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ESTIMATION OF DISTRIBUTIONAL PARAMETERS FOR CENSORED TRACE-LEVEL 
WATER-QUALITY DATA. II: VERIFICATION AND APPLICATIONS

By Dennis R. Helsel and Robert J. Gilliom 

ABSTRACT

Estimates of distributional parameters (mean, standard deviation, median, 
interquartile range) are often desired for data sets containing censored obser­ 
vations. Eight methods for estimating these parameters have been evaluated 
by Gilliom and Helsel (1984) using Monte Carlo simulations. To verify those 
findings, the same methods are now applied to actual water-quality data. The 
best method (lowest root mean squared error) over all parameters, sample sizes, 
and censoring levels is log probability regression (LR), the method found best 
in the Monte Carlo simulations. Best methods for estimating moment or percent- 
ile parameters separately are also identical to the simulations. Reliability 
of these estimates can be expressed as confidence intervals using RMSE and bias 
values taken from the simulation results. Finally, a new simulation study shows 
that best methods for estimating uncensored sample statistics from censored 
data sets are identical to those for estimating population parameters. Thus 
this study and the companion study by Gilliom and Helsel form the basis for 
making the best possible estimates of either population parameters or sample 
statistics from censored water-quality data, and for assessments of their 
reliability.

INTRODUCTION

Water-quality data often include observations measured only as less than 
the detection limit, resulting in censored data sets. Eight methods for esti­ 
mating distributional parameters for censored water-quality data were evaluated 
by Gilliom and Helsel (1984). Results of extensive Monte Carlo simulations, 
in which large numbers of small samples were generated from 16 different parent 
distributions and censored to varying degrees, indicated that a log-probability 
regression method (LR) was the best method for estimating the mean and standard 
deviation of censored data and that a lognormal maximum likelihood method (LM) 
was best for estimating the median and interquartile range. That study, here­ 
after called the simulation study, also showed that censored data sets could 
be effectively classified using a sample statistic called the relative quartile 
range (rqr), which is the interquartile range of uncensored observations divided 
by the detection limit. Classification of simulation data sets according to 
rqr indicated the probable underlying distribution, and resulted in improved 
estimates of the precision of distributional parameters as compared to unclassi­ 
fied data sets.

The purposes of this study are to:

  verify the findings from the previous simulation study by evaluating the 
same parameter estimation methods using actual water-quality data.

  describe an approach for estimating confidence bounds around parameter 
estimates made from censored water-quality data.



  evaluate how well the estimation methods calculate uncensored sample 
statistics from censored data sets, and compare their errors to those 
for estimating population parameters.

VERIFICATION OF PREVIOUS SIMULATION STUDY

Evaluations of parameter estimation methods in the previous simulation 
study are verified by applying the same type of analysis to actual water-quality 
data. The best-performing parameter estimation methods for actual water-quality 
data are compared to the simulation study results. The rqr classification system 
developed in the simulation study is tested by comparing method performance for 
actual and simulated data within each rqr class, and by evaluating the ability 
of rqr classification to separate water-quality data sets having different root 
mean squared errors (RMSEs) of parameter estimates.

Approach

Uncensored data sets with more than 50 observations for suspended sediment, 
total phosphorus, total Kjeldahl nitrogen, and nitrate nitrogen concentrations 
were obtained from 313 stations of the U.S. Geological Survey's National Stream 
Quality Accounting Network (NASQAN). Most data were monthly samples taken 
during 1974-81, resulting in 917 data sets having more than 50 observations and 
no censoring.

Suspended sediment and major nutrients data were analyzed rather than 
trace constituents because:

  most available data sets for trace constituents consisted of less 
than 30 observations.

  most trace constituent data sets contained censored observations.

® suspended sediment and nutrients are transported by the same types of 
processes as many trace constituents.

