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ESTIMATION OF DISTRIBUTIONAL PARAMETERS FOR CENSORED TRACE-LEVEL
WATER-QUALITY DATA. II: VERIFICATION AND APPLICATIONS

By Dennis R. Helsel and Robert J. Gilliom

ABSTRACT

Estimates of distributional parameters (mean, standard deviation, median,
interquartile range) are often desired for data sets containing censored obser-
vations. Eight methods for estimating these parameters have been evaluated
by Gilliom and Helsel (1984) using Monte Carlo simulations. To verify those
findings, the same methods are now applied to actual water-quality data. The
best method (Towest root mean squared error) over all parameters, sample sizes,
and censoring levels is log probability regression (LR), the method found best
in the Monte Carlo simulations. Best methods for estimating moment or percent-
ile parameters separately are also identical to the simulations. Reliability
of these estimates can be expressed as confidence intervals using RMSE and bias
values taken from the simulation results. Finally, a new simulation study shows
that best methods for estimating uncensored sample statistics from censored
data sets are identical to those for estimating population parameters. Thus
this study and the companion study by Gilliom and Helsel form the basis for
making the best possible estimates of either population parameters or sample
statistics from censored water-quality data, and for assessments of their
reliability.

INTRODUCTION

Water-quality data often include observations measured only as less than
the detection Timit, resulting in censored data sets. Eight methods for esti-
mating distributional parameters for censored water-quality data were evaluated
by Gilliom and Helsel (1984). Results of extensive Monte Carlo simulations,
in which large numbers of small samples were generated from 16 different parent
distributions and censored to varying degrees, indicated that a log-probability
regression method (LR) was the best method for estimating the mean and standard
deviation of censored data and that a lognormal maximum 1ikelihood method (LM)
was best for estimating the median and interquartile range. That study, here-
after called the simulation study, alsc showed that censored data sets could
be effectively classified using a sample statistic called the relative quartile
range (rqr), which is the interquartile range of uncensored cbservations divided
by the detection limit. Classification of simulation data sets according to
rqr indicated the probable underlying distribution, and resulted in improved
estimates of the precision of distributional parameters as compared to unclassi-
fied data sets.

The purposes of this study are to:

e verify the findings from the previous simulation study by evaluating the
same parameter estimation methods using actual water-quality data.

o describe an approach for estimating confidence bounds around parameter
estimates made from censored water-quality data.



o evaluate how well the estimation methods calculate uncensored sample
statistics from censored data sets, and compare their errors to those
for estimating population parameters.

VERIFICATION OF PREVIOUS SIMULATION STUDY

Evaluations of parameter estimation methods in the previous simulation
study are verified by applying the same type of analysis to actual water-quality
data. The best-performing parameter estimation methods for actual water-quality
data are compared to the simulation study results. The rgqr classification system
developed in the simulation study is tested by comparing method performance for
actual and simulated data within each rqr class, and by evaluating the ability
of rqr classification to separate water-quality data sets having different root
mean squared errors (RMSEs) of parameter estimates.

Approach

Uncensored data sets with more than 50 observations for suspended sediment,
total phosphorus, total Kjeldahl nitrogen, and nitrate nitrogen concentrations
were obtained from 313 stations of the U.S. Geological Survey's National Stream
Quality Accounting Network (NASQAN). Most data were monthly samples taken
during 1974-81, resulting in 917 data sets having more than 50 observations and
no censoring.

Suspended sediment and major nutrients data were analyzed rather than
trace constituents because:

o most available data sets for trace constituents consisted of less
than 30 observations.

o most trace constituent data sets contained censored observations.

o suspended sediment and nutrients are transported by the same types of
processes as many trace constituents.

