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ABSTRACT

The BASIC computer program, DIFDEC2, is general enough to apply to many 
common geological occurrences involving two diffusing and reacting 
components. The program simulates the following situation: chemical 
component u is produced by a chemical reaction or radioactive decay in a 
tabular layer. It simultaneously diffuses out of the layer and reacts or
decays to a second component, v, which itself diffuses away from the layer.ooo /^A ??2 
It has been used to describe the production of Rn from U and Rn's
simultaneous diffusion and decay to a second diffusing component Pb. The 
program uses the Crank-Nicholson finite-difference technique and consequently 
is stable for a wide range of values of diffusion coefficients and reaction 
constants. Optimum accuracy and computing time can be achieved by adjusting 
space and time increments. The applications are as numerous as the geological 
situations.

INTRODUCTION

Most geological processes involving diffusion and reaction are so complex 
that analytical solutions cannot represent them realistically. There are, for 
example, analytical solutions to simultaneous diffusion and first order 
reaction of one component for various idealized geometries and boundary 
conditions, but add another component or change the order of the reaction and 
one quickly faces an intractable problem. However, finite-difference methods 
can solve a wide range of complex problems if certain precautions are taken to 
assure numerical stability and accuracy.

The program described here solves the general problem of one chemical 
component (u) being produced in a reaction, diffusing away from its source and 
simultaneously reacting to a second chemical component (v) that also diffuses 
away. The name of the program is DIFDEC2, for DIFfusion and DECay of 2 
components. The present program was used by K. R. Ludwig (personal 
communication) to determine the relative diffusion coefficients of Rn and Pb. 
because the radioactive decay constants are well known. In this example, U 
in a strataform, tabular layer decays and produces ~~ Rn, which simultaneously 
diffuses away from the source layer and decays to Pb, which itself diffuses 
away from the layer. Alternatively, if diffusion coefficients are well known 
for two reacting species, then the reaction rate constants might be 
estimated. Another type of situation in which this program applies is to 
chemical reaction of species in solution. For example, a bed of limestone 
dissolves, producing Ca in solution. The Ca ions migrate and 
simultaneously cause a second dissolved species to precipitate. Oxidation- 
reduction reactions can also be modeled with this program. For example, Fe 
is leached from an oxidized bed and diffuses away while also being reduced to 
Fe by organic matter in an adjacent bed.

The following restrictions are assumed: 1) the two separate reactions 
(that produce u and v, respectively) are first order (like radioactive decay), 
i.e., the rate of reaction is proportional to the amount of reactant present; 
2) the tabular layer is much wider than it is thick; 3) diffusion coefficients 
are constant with time and distance; 4) the reaction constants are constant 
with time and distance; and 5) there are, at most, 103 space grid points. The



program can be modified to allow for variation of any of these conditions 
without any change in the basic method of solution. All that is required is a 
knowledge of BASIC programming. The only major restriction imposed by the 
method of solution is that the rate of diffusion not be very small compared to 
the rate of reaction. This point is explained below.

Advantages of the present program are: 1) capability to solve for two 
related components; 2) capacity to deal with two simultaneous reactions with 
coupled diffusion; 3) provision for either finite diffusion boundaries or 
virtually unlimited diffusion fields; 4) superior stability, speed, and 
efficiency of the second-order correct Crank-Nicholson method; 5) ease by 
which the program can be modified by anyone familiar with the BASIC language 
and; 6) flexibility allowed by provisions for changing the time and distance 
increments to achieve the desired accuracy in the shortest amount of computing 
time.

