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FINITE-DIFFERENCE MIGRATION BY THE OPTIMIZATION OF ONE-WAY EQUATIONS
By Myung W. Lee and Sang Y. Suh
ABSTRACT

The principle component of the finite-difference migration scheme is
the approximation of a one-way wave extrapolation operator or a downward
continuation operator. Usually, this approximation can be carried out
either by a Taylor series expansion or a continued fraction method of an
exact one-way extrapolation operator (or a "square root" operator). Due to
the truncation of the expansion, the dispersion relation of the conventional
one-way equation is very inaccurate, particularly for high propagation
angles. This dispersion error controls the limit of the dip angle to be
properly migrated by the finite-difference method.

In order to improve the dispersion relation, an optimization method was
investigated. The basic concept of the optimization is to modify the
coefficients of the conventional equation in such a way that the modified
coefficients provide a better dispersion relation. This optimization can be
implemented by minimizing the weighted dispersion error using a
least-squares method.

This study shows that the optimization improves the dispersion relation
of the one-way wave equation substantially. For example, within the
relative dispersion error of 1 percent, the optimized second-order equation
is reliable up to the propagation angle of 65 degrees; while the
conventional second-order equation, the so-called 45 degree equation, is
reliable up to U5 degrees. Since the only differences between the optimum
and conventional one-way equations are the coefficients in the rational
approximation of the square-root equation, the conventional finite-
difference migration computer program can be modified easily in order to
improve the performance of steep-dip migration.

INTRODUCTION

One of the main purposes of reflection seismology is to image the
subsur face structure by measuring the reflected waves on the surface. To
accomplish this objective, the data is subjected to computer processing.
Seismic migration is a process of reconstructing the subsurface structure
from the measured data and has received a great deal of attention within the
last decade. There are three different approaches in modern seismic
migration, i.e., the finite~difference method (Claerbout and Doherty, 1972;
Claerbout, 1976), the Kirchhoff integral method (French, 1975; Schneider,
1978), and the F-K method (Stolt, 1978; Gazdag, 1978). All of the methods
are based on the wave equation and are conveniently called wave-equation
migrations.

Wave-equation migration is accomplished by two steps-—-downward
extrapolation and imaging. The three methods of migration differ in their
approach on the extrapolation of the wave field. The difference between
depth migration and time migration is the imaging of the extrapolated wave
field. Since imaging is simply a method of representing the wave field, the
method of extrapolation is of great importance in most migration schemes.



The theory of wave extrapolation is based on the square root equation.
The conventional wave equation represents waves which propagate in positive
and in negative z-directions simultaneously. On the contrary, the square
root equation represents waves propagating in one z-direction only.
In laterally homogeneous media, exact wave extrapolation can be achieved by
the square-root equation in the frequency-wavenumber domain.

In laterally heterogeneous media, wave extrapolations can be
accomplished by use of the finite-difference method. In this method, a
wavefield can be extrapolated by a one-way equation which is a rational
approximation of the square-root equation. The one-way equation is further
approximated by a difference equation in the actual computation. There are
two methods of rationalizing the square-root equation. One is by a Taylor
series and the other is by continued fractions (Hildebrand, 1956, p. 406).
The Taylor series method may be called an explicit scheme while the
continued-fractional method may be called an implicit scheme. The
conventional 15-degree equation is the first-order approximation of the
square root equation by either method. The U45-degree is the second-order
approximation by the implicit scheme.

One of the disadvantages in the finite-difference method is that it
cannot handle steep-dip structures. This is due to the inaccurate
dispersion relation of the one-way equation used in the method. The
inaccuracy comes from the truncation of the exact series expression of the
square-root equation. Therefore, more terms must be used, i.e., migration
by higher order equations. Berkhout (1980) and Gazdag (1980) used explicit
high-order equations in their migration. An advantage of this method is the
accuracy of the derivatives, which are evaluated by either a convolution in
the space domain or by a multiplication in the wavenumber domain. This
method alone cannot handle the steep-dip limitation satisfactorily, as is
demonstrated in a later section. Besides, this method is numerically
unstable (Gazdag and Sguazzero, 1984). Ma (1981) developed a more practical
approach to finite-difference migration using the high-order implicit
equations. In his method, the high-order equation is split into a series of
low-order equations that are solved separately.

Berkhout (1979) studied the dispersion relations of the first-,
second-, and third-order approximate equations and found that the dispersion
error could be reduced by modifying the coefficients of the equations. His
results suggest that the dip limitation can be avoided by using a higher
order equation with modified coefficients. Ma (1981) attempted a similar
procedure for the fifth~order implicit equation.

In the first section of this paper, the theory of wave extrapolation is
briefly reviewed and the dispersion relations of one-way equations both
explicit and implicit are analyzed. In the next section, optimization of
the implicit one-way equations (using a least-squares method) to minimize
the dispersion error is discussed. Finally, the optimized equations are
tested on three examples: (1) extrapolation of a monochromatic wave, (2)
migration of a synthetic model, and (3) migration of field data. Two
appendices--the finite-difference formulation of the one-way equation and a
version using only CPU (Central Processing Unit) of the migration
program~--are included.



ONE-WAY EQUATIONS

Wave-equation migration consists of two steps: extrapolation and
imaging. The finite-difference extrapolation uses the one-way equation
which is a rational approximation of the square-root equation. In this
section, the basic concept of wave extrapolation is reviewed and the various
one-way equations in terms of their dispersion relations are investigated.

The theory of wave extrapolation starts from an assumption that the
wave field p(x, z, t) satisfies the two-dimensional scalar wave equation:
»P PP _ l P
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where x is the horizontal distance, z is the depth, t is time, and v is the
velocity. By introducing kx and w, which are the apparent horizontal

wavenumber and the angular frequency, respectively, the wave field can be

expressed by the following double Fourier transform:
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For the moment, we assume v is independent of x. Substituting equation (2)
into equation (1) gives an ordinary differential equation:
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Equation (3) has two solutions,
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where kz is given by
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One of the two solutions represents the wave propagating in the negative

zZ-direction, while the other is in the positive z-direction. 1In order to
extrapolate the wave field, we must choose only one of the two solutions for
the following reason.

/%,
_ (5)

The wave equation is second order in z and has two independent
solutions. Therefore, we need two boundary conditions to extrapolate waves
in the z-direction. But we are given only one boundary condition in seismic
migration, the wave observed on the surface. If the wave propagates in one
direction only, we may discard the unnecessary solution in equation (4).
This reduces the wave equation to the first order in z which can be solved
with one boundary condition.



We choose the positive sign in equation (4) which implies that the wave

propagating in the negative z-direction is considered. With the positive
sign in equation (4), the extrapolation of the wave at z = zo to z = zo +

Az can be accomplished by the correcting the phase angle, given by szz.

This is the basic concept of the phase shift method of migration (Gazdag,
1978). The above approach indicates that the wave extrapolation in the
(kx, Z, ) domain might be represented by the following square-root

equation’,v " q}-ﬁ . %N
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where the subscript z represents the derivative with respect to that
variable. Equation (6) is appropriate for the zero-offset migration.

For the non-zero offset migration, a double square-root equation (Yilmaz and
Claerbout, 1980) should be used.

