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DEFINITION OF TERMS

Primary inclusions
Inclusions trapped during crystal growth along growth planes.

Secondary inclusions
Inclusions trapped during the healing of a fracture that formed after 
growth of the host crystal was complete. Planes of secondaries will cut 
across growth planes.

pex
^external' ^e P ressure exerted either in nature or in the laboratory, on 
the crystal containing the inclusions.

Pin
^internal' P ressure inside the inclusion (calculated).

TH
Homogenization temperature (also referred to in the literature as the 
filling temperature); in this study, the temperature at which the liquid 
has expanded to fill the entire cavity and the vapor completely dissolved 
in the liquid, leaving a single homogeneous phase. T^ represents a lower 
limit for the formation or trapping temperature of an inclusion.

Stretching
An inelastic (i.e., permanent) deformation of the inclusion walls resulting 
in increased inclusion volume and therefore increased T^. Stretching is 
the result of high internal pressure.

P s
^stretch' ^e internal pressure required to initiate stretching in an 
inclusion.

Ts
l~st tch» the temperature to which an inclusion must be heated to initiate
stretching, i.e., the temperature required to produce P$ .

Overpressure 
P 
P

i >  _> _> m i c
in~pex* tne difference between internal and external pressure, where P^ n >_ 

. In this study, the values of interest are where P.j n >_ P S .

Overheating
Heating an inclusion above its homogenization temperature.

OH TO heating*' temperature (°C) to which an inclusion has been heated, where "
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INTRODUCTION

Fluid inclusions are widely studied for the information they provide on 
the formation conditions of their host minerals. The validity of the fluid 
inclusion data is based on a number of assumptions, the most fundamental of 
which are (1) that an inclusion is a closed system, and the total mass of its 
contents (liquid, solid, and gas) has remained constant since entrapment, and 
(2) that the cavity itself has not undergone deformation resulting in a 
permanent volume change. In other words, there has been neither movement of 
fluid into or out of the inclusion (leakage) nor deformation of the cavity 
(stretching). An understanding of the pressure-temperature (P-T) conditions 
that cause deformation as well as the ability to recognize deformed inclusions 
are important since leakage, and more recently stretching, have been reported 
in the literature. The purpose of this study therefore is to define the 
conditions under which stretching occurs in fluorite. Stretching has major 
implications in the study of mineral deposit genesis. Failure to recognize 
natural stretching may lead to serious misinterpretation of temperature data 
from inclusions and therefore of the formation temperature of their host 
mineral. Several stretching-related phenomena, "super-stretching," the 
entrapment of new (daughter) inclusions, and decreasing homogenization 
temperatures (T^s) at external pressures above 1 kilobar, also are 
discussed. These and other observations provide possible clues as to 
stretching mechanisms; currently both brittle failure and plastic deformation 
are proposed stretching mechanisms.

Leakage, described by a number of researchers (Ingerson, 1947; Kennedy, 
1950; Lemmlein, 1956; Roedder and Skinner, 1968; and others), results from a 
high pressure gradient between the interior of the inclusion and the exterior 
of the crystal, and like stretching, causes an increased homogenization 
temperature (Tu). However, while stretching observed in this study was 
characterized by an absence of any optically visible fractures emanating from 
the inclusions, leakage is usually associated with visible cracks. Leakage 
may refer either to formation of a fracture extending to the surface, and 
emptying the inclusion of fluid, or to formation of a fracture which does not 
reach the surface, but increases the effective volume of the inclusion, 
thereby raising the T^. Decrepitation, another widely used term, refers to 
the sudden, violent rupture of the inclusion walls due to high internal 
pressure. In the literature there is some overlap in usage between the terms 
stretching and leakage or partial leakage, and between leakage and partial 
decrepitation. In this study and in others (Larson et al., 1973; Roedder, 
1981; Hoi lister, 1981; Bodnar and Bethke, 1984), stretching is defined as an 
inelastic (i.e., permanent) deformation of the inclusion walls due to high 
internal pressure, resulting in increased inclusion volume, vapor bubble 
volume, and T^, without associated optically visible fractures in the host 
mineral. The term stretching is not intended to imply a mechanism, e.g., 
plastic deformation, or a directional expansion.

Larson and coworkers (1973) were among the first to discuss stretching as 
a phenomenon distinct from leakage. They reported essentially reproducible 
inclusion homogenization temperatures in fluorite and sphalerite ranging from 
40°C to 70°C higher than the initial TH S due to inadvertent overheating in the 
laboratory. The vapor bubbles were described as visibly larger and only a few 
inclusions showed evidence of fractures. Subsequently, Bodnar and Bethke 
(1984) defined the relationships, in sphalerite and fluorite, between 
inclusion volume and P S , the internal pressure required to initiate 
stretching, with external pressure, Pex , constant at one atmosphere. As a



result of their study, usage of the term stretching in the literature is 
increasingly common (e.g. Roedder, 1981; Hollister, 1981). In fluorite, the 
P s -volume relationship was defined as:

P s = -147LogV + 900 (1)

(Bodnar and Bethke, 1984, eq. 2), where P $ is in bars, and volume, V, is in 
cubic microns. As previous studies of stretching have not systematically 
examined the behavior of inclusions over a range of external pressures, the 
principal objective of the present study is to define the relationship between 
external pressure (Pex )» inclusion volume, and the temperature (Ts )/internal 
pressure (P$ ) needed to induce stretching. The measurements made by Bodnar 
and Bethke (1984) have been combined with data from the present study (see 
Appendix B) and have been regressed to give the following equation:

P s = -178.0LogV + 0.7Pex = 1018.9 (2)

where pressure (P) is in bars, and volume (V) is in cubic microns. External 
pressures ranged between 1 and 1034 bars and the temperatures reached in 
defining this relationship were below 300°C. As indicated by the negative and 
positive coefficients of LogV and Pe , respectively, P_ has been found to 
increase with decreasing inclusion volume and with increased external pressure 
(figure 1). The overpressure ( ps - pex )» however, appears to drop with 
increased external pressure suggesting a possible weakening of the fluorite. 
The Ps -Pex relationship indicates that external pressure helps protect 
inclusions from stretching and, given independent estimates of post-trapping 
temperatures and pressures, makes possible evaluation of the likelihood that 
natural stretching has occurred.