SAMPLE PROBLEM AND SOLUTION

To illustrate the use of this program, a sample run is given here (table 
1). In this example we want to solve for the concentrations of Rn and 
206Pb as a function of distance and time. Our diffusion field is the distance 
(x) from the center of the uranium-bearing layer (at x=0) to the center of the 
uranium-free layer (at x=Q). Thus the diffusion field has length Q. The 
half-thickness of the uranium-rich layer is P. As in any finite-difference 
solution, we solve for the desired values at discrete points in space and 
time. In this example, the number of space grid points, R, is equal to 13. 
Grid point 2 is at x=0, and grid point 12 is at x=Q. Points 1 and 13 are 
fictitious points outside of the physical diffusion field and are only used 
for computational purposes. Thus, points 2 through 12 represent the physical 
diffusion field, which is therefore divided into 10 increments having 
length AX = P/10. The program automatically sets the size of the first time 
increment, but the user can cause the increment to increase at different rates 
by adjusting Tl. At each new time step the time increment is multiplied by 
Tl. For example, setting Tl = 1.5 makes the time increment increase by 50 
percent each step. In this problem we wish to see the concentration profiles 
corresponding to 100 m.y. of diffusion and reaction. Therefore, we set the
time limit T2 = 10 yrs. In other problems we might want to cut off the 
calculations after a certain number of time steps, T3, regardless of the total 
time elapsed.

999
The governing equation for Rn is:

9 999 _i f

222Rnl - D * r ?n] . T 238U 1 x e 238 i T 222Rnl Knj - u + L UJ xe -\ L KnJ. dt - Rn ^ Q 238
9X

and that for 206Pb is:

9X

where [ Rn] and [ Pb] are the concentrations to be solved for, DRn and Dpb



are diffusion coefficients, [238Un ] is the initial concentration of 238U,
238 222 and x23g and x^oo are decay constants of U and Rn, respectively. The

following values were assigned:

DRn = 100 cm2 /yr, Dpb = 10"8 cm2/yr, X238 = 0.155125 x 10~9/yr, 

X 222 = 67/yr, and C 238U Q] = 10 14 .

Sample output is shown in table 1. Concentration profiles are shown for 
the first and last time steps. For the final time step, the number of the 
step and the total elapsed time is shown. Below this line are four columns 
showing the space grid-point number, the distance (x) from the origin (at the 
center of the uranium-rich layer), the concentration of component u (which

ppp J ' * ?fln
here is [ Rn]), and the concentration of component v, [ Pb].

This calculation was designed to estimate the relative effective 
diffusion rates of Rn and Pb, which we can do because we know the decay
constants, Xp- ft and *ppp Here we ^ nd tnat tne diffusion coefficient of 
"^Rn must be about ten orders of magnitude larger than the Pb diffusion 
coefficient in order for the diffusion of Rn to have any effect on the

Pb concentration profile. This suggests either that Pb is quickly 
immobilized by a precipitation reaction or that diffusion of Pb IS by a 
much slower mechanism (perhaps solid-state diffusion) than that of Rn. 
Further results of numerical experiments wil be discussed in detail by K. R. 
Ludwig (personal communication).

PROGRAM DESCRIPTION

The solution of equations (1) and (2) by the program DIFDEC2 is now 
described in detail. The program is listed in table 2. Equations (1) and 
(2) take the general form: 

, 2
^ = D5 -^ + E(t) - L5 u (3) QL 9X^ 

and

dv = D6 A+L5u, (4) 
01 zx

where D5 and D6 are the diffusion coefficients of u and v, respectively, E(t) 
is the rate of the reaction that produces u, and L5 is the decay constant for 
the reaction of u to v. The terms in (3) and (4) are now replaced by second- 
order correct Crank-Nicholson finite-difference approximations (von Rosenberg, 
1975, p. 22 ff. ). These are, for u:

n+1 n u i - u i
At



and

a 2u\" + I

4 '
r- 11 "1! Ul  

1

2

* -!

" n+1 _

-6t^

o n+1 j.  2u i +
(AX) 2

n+1 n 0 nu i-i , «i+i - 2u i +
(AX) 2

n 
u. ,"1

At

At
_e-L6t n+1 + e-L6t"

(6)

(7)

(8)

where i is the number of the current space grid-point, n is the number of the 
current time step and Ul is the initial concentration of the species that 
decays to u. Equations (5) to (8) for v are identical but with v instead of 
u.

