
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Programmer's Guide to REMAPP,

REMote sensing _Array _Processing procedures

by

D. L. Sawatzky

Open-file Report 85-231

1985

This document is sufficient in its existing form to be consulted by
REMAPP image processing software users on the PERKIN-ELMER 3220 minicomputer
with the OS32MT VERSION 6.2 operating system and Multiterminal Monitor for
most commonly used and straightforward procedures. It is not intended to be
an introduction to the operating system or scientific use of computers. The
REMAPP user is expected to have experience in scientific use of computers and
in the OS32MT operating system.

Any use of trade names in this report is for descriptive purposes only and
does not imply endorsement by the U.S. Geological Survey. This report is
preliminary and has not been reviewed for conformity with the U. S. Geological
Survey editorial standards and stratigraphic nomenclature.

Table of Contents

Page

Acknowledgements.. 1

Introduction.. 1

Fortran programming practices ... 1

Subroutine DISKIO... 3

Operations.. 4
Unit..8
loarea.. 8
REMAPP file control block...8
ELAS header... 9
Subroutines called.. 9
DISKIO Fortran Listing .. 9

Subroutine TAPEIO.. 16

Operations... 16
System Error Messages.. 18
Subroutines called... 19
TAPEIO Fortran Listing... 19

Acknowledgements

A number of ideas instrumental in the development of REMAPP came from the
U. S. Geological Survey image processing facility in Flagstaff, Azizona. The
subroutines DISKIO and TAPEIO were based on their subroutines.

INTRODUCTION

REMAPP (REMote sensing Array processing ^Procedures) is a set of
applications programs and utility subroutines designed to facilitate the
processing of remotely sensed data in digital form. REMAPP is currently
implemented on a PERKIN-ELMER 3220 minicomputer in the Remote Sensing
Laboratory of the U. S. Geological Survey, Branch of Geophysics, in Denver,
Colorado. It has been transported to the DEC VAX 11/780 in Reston, Virginia
and the VAX 11/780 and 11/750 in Denver, Colorado. This manual does not
address the peculiarities of the VAX operating system, but can be used to some
advantage at the REMAPP applications level on those systems.

REMAPP allows processing of image files from computer-compatible magnetic
tapes of different formats, such as Landsat and Heat Capacity Mapping Mission,
as well as any geophysical, geological or geochemical data that can be
converted and handled as image data.

Data formats on tapes are first converted to a single general format, and
then stored in REMAPP format disk files. Existing applications programs
provide several processing capabilities: arithmetic operations on and between
image files and channels or bands, reading Landsat data tapes, and reading and
writing Optronics format data tapes.

This guide introduces the subroutines DISKIO and TAPEIO that are called
by applications programs written in Fortran. These subroutines efficiently
perform input and output to disk files and tapes, and allow the taking of
subsets of image files in a standard way for all REMAPP programs.

This guide is intended for users who are interested in writing image
processing programs in Fortran that access the REMAPP data base. For more
explanation of REMAPP, users should consult the REMAPP user's manual.

Fortran Programming Practices

Logical Units

Some logical units in Fortran programs doing REMAPP processing have
special assignments:

4 - REMAPP log
5 - user console or command file for input
6 - user console or batch log for output
7 - magnetic tape device
10 - array processor
11 - array processor

Calling Diskio and Tapeio

The following programming example indicates how to use REMAPP
subroutines.

INTEGER FCBIN(256),FCBOUT(256)
LOGICAL*! BUFFER(4096)

C........OPEN INPUT DISK FILE
FCBIN(0)=0
CALL DISKIOC9,12,BUFFER,FCBIN)
IF(FCBIN(1).LT.O) CALL EXIT(2)

C........OPEN OUTPUT DISK FILE
FCBOUT(1)=8
FCBOUT(2)=2000
CALL DISKIOC0,13,BUFFER,FCBOUT)
IF(FCBOUT(1).LT.O) CALL EXIT(3)

C........OPEN INPUT TAPE FILE
N=0
CALL TAPEIOC0,0,BUFFER,N)
IF(N.LT.O) CALL EXIT(2)

C........OPEN OUTPUT TAPE FILE
N=0
CALL TAPE10(0,1,BUFFER,N)
IF(N.LT.O) CALL EXIT(3)

C........READ A REMAPP FILE RECORD
CALL DISKIOC9,12,BUFFER,FCBIN)
IF(FCBIN(1).LT.O) THEN
IF(FCBIN(1).EQ.-1) GOTO 100
GOTO 200
ENDIF

C........WRITE A REMAPP FILE RECORD
CALL DISKIOC10,13,BUFFER,FCBOUT)
IFCFCBOUTC1).LT.O) GOTO 300

C........READ A TAPE RECORD
N=4096
CALL TAPE10C9,0,BUFFER,N)
IFCN.LT.O) THEN
IFCN.EQ.-l) GOTO 100
GOTO 200
ENDIF

C........CLOSE REMAPP FILES
200 CALL DISKIO(6,12,BUFFER,FCBIN)

CALL DISKIO(6,13,BUFFER,FCBOUT)

CALL TAPE10(6,0,BUFFER,N)

CALL TAPE10(6,1,BUFFER,N)

STOP

SUBROUTINE DISKIO

DISKIO provides a general facility to read and write REMAPP-format disk
files on the Perkin-Elmer 3220 minicomputer under operating system OS32MT.
This subroutine has the added features of being able to read or create disk
files compatible with the Earth Resources Laboratory Applications Software
(ELAS) installed on Perkin-Elmer computers.

User programs can read data records sequentially or randomly, as well as
skip records forward or backward. The user may specify the first record to be
read (the starting scanline in the case of an image file) and the first
element of that record (the starting picture element or pixel) as well as the
number of lines and pixels.