Investigation of stretching at elevated external pressures is necessary 
to provide results applicable to a wide range of geologic conditions where 
stretching has, or is suspected to have occurred. While stretching, as a 
result of accidental overheating in the laboratory, has led to publication of 
misleading homogenization temperature data in the past (for example, Larson et 
al., 1973), this should no longer be a problem for most minerals now that the 
phenomenon is widely recognized. Natural stretching, however, remains a 
problem with serious potential implications. For example, a cycle of rising 
temperatures in a hydrothermal vein system could stretch inclusions trapped in 
early-stage, lower temperature minerals; regional, or more localized 
metamorphism resulting from intrusion of a pluton could raise temperatures 
sufficiently in a region to stretch inclusions in older, lower temperature 
minerals. In order to avoid misinterpretation, it must be possible for 
researchers to identify or at least make estimates as to whether or not 
stretching could have occurred. Bodnar and Bethke (1984) showed that the 
strong relationship between volume and P$ , documented in their study (figure 
2) and in the present study (figure 1), may be used to identify a population 
of stretched inclusions, if enough inclusions spanning a broad enough size 
range are available. Since large inclusions stretch more readily than small 
ones, other factors being equal, any correlation between size and 
homogenization temperature is grounds for suspicion of stretching (figure 3a); 
a population of coeval unstretched inclusions will have T^s that show no 
relationship to volume (figure 3b). If, however, inclusions are sparse or 
relatively uniform in size, then an independently estimated post-entrapment 
maximum temperature and minimum pressure for the region are needed to give a 
reasonable evaluation of whether stretching has occurred.
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Figure 1. PS vs. LogV at five external pressures

P S vs. LogV curves have been drawn for each of the experimental external 
pressures used. The curves were plotted from equation (2) which was derived 
from regression of the entire data set (Appendix B):

P = -178.0LogV + 0.7Pex 1018.9

Within the pressure and volume range shown, P $ (the internal pressure required
to initiate jstretching) , increases with increased Pex 
decreases with increased inclusion volume.

(external pressure), and
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Figure 2. P vs. LogV at P=l barex

Data from the 45 inclusions tested by Bodnar and Bethke (1980) are plotted 
around the line derived from equation (2): !

Ps = -178.0 LogV +0.7(1) + 1018.9 
One standard deviation is 79.5 bars.
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populations of inclusions

Fig, a. shows schematically a population of stretched inclusions. Inclusions 
below a certain minimum volume, VQ, have not been stretched, but above VQ, T^ 
increases with increased volume indicating that large inclusions have 
undergone a greater amount of stretching than smaller ones. The break in
slope at VQ defines the inclusion volume below which internal 
great enough to induce stretching. Given a Pex value, V( 
calculate P_ and the associated overheating temperature, 
schematically the absence of any relationship between T H 
an unstretched population of inclusions.

pressure was not 
may be used to 
Fig. _b_ shows 

and LogV indicating



DESCRIPTION OF EXPERIMENT 

Introduction

The internal pressure needed to stretch the inclusion in this study was 
produced by heating the inclusions above their homogenization temperatures. 
The position in P-T space of a two-phase, liquid/vapor-bearing inclusion can 
be represented by points on a boiling curve up to the TH (figure 4). In the 
inclusions used in this study, the last vapor dissolves in the liquid at the 
T^j, leaving a homogeneous liquid phase.

Somewhat less common are inclusions which when heated homogenize to a 
vapor phase. Liquid versus vapor phase homogenization can best be explained 
by a temperature-density diagram such as figure 5, which shows liquid-vapor 
phase relations for pure water. Salts in solution will commonly raise the 
two-phase boundary (solvus) without changing the overall geometry (Roedder, 
1962b). In figure 5, two inclusions, A and B, are trapped at the same 
temperature, but at different pressures and fluid densities: 300 bars, 0.1 
gm/cc and approximately 4500 bars, 0.7 gm/cc, respectively. The assumption of 
constant volume and mass, and therefore of constant density, requires that 
their cooling paths be vertically downwards. Each path crosses the two-phase 
boundary at the inclusion's homogenization temperature and density. Within 
the two-phase region, the lever rule is used to find the proportions of liquid 
and vapor. At 25°C, the lower density inclusion, A, contains predominantly 
vapor while B contains predominantly liquid. If the inclusions are reheated 
from room temperature, A will homogenize at the two-phase boundary and pass 
into the vapor field, eventually reaching its formation conditions in the 
supercritical region. Similarly, inclusion B will homogenize at the two-phase 
boundary, but will pass into the liquid field, and with increasing temperature 
will eventually reach its formation conditions. Homogenization to the liquid 
or vapor phase is determined by the location of the formation conditions on a 
diagram such as figure 5. An inclusion whose density is less than the 
critical density, 0.4 in this example, will homogenize to a vapor phase; if 
the density is greater than the critical density, homogenization will be to a 
liquid phase.