Substituting (5), (6), (7), and (8) into (3) yields:

n+1 n u . -u. i i
At

D5

2
i

r n+iu i+l o n+1 - 2u, -

(AX) 2

n+1 
hU1-l

!

n, Ui+1 -^
(AX) 2

"?-l

-

JL5_ , n+1 + n 
2 \ i u i (9)

Multiplying equation 9 through" by '2At(Ax) and rearranging so that all the 
unknown terms containing u are on the left, and all the known terms are on 
the right, yields:

-D5 At u + [2(AX) 2 + 2D5At + At(Ax) 2L5] u

" -x + [2(AX) 2 - 2D5At - At(Ax) 2 L5] u" 

1

(10)

This is in ditridiagonal form. Comparison with equations in von Rosenberg 
(1975, p. 116), reproduced here as table 3, shows that

= -D5 At - 0

b
(l\ 9 2 

* = 2(Ax) + 2D5At + At(Ax) L5 b{ 2 >- 0 (U)

c 1 ' = -D5it



" ,+ [2(Ax) 2 - 2D5At - At(Ax) 2 L5]u? + D5Atu?+ .+ 2At(Ax) 2 E. 2 .

Now, substituting (5), (6), (7), and (8), with u replaced by v, into (4), we 
have:

v i - vi D6
At

.n+l 0 n+1 . n+1

(AX)
2

+
L5 , n+1 n

Again, multiplying equation (12) through by 2At(Ax) and rearranging so that 
v and u terms are on the left and known terms on the right, like we did 
for equation 9, yields:

- At(Ax) 2L5u"+1 + [2(AX) 2+ 2D6At]v"+1 -

1 + At(Ax) 2 L5u"+ [2(Ax) 2 - 2D6At]v"+ D6Atv"+r (13) 

Comparison with von Rosenberg (table 3) shows that:

a} 3 ' - 0 aj 4 > = -D6At

b| 3) = -At(Ax) 2 L5 bj 4) = 2(Ax) 2 + 2D6At (14)

= 0 c { 4 >- -D6At 

= D6Atv"_j+ At(Ax) 2L5u% [2(Ax) 2 - 2D6At]v%

So far we have put equations "(3) and (4) into ditri diagonal form. Now we 
incorporate the boundary conditions into the ditridiagonal matrix. Equations 
(3) and (4) are evaluated at the space grid points 2 through R-l, where R is 
the total number of space grid points. The boundary conditions are 
represented by equations corresponding to points 1 and R, which lie outside 
the physical limits of the diffusion field and are only for the purpose of 
calculating the concentration gradients at the physical end points, 2 and 
R-l. The condition of no flow across the boundaries is represented by:

   = 0 and    = 0 at x=0 and x=Q. (15)
O *\ 0 /\

Substituting the second-order correct Crank-Nicholson approximations,

u\ u i+r.Vi . /!v\
ax). * 2Zx ana bxy. * 

for i=2 and i=R-l, yields:

u l = U3' vl = V3* ( 16a ) 

u R-2 = U R» and v R-2 = V R-



These are not in ditridiagonal form. To fix them we eliminate uo and Vo from 
(16a) by linear combination with von Rosenberg's first and second equations 
(table 3) for i=2 and i=R-l. For i=2, the first equation becomes:

(17) 

Substituting (16a) and eliminating Uo and v3 yields:

[a2 (1) + c2 (1) ]u 1 + [a 2 ( 2 ) + c^ 2^ + b 

Now this is in ditridiagonal form, viz.,

Substitute (16b) and eliminate uR _ 2 and

This is in ditridiagonal form,- viz. ,

.(!)_ b (D a (2). b (2) b (l)_ (1)+ (1) b (2)_ (2) (2) aR ~ DR-1' 3 R ~ DR-1' DR " aR-l CR-1' DR " aR-l CR-1'

CjOU^D, Cl ( 2 U2 ( 2 ), and d^J-dgW. (19) 

Similarly for von Rosenberg's second equation,

ai (3).0 . ai ( 4 )=0, b 1 ( 3 )=a 2 ( 3 Uc2 ( 3 ), b 1 ( 4 )=a 2 ( 4 )«2 ( 4 ),

Cl (3).b2 (3), Cl ( 4 )=b2 ( 4 ), and dl ( 2 )=d 2 ( 2 ). (20) 

Now for i=R-l, the first equation (table 3) becomes:

-O. c= 0, and d<Jl d K (23)

Similarly for i=R-l in von Rosenberg's second equation:

,(3)_ b (3) (4). b (4) b {3)_ (3) + (3) b (4). (4) (4) 
aR ' DR-1' aR ' DR-1' DR aR-l CR-1' DR aR-l CR-1'

- 0, c= 0, and d?- d (24)

For a virtually infinite diffusion field, instead of finite no-flow 
boundaries, simply set the length of the diffusion field large enough so that 
the last few grid points at the ends are unaffected by diffusion in the time 
of the simulation.