This last point is important because similarity in transport process will 
tend to result in similarly shaped frequency distributions. We examined this 
assumption by comparing the distributions of coefficients of variation (cv) and 
of a measure of symmetry between subsamples of n=25 from each of the sediment 
and nutrient data sets and uncensored trace-constituent data sets of sizes 
ranging from n=20 to n=40. The measure of symmetry, ms, was:

q - q 
ms = -Z5  5(3 (^

q50 " q25

where q^ is the i th percentile of the data set. The results of the comparison 
are shown in figure 1, which also includes the same information for simulation 
study data sets (100 data sets from each of the 16 parent distributions) of 
size n=25. All three types of data have similar distributions of these non- 
dimensional variance and symmetry sample statistics.
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For the verification tests, two subsamples, one of size n=10 and one of 
n=25, were randomly selected with replacement from each of the 917 sediment 
and nutrient data sets. Each resulting small sample was censored at 20, 40, 60, 
and 80 percent by the type II method (David, 1981), as population percentiles 
were not known. With this method the same fraction of each data set is cen­ 
sored. Each of the eight parameter estimation methods evaluated in the simu­ 
lation study (Table 1) were applied to each censored sample. RMSEs were computed 
for the mean, standard deviation, median, and interquartile range. Sample 
statistics computed from the original (n>50) sediment and nutrient data sets 
were used as estimates of the true population parameters in RMSE calculations.

Results

Best methods for the verification data, methods with the lowest RMSE or with 
RMSEs not significantly (t-test at a=0.05) larger than the lowest, were identical 
to those of the simulation study. Table 2 presents RMSEs for data sets of n=25. 
Similar ordering of methods, though with higher RMSEs, were found for n=10.

The best overall method for estimating the mean, standard deviation, 
median, and interquartile range of simulated data had been LR, based on its 
having the smallest sum of RMSE ranks over all four distributional parameters, 
four censoring levels, and three sample sizes. By the same criteria, LR and 
UN tied for the best method using verification data. Also applying the 
same criteria, but separately for the moment parameters (mean and standard 
deviation) and the percentile parameters (median and interquartile range), LR 
produced the lowest summed RMSE rank for the moment parameters and LM for the 
percentile parameters for both the simulated and verification data.

Verification sets were then classified by relative quartile range (rqr), 
the interquartile range of uncensored observations divided by the detection 
limit, and RMSEs were calculated for each rqr class. Ranks of method RMSEs 
were again separately summed for the moment and percentile parameters over 
both n=10 and n=25 sample sizes. Although for individual rqr classes within a 
censoring level a method other than LR or LM might have a smaller RMSE, no 
RMSEs were significantly (t-test at a=0.05) lower than those of LR for 
the moment parameters and of LM for the percentile parameters. Therefore 
for every rqr class these two methods are either best, or not signficantly 
different from the best, and no significant reduction in error would result 
from selecting separate methods for each rqr class. This method selection 
exactly follows that of the simulation study.

RMSEs using LR and LM are compared for this verification study with those 
of the prior simulation study in table 3. The magnitudes of RMSEs are in most 
cases quite similar. Of the 130 pairs, t-tests showed that 62 percent of the 
errors from the simulation study were not significantly different than errors 
when using actual water-quality data.

There are several reasons why RMSEs from the verification study might not 
match those of the simulation study. First, during verification, water-quality 
population values were approximated by sample estimates from relatively small data 
sets (n>50). The differences between these estimates and the true population 
values introduce errors of unknown direction as compared with simulation results.



Table 1.--Parameter estimation methods (see Gilliom and Helsel, 1984, for 
further detail).

Method ______Description of Method______________

ZE Censored observations set to zero.

DL Censored observations set to the detection limit.

UN Censored observations uniformly distributed between
zero and the detection limit.

NR Censored observations followed the zero-to-detection
limit portion of a normal distribution fit to un- 
censored observations by least-squares regression.

LR Censored observations followed the zero-to-detection
limit portion of a lognormal distribution fit to 
uncensored observations by least-squares regression.

