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ABSTRACT

The Belmont district was an important producer of silver from 1865 to
1885. The vein-like ores are rich in base-metal sulfides and occur in
Paleozoic metasedimentary rocks adjacent to a Cretaceous granite pluton.
Exposures in mine workings show that many of the veins are parallel to bedding
and that low angle faults control mineralization at several places in the
district; the bedding plane veins may be related to the low angle or thrust
faults. Richest ores were near-surface enrichments of cerargyrite (AgCl), but
the primary assemblage was sulfide and sulfosalt minerals rich in Ag-Cu-Pb-As-
Sb. Content of Zn and Au generally is low, and the "granitic" suite of
elements B-Nb-Sn-W is absent, although there is some enrichment in Mo. The
ores are post-metamorphic but probably formed during the late stages of
Cretaceous plutonism, after thrust faults and bedding plane faults opened or
reopened, perhaps during cooling.

INTRODUCTION

The Belmont district, Tocated in Nye County about 80 km northeast of
Tonopah, was an important producer of silver between 1865 and 1885. Records
of production are incomplete and range from an estimated $3,793,000 (Kral,
1951) to $15,000,000 (Hughes, 1917). The camp has been dormant since 1885
with only a brief period of activity from 1915 to 1918. Very little work has
been done on the geology of this once prosperous silver camp. There are
numerous prospect pits and mine openings in the district, and although none
are safe for underground study they do afford some relatively good glimpses of
the rocks and structures that contain silver veins.

This study was undertaken in 1982 as part of the Conterminous United
States Mineral Appraisal Program (CUSMAP) in the Tonopah 1° x 2° quadrangle to
provide modern geochemical description and interpretation of this important
historic district. This study was designed to provide standards for
assessment of precious metal resource potential in other parts of the Tonopah
quadrangle, and also for use as a guide for mineral exploration in the
region. Fifty samples were submitted for chemical analysis of 34 elements,
and a few samples were examined with a petrographic microscope. Similar
studies are underway on about a dozen other precious metal districts in the
Tonopah quadrangle.

MINING HISTORY OF BELMONT DISTRICT

The history of this important district is obscure because it is recorded
in only a few old references (Hague, 1870; Hughes, 1917). Mining and geology
at Belmont are reviewed by Kleinhampl and Ziony (1984). The ghost town of
Belmont and its scattered mine workings as seen today do not convey a proper
image of a town that once had a population of 10,000 and produced millions of
dollars in silver. The ruins of the two large mills and the mostly intact
courthouse, all made out of locally made brick that also was exported to other
old mining camps such as Tybo, bear silent testimony to former wealth and
productivity. The first claim at Belmont was located in 1864, and the
district was organized as the Philadelphia mining district in 1865. Belmont
became the Nye County seat in 1867. Most of the production came in the early
years, and in 1885 the combination of declining silver prices and increased
costs of pumping water forced closure of the mines. Many of the workings were



relatively shallow, above a water table encountered at depths of about 20 to
40 m, in zones of "chloride" ores of cerargyrite (AgCl). Two main shafts, the
Belmont and the Highbridge, reached depths of about 180 and 110 m,
respectively. Ore mined prior to 1885 had an average value of about $80 per
ton and ranged in value from about $25 to $250 per ton, or an estimated
minimum silver content of about 25 oz/ton (Hughes, 1917). The mills used
about 10 to 40 stamps weighing about 600 to 800 pounds each to crush ore;
capacity of each stamp was one to two tons per day. The crushed ore was
roasted for six to seven hours in charges of 1,000 1bs. using "salt" from
Silver Peak, about 110 km to the southwest. The cost of milling was about $10
per ton of ore.

In 1915 electric power was brought in from Manhattan, 21 km to the
southwest, the mines dewatered, and an effort made to reactivate the mines.
Sampling of the underground workings from 1916 to 1918 (Hughes, 1917; Kral,
1951) revealed some rich sulfide zones on the 300-foot level of the Belmont
mine but insufficient silver was located to support mining. Apparently no
mining has been done since 1885, although some dumps have been reprocessed.