Now we have everything in ditridiagonal form and we can solve using the 
algorithm of von Rosenberg (table 3).



For initial conditions, we set all u^ and v^ equal to zero. The initial 
concentration of the u-producing component is Ul for x<P, 0. 5U1 for x=P, and 0 
for x>P. Values of Ul at each grid point, i, can be assigned using the SGN 
function (for x<0, SGN(x)=-l; for x=0, SGN(x)=0; and for x>0, SGN(x)=l),

Ulj = Ul[l-SGN(xrP)]/2.

It may be noted in the program that a factor of 10 Ul is added to this 
term. This number is negligible compared to the actual concentrations, but it 
helps to avoid truncation errors that result in numerical underflow and 
apparent negative concentrations.

The number of grid points input by the user can be adjusted to yield the 
desired accuracy. The closer the grid points, the better the 
approximations. However, this factor must be balanced by the increased 
computing time and the possibility of roundoff errors or numerical underflow.

The output shows the maximum roundoff error for the current time step as 
an aid in judging this contribution to the total error. This roundoff error 
is computed by plugging the calculated values of u^ n and v^ n back into the 
starting equations (9) and (12). The deviation from equality is the roundoff 
error. This is calculated for each space grid point, but only the largest 
value is printed out. Thus the user can decide for himself if the roundoff 
error is acceptably small relative to the computed values of u or v. Many 
BASIC compilers indicate underflow by an error message. On some computers 
using particular combinations of input parameters, roundoff errors may result 
in apparent negative concentrations. Because this is a clear indication of a 
numerical problem, the program is designed to terminate computing if a 
negative concentration appears. The Data General Eclipse computer used by the 
author carries 14 significant digits; a computer carrying fewer significant 
digits may have larger roundoff errors. (Use of this trade name is for 
identification purposes only and is not to imply any endorsement by the U.S. 
Geological Survey).

In practice, between 10 and 100 space grid points usually give acceptable 
results. It is convenient to make the total number of grid points equal to a 
nice round number (e.g., 10 or 100) plus 3 so that AX is a nice fraction 
(e.g., 1/10 or 1/100) of the total length (Q). If more than 103 grid points 
are used, this number in the DIMENSION statements must be changed to the 
appropriate number.

The initial time step is computed by:
AX At =

where D7 is the larger of the two diffusion coefficients, D5 or D6. This is 
the relationship that ensures stability for forward- and backward-finite- 
difference methods. Although unnecessary to ensure stabilty for the Crank- 
Nicholson method, which is stable for all combinations of AX and At, it is a 
convenient size for the initial time step. The increase in this increment is 
determined by Tl, input by the user. As with space grid points, smaller 
increments yield greater accuracy but longer computing time and possible 
numerical errors that the user must be aware of. In practice, a value of Tl 
that yields about 50 time steps gives more than sufficient accuracy in a 
reasonable length of computing time.



On a Data General Eclipse minicomputer, computing time was about 0.16 sec 
for one space grid-point per time step.

Problems may arise if the diffusion coefficients are so small or the 
reaction rates so large that the terms in equations (3) and (4) containing 
second derivatives are much smaller than the reaction or decay terms. Because 
the concentrations in such cases are essentially only dependent on time and 
not distance, equations without the second derivative term are more 
appropriate. For example, Wasserburg (1954) and Tilton (1960) give analytical 
solutions to this problem.

Variables used in the program are defined in tables 4 and 5.
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Table 1. Sample run of DIFDEC2.