This last point is important because similarity in transport process will
tend to result in similarly shaped frequency distributions. We examined this
assumption by comparing the distributions of coefficients of variation (cv) and
of a measure of symmetry between subsamples of n=25 from each of the sediment
and nutrient data sets and uncensored trace-constituent data sets of sizes
ranging from n=20 to n=40. The measure of symmetry, ms, was:

q -
ms = 15 50 (1)

50 = 925
where g; is the jth percentile of the data set. The results of the comparison
are shown in figure 1, which also includes the same information for simulation
study data sets (100 data sets from each of the 16 parent distributions) of
size n=25. All three types of data have similar distributions of these non-
dimensional variance and symmetry sample statistics.
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For the verification tests, two subsamples, one of size n=10 and one of
n=25, were randomly selected with replacement from each of the 917 sediment
and nutrient data sets. Each resulting small sample was censored at 20, 40, 60,
and 80 percent by the type II method (David, 1981), as population percentiles
were not known. With this method the same fraction of each data set is cen-
sored., Each of the eight parameter estimation methods evaluated in the simu-
lation study (Table 1) were applied to each censored sample. RMSEs were computed
for the mean, standard deviation, median, and interquartile range. Sample
statistics computed from the original (n>50) sediment and nutrient data sets
were used as estimates of the true population parameters in RMSE calculations.

Results

Best methods for the verification data, methods with the lowest RMSE or with
RMSEs not significantly (t-test at o=0.05) larger than the lowest, were identical
to those of the simulation study. Table 2 presents RMSEs for data sets of n=25.
Similar ordering of methods, though with higher RMSEs, were found for n=10.

The best overall method for estimating the mean, standard deviation,
median, and interquartile range of simulated data had been LR, based on its
having the smallest sum of RMSE ranks over all four distributional parameters,
four censoring levels, and three sample sizes. By the same criteria, LR and
UN tied for the best method using verification data. Also applying the
same criteria, but separately for the moment parameters (mean and standard
deviation) and the percentile parameters (median and interquartile range), LR
produced the lowest summed RMSE rank for the moment parameters and LM for the
percentile parameters for both the simulated and verification data.

Verification sets were then classified by relative quartile range (rqr),
the interquartile range of uncensored observations divided by the detection
1imit, and RMSEs were calculated for each rqr class. Ranks of method RMSEs
were again separately summed for the moment and percentile parameters over
both n=10 and n=25 sample sizes. Although for individual rqr classes within a
censoring level a method other than LR or LM might have a smaller RMSE, no
RMSEs were significantly (t-test at o=0.05) lower than those of LR for
the moment parameters and of LM for the percentile parameters. Therefore
for every rqr class these two methods are either best, or not signficantly
different from the best, and no significant reduction in error would result
from selecting separate methods for each rqr class. This method selection
exactly follows that of the simulation study.

RMSEs using LR and LM are compared for this verification study with those
of the prior simulation study in table 3. The magnitudes of RMSEs are in most
cases quite similar. Of the 130 pairs, t-tests showed that 62 percent of the
errors from the simulation study were not significantly different than errors
when using actual water-quality data.

There are several reascns why RMSEs from the verification study might not
match those of the simulation study. First, during verification, water-quality
population values were approximated by sample estimates from relatively small data
sets (n>50). The differences between these estimates and the true population
values introduce errors of unknown direction as compared with simulation results.



Table 1.--Parameter estimation methods (see Gilliom and Helsel, 1984, for
further detail).

Method Description of Method
ZE Censored observations set to zero.
DL Censored observations set to the detection limit.
UN Censored observations uniformly distributed between

zero and the detection limit.

NR Censored observations followed the zero-to-detection
limit portion of a normal distribution fit to un-
censored observations by least-squares regression.

LR Censored observations followed the zero-to-detection
limit portion of a Tognormal distribution fit to
uncensored observations by least-squares regression.

NM Maximum l1ikelihood method for censored normal
distributions.
LM Maximum likelihood method for censored normal distri-

butions using natural logarithms, followed by Aitchison
and Brown (1957) transformation.

DT Delta distribution estimator of Aitchison (1955).



Table 2.--Root mean squared errors (RMSEs) of estimation methods for 917 verification
data sets of size n=25, in percent of uncensored value.