To access any REMAPP or ELAS disk file the user need only supply the
standard OS32 file descriptor. Volume name must be supplied with the
filename, but the extension and file class are optional. The file class is
defaulted to the private file class signed on under. If the file is an input
file and does not already exist, an error message is given and the task
calling DISKIO is stopped or otherwise handles the error. If the file is an
output file, the filename must not already exist or an error message is
given. If the output filename does not exist, the file is created on the
given volume and under the given or default file class.

Data records (one scanline per record) are written or read from the file
without conversion, packing, or unpacking by DISKIO. The calling program must
do packing and unpacking of data, which is advised to make efficient use of
disk storage. Special hardware such as array processors can be utilized to do
packing and unpacking of data as well as arithmetic processing.

When a program calling DISKIO opens a file for output, the precision in
bits per byte of the array elements values (pixel data number) must be
specified. When an input file is opened, the data precision is obtained from
the REMAPP file header. The precision can be used by the packing and
unpacking subroutines.

The calling program must call DISKIO to close the disk file. In the case
of an output file, the file header is updated with the total lines written
before closing as well as the other information entered at its opening.

Output files are always created with the read-only protection code. This
is to prevent inadvertent overwriting or deleting of an existing file. The
file must be reprotected to zero in order to delete or rewrite it.

The general form of a Fortran call to DISKIO is as follows:

CALL DISKIO(OPERATION,UNIT,IOAREA,FCB)

where:

OPERATION is an integer scalar specifying the I/O function to be
performed.

UNIT is an integer scalar specifying the Fortran logical unit number to
which the file is assigned.

IOAREA is an integer or logical array to read file records into or write
file records from.

FCB is a 256-word integer array into which the file header information is
read upon opening an input file or from which it is written upon closing
an output file. User responses to DISKIO prompts for header information
are stored here by the program

Operations

The following operations are valid:

0 = open a file
3 = rewind file, move to first data record
4 = skip forward no. of records specified in FCB(l)
5 = backspace no. of records specified in FCB(l)
6 = close a file
9 = read record into array IOAREA
10 = write record from array IOAREA
11 = read record whose no. is specified in FCB(l)

OPERATION = 0; FCB(1)=0

FCB(1)=0 to open an existing REMAPP or ELAS file for input

The user is prompted to enter the name of the file to be opened for
input. The file descriptor must contain the volume name, the file name, and
optional extension and optional file class. If FCB(17)=0, the following
prompt is given:

DISKIO: ENTER INPUT FILE NAME

If FCB(17) 2 0, then the character string in array IOAREA is given.

4

If the volume name is not included in the response, this message is given:

VOLUME NOT SPECIFIED

and DISKIO returns with error no. -2 in FCB(l).

If the file named cannot be opened, this message is given:

DISKIO: OPEN ERROR = nn

where nn is
1 = illegal function
2 = illegal logical unit number
3 = no such volume
4 = no such filename on given volume
5 = no room on volume for data or index block
6 = protection error
7 = privilege error
8 = not enough system space for buffer
9 = logical unit assignment error
11 = file descriptor syntax error
128-255 = other I/O error detected by OS32

and DISKIO returns with error no. -2 in FCB(l).

If the file opened is an ELAS file, this message is given:

ELAS FILE: IL=nnnn, LL=nnnn
IE=nnnn, LE=nnnn

NCHAN=nn
BITS/PIXEL=nn

If bits/pixel =0 or ^ 8,16,32, information is requested:

ENTER ELAS FILE BITS/PIXEL!

If opened file is a REMAPP file, the following message is given:

DISKIO: LINES nnnnn PIXELS nnnnn BYTESIZE nn

Then REMAPP or ELAS file subset is requested:

ENTER 1ST SCANLINE, NO. SCANLINES, SKIPS:

ENTER 1ST PIXEL, NO. PIXELS, SKIPS:

Following these requests, this message is given:

INPUT FILE filename OPENED:

WINDOW 1ST NO. SKIP ACTUAL
SCANLINES nnnnn nnnnn nn nnnnn
PIXELS nnnnn nnnnn nn nnnnn

OPERATIONS; FCB(1)#)

FCB(1)?^0 to create REMAPP or ELAS file for output. The value of FCB(l)
is the no. of bits/pixel = 8,16, or 32 for the new file. The calling program
program must also set the no. of pixels per scanline in FCB(2). If the new
file is an ELAS file then FCB(3) must contain the no. of scanlines per channel
and FCB(13) must contain the no. channels (bands).

The user is prompted to enter the name of the file to be created for
output. The file descriptor must contain the volume name, the file name, and
optional extension and optional file class. To create an ELAS file append the
% character to the file descriptor. If FCB(17)=0, then the following prompt
is given:

DISKIO: ENTER OUTPUT FILE NAME

If FCB(17) 1 0, then the character string in array IOAREA is given.

If the volume name is not included in the response, this message is given:

VOLUME NOT SPECIFIED

and DISKIO returns with error no. -2 in FCB(l).

If the file named cannot be created this message is given:

DISKIO: CREATE ERROR = nn

where nn is

1 = illegal function or illegal file type was specified
3 = no such volume name
4 = filename already exists on volume
5 = insufficient space to allocate file on volume
10 = the volume is not a direct access device
11 = file descriptor syntax error

and DISKIO returns with error no. -2 in FCB(l).

If the new file cannot be opened this message is given:

DISKIO: OPEN ERROR = nn (see OPEN error nos. above)

and DISKIO returns with error no. -2 in FCB(l).

OPERATION=3

Operation=3 causes rewinding of the file or moving to the first data
record. See OPERATION=9 for error messages.

OPERATION=4

Operation=4 causes the no. of data records specified in FCB(l) to be
skipped. See OPERATION=9 for error messages.