GEOLOGY

No systematic geologic study of the Belmont district has been
published. Brief descriptions of some aspects of district and mine geology
were given by Hague (1870) and by Hughes (1917), and Kleinhampl and Ziony
(1984) compiled a useful geologic map of the district (fig. 1). Two chief
units occur in the district: Paleozoic sedimentary and metasedimentary rocks,
and Cretaceous granite and associated pegmatite-aplite dikes. The Paleozoic
rocks consist of quartzite, phyllite, slate, and impure limestone. Based on
lithologic features and presence of graptolites, Kleinhampl and Ziony
suggested the sedimentary rocks are probably equivalent to the Ordovician
Palmetto Formation, as in the Manhattan district (Ferguson, 1924). The
sedimentary rocks are internally deformed but not appreciably folded, and are
cut by north-trending low-angle faults and younger east-trending cross-faults
that offset the low-angle faults. The granite, with distinctive 2-4 cm
megacrysts of orthoclase, is part of a pluton that extends northwestward about
20 km to near Round Mountain. Tertiary volcanic rocks occur less than 2 km
north of the area studied.

Observations made in the early operating mines by S. F. Emmons in 1868
(reported in Hague, 1870) are fairly specific and possibly the most reliable
geologic information available, and thus will be summarized briefly. Two main
vein systems ("ledges") were mined in the 1860's by a series of workings. The
eastern vein, called the Highbridge and Transylvania ledges (fig. 1), was in
slate and limestone, and generally dipped east at about 40 to 50 degrees.
About 300 m to the west was a vein in quartzite called the Arizona-El
Dorado. The latter vein runs along the crest of Highbridge Hill about 175 m
east of the granite contact. Several inclines on the vein expose meter-thick
dikes of aplite (Nash, unpub. data, 1982). Emmons observed in many places
that the veins are conformable with bedding, as can be seen today in many
inclines. Dip of sediments and veins generally is about 40 degrees east, but
locally ranges to 60 to 90 degrees. A cross fault with displacement of about
50 m appears to offset the southern (Transylvania) end of the Highbridge vein
(fig. 1), leading Emmons to suggest that the Highbridge and Transylvania veins
were originally continuous. The veins mined were generally 1 to 4 m wide, but












sampling, and in the chemistry laboratory, was to utilize rapid, cost-
effective methods that could be used in Government resource assessment
programs or in industry exploration. Sampling was done on two visits in May
and September 1982. Geologic notes were taken at all sites and a rough
geologic sketch made as sampling progressed. In our opinion, key geologic
features can be observed most rapidly and clearly by focusing on exposures in
old prospect pits and mine openings. These rapid studies are not as thorough
as systematic mapping studies, but can yield essential information, if little
time is available.

Sample preparation and chemical analysis

Al11 samples were crushed and then pulverized between ceramic plates to
attain a grain size smaller than 100 mesh (0.15 mm). All samples were
analyzed for 31 elements using a semiquantitative, direct-current arc emission
spectrographic method (Grimes and Marranzino, 1968). Limits of determination
are summarized in Table 1. Spectrographic results are obtained by visual
comparison of spectra derived from the sample against spectra obtained from
standards made of pure oxides and carbonates. Standard concentrations are
geometrically spaced over any given order of magnitude of concentrations as
follows: 100, 50, 20, 10, and so forth. Samples whose concentrations are
estimated to fall between those values are assigned values of 70, 30, 15, and
so forth., The precision of the method is approximately plus or minus one
reporting interval at the 83 percent confidence level and plus or minus two
reporting intervals at the 96 percent confidence level (Motooka and Grimes,
1976). Values determined for the major elements (iron, magnesium, calcium,
and titanium) are reported in weight percent of the element; all other
elements are reported in parts per million (micrograms per gram) (Table 1).

A1l samples were analyzed by wet chemical procedures for determination of
elements of special interest or which have high Timits of determination by
emission spectrography (such as As, Sb, Zn, and Hg). The wet chemical methods
are summarized in Table 2.

Upon completion of the analytical work, results were entered into a
computer-based system called RASS (Rock Analysis Storage System) that contains
both the analytical data and descriptive geologic and geographic information
for each sample. Parts of the RASS data were retrieved under a slightly
different format and manipulated using routines of the STATPAC system
(vanTrump and Miesch, 1976).

Results

Chemical data for 30 elements in 50 rock samples collected for this study
are in Table 3. A summary of basic statistics is in Table 4. Some elements
such as Au, Sn, Th, and W were looked for in the emission spectrographic
analyses but not detected in any samples. Data for Bi, Nb, and W are
presented in the explanation for Table 3. Sample localities are shown on
figure 2.