Mean Standard Deviation Median Interquartile Range

20 PERCENT CENSORED

Method  RMSE Method  RMSE Method  RMSE Method  RMSE
NM 23 UN 41 LR 20 LR 47
DT 25 NR 41 UN 20 UN 47
LR 26 LR 42 ZE 20 ZE 47
DL 26 DL 42 DL 20 DL 47
UN 26 ZE 45 NR 20 NM 47
NR 26 NM 45 LM 20 LM 47
ZE 27 LM 84 DT 25 NR 47
LM 33 DT * NM 173 DT 59

40 PERCENT CENSORED

Method  RMSE Method  RMSE Method  RMSE Method  RMSE
LR 26 UN 42 M 18 LM 50
UN 27 LR 43 LR 20 DL 51
DL 28 NR 44 UN 20 LR 52
NR 28 DL 46 ZE 20 UN 53
nT 32 ZE 55 DL 20 NR 80
ZE 33 NM 56 NR 20 ZE 129
NM 47 LM * DT 21 DT 146
LM 51 DT * NM 527 NM 757

60 PERCENT CENSORED

Method  RMSE Method  RMSE Method  RMSE Method  RMSE
LR 27 UN 44 LM 27 LM 54
UN 29 LR 45 UN 30 LR 56
NR 32 NR 47 LR 37 UN 65
DL 35 DL 52 DL 41 DL 73
LE 44 ZE 60 NR 64 NR 91
DT 44 NM 79 LE 100 LE 129
NM 111 DT * DT 100 DT 144
LM * LM * NM * NM *

80 PERCENT CENSORED

Method  RMSE Method  RMSE Method  RMSE Method  RMSE
UN 36 UN 44 NR 80 LM 72
LR 37 LR 47 ZE 100 UN 85
NR 43 NR 50 DT 100 LR 97
DT 62 ZE 54 LM 124 ZE 100
ZE 62 DL 63 UN 217 DL 100
DL 68 NM 133 LR 262 DT 100
LM 81 DT * DL 358 NR 125
NM 296 LM * NM * NM *

* RMSE > 1,000%
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Second, the small subsamples of n=10 or n=25 represent substantial portions of
the complete data sets, lowering RMSEs from their true value. As a result,
similarity in magnitude between simulation and verification RMSEs may be of
limited importance.

O0f importance is the similarity in effect of rqr classification on RMSEs
of simulation and verification data. In order for the rqr classification to
aid in estimating errors, both simulation and verification RMSEs should
covary, positively, by rqr class. To measure this, rank correlation coeffic-
ients between simulation and verification RMSEs were calculated for each
parameter. Ranks were first independently assigned for each study within
each sample size and censoring level, and then combined. The results (table 4)
show that the relative magnitudes of RMSEs for the simulation and verification
data are correlated, except for estimates of the median. Verification RMSEs
for the median are low in relation to simulation data for the high censoring
and high rqr classes (Table 3). This may be due to the lack of distributions
in the verification data with as many extreme values as the high cv gamma
distributions included in the simulation study (see Gilliom and Helsel, 1984).

The verification results are strong evidence that the previous simulation
study led to optimal choice of estimation methods for the mean, standard devia-
tion, median, and interquartile range of censored water-quality data sets.
Furthermore, the verification results show that the rqr classification system
developed from simulation studies provides an effective means of distinguishing
between data sets originating from different types of parent distributions.

CONFIDENCE INTERVALS FOR PARAMETER ESTIMATES

The most common objective in estimating distributional parameters from
censored data is to reproduce the parameters of the parent distribution--for
example, the true mean or median concentration for a particular river and time
period. When making estimates of populaticn parameters from censored data,
evaluation of the reliability or confidence intervals of such estimates is an
important step.

Estimation of confidence intervals requires estimates of RMSE and bias.
We believe that the simulation results yield more appropriate estimates of
RMSE and bias than do the verification results. As previously discussed, the
verification results are based on imperfect estimates of population values,
and the small subsamples that were censored represent a substantial portion of
the larger sample used to estimate population values, Moreover, the simulation
studies included a wide range of distribution types chosen toc be similar in
shape to distributions of trace constituent concentrations in water (Gilliom
and Helsel, 1984). The verification data sets may not have represented as
wide a range in distribution shapes, as only uncensored data sets were, of
necessity, chosen.