* RUN
DO YOU WANT A LIST OF VARIABLES ? YES
D5 DIFFUSION COEFICIENT OFU
D6 DIFFUSION COEFFICIENT OFV
Ul INITIAL CONCENTRATION OF COMPONENT REACTING TO U
L5 DECAY CONSTANT OFU
L6 DECAY CONSTANT OF REACTION PRODUCING U
P 1/2 WIDTH OF REACTING LAYER
0 TOTAL LENGTH OF DIFFUSION FIELD
R TOTAL NUMBER OF SPACE GRID POINTS
Tl TIME INCREMENT MULTIPIED BY THIS AMOUNT EACH STEP
T2 TOTAL TIME ALLOWED FOR SIMULATION
T3 TOTAL NUMBER OF TIME STEPS ALLOWED

DEFAULT VALUES

D5
10000

P 0 R
50 100 13

D6
.00000001

Tl T2
1.5 1E+08

Ul
1E+12

T3
100

L5
66.6242 1

L6
.55125E-10

NAME OF PARAMETER TO CHANGE ? T3
NEW VALUE OF T3 ? 1000
NAME OF PARAMETER TO CHANGE ?
time step =
i

1
2
3
4
5
6
7
8
9
10
11
12
13

MAX ROUNDOFF
time step =
i

1
2
3
4
5
6
7
8
9
10
11
12
13

MAX ROUNDOFF

1
X
-10
0
10
20
30
40
50
60
70
80
90
100
110

ERROR IN U=
57
X
-10
0
10
20
30
40
50
60
70
80
90
100
110

ERROR IN U=

time = .005
u
.66469279
.66482519
.66469279
.6636778
.65704405 '
.61383685
.33244097
5.1045079E-02
7.8378813E-03
1.204131E-03
1.8914427E-04
5.6747361E-05
1.8914427E-04

V

.11027527

.11073362

.11071156
,11054251
.10943759
.10224097
.5.5371534E-02

8
1

2.0056066E-04
3
9
3

.5020939E-03

.3054814E-03

.1503964E-05

.4518688E-06

.1502296E-05
0 IN V= 2.4424907E-15

time = 1E+08
u
2.2351459
2.2495003
2.2351459
2.1826267
2.0568906
1.7742087
1.1462363
.51826398
.2355821
.10984595
5.7326715E-02
4.2972365E-02
5.7326715E-02

2.4414063E-04 IN

V

1.500654E+10
1.5103062E+10
1.500654E+10
1.4652667E+10
1.3805676E+10
1.1901356E+10
7.6964067E+09
3.4914579E4O9
1.587137E+09
7.4014679E+08

3
2
3

V= 2.4424907E-15

.8627321E+08

.8975105E+08

.862732 1E+08

END AT 2020



Table 2. Listing of DIFDEC2.