6

OPERATIONS

Operation=5 causes the no. of data records specified in FCB(l) to be
backspaced. See OPERATION=9 for error messages.

OPERATION=6

Operation=6 closes the disk file. If the file is a REMAPP output file,
the file control block, FCB, which now contains the no. of data records
written, is written to the file. The following message is given for output
files:

OUTPUT FILE CLOSED:
DISKIO: LINES nnnnn PIXELS nnnnn BYTESIZE nn

No message is given after the closing of an input file. See OPERATION=9 for
error messages.

OPERATION=9

Operation=9 causes the next data record to be read from an input file
into array IOAREA. The no. of pixels transferred is the no. in FCB(2) of the
file header at file opening. If an end-of-file is read, this message is
given:

DISKIO: END OF FILE ON filename

and DISKIO returns with error no. -1 in FCB(l). If an attempt to read a
record before the beginning of the file is made, DISKIO returns with error no.
-2 in FCB(l). The first pixel in the array will be the first requested from
the data record. Skipped pixels will be removed from the array. On I/O error
a diagnostic message will be given for the Fortran VII Run Time Library:

ERR n (mmmmmm) LU // NN:
message

where:

NN = Fortran logical unit no.

n=-l HARDWARE EOF DETECTED
n=26 PARITY OR RECOVERABLE ERROR
n=28 END OF MEDIUM

DISKIO returns with the error no. -2 in FCB(l).

OPERATION=10

Operation=10 causes the contents of array IOAREA to be written to the
next data record in an output file. The no. of pixels transferred is the no.
set in FCB(2) at file creation. On I/O error a diagnostic message will be
given for the Fortran VII Run Time Library:

ERR n (mmmmmm) LU # NN:
message

where:
NN = Fortran logical unit no.

n=-l HARDWARE EOF DETECTED
n=26 PARITY OR RECOVERABLE ERROR
n=28 END OF MEDIUM

DISKIO returns with error no. -2 in FCB(l).

QPERATIQN=11

Operation=ll causes a specified data record to be read into array IOAREA
as in Operation=9. The record no. is specified in FCB(l). I/O errors and
errors in record no. are handled as in Operation=9.

Unit

UNIT is the logical unit to which the REMAPP disk file is assigned by
DISKIO during the opening. All application programs should use logical unit
nos. 12 and greater for REMAPP disk files. Logical unit 4 is used for the
REMAPP log, unit 5 is for user replies or command files, unit 6 is for program
interactive prompts to users, unit 7 is used by subroutine TAPEIO for the tape
drive, and units 10 and 11 are used by the array processor.

loarea

IOAREA is the array into which data records are read or assembled for
output. The type declaration of IOAREA array must be consistent with the use
of the data in the calling program. If the data is 16-bit integer data, then
IOAREA is declared type INTEGER*2 and packing and unpacking is unnecessary.
Likewise, for 32-bit integer data, IOAREA is declared type INTEGER*4, and no
packing and unpacking is needed. If the data is unsigned 8-bit integer
data,it must be packed or unpacked in the array by the calling program before
I/O to the disk file. If a REAL array is used in the program, a output file
must be opened for 32-bit data. IOAREA must be dimensioned large enough to
contain all the bytes in a single data record of the file.

REMAPP File Control Block

File control block (FCB) format is as follows:

FCB(l) - ON OPER=0, 0 = OPEN INPUT FILE
=> 8 = OPEN OUTPUT FILE WITH BITS/PIXEL

ON OPER=4,5 HAS NO. OF RECORDS TO SPACE
ON OPER=11, NO. OF RECORD TO READ
ON RETURN FROM DISKIO HAS STATUS:

STATUS=0 - NO ERROR
STATUS=-1 - END OF FILE OR MEDIA
STATUS=-2 - I/O ERROR

FCB(2) - ON OPEN FOR OUTPUT FILE HAS NO. OF PIXELS PER SCANLINE
ON OPEN FOR INPUT FILE RETURNS PIXELS/SCANLINE WINDOW

FCB(3) - ON OPEN FOR OUTPUT FILE HAS NO. OF SCANLINES PER
CHANNEL. NECESSARY IF OUTPUT FILE IS ELAS TYPE. ON OPEN INPUT
RETURNS NO. OF SCANLINES IN WINDOW.

8

FCB(4) - FOR INPUT FILE CONTAINS FIRST PIXEL TO READ
FCB(5) - FOR INPUT FILE CONTAINS FIRST SCANLINE TO READ
FCB(6) - FOR INPUT FILE CONTAINS NO. OF PIXELS TO SKIP
FCB(7) - FOR INPUT FILE CONTAINS NO. OF SCANLINES TO SKIP
FCB(8)-FCB(11) - FILENAME IN ASCII
FCB(12) - RECORD LENGTH IN BYTES
FCB(13) - NO. OF CHANNELS
FCB(14) - CURRENT RECORD NO.
FCB(15) - NO. SCANLINES IN WINDOW
FCB(16) - NO. PIXELS PER SCANLINE IN WINDOW
FCB(17) - =0 USE STANDARD OPEN PROMPT

7*0 USE PROMPT STRING IN IOAREA
FCB(18) - FIRST PHYSICAL RECORD NO.
FCB(19) - PHYSICAL RECORD INCREMENT PER SCANLINE
FCB(21) - 0 FOR INPUT, 1 FOR OUTPUT
FCB(23) - NO. OF PIXELS/ SCANLINE
FCB(24) - NO. OF RECORDS/FILE
FCB(25) - BITS/PIXEL
FCB(26) - LAST SCANLINE IN WINDOW
FCB(27) - LAST PIXEL IN WINDOW
FCB(30)-FCB(256) - FILE HISTORY IN ASCII

ELAS Header

The ELAS file header is stored in FCB array as follows:

FCB(l) - NO. OF BYTES IN HEADER
FCB(2) - NO. BYTES/ DATA RECORD
FCB(3) - INITIAL LINE OF DATA
FCB(4) - LAST LINE
FCB(5) - INITIAL ELEMENT OF DATA LINE
FCB(6) - LAST ELEMENT
FCB(7) - NO. OF CHANNELS
FCB(8) - 4321
FCB(19) - BITS/PIXEL, IF=0 THEN =8
FCB(57)-FCB(60) - ASCII FILE NAME

Subroutines Called

The following Fortran Run Time Library subroutines are called by DISKIO:
CFILW, OPENW, SYSIO, IOERR, CLOSE.