The method described below for estimating confidence intervals of popula-
tion parameters estimated from censored data requires three assumptions:



Table 4.--Rank correlations, r, between simulation RMSEs and verification

RMSEs for each rqr class

Parameter
Degree of censoring Standard Interquartile
(as percentage) Mean deviation Median range
20 0.90* 0.80* - -
(n=8) (n=8)
40 .90* o1 2% - 0.87*
(n=8) (n=8) (n=8)
60 .95% .58 0.55 .75%
(n=10) (n=10) (n=10) (n=10)
80 .60 .95% 0.40 .40
(n=4) (n=4) (n=4) (n=4)
all censoring levels .89% JJ1* .37 .63*
combined (n=30) (n=30) (n=14) (n=22)

* r is significantly different from 0.00 at o =0.05



1. The censored data are from a population that is equally likely to be
similar in shape to any 1 of 16 parent distributions used in the
simulation study.

2. The percentage of a data set that is censored equals the population
percentile associated with the value of the detection limit.

3. Relative errors in estimated population parameters, the error of an
estimate divided by the true value, can be approximated by a log-
normal distribution.

The first assumption is that the 16 parent distributions used in the simu-
lation studies appropriately represent the range and proportional contributions
of different types of distributions of actual trace-level water-quality data.
We feel confident that the range of possible shapes were included (see fig. 1,
Gilliom and Helsel, 1984). Though there is unresolvable uncertainty about
the true proportional representation of each type of distribution, the rqr
classification system reduces this potential effect on error estimates by
grouping data from similar distributions.

The assumption that the percentage of a data set that is censored equals
the population percentile of the detection limit is required in order to select
the proper RMSE and bias values from simulation results. The simulation results
are organized according to the population percentile representing the detection
limit. The percentage of a data set that is censored is a sample estimate of
the percentile of the detection 1imit, and its reliability is dependent primarily
on sample size.

The assumption that relative errors are lognormally distributed was made
because some probability distribution of errors must be specified to construct
confidence intervals tighter than those given by Chebysev's inequality. Boxplots
of errors suggested a lognormal distribution and such a distribution appeared
reasonable because the fractional error,

e = (x-¥lyy

has a lower bound of -1.0, while having no upper bound. The validity of the
assumed lognormal distribution of errors was directly tested by a simulation
experiment. Five hundred data sets of each sample size, n=10, n=25, and n=50,
were generated from each of the 16 parent distributions described by Gilliom
and Helsel (1984) and censored at the 20, 40, 60, and 80th population per-
centiles. Sample estimates for each data set at each censoring level were

made using the LR method for x and s and LM for m and iqr. Confidence intervals
for each estimate at o=0.05 were computed as described below, and the actual
frequencies with which the true population values fell within those intervals
were evaluated. Results in table 5, based on 1,000-2,000 data sets for most
combinations of censoring level, sample size, and rqr class, show that the
assumed lognormal distribution is generally a good approximation of the error
distribution. Only for the standard deviation for the lowest three rqr classes
at each censoring level and sample size is there a consistent tendency to
underestimate the width of the confidence intervals.

10
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Under the above assumptions, confidence intervals for estimates of the
mean, standard deviation, median, and interquartile range may all be similarly
estimated. Derivation of equations for confidence intervals are given below,
using the mean as an example.

The fractional errors for estimates of the mean

Xj-u

e =
u

where X; is the estimate of the mean for the ith data set and p is the true
population mean, are assumed to be lognormally distributed with mean g,
variance o, and Tower limit of -1.0. The expected value pg=E[e;]=b,

where b is the fractional bias of estimates from the censored samples of the
simulation study, is

Xi-u ///
N (3)
1

and N is the number of data sets used in the simulation. The variance o2 is
calculated as

o
1]
[ -4

02q = RMSE2-b? (4)

where RMSE values are again those from the simulation.

N Eﬁ-u 2
RMSEZ = § N
i=1 " (5)

The values of y;=In(ej+1.0) are normally distributed, with

O'Ze
02, = 1n (1.0 + (6)
y
(b+1)2
and
uy = 1n(b+1.0)-0.5 02y (7)

A (1-a) confidence interval for u is therefore given by

X o expl-uy-24/, oyl < u <X e expl-uy + 2o/, 9yl (8)

where z is the standard normal variate.
To calculate confidence intervals, uy and oy are obtained from (6) and

(7). The bias, b, from the simulation study is Teported in table 6. The error
variance o?, is calculated in (4) using both bias frém table 6 and RMSE from

12
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the simulation results reported in table 3. The smaller RMSEs following classi-
fication by rqr, as found in the simulation study, allow shorter confidence
intervals on parameter estimates than would be possible without rqr classifica-
tion. Equation 8 can be used for any of the four distributional parameters
estimated, with p and x replaced by the population parameter and sample estimate
for the standard deviation, median, or interquartile range.