The phase shift method is valid only for laterally homogeneous media.
If the velocity changes horizontally, the extrapolation can be done in (x,
z, w) or in (x, z, t) domain with the one-way equation which is a rational
approximation of equation (6), assuming that the logarithmic variation of
velocity is less than that of the wave. There are two approaches in the
approximation--explicit and implicit. The explicit method uses the Taylor
series expansion while the implicit method uses continued fractions. Both
of the methods require truncation of the exact expression. This is known as
the paraxial approximation. Because of the truncation, the derived one-way
equation is always different from the square-root equation. The difference
may be represented by the dispersion relations. We investigate the
dispersion relations of the one-way equations derived by both methods.

The simplest method of approximating the square-root expression of k
given in equation (5) into k is the Taylor series method,
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Let us define k;n)

, the n-th order approximation of kz' by taking the first
n+1 terms in the series expression. The first-order approximation of kz

produces the following one-wWway equation,
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in the (kx, z,w ) domain. By inverse-transforming equation (8), the one-way

equation can be written in the (x, z, ) domain as

F}=g
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This equation is known as a 15-degree equation. In the wave extrapolation,

the wave P and its x-derivative are known, but the z-derivative is unknown.
Equation (9) represents the unknown PZ in terms of the known. Therefore,

the equation is an explicit one-way equation. The second-order
approximation of kz produces the one-way equation in (x, z,w) domain as

z 4
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which also is an explicit one-way equation. Generally, a one-way equation
derived from the Taylor series method is the explicit equation.

The accuracy of the approximate one-way equation is determined in terms
of its dispersion relation. Let us consider a plane wave in the direction
of 8 with respect to the z-axis. The apparent wave numbers in x- and
z-directions are

%@:*ﬁ,&ﬁme (1
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respectively, where k is the true wave number /v. The dispersion relation
of the first-order approximate one-way equation is found by substituting
equation (11) into equation (7) resulting in

‘gg) = % () - —;—MG‘)' (13)
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and is a function of the propagation angle 8 and of the wavenumber k. The
relative dispersion error is defined by the dispersion error normalized by
the wavenumber, which is a function of only the propagation angle. For a

reflector having dip angle @, the propagation angle of the normal ray is
also § with respect to the z-axis. For successful migration, a one-way
equation which is accurate up to the propagation angle @ should be used.

Therefore, the dispersion error, Ak is given by

let us define the relative dispersion error limit as 1 percent. Figure
1 shows the relative dispersion error of explicit one-way equations obtained
by the Taylor series method. The numbers on the figure are the order of the
approximation. The higher order approximation gives the more accurate
dispersion relation. Gazdag (1980) and Berkhout (1980) used the explicit
higher order equations for migration. The x-derivatives were computed by
convolution in (%, z, ) domain or by multiplication in (kx' Z, w) domain.

This method is effective in reducing the numerical error resulting from the
approximation of derivatives by differences. However, the methods were not
effective for steep-dip migration. Figure 1 indicates that a sixteenth
order equation or more should be used to migrate a 75-degree dipping
structure.
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Figure 1l.--Dispersion error in explicit one-way equations obtained by
Taylor series approximation of the wave equation. Numbers annotated
next to the curves indicate the order of approximation.



The second method of approximating kz into kx is the use of continued

fractions. Let us define two new variables s and Y as
2 PR z

v A (15)
e ﬁf
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respectively. This method is the approximation of Y by a rational function
of s, resulting in a quadratic equation by squaring equation (16)

The smallest root of equation (17) is found by successive approximations
(Claerbout, 1976, p. 207). By using n-th approximation of Y, Yh, and

(n+1)~th approximation of Y, Yn 1’ equation (17) can be written by
+
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This gives a recurrence relation,
S
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Starting from Yo = 0, we get the first and second approximations of Y as

Y = N (20)

Y = AS 21)
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respectively. The third and fourth approximations are
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The first-order approximation of the one-way equation is obtained using
equations (6), (15), (16), and (20), and is the same as the first-order
equation obtained by the Taylor series method. The second-order equation by
continued fractions is obtained using equation (21). In the (x, z, @)
domain, the equation is

e _51 )jaxx
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T

(24)



Equation (24) is known as a U5-degree equation. The third and fourth order
equations by continued fractions are obtained by the same method. These are

P W (1 + 4-%277(7( + Dkpson )P

- 25
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Equation (24) contains an x-derivative term in its denominator. If the
x-derivative is considered as the spatial convolution, the derivative in the
denominator corresponds to the spatial deconvolution. Equation (24) may be
converted to the convolutional form by multiplying both sides of the

equation by uk2 + axx' The result represents the unknown Pz in terms of

Pxxz which is still unknown. Therefore, equation (24) is an implicit
equation. For the same reason, equations (25) and (26) are implicit
equations. Generally, a one-way equation (with an order greater than two)
derived by the continued fraction method is an implicit equation. Stolt
(1978) derived similar equations by transforming the wave equation into the
floating-time coordinate and by successively approximating the z-derivatives.

Ma (1981) introduced a convenient method of solving the higher order
implicit equations in which the higher order equation is split into a series

of lower order equations. The general form of Y2n is given by
" \ ( n N
T = a s* |+ b.s )
2b LZ__’]' g : 27)

Equation (27) may be split into partial fractions as

LU o S
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Therefore, the 2n-th order implicit equation is given by
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in the (x, z, w) domain, Appllcatlon of Marzuk's splitting method (Mitchell,
1969) to equation (29) gives the following series of second-order equations
and a phase correction equation,

N F - A‘, _La_ dm)’)"x l)
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Thus, wave extrapolation by the 2n-th order implicit equation is accomplished
by solving the second-order equations n times and by applying the kAz phase
correction. In this method, the computing time of the extrapolation is
approximately proportional to the order of the equation. It is possible to
apply the splitting method to the (2n-1)th order equation, but it has no
advantage over 2n-th order equation. The computing time is almost the same
but the dispersion relation is less accurate.

Figure 2 shows the relative dispersion error of one-way equations
obtained by the continued fractions method. The numbers shown are the order
of the approximation. The dispersion relation shown in this figure is more
accurate than in figure 1. With the same order of approximation, the
impliecit equation is superior to the explicit. Still the implicit equation
is not satisfactory. Even the eighth-order implicit equation shows more
than 1 percent relative dispersion error for the propagation angle of 75
degrees. In order to get an implicit equation reliable up to 90 degrees
propagation angle with 1 percent relative dispersion error, n must be 100 or
more. Therefore, the problem of steep dip in finite-difference migration
cannot be solved by using the higher order equations alone.

OPTIMIZATION OF ONE-WAY EQIATIONS

That the implicit equation better approximates the square-root equation
than does the explicit equation has been shown. Furthermore, Berkhout
(1979) modified the coefficients in second and third order implicit

equations. In his method, the second and third order approximations of Y in
equations (20) and (21) are modified as

Y o= L2

27 2 1+8,S (31
Y - S 1+ G5

37 2 1458 (32)

respectively. Instead of the original coefficients a, = a5 = 0.25, he used

3
32 = 0,279 and a3 = 0.242 respectively. The modified equations showed
better dispersion relations than the originals. Ma (1981) introduced a
modified version of his sixth-order equation, which corresponds to Y5 in
this paper. In this section, the optimization of one-way equations by

modifying the coefficients is discussed.