Returning to the pressure-temperature diagram (figure 4), further heating 
beyond Tu (overheating), causes the internal pressure to leave the boiling 
curve and rise rapidly along an isochore or isovolume curve whose slope is 
(dP/dT) v for the system. The formation temperature and pressure of an 
inclusion homogenizing to a liquid phase must lie at some point along this 
isochore, either on or above the liquid-vapor curve. The validity of assuming 
isochoric paths is discussed under Assumptions.

After a certain amount of overheating, the internal pressure reaches a 
critical value (P s )» above which stretching occurs, relieving stress from the 
cavity walls. Propagation of dislocations and the opening of submicroscopic 
fractures radiating out from the cavity walls are considered possible 
mechanisms for the apparent increase in inclusion volume. Since the increased 
pressure with temperature is substantially smaller for vapor than liquid, 
inclusions homogenizing to a vapor phase are far less likely to stretch, and 
are not discussed below. Stretching provides more space for expansion of the 
inclusion fluid and causes the Tu to rise. Stated another way, an increase in 
volume means that higher temperatures (i.e., higher Tu s) must be reached in 
order for the liquid to expand to fill the entire cavity, given that an 
inclusion is a closed system with a fixed quantity (or mass) of fluid inside.



P-T Path of an Inclusion During Heating

internol Critical 
Point

Room 
Temperature

Temperature

Figure 4. P-T path of an inclusion during heating

NaCl-HoOSchematic diagram showing a generalized liquid-vapor curve for the 
system with an isochore originating at the homogenization temperature, 
The vapor bubble, clearly visible at room temperature, decreases in size with 
heating, and vanishes at TH leaving a single homogeneous liquid phase. With 
continued heating, pressure inside the inclusion rises rapidly along the 
isochore whose slope, (dP/dT).., is determined by the salinity of the fluid. 
At any temperature, T, above Tu, the corresponding pressure, P, is found as 
follows: P = (T-TH ) X (dP/dT) v + P(TR ).
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Temperature - Density Path of an Inclusion During Heating and Cooling

Figure 5. The temperature-density path of in inclusion during heating and 
cooling (from Roedder, 1962b)

Liquid and vapor phase relations are shown here for pure water, but the 
presence of dissolved salts will generally raise the two-phase boundary 
without changing the overall geometry of the diagram. The cooling path for 
inclusions trapped at A or B is vertically downward due to the assumption of 
constant inclusion volume, and therefore constant total fluid density. On 
heating, the inclusions homogenize at the boundary between the two-phase and 
the single phase regions.



At room temperature, the diameter of a vapor bubble in a stretched 
inclusion is increased, but since volume varies as the cube of radius, even 
significant volume increases are difficult to detect with an ocular 
micrometer. Larger volume increases resulting from prolonged stretching, 
however, have been measured. The increase in T^ of a stretched inclusion is 
the most noticeable and precisely measured effect of stretching. For this 
reason, stretching is referred to in terms of degrees of increase in the 
initial T^ rather than units of volume increase. For example, inclusions in 
this study will not generally show measurably increased vapor bubble diameters 
until stretched by several tens of degrees.

Sample material

The experiments were carried out on groups of secondary inclusions in 
late purple stage fluorite (Hall and Friedman, 1963; Cunningham and Van Heyl, 
1980) from the Hill Mine, Cave-in-Rock district in southern Illinois. The 
polished sections made for this study were taken from the same samples used by 
Bodnar and Bethke (1984). Purple to clear color banding outlining growth 
planes facilitated distinction of primary, secondary, and pseudosecondary 
inclusions. Groups of 15 to 20 secondary inclusions were used because a 
relatively large number, spanning a broad volume range, were needed for 
statistically meaningful results. This precluded use of the far more scarce 
primary inclusions. In addition, the measurements become unreasonably time 
consuming unless the inclusions are all in one sample and grouped together so 
that they are easily located.

A major assumption in this study is that results drawn from the behavior 
of secondary inclusions can be generalized to primary inclusions. It has been 
suggested that the material in the rehealed fracture of a plane of secondaries 
may be weaker than the host mineral at some distance from the plane of 
secondaries, i.e., secondary inclusions might be more prone to stretching than 
isolated primary inclusions. It has also been argued, based on work by 
Gerlach and Heller (reported in Roedder and Skinner, 1968), that the material 
in a rehealed fracture may be stronger than the original mineral, meaning that 
secondaries would be less likely to stretch than primaries. Experiments with 
a limited number of primary inclusions (figures 6a and 6b), however, have 
yielded equivalent results at a 95% confidence level. Based on these results, 
primary and secondary inclusions in the temperature and pressure ranges of 
this study are assumed to behave the same with respect to deformation of the 
surrounding mineral.

Two other noteworthy points are the reported correlations of ^internal 
required to deform an inclusion with inclusion shape and with depth from the 
sample surface. A number of researchers (Bodnar and Bethke, 1984; Leroy, 
1979; Sharonov et al., 1973) have either observed or suggested that, if all 
conditions are equal, higher internal pressure is required to cause 
deformation (stretching, leakage, or decrepitation) in smooth-walled, sub- 
spherical inclusions than in irreguarlly shaped inclusions where stress 
concentrations can be localized at sharp 'corners. 1 For this reason, smooth- 
walled, sub-spherical morphology was one of the criteria for choosing 
inclusions for this study.

