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INTRODUCTION

The purpose of this note is to give a brief review of the mathematics of viscoelasticity required 
to understand calculations of Q, current frequency dependent Q models and to present details of 
one such model. The following is a short discussion of the context of theories of energy loss.

Three features are observed which can be included in the phenomenological theory of viscoelas­ 
ticity:

1) Amplitude decay
2) Phase shift between stress and strain
3) Velocity dispersion

The first needs no comment. Number two is associated with the hysteresis loop. Some discussion 
of the applicability of linear theory of viscoelasticity has turned on whether experiments show an 
ellipse, as linear theory predicts, or some other shape. The dissapation parameter Q~ l is introduced 
by linear theory in this context as the tangent of the phase difference between the stress and strain 
when the system is sinusoidally driven. It will be shown below that this number is the same as one 
calculated from several other definitions.

Dispersion is a more subtle effect and its significance is still discussed. In terms of linear 
theory arguments can be given that any causal system must have frequency dependent velocity (eg. 
Futterman (1962)). A fairly simple arguement for the necessity of velocity dispersion is given in 
Aki and Richards (1980) where it is shown that withoutr dispersion, a propogating delta function 
pulse will induce a smaD finite displacement at a finite distance without any time passing. As shown 
below, Q and velocity are functionally related, so Q also must, in general, be frequency dependent. 
Kennett (1983) gives a very brief discussion of the need for frequency dependent Q using arguments 
similar to those for frequency dependent velocity.

The problem is to determine the nature of the frequency dependence. The Minster-Anderson 
model (Anderson and Minster (1979), Minster and Anderson (1981)) discussed below reflects an 
attempt to give a weak frequency dependence to Q over a finite frequency band under the constraints 
of a linear physical theory.

The relevence to three dimensions is that, upon introduction of the angle 7 between phase 
propogation and amplitude decay (Borcherdt (1971,1973), Buchen (1973), Krebes (1980)), one can 
parametrize all features of a plane wave using the velocity and Q of a homogeneous (i.e. 7=0) wave 
whose properties are essentially one dimensional.

The discussion which follows occasionally bogs down in the details of calculation, the intention 
is completeness.

PHENOMENOLOGICAL THEORY

Constitutive Equations
Let a denote the stress and e the strain. Then the phenomenological stress strain relations for 

viscoelasticity are:

J(t-u)do(v) (1)

ft
=l

J-o

where J and M are known as creep and relaxation functions respectively and are determined from 
the system response to a step in stress or strain. 

To consider steady state vibrations we write

  =  oe'*w< <r = a0 eiut (2)

where <TQ and CQ are complex quantities dependant only on position. After a change of variables of 
integration in equations (l) one finds



e (3) 

where

J(u)=iu [°° J(t)eiatdt (4) 
Jo

a similar relation holds between M and M. M and / are known as the complex modulus and the 
complex compliance, respectively.

In what follows we will follow convention and consider expressions involving complex compliance, 
the analogous calculations involving the complex modulus are straightforward.

Potential Energy
In addition to measuring the phase shift as described above, one can define Q~l as a measure of 

the energy loss per cycle of a driven system (MacDonald (1961), O'Connell and Budiansky (1978)). 
In order for Q to be dimensionless one normalizes to some measure of energy stored during the cycle. 
It will be shown that normalizing with either peak potential energy or twice the average potential 
energy gives the same number as the phase shift definition described above. Since there is some 
discrepency in the literature over this point, in particular O'Connell and Budiansky (1978) state the 
two normalizations give different results, some space will be used here to detail the calculations of 
potential energy. The approach taken here follows Gross (1948) and MacDonald (1961) and differs 
from that of O'Connell and Budiansky (1978) which relies on the development of the theory of 
viscoelastic theory in Bland (1960).