The above procedure is illustrated by example in table 7, where a 95 percent
confidence interval for the mean is calculated. Note that neither the sample
size nor the percentage of the data censored exactly correspond to conditions
represented in tables 3 and 6. This will usually be the case. One can use
the RMSE and bias values for the closest censoring and sample size represented
in the table, interpolate, or choose conservatively high RMSEs by using values
for the next highest censoring level and next smallest sample size.

SAMPLE STATISTICS: ESTIMATION AND CONFIDENCE INTERVALS
For some applications, estimates of sample statistics rather than popula-
tion parameters might be desired from censored data. Uncensored water-quality

data are summarized by their sample statistics, and comparisons between these
data and censored data should be on an equal basis.

New Simulation Study

To determine how well the eight methods evaluated by Gilliom and Helsel
(1985) estimate sample statistics, a new simulation study was performed.
Distributional shapes and other criteria are identical to the previous simulation
study. However, RMSEs and bias were calculated (using the mean for example) as:

0.5
RMSE

T

'i=1 Xo

.)?-i - -)?o
bias — N
i=1 X0

where ?b is the sample mean for the uncensored data set (replacing u), and the
other parameters are as previously given. Censoring was at the 20, 40, 60, and
80th percentiles of each simulated sample (type Il censoring), as opposed to
percentiles of the parent population in the first simulation study (type I
censoring). This was to facilitate comparison with the verification results.

[}
e~z

Best methods for the moment and percentile parameters in this new simulation
study were LR and LM, respectively, based on the sum of method rankings over
all censoring levels. The overall best method was LR. Best performing methods
for estimating sample statistics were thus identical to those for estimating
population parameters. However, the magnitudes of RMSEs differ from those
for population parameters. RMSEs of sample estimates in table 8 can be compared
to those of the n=10 and n=25 population parameters presented above the slashes
in table 3. RMSEs are generally smaller when estimating sample statistics.
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Table 7.--Calculation of 1-a confidence interval (a=0.05) for estimate of the
mean from censored data.

Data Set: ND, ND, ND, ND, ND, 6, 6, 6, 8, 10, 10, 10, 11, 20

Detection Limit = 5.0 n=14
% Censoring = 36%
10.5 - 6
= 0.90

rqr

Estimates using LR method: mean = 7.42
std., dev. = 4.66

40%, LR method,
- .04

From tables 3 and 6 for n
RMSE

10, % cens.
0.30 bias

0Ze = 0.088 o2y = 0.092 uy = -0.087

7.42 « exp[+.087-(1.96)(.303)] < u < 7.42 + exp[.087+(1.96)(.303)]
4.47 < u < 14.64
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Table 8.--RMSEs of best estimation methods (LR for X, s; LM for m, iqr) when
classified by rqr, as percentage of uncensored sample estimate