DISKIO Fortran Listing

SUBROUTINE DISKIO(OPER,UNIT, IOAREA, FCB)
$ INCLUDE REMAPP.HDR

C
C REMAPP P-E/3220 1985
C REMote sensing Array Processing Procedures
C U. S. GEOLOGICAL SURVEY, DENVER, COLORADO
C BRANCH OF GEOPHYSICS, REMOTE SENSING LABORATORY
C DON L. SAWATZKY
C

c
c..,
c
c
c
c
c
p

c
c
c
c
c
c
c
c
c
c
c
c
c..,
c
c
c
p

c
c
c
c
c..,
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

DISKIO
REMAPP

**;

WILL CREATE OR READ REMAPP AND ELAS TYPE DISK FILES
DISK FILES ARE INDEXED FILES UNDER PERKIN-ELMER OS32

ELAS DISK FILES ARE CONTIGUOUS FILES UNDER OS32

OPERATIONS

OPER=0
3
4
5
6
9
10
11

UNIT =

IOAREA

REMAPP

- OPEN A FILE
- REWIND, POINT TO FIRST DATA RECORD
- SKIP NO. RECORDS SPECIFIED IN FCB(l)
- BACKSPACE NO. RECORDS SPECIFIED IN FCB(l)
- CLOSE A FILE
- READ RECORD INTO ARRAY IOAREA
- WRITE RECORD FROM ARRAY IOAREA
- READ RECORD NO. SPECIFIED IN FCB(l) INTO ARRAY

IOAREA

INTEGER FORTRAN LOGICAL UNIT NO. ASSIGNED TO FILE

= INTEGER OR LOGICAL ARRAY DIMENSIONED TO CONTAIN
ENOUGH BYTES TO HOLD ONE FILE RECORD

FILE CONTROL BLOCK DEFINITIONS

FCB = INTEGER ARRAY DIMENSIONED TO 256 (1024 BYTES)

WORD 1

WORD 2

WORD 3

WORD 4
WORD 5
WORD 6
WORD 7

- ON OPER=0, 0= OPEN INPUT FILE
=> 8 OPEN OUTPUT FILE WITH BITS/ PIXEL

ON OPER=4,5 HAS NO. OF RECORDS TO SPACE
ON OPER=11, NO. OF RECORD TO READ
UPON RETURN HAS STATUS

STATUS=0 - NO ERROR
STATUS=-1 - END OF FILE OR MEDIA
STATUS=-2 - I/O ERROR

- ON OPEN FOR OUTPUT FILE HAS NO. OF PIXELS/ SCANLINE
ON OPEN INPUT FILE RETURNS PIXELS/ SCANLINE WINDOW

- ON OPEN OUTPUT FILE HAS NO. OF SCANLINES PER
CHANNEL
NECESSARY IF OUTPUT FILE IS ELAS TYPE.
ON OPEN INPUT RETURNS NO. OF SCANLINES WINDOW.

- FOR INPUT FILE CONTAINS FIRST PIXEL TO READ
- FOR INPUT FILE CONTAINS FIRST SCANLINE TO READ
- FOR INPUT FILE CONTAINS PIXEL SKIP FACTOR
- FOR INPUT FILE CONTAINS SCANLINE SKIP FACTOR

WORDS 8,11 - FILENAME IN ASCII
WORD 12 - RECORD LENGTH IN BYTES

10

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c..,

WORD 13
WORD 14
WORD 15
WORD 16
WORD 17

WORD 18
WORD 19
WORD 21
WORD 23
WORD 24
WORD 25
WORD 26
WORD 27

- NO. OF CHANNELS
- CURRENT RECORD NO.
- NO. SCANLINES IN WINDOW
- NO. PIXELS PER SCANLINE IN WINDOW
- =0 USE STANDARD OPEN PROMPT

<>0 USE PROMPT STRING IN IOAREA
- RECORD NO. OF FIRST SCANLINE
- RECORD INCREMENT
- 0 FOR INPUT, 1 FOR OUTPUT
- NO. OF PIXELS/ SCANLINE
- NO. OF RECORDS/ FILE
- BITS/PIXEL
- NO. OF LAST SCANLINE IN WINDOW
- NO. OF LAST PIXEL IN WINDOW

WORD 30-256 - FILE HISTORY IN ASCII

C TO OPEN A REMAPP OUTPUT FILE MUST PASS
C FCB 1 AND 2
C
C TO OPEN AN ELAS OUTPUT FILE MUST PASS
C FCB 1,2,3,13
C
C AND DIMENSION AND INITIALIZE ALL FCBS:
C INTEGER*4 FCB(256)/256*0/

C
c
c
c
c
c
c
c
c
c
c
c
c..,

ELAS FILE HEADER

WORD 1 - NO. BYTES IN HEADER
WORD 2 - NO. BYTES/ DATA RECORD
WORD 3 - INITIAL LINE OF DATA
WORD 4 - LAST LINE
WORD 5 - INITIAL ELEMENT OF DAT^
WORD 6 - LAST ELEMENT
WORD 7 - NO. OF CHANNELS
WORD 8 - =4321
WORD 19 - BITS/PIXEL, IF=0 THEN
WORDS 57,60 - ASCII FILE NAME