It has also been reported that the temperature and internal pressure 
required to cause deformation decreased with increased proximity to the sample 
surface (Shatagin, 1973; Pashkov and Piloyan, 1973). Roedder and Skinner 
(1968), in an investigation of the leakage phenomenon, suggested that 
inclusions lying within the near-surface zone of microfractures induced by 
grinding and polishing, might leak more readily than inclusions farther from 
the surface. They reported no relationship between leakage and distance from
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sample surfaces which, in their study, were not sawed, ground, or polished. 
They noted that inclusions in quartz as close as 5 microns to the surface did 
not leak under conditions where calculated internal pressure exceeded external 
pressure by 2-3 kbars. In the present study, a plot (figure 7) was made of P S 
vs. depth below sample surface for 24 inclusions, and no Ps -depth relationship 
was found. In partucular, inclusions as close as 7 microns from sawed, 
ground, and polished surfaces showed no increased tendency to stretch.

Experimental method

The object of the experiment was to determine the temperature, TS , at 
which stretching or deformation of the inclusion cavity began, and from Ts , to 
calculate the corresponding internal pressure, PS . Doubly polished chips of 
fluorite containing inclusions were placed inside platinum capsules, which 
were loaded into cold-seal bombs attached to hydrothermal apparatus for 
control of external pressure, (Pex ). The platinum capsules, which were 
loosely crimped, protected the cnips during loading, but allowed the pressure 
medium, water, to circulate freely around them. Argon was used instead of 
water for measurements made at an external pressure of 400 bars. The bombs 
were then placed in furnaces, and the chips were heated in increments of 
approximately ten degrees. The precision of furnace temperature and external 
pressure measurements were ±4°C and ±5 bars, respectively. Care was taken not 
to allow the calculated internal pressure to exceed the external pressure 
before the desired external pressure had been applied (figure 8). After each 
heating increment, the bomb containing the chip was cooled, the chip was 
removed, and each of the 20 to 30 inclusions was examined on a gas-flow 
heating/freezing stage (Werre et al., 1979) for changes in the T^. The pre­ 
cision of a TM measurement when the sample was removed from the stage and 
replaced was l.5°C, and increases in T^ greater than 1.5°C were taken to 
indicate stretching. Each chip was heated in increments at a given Pex at 
least until TS , the temperature at which stretching began, had been bracketed.

Calculations

For the purpose of calculations, TS was taken to be midway between the 
first temperature high enough to produce stretching and the previous 
overheating temperature below it; the error bar for TS spans the entire 
interval (figure 9). Internal pressures in the inclusion were calculated from 
the P-V-T properties of the fluid with the assumption, discussed below, that 
the corrections due to fluorite solubility, thermal expansion, and elastic 
compressibility have small to negligible effects. Internal pressure above T^, 
and before stretching has begun, is simply the amount of overheating, T-Tu, 
multiplied by the isochoric slope plus the vapor pressure at T^ (figure 4). 
When heated beyond a certain temperature, cooled and reheated, new T^s are 
observed (figure 10). The new Tu values are reproducible and have been found 
not to change until heated beyond the highest temperature previously reached.

At point A, the inclusion has just homogenized and the internal pressure 
is equal to the vapor pressure at that temperature. At point B, the inclusion 
has been heated to Tg and the internal pressure is (To-T^_^) X (dP/dT)y 
plus the vapor pressure, P^. Point C and PQ are found in the same way and 
inclusions will homogenize at the initial temperature (Tu^) until heated 
beyond TQ. When the inclusion is heated to TQ and cooled, a new T^ (T^_Q) is 
measured. The point at which stretching begins lies somewhere between C and D 
on figure 10; TS» tne temperature of initial stretching is bracketed by TC and

11
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Figure 7. Pc vs. depth of inclusions from sample surface

The P S values for 24 inclusions in sample 32, overheated at 717 bars external 
pressure, are plotted against the depth of each inclusion from the nearest 
sample surface. The graph shows no relationship between P s and depth.
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Internal

P-T Path of an Inclusion During Stretching

PI >02>P3 where p " fluld density
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Temperature

Figure 10. Schematic P-T path of and inclusion during stretching

The path of an inclusion along a generalized liquid-vapor curve and isochores 
in the NaCl-F^O system are shown schematically. The inclusion homogenizes at 
A, and with heating passes through B, to C. When heated above T^, the 
inclusion will stretch. Heating to Tn raises the initial T^ (T^_n) to (Tun), 
and heating to Tr further raises T^ to Tu^. The isochores are the constant 
volume/constant density cooling path followed by the inclusion fluid after 
each increment of overheating. The density of successive isochores decreases 
(specific volume increases) as stretching proceeds.
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TQ. Given that the composition of the fluid and the isochoric slope are 
known, the point of intersection of an isochore originating at T^_^ with the 
overheating temperature, TQ, locates point D and the corresponding internal 
pressure, PQ. T^_Q will not increase until the inclusion is heated beyond TQ; 
when heated to T^ the homogenization temperature is raised to Tu_£.

The positions of A, B, and C were found in a very straightforward way; 
however, the position of D is based on the temperature to which the inclusion 
was heated, TQ, and the resulting new T^ (T^_n) as well as isochoric slope. 
During initial heating, the inclusion's position in P-T space rises along the 
first isochore to C. Then, strictly speaking, the path between C and D 
travelled as TQ is first approahced, is unknown. On cooling and subsequent 
heating to TQ, the P-T path is along the isochore between the liquid-vapor 
curve and D. Reheating to, but not above, TQ does not change the T^_Q, 
indicating that the volume of the inclusion remains constant.

