>06208800</td>
<td>Clarks Fork Yellowstone River near Silesia.</td>
<td>2,093</td>
<td>Oct. 1969-P</td>
<td>1,180</td>
</tr>
<tr>
<td>06211000</td>
<td>Red Lodge Creek above Cooney Reservoir, near Boyd.</td>
<td>143</td>
<td>May 1937-P</td>
<td>(•)</td>
</tr>
<tr>
<td>06211500</td>
<td>Willow Creek near Boyd</td>
<td>53.3</td>
<td>June 1937-P</td>
<td>(•)</td>
</tr>
<tr>
<td>06212500</td>
<td>Red Lodge Creek below Cooney Reservoir, near Boyd.</td>
<td>210</td>
<td>Sept. 1937-P</td>
<td>102</td>
</tr>
<tr>
<td>06214500</td>
<td>Yellowstone River at Billings</td>
<td>11,795</td>
<td>May 1904 - Dec. 1905; Aug. 1928-P</td>
<td>7,074</td>
</tr>
<tr>
<td>06216000</td>
<td>Pryor Creek at Pryor</td>
<td>117</td>
<td>June 1921 - Sept. 1924; Oct. 1966-P</td>
<td>39.5</td>
</tr>
<tr>
<td>06216900</td>
<td>Pryor Creek near Huntley</td>
<td>582</td>
<td>Oct. 1978-P</td>
<td>79.5</td>
</tr>
<tr>
<td>06287000</td>
<td>Bighorn River near St. Xavier</td>
<td>19,667</td>
<td>Oct. 1934-P</td>
<td>3,596</td>
</tr>
<tr>
<td>06289000</td>
<td>Little Bighorn River at State line, near Wyola.</td>
<td>193</td>
<td>Mar. 1939-P</td>
<td>155</td>
</tr>
<tr>
<td>Station No.</td>
<td>Station name</td>
<td>Drainage area (mi²)</td>
<td>Period of record</td>
<td>Mean annual flow (ft³/s)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>06290000</td>
<td>Pass Creek near Wyola</td>
<td>111</td>
<td>June 1935 - Sept. 1956; Oct. 1982-P</td>
<td>35.8</td>
</tr>
<tr>
<td>06291000</td>
<td>Owl Creek near Lodge Grass</td>
<td>163</td>
<td>Apr. 1939 - Sept. 1945; Oct. 1979-P</td>
<td>10.3</td>
</tr>
<tr>
<td>06291500</td>
<td>Lodge Grass Creek above Willow Creek Diversion, near Wyola.</td>
<td>80.7</td>
<td>Mar. 1939 - Sept. 1974; Oct. 1982-P</td>
<td>49.8</td>
</tr>
<tr>
<td>06294000</td>
<td>Little Bighorn River near Hardin.</td>
<td>1,294</td>
<td>June 1953-P</td>
<td>313</td>
</tr>
<tr>
<td>06294600</td>
<td>East Cabin Creek tributary near Hardin.</td>
<td>8.63</td>
<td>Oct. 1981-P</td>
<td>(")</td>
</tr>
<tr>
<td>06294940</td>
<td>Sarpy Creek near Hysham</td>
<td>453</td>
<td>Sept. 1973-P</td>
<td>7.06</td>
</tr>
<tr>
<td>06294950</td>
<td>Starved To Death Creek near Sanders.</td>
<td>36.9</td>
<td>June 1979-P</td>
<td>(")</td>
</tr>
<tr>
<td>06294995</td>
<td>Armells Creek near Forsyth</td>
<td>370</td>
<td>July 1974-P</td>
<td>6.57</td>
</tr>
<tr>
<td>06295000</td>
<td>Yellowstone River at Forsyth</td>
<td>40,339</td>
<td>July 1921 - Sept. 1923; Oct. 1977-P</td>
<td>11,870</td>
</tr>
<tr>
<td>06295100</td>
<td>Rosebud Creek near Kirby</td>
<td>35.5</td>
<td>Oct. 1981-P</td>
<td>(")</td>
</tr>
<tr>
<td>06295113</td>
<td>Rosebud Creek at reservation boundary near Kirby.</td>
<td>123</td>
<td>Oct. 1979-P</td>
<td>(")</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06295250</td>
<td>Rosebud Creek near Colstrip</td>
<td>799</td>
<td>Oct. 1974-P</td>
<td>45.0</td>
</tr>
<tr>
<td>06296003</td>
<td>Rosebud Creek at mouth, near Rosebud.</td>
<td>1,302</td>
<td>Oct. 1974-P</td>
<td>50.9</td>
</tr>
<tr>
<td>06296100</td>
<td>Snell Creek near Hathaway</td>
<td>10.5</td>
<td>Oct. 1981-P</td>
<td><4</td>
</tr>
<tr>
<td>06306100</td>
<td>Squirrel Creek near Decker</td>
<td>33.6</td>
<td>Sept. 1975-P</td>
<td>3.43</td>
</tr>
<tr>
<td>06306300</td>
<td>Tongue River at State line, near Decker.</td>
<td>1,477</td>
<td>Aug. 1960-P</td>
<td>494</td>
</tr>
<tr>
<td>06306950</td>
<td>South Fork Leaf Rock Creek near Kirby.</td>