^ LINE

=8

LOGICAL*! IOAREA(1)
INTEGER*4 FCB(256),OPER,UNIT,TTYIN,TTYOUT,ISIZE,NFILE(5)
CHARACTER FILEDESC*20,FILENM*16,STRING*64
INTEGER*4 CODE,PBLK(6),ELAS(256)
COMMON/DISCOM/ CODE,FILENM,I,IFC,ISIZE,ISTAT,J,JUMP,

& K,KEND,KINC,KMUL,KST,L,LL,NBYTES,NFILE,PBLK,TTYIN,TTYOUT
& ,FILEDESC,STRING,ELAS,M,N,IFSIZE,IBSIZE

C
C ENTRY POINT AND BRANCH VECTOR TO OPERATION ROUTINES
C

JUMP=OPER+1
IF(JUMP.GT.14.0R.JUMP.LT.l) GOTO 5
GO TO (30,5,5,100,110,120,200,5,5,140,190,130,5,5)JUMP

5 WRITE(6,10)
10 FORMATCIX,'D1SKIO:INVALID OPERATION CODE')

STOP
11

c
C RETURN
20 RETURN
C
C FILE OPENING PROCEDURES
C
30 IF(FCB(17).EQ.O) THEN

IF(FCB(1).EQ.O)WRITE(6,11)
11 FORMATCIX,'DISKIO:ENTER INPUT FILENAME')

IF(FCB(1) GT.O)WRITE(6,12)
12 FORMAT(IX,'DISKIO:ENTER OUTPUT FILENAME')

ELSE
WRITE(STRING,'(64A1)') (IOAREA(I),1=1,64)
WRITE (6,*) 'DISKIO:'//STRING(1:INDEX(STRING,'$')-!)
FCB(17)=0
ENDIF
READ(5,' (A20) ')FILEDESC
IF(INDEX(FILEDESC,':').EQ.O) THEN
WRITE(6,14)

14 FORMATCIX,'VOLUME NOT SPECIFIED')
GO TO 300
ENDIF

C.....GET FILENAME FROM FILEDESC
IF(FCB(1).NE.O) THEN
N=INDEX(FILEDESC,':')
M=INDEX(F1LEDESC,'/')
L=INDEX(FILEDESC,'%')

C.....IF OUTPUT FILE DESCRIPTOR CONTAINS % CREATE AN ELAS FILE
IF(L.NE.O) THEN
FCB(15)=4321

C.....GET ELAS FILE DESCRLIPTOR
FILEDESC=FILEDESC(1:L-l)
ENDIF

C.....REMOVE VOLUME NAME FROM FILE DESCRIPTOR TO GET FILENAME
IF(M.EQ.O) THEN
FILENM=FILEDESC(N+1:)
ELSE

C.....REMOVE FILE CLASS FROM FILENAME, IF ANY
FILENM=FILEDESC(N+1:M-1)
ENDIF

C.....SET DEFAULT NO. OF CHANNELS TO 1
IF(FCB(13).EQ.O) FCB(13)=1

C.....MOVE FILENAME TO FCB
READ(FILENM,'(4A4)') (FCB(I),1=8,11)
ENDIF
IF(FCB(1).NE.O)GO TO 80

C
C OPEN INPUT FILE
C

CALL OPENW(UNIT,FILEDESC,0,0,255,CODE)
IF(CODE.NE.O) WRITE(6,399) CODE

399 FORMATC/IX,'DISKIO: OPEN ERROR = ',13)
IF(CODE.NE.O)GO TO 300
IFC=77;READ,RANDOM,IMAGE,BINARY,WAIT

12

CALL SYSIO(PBLK,IFC,UNIT,FCB,1024,0)
CALL IOERR(PBLK,ISTAT)
IF(ISTAT.NE.O) GOTO 300

C.....CHECK IF REMAPP OR ELAS FILE
IF(FCB(8).EQ.4321) THEN

C.....ELAS FILE
WRITE(6,*) 'ELAS FILE: IL=',FCB(3),' LL=',FCB(4)
WRITE(6,*) ' IE=',FCB(5),' LE=',FCB(6)
WRITE(6,*) ' NCHAN=',FCB(7)
WRITE(6,*) ' BITS/PIXEL=',FCB(19)
IF(FCB(19).EQ.O.OR.(FCB(19).NE.8.AND.

& FCB(19).NE.16.AND.FCB(19).NE.32)) THEN
WRITE(6,*) 'ENTER ELAS FILE BITS/PIXEL!'
READ(5,*) FCB(19)
END IF

C.....MOVE ELAS STUFF UP
DO 400 1=1,8
FCB(60+I)=FCB(I)

400 FCB(I)=0
C.....LOAD FCB TO LOOK LIKE REMAPP FCB

FCB(1)=0
FCB(8)=FCB(57)
FCB(9)=FCB(58)
FCB(10)=FCB(59)
FCB(11)=FCB(60)
FCB(12)=FCB(62)
FCB(23)=FCB(66)-FCB(65)+l
FCB(24)=FCB(67)*(FCB(64)-FCB(63)+1)
FCB(25)=FCB(19)
FCB(13)=FCB(67)

C.....GET RANDOM READ PARMS
C FCB(18) IS FIRST RECORD; FCB(19) IS RECORD INCR

FCB(18)=4
FCB(19)=(FCB(62)+255)/256
ELSE

C.....REMAPP FILE
WRITE(6,70) (FCB(I),I=8,11),FCB(24),FCB(23),FCB(25)
FCB(18)=1
FCB(19)=1
END IF
WRITE(6,61)