Isochores are P-T paths for inclusions which maintain essentially 
constant volume during overheating, and the shift to a new isochore represents 
an expansion in inclusion volume or stretching. Because of the lack of 
visible fractures associated with stretched inclusions, the important 
assumption is made that fluid has not escaped. The density of the fluid at 
the initial T^ and at all subsequent T^s can be calculated from data on the 
fluid density along the liquid-vapor curve. Again referring to figure 10, 
TH_A remains constant until heated beyond TQ. At some temperature between TQ 
and TQ, the internal pressure exceeds the strength of the cavity walls and 
stretching takes place, increasing volume and decreasing the fluid density. 
At Tu Q the fluid has a new, lower density which is maintained on cooling and 
results in the increase in Tu to T^ n. The densities along the different 
isochores can be used to find both absolute and relative inclusion volume 
changes that result from overheating. Absolute volume changes are found in 
two steps given an initial volume (see Appendix A):

(1) initial inclusion volume X fluid density at initial T^ = mass of fluid

(2) fluid mass X fluid's specific volume at new T^ = new inclusion volume.

NaCl equivalent salinities for the inclusion fluids were determined from 
freezing point depressions using the data of Potter, Clynne, and Brown 
(1978). Density data for the NaCl-^O system were taken from Potter and Brown 
(1977), and the liquid-vapor curve data were taken from Haas (1976). In most 
cases, P S rather than T$ was used in plotting graphs. P S makes possible 
comparison between inclusions of different salinities because it is calculated 
from the isochoric slope which varies with salinity; TS , however, does not 
take into account the different salinities which ranged from 3.55 to 4.41 
molal NaCl equivalent. The isochoric slopes ranged from 9 to 11 bars/°C, 
steepening with increased salinity in this temperature range.

Assumptions 

Isochoric paths

In the calculation of P.j n , the inclusion is assumed to follow an 
isochoric path in P-T space until permanent (i.e., inelastic) deformation 
occurs, increasing total inclusion volume. This constant volume assumption is 
valid only if the elastic volume changes, due to the thermal expansion of the 
crystal and compressibility with pressure are essentially negligible. The 
effect on inclusion volume of increased fluorite solubility with temperature
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must also be taken into account. Thermal expansions were computed between a 
typical TU (144°C) and the highest value of TS (280°C) which was reached at 
the 1034 bar confining pressure. For this 'worst case 1 or maximum temperature 
range, the calculated volume expansions ranged from 1.38% (Ganesan and 
Srinivasan, 1959) to .894% (extrapolated from Skinner in Clark, 1966, p. 80), 
with an intermediate value for comparison of 1.033% extrapolated from 
synthetic fluorite data (Ballard et al., 1978). Until the initial inclusion 
volume determinations can be made with greater precision, the volume changes 
due to thermal expansion are assumed to be negligible.

Volume changes due to the compression of fluorite with increased pressure 
are found to be approximately an order of magnitude smaller than the volume 
changes due to thermal expansion. In calculating these volume changes, 
changes in the excess of internal over external pressure (i.e., net pressures) 
between Tu. and TS were used. Taking net pressure at Tu to be essentially 
zero, and 750 bars as the maximum net pressure at T_ (Figure 11), volume 
changes of 0.105% (Vaidya et al., 1973), and 0.091% ± .001% (Bridgeman, 1925; 
Wong and Schuele, 1968; Brielles and Vidal, 1975) were calculated from bulk 
compressibilities expressed as functions of pressure at constant 
temperature. Because of good agreement in volume changes calculated from 
adiabatic (Vidal, 1974; Wong and Schuele, 1968) and isothermal (Bridgeman 
1925; Vaidya et al., 1973) values, this distinction was ignored. To confirm 
that changes in bulk compressibility with temperature are of second order 
importance, a calculation was made using the adiabatic data of Vidal (1974) 
for a temperature increase from 25°C to 280°C. The resulting inclusion volume 
increase was 0.0025%. The increase in inclusion volume due to increased 
fluorite solubility between Tu and T S is approximately three orders of 
magnitude smaller than the volume changes due to compressibility (Richardson 
and Holland, 1979). In light of the relatively small combined effects of 
solubility and elastic volume changes, isochoric paths have been assumed for 
the inclusions between T u and TS .

Salt content of fluids

The methods used to calculate inclusion volumes (Appendix A) and internal 
pressures in this study rely on knowledge of the fluid composition and its 
P-V-T properties. Although the inclusions in this study contain a complex 
brine, research discussed below has shown that thermodynamic properties of the 
brine are approximated well by those of a simple NaCl-I^O system. The fluids 
in primary inclusions from the late purple stage of Cave-in-Rock fluorite have 
been analyzed by Hall and Friedman (1963) and found to contain Na, K, Ca, Mg, 
Cl, and SO^, with Na by far the most abundant cation (Hall and Friedman, 1963, 
Table 3). The procedure was to crush the samples in a vacuum line and 
condense the liberated water in a liquid nitrogen-cooled trap. Determination 
of the quantity of water in the inclusions is described by Hall and Friedman 
(1963), and a detailed description of the analytical methods used by them to 
identify and quantify the soluble salts present is given by Roedder, Ingram, 
and Hall (1963). The secondary inclusions used in this study are assumed to 
be very similar in composition to the primary inclusions based on relatively 
close agreement of their homogenization temperatures and freezing point 
depressions with those reported by Hall and Friedman (1963, Table 5) and 
Cunningham and Van Heyl (1980, Table 1) for primary inclusions of the same 
stage.

Measurement of freezing point depression is the generally accepted method 
of determining the total concentration of dissolved salts in the fluid phase
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Figure 11. Overpressure (P s -P ex ) vs. external pressure

The overpressure required to initiate stretching at a given inclusion volume 
is shown to decrease with increasing external pressure. The constant volume 
curves are derived from the equation (2),

P s = -178.0LogV +0.7Pex + 1018.9.