NM Maximum likelihood method for censored normal
distributions.

LM Maximum likelihood method for censored normal distri­ 
butions using natural logarithms, followed by Aitchison 
and Brown (1957) transformation.

DT Delta distribution estimator of Aitchison (1955).



Table 2.--Root mean squared errors (RMSEs) of estimation methods for 917 verification 
data sets of size n=25, in percent of uncensored value.

Mean Standard Deviation Median

Method

NM
DT
LR
DL
UN
NR
ZE
LM

Method

LR
UN
DL
NR
DT
ZE
NM
LM

Method

LR
UN
NR
DL
ZE
DT
NM
LM

Method

UN
LR
NR
DT
ZE
DL
LM
NM

RMSE

23
25
26
26
26
26
27
33

RMSE

26
27
28
28
32
33
47
51

RMSE

27
29
32
35
44
44

111
*

RMSE

36
37
43
62
62
68
81

296

Method

UN
NR
LR
DL
ZE
NM
LM
DT

Method

UN
LR
NR
DL
ZE
NM
LM
DT

Method

UN
LR
NR
DL
ZE
NM
DT
LM

Method

UN
LR
NR
ZE
DL
NM
DT
LM

20 PERCENT

RMSE

41
41
42
42
45
45
84
*

40 PERCENT

RMSE

42
43
44
46
55
56
*
*

60 PERCENT

RMSE

44
45
47
52
60
79
*
*

80 PERCENT

RMSE

44
47
50
54
63

133
*
*

CENSORED

Method

LR
UN
ZE
DL
NR
LM
DT
NM

CENSORED

Method

LM
LR
UN
ZE
DL
NR
DT
NM

CENSORED

Method

LM
UN
LR
DL
NR
ZE
DT
NM

CENSORED

Method

NR
ZE
DT
LM
UN
LR
DL
NM

RMSE

20
20
20
20
20
20
25

173

RMSE

18
20
20
20
20
20
21

527

RMSE

27
30
37
41
64

100
100
*

RMSE

80
100
100
124
217
262
358
*

Interquartile Range

Method RMSE

LR
UN 
ZE 
DL 
NM 
LM 
NR 
DT

LM 
DL 
LR 
UN 
NR 
ZE 
DT 
NM

LM 
LR 
UN 
DL 
NR 
ZE 
DT

LM 
UN 
LR 
ZE 
DL 
DT 
NR

47
47
47
47
47
47
47
59

Method RMSE

50
51
52
53
80
129
146
757

Method RMSE

54
56
65
73
91
129
144 
*

Method RMSE

72
85
97

100
100
100
125 
*

* RMSE > 1,000%
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Second, the small subsamples of n=10 or n=25 represent substantial portions of 
the complete data sets, lowering RMSEs from their true value. As a result, 
similarity in magnitude between simulation and verification RMSEs may be of 
limited importance.

Of importance is the similarity in effect of rqr classification on RMSEs 
of simulation and verification data. In order for the rqr classification to 
aid in estimating errors, both simulation and verification RMSEs should 
covary, positively, by rqr class. To measure this, rank correlation coeffic­ 
ients between simulation and verification RMSEs were calculated for each 
parameter. Ranks were first independently assigned for each study within 
each sample size and censoring level, and then combined. The results (table 4) 
show that the relative magnitudes of RMSEs for the simulation and verification 
data are correlated, except for estimates of the median. Verification RMSEs 
for the median are low in relation to simulation data for the high censoring 
and high rqr classes (Table 3). This may be due to the lack of distributions 
in the verification data with as many extreme values as the high cv gamma 
distributions included in the simulation study (see Gilliom and Helsel, 1984).

The verification results are strong evidence that the previous simulation 
study led to optimal choice of estimation methods for the mean, standard devia­ 
tion, median, and interquartile range of censored water-quality data sets. 
Furthermore, the verification results show that the rqr classification system 
developed from simulation studies provides an effective means of distinguishing 
between data sets originating from different types of parent distributions.