61 FORMAT(IX,'ENTER 1ST SCANLINE, NO. SCANLINES, SKIPS: ')
READ(5,*) FCB(5),FCB(16),FCB(7)
WRITE(6,62)

62 FORMAT(IX,'ENTER 1ST PIXEL, NO. PIXELS, SKIPS: ')
READ(5,*) FCB(4),FCB(15),FCB(6)

C.....DEFAULT STARTING VALUES
IF(FCB(5).LE.O) FCB(5)=1
IF(FCB(4).LE.O) FCB(4)=1

C..... STARTING VALUES TOO LARGE?
IF(FCB(4).GT.FCB(23)) FCB(4)=FCB(23)
IF(FCB(5).GT.FCB(24)) FCB(5)=FCB(24)

C.....NOS. TOO LARGE?
IF(FCB(4)+FCB(15)-1.GT.FCB(23)) FCB(15)=FCB(23)-FCB(4)+1

13

IF(FCB(5)+FCB(16)-1.GT.FCB(24)) FCB(16)=FCB(24)-FCB(5)+1
C.....DEFAULT WINDOW LENGTHS

IF(FCB(15).LE.O) FCB(15)=FCB(23)-FCB(4)+1
IF(FCB(16).LE.O) FCB(16)=FCB(24)-FCB(5)+1

C.....LAST RECORD
FCB(26)=FCB(5)+FCB(16)-1
IF(FCB(26).GT.FCB(24)) FCB(26)= FCB(24)

C.....FIRST RECORD
FCB(14)=FCB(19)*(FCB(5)-1)+FCB(18)

C.....LAST PIXEL
FCB(27)=FCB(4)+FCB(15)-1
IF(FCB(27).GT.FCB(23)) FCB(27)=FCB(23)

C.....ACTUAL NO. PIXELS AND SCANLINES
FCB(2)=(FCB(15)-1)/(FCB(6)+1)+1
FCB(3)=(FCB(16)-1)/(FCB(7)+1)+1

C
70 FORMATCIX,T14,'DISKIO(2): ',4A4,'[LINES ',15,

*'PIXELS ',14,'BYTESIZE ',12']')
FCB(21)=0
WRITE(4,72) (FCB(I),I=8,11)

72 FORMATCIX,T15,'INPUT FILE ',4A4,' OPENED:')
WRITE(4,71)FCB(5),FCB(16),FCB(7),FCB(3),

* FCB(4),FCB(15),FCB(6),FCB(2)
71 FORMAT(IX,T20,'WINDOW',T32,'1ST',T37,'NO.',T41,'SKIP',

*T46,'ACTUAL',/,IX,T20,'SCANLINES',T30,415,/
*,IX,T20,'PIXELS',T30,415)
FCB(21)=0
GO TO 20

C
C OPEN AN OUTPUT FILE
C
80 CONTINUE

FCB(25)=FCB(1)
FCB(23)=FCB(2)
FCB(12)=FCB(23)*FCB(25)/8
FCB(14)=1
FCB(24)=FCB(3)
FCB(21)=1
IF(FCB(15).NE.4321) THEN

C.....CREATE REMAPP FILE
IBSIZE=32
NBYTES=MAX(256,FCB(12))
CALL CFILW(FILEDESC,2,NBYTES,IBSIZE,3,0,10,CODE)
ELSE

C.....CREATE ELAS FILE
IFSIZE=(((FCB(2)*FCB(l)/8)+255)/256)*FCB(3)*FCB(13)+4
CALL CFILW(FILEDESC,0,0,IFSIZE,0,0,0,CODE)
END IF
IF(CODE.NE.O) WRITE(6,398) CODE

398 FORMATCIX,'DISKIO: CREATE ERROR = ',13)
IF(CODE.NE.O)GO TO 300

C.....OPEN CREATED FILE, ASSIGN TO LOGICAL UNIT
CALL OPENW(UNIT,FILEDESC,5,0,10,CODE)
IF(CODE.NE.O) WRITE(6,399) CODE

14

IF(CODE.NE.O)GO TO 300
C.....WRITE FILE HEADER
C.....REMAPP HEADER

IF(FCB(15).NE.4321) THEN
IFC=41
CALL SYSIO(PBLK,IFC,UNIT,FCB,1024,0)
ELSE

C.....ELAS HEADER STUFF
ELAS(57)=FCB(8)
ELAS(58)=FCB(9)
ELAS(59)=FCB(10)
ELAS(60)=FCB(11)
ELAS(19)=FCB(1)
ELAS(8)=4321
ELAS(7)=FCB(13)
ELAS(6)=FCB(2)
ELAS(5)=1
ELAS(4)=FCB(3)/FCB(13)
ELAS(3)=1
ELAS(2)=256*((FCB(12)+255)/256)
ELAS(1)=1024
IFC=41
CALL SYSIO(PBLK,IFC,UNIT,ELAS,1024,0)
ENDIF
CALL IOERR(PBLK,ISTAT)
IF(ISTAT.NE.O) GOTO 300
GO TO 20

C
C REWIND - POINT TO FIRST DATA RECORD
C
100 FCB(14)=(FCB(5)-1)*FCB(19) + FCB(18)

GO TO 20
C
C SKIP SPECIFIED NUMBER OF RECORD
110 FCB(14)=FCB(14)+FCB(1)*FCB(19)

GO TO 20
C
C BACKSPACE SPECIFIED NUMBER OF RECORDS
C
120 FCB(14)=FCB(14)-FCB(1)*FCB(19)

GO TO 20
C
C READ TO A SPECIFIC RRECORD
C
130 FCB(14)=(FCB(1)-1)*FCB(19) + FCB(18)

GO TO 140
C
C READ A NEXT RECORD
C
140 FCB(1)=0

IF(FCB(14).LT.(FCB(5)-1)*FCB(19) + FCB(18)) GOTO 300
IF(FCB(14).LE.(FCB(26)-1)*FCB(19) + FCB(18)) GO TO 142
WRITE(6,180)(FCB(I),I=8,11)

15

SUBROUTINE TAPE10

TAPEIO provides a facility for reading and writing tapes. Other
operations allow user programs to space records and files forward and backward
and to rewind the tape. Computer-compatible data tapes are assumed to contain
one eight-bit data byte per one tape byte. Both 800 and 1600 Bpi tape
recording densities can be read or written, but this depends upon the system
software that operates the tape drives and hardware settings at time of
operation and not upon TAPEIO. TAPEIO does no conversion, reformatting,
packing or unpacking of data. The calling program must do this.