Solid lines indicate the Ppy range of this study, and dashed lines show the 
speculative continuation beyond the upper, 1034 bar external pressure limit. 
The constant volume curves may approach the x-axis asymptotically.
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of an inclusion (Roedder, 1962a; Hall and Friedman, 1963; Clynne and Potter, 
1977). Experimental work by Potter and Clynne (1978) has shown that the 
P-V-T-X properties of brines in the system Na-K-Ca-Mg-Cl-Br-SO^-I^O can be 
predicted to within plus or minus 1% by the P-V-T properties of an NaCl 
solution with the same freezing point. A small correction is needed in the 
rare case where the ratios Ca/Na, K/Na, and Mg/Na exceed 0.5, 0.3, and 0.2, 
respectively (Potter and Clynne, 1978). Hall and Friedman (1963, Table 3), 
however, report ratios that fall well below these limits. Studies by Haas 
(1971) and Gibbard and Grossman (1974) provide additional evidence supporting 
the assumption that the P-V-T-X properties of an NaCl^O system approximate 
well those of a more complex brine. In this study, therefore, the densities 
and isochoric slopes are calculated based on salinities reported as NaCl 
equivalents.

Gas content of fluids

Using the method described by Roedder (1970), several samples of the 
fluorite were crushed in an attempt to detect dissolved gas in the inclusions. 
Inclusion-bearing grains of fluorite the size of coarse sand were observed 
under a petrographic microscope while being crushed in kerosene between two 
glass plates. Kerosene is an excellent solvent for CH^ and a relatively poor 
one for C02; it is therefore a good medium for identification of CH^ versus 
COo. As fractures intersected inclusions, some of the vapor bubbles expanded, 
indicating that the precrushing internal pressure was, in these cases, greater 
than one atmoshpere. On contact with the kerosene, these bubbles dissolved 
very rapidly. This eliminated COo as a possibility and strongly suggested 
methane, which has been reported in primary inclusions by Hall and Friedman 
(1963). Other inclusions contained no gas other than water vapor.

Because the crushing method operates on a group of small grains of the 
mineral, it is difficult to keep track of a given inclusion or plane of 
inclusions. The pressure of the glass plates introduces fractures randomly 
through the grains and randomly opens inclusions. Some of the crushed 
inclusions apparently contained methane, but observation of phases at room 
temperature and at low temperatures suggest that the specific planes of 
inclusions used in this study did not. The inclusions that contained either a 
solid phase or an immiscible fluid phase at room temperature were avoided, and 
those that did not were examined at low temperatures for the presence of CH^ 
or other phases.

During initial freezing point depression measurements, the phases present 
at low temperatures were noted. Since super-cooling to -60°C to -70°C was 
usually necessary to nucleate ice crystals, further cooling to below -82.1°C 
the critical temperature for methane, was a simple procedure. Some of the 
inclusions used in the first runs were refrozen to check for dissolved 
methane; none was found. The relatively low critical pressure, 46.3 bars, 
means that at temperatures below -82.1°C methane should be visible as a liquid 
around the edges of the ice crystals, if it were present in a significant 
amount. Based on the absence of visible methane, the assumption has been 
made, for the purpose of calculations, that there was no methane in the 
specific planes of inclusions used. The effect of methane in the inclusions, 
however, would be to raise the liquid-vapor curve and steepen the slopes of 
the isochores (McGee et al., 1981; Susak and McGee, 1980), thereby shifting 
the P S vs. LogV and Overpressure vs. Pex curves upward, without changing their 
slope.

C02 is assumed to be absent from the inclusion fluid, again based on the 
lack of any observed additional phases, either at room temperature or below

19



-56.6°C, the triple point temperature. In addition, the results of crushing 
indicate that inclusions of other generations, and possibly of the same 
generation, do not contain CC^. Finally, the presence of CC^ has not been 
reported by Hall and Friedman (1963), Freas (1961), Cunningham and Van Heyl 
(1980), or by others who have studied fluid inclusions in Cave-in-Rock 
fluorites.

For the purpose of calculations, therefore, the only vapor or gas assumed 
to be present in the inclusions is water vapor.

DISCUSSION OF RESULTS 

The Pex-P s Volume Relationship 

Identification of stretched inclusions

Stretching may take place in nature when the inclusions in a mineral are 
subjected to higher temperatures and/or lower pressures than prevailed at the 
time of their formation. When internal pressure exceeds the combined external 
pressure and tensile strength of the mineral there is inelastic deformation of 
the cavity walls (Sabouraud, 1981). A number of references to stretching, 
leakage, or decrepitation due to overheating were mentioned earlier, but the 
release of external pressure may also induce deformation. An example of 
deformation due to pressure release would be the inclusion-bearing phenocrysts 
in nodules explosively transported to the surface through volcanic vents. 
Numerous COo-rich inclusions in olivine phenocrysts, many showing leakage or 
partial leakage, are described by Roedder (1965). The high external pressure 
at the time of their formation was equal to the pressure inside the 
inclusions, but as the nodules were brought to the surface, external pressure 
dropped and a steep pressure gradient between interior and exterior 
developed. It is this excess of internal over external pressure that causes 
deformation. While pressure imbalance resulting from elevated temperature 
(and hence increased internal pressure) has been the more commonly reported 
cause of deformation, a drop in external pressure below the level of internal 
pressure may have the same effect.