CONFIDENCE INTERVALS FOR PARAMETER ESTIMATES

The most common objective in estimating distributional parameters from 
censored data is to reproduce the parameters of the parent distribution for 
example, the true mean or median concentration for a particular river and time 
period. When making estimates of population parameters from censored data, 
evaluation of the reliability or confidence intervals of such estimates is an 
important step.

Estimation of confidence intervals requires estimates of RMSE and bias. 
We believe that the simulation results yield more appropriate estimates of 
RMSE and bias than do the verification results. As previously discussed, the 
verification results are based on imperfect estimates of population values, 
and the small subsamples that were censored represent a substantial portion of 
the larger sample used to estimate population values. Moreover, the simulation 
studies included a wide range of distribution types chosen to be similar in 
shape to distributions of trace constituent concentrations in water (Gilliom 
and Helsel, 1984). The verification data sets may not have represented as 
wide a range in distribution shapes, as only uncensored data sets were, of 
necessity, chosen.

The method described below for estimating confidence intervals of popula­ 
tion parameters estimated from censored data requires three assumptions:



Table 4. Rank correlations, r, between simulation RMSEs and verification 
RMSEs for each rqr class

Degree of censoring 
(as percentage) Mean

20 0.90* 
(n=8)

40 .90* 
(n=8)

60 .95* 
(n=10)

80 .60 
(n=4)

all censoring levels .89* 
combined (n=30)

Standard 
deviation

0.80* 
(n=8)

.72* 
(n=8)

.58 
(n=10)

.95* 
(n=4)

.71* 
(n=30)

Parameter

Interquartile 
Median range

-

-

0.55 
(n=10)

0.40 
(n=4)

.37 
(n=14)

-

0.87* 
(n=8)

.75* 
(n=10)

.40 
(n=4)

.63* 
(n=22)

* r is significantly different from 0.00 at a =0.05



1. The censored data are from a population that is equally likely to be 
similar in shape to any 1 of 16 parent distributions used in the 
simulation study.

2. The percentage of a data set that is censored equals the population 
percentile associated with the value of the detection limit.

3. Relative errors in estimated population parameters, the error of an 
estimate divided by the true value, can be approximated by a log- 
normal distribution.

The first assumption is that the 16 parent distributions used in the simu­ 
lation studies appropriately represent the range and proportional contributions 
of different types of distributions of actual trace-level water-quality data. 
We feel confident that the range of possible shapes were included (see fig. 1, 
Gilliom and Helsel, 1984). Though there is unresolvable uncertainty about 
the true proportional representation of each type of distribution, the rqr 
classification system reduces this potential effect on error estimates by 
grouping data from similar distributions.

The assumption that the percentage of a data set that is censored equals 
the population percentile of the detection limit is required in order to select 
the proper RMSE and bias values from simulation results. The simulation results 
are organized according to the population percentile representing the detection 
limit. The percentage of a data set that is censored is a sample estimate of 
the percentile of the detection limit, and its reliability is dependent primarily 
on sample size.

The assumption that relative errors are lognormally distributed was made 
because some probability distribution of errors must be specified to construct 
confidence intervals tighter than those given by Chebysev's inequality. Boxplots 
of errors suggested a lognormal distribution and such a distribution appeared 
reasonable because the fractional error,