The approximation of Y into Y2n produces the error E2n(s) as

1/6
L, (8 = 1 Y- G+ S) (33)
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Figure 2.--Dispersion error in one-way equations obtained by the continued
fractional approximation of the wave equation. Numbers annotated
next to the curves indicate the order of approximation.
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Substituting equation (27) into equation (33), and converting into the
propagation angle O gives

n N n Lo
E, (8) = Zﬁg(—mlé)/[‘ U Zb;(-%«ﬁ)] *1=Gsh, (34)

c=l
The optimization procedure may be defined by finding coefficients ai, bi
(i=1 2, «eey n) which minimizes the following integral,

J - f £ ©)do (35)

where P is the maximum optimization angle. The direct approach using
equation (35) is very difficult and requires laborious numerical
integration. Moreover, it turns out to be a nonlinear least-squares method.
The authors tried to solve the problem by the Newton-Gauss method employing
the iterative Taylor series expansion but the result was not satisfactory.
The difficulty occurs when n is greater than 2, greater than the
fourth-order equation, mainly because the solution is very sensitive to the
initial guess required in the Newton-Gauss method.

To circumvent this difficulty, we used the weighted dispersion error.

The weighted error Eén is defined as the result of E2n times its

denominator in equation (34),

oy P e+ -we) 1 T b 40 ] (36)
E, () = Z:' O, (- tim 6) =t
The optimized coefficients a, bi’ (i=1,2, ..., n) can be found by

minimizing the following integral

7 - Jj( [E;,,(G)sze_ (37)

This is a linear least-squares method. The validity for using the weighted
error can be justified by analyzing its result.

With the standard least-squares method, the optimization coefficients
are the solution of the following normal equations,

Z 4 | cute) de + I LJ-S(—Me)”"u-we)Je
J¥! bt (38-a)
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The integrals in the above equation can be calculated by the following
integration table (Selby, 1971),

. m=)
< An K X " -1 .2
A o dot = = + X d -
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N | S
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The solution of equation (38) gives the optimized one-way equation for each
optimization angle 6. It is further split into a series of second-order

equations, which may be solved by the conventional U5-degree migration
algorithm.

The difficulty in the optimization is that equation (38) is
ill-conditioned for the higher order equations. The double-precision
computation employing 64 bits gives considerable error for optimization of
the sixth-order and the eighth-order equations. Inversion of the
ill-conditioned matrix is greatly affected by the number of significant
digits. For this purpose, special Fortran subroutines are written, which
compute addition, subtraction, multiplication, and division with arbitrary
bits of precision. All of the computations for solving equation (38) is
done by these subroutines.

Table 1 shows the optimized coefficients which are further split into
a series of second-order equations given in equation (29). The
sixth-order-or-less equations are computed with 100-bit precision; the
eighth-order and tenth-order equations are computed with 200-bit and 300-bit
precision, respectively. The first and second columns of the table
represent the order of the equation and the maximum optimization angle. The
third and fourth columns represent the numerator and denominator
coefficients of the split equations.

The dispersion error of the optimized 2n-th order equation is given by
N
di Auw B
- — up =
The relative dispersion error is defined as Akz divided by the wave number

k. Figure 3 shows the relative dispersion errors of the various one-way
equations. M, through M10 are the errors in the optimized equations, the

2
subscripts of which represent the order. Y2 is the error in the unmodified

second-order equation, the conventional U45-degree equation. B2 is the error

in Berkhout's modified second-order equation. Berkhout's modified equation
clearly is an improved version of the unmodified second-order equation. The

optimized second-order equation (M2) is better than B Note that two

2.
coefficients are modified in M2 but only one coefficient is changed in B2.

12



Table

1.-=Coefficients of

optimized, fractioned one-way wave equations

Order ] i Si
2 65 LUT8 242 060 .376 369 527
i 80 .040 315 157 .873 981 642
457 289 566 .222 691 983
6 87 004 210 420 .972 926 132
.081 312 882 LTU44 418 059
L4114 236 605 .150 843 924
8 90 .000 523 275 .994 065 088
.014 853 510 .919 432 661
.117 592 008 614 520 676
.367 013 245 .105 756 624
10 90 .000 153 427 .997 370 236
L0084 172 967 .964 827 992
.033 860 918 .824 918 6565
.143 798 076 .483 340 1757
.318 013 812 .073 588 213

13
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The improvement of the optimization can be observed by comparing
figures 2 and 3. Accepting the relative dispersion error limit of 1
percent, the second-order equation, which is accurate up to approximately U5
degrees in figure 2, is improved up to 65 degrees in figure 3. The
fourth-order equation which is accurate up to 65 degrees in figure 2 is
improved up to 82 degrees in figure 3. This behaviour can be observed in
the eighth-order equation. The optimized tenth-order equation is accurate
up to 90 degrees, which cannot be achieved by the 100th-order equation
without the optmization. The validity for using the weighted error in the
optimization procedure is established.

EXAMPLES

In this section, the optimized one-way wave equations are tested in
three different examples. The first example is the extrapolation of a
monochromatic cylindrical wave. The second example is the migration of a
synthetic reflector model. The last example is the migration of field data.

Figure 4 is the result of monochromatic wave extrapolation by the
finite-difference method. Figure 4A is computed by using the unmodified
second-order equation. Figures U4B and 4C are computed by the optimized
second- and fourth-order equation, respectively. The computational
procedure is as follows. A two-dimensional (x, z) domain of 2,800 m by
1,200 m is divided by a regular grid having the intervals Ax = Az = 10 m.
With the origin on the upper left-hand corner of the domain, the grid index
in x-direction (j) ranges from 0 to 280; while the grid index in z~-direction
(n) ranges from 0 to 120. A monochromatic wave source is located at j = 80
and n = 0, The wavelength is 100 m, which corresponds to the 30-Hz wave
propagating through the 3-km/sec velocity medium. The theoretical solution
of the wave is approximated by

41)

where r is the distance from the source. The wave at the source is replaced
by that of the adjacent grid point. Because of the spatial aliasing, the
finite-diference method is not applicable near the source point. Therefore,
the waves at n = 1, 2 and 3 are computed by equation (41). Waves at n = U4
through n = 120 are computed by the finite-difference method, the details of
which are described in Appendix A. Figure 4 shows the real part of the wave
field at even indices of j, j = 0, 2, 4, ..., 280.

The accurate wave extrapolation should be represented by a semicircular
wavefront. The amplitude should be inversely proportional to the square
root of the distance from the source. The wavefront in figure Y4A is not a
perfect semicircle. The amplitude in figure U4A does not decay properly
particularly in a 60-degree deviation from the vertical. These effects are
caused by the error in the dispersion relation. Figure 4B shows better
results than figure 4A, and figure U4C is better than figure U4B. The
optimized second-order equation is better than the original second-order
equation. The higher order equation is superior to the lower order
equation. Figure 4C, which is computed by the optimized fourth-order
equation, shows almost perfect results except for a minor amplitude anomaly
in the upper-right corner. The results are anticipated from the previous
discussion on one-way equations.
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A least squares method, which minimizes the weighted dispersion error, is
investigated. By introducing the weighted error, the least-squares method
is reduced to the linear problem. Optimized coefficients are computed for
up to the tenth- order equation. Each of the optimized equations shows
significantly improved dispersion relation over the corresponding
unoptimized equation. Using the optimized equations, the steep-dip
migration can be achieved accurately without going to the higher order
equation.

The optimized equations are tested on three examples. The first example
is on the extrapolation of the monochromatic cylindrical wave. In the
example, the optimized second-order equation shows better results than the
unoptimized second-order equation which is known as the 45-degree equation.
The computing times by the two equations are exactly the same. The
optimized higher order equations show substantially better results than the
lower order equations. The second example which is on the migration of a
synthetic model, shows similar results. A stack section is migrated by the
optimized second-order equation. The result is considered as acceptable.