Measurements made by Bodnar and Bethke (1984) on 45 inclusions and by the 
author on 95 inclusions in fluorite have defined a relationship between 
external pressure, the volume of a fluid inclusion, and the maximum internal 
pressure that can be contained before the elastic limit of the inclusion walls 
is exceeded. The maximum internal pressure, P S , was calculated from TS as 
described earlier. Regression of the data (Appendix B) gave the following 
relationship:

P s = -178.0LogV + 0.7Pex + 1018.9 (2)

where pressure (P) is in bars, and volume (V) in cubic microns. The standard 
deviation of 79.5 bars and the multiple correlation coefficient 0.97. In this 
study, Pex ranges from 1 to 1034 bars, and temperatures of initial stretching 
were below 280°C. Figure 1 summarized graphically the results of the 
regression.

If the composition of a fluid inclusion is known and the P-V-T data are 
available, then the above relationship can be used to draw certain conclusions 
about the likelihood that the inclusion had stretched. For a sample of 
fluorite containing inclusions with a size range of LogV between 1 and 3, the 
lowest internal pressure capable of stretching this population would be
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expressed, based on equation (2) as:

P s = -178.0(3) + 0.7Pex + 1018.9 = .7Pex + 485.0. (3)

This relationship states that a minimum P of 485.7 bars (standard deviation = 
79.5 bars) at Pgx = 1 bar, is needed to stretch the largest (LogV = 3) 
inclusions in tnis population. Any knowledge of P such as an estimated 
minimum burial depth would place further constraints on P $ . A burial depth of 
1 km, for example, would correspond to a lithostatic confining pressure of 
approximately 262 bars (Kennedy, 1950) or a hydrostatic pressure of 177 bars 
(Freas, 1961). Using this information, the equation is reduced to P^>_ 610 
bars assuming only hydrostatic pressure, or P^ 670 bars assuming only" 
lithostatic pressure. Thus, inclusions of specified volume, LogV = 3 in the 
example, would have stretched, if subjected to temperatures sufficient to 
raise their internal pressures above 610 bars, given a hydrostatic external 
pressure equivalent to a depth of 1 km. For inclusions such as those in the 
present study, homogenizing close to 145°C and containing fluids of 
approximately 20 weight percent NaCl equivalent, an internal pressure of 610 
bars is generated by approximately 60°C of overheating to temperatures 
slightly over 200°C.

The final step is to 'test' individual inclusions for possible 
stretching, i.e., determine whether the temperatures reached were sufficiently 
high to cause stretching. For this an independent estimate is needed of the 
maximum post-trapping temperatures reached, based, for example, on diagenetic 
or metamorphic phase assemblages, or on the T^s of secondary inclusions. 
Referring to figure 12, P S is the threshold internal pressure above which 
stretching will take place in inclusions larger than a given volume, and Tmax 
is the highest temperature to which the inclusions were subjected during tneir 
post-formational history. Given a knowledge of the fluid composition and its 
P-V-T properties, the liquid-vapor curve and isochores originating from any 
point along it may be drawn. For an inclusion homogenizing at either A, B, or 
C, further overheating to Tm raises the internal pressure along the isochore 
to a point above the P $ . Inclusions with these observed T H S would have 
stretched, if heated to T. However, an inclusion homgenizing above D at E, 
F, and G could not have stretched because its internal pressure, if heated to 
Tm , would be below P S , This testing method assumes that the path of an 
inclusion in P-T space during stretching is similar to the one shown in figure 
13, in that volume does not increase enough to cause internal pressure to drop 
below P g . The method breaks down if "super-stretching," discussed in the next 
section, has taken place. Super-stretching is seen as a sudden, large 
increase in T^, indicating a volume increase possibly great enough to drop Pj n 
below P.. In these experiments, super-stretching occurred at overheating 
temperatures greater than 140°C above the TuS and was, in most cases, clearly 
recognizable. In the absence of super-stretching, a crude estimate of 
original T^ and therefore amount of stretching can be made based on the 
general geometry of the stretching path in P-T space (figure 13). The 
stretching determination method also relies on the fact that each new Tu 
resulting from overheating and stretching is reproducible until the inclusion 
is overheated to a still higher temperature. Reproducibility of a T^ 
indicates that no volume change has occurred in the laboratory.

The inclusions in fluorite from Saint Laurent-les-Bains studied by 
Sabouraud (1981) are examples of natural stretching which might lend 
themselves to this type of stretching analysis. The 296 inclusions from this 
region fell into two groups. At room temperature the majority were single 
phase liquid inclusions believed to have been trapped at low temperature 
(_<50°C), while a few were two-phase, liquid-vapor inclusions which homogenized
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Figure 12. Identification of stretched inclusions

An inclusion of given volume homogenizing at T^_^, T^_g, or T^_^ would have 
stretched if heated to T ax because its internal pressure P^ would have 
exceeded PS . P $ i s a function of inclusion volume, and the external pressure 
during overheating; it could be calculated from equation (2),

P = -178.0LogV =

An inclusion homogenizing at or

1018.9.

would not have
stretched because heating to T woud not have raisedmax above PS .
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Stretching Path In P-T Space
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Figure 13. Stretching path in P-T space

As represented schematically in figure 10, the inclusion's internal pressure 
increases rapidly at first with increased temperature, then more slowly as 
stretching begins. The dashed line shows the stretching path followed by 
inclusion 32-a overheated at

p^
numbered Tu value (e.g. T H 1 Q=IB7°C) is 
indicated temperature (e.g. TiQ=328°C). 
salinity is 20.51 weight " 
slope of 10.5 bars/°C.

bars. THi is the initial T H 
the result of overheating 

For this inclusion, LogV 
or~4.414 molal NaCl equivalent, giving

and each 
to the 
= 3.33, and 
an isochoric
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between 120°C and 180°C. The interpretation is that subsequent to trapping, 
the low-temperature primary inclusions were reheated to temperatures 
sufficient to stretch some, but not all of them. If the initial T^ were below 
25°C (pressure correction at the time of trapping not taken into account), 
then a sufficient volume increase would lower the fluid density to the point 
where a vapor bubble could nucleate (see figure 5). The two-phase inclusions 
are described as showing no visible fracturing under the optical microcope. 
Although no correlation between volume and T^ was reported, a P s -volume 
relationship of the type shown in figure 2 remains a possible explanation for 
the range in T^ values and the fact that not every inclusion was affected.