e = (x

has a lower bound of -1.0, while having no upper bound. The validity of the 
assumed lognormal distribution of errors was directly tested by a simulation 
experiment. Five hundred data sets of each sample size, n=10, n=25, and n=50, 
were generated from each of the 16 parent distributions described by Gilliom 
and Helsel (1984) and censored at the 20, 40, 60, and 80th population per- 
centiles. Sample estimates for each data set at each censoring level were 
made using the LR method for x and s and LM for m and iqr. Confidence intervals 
for each estimate at a=0.05 were computed as described below, and the actual 
frequencies with which the true population values fell within those intervals 
were evaluated. Results in table 5, based on 1,000-2,000 data sets for most 
combinations of censoring level, sample size, and rqr class, show that the 
assumed lognormal distribution is generally a good approximation of the error 
distribution. Only for the standard deviation for the lowest three rqr classes 
at each censoring level and sample size is there a consistent tendency to 
underestimate the width of the confidence intervals.
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Under the above assumptions, confidence intervals for estimates of the 
mean, standard deviation, median, and interquartile range may all be similarly 
estimated. Derivation of equations for confidence intervals are given below, 
using the mean as an example.

The fractional errors for estimates of the mean

XT-U 
1 =    (2)

where x"j is the estimate of the mean for the i tn data set and u is the true 
population mean, are assumed to be lognormally distributed with mean u e , 
variance a|, and lower limit of -1.0. The expected value ue=E[e-j]=b, 
where b is the fractional bias of estimates from the censored samples of the 
simulation study, is

u /
(3)

and N is the number of data sets used in the simulation. The variance a2 e is 
calculated as

a 2e = RMSE 2-b 2 (4) 

where RMSE values are again those from the simulation. 

N /7-M\ 2
RMSE 2 = l

i=l w (5)

The values of y-j=ln(e-j+1.0) are normally distributed, with

/ a2 \
a2 = In (1.0 +      ) (6)

\ (b+1) 2/

and
My = ln(b+1.0)-0.5 o2y (7)

A (1-a) confidence interval for \i is therefore given by

x"   exp[-uy -z a/ 2 ay ] <_ u <_ x"   exp[-uy + z a/ 2 ay ] (8)

where z is the standard normal variate.

To calculate confidence intervals, uy and a» are obtained from (6) and 
(7). The bias, b, from the simulation study is reported in table 6. The error 
variance a2e is calculated in (4) using both bias from table 6 and RMSE from
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the simulation results reported in table 3. The smaller RMSEs following classi­ 
fication by rqr, as found in the simulation study, allow shorter confidence 
intervals on parameter estimates than would be possible without rqr classifica­ 
tion. Equation 8 can be used for any of the four distributional parameters 
estimated, with y and x replaced by the population parameter and sample estimate 
for the standard deviation, median, or interquartile range.

The above procedure is illustrated by example in table 7, where a 95 percent 
confidence interval for the mean is calculated. Note that neither the sample 
size nor the percentage of the data censored exactly correspond to conditions 
represented in tables 3 and 6. This will usually be the case. One can use 
the RMSE and bias values for the closest censoring and sample size represented 
in the table, interpolate, or choose conservatively high RMSEs by using values 
for the next highest censoring level and next smallest sample size.

SAMPLE STATISTICS: ESTIMATION AND CONFIDENCE INTERVALS

For some applications, estimates of sample statistics rather than popula­ 
tion parameters might be desired from censored data. Uncensored water-quality 
data are summarized by their sample statistics, and comparisons between these 
data and censored data should be on an equal basis.

New Simulation Study

To determine how well the eight methods evaluated by Gilliom and Helsel 
(1985) estimate sample statistics, a new simulation study was performed. 
Distributional shapes and other criteria are identical to the previous simulation 
study. However, RMSEs and bias were calculated (using the mean for example) as:

RMSE =

bias =

0.5

1=1

where x0 is the sample mean for the uncensored data set (replacing y), and the 
other parameters are as previously given. Censoring was at the 20, 40, 60, and 
80th percentiles of each simulated sample (type II censoring), as opposed to 
percentiles of the parent population in the first simulation study (type I 
censoring). This was to facilitate comparison with the verification results.