The arguments presented in the context of elasticity for the rate of change of internal energy of 
a deformed solid (Hudson (i960), Jeffreys (1931)) hold as well for viscoelastic materials. One has in 
one dimension the rate of change

V-wi (5)

where a prime indicates differentiation with respect to time and subscripts R and I will denote the 
real and imaginary parts of a complex quantity. Using equation 3 we can write W in terms of the 
stress or strain time function. For example, since 0j = UVR, we have

w-Y (fa)1)' -**(  )  («)
If we now make the assumption that the internal energy can be defined completely by the stress 

and rate of stress, we can intergrate to calculate the internal energy of the solid. One finds that the 
first term in (6) corresponds to energy that is alternately "stored and returned" (Gross (1948)). The 
second term integrates to give a constantly increasing function which corresponds to the dissapation 
process. Thus one identifies the potential energy density of the solid as

M') -£('*«)* P)

As supplementary arguments for this form note that in the elastic limit one sets //=0 and 
finds that the proposed potential energy expression approaches the one used in the theory of elastic 
vibration. Furthermore, if one starts from the equation of motion

one can derive the following energy conservation law

The term on the right hand side is the energy flux (eg.Hudson (1980)) at a point and the kinetic 
energy density term is obvious. One is lead to the same candidate for potential energy as the one 
derived above.
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Q hat teveral equivalent dcfinitioni
One can calculate the maximum or average potential energy density for a one dimensional wave 

using equation (7). One finds the same average as reportd by O'Connell and Budiansky (1978) and 
that it is one half the maximum, where

(10)
«

Using equation (6) to calculate the dissapated energy, one gets 

If one defines

2x(energy ttored in a cycle)'

then measuring the energy stored by taking the maximum potential energy or twice the average of 
the energy stored, as suggested by O'Connell and Budiansky (1978), results in the same expression 
for Q which is also equal to the tangent of the phase difference betweeen stress and strain (as is 
readily seen from the definition of complex compliance) and can be expressed in terms of the complex 
wave number as well (O'Connell and Budiansky (1978)). Thus the various physical definitions of Q 
all yield the same number which can also be calculated in a variety of ways. We have

where k is the complex wave number, i.e. we write the displacement as

« .  ,««*-*») (12.5)

The relationship to three dimensional waves mentioned in the introduction is based on the fact that 
analogous results to (12.5) can be found for homogeneous plane waves. For inhomogeneous waves, 
the two definitions of Q in terms of maximum or average potential energy are no longer equal and 
the analogs to (12.5) no longer hold since the definitions give different dependencies on the degree 
of inhomogeniety in the general expressions for the Q.

Velocity
Velocity as well as Q is determined by the complex compliance. In order to find the relation 

one starts with equation (9) and finds, using (12.5),

(13) 

Since velocity is determined by the real part of k we have

Writing J in terms of its absolute value and phase, , we have

J = \J\tift (15) 

where

ft sss arctan f r~- 1 =   arctanQ~ l , (16)



hence

Using the trig identity

cos(20) +1

one finds the following expression for velocity

or

(20)

The negative of the imaginary part of the wave number k is usually denoted as a and is the 
coefficient of amplitude decay. Calculations similar to those above (sign caution: /? < 0 since 

< 0) gives

«-»> I/"(-1 + ̂ 1 + 9-*) (21) 

So we have

If one makes the low loss approximation

one gets the familiar expression

<*=**%-- (24)2« l '

EXAMPLE OF A STANDARD LINEAR SOLID

Finding a creep function
It is clear that the creep or relaxation function tells the whole story. The problem arises; what 

are plausible forms for these functions? One approach is to construct a physical model and then 
calculate its creep function. One does this by solving the differential equation of the system using a 
step function in stress as input ( eg. Hudson (1980)).

The, differential equation of a, ttandard linear tolid
The physical model of a standard linear solid (Hudson (1980), Flugge (1967)) is a spring and 

viscous element in parallel connected in series with another spring. Mathematically this configuration 
allows an arbitrary linear combination of stress, strain and their time derivatives. A convenient form 
for the equation of motion for this system is

V (25)



where MOO is the spring constant of the two springs as if they were in series and there were no 
viscous element, MQ is the spring constant of the spring not in parallel with the viscous element 
and T is the relaxation time of the parallel spring and viscous element system if one considered just 
those two as an isolated system.