The extrapolation of high-angle waves requires suppression of numerical
error occurring from the derivative to the difference approximation as well
as the one-way equations having accurate dispersion relation up to that
angle. One of the methods of suppressing the numerical error is by working
with finer grid intervals. Use of a finer grid interval will result in many
hours of computing time. A method should be developed to control the
numerical error effectively.
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APPENDIX A. Finite-Difference Formulation of the One-Way Equation.

A 2n-th order implicit equation is split into n second-order implicit
equation. Therefore, it is sufficient to describe the solution method of
the second order equation which is given by

N o dax
F = e Y - P (A-1)
} ' PB«’%
A two-dimensional wave field is defined on (x, z) domain. The domain is

divided into a regular grid, the intervals of which are Ax and Az. The wave

field at an intersection, P(jax, NAz) is denoted by Pg. The problem of

extrapolation is to find wave Pn;1(j =0, 1, ¢cey J) from the given Pg(j =

0y 1, «ees J)o The finite-difference method employs the difference
approximation of equation (A-1).

The z-derivative in equation (A-1) is approximated by
)3 ~ =z __ES_L (A=2)
8y T3
8y f@ = $ a3y~ $3)
T, $ @ = §3+ad> +§03)

This is an expression of Crank-Nicolson's scheme of the finite-difference
method. The x-derivative in equation (A-1) is approximated by

3 | D xx
*x @R* 1+ Viz dxx

where

(A-3)

where

Sax 0 = foxson) =2 7(1'{) + £0x-6%)

Equation (A-2) is accurate within 1 percent if 18 or more grid points exist
per one wavelength. Equation (A-3) is accurate within 1 percent if 5 or
more grid points exist per one wavelength (Claerbout, 1976). Substituting
equations (A-2) and (A-3) to equation (A-1) gives

"

2 2 2 — "
233[%/59(3—)-(@ +4 M‘/z,);”‘?‘] Pj ~p'£’.0“é’r}§xx PJ (A-Y)
Expanding equation (A-4) in z index gives

2[‘%)]7(1_.’(? } &’ﬁ)(%z) qu(] ( P}H— F:; ) = Lﬁ,d 05 E’X?( ( )3—'“*,4- \3\“). (A=5)

Expanding equation (A-5) in x index gives

n +l M Mt
+ C.
AJ PJ-: N BJ Pj AR PS-: J

(A-6)

i
<
'
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Ar =2 (B~ Bax’fi2) - ko a3
Bj = A [ﬁ"A’Xl-R((Q}-r 1"@24’)(’%2)] +}L4;ﬁ,o(63_

C- = A"‘
J
% n Iy * Y
- AL B. p. +C. Y.
o = A RL s R G P
for J= 1, 2y eeey Jd=1,

* % *
where Aj' B, and C_ indicate the complex conjugate of Aj’ Bj’ and C ,
J J

respectively.

Equation (A-6) gives J-1 equations for J+1 unknowns. The remaining two
equations are given from the boundary conditions. A conventional boundary
condition such as Dirichlet or Neumann is subject to artificial reflections
at the boundary. To suppress the artificial reflections, Clayton and
Engquist (1980) suggest

) a + box/a
P = P (A-T)
3 4 I+ C/h
in the fixed-time coordinate. The coefficients a, b, and ¢ are determined

so that the dispersion relation of equation (A-7) approximates the quarter
circle. The boundary condition for equation (A-1) may be in the form of

F - W A)'X

3 ~ U 4 + C O
where the coefficients ¢ and d are determined as the dispersion relation
approximates to one-half that of the interior. If it approximates +kX axis,

p (A-8)

it is used at the +x boundary; if it approximates -kx axis, it is used at
the -x boundary. The coefficients are found by the least squares method

which is very similar to the optimization of one-way equations.

The finite-difference formulation of equation (A-9) uses equation (A-2).
The formulation at x = 0 boundary is

(‘&A'Xﬂ*lCSm)gé P’ =L&4°}>%§ P:: (A-9)

Expanding equation (A-9) in the z index gives

(Rox +2¢30) (PI-02) = ifdayx (B7=D)) (1-10)

Expanding equation (A-10) in x index gives

Bo Pow + C, P,w - D (A-11)

- o
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where
B, = fsx -acC +L‘ﬁd";
C, = Bax t2cC —i%dbé
Ds = B§Fﬁ + Q?—Rn

The finite~difference equation at x = JAx boundary can be derived by
changing the subscripts as 0 to J and 1 to J=1, and the coefficients C to A

as

AJ P;—;ﬂ * BJ PJM =DJ (A-12)
where

Ay = BAY +2C -kﬁdac;

By = hax —ac tikd ey

Oy = KF Py, * PG

Equation (A-11) is added to the top of equation (A-6) and equation (A-12) is

appended to the bottom of equation (A-6). TIntroducing vectors E?+1 and D

which represent Pg+1

and Dj(j =0, 1, eeey J), the result will be

n+\ (A"13)
P = D

=<

where matrix M is given by a tridiagonal matrix as

/

N

Bo Co 'ZeYo
A, B, C,
M - p’& rb?-: CZ
— L]
Af—l BJ‘—; d
Lerg B
\ J J,
The solution to equation (A-13) may be found by introducing an auxilliary
equation
nH _ N Ph"”
o g T T e (A-18)

Coefficients Ej and Fj are found by comparing the coefficients to equation

(A-13).
1976) .
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The unknowns are then computed by backward substitution (Claerbout,



APPENDIX B, CPU Version of the Migration Program

This program computes a depth-migrated section from a zero-offset
seismic section. The name of the program is FXZMIG, It is written in
Fortran 77 language. Five files are referenced by the program. The first
file is named by FXZMIG.DAT and is intended for reading the input parameters
only. A more thorough description on the parameters may be found later.
The second file is the trace file containing the zero-offset seismic
section. The format of the file is UNFORMATTED, i.e., the information is
represented by the internal format. Each trace consists of one record.
There is no header in the trace, i.e., the file should contain amplitude
information only. The third file is the velocity file containing the
migration velocities in (x, z) domain. Like the trace file, it is
UNFORMATTED and has no header. The velocity should be defined at every
trace and at every depth step. The fourth file is named by FXZMIG.OUT and
will contain the migrated result in (x, 2z) domain after the successful run
of the program. The last file is a scratch file intended for the program
internally.

Four lines of input parameters are required for the program to run. The
first line defines six parameters: NX, NZ, NT, DX, DZ, and DT. NX is the
number of traces; NZ, the number of depth steps; NT, the number of time

samples; DX and DZ, the spatial intervals in meters; and DT, the temporal
interval in msec. The second line defines two parameters, NESTDR and WPCNT,
NESTDR represents the order of the one-way equation which will be used for
the migration. The number indicates half of the order, i.e., 1 is the
optimized second order, 2 is the optimized fourth order, and so on. It
should not exceed 5. If NESTDR is less than 1, the conventional 45-degree
equation will be used for the migration. WPCNT is a parameter for the
numerical dip-filter. If it is 0, no dip-filter will be applied. The
dip-filter algorithm may be found in Claerbout (1976).

The third line describes two parameters, SW1 and SW4, i.e., the lowecut
and highcut frequencies, respectively, in Hz. The highcut frequency should
not exceed Nyquist frequency. The fourth line defines the name of two input
files, i.e., the velocity file and the trace file. All the lines should be
physically separated by a carriage return for an interactive job. For a

batch job, the lines must be on separate cards. The parameters within a
line should be separated by a comma and/or spaces, i.e., in free format of

the Fortran language. Each file name should be enclosed in a pair of

apostrophies., The following example shows the input parameters used in the
computation of figure 8C.