Best methods for the moment and percentile parameters in this new simulation 
study were LR and LM, respectively, based on the sum of method rankings over 
all censoring levels. The overall best method was LR. Best performing methods 
for estimating sample statistics were thus identical to those for estimating 
population parameters. However, the magnitudes of RMSEs differ from those 
for population parameters. RMSEs of sample estimates in table 8 can be compared 
to those of the n=10 and n=25 population parameters presented above the slashes 
in table 3. RMSEs are generally smaller when estimating sample statistics.
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Table /.--Calculation of 1-a confidence interval (a=0.05) for estimate of the 
mean from censored data.

Data Set: ND, ND, ND, ND, ND, 6, 6, 6, 8, 10, 10, 10, 11, 20

Detection Limit = 5.0 n = 14 
% Censoring = 36%

10.5 - 6 
rqr = = 0.90

Estimates using LR method: mean = 7.42
std. dev. = 4.66

From tables 3 and 6 for n = 10, % cens. = 40%, LR method,
RMSE = 0.30 bias = - .04

a2e = 0.088 a2y = 0.092 yy = -0.087

7.42   exp[+.087-(1.96)(.303)] <_ y <_ 7.42   exp[.087+(1.96)(.303)]

4.47 < y < 14.64

15



Table 8.--RMSES of best estimation methods (LR for x, s; LM for m, iqr) when 
classified by rqr, as percentage of uncensored sample estimate

20 percent 
censoring

x" s m iqr

rqr<0.47

n=10 4 25 
n=25 4 27 
n=50 3 28

-

rqr=0.47-1.2

n=10 3 10 
n=25 2 7 
n=50 2 6

   

rqr=1.2-3.8

n=10 3 5 
n=25 2 3 
n=50 1 2

   

rqr>3.8

n=10 2 2 
n=25 1 1 
n=50 1 1

   

40 percent 
censoring

x~ s | m iqr

rqr<0.35

7 31 
5 29 
4 31

- 38 
- 28
- 21

rqr=0.35-0.84

7 14 
5 10 
4 8

- 22 
17 

- 13

rqr=0. 84-2.1

6 8 
4 5 
3 4

- 18 
11 

8

rqr>2.1

4 3 
3 2 
2 2

- 12 
7 
5

n=10 
n=25 
n=50

60 percent 
censoring

x" s m iqr

rqr<0.25

14 44 
8 35 
6 35

10 46 
5 36 
3 27

rqr=0.25-0.60

15 27 
10 18 

8 17

16 43 
12 42 

7 34

rqr=0.60-1.4

14 14 
10 9 

7 6

54 43 
26 27 
13 16

rqr=1.4-3.7

11 7 
7 4 
6 3

380 30 
44 14 
27 10

rqr>3.7

7 3 
5 2 
5 2

290 27 
92 11 
64 7

80 percent 
censoring

x~ s m iqr

rqr<0.16

* *
21 39 
11 40

* *
66 50 
14 34

rqr=0.16-0.41

* *
24 25 
16 23

* *
130 61 

28 50

rqr=0.41-0.92

* *
23 19 
19 17

* *
180 66 

73 47

rqr>0.92

* *
18 6 
16 5

* *
170 38 
150 20

*0nly 2 samples 
remain after 
censoring
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Therefore, confidence intervals around the LR or LM estimate are smaller for 
inclusion of the uncensored sample statistic as compared to the population 
parameter. RMSEs for the moment sample statistics decrease with increasing rqr 
class, the opposite trend from that of the population parameters. This is due 
to the greater influence of the higher observations on the sample mean and 
standard deviation. These higher observations remain after censoring, pro­ 
ducing a more accurately estimated sample statistic while indicating much less 
about the population parameter. Confidence intervals for sample statistics 
can be computed using the same relationships given for population parameters, 
but using the RMSEs in table 8 and the bias results in table 9.