<td>4.53</td>
<td>Oct. 1981-P</td>
<td><4</td>
</tr>
<tr>
<td>06307500</td>
<td>Tongue River at Tongue River Dam, near Decker.</td>
<td>1,770</td>
<td>May 1939-P</td>
<td>459</td>
</tr>
<tr>
<td>06307528</td>
<td>Prairie Dog Creek near Birney</td>
<td>19.6</td>
<td>Nov. 1978-P</td>
<td><4</td>
</tr>
<tr>
<td>06307600</td>
<td>Hanging Woman Creek near Birney</td>
<td>470</td>
<td>Sept. 1973-P</td>
<td>4.51</td>
</tr>
<tr>
<td>06307616</td>
<td>Tongue River at Birney Day School Bridge, near Birney</td>
<td>2,621</td>
<td>Oct. 1979-P</td>
<td><4</td>
</tr>
<tr>
<td>06307717</td>
<td>Otter Creek below Fifteenmile Creek, near Otter</td>
<td>453</td>
<td>June 1982-P</td>
<td><4</td>
</tr>
<tr>
<td>06307740</td>
<td>Otter Creek at Ashland</td>
<td>707</td>
<td>Oct. 1972-P</td>
<td>7.03</td>
</tr>
<tr>
<td>06307830</td>
<td>Tongue River below Brandenburg Bridge, near Ashland.</td>
<td>4,062</td>
<td>Oct. 1973-P</td>
<td>496</td>
</tr>
<tr>
<td>06308400</td>
<td>Pumpkin Creek near Miles City</td>
<td>697</td>
<td>Oct. 1972-P</td>
<td>16.1</td>
</tr>
<tr>
<td>06308500</td>
<td>Tongue River at Miles City</td>
<td>5,379</td>
<td>Apr. 1938 - Apr. 1942; Apr. 1946-P</td>
<td>440</td>
</tr>
<tr>
<td>06309000</td>
<td>Yellowstone River at Miles City.</td>
<td>48,253</td>
<td>Sept. 1922 - Sept. 1923; Aug. 1928-P</td>
<td>11,620</td>
</tr>
<tr>
<td>06309075</td>
<td>Sunday Creek near Miles City.</td>
<td>714</td>
<td>Oct. 1974-P</td>
<td>40.5</td>
</tr>
</tbody>
</table>
Table 1.--Selected hydrologic data for stations in the surface-water program--Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06324500</td>
<td>Powder River at Moorhead</td>
<td>8,088</td>
<td>May 1929 - Sept. 1972; Oct. 1974-P</td>
<td>460</td>
</tr>
<tr>
<td>06324710</td>
<td>Powder River at Broadus</td>
<td>8,748</td>
<td>Oct. 1975-P</td>
<td>488</td>
</tr>
<tr>
<td>06326300</td>
<td>Mizpah Creek near Mizpah</td>
<td>797</td>
<td>Oct. 1974-P</td>
<td>16.8</td>
</tr>
<tr>
<td>06326500</td>
<td>Powder River near Locate</td>
<td>13,194</td>
<td>Mar. 1938-P</td>
<td>612</td>
</tr>
<tr>
<td>06326600</td>
<td>O'Fallon Creek near Ismay</td>
<td>669</td>
<td>Oct. 1977-P</td>
<td>23.7</td>
</tr>
<tr>
<td>06326952</td>
<td>Clear Creek near Lindsay</td>
<td>101</td>
<td>Mar. 1982-P</td>
<td>(*)</td>
</tr>
<tr>
<td>06328200</td>
<td>Lower Sevenmile Creek near Bloomfield.</td>
<td>25.2</td>
<td>Mar. 1982-P</td>
<td>(*)</td>
</tr>
<tr>
<td>06329500</td>
<td>Yellowstone River near Sidney.</td>
<td>69,103</td>
<td>Oct. 1910 - Sept. 1931; Oct. 1933-P</td>
<td>13,080</td>
</tr>
<tr>
<td>06336447</td>
<td>Duck Creek near Wibaux</td>
<td>46.5</td>
<td>Mar. 1978 - Sept. 1981; May 1982-P</td>
<td>(*)</td>
</tr>
<tr>
<td>12301300</td>
<td>Tobacco River near Eureka</td>
<td>440</td>
<td>Sept. 1958-P</td>
<td>273</td>
</tr>
<tr>
<td>12301933</td>
<td>Kootenai River below Libby Dam, near Libby.</td>
<td>8,985</td>
<td>Oct. 1971-P</td>
<td>11,460</td>
</tr>
<tr>
<td>12302055</td>
<td>Fisher River near Libby</td>
<td>838</td>
<td>Sept. 1967-P</td>
<td>503</td>
</tr>
<tr>
<td>12303000</td>
<td>Kootenai River at Libby</td>
<td>10,240</td>
<td>Oct. 1910-P</td>
<td>12,160</td>
</tr>
<tr>
<td>12303100</td>
<td>Flower Creek near Libby</td>
<td>11.1</td>
<td>Sept. 1960-P</td>
<td>27.1</td>
</tr>
<tr>
<td>12303500</td>
<td>Lake Creek at Troy</td>
<td>210</td>
<td>Jan. 1945 - Sept. 1957; Oct. 1982-P</td>
<td>510</td>
</tr>
</tbody>
</table>

See footnotes at end of table.