Example of the input parameters

256 120 130 50 50 50
2 0
1 9

'VELOO8', 'MDLPHS,OUT'

The program statements are as follows.
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OO OO0

(oNeNeNeNe]

ccc

OO

s D30 NN

[0 BRI

[SYIRAS I

PROGRAM * %

FXZMIG * ok

* k ok kX Kk X Kk * * * Kk *k * * Kk * * *x * K * Kk

VERSION HGe3 SEP/28/84

FINITE-DIFFCRENCE WAVE EQUATION MIGRATION IN (FyXeZ) DOMAIN

* ok ok ok Kk Ak Kk *
PROGRAM FXZMIG

INCLUDE

* & &k &k *x * Kk *x Kk *k *x Kk *x *x * *x * *x * LI S

TFXZMIGaCMB/LIST!

CONETENTS OF FILE FXZMIG.CMB

COMMOY / B8LK1 /
NXy

NZy

NTy

DX

DZy

OTy
NX2 o NYyNX1y
NTFFT,
NiWeDWy
SWOsSW1 eSHYy
AIMAGAMIMAG

COMMON / BLK2 /
EXTBUF(1245)
BNDBUF (245)
NESTDR

CHARACTER*56
COMMON / BLKF 7/
PARAMETER
LDVVEL = 11,
LDVTRC = 12,
LOYMIG = 13

NOe OF TRACES),

ND. OF SAMPLES

NDe OF TIMZ SAMPLES)

TRACE INTERVAL,

Z=-STEP IMNTERVAL,

SAMPLING TIME,

NX*2y MNX=29 NX=1,

FFT LENGTH IN TIME,

NO. OF FREQUENCIESy AND INCREMENT,
START(SHO9ySW1) AD END(SW4) FRQUENCIES
DIP~FILTER PARAMETERS

P L e W (e e i e e YA e

' EXTRAPOLATION MATRIX,
' BOUNDARY MATRIX
' QORDER OF THE NEST

FILVELy FILTRC
FILVELy FILTRC

! VELOCITY F
I TRACE FILE
! MIGRATED QUTPUT

ILE

END OF FILE FXZMIGLCMB

DIMENSION BUF
DATA MAXBFS 7/

CALL GETCRD

(320 0G0O)

320 000 /

CALL ALCMEM (MAXBFSy IVy IMy JMy IAy IBy ICy IDy I7)
CALL EDTVEL (HUF)
CALL TM2FRG (BUFy BUFC(IG))

CALL eXTCON

CALL MLTSTP (RUF(IV),y BUF(IM)y BUF(JM)y BUF(IA)y BUFC(IB),

BUF (IC)y BUF(ID)y 3UF(IQ))

CALL DUTPUT (BUF)

STOP
£ND

TNORMAL

COMPLETION?®
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33
34
3%
3e
37
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40
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42
43
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OO0

OO0

OO0

OO0

€0

€2

64
66
£8

£ G PO e

SUBROUTINE GE

TCRD

READ INPUT DATA FROM CARG.

INCLUDE

"E X

ZMIGaCMB/NOLIST?

READ/HRITE SCECTION.

OPEN (UNIT = %4 FILE = 'YFXZMIG',
ARITE (69 60)
READ (59 %) N¥Xy NZy NTy DXy D2
ARITE (64 62) NXo NZy NTy DXy DZ,
READ (59 =*) NESTDRy WPCNT
WRITE (€49 £4) NESTCRs WPCONT
READ (5S¢ %) SWly SW4
WRITE (69 66) SHly Sh4
READ (59 *) FILVELs FILTRC
WRITE (5y 68) FILVELy FILTRC
CLOSE (3)
FORMAT SECTION
FORMAT (1H1//7/735CY x1)//
' WELCOME TO *xx F X Z M
' FINITE-DIFFERENCE WAVE £Q

FORMAT

FORMAT
FORMAT
FORMAT

'
?

DOMAINY// 35(Y %)/

INPUT DATA SUMMARY'/)

/

TYPE = '0LD'e READONLY)

DT

DT

I G »x+x¥SX'WERSION HG.3'/
e MIGRATION IN (FeXeZ)',

(TIINXYTISINZYT29'NTIT38IDXIT49YDZ'TS59 DT/

3

I1GC,

JF1C0.1)

("O'TSINESTDRYTI6'WPCNT'/ I104F10.1)

('0'TBYSF1'T1IBYSF4

('0 FILVEL ='42XsA/"

PARAMETER EXAMINATICN SECTION

NX2
NY
NX1
DT
NTFFT
FNYQ

IF (Su

PI
D
SW1
SW4

IWl
IW4
NiW
SHO
SWMAJ
WIMAG

[}

1.

NX o+ NX
NX - 2
NX = 1
D71 / 1000«
KPOWRZ2 (NT)
0.5 / OT

EeSH
ACOS (=1.)
2e * PI / (NTFFT
2 * PI xSyl
2. * PI + SW4
S¥l / DW + 1.0
Sk4 / DW = 0.5
IWs - TINWH1 + 1
DWw # IW1
(SWl + SW4) [/ 2.

FILTRC

/ 2F10.1)

=T 42X9A)

4 o0Re SWa.GT.FNYQ) STOF 'ERROR IN SFRQY

WPCNT «  SWMAJ /
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*

100.

o

57
58

P
~

650
61
52
653
£4
69
66
67
58
59
70
71
72
73
T4
7%
76
77
78
79
80
81
82
83
R4
85
R&
87
38
89
90
31
92
53
4
35
g6
37
98
39
106
101
102
103
104
103
106
107
108
109
110
111
112



OO0

O

OO0

o XS]

10

20

RETURN
END
SUBROUTINE ALCMEM (MAXBFSy IVy IMy JMy IA, IBy ICs ID,y IQ)

ALLOCATE MEMORY OF THE GLOBAL BUFFEIR AND
CHECK THE MAXIMUM RUFFER SIZE.

INCLUDE 1EXZMIGLCMB/NOLIST?

Iy = 1 ' YBUF START ADDRESS
M = IV + NX ' AMBUF
JM = IM + NX ! AM2BUF
IA = JM  +  NX ' ABUF
I8 = IA + NX2 ' BBUF
IC = IB <+ NX2 ' CBUF
10 = IC + Nx2 ' DBUF
IQ = ID + NX2 ' QdUuF
IQ = MAXO0 (IGy IV + NTFFT*2 - 1)
NBFEXT = IG + NX2 » NW - 1

NBFDMX = NX » NZ

NBFREG = MAXC (NBFEXTs NBFDMX)

IF (NBFREG «GT. MAXBF3) STOP YINSUFFICIENT BFS?
RETURN
END

SUBROUTINE MLTSTP (VBUF, AMBUF, AM2BUFs A3UF, BBUF, CBUFs DBUF,
G8UF)

MULTISTEP EXTRAFQOLATION AND IMAGING.