Verification of Sample Statistic Estimates

To verify the new simulation results, uncensored trace metal data sets 
from the NASQAN network were censored (type II) at the 20, 40, 60, and 80th 
sample percentiles and errors were calculated by comparison to the uncensored 
sample estimates. Table 10 lists the water-quality parameters chosen and the 
number of data sets for each. Sample sizes ranged from 10 to 40 observations. 
Eleven other trace constituents had no data sets which contained only uncensored 
observations and were not used. In order to obtain a larger number of data 
sets, iron and manganese data were included even though they are not usually 
found at "trace" levels.

Trace metal data sets containing 10 to 20 observations were combined into 
one group, representing sample sizes generally comparable to n=10 simulation 
results. Data sets having fewer than three data points after censoring were 
deleted. A second group of data sets having from 21 to 40 observations was 
formed for comparison to n=25 simulation results. The eight estimation methods 
were applied to this data. Again, LR proved the best overall method. LR was 
best for the moment parameters and LM was best for the percentile parameters, 
based on the rank criteria given previously.

RMSEs are presented by rqr class in table 11. Comparison of tables 8 
and 11 indicate again that simulation results produced RMSEs similar to those 
for actual trace water-quality data. Only median estimates for 60 and 80 
percent censoring appear different, with simulation RMSEs higher than actual. 
This is perhaps due to the inclusion of larger sample sizes in the actual trace- 
data estimates, with the simulation results representing conservative error 
estimates based only on n=10 or n=25.

SUMMARY AND CONCLUSIONS

The eight methods for estimating population parameters from censored data 
sets evaluated by Gilliom and Helsel (1984) were applied to uncensored suspended 
sediment and nutrient data having large sample sizes (n>50). Selection of the 
estimation method that was best overall, best for moment and percentile parameters 
separately, and best within every rqr class exactly follows those of the simula­ 
tion study. The log regression method (LR) produced lowest RMSEs for the 
moment parameters. RMSEs are similarly affected by rqr classification in both 
studies for the mean, standard deviation, and interquartile range, verifying 
the effectiveness of rqr in separating distributions which produce like errors.
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Table 9. Bias when estimating sample statistics, as percentage of the uncensored 
sample estimate

20 percent 
censoring

x" s

Method LR

m iqr

-

rqr<0.47

n=10 1 - 9 
n=25 1 -11 
n=50 1 -12

   

rqr=0.47-1.2

n=10 1 - 3 
n=25 1 - 3 
n=50 1 - 3 ; ;

rqr=1.2-3.8

n=10 1 - 2 
n=25 1 - 1 
n=50 0 - 1

   

rqr>3.8

n=10 0 - 1 
n=25 0 - 1 
n=50 0 0 ; ;

40 percent 
censoring

x" s

LR

m iqr

LM

rqr<0.35

2 -11 
0-9 
0 -10

- 4 
9 
6

rqr=0.35-0.84

2-4 
1 - 2 
0-2

- 0 
- 3
- 1

rqr=0. 84-2.1

1 - 2 
1 - 1 
1 - 1

- 0 
1 

- -1

rqr>2.1

0 0 
0 0 
0 - 1

2 
- 2
- 0

n=10 
n=25 
n=50

60 percent 
censoring

x" s

LR

m iqr

LM

rqr<0.25

7 -23 
2 -14 
1 -16

4 -16 
1 3 
0 1

rqr=0.25-0.60

3 0 
0 1 

-2 3

5 6 
2 9 
0 10

rqr=0.60-1.4

1 0 
1 - 1 
1 - 1

11 2 
3 8 
3 - 1

rqr=1.4-3.7

-3 2 
0 0 
0 0

21 6 
6 5 
5 0

rqr>3.7

-3 1 
1 0 
3 - 1

37 9 
58 1 
32-3

80 percent 
censoring

x" s

LR

m iqr

LM

rqr<0.16

* *
7 -18 
5 -27

* *
17 - 6 

5 -13

rqr=0.16-0.41

* *
3 2

-1 5

* *
28 14 

6 12

rqr=0.41-0.92

* *
-2 5 
-1 3

* *
40 21 
17 10

rqr>0.92

* *
-6 2 
-1 0

* *
44 16 
41 3

* only 2 samples 
remain after 
censoring
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Table 10.--Trace constituents used to estimate sample statistics