The general form of a call to TAPEIO is as follows:

CALL TAPEIOCOPERATION,IOMODE,IOAREA,N)

where:

OPERATION is an integer specifying the function to be performed. All
operations are on logical unit 7. A REMAPP program is not expected
to both tape input and output.

IOMODE is an integer specifying input or output operating mode. The
operating mode cannot be changed after the file is opened, and only
after the file is closed.

IOMODE=0 - input file mode
=1 - output file mode

IOAREA is an integer or logical array into which a tape data record
is read or from which a tape data record is to be written.

N is an integer used to specify parameters to TAPEIO and on return to
the calling program contains the operation status.

Operations

The following operations are valid:

0 = open a tape file on logical unit 7 for mode set in IOMODE
1,3 = rewind tape to load point
4 = skip no. of records specified in N
5 = backspace no. of records specified in N
6 = close the tape file
7 = skip no. of files specified in N
8 = backspace no. of files specified in N
9 = read tape physical record into IOAREA
10 = write tape physical record from IOAREA

OPERATIONS; IOMODE=0

OPERATIONS and IOMODE=0 opens a tape file for input. The following
request is made:

16

TYPE TAPE DEVICE NAME:

The physical device name, MO: or Ml:, is assigned to logical unit 7. Tape-to-
tape operations requiring both reading a tape and writing another tape within
a program are not possible with TAPEIO. If the tape device cannot be opened,
TAPEIO returns with error no. -2 in N. If the opening is successful, the
following is written on logical unit 4:

TAPEIO: FILE OPENED; MODE=0

and TAPEIO returns with N=0.

OPERATIONS; IOMODE=1

OPERATIONS and IOMODE=1 opens a tape file for output. The following
request is made:

TYPE TAPE DEVICE NAME:

The physical device name, MO: or Ml:, is assigned to logical unit 7. Tape-to-
tape operations requiring both reading a tape and writing another tape within
a program are not possible with TAPEIO. If the tape device cannot be opened,
TAPEIO returns with error no. -2 in N. If the opening is successful, the
following is written on logical unit 4: The tape is not checked for a write
ring.

TAPEIO: FILE OPENED; MODE=1

and TAPEIO returns with N=0.

OPERATION 1,3

OPERATION=3 rewinds the tape to the load point. If an error, a message
is given and TAPEIO returns with error no. -2 in N.

OPERATION=4

OPERATION=4 causes forward spacing the no. of records specified in N.
Upon return, if no error N = 0, else N is the negative of the no. of records
actually spaced.

OPERATIONS

OPERATION=5 causes backspacing of the no. of records specified in N.
Upon return, if no error N = 0, else N is the negative of the no. of records
actually spaced.

OPERATION=6

OPERATION=6 closes the tape file and leaves the tape positioned and not
rewound. If the file is an output file, two end-of-file marks are written and
the tape is positioned between them.

17

QPERATIQN7

OPERATION=7 causes forward spacing the no. of files specified in N. and
leaves the tape position at the beginning of a file. Upon return, if no error
N = 0, else N is the negative of the no. of files actually spaced.

OPERATIONS

OPERATION=8 causes backspacing the no. of files specified in N and leaves
the tape positioned at the beginning of a file. Upon return, if no error N =
0, else N is the negative of the no. of files actually spaced.

OPERATION 9

OPERATION9 reads from a physical tape record the no. of bytes specified
in N into array IOAREA. No conversion or unpacking of the data is done. On
return N contains the actual no. of bytes read which is never greater than the
no. requested. If an end-of-file is read, then N = -1 on return. If I/O
errors occur, then N = -2 on return. If this operation is attempted when
IOMODE = 1, the message is given:

READ/WRITE TO WRONG TAPE DEVICE

and TAPEIO returns with N = -2. If an attempt is made to read past the
physical end of tape, i. e., the file spans two or more tape volumes, then the
message is given:

MOUNT NEXT TAPE, TYPE CONTINUE

OPERATION 10

OPERATION=10 writes from the array IOAREA the number of bytes specified
in N to a physical tape record. No conversion or packing of the data is
done. On return N contains the no. of bytes written. If an I/O error occurs,
then N = -2 on return. If this operation is attempted when IOMODE = 0, the
message is given:

READ/WRITE TO WRONG TAPE DEVICE
and TAPEIO return with N = -2. If an attempt is made to write past the
physical end of tape, i. e., the file spans two or more tape volumes, then the
message is given:

MOUNT NEXT TAPE, TYPE CONTINUE

System Error Messages

On tape spacing or I/O error a diagnostic message will be given for the
Fortran VII Run Time Library:

ERR n (mmmmnim) LU // 7:
message

18

where:

n=-l HARDWARE EOF DETECTED (usually not an error)
n=26 PARITY OR RECOVERABLE ERROR (no write ring?)
n=27 UNRECOVERABLE ERROR
n=28 END OF MEDIUM (physical end of tape?)
n=29 DEVICE UNAVAILABLE (tape drive offline?)

TAPEIO returns with the error no. -2 in N.