INCLUGE 1EXZMIGLCMB/NOLIST!
COMPLEZX GBUF (NXeNW)
DIMENSION  VBUF(NX)

REWING LDOVVEL

OPEN (UNIT = LDUMIGy FILE = 'FXZMIG.OUT'sy FORM = TUNFORMATTED?,
TYPE = 'YUNKNOKNT')

CALL IMAGIZ (GBUFs ABUF)

DO 20 IZ = 29 NZ

READ (LDVVEL) VBUF
DO 10 JW = 19 Ni
S = SKWG + DW * (J¥ - 1)

CALL VSMULT (NXs VBUF,y SHs AMBUF)

CALL EXTPOL (GBUF(1sJW)y ABUF, B3UF, CBUFsy DBUF, AMBUF, AM2BUF)
CALL IMAGEZ (GELF, ABUF)

TYPE %y IZy '-TH STEP COMPLETED?

CONTINUE

RETURN

END
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114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
143
156
151
152
153
154
155
156
127
158
159
150
1561
162



oNeNeNel

(@]

OO0

10

10

20

10

SUBRGUTINE TM2FRG (BUF, Q3UF)

GET TIME-DOMAIN DATAs TRANSFORMs AND SAVE ON GBUF IN

DEMULTIPLEXED FCRM,
INCLUDE "FXZMIGLCMB/NOLISTY
COMPLEX GBUF (NX oNW)

DIMENSION BUF(NTFFT=x2)
DIMENSION RBUF(2)

JPEN (UNIT = LDVIRCs FILE = FILTRCy FORM = TUNFORMATTED?Y,

TYPE = *0LD'y READONLY)

NT2 = NT <+ NT
NTFFT2 = NTFFT + NTFFT
TWl = 2 % IFIX(SWO /7 DWw + 0.5) + 1

DO 10 IX = 1,y NX

CALL STORE (NTFFT2y BUF, 0.)

READ (LDVTRC) (BUF(J)y J = 1y NT2y 2)

CaLL FFTC (NTFFT, BUFy 1a)

CALL MOVEJC (NWy BUFC(IW1)y QBUFCIXs1)y 1, NX)
CONTINUE

CLOSE (LDVTRC)

RETURN

END

SUBROUTINE OUTPUT (BUF)
INCLUDE YFXZMIGLCMB/NOLIST?
DIMENSION BUF(NXeNZ)

REWIND  LODVMIG

D0 10 JZ = 1 NZ

READ (LDVMIG) (BUF(IXsdZ)y IX = 1y NX)
REWINDG  LOVYMICG

DO 20 IX = 14 NX

HRITE (LDYMIG)Y (BUF(IXyedZ)y JZ2 = 149 NZ)
RETURN

END

SUBROUTINE IMAGEZ (QBUFy BUF)
IMAGE THE MIGFRATED WAVE FILED
INCLUDE 'FXZMIG.CMB/NOLIST?

COMPLEX GRUF (NXy NW)
DIMENSION BUF(NX)

D0 10 IX = 14 NX

CALL TUMYJ (hilky QBUFCIXs1)y HUF{IX)y NX2)
CONTINUE

WRITE (LDYMIG) (BUF(IX)y IX = 1s NX)
RETURN

END
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145
1656
167
158
169
170
171
172
173
174
175
17¢
177
178
175
188
181
182
183
184
185
1856
137
188

183
130
131
152
193
124
1938
195
127
128
159
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206
207
208
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OO0

DO 00N

SUBRGUTINE EXTPCL (GBUF,

TXTRAPOLATE THE WAVE ALOCN

INCLUDE YFXZMIG.CMB/NOL
COMPLEX

COMPLEX XTINERy XTOUTR
DIMENZION AMBUF(NXD

CALL VVMULT (NXsy AMBUF, A
DD 10 K = 1y NESTDR
CALL CFBND2 (4MBUFs BEBUF(
ABUF(1) = XTINER =~ GBUF(
CALL CFBND2 (AMBUF(NX), B
ABUF(NX)= XTINER * GRUF(
CALL CFINT2 (CBUFy ABUF,
CALL CVAMMA (MY, QBUF.QBU
DEBUF(2))
CALL TRIDGX (AXy QBUFy AB
CONTINUE

DO 20 IX
[ABUF(IX)
RETURN
END

1y NX

o

SUBROUTINZ CFINT2 (CLFy C

FFERENCE COEFFI

comMpPuTEL DI

SEE P

VARIABLE DESCRIPTION.

NAME LENGTr
CLF NX2

CNF NX2 COEFF. OF
CLD NX2

CND NX2 COEFF. OF
CFM Ix4

AMB NX W/ V(D)
AM2 NX AM xx 2
INCLUDE  'FXZMIG.CMB/NOL
DIMENIION CLF(4)y CNFC4)
DIMENSION CFM(344), AMB(

CALL VYSM3SAJ (NYy AM2(2),
CALL VSMSAJ (MYy AM2(2),
CALL VSMSAJ (NYy AM2(2),
CALL VYSMSAJ (NYye AMZ(2),
CALL VSMULJ (NYs AMB(2),
CALL VSMULJ (NYy AMB(2)},
CALL YSMULJ (NYy AMB(2),

ABUFy BRBUFy CBUF, DBUF, AMBUF,

5 THE Z2 DIRECTION.

IST?

MBUF s AM2BUF)

1)e XTINE
XTOUTR

2) +
BUF (X))
NX1) o+

DBUFy BBUF,
F(3)s CBUF(2),

JFy BBUF,

GBUF(IX) * CEXP (CMPLX (Ce

NFy CLDy

CIENTS OF 2-ND ORDER WAVE EQUATION

Re XTOUTR
* QRUF (1)
XTINERy XTOUTR,

QBUF (NX)y ABUF(NX) ¢B8UF (NX)9yCBUF (NX)DBUF(NX)

BNDBUF (149K))

XTOUTR = QBUF (NX)

DBUF)

CNDy CFM,

DESCRIPTION

COEFF. OF OLD/OFF-DIAGONAL
NEW/OFF-
COEFF. OF OLD/DIAGONAL

OTAGONAL

NEW/DIAGONAL

MATRIX COEFFICIENTS OF P.

IST?
y CLD(4),
NX)y AM2(C

CFM(241)y
CFM(242)
CEM(243),
CFM(294)
CFM(341)
CFML342)
CFMC343),

36

CNE(4)
NX)

CFM(191)
CFM(142)y
CFM(143)
CFM(1ly44),
CLF(4),
CNF(4)
CLD(4),y

TXTBUF (1 9K)
GRUF(2)

DZ * AMBUF(IX)))

ANMBy AM2)

42-R EG. (104)

CLF(3)4142)
CNF(3)4142)
CLD(3)4192)
CND(3)4142)

1y 2)
le 29
1y 2)

BNDBUF(14K))

AMBUF y AM2BUF)
DBUF(2)y

215
216
217
218
219
220
221
222
223
224
225
226
227
228
223
230
231
232
233
234
235
23€
237
238
2353

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

VNN N NN
AT DO oo W AN AN s AN 9 2
T 9N U SN

>



o

[N eNeRe]

DO OOO0O000

[ Men}

CALL VSMULJ (NY,

RETURN
ZND

SUBROUTINE CFEND2

COMPUTE TRANSPARENT BOUNDARY COEFFICIENTS(XTRATEZXTINERyXTOUTR)
SEE PAGE 4C0-R EG. (11)

INCLUDE TFXZMIG.CMB/NGLIST!