* LIST
0100 PRINT "DO YOU WANT A LIST OF VARIABLES"; '
0110 INPUT L$
0120 IF L$O"YES" THEN GOTO 0250
0130 PRINT "D5 DIFFUSION COEFICIENT OF U"
0140 PRINT "D6 DIFFUSION COEFFICIENT OF V"
0150 PRINT "Ul INITIAL CONCENTRATION OF COMPONENT REACTING TO U"
0160 PRINT "L5 DECAY CONSTANT OF U"
0170 PRINT "L6 DECAY CONSTANT OF REACTION PRODUCING U"
0180 PRINT "P 1/2 WIDTH OF REACTING LAYER"
0190 PRINT "Q TOTAL LENGTH OF DIFFUSION FIELD"
0200 PRINT "R TOTAL NUMBER OF SPACE GRID POINTS"
0210 PRINT "Tl TIME INCREMENT MULTIPIED BY THIS AMOUNT EACH STEP"
0220 PRINT "T2 TOTAL TIME ALLOWED FOR SIMULATION"
0230 PRINT "T3 TOTAL NUMBER OF TIME STEPS ALLOWED"
0240 PRINT
0250 DIM U(103),V(103),U1(103),A1(103),A2(103),A3(103),A4(103),B1(103)
0260 DIM B2(103),B3(103),B4(103),Cl(103),C2(103),C3(103),C4(103),Dl(103)
0270 DIM D2(103),L1(103), 12(103),L3(103),L4(103),G1(103),G2(103)
0280 DIM G3(103),G4(104)
0290 DIM U9(103),V9(103)
0300 REM
0310 REM INITIALIZATION
0320 REM
0330 READ D5,D6,U1,L5,L6,P,Q,R,T1,T2,T3
0340 DATA 10000,.00000001,1000000000000,66.6242,1.55125E-10,50
0350 DATA 100,13,1.5,100000000,100
0360 PRINT "DEFAULT VALUES"
0365 PRINT
0370 PRINT " D5"," D6"," Ul"," L5"," L6"
0380 PRINT D5,D6,U1,L5,L6
0385 PRINT
0390 PRINT" P ";" Q ";" R ";" Tl ";" T2 ";" T3
0400 PRINT P;Q;R;T1;T2;T3
0405 PRINT
0410 PRINT "NAME OF PARAMETER TO CHANGE";
0420 INPUT N$ K
0430 IF N$="" THEN GOTO 0570
0440 PRINT "NEW VALUE OF ";N$;
0450 IF N$="D5" THEN INPUT D5
0460 IF N$="D6" THEN INPUT D6
0470 IF N$="U1" THEN INPUT Ul
0480 IF N$="L5" THEN INPUT L5
0490 IF N$="L6" THEN INPUT L6
0500 IF N$="P" THEN INPUT P
0510 IF N$="Q" THEN INPUT Q
0520 IF N$="R" THEN INPUT R
0530 IF N$="T1" THEN INPUT Tl
0540 IF N$="T2" THEN INPUT T2
0550 IF N$="T3" THEN INPUT T3
0560 GOTO 0410
0570 LET XO=Q/(R-3)
0580 FOR 1=1 TO R
0590 LET U(I)=0
0600 LET V(I)=0
0610 LET X=(I-2)*XO

10



Table 2 con't.

0620 LET Ul(I)-Ul*(l-SGN(X-P))/2+.000000001*Ul
0630 NEXT I
0640 LET X2=XO*XO
0650 LET D7-D5
0660 IF D6>D5 THEN LET D7-D6
0670 LET T»0
0680 LET TO-.5*X2/D7/T1
0690 LET Sl-0
0700 REM
0710 REM BEGIN MAIN LOOP
0720 REM
0730 LET S1=S1+1
0740 LET T4=T
0750 LET TO=TO*T1
0760 LET T=T+TO
0770 IF T>T2 THEN LET T=T2
0780 IF T=T2 THEN LET TO-T-T4
0790 REM
0800 REM ASSIGN DITRIDIAGONAL COEFFICIENTS
0810 REM FIRST FOR I = 2 THROUGH R-l
0820 REM
0830 REM for 1=2 through r-1
0840 FOR 1=2 TO R-l
0850 LET A1(I)=-D5*TO
0860 LET A2(I)=0
0870 LET B1(I)=2*X2+2*D5*TO+TO*X2*L5
0880 LET B2(I)=0
0890 LET C1(I)=-D5*TO
0900 LET C2(I)=0
0910 LET E=Ul(I)*L6*(EXP(-L6*T)+EXP(-L6*T4))/2
0920 LET D1(I)=D5*TO*U( !-!)+( 2*X2-2*p5*TO-TO*X2*L5)*U{ I)
0930 LET D1(I)=D1(I)+D5*TO*U(I+1>+2*TO*X2*E
0940 LET A3(I)=0
0950 LET A4(I)=-D6*TO
0960 LET B3(I)=-TO*X2*L5
0970 LET B4(I)=2*X2+2*D6*TO
0980 LET C3(I)=0
0990 LET C4(I)=-D6*TO
1000 LET D2( I) = D6*TO*V( I-1)+TO*X2*L5*U( I)+(2*X2-2*D6*TO)*V( I)+D6*TO*V( I-fl)
1010 NEXT I
1020 REM
1030 REM NOW FOR I = 1
1040 REM
1050 LET Al(l)=0
1060 LET A2(l)=0
1070 LET B1(1)=A1(2)+C1(2)
1080 LET B2(1)=A2(2)+C2(2)
1090 LET C1(1)=B1(2) v
1100 LET C2(1)=B2(2)
1110 LET D1(1)=D1(2)
1120 LET A3(l)=0
1130 LET A4(l)=0
1140 LET B3(1)=A3(2)+C3(2)
1150 LET B4(1)=A4(2)+C4(2)
1160 LET C3(1)=B3(2)
1170 LET C4(1)=B4(2)

11



Table 2 con't.