26
Table 1.--Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12304500</td>
<td>Yaak River near Troy</td>
<td>766</td>
<td>Oct. 1910 - Sept. 1916; Mar. 1956-P</td>
<td>903</td>
</tr>
<tr>
<td>12322500</td>
<td>Silver Bow Creek above Blacktail Creek, at Butte.</td>
<td>(8)</td>
<td>Oct. 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12322800</td>
<td>Blacktail Creek near Butte</td>
<td>14.7</td>
<td>Oct. 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12323000</td>
<td>Silver Bow Creek below Blacktail Creek, at Butte.</td>
<td>(8)</td>
<td>Oct. 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12323770</td>
<td>Warm Springs Creek at Warm Springs</td>
<td>163</td>
<td>Oct. 1983-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12324200</td>
<td>Clark Fork at Deer Lodge</td>
<td>1,005</td>
<td>Oct. 1978-P</td>
<td>365</td>
</tr>
<tr>
<td>12324590</td>
<td>Little Blackfoot River near Garrison</td>
<td>398</td>
<td>Oct. 1972-P</td>
<td>190</td>
</tr>
<tr>
<td>12324680</td>
<td>Clark Fork at Gold Creek</td>
<td>1,704</td>
<td>Oct. 1977-P</td>
<td>723</td>
</tr>
<tr>
<td>12325500</td>
<td>Flint Creek near Southern Cross</td>
<td>52.6</td>
<td>Qct. 1940-P</td>
<td>29.8</td>
</tr>
<tr>
<td>12329500</td>
<td>Flint Creek at Maxville</td>
<td>208</td>
<td>Aug. 1941-P</td>
<td>102</td>
</tr>
<tr>
<td>12330000</td>
<td>Boulder Creek at Maxville</td>
<td>71.3</td>
<td>Apr. 1939-P</td>
<td>48.3</td>
</tr>
<tr>
<td>12331900</td>
<td>Clark Fork near Clinton</td>
<td>2,629</td>
<td>June 1979-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12332000</td>
<td>Middle Fork Rock Creek near Philipsburg.</td>
<td>123</td>
<td>Sept. 1937-P</td>
<td>124</td>
</tr>
<tr>
<td>12334510</td>
<td>Rock Creek near Clinton</td>
<td>885</td>
<td>Oct. 1972-P</td>
<td>604</td>
</tr>
<tr>
<td>12335500</td>
<td>Nevada Creek above Reservoir, near Finn.</td>
<td>116</td>
<td>Apr. 1939-P</td>
<td>38.7</td>
</tr>
<tr>
<td>12339450</td>
<td>Clearwater River near Clearwater</td>
<td>345</td>
<td>Oct. 1974-P</td>
<td>305</td>
</tr>
<tr>
<td>Station No.</td>
<td>Station name</td>
<td>Drainage area (mi²)</td>
<td>Period of record</td>
<td>Mean annual flow (ft³/s)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>12340000</td>
<td>Blackfoot River near Bonner</td>
<td>2,290</td>
<td>July - Nov. 1898; Mar. 1899 - Sept. 1901; May 1903 - Jan. 1905; May - Oct. 1905; Oct. 1939-P</td>
<td>1,651</td>
</tr>
<tr>
<td>12340500</td>
<td>Clark Fork above Missoula</td>
<td>5,999</td>
<td>Mar. 1929-P</td>
<td>3,050</td>
</tr>
<tr>
<td>12342500</td>
<td>West Fork Bitterroot River near Conner.</td>
<td>317</td>
<td>Apr. 1941-P</td>
<td>290</td>
</tr>
<tr>
<td>12344000</td>
<td>Bitterroot River near Darby</td>
<td>1,049</td>
<td>Apr. 1937-P</td>
<td>931</td>
</tr>
<tr>
<td>12353000</td>
<td>Clark Fork below Missoula</td>
<td>9,003</td>
<td>Oct. 1929-P</td>
<td>5,541</td>
</tr>
<tr>
<td>12354500</td>
<td>Clark Fork at St. Regis</td>
<td>10,709</td>
<td>Oct. 1910-P</td>
<td>7,583</td>
</tr>
<tr>
<td>12355000</td>
<td>Flathead River at Flathead, British Columbia.</td>
<td>427</td>
<td>Mar. 1929-P</td>
<td>947</td>
</tr>
<tr>
<td>12355500</td>
<td>North Fork Flathead River near Columbia Falls.</td>
<td>1,548</td>
<td>Sept. 1910 - Sept. 1917; Apr. 1929 - Feb. 1935; June 1935-P</td>
<td>2,989</td>
</tr>
<tr>
<td>12358500</td>
<td>Middle Fork Flathead River near West Glacier.</td>
<td>1,128</td>
<td>Oct. 1939-P</td>
<td>2,935</td>
</tr>
<tr>
<td>12362500</td>
<td>South Fork Flathead River near Columbia Falls</td>
<td>1,663</td>
<td>Sept. 1910 - Jan. 1911; Feb. 1911 - Sept. 1913; Oct. 1913 - Aug. 1916; Apr. 1923 - Nov. 1924; May - Nov. 1927; May 1928-P</td>
<td>3,564</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi²)</th>
<th>Period of record</th>
<th>Mean annual flow (^1) (ft³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12363000</td>
<td>Flathead River at Columbia Falls.</td>
<td>4,464</td>
<td>May 1922 – Sept. 1923; June 1982-P</td>
<td>9,737</td>
</tr>
<tr>
<td>12369200</td>
<td>Swan River near Condon</td>
<td>69.1</td>
<td>Oct. 1972-P</td>
<td>166</td>
</tr>
<tr>
<td>12370000</td>
<td>Swan River near Bigfork</td>
<td>671</td>
<td>Oct. 1910 – May 1911; Apr. 1922-P</td>
<td>1,170</td>
</tr>
<tr>
<td>12370900</td>
<td>Teepee Creek near Polson</td>
<td>2.18</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12372000</td>
<td>Flathead River near Polson</td>
<td>7,096</td>
<td>July 1907-P</td>
<td>11,720</td>
</tr>
<tr>
<td>12374250</td>
<td>Mill Creek above Bassoo Creek, near Niarada.</td>
<td>19.6</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12374800</td>
<td>Cromwell Creek near Niarada</td>
<td>14.3</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12375900</td>
<td>South Fork Crow Creek near Ronan.</td>
<td>7.57</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12377150</td>
<td>Mission Creek above reservoir, near St. Ignatius.</td>
<td>12.4</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12381400</td>
<td>South Fork Jocko River near Arlee.</td>
<td>56.0</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
<tr>
<td>12387450</td>
<td>Valley Creek near Arlee</td>
<td>15.3</td>
<td>Oct. 1982-P</td>
<td>(4)</td>
</tr>
</tbody>
</table>
Table 1.—Selected hydrologic data for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station name</th>
<th>Drainage area (mi^2)</th>
<th>Period of record</th>
<th>Mean annual flow (ft^3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12388400</td>
<td>Revais Creek below West Fork, near Dixon.</td>
<td>26.3</td>
<td>Oct. 1982-P</td>
<td>((^4))</td>
</tr>
<tr>
<td>12388650</td>
<td>Camas Creek near Hot Springs</td>
<td>4.46</td>
<td>Oct. 1982-P</td>
<td>((^4))</td>
</tr>
<tr>
<td>12388700</td>
<td>Flathead River at Perma</td>
<td>8,795</td>
<td>Oct. 1983-P</td>
<td>((^4))</td>
</tr>
<tr>
<td>12389000</td>
<td>Clark Fork near Plains</td>
<td>19,958</td>
<td>Oct. 1910-P</td>
<td>20,010</td>
</tr>
<tr>
<td>12389500</td>
<td>Thompson River near Thompson Falls.</td>
<td>642</td>
<td>Mar. - Sept. 1911; Oct. 1911 - Sept. 1916; Apr. 1956-P</td>
<td>476</td>
</tr>
<tr>
<td>12390700</td>
<td>Prospect Creek at Thompson Falls.</td>
<td>182</td>
<td>Apr. 1956-P</td>
<td>257</td>
</tr>
<tr>
<td>12391400</td>
<td>Clark Fork below Noxon Rapids Dam, near Noxon.</td>
<td>21,833</td>
<td>May 1960-P</td>
<td>21,350</td>
</tr>
</tbody>
</table>