COMPLEX EYEBEs XTRATEs XTINERs XTOUTRs CMDZy CAMX,
DIMENSION BCGF(2)

ADX = BCOF(1) * OX

£YEB = CMFLX (J.9 2. * BCOF(2))

CAM = CMPLX (AMREALs AMIMAG)

CMDZ = CAM =+ DZ

CAMX = CAM =+ ADX

CsCaLe = 1. / AACMDZ + CAMX + LYEH)

XTRATE = CsCALE =+ ( CMDZ =~ CAMX + EYEB)
XTINER = CSCALE =« ( CMDZ + CAMX - EYEB)
XTOUTR = CSCALE + (~-CMDZ + CAMX + EYERB)
RETURN

END

SUBROUTINE CFINTI (CFMy By Cy» DFCNMRy ALPHA)
INITIALIZE CF#M(344) EXTRAPOLATICA MATRIX GIVEN IN P42-R
0. (13A),

DEFINITION OF THE EZXTRAPOLATION MATRIX ¢ CFM(344)
CFM{14J) I CONSTANT TERM

CFM(24d) ¢ CCEFFs OF AM « AM

CFM(3+dJ) ¢+ COLFFas OF I * AM

J =1 . OLC/CFF-DIAGONAL

J =2 T NEW/UGFF=-DIAGONAL

J =3 T OLC/UIAGONAL

J T 4 T NEW/CIAGONAL

INCLULE TEXZMIGLCMB/NOLIST?

DIMENSICN CF™(344)

BETA =  ALFHA - 05

F1 = (B + B) + DX » DX / DFCANMR

F2 = (F1 + F1) x AMIMAG

G2 = c =+ DZ

G1 = =62 x  AMIMAG

CALL CFINTJ (CFM(141)y Fly F2y Gly G2y ALPHAy =1lay
CALL CTFINTJ (CFM(1492)y Fly F2y Gls G2y ALPHAy =1la
CALL CFINTJ (CFNM(143)s F1ly F2y Gly G2y BETAy 2es

AMB(2)

(AMREAL,

CFM(3494),

XTRATE

37

» XT

INERY

CNDC4)y 19 2)

XTOUTR

B3CCF)

CSCALE

-10)
1.)
2a)

caM

269
27¢
271
272

273
274
27<
276
277
273
273
280
281
282
283
284
285
2846
287
258
283
250
291
292
233

234
235
296
297
238
239
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
318
316
317
318
219
320



oNeReoNeNeoNeNe]

CALL CFINTJ (CFM(144)y Fls F2y Gly G2y BETA, 209 —=2.) 321

322
RETURN 323
END 324
SUBRCUTINE CFINTJ (COFy Fl, F2y Gly G249y ALPHA, R1l, R2) 325

326
GENERATE A Z-ELEMENT EXTRAPOLATION COEFFICIENT VECTOR GIVEN IN 327
P 42-R EfGe (1) 328
COF(1l) ¢ CONSTANT TERM 329
COF(2) : CCEFF« OF AM x AM 330
COF(3) : CCEFF. OF T * AM 331

332
DIMENSION CCOF(2) 333

334
CoF(1) = R1 + R1 + R2 « 1 335
CGF(2) = ALPHA x R1 =+ F1 336
COF(3) = R1 » ALPHA » F2 + R2 * G2 337
RETURN 338
ZND 333
SUBROUTINE EXTCON 340

341
GENERATE EXTRAPCLATION COEFFICIENTS 342

343
INCLUTE TFXZMIG.CMB/NOLIST? 344
JIMENSION DFCBUF(2) 345
DOUBLE PRECISION A(1S),y 3(1%) 346
CATA MODE /-1 / 247

348
DATA ACl) / GCe 376 3563 527 234 052 / ! 45 3473
DATA 83(1) / 0. 478 242 059 603 743 / 350

351
DATA A(2) / 0. B73 9¥1 542 171 38390 / v 30 352
DATA B(2) / 0. 0480 315 155 %88 8%2 / 353
DATA AC3) / 0. 222 631 3 £66 100 / 354
DATA B(3) / 0. 457 283 565 835 625 / 355

356
DATA AC4) / 0. 372 926 131 £94 782 / v 87 357
J2ATA B(4) / 0. 004 210 419 511 239 / 358
OATA A(S) / D. 744 418 038 5285 258 / 355
DATA B(%) / 0. 081 312 3822 016 760 / 360
DATA A(6) / D. 150 B43 324 026 968 [/ 351
DATA B(6) / 0O« 414 236 604 654 512/ 362

3563
DATA ACT)Y 4/ 0. 991 834 774 575 037 [/ ' 83 364
DATA B8(7) / 0. 000 737 359 542 660 / 365
JATA A(E) / 0. 311 2&#2 437 100 351 / 3656
DATA B(H) / 0. 01& 329 831 492 279 / 3e7
DATA A(3) / QOe &02 498 720 2802 2328 / 368
JATA R{9) / 0., 120 110 756 314 730 / 363
JATA A(10) / 0. 102 %24 305 031 323 / 370
DATA B(10) /7 0. 362 806 59392 332 044 / 371

372
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OO OO0

O

10

328
533
123
2456
G951
142
262
7562
326
422

NN NN NNNNNN

« 124 600 000

! MODELING MODE

! MIGRATION MODE

DATA ACLl) /7 0. 997 370 236 438
DATA 3011) /7 0. 000 133 427 173
DATA 4(12) / 0. 964 827 9%1 »7%8
DATA 5(12)Y / 0. CO04 172 367 255
JATA A(13) / De. B24 918 564 779
JATA B8(13) / 0. 033 250 917 308
JATA A(14) / D. 433 34C 757 434
JATA #014) /7 0. 143 738 075 648
JATA AC1%) / Ge 073 588 212 279
DATA 3¢15) / 0. 318 013 812 =235
DATA DFCBUF / 1. 000 000 000, 0
IF (NESTDR LT« 1) THEN

NESTER = 1

4(1) = 0.25

1) = 0.5
ENDIF
IF (MODE +GE. 0) THEN

DX =  ABS (DX)

Dz = ABS (DZ)
ELSE

DX = =ABS (CX)

Dz = =ABS (22)
ENDIF
KO = A{NLETDR * (NESTOR - 1))
DO 10 K = 1,y NESTOR
AA = 1. /7 A{K+XD)
BB = AA  +  B(K+K0)
CALL CFBNDG (BNDBUF(14K)y A(K+X0)s B

CALL CFINTTI (EXTHUF(14K)s AAy 8RRy DF

RETURN
END

SUBRCUTINE CFENDG

GENERATE THE TRANSPARENT

BrXK /7 (1 + AxXX)

(3CCF

y Ay B)

/2

(K+K3))

CBUF(1)y DFCBUF(2))

30UNDARY COCFFICIENTS AS

=== BRB+*Y / (1 + AAxY),y WHEZRE

XX = DERIV(X)*x2 / M,
Y = I x DERIV(X)/ M,
BCOF (1) = AA
BCOF(Z) = BR
DIMENSION RCOF(2)
LOGICAL VIFGIN
JATA VI®GIN / «TRUE. 7/
COMPUTE INTEZGRALS (S2 THRU S6)
IF (VIRGIN) THEN
VIRGIN = SFALSE.
52 = ATAN (1)

39

AND

/

373
374
375
374
277
378
375
3380
381
382
383
384
385
286
387
388
383
390
391
392
3393
394
338
396
337
3398
339
400
401
402
403
4C4
40%
406
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
42%
426
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eEaNe]

OO0

(@]

(]

O

10
20

30

S4 = 852
56 = G4
S3 = 2
S5 = S3

ZNDIF

COMPUTE NORMAL EQUATICN

All = B * E » S6
Al2 = B (S4 =~
A22 T S2 = 2e4xAx34
31 = 3 % B % S5
B2 = B * (83 -
SOLVE THE EQUATION
DETERHM = 1. / {A11
AA = DETERM » (81
38 = DETERM « (B2
CONVEFRT COEFFICIENTS 1IN
BOLDA(2A4B8) = Y /
BCOF(1) = 1. / RB
BRCOF(Z) = AA / BB
RETURH