Applying a step function in stress of magnitude OQ implies solving the following equations

r^O «0

r^J^tfo *>0 (26)

The last equation avoids the problem of differentiating a step function and says simply that the 
instantaneous response of the system is as if it were an elastic system with spring constant MQ.

The creep function, Q and velocity for a ttandard linear tolid 
Solving the equations one finds

 *  (27)
So we have a creep function

,/(*) = /ol+A(l-e) (28)

where JQ is the instantaneous compliance, j^-, and A is the percentage difference between the 
relaxed and instantaneous compliance. One can now implement the program outlined above to find

and
t         5         

(31)

DISTRIBUTION OF RELAXATION TIMES

Creep function*
The creep function for a standard linear solid can be interpreted as the sum of an instanta­ 

neous, elastic-like component and an exponentially decaying creep term. Some authors, eg. Gross 
(1948,1953), MacDonald (1961), Minster and Anderson (1979,1981), prefer to decompose our creep 
function into a function of the form

(32)

and refer to V1 as the creep function. In what follows we will be working with V1 to develop what we 
have called a creep function.

Relaxation dittribvtion function
The construction of the physical model of a standard linear solid is not the end of the story; it 

is certainly not adequate to describe all physical systems. In order to develop more plausible creep



functions and maintain physical sense one introduces a relaxation distribution D(t) which can be 
thought of as the result of superposing a sum or continuous distribution of standard linear solids 
in parallel keeping the same elastic parameters, J0 and A, but with different time constants (Gross 
(1948), Anderson and Minster (1979)) . Thus one represents $ by the integral

l>(r)(l-e^)rfr (33)

This level of complexity is as far as we will go. Clearly one might consider summing not onry 
over relaxation times, but over compliances too. As far as I know, no work has been done along this 
line.

The integral of D(t) is exactly the infinite time limit of ^» thus a physical constraint on D(t) 
is that it have a finite integral, i.e. the system tends to some finite strain under a finite stress. 
The interpretation of A in equation (31) as the difference between the instantaneous and relaxed 
compliances means the integral should be normalized to one (Gross (1948,1953). Further constraints 
on D(t) have been determined. See Anderson and Minster (1979) for references.

A note on the literature: The representation of if> given here is not quite the same as that in 
Liu, Kanamori and Anderson (1976) due to their having written the creep function for a standard 
linear solid in a different form.

Compliance and Q from a attribution function 
One can now express the complex compliance in terms of the distribution function as follows

J = iuJo «-""[!+AJ D(t)(l -c-r\dt]d9. (34) 
Jo V Jo }

Integrating the first term in the sum and interchanging the order of integration for the other we get 

or,

Note the similarity of equation (36) to equation (29).
To calculate Q we write J as the sum of its real and imaginary parts

Thus we have Q in terms of the relaxation distribution

A f~ l Jo

The expression for velocity is easily found using equations (19) and (37) or (20), (37) and (38).

THE MINSTER-ANDERSON MODEL

Introduction
Lomnitz (1957) introduced a logarithmic creep function to fit strain data over a limited time 

domain. The creep function gave a relatively constant Q over a broad range of frequencies. Jeffreys 
(1957) generalized Lomnitz1 law by introducing one more parameter, a, which allows a somewhat 
more pronounced frequency dependence for Q, the dependence going as u°. He used this modified 
Lomnitz law to reconcile average geophysical processes over a wide range of frequencies. His estimates 
for alpha varied around .25.



It was recognized that Lomnitz' law ultimately is unphysical since the infinite time limit gives 
infinite strain (Kanamori and Anderson (1977)). MacDonald (1961) pointed out, after finding an 
explicit relaxation distribution for the modified Lomnitz law, that it has the same problem; the 
integral of the distribution function is not finite. He proposed a further modification of Lomnitz 1 
law to retain the essential features while removing the divergence. Minster and Anderson (1981) have 
given physical arguments for a simple distribution function which also gives a creep function very 
similar to Jeffreys 1 and avoids the problem of the infinite time limit as well. Recently a physically 
plausible model which approximates Jeffrey's creep function was presented by Strick (1984).