1 Average as of 1983 Water Year.
2 Seasonal records only.
3 Prior to operation of St. Mary Canal.
4 Less than 5 years of annual record.
5 Adjusted for flow in Four Horns Canal since 1973.
6 Prior to Fort Peck Lake reaching operational level.
7 After operational level in Fort Peck Lake was reached.
8 Not applicable. Anaconda Company has constructed numerous holding ponds above gage.
Table 2.—Data use, funding, and data availability for stations in the surface-water program

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A, annual; P, provisional; T, telemetry equipment</td>
</tr>
<tr>
<td>05014500</td>
<td>1,2</td>
<td>A, P, T</td>
</tr>
<tr>
<td>05016000</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>05017500</td>
<td>8</td>
<td>A, P, T</td>
</tr>
<tr>
<td>05018500</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>05020500</td>
<td>8</td>
<td>A, P, T</td>
</tr>
<tr>
<td>06016000</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>06018500</td>
<td>1</td>
<td>A, P, T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
2. Hydrologic bench-mark station.
3. Inflow to Lake Sherburne.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
5. Outflow from Lake Sherburne.
7. Operation of St. Mary-Milk River Project.
8. International gaging station, Boundary Waters Treaty of 1909, Article VI.
9. Forecasting inflow to Fresno Reservoir.
11. Water-quality monitoring station, NASQAN program.
12. Operation of East Bench Irrigation Project.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06019500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06020600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06024590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06025500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06036650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06036905</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
19. Montana Department of Fish, Wildlife and Parks.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Total Federal</th>
<th>OFA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06037000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,P</td>
</tr>
<tr>
<td>06037500</td>
<td>1,16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>14,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,P</td>
</tr>
<tr>
<td>06038500</td>
<td>21</td>
<td>16,21</td>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06038800</td>
<td></td>
<td>16</td>
<td>14</td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06040300</td>
<td>1</td>
<td>1,18</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06041000</td>
<td>1,21</td>
<td>13,16</td>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06050000</td>
<td>1</td>
<td>18,23</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
19. Montana Department of Fish, Wildlife and Parks.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06052500</td>
<td>1</td>
<td>1,13,18</td>
<td></td>
<td>16</td>
<td>4,10</td>
<td>14</td>
<td></td>
<td></td>
<td>24</td>
<td>A,T</td>
</tr>
<tr>
<td>06054500</td>
<td>1</td>
<td>1,13,23</td>
<td></td>
<td>16</td>
<td>4,10</td>
<td>11</td>
<td>14</td>
<td></td>
<td>*</td>
<td>A,P,T</td>
</tr>
<tr>
<td>06061500</td>
<td>1</td>
<td>23,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>06062500</td>
<td>1</td>
<td>1,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>A</td>
</tr>
<tr>
<td>06066500</td>
<td>21,23</td>
<td>16,21</td>
<td>14</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>06076690</td>
<td>1,13</td>
<td></td>
<td>14</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>A,T</td>
</tr>
<tr>
<td>06078200</td>
<td>1,13</td>
<td>16</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>A,T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
19. Montana Department of Fish, Wildlife and Parks.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
27. Streamflow-data request for recreational planning and river floating.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06088300</td>