1180 LET D2(1)-D2(2)
1190 REM
1200 REM AND NOW FOR I - R
1210 REM
1220 LET A1(R)-B1(R-1)
1230 LET A2(R)-B2(R-1)
1240 LET B1(R)»A1(R-1)+C1(R-1)
1250 LET B2(R)«A2(R-1)+C2(R-1)
1260 LET C1(R)-0
1270 LET C2(R)-0
1280 LET D1(R)«D1(R-1)
1290 LET A3(R)=B3(R-1)
1300 LET A4(R)=B4(R-1)
1310 LET B3(R)=A3(R-1)+C3(R-1)
1320 LET B4(R)=A4(R-1)+C4(R-1)
1330 LET C3(R)-0
1340 LET C4(R)=0
1350 LET D2(R)=D2(R-1)
1360 REM
1370 REM SOLVE USING ALGORITHM, FORWARD STEPS FIRST
1380 REM
1390 LET M1=B1(1)*B4(1)-B2(1)*B3(1)
1400 LET L1(1)=(B4(1)*C1(1)-B2(1)*C3(1))/M1
1410 LET L2(1)=(B4(1)*C2(1)-B2(1)*C4(1))/M1
1420 LET L3(1)=(B1(1)*C3(1)-B3(1)*C1(1))/M1
1430 LET L4(1)=(B1(1)*C4(1)-B3(1)*C2(1))/M1
1440 LET G1(1)=(B4(1)*D1(1)-B2(1)*D2(1))/M1
1450 LET G2(1)=(B1(1)*D2(1)-B3(1)*D1(1))/M1
1460 FOR 1=2 TO R
1470 LET E1=B1(I)-A1(I)*L1(I-1)-A2(I)*L3(I-1)
1480 LET E2=B2(I)-A1(I)*L2(I-1)-A2(I)*L4(I-1)
1490 LET E3=B3(I)-A3(I)*L1(I-1)-A4(I)*L3(I-1)
1500 LET E4=B4(I)-A3(I)*L2(I-1)-A4(I)*L4(I-1)
1510 LET W1 = D1(I)-A1(I)*G1(I-1)-A2(I)*G2(I-1)
1520 LET W2=D2(I)-A3(I)*G1(I-1)-A4(I)*G2(I-1)
1530 LET M1=E1*E4-E2*E3
1540 LET L1(I)=(E4*C1(I)-E2*C3(I))/M1
1550 LET L2(I)=(E4*C2(I)-E2*C4(I))/M1
1560 LET L3(I)=(E1*C3(I)-E3*C1(I))/M1
1570 LET L4(I)=(E1*C4(I)-E3*C2(I))/M1
1580 LET G1(I) = (E4*W1-E2*W2)/M1
1590 LET G2(I)=(E1*W2-E3*W1)/M1
1600 NEXT I
1610 REM
1620 REM BACKWARD STEPS TO GET SOLUTION
1630 REM
1640 LET U(R)=G1(R)
1650 LET V(R)=G2(R)
1660 IF U(R)<0 THEN GOTO 1810
1670 IFV(R)<0 THEN GOTO 1810
1680 FOR I=R-1 TO 1 STEP -1
1690 LET U(I)=G1(I)-L1(I)*U(I+1)-L2(I)*V(H-1)
1700 LET V(I)=G2(I)-L3(I)*U(I+1)-L4(I)*V(I+1)
1710 IFU(I)<0 THEN GOTO 1810
1720 IFV(I)<0 THEN GOTO 1810
1730 NEXT I
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Table 2 con't.