Discussion

The suite of elements Ag, As, Cu, Mo, Pb, and Sb is enriched in the
Belmont ores and mineralized rocks. Some metallic "ore" elements are present



in notably low concentrations: Au, Co, Cr, Ni, and Zn. Tungsten, Sn, and Bi
were below detection levels in all samples, but are present in amounts over
100 ppm in similar dump and prospect samples collected at many sites elsewhere
in the Tonopah Quadrangle. The "gangue" elements Mn, B, Ba, and Sr are
enriched to moderate levels at Belmont, but are not considered to be
diagnostic as they are in some other districts in the Tonopah quadrangle.

Silver is associated with several base-metals in the Belmont samples.
Positive correlation coefficients for Ag include: Sb, 0.85; Cu, 0.83; Pb,
0.83; Zn, 0.66; Cd, 0.48; Mo, 0.45; As, 0.27; Sr, 0.17; and Te, 0.12. Silver
is not associated with Au or T1 (r=-0.05 and -0.30, respectively). Some of
the correlations are not as strong as the high coefficients would suggest,
however. Scatterplots of Ag with the other metals confirm the low correlation
of Ag with Au, As, and Te, and show that for Ag:Cu and Ag:Sb a few samples
rich in Cu or Sb dominate the statistics.

The elements Ag-Cu-Pb-Sb probably occur together in a complex mineral
such as a sulfosalt, or in a consistently recurring combination of minerals.
The anion is presumably Sb, which correlates highly with Ag-Cu-Pb, or possibly
S (not determined). Some of the erratic multi-element behavior may be caused
by oxidation, near-surface leaching, or formation of secondary phases such as
cerargyrite (AgCl).

The following brief comments are offered on some elements of interest.

Tin--Not detected at a Tevel of 10 ppm in any samples, a bit surprising
considering the presence of the granite pluton, and also the high Sn values in
some other silver camps such as Tybo and Morey (Nash, unpub. data, 1984).
Elsewhere in the southern Toquima Range granitic rocks only rarely contain
more than 10 ppm Sn (D. R. Shawe, written commun., 1985), thus Belmont fits
the regional pattern.

Tungsten--Only one sample (TND330) contained detectable W at the 50 ppm
level; sample 330 consists of random dump rocks and the reasons for the 50 ppm
W in that sample are not evident. We had suspected that more samples would be
enriched in W because the granite pluton generated huebnerite veins near Round
Mountain and some small quartz-huebnerite veins are known in granite south of
Belmont (Kleinhampl and Ziony, 1984).

Bismuth--Only four samples contained detectable Bi at the 2 ppm level.
The four samples that contain 2 to 44 ppm contain 30 to 500 ppm Ag, which is
not exceptional in this dataset, and in all samples Ag is far more abundant
than Bi, thus an Ag-Bi mineral such as matildite (AgBiS2) cannot explain much
of the silver residence. Compared with other districts in the region, the
Belmont samples contain somewhat more Bi than most precious metal deposits,
but less than base-metal skarn deposits.

Arsenic and antimony--Antimony correlates highly with Ag, but is
generally less abundant than Ag, notably in Ag-rich samples, and therefore
cannot explain all of the mineral residence of Ag. Arsenic is more abundant
than Sb in all but a few samples but the As/Sb ratio approaches 1 in the
central part of the district in the vicinity of sites 316-320~325. This zone
of increased Sb, relative to As, is also one of greater carbonate content in
host rocks. Arsenic has a low association with Ag, even though it is more



abundant than S$b in the district overall. The apparent zonation of Sb, or
decrease of As/Sb to near 1, seems to correlate with the spatial distribution
of highest Ag values in the Belmont district, but more data are needed to
properly establish the validity of this relationship.

Vanadium--Many samples contain more than 500 ppm V, some of which are
rich in micas, but many V-rich samples are predominantly vein quartz. In one
R-mode factor analysis the variance of V was split equally between the factor
carrying rock forming elements, such as Ti, and the factor carrying ore
elements such as Ag, Cu, and Mo. This relationship is not expected and may
indicate that V is partly mobile and enriched in some mineralized sulfidic
rocks.