<td></td>
<td></td>
<td>A, T</td>
</tr>
<tr>
<td>06088500</td>
<td></td>
<td></td>
<td>A, T</td>
</tr>
<tr>
<td>06089000</td>
<td></td>
<td></td>
<td>A, T</td>
</tr>
<tr>
<td>06090300</td>
<td></td>
<td></td>
<td>A, T</td>
</tr>
<tr>
<td>06090800</td>
<td>1, 13, 21</td>
<td>22</td>
<td>A, T</td>
</tr>
<tr>
<td>06091700</td>
<td>31, 31</td>
<td>33</td>
<td>A</td>
</tr>
<tr>
<td>06093200</td>
<td>1, 31</td>
<td>33</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
11. Water-quality monitoring station, NASQAN program.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks
16. Reservoir-management station.
27. Streamflow data requests for recreational planning and river floating.
28. Monitor return flow from Greenfields Irrigation project.
29. Water-quality monitoring station, other.
30. Wild and Scenic River management.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
32. Operation of Two Medicine Irrigation project.
33. U.S. Bureau of Indian Affairs.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>OPA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
</tr>
</thead>
<tbody>
<tr>
<td>06099000</td>
<td>1</td>
<td>31</td>
<td></td>
<td>4</td>
<td></td>
<td>33</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06099500</td>
<td>1</td>
<td>1,31</td>
<td>13,16</td>
<td>4,10</td>
<td>*</td>
<td>A,P,T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06101500</td>
<td>13</td>
<td></td>
<td>13,16</td>
<td>11</td>
<td>15</td>
<td>A,T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06101560</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06108000</td>
<td>1,13</td>
<td></td>
<td>10</td>
<td>*</td>
<td>A,T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06109500</td>
<td>1</td>
<td>1,13</td>
<td></td>
<td>4,10</td>
<td>11</td>
<td>14</td>
<td>27,30</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06115200</td>
<td>1</td>
<td>1,13</td>
<td></td>
<td>16</td>
<td>4,10</td>
<td>11,34</td>
<td>14</td>
<td>27,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
11. Water-quality monitoring station, NASQAN program.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
27. Streamflow data requests for recreational planning and river floating.
30. Wild and Scenic River management.
31. Hydrologic activities—U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
34. Sediment-transport monitoring station.
Table 2. Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>ORA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06120500</td>
<td>1</td>
<td>1,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td>A,T</td>
<td>A,T</td>
</tr>
<tr>
<td>06126470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td>A,T</td>
<td>A</td>
</tr>
<tr>
<td>06126500</td>
<td>1</td>
<td>1,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td>A,T</td>
<td>A</td>
</tr>
<tr>
<td>06127500</td>
<td>1</td>
<td>1,25</td>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>06130500</td>
<td>1</td>
<td>1,23, 24,25</td>
<td>13,16</td>
<td>10</td>
<td>11,34</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>06131000</td>
<td>1</td>
<td>1,15,23</td>
<td>10,24</td>
<td>29</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
<td>A,T</td>
</tr>
<tr>
<td>06131120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
29. Water-quality monitoring station, other.
34. Sediment-transport monitoring station.
35. Baseline hydrologic information-regional coal studies.
36. Montana Department of State Lands.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional Hydrology</th>
<th>Hydrologic Systems</th>
<th>Legal Obligations</th>
<th>Planning and Design</th>
<th>Project Operation</th>
<th>Hydrologic Forecasts</th>
<th>Water-Quality Monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>06131200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36, 37</td>
</tr>
<tr>
<td>06132000</td>
<td>1, 23</td>
<td>13, 16</td>
<td>4</td>
<td>11</td>
<td>14</td>
<td>*</td>
<td>24</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06132200</td>
<td>1, 23</td>
<td></td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06133000</td>
<td>1, 23</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>29</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>A, P</td>
</tr>
<tr>
<td>06133500</td>
<td>1, 23</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>A, P, T</td>
</tr>
<tr>
<td>06134000</td>
<td>1, 23</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>29</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>A, P, T</td>
</tr>
<tr>
<td>06135000</td>
<td>1, 23, 38</td>
<td>8</td>
<td>7</td>
<td>4, 9</td>
<td>29</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>A, P, T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
2. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
4. Operation of St. Mary-Milk River project.
5. International gaging station, Boundary Waters Treaty of 1909, Article IV.
6. Forecasting inflow to Freano Reservoir.
7. Water-quality monitoring station, NASQAN program.
8. Operation of Missouri River system.
9. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
10. Reservoir-management station.
13. Water-use studies by Montana Department of Health and Environmental Sciences.
14. Water-quality monitoring station, other.
15. Montana Department of State Lands.
17. Milk River natural flow study.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional Hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06137400</td>
<td>1</td>
<td>23,31</td>
<td></td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>A</td>
</tr>
<tr>
<td>06137570</td>
<td>1</td>
<td>1,2,3,</td>
<td></td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>A</td>
</tr>
<tr>
<td>06139500</td>
<td>38</td>
<td>38</td>
<td></td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>A,T</td>
</tr>
<tr>
<td>06140500</td>
<td>25,38</td>
<td>16</td>
<td>10</td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>0614200</td>
<td>38</td>
<td>38</td>
<td></td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>A,T</td>
</tr>
<tr>
<td>06145500</td>
<td>1,38</td>
<td>8</td>
<td>38</td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>A,F,T</td>
</tr>
<tr>
<td>06149500</td>
<td>1,38</td>
<td>8</td>
<td>38</td>
<td>(</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>A,P</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
2. Hydrologic benchmark station.
3. Inflow to Lake Sherburne.
5. International gaging station, Boundary Waters Treaty of 1909, Article IV.
7. Reservoir-management station.
10. Water-use studies by Montana Department of Health and Environmental Sciences.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>OIA program</th>
<th>CP program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06151000</td>
<td>1,38</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06151500</td>
<td>31,38</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06154100</td>
<td>1,38</td>
<td></td>
<td></td>
<td>38</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06154140</td>
<td>31,39</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06154400</td>
<td>1</td>
<td>1,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06154410</td>
<td>1</td>
<td>1,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06154490</td>
<td>31,39</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
17. Montana Department of Natural Resources and Conservation.
29. Water-quality monitoring station, other.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
38. Milk River natural flow study.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal</th>
<th>EPA</th>
<th>Corps</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06154500</td>
<td>1,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06154510</td>
<td>31,39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06155030</td>
<td>1,31</td>
<td></td>
<td>16,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06164000</td>
<td>1,25,8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>A,P,T</td>
</tr>
<tr>
<td>06164510</td>
<td>1,23</td>
<td>16,10</td>
<td>29</td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06164590</td>
<td>31</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06164615</td>
<td>31</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
8. International gaging station, Boundary Waters Treaty of 1909, Article VI.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
29. Water-quality monitoring station, other.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>OFA program</th>
<th>Coop program</th>
<th>Other</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06164623</td>
<td>31,39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06164630</td>
<td>31</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06166000</td>
<td>23,40</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06169500</td>
<td>2,1,2</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06169600</td>
<td>23,39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06169700</td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06169800</td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