20 percent 40 percent 60 percent 80 percent
censoring censoring censoring censoring
X s | m igr X s | m dgrlx s | m igr X s | m igr
rqr<0.47 rqr<0.35 rqr<0.25 rqr<0.16
n=10 4 25| - - 7 31| - 38 |14 44| 10 46| * * | * «x
n=25 4 27 - - 5 29 - 28 8 35 5 36 21 39 66 50
n=50 3 28 - - 4 31 - 21 6 35 3 27 11 40 14 34
rqr=0.47-1.2 rqr=0.35-0.84 rqr=0.25-0.60 rqr=0.16-0.41
n=10 3 10 - - 7 14 - 22 15 27 16 43 * % * *
n=25 2 7 - - 5 10 - 17 10 18 12 42 24 25 | 130 61
n=60 2 6 - - 4 8 - 13 8 17 7 34 16 23 28 50
rqr=1.2-3.8 rqr=0.84-2.1 rqr=0.60-1.4 rqr=0,41-0.92
n=10 3 5 - - 6 8 - 18 14 14 54 43 * X * *
n=25 2 3 - - 4 5 - 11 10 9 26 27 23 19 ) 180 66
n=60 1 2 - - 3 4 - 8 7 6 13 16 19 17 73 47
rqr>3.8 rqr>2.1 rqr=1.4-3.7 rqr>0.92
n=10 2 2 - - 4 3 - 12 11 7 | 380 30 *x X * *
n=25 1 1 - - 3 2 - 7 7 4 44 14 18 6 170 38
n=60 1 1 - - 2 2 - 5 6 3 27 10 16 5 150 20
rqr>3.7
n=10 7 31290 27 *Only 2 samples
n=25 5 2 92 11 remain after
n=50 5 2 64 7 censoring
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Therefore, confidence intervals around the LR or LM estimate are smalier for
inclusion of the uncensored sample statistic as compared to the population
parameter. RMSEs for the moment sample statistics decrease with increasing rqr
class, the opposite trend from that of the population parameters. This is due
to the greater influence of the higher observations on the sample mean and
standard deviation. These higher observations remain after censoring, pro-
ducing a more accurately estimated sample statistic while indicating much less
about the population parameter. Confidence intervals for sample statistics

can be computed using the same relationships given for population parameters,
but using the RMSEs in table 8 and the bias results in table 9.

Verification of Sample Statistic Estimates

To verify the new simulation results, uncensored trace metal data sets
from the NASQAN network were censored (type II) at the 20, 40, 60, and 80th
sample percentiles and errors were calculated by comparison to the uncensored
sample estimates. Table 10 lists the water-quality parameters chosen and the
number of data sets for each. Sample sizes ranged from 10 to 40 observations.
Eleven other trace constituents had no data sets which contained only uncensored
observations and were not used. In order to obtain a larger number of data
sets, iron and manganese data were included even though they are not usually
found at “trace" levels.

Trace metal data sets containing 10 to 20 observations were combined into
one group, representing sample sizes generally comparable to n=10 simulation
results. Data sets having fewer than three data points after censoring were
deleted. A second group of data sets having from 21 to 40 observations was
formed for comparison to n=25 simulation results. The eight estimation methods
were applied to this data. Again, LR proved the best overall method. LR was
best for the moment parameters and LM was best for the percentile parameters,
based on the rank criteria given previously.

RMSEs are presented by rqr class in table 11. Comparison of tables 8
and 11 indicate again that simulation results produced RMSEs similar to those
for actual trace water-quality data. Only median estimates for 60 and 80
percent censoring appear different, with simulation RMSEs higher than actual.
This is perhaps due to the inclusion of larger sample sizes in the actual trace-
data estimates, with the simulation results representing conservative error
estimates based only on n=10 or n=25,

SUMMARY AND CONCLUSIONS

The eight methods for estimating population parameters from censored data
sets evaluated by Gilliom and Helsel (1984) were applied to uncensored suspended
sediment and nutrient data having large sample sizes (n>50). Selection of the
estimation method that was best overall, best for moment and percentile parameters
separately, and best within every rqr class exactly follows those of the simula-
tion study. The log regression method (LR) produced lowest RMSEs for the
moment parameters. RMSEs are similarly affected by rqr classification in both
studies for the mean, standard deviation, and interquartile range, verifying
the effectiveness of rqr in separating distributions which produce like errors.
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Table 9.--Bias when estimating sample statistics, as percentage of
sample estimate

the

uncensored

Method

n=10
n=25
n=50

n=10
n=25
n=50

n=10
n=25
n=50

n=10
n=25
n=50

X

O = = b e e e b

(=N e e

20 percent
censoring

S ! m igr

LR ‘ -
rqr<0.47
-9

-11
-12

qu=0.47-1.2

X

O N QO™

—

40 percent
censoring

S m iqr
LR LM
rqr<0.35
- 4

-9
- 6

-11
-9
-10

rqr=0.35-0.84

- 0
- 3

-4
-2
2] - 1

rqr=0.84-2.1

2
1
1

n=10
n=25
n=50

X

N O W =N~

[

1
3

60 percent
censoring
S m igr
LR LM
rqr<0.25
-23 4 -16
-14 1 3
-16 0 1

rqr=0025‘0060

0
1
3

5
2
0

rqr=0.60-1.4

01} 11
-1 3
-1 3 -

qu=1.4—3.7

2121

0 6

0 5

rqr>3.7

1| 37

0} 58
-14)32 -

6
9
10

- 00N

[==2N$ ) o)