Parameter

arsenic

dissolved arsenic

barium

boron

dissolved boron

copper

dissolved copper

lead

nickel

zinc

dissolved zinc

iron

dissolved iron

manganese

dissolved manganese

Number

n=10-20

7

3

5

11

19

1

1

0

9

1

0

12

4

11

0

of data sets

n=21-40

100

63

0

3

7

13

5

17

3

32

2

273

68

180

15

19



Table ll.--RMSEs of best estimation methods (LR for x, s; LM for m, iqr) for trace 
data, in percent of uncensored sample estimate

20 percent 
censoring

x" s m iqr

rqr<0.47

n=10-20 4 23 
n=21-40 2 10

-

rqr=0.47-1.2

n=10-20 3 8 
n=21-40 2 5 _ _

rqr=1.2-3.8

n=10-20 3 6 
n=21-40 2 3 -

rqr>3.8

n=10-20 1 1 
n=21-40 1 1 -

40 percent 
censoring

7 s m iqr

rqr<0.35

9 31 
5 15

- 57 
- 44

rqr=0.35-0.84

7 13 
5 9

- 23 
- 25

rqr=0. 84-2.1

6 8 
5 5

- 11 
- 17

rqr>2.1

4 3 
3 2

9 
- 14

n=10-20 
n=21-40

60 percent 
censoring

x" s m iqr

rqr<0.25

15 39 
12 24

10 73 
16 43

rqr=0.25-0.60

11 15 
10 12

14 29 
12 45

rqr=0.60-1.4

12 12 
10 8

16 16 
17 30

rqr=1.4-3.7

7 6 
9 5

11 21 
24 30

rqr>3.7

6 2 
6 2

28 39 
52 25

80 percent 
censoring

x" s m iqr

rqr<0.16

30 53 
23 28

32 55 
73 45

rqr=0.16-0.41

15 16 
21 17

rqr=0

20 20 
22 13

40 37 
63 51

,41-0.92

34 51 
47 41

rqr>0.92

28 9 
22 8

86 99 
150 72
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The differences in RMSEs for the median are attributed to the presence of high 
cv gamma distributions in the simulation study whose equivalent in the verifica­ 
tion data, if originally present, may have contained censored values and would 
have therefore been excluded.

Confidence intervals for parameter estimates can be estimated using RMSE 
and bias results from the simulation study. Fractional errors (estimate error 
divided by the true value) are assumed to be lognormally distributed. Simulation 
experiments showed that the assumption is a good approximation for all parameters 
except the standard deviation for data sets with low rqr values, for which the 
widths of confidence intervals were slightly underestimated. The increased 
accuracy of RMSE estimates after rqr classification allow shorter confidence 
intervals to be constructed than would be possible without classification.

Errors in estimating statistics of uncensored samples rather than popula­ 
tion parameters were also evaluated. Best methods for estimating sample 
statistics were LR and LM, respectively, for the moment and percentile para­ 
meters. RMSEs were almost always smaller when estimating sample statistics 
than for population parameters (LM median estimates occasionally have greater 
RMSEs), and were sometimes much smaller. Therefore, estimates of uncensored 
sample statistics are identical to those of population parameters, but have 
shorter confidence intervals.

The results of the present study and the companion study by Gilliom and 
Helsel (1984) form the basis for making the best possible estimates of either 
population parameters or sample statisics from censored water-quality data. 
Moreover, they provide the means for making quantitative assessments of the 
reliability of those estimates, expressed as confidence bounds. The LR method 
for moment parameters and LM method for percentile parameters should be the 
methods of choice when estimating distributional parameters for censored trace- 
level water-quality data.
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