2. Hydrologic bench-mark station.
29. Water-quality monitoring station, other.
31. Hydrologic activities—U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
40. Bowdoin Lake studies—U.S. Fish and Wildlife Service.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06170050</td>
<td></td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>A</td>
</tr>
<tr>
<td>06170080</td>
<td></td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>A</td>
</tr>
<tr>
<td>06172000</td>
<td></td>
<td>1,23</td>
<td>16</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>06174000</td>
<td>1</td>
<td>1,23</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>A</td>
</tr>
<tr>
<td>06174500</td>
<td></td>
<td>1,13, 23,25</td>
<td>13</td>
<td>10,13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>A,T</td>
</tr>
<tr>
<td>06175000</td>
<td>1</td>
<td>1,23,31</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>A</td>
</tr>
<tr>
<td>06175540</td>
<td>1</td>
<td>1,23,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
11. Water-quality monitoring station, NASQAN program.
13. Operation of Missouri River system.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
29. Water-quality monitoring station, other.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
35. Baseline hydrologic information - regional coal studies.
41. Willow Creek retention reservoir study - U.S. Bureau of Land Management.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06176500</td>
<td>A</td>
</tr>
<tr>
<td>06177000</td>
<td>A,T</td>
</tr>
<tr>
<td>06177400</td>
<td>A</td>
</tr>
<tr>
<td>06177500</td>
<td>A</td>
</tr>
<tr>
<td>06177650</td>
<td>A</td>
</tr>
<tr>
<td>06177700</td>
<td>A</td>
</tr>
<tr>
<td>0617825</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
29. Water-quality monitoring station, other.
33. U.S. Bureau of Indian Affairs.
35. Baseline hydrologic information – regional coal study.
36. Montana Department of State Lands.
42. Small drainage basin index station – Montana Department of State Lands.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06178000</td>
<td>1,31,43</td>
<td>43</td>
<td>17</td>
</tr>
<tr>
<td>06178500</td>
<td>1,31,43</td>
<td>43</td>
<td>17</td>
</tr>
<tr>
<td>06181000</td>
<td>1,31</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>06181995</td>
<td>1</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>06183450</td>
<td>1,31</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>06185110</td>
<td>23,31</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>06185500</td>
<td>1,13, 23,25</td>
<td>13,16</td>
<td>10</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
2. International Joint Commission (U.S. Department of State).
4. Water-quality monitoring station, NASQAN program.
5. Operation of Missouri River system.
6. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
7. Montana Department of Natural Resources and Conservation.
10. Reservoir-management station.
11. Montana Department of Natural Resources and Conservation.
13. Water-quality monitoring station, other.
15. U.S. Bureau of Indian Affairs.
16. Poplar River bilateral monitoring committee.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal Program</th>
<th>GSA Program</th>
<th>COOP program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06186500</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06187550</td>
<td>1</td>
<td></td>
<td>20</td>
<td>20</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06191500</td>
<td>1</td>
<td>1,13,23</td>
<td>4,10</td>
<td>20</td>
<td>14,20</td>
<td>27</td>
<td>24</td>
<td></td>
<td>A, P, T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06191800</td>
<td>1</td>
<td>1,14,23</td>
<td>14</td>
<td>14</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06192500</td>
<td>1</td>
<td>1,13,23</td>
<td>4,10</td>
<td>11</td>
<td>14</td>
<td>27</td>
<td>24</td>
<td></td>
<td>A, P, T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06195600</td>
<td>1</td>
<td>1,23</td>
<td>4,10</td>
<td>14</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td>A, T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06200600</td>
<td>1</td>
<td>1,13,23</td>
<td>4,10</td>
<td>14</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td>A, T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
17. Montana Department of Natural Resources and Conservation.
19. Montana Department of Fish, Wildlife and Parks.
27. Streamflow data requests for recreational planning and river floating.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>GPA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06202510</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06204050</td>
<td>1,23</td>
<td>16,21</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06205000</td>
<td>1,13,23</td>
<td>4,10</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06207500</td>
<td>1</td>
<td>1,23,25</td>
<td>4,10</td>
<td>34</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>06208800</td>
<td>1,23</td>
<td>45</td>
<td>34</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,46</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06211000</td>
<td>1</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06211500</td>
<td>1</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
19. Montana Department of Fish, Wildlife and Parks.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
34. Sediment-transport monitoring station.
44. Baseline hydrologic information - Stillwater Complex study.
45. Yellowstone River Compact - Appendix A.
46. Wyoming State Engineer.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal Program</th>
<th>OPA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06212500</td>
<td>16</td>
<td>16</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06214500</td>
<td>1,13,23</td>
<td>13</td>
<td>4,10</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>A,P,T</td>
</tr>
<tr>
<td>06216000</td>
<td>1,25,31</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06216900</td>
<td>1,31</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06287000</td>
<td>1,23</td>
<td>16</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06289000</td>
<td>1,23,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06290000</td>
<td>1,23,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
11. Water-quality monitoring station, NASQAN program.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
23. Used by State of Montana for water rights administration.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
<th>Federal program</th>
<th>EPA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06230500</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06241000</td>
<td>1,23,31</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06291500</td>
<td>1,23,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06294000</td>
<td>1,23,31</td>
<td>45</td>
<td>4,10</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06294500</td>
<td>1,13,23</td>
<td>45</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06294600</td>
<td>42</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06294940</td>
<td>1,23,35</td>
<td></td>
<td>A,T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
11. Water-quality monitoring station, NASQAN program.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
31. Hydrologic activities—U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
35. Baseline hydrologic information—regional coal studies.
36. Montana Department of State Lands.
42. Small drainage basin index station—Montana Department of State Lands.
45. Yellowstone River Compact—Appendix A.
46. Wyoming State Engineer.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06294950</td>
<td></td>
<td>*</td>
<td>A,T</td>
</tr>
<tr>
<td>06294995</td>
<td>35, 48</td>
<td>*</td>
<td>17</td>
</tr>
<tr>
<td>06295000</td>
<td>1, 13, 23, 25</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>06295100</td>