=D

SUBRJUTINE EDTVEL (BUF)
INCLUDE TEXZMIGLCMB/N

DIMENSION BUF(MXy NZ)
JRPEN (UNIT = LDVVEL,y FI
TYPE = *0LD'y READONLY)

090 20 IX = 1,y NX
EAD (LOVVEL) (BUFA(]I
D0 10 JZ = 1y NZ

BUF(IXyJZ) = 2. /
CONTINUE
CLOSE (LDVVEL)

OPEN (UNIT = LOVVELs FI
TYPE = 'SCRATCE")

D3 30 JZ = 24 N7

WRITE (LDVYTL) (BUFC(IX,y J2)y IX
AMIMAG = WIMA *

RETURN

ZND

cccceccceccecceccoccoccc

072

Se / b
3

08

N * #

COEFFICIENTS
A x $56)
+ AxAx3E

A * S95)

* A22 = Al2 x Al12)
* A22 = B2 x Al2)
* All =~ Bl * A12)
OLD FCORMATs Iefey

(AA  +  RBBxY)

OLIST?

LE = FILVELy FORM =

Xy JZ)y JdZ = 1y NZ)

BUF (IXyJd2Z)

LE = 'FXZIMIG.SC1lY'y FORM

1y NXD)

BUF(1,1)

ccccecccocccecceccecceccecccc

TUNFORMATTED?,

NFORMATTED!,

-~

L

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
444
447
443
443
450
451
452
453
454

4395
454
457
458
439
4610
461
462
463
464
4¢€%5
465
467
468
4673
479
471
472
473
474
475
476
477

475



OO0

OO0

10

10

OO0

10
20

40

[$1]
<

c

THIS I3
BY THE

£

cccc
FUNCTINON

FIND A N
A PCHWFR

KPOWR?
DO 10 K
KPOWRZ
IF (KPQY
CONTINUE
STOP

END

SUBRDUTI

A STACK OF ELEMENTARY SUBPROGRAMS REFERENCED

MIGRATION PROGRAM,

cccccceccecccecceccoccecceccceoccecceocceocceoccoccecceece
KPDWRZ (NUMBER)

UMBER WHICH IS GE. THE ARGUMENT AND IS ALSO
0F 2.

1

1y 15

KFOWR2 +  KPOWR2

R2 .GEs NUMBEP) PRETURN

o N

'ERROF IN KPOWR2!

NE CVAMMA (Ny Ay 39 Cs Dy Ey F)

COMPLEX A{)y BAN)y CUN)y DIN)y E(N)s FOND)
03 10 I = 1e N

FLI) = (A(TI) + BCI)) = C(I) + D(I) =~ £(D)
RETURHN

£ND

SUBRODUTINE FFTC (LXy CXs SInNI)

FAST FOQURPIER TRANSFORM, SEE CLAERBOUT P 12,
COMPLEX CX(LX)y CARGy CEXP4y Cliy CTEMP

J = 1

30 38 I = 1 LX

IF (I +GTe ) GG T0O 10

CTEMF = CX{(J)

CXL{d = CX(D)

CXA(I) = CTEMP

M = LX / 2

IF (J oLEs M) G0 TO 30

J = J - WM

M =M/ 2

IF (M .GE. 1) GO T0 20

J = J + M

L =1

ISTEF = 2 =« L

DO S0 M = 1y L

CARG = CMPLXx(Day 26014159265 x SIGNT » (M - 1) / L)
Cw = CEXF(CARG)

D0 30 I = My Lx,y ISTEP

CTEMP = Cw *» CX(I + L)

CX{C{I+L) = CX(I) - CTEWMP

CX(CI) = CX(I) + CTEMP

L = ISTFEF

IF (L +LTs LX) GO TO 490

41

473
473
491
482
433
434
485
486
437
488
4893
450
451
492
493
454
495
496

437
498
433
200
501
s02

503
504
508
504
507
2028
532
510
511
212
513
514
515
516
517
©18
15
220
521
522
523
524
525
526
527
528
529
£30



10

10
12

10

OO0

(@]

10

20

RETURN
END

SUBRGUTINE MOVEJC (Ny Ay By Jiy JB)

COMPLEX
IA

138

DO 16 1
TA

I8
B(IR)
RETURN
£ND

A A I S I T T

SUBROUTINE

DIMENSION
IF (N +LT.
09 1C I
X(I)

RETURN

EN!

Hou

SUBROUT INE

DIMENSION
SIGMA
IX

DO 10 I
IX
SIGMA
RETURN
cND

Wb

ACN) e B(N)

1 - JdA
1 - JB
ls N
T4 +  JA
I+ JB
ACIA)

STORE (Ny X9 CONST)
X{N)

1) GO TO 12

1y N
CONST

SUMVYJ (Ny Xy SIGMAy JMP)

X€z)

Ce

1 - Jmp

1y N

IX + JHMP
SIGMA +  X(IX)

SUBROUTINE TRIDGX (Ns Ty Ay 8y D)

TRICTAGONA

COMPLEX

N1

00 10 1
JEN
24(1)
ACI?
TIN)

20 20 J
I

T(1)
RETURN
END

L R A T B T R T Y |

SUBROUTINE

L SQUATION WITH TRANSPARENT BOUNDARY CONDITION.

T{M) e A(N)y BIN)y D(N)y DEN

N -1
29 .y\l

1« / {3(I) + A(I) = 3(I-1))

- 4(I) =+ DEN

(Z(I) =  A(I) *» A(I-13)
(A{N1) *» B(NY + A(N))Y / (1.
1y N1
N = J
BCI) » T(I + 1) + A(D)

YSMSLAJ (Ny Ay Sly 32y Cy JMPA,

42

DEN

B(N)

JMPC)

*

B(N1))

[S1ES1]
[ ]
8D =

533
534
535
536
537
538
539
524G
541
542

543
544
545
5446
547
548

oo

549

BOUT U U U Wi Ul G s
LU LY QY Ut O o
ST~ NP NN O



10

10

10

10

DIMENSION

JA

k’C

D9 10 1
JA

JC
Cedd
RETURN
END

L A T E A A Y

ACNYy C(N)

1 = JMPA
1 -  JMPC
1y N

JA o+ JMPA
JC  +  JMPC
Sl +«  A(JA)Y + 32

SUBRKRDUTINE VSMULJ (Ns Ay Sy Co
DIMENSION

144
IdJc
D3 10 1
IJA
14C
CLITJ)
RETURN
END

SUBROUTINE

oo i

OIMENZSION

00 10 I
(1)
RETURKN
END

HO

AN),y C(N)

1 -  JMPA
1 = JMPC
1y N

IJA  + JMPA
1JC + JMPEC
S »  ACIJA)

YSMULT (Noe Ay Sy C)
ACZz)y C(2)

1o N

S o+ ACD)

SUBROUTINE VYMULT (Ne Ay Hy C)
DIMENSION

Do 10 1
C(I)
RETURH
ZND

A(N)y BIN)s C(N)
1s N
ACIY =« BA(I)

43

JMP A

JMPC)

[SsREN SRRV ¢ BV}

oN gy UV U Ut U
[l RV o le s BN R e hY

QO

6502
£03
£04
£05
506
607