Tellurium--Content of Te is erratic, weakly correlated with Ag in the
total dataset, and ranges to as much as 100 ppm in a sample of vein quartz
with notable iron oxide content (3 percent Fe). A subset of 17 samples from
the Highbridge vein produced an Ag-Te correlation of 0.87, suggesting in some
environments Te is strongly associated with Ag. Another observation is that
the samples with more than 10 ppm Te all have notable iron oxide content.
These relations suggest that Te is enriched in samples that had high content
of primary sulfide minerals, which is a logical primary residence for Te, and
subsequently retained in iron oxides. Thus Te may be a better guide to
primary sulfides than to Ag.

Thallium--Thallium displays no simple pattern or relation to Ag. Most of
the high values are in granitic rocks or phyllites, suggesting that Tl is
associated with potassic rocks, consistent with the common observation of TI
substituting for K in crystal lattices. Such residence of Tl in rock-forming
minerals is not 1ike the anomalous Tl in epithermal ores as at Carlin where TI
occurs as epigenetic minerals.

Metal associations in the granite and thrust enviromments--The geology of
the district, previously outlined, indicates that the granite intrusion and
the 1ow angle thrust (or thrusts) may have played a role in the genesis of the
silver ores. As a simple test of these possibilities, subsets of samples
thought to best describe the "granite environment" (six samples) or the
"thrust fault environment" (14 samples) were defined for comparison with the
most typical environment described by 17 samples from the Highbridge vein.

The "granite" suite is samples from prospects within the granite or near
aplite dikes. The "thrust" suite is samples from the zone described earlier
from site 331 to site 701. For these subsets we examined statistics for
means, standard deviations, and correlation coefficients. As a generaliz-
ation, these simple tests suggest that the samples from the thrust and from
the granite environments contain lower concentrations of the ore suite (Ag,
Cu, Mo,Pb, As, Sb) but the abundances overlap those of the Highbridge set and
have similar metal ratios and correlations. This simple test with a small
number of samples suggests that the three environments are more similar than
dissimilar and do not provide chemical evidence for distinct mineralizing
processes in time or space. Notably absent in the granite subset are any
unusual values of B, Mo, Sn, or W, compared with other sample types.



CONCLUSIONS

The limited geochemical and geologic data available do not clearly define
a genetic model for the Belmont district but are most consistent with ore
formation in the late stages of the Cretaceous plutonism, following contact
metamorphism by the adjacent granite body. Thrust faults and bedding plane
faults seem to have opened or reopened after intrusion, possibly during
cooling, and the ore fluids favored those structures for vein formation. The
metallic elements were deposited after the massive quartz veins, suggesting
they may have been derived from a hydrothermal system circulating around the
cooling pluton or perhaps a late-stage pluton that is not exposed. Detailed
studies elsewhere in the southern Toquima Range by Shawe (1985) document
complex reactivation of structures, multiple periods of plutonism, and
probable remobilization of metals in multiple stages of mineralization.
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Table l.--Limits of determination for the spectrographic analysis of rocks

Elements Lower determination limit Upper determination limit
Percent
Iron (Fe) 0.05 20
Magnesium (Mg) .02 10
Calcium (Ca) .05 20
Titanium (Ti) .002 1

Parts per million

Manganese (Mn) 10 5,000
Silver (Ag) 0.5 5,000
Arsenic (As) 200 10,000
Gold (Au) 10 500
Boron (B) 10 2,000
Barium (Ba) 20 5,000
Beryllium (Be) 1 1,000
Bismuth (Bi) 10 1,000
Cadmium (Cd) 20 500
Cobalt (Co) 5 2,000
Chromium (Cr) 10 5,000
Copper (Cu) 5 20,000
Lanthanum (La) 20 1,000
Molybdenum (Mo) 5 2,000
Niobium (Nb) 20 2,000
Nickel (Ni) 5 5,000
Lead (Pb) 10 20,000
Antimony (Sb) 100 10,000
Scandium (Sc) 5 100
Tin (Sn) 10 1,000
Strontium (Sr) 100 5,000
Vanadium (V) 10 10,000
Tungsten (W) 50 10,000
Yetrium (Y) 10 2,000
Zinc (Zn) 200 10,000
Zirconium (Zr) 10 1,000
Thorium (Th) 100 2,000
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Table 2.--Description of chemical methods used for analysis of rock samples
from the Belmont district, Nevada.