<td>42</td>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>06295113</td>
<td>25, 31</td>
<td>36</td>
<td>*</td>
</tr>
<tr>
<td>06295250</td>
<td>1, 31, 48</td>
<td>25, 35, 48</td>
<td>33</td>
</tr>
<tr>
<td>06296003</td>
<td>25, 48</td>
<td>35, 48</td>
<td>17</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
13. Operation of Missouri River system.
17. Montana Department of Natural Resources and Conservation.
23. Used by State of Montana for water-right administration.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
33. U.S. Bureau of Indian Affairs.
35. Baseline hydrologic information - regional coal studies.
36. Montana Department of State Lands.
42. Small drainage basin index station - Montana Department of State Lands.
47. Inventory of potential Yellowstone River offstream storage basin.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic Systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project Operation</th>
<th>Hydrologic Forecasts</th>
<th>Water-Quality Monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06296100</td>
<td>1</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>06306100</td>
<td>1,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>06306300</td>
<td>1</td>
<td>1,23,35</td>
<td>16</td>
<td>10</td>
<td>35</td>
<td>14,48</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A,T</td>
</tr>
<tr>
<td>06306950</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>06307500</td>
<td>1,23,35</td>
<td>16</td>
<td>4,10</td>
<td>35</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A,T</td>
</tr>
<tr>
<td>06307528</td>
<td>1,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>A</td>
</tr>
<tr>
<td>06307600</td>
<td>1,23,35</td>
<td></td>
<td>35</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
35. Baseline hydrologic information — regional coal studies.
36. Montana Department of State Lands.
42. Small drainage basin index station — Montana Department of State Lands.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>EPA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06307616</td>
<td>23,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31,35</td>
<td>14</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06307717</td>
<td>18,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>14</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06307740</td>
<td>1,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>14</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06307830</td>
<td>23,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>48</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06308400</td>
<td>1,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>14</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06308500</td>
<td>1,13, 23,35</td>
<td>45</td>
<td></td>
<td></td>
<td>10</td>
<td>11,34</td>
<td>14</td>
<td>*</td>
<td>17,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,P,T</td>
</tr>
<tr>
<td>06309000</td>
<td>1,13, 23,25</td>
<td></td>
<td></td>
<td></td>
<td>4,10</td>
<td>14</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,P,T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
11. Water-quality monitoring station, NASQAN program.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
34. Sediment-transport-monitoring station.
35. Baseline hydrologic information - regional coal studies.
36. Montana Department of State Lands.
45. Yellowstone River Compact - Appendix A.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06309075</td>
<td>1,25</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>06324500</td>
<td>1,23,35</td>
<td>17</td>
<td>A,T</td>
</tr>
<tr>
<td>06324710</td>
<td>1,35</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>06326300</td>
<td>1,23,35</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>06326500</td>
<td>1,13,23,25,35</td>
<td>17,46</td>
<td>A,F,T</td>
</tr>
<tr>
<td>06326600</td>
<td>1,23</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>06326952</td>
<td>42</td>
<td>36</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
17. Montana Department of Natural Resources and Conservation.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
34. Sediment-transport monitoring station.
35. Baseline hydrologic information—regional coal studies.
36. Montana Department of State Lands.
42. Small drainage basin index station—Montana Department of State Lands.
45. Yellowstone River Compact—Appendix A.
46. Wyoming State Engineer.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>OFA program</th>
<th>Coop program</th>
<th>Other</th>
<th>non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>06328200</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06329200</td>
<td>1</td>
<td>1,35</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>06329500</td>
<td>1</td>
<td>1,13, 23,25</td>
<td>16</td>
<td>4,10</td>
<td>11,34</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,P,T</td>
</tr>
<tr>
<td>06336447</td>
<td>42</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12301300</td>
<td>1</td>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12301933</td>
<td>1,25,49</td>
<td>16</td>
<td>4</td>
<td>29</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>12302055</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
13. Operation of Missouri River system.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
29. Water-quality monitoring station, other.
34. Sediment-transport-monitoring station.
35. Baseline hydrologic information—regional coal studies.
36. Montana Department of State Lands.
42. Small drainage basin index station—Montana Department of State Lands.
49. Operation of upper Columbia River system.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regional hydrology</td>
<td>Hydrologic systems</td>
<td>Legal obligations</td>
</tr>
<tr>
<td>12303000</td>
<td>1,49</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>12303100</td>
<td>1,18</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>12303500</td>
<td>1,18</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>12304500</td>
<td>1,18,49</td>
<td>4,10</td>
<td>14</td>
</tr>
<tr>
<td>12322500</td>
<td>1,25,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12322800</td>
<td>1,25,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12323000</td>
<td>1,25,52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
18. Water-use studies by U.S. Forest Service.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
49. Operation of upper Columbia River system.
50. Pacific Power and Light.
51. Montana Light and Power Company.
52. Baseline hydrologic information—U.S. Environmental Protection Agency superfund site.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>OFA program</th>
<th>Cool program</th>
<th>Other</th>
<th>Non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323770</td>
<td>1,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12324200</td>
<td>1,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12324590</td>
<td>1,23, 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12324680</td>
<td>1</td>
<td>1,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12325500</td>
<td>1,18, 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>12329500</td>
<td>1</td>
<td>21</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,T</td>
</tr>
<tr>
<td>12330000</td>
<td>1,18, 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
19. Montana Department of Fish, Wildlife and Parks.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
54. Clark Fork reserve flow water study – Montana Department of Fish, Wildlife and Parks.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic Forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Federal program</th>
<th>EPA program</th>
<th>Coop program</th>
<th>Other non-federal</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>12331900</td>