1740 IF S1<=1 THEN GOTO 1830 ;
1750 IF S1=T3 THEN GOTO 1830
1760 IF T>=T2 THEN GOTO 1830
1770 GOTO 1970
1780 REM
1790 REM PRINT RESULTS FOR SELECTED TIME STEPS
1800 REM
1810 PRINT "WARNING: CONCENTRATION < 0. PROGRAM STOPPED."
1820 LET T3=S1
1830 PRINT "time step = ";SI,"time = ";T
1840 PRINT "i'Y'xV'uVV1
1850 FOR 1=1 TO R
1860 PRINT I,(I-2)*XO,U(I),V(I)
1870 NEXT I
1880 FOR 1=2 TO R-l
1890 LET Y1=A1(I)*U(I-1)+B1(I)*U(I)+C1(I)*U( I+1)-D1( I)
1900 LET Y1=Y1+A2( I)*V( I-1)+B2( I)*V( I)+C2( I)*V( I+l)
1910 LET Y2=A4(I)*V(I-1)+B4(I)*V(I)+C4(I)*V(I+1)-D2(I)
1920 LET Y2=Y2+A3(I)*U(I-1)+B3(I)*U(I)+C3(I)*U(I+1)
1930 IF Y3<Y1 THEN LET Y3=Y1
1940 IF Y4<Y2 THEN LET Y4=Y2
1950 NEXT I
1960 PRINT "MAX ROUNDOFF ERROR IN U=";Y3;"IN V=";Y4
1970 IF T>=T2 THEN GOTO 2000
1980 IF S1>=T3 THEN GOTO 2000
1990 GOTO 0710
2000 REM END
2010 CLOSE
2020 END 
*
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Table 3. Algorithm for solution of tridiogonal matrix (from von Rosenberg, 
1975, p. 116.

The equations are

«! 1 Vi + *!
and

for 1 £ i £ R
with aim) = c£° = 0 for 1 £ m £ 4

The algorithm is as follows: 
First compute

o<5) _ u(5) __ 
Pi   °i
o(«) _ L(4) n (U}M /,<«)2<«> 
P<   0<   Ot /<_!   fl< /,_!

with ^(tm) » 6;m) for 1 £ m ^ 4 
and

flv _ flv "i y<-l "i Yt-l

with i'1 ' = d<» and 41" = <*i"

The /3j m) , 6j m) , and /*, are computed to aid in the computation of the follow­ 
ing functions and need not be stored after the computation of

and
y," 1 - Wti" - A"'*5")//«<

The values of Aj m) and yjm) must be ^tored, as they are used in the back 
solution. This is

and
 a-J-5?

for (K - 1) ^ i
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Table 4. Definition of input parameters in DIFDEC2

Parameter Example Definition

D5 DRn Diffusion coefficient of component u

D6 Dpb Diffusion coefficient of component v
poo

Ul [ U0 J Initial concentration of component that produces u

L5 Xpoo Decay or reaction constant of u

L6 x 000 Decay or reaction constant of reactant producing u
£OO

P 50 1/2 width of reacting layer

Q 100 Total length of diffusion field

R 13 Total number of space grid points (= number of space

increments + 3) 

Tl 1.5 Time increment multiplied by this amount each step
o

T2 10 Total time allowed for simulation 

T3 1000 Total number of time steps allowed
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Table 5. Definition of internal variables in DIFDEC2 

Program Text Definition

Aid)

A2(I) 

A3(I)

A4(I)

B1(D

B2(I)

B3(I)

B4(I)

ci(D
C2(I)

C3(I)

C4(I)

D2(I)

El

E2 

E3 

E4

LI

L2

L3

L4

Wl

W2

Gl

a. Coefficient in ditridiagonal equations !2)  i31
a{ 4)

bj 1}

b] 2)

b{ 3 >

b( 4)

 I 11
cJ 2)

cj 3)

c i

cj 2 ' » -

R: ' Used in solution of ditridiagonal equations i21
 ! 3 '
6 (4)

A i

A i
x( 3 ^

x (4)

5. Used in solution of ditridiagonal equations
.(2)
6 i
(1) n
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G2 YJ 2 ' "

G3 Y < 3 >

G4 Y ( 4 '

Ml u. 	1

D7 D7 Larger of D5 and D6

E E Exponential term in equation (3)

SI SI Current step number

T t Elapsed time

TO At Time increment

T4 T4 Time at previous step

XO AX Space increment
	2 X2 (AX) Space increment squared
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