Element Analytical Determination Reference
determined method limit (ppm)
Au Atomic absorption 0.05 Thompson and
others, 1968
Hg Instrumental 0.02 Modification of
Vaughn and

McCarthy, 1964

As ‘ Atomic absorption 5.0 Modification of
Viets, 1978

Bi --do-- 1.0 --do--

Cd --do-- 0.1 --do--

Sb --do-- 2.0 --do--

In --do-- 5.0 --do--

Te --do-- 0.2 Modification of
Hubert and

Lakin, 1972
T ~--do-- 0.2 --do--

1he determination limit is dependent upon sample weight. Stated limits imply
use of optimum sample weight; higher limits of determination result from use
of smaller sample weights.

11



EXPLANATORY NOTES FOR TABLE 3
Sample numbers: the third character in the eight-digit numbers indicates
sample source; R, outcropping rock, often from a mine working; D, dump
sample. The second character sampler; N, J. T. Nash., Letters A, B, etc.

indicate multiple samples at the same locality.

Chemical data not reported:

Au (by emission spectrography)-- none detetected at 10 ppm;

Bi (by emission spectrography)-- one detected at 10 ppm; sample 5A, L(10).

Nb (by emission spectrography)-- six detected at 20 ppm; sample 4, L(20);
6, 20; 328, L(20); 330, L(20); 697, L(20); 699, 20 ppm.

Sn (by emission spectrography)--none detected at 10 ppm.

W (by emission spectrography)--3 detected at 50 ppm; sample 5A, 50; 5B,
L(50); 330, 50 ppm.

Th (by emission spectrography)--none detected at 100 ppm.

12
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Table 4,--Statistical summary of analytical results for rock samples from Belmont,
Nevada.

[values for major elements in weight percent, all others in parts per million;
abbreviations: B, not determined; L, less than limit of determination; G, greater
than 1imit of determination; N, not detected; ***, not computed]

Column  Minimum  Maximum Geometric Geometric Valid B L N
mean deviation

S-Fe% .10 7.0 1.40 50 0 0 0 0
S-Mg% .02 3. .23 50 0 0 0 0
S-Ca% .05 15. .47 43 0 7 0 0
S-Ti% .015 .5 .096 50 0 0 0 0
S-Mn 10. 2000. 185. 50 0 0 0 0
S-Ag . 5000. 28. 50 0 0 0 0
S-As 200. 1000. 362. 13 0 7 30 0
S-'AU *kx %k k *kk 0 0 0 50 0
S-B 10. 700. 70. 49 0 1 0 0
S-Ba 50. 2000. 402. 50 0 0 0 0
S-Be 1. 10. 2.8 45 0 2 3 0
S_ B“ *k*x *k*k *k*x 0 0 1 49 0
S-Cd 20. 100. 27. 13 0 4 33 0
S-Co 5. 30. 8.5 40 0 1 9 0
S-Cr 10. 150. 39. 40 0 9 1 0
S-Cu 5. 15000. 161. 50 0 0 0 0
S-la 20. 70. 31. 38 0 7 5 0
S=-Mo 5. 1000. 34. 35 0 0 15 0
S-Nb 20. 20. 20. 2 0 4 44 0
S-Ni 5. 150. 25. 50 0 0 0 0
S-Pb 10. 15000. 256. 50 0 0 0 0
S-Sb 100. 7000. 390. 17 0 6 0
S-Sc 5. 15. 8. 31 0 12 0
S_Sn *kk J ¥k J ¥k 0 0 0 0
S-Sr 100. 500. 135. 14 0 24 0
S-v 15. 1500. 202. 50 0 0 0
S-W 50. 50. 50. 2 0 1 0
S-Y 10. 50. 17. 37 0 6 0
S-In 200. 5000. 675. 29 0 3 0
S-Ir 15. 200. 70. 47 0 1 0
S_Th %k k J k% kkk 0 0 0 0
AA-Au .05 . .07 16 4 6 0
AA-Te .20 100. 1.5 24 4 0 0
AA-As 10. 150. 57. 29 16 1 0
AA-ZIn 5. 370. 92. 20 30 0 0
AA-Cd .20 30. 1.4 37 13 0 0
AA-Bi 2, 44, 5.7 4 4 0 0
AA-Sb 1. 80. 9.5 27 20 0 0
AA-T1 .20 3.2 .91 41 4 2 0