<td>1</td>
<td>1,18, 23</td>
<td>4</td>
<td>14</td>
<td>54</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>12332000</td>
<td>1</td>
<td></td>
<td>10</td>
<td>14</td>
<td></td>
<td>19</td>
<td>A,T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12334510</td>
<td>1</td>
<td>1,18,23</td>
<td>4</td>
<td>14</td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12335500</td>
<td>1</td>
<td>1,18,25</td>
<td>16</td>
<td>4</td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12339450</td>
<td>1</td>
<td>1,23</td>
<td>4</td>
<td>14,27</td>
<td></td>
<td>17</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12340000</td>
<td>1</td>
<td>1,23, 25</td>
<td>4,10</td>
<td>14</td>
<td>27</td>
<td>*</td>
<td>A,P,T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12340500</td>
<td>1</td>
<td>1,23,25, 49</td>
<td>10</td>
<td>14</td>
<td>27,54</td>
<td>24</td>
<td>A,P,T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
19. Montana Department of Fish, Wildlife and Parks.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
27. Streamflow data requests for recreational planning and river floating.
49. Operation of upper Columbia River system.
54. Clark Fork reserve flow water study–Montana Department of Fish, Wildlife and Parks.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Local obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>12342500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>12344000</td>
<td>1</td>
<td>1,18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>A,P,T</td>
</tr>
<tr>
<td>12353000</td>
<td>1</td>
<td>1,23, 25,49</td>
<td>4,10</td>
<td>11</td>
<td>14,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>A,P,T</td>
</tr>
<tr>
<td>12354500</td>
<td>1</td>
<td>1,49</td>
<td>4,10</td>
<td></td>
<td>14,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* 56</td>
<td>A,P,T</td>
</tr>
<tr>
<td>12355000</td>
<td>1</td>
<td>1,18,49</td>
<td>4</td>
<td>11</td>
<td>14,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>12355500</td>
<td>1</td>
<td>1,18,23, 25,49</td>
<td>4,10</td>
<td>14</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* 56</td>
<td>A,P,T</td>
</tr>
<tr>
<td>12358500</td>
<td>1</td>
<td>1,18, 25,49</td>
<td>4</td>
<td>14</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A,P,T</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
11. Water-quality monitoring station, NASQAN program.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
27. Streamflow data requests for recreational planning and river floating.
49. Operation of upper Columbia River system.
55. Montana Department of Health and Environmental Sciences.
56. Bonneville Power Administration.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>12362500</td>
<td>1,18,23,25,49</td>
<td>16, 4, 14, 27</td>
<td>15</td>
</tr>
<tr>
<td>12363000</td>
<td>1,18,23,25,49</td>
<td>16, 21, 10, 14, 27</td>
<td>22</td>
</tr>
<tr>
<td>12365000</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>12366000</td>
<td>1,18,25</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>12369200</td>
<td>1</td>
<td>1,18</td>
<td>14</td>
</tr>
<tr>
<td>12370000</td>
<td>1,18,25</td>
<td>16, 4, 10, 14</td>
<td>56</td>
</tr>
<tr>
<td>12370900</td>
<td>25,57</td>
<td>31</td>
<td>29</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
17. Montana Department of Natural Resources and Conservation.
18. Water-use studies by U.S. Forest Service.
19. Montana Department of Fish, Wildlife and Parks.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
27. Streamflow data requests for recreational planning and river floating.
29. Water-quality monitoring station, other.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
49. Operation of upper Columbia River system.
56. Bonneville Power Administration.
57. Small drainage basin index station - Bonneville Power Administration.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Regional hydrology</th>
<th>Hydrologic systems</th>
<th>Legal obligations</th>
<th>Planning and design</th>
<th>Project operation</th>
<th>Hydrologic forecasts</th>
<th>Water-quality monitoring</th>
<th>Research</th>
<th>Other</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>12372000</td>
<td>1,23, 25, 49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>A,P,T</td>
</tr>
<tr>
<td>12374250</td>
<td>1,25, 57</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>12374800</td>
<td>1,25, 57</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>12375900</td>
<td>1,25, 57</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>12377150</td>
<td>1,25, 57</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>12381400</td>
<td>1,25, 57</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A</td>
</tr>
<tr>
<td>12383500</td>
<td>1,25, 57</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>A</td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
16. Reservoir-management station.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
29. Water-quality monitoring station, other.
31. Hydrologic activities - U.S. Bureau of Indian Affairs.
49. Operation of upper Columbia River system.
56. Bonneville Power Administration.
57. Small drainage basin index station - Bonneville Power Administration.
Table 2.—Data use, funding, and data availability for stations in the surface-water program—Continued

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Uses</th>
<th>Funding</th>
<th>Frequency of data availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regional hydrology</td>
<td>Hydrologic systems</td>
<td>Legal obligations</td>
</tr>
<tr>
<td>12387450</td>
<td>1,25,57</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>12388400</td>
<td>1,25,57</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>12388650</td>
<td>1,25,57</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>12388700</td>
<td>1,23,25,49</td>
<td>31</td>
<td>29,14</td>
</tr>
<tr>
<td>12389000</td>
<td>1,23,25,49</td>
<td>16,21,4</td>
<td>10</td>
</tr>
<tr>
<td>12389500</td>
<td>1,23,25</td>
<td>16,21,4</td>
<td>14</td>
</tr>
<tr>
<td>12390700</td>
<td>1,18,23,25</td>
<td>21,4</td>
<td>14</td>
</tr>
<tr>
<td>12391400</td>
<td>23,25,49</td>
<td>16,21</td>
<td></td>
</tr>
</tbody>
</table>

1. General hydrologic knowledge and definition of long-term trends.
4. Streamflow forecasts by U.S. Soil Conservation Service based on snow survey data.
14. Fisheries habitat research conducted by Montana Department of Fish, Wildlife and Parks.
16. Reservoir-management station.
18. Water-use studies by U.S. Forest Service.
25. Water-use studies by Montana Department of Health and Environmental Sciences.
29. Water-quality-monitoring station, other.
31. Hydrologic activities — U.S. Bureau of Indian Affairs.
49. Operation of upper Columbia River system.
56. Bonneville Power Administration.
57. Small drainage basin index station — Bonneville Power Administration.