Four parameter model distribution function
The Minster* Anderson model gives an absorption band over which Q varies approximately as 

u°. The model is parametrized by a, the two frequencies which determine the boundaries of the 
band, and the parameter A introduced above which can be used to determine the minimum for 
Q once the other parameters have been chosen. The normalized distribution function has three 
paramters and has the form

f/ ''-'-'' (39)
0 otherwise 

where t? and t\ are the long and short period boundaries of the absorption band.

Formula for Q
Denoting the normalizing constant by N and explicitly writing out the integrals indicated in 

the previous section one gets the following expression for the complex compliance

and Q~ l is given by

As usual, velocity dispersion can be calculated using equation 19 or 20.
In general, no closed form expression for Q exists for this model. Minster and Anderson (1981) 

give low and high frequency asymptotics and mid-frequency approximations for a less than, equal 
to and greater than 0. Closed form expressions for o=0,l and a simple series expansion which can 
be used to calculate Q for arbitrary values of alpha are given below.

doted form exprettiont (as=l,0) 
To calculate the compliance and Q one must evaluate expressions of the form

/*  t?dt

Jt 1 "T" W2 ^ 2

which can be written in closed form for #=-1,0,1. #=0 gives

/'* di - I ( u(h~ti)\

/?= ! gives

Jt i(l+wa f 2 ) <i 2 \l+w2 * 2



/?=! gives

r'**
When or=0 we get the normalization constant

and so

Vfl  

this is a version of the flat absorption band that is the remnant of Lomnitz1 original attempt. Similar 
expressions are found in Liu et. al. (1976) and in Kanamori and Anderson (1977). 
a=l gives

. , 
' '

These closed form expressions were used to check the following series expansion.

Serie$ cxpantion
For arbitrary values of or one must evaluate the integral in equation (42). To get a series 

expansion for this purpose, one expands the denominator of the integral in a geometric series, 
multiplies by t& and integrates the resulting expression term by term. Depending on what frequency 
one is interested in, one can have different series expansions.

For ut£l, one has

n=o 

and for urtjl,

00
1 .-, V-, ,0- J^J

1 »=o

The resulting expansions for equation (42) are

{ii)ti\P+*n+1 \

n=0

These series have been tested using 100 terms and work quite well. The attached figure duplicates 
Minster and Anderson's (1981) figure 2.
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Ettimation of parameter t
Since A has some physical meaning it seems worthwhile to retain it as a parameter for the 

model, but one might like to find a value corresponding to some particular peak value on the Q~ l 
curve. I have used as a rough first approximation the following relation for Ojajl

(52)

A brief outline of how this formula was derived goes as follows. Starting with the mid-frequency 
approximation for c*=0

we get the maximum Q~ l value for that curve as

One uses the high frequency asymptotic* given by Minster and Anderson (1981) to find, for a given 
or, t\ and tj what A should be so that the a=0 and specified a curves meet at high frequencies. The 
resulting equation is

If one now assumes that Q goes as ua until u=2x/ti at which point it meets the a=0 curve, this 
means that at the meeting point

1 6)
Using the three equations, (54), (55), and (56), one gets the result.
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MINSTER-nNDERSON Q .NINDONS

SHORT TIME=!.0 
LONG TIME=1000Q, 
RLPHR=0.25 
A=.2934

flLPHfl=-.250 
A=.G489

fll_PHfl = 0. 
A=. 1

o 
o

-6.00 -5.00 -14.00 -3..00 -2.00
LQG10 (FREQUENCY)

-i.co o.oo i.oo



SHORT TIME=1.0 
LONG TIME=10000.0 
fll_PHR = 0.25 
A=.2S34

MINSTER-flNDERSON DISPERSION A=

RLPHR=0.
A=.l

o 
o

-6.00 -5.00 -4.00 -3.00 -2.00 
LQG10 (FREQUENCY)

-1.00 0.00 1.00