Subroutines Called

The following Fortran Run Time Library subroutines are called by
TAPEIO: OPENW, SYS10, IOERR, CLOSE.

TAPEIO Fortran Listing

SUBROUTINE TAPE10(IOPR,MODE,IBUF,N)
$INCLUDE REMAPP.HDR
C ***
c
C REMAPP P-E/3220 1985
C REMote sensing Array Processing Procedures
C U. S. GEOLOGICAL SURVEY, DENVER, COLORADO
C BRANCH OF GEOPHYSICS, REMOTE SENSING LABORATORY
C DON L. SAWATZKY
C

C......................
C OPERATIONS
C
C OPER=0 - OPEN THE TAPE FILE ON LOGICAL UNIT 7
C 3 - REWIND, SET AT TAPE LOAD POINT
C 4 - SKIP NO. RECORDS SPECIFIED IN ARGUMENT N
C 5 - BACKSPACE NO. RECORDS SPECIFIED IN ARGUMENT N
C 6 - CLOSE THE TAPE FILE, WRITE 2 FILEMARKS, BACKSPACE
C 1 FILEMARK
C 7 - FORWARD SPACE PAST ONE FILE MARK
C 8 - BACKSPACE TO BEFORE ONE FILE MARK
C 9 - READ RECORD INTO ARRAY IOAREA
C 10 - WRITE RECORD FROM ARRAY IOAREA
C 11 - READ RECORD NO. SPECIFIED IN ARGUMENT N INTO C
ARRAY IOAREA
C
C....................
C
C MODE =1/0 TRANSFER MODE
C MODE=0 TAPE FILE IS OPEN FOR INPUT ONLY
C =1 TAPE FILE IS OPEN FOR OUTPUT ONLY
C....................
C
C IBUF = INTEGER OR LOGICAL ARRAY DIMENSIONED TO CONTAIN
C ENOUGH BYTES TO HOLD ONE TAPE PHYSICAL RECORD
C

19

c...........................
c
C N = NO. OF BYTES TO READ/WRITE OR NO. OF SPACING OPERATIONS
C RETURNS NO. OF BYTES READ OR NO. OF SPACING OPERATIONS
C RETURNS -1 FOR END OF FILE OR -2 FOR I/O ERROR.
C.............................

INTEGER*4 PBLK(5),IBUF(1)
DATA ILU/7/

C
C....BRANCH TO OPERATION

NBYTES=N
GOTO(20,1,1,1,4,5,6,7,8,9,10) IOPR+1

C
C....ASSIGN FUNCTION CODES
1 IFC= 192; REWIND

GOTO 40
4 IFC=144;FORWARD RECORD

NOPS=N
GOTO 30

5 IFC=160;BACKWARD RECORD
NOPS=N
GOTO 30

6 IF(MODE.NE.l) GOTO 61
NOPS=2
IFC=136;WRITE FILEMARK
GOTO 30

7 IFC=132;FORWARD FILE
NOPS=N
GOTO 30

8 IFC=130;BACKWARD FILE
NOPS=N
GOTO 30

9 IFC=91;READ,BINARY,IMAGE
IF(MODE.NE.O) GOTO 50
GOTO 40

10 IFC=59;WRITE,BINARY,IMAGE
IF(MODE.NE.l) GOTO 50
GOTO 40

20 MODE=MOD(MODE,2)
WRITE(6,*)'TYPE TAPE DEVICE NAME:'
READ(5,FMT='(A4) /) MAG
CALL OPENW(7,MAG,2*MODE+1,0,0,ISTAT)
N=0
IF(ISTAT.NE.O) N=-2
IF(ISTAT.EQ.O) WRITE(4,99) MODE

99 FORMAT(/,1X,'TAPEIO: FILE OPENED; MODE=',I2)
RETURN

C....REPEATED OPERATIONS
30 CONTINUE

DO 31 I=1,NOPS
CALL SYSIO(PBLK,IFC,ILU,IBUF,NBYTES,0)
CALL IOERR(PBLK,ISTAT)

31 IF(ISTAT.NE.O) GOTO 32
IF(IOPR.NE.6) RETURN

20

C....BACKSPACE OVER LAST WRITTEN FILEMARK
IFC=130
GOTO 40

C....ERROR HANDLER
32 IF(IAND(ISTAT,Y'8').EQ.O) GOTO 33
C....END OF FILE

IF(IOPR.EQ.9) THEN
N=-l

ELSE
N=-(I-3)
ENDIF
RETURN

C....UNRECOVERABLE ERROR
33 N=-2

RETURN
C....SINGLE OPERATION
40 CALL SYSIO(PBLK,IFC,ILU,IBUF,NBYTES,0)

CALL IOERR(PBLK,ISTAT)
IF(ISTAT.NE.O) THEN
IF(ISTAT.EQ.X'90'.AND.(IOPR.EQ.10.0R.IOPR.EQ.9)) THEN
CALL SYSIO(PBLK,192,ILU,IBUF,NBYTES,0)
PAUSE 'MOUNT NEXT OUTPUT TAPE; TYPE CONTINUE'
GOTO 40
ELSE
GOTO 32
ENDIF
ENDIF
N=PBLK(5)
IF(IOPR.NE.6) RETURN

C.....CLOSE TAPE FILE
61 CALL CLOSE(7,ISTAT)

N=0
IF(ISTAT.NE.O) N=-2
IF(ISTAT.EQ.O) WRITE(4,97) MODE

97 FORMAT(/,1X,'TAPEIO: FILE CLOSED: MODE=',I2)
RETURN

C....ERROR IN R/W TO WRONG MODE
50 WRITE(4,98)
98 FORMAT(/,IX,'READ/WRITE TO WRONG TAPE DEVICE')

N=-2

RETURN
END

21