80 percent
censoring

X s m

*

o~

*

- W

-2
-1

-6
-1

LR LM

rqr<0.16

*

-18
=27

*

17
5

*

rqr=0.16-0.41

*

2
5

*

28
6

*

FqP=0.41—0.92

* *
51 40
3117
rqr>0.92
* *
2 | 44
01 41

*

*

* only 2 samples

remain after
censoring

iqr

6
13

14
12

21
10

16
3
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Table 10.--Trace constituents used to estimate sample statistics

Parameter

arsenic

dissolved arsenic

barium

boron
dissolved boron

copper
dissolved copper

Tead

nickel

zinc
dissolved zinc

iron
dissolved iron

manganese

dissolved manganese

Number of data sets

n=10-20

7
3
5
11
19

12

11

n=21-40

100
63

13

17

32

273

68

180
15
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Table 11.--RMSEs of best estimation methods (LR for X, s; LM for m, iqr) for trace
data, in percent of uncensored sample estimate

20 percent 40 percent 60 percent 80 percent
censoring censoring censoring censoring
X s | m digr{x s |m dgr| X s |m igr X s | m igr
rqr<0.47 rqr<0.35 rqr<0.25 rqr<0.16
n=10-20 4 23 - - 9 31 - 57 15 39 10 73 30 53 32 55
n=21-40 2 10 - - 5 15 - 44 12 24 16 43 23 28 73 45
rqr=0.47-1.2 rqr=0.35-0.84 rqr=0.25-0.60 rqr=0.16-0.41
n=10-20 3 8 - - 7 13 - 23 11 15 14 29 15 16 40 37
n=21-40 2 5 - - 5 9 - 25 10 12 12 45 21 17 63 51
qu=1.2-3.8 "qr=0.84-2.1 rqr=0060‘104 V‘qr=0.41-0.92
n=10-20 3 6 - - 6 8 - 1 12 12 16 16 20 20 34 51
n=21-40 2 3 - - 5 5 - 17 10 8 17 30 22 13 47 41
rqr>3.8 rqr>2.1 rqr=1.4-3.7 rqr>0.92
n=10-20 1 1 - - 4 3 - 9 7 6 11 21 28 9 86 99
n=21-40 1 1 - - 3 2 - 14 9 5 24 30 22 8 | 150 72
rqr>3.7
n=10-20 6 2 28 39
n=21-40 6 2 52 25
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The differences in RMSEs for the median are attributed to the presence of high
cv gamma distributions in the simulation study whose equivalent in the verifica-
tion data, if originally present, may have contained censored values and would
have therefore been excluded.

Confidence intervals for parameter estimates can be estimated using RMSE
and bias results from the simulation study. Fracticnal errors (estimate error
divided by the true value) are assumed to be lognormally distributed. Simulation
experiments showed that the assumption is a good approximation for all parameters
except the standard deviation for data sets with low rqr values, for which the
widths of confidence intervals were slightly underestimated. The increased
accuracy of RMSE estimates after rqr classification allow shorter confidence
intervals to be constructed than would be possible without classification.

Errors in estimating statistics of uncensored samples rather than popula-
tion parameters were also evaluated. Best methods for estimating sample
statistics were LR and LM, respectively, for the moment and percentile para-
meters. RMSEs were almost always smaller when estimating sample statistics
than for population parameters (LM median estimates occasionally have greater
RMSEs), and were sometimes much smaller. Therefore, estimates of uncensored
sample statistics are identical to those of population parameters, but have
shorter confidence intervals.

The results of the present study and the companion study by Gilliom and
Helsel (1984) form the basis for making the best possible estimates of either
population parameters or sample statisics from censored water-quality data.
Moreover, they provide the means for making quantitative assessments of the
reliability of those estimates, expressed as confidence bounds. The LR method
for moment parameters and LM method for percentile parameters should be the
methods of choice when estimating distributicnal parameters for censored trace-
level water-quality data.
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