Figure 14 shows schematically one way in which the results of the present 
study might be used, in this case to estimate the amount of overheating that 
was needed to stretch the inclusions described by Sabouraud to their present 
homogenization temperatures. First an estimated confining pressure is needed 
to compute P. for a given inclusion volume. Then with an estimate of initial 
T^|, a stretcning path can be approximated and the overheating temperature 
bracketed as shown. Although more information is needed to complete the 
analysis, this example illustrates how a temperature of diagenesis might be 
determined.

Possible stretching mechanisms

Continued overheating beyond the initial temperature needed to stretch an 
inclusion results in an upward stretching path in P-T space (figure 13). The 
isochores on these diagrams are the cooling paths following each increment of 
heating and correspond to successively lower fluid densities or increased 
specific volumes. The relatively smooth increase in volume with temperature 
(figure 15) and with internal pressure (figure 16) suggests plastic 
deformation of the inclusion walls. Transmission Electron Microscope (TEM) 
photos of unheated fluorite samples showed approximately 10 dislocations per 
square cm, some of them intersecting inclusion walls (G. Nord, pers. comm., 
1981), and it is thought that pressure on the cavity walls may supply the 
energy needed to activate these dislocations. Propagation of dislocations 
away from the inclusion into the crystal and possibly to the surface, may 
physically transport material away from the cavity walls, thus enlarging the 
inclusion. This mechanism, as well as an alternate, has been proposed by 
Bodnar and Bethke (1984). They suggest that the volume increases in this 
phase of stretching might also be caused by the opening of minute fractures in 
the cavity walls and their propagation into the crystal. No fractures are 
visible under the microscope, however, at 625X at room temperature, or at 512X 
at the homogenization temperatures of the inclusions.

The results of the present study and of work by Bodnar and Bethke (1984) 
show that the internal pressure required to stretch a given inclusion depends 
both on external pressure and inclusion volume. Although internal pressure at 
initial stretching always exceeded external pressure, this overpressure (P_- 
Pex ) was less at higher internal pressures (see figure 11). This might be 
interpreted as a weakening of the fluorite with increasing temperature since 
at higher Pex , P S and therefore T g is higher.

It is not currently understood why inclusions of large volume stretch at 
lower internal pressures than small ones, but if it is accepted that 
dislocations are involved in the stretching process, an analogy may be drawn 
between failure of the inclusion walls and failure of the walls of a circular 
tunnel in an underground mine. A tunnel of small diameter will stay open at 
far greater depth and lithostatic pressure than a tunnel of large diameter.
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i i
50 1501

TH(lnltlaO* £ T
Temperature (°C)

Figure 14. Estimate of overheating temperature 
in Saint Laurent-les-Bains fluorites

for stretched inclusions

PS is calculated from inclusion volume and from estimates of external pressure 
during overheating. Tu( new\, 160°C, is measured, and T^/ jpjtial) is known to 
be _<50°C (see text). Isocnores originating at the initial and new 
homogenization temperatures can be drawn given a fluid composition and a 
crudely approximated stretching path can be sketched between them. The 
intersection of the stretching path with the isochore originating at the new 
Ty, 160°C, defines an overheating temperature and corresponding pressure. 
Given that a stretching path has positive slope (figure 13), the overheating 
temperature is estimated to be between TQ and Tp or TQ<TQ^£]~J as shown.
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Figure 15. Temperature vs. % volume change for a super-stretched inclusion

The path shown is for inclusion lOA-c, overheated at 400 bars external 
pressure. T is the temperature to which the sample was raised during 
overheating; the % change in volume is computed from the^decreased density 
(increased specific volume) of the inclusion flui(T with increased T H as a 
result of stretching (see figure 10). Figures 17 and 19 show the P-T path and 
changes in TH for inc usions lOA-c and lOA-a, respectively, during super- 
stretching. Curing initial overheating between 145° and 221°C stretching has 
not yet begun and there is no increase in inclusion volume. This stage 
corresponds to the upward path along the initial isochore between points A and 
C 1figure 10. Between 221° and 281°C 'normal' stretching occurs (points C 
through E in figure 10), and between 281° and 290° the inclusion super- 
stretches as indicated by the abrupt, and large increase in volume. After the 
super-stretching phase, volume continues to increase slowly. The inclusion s 
salinity was 4.18 molal or 19.62 weight % Nad equivalent, giving an isochonc 
slope of 10.3 bars/°C; TH(1n1t1al) was 145°C and log inclusion volume 

(microns) 3 , 2.95.
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Figure 16. p internal vs. % volume change

Pressure inside inclusion 32-a, P 1n , is plotted against the % increase in 
inclusion volume as a result of stretching. Below 919 bars stretching has not 
begun and there is no change in inclusion volume. Pressures above 919 bars 
cause stretching and a relatively smooth increase in inclusion volume. 
Compare with figure 18 which shows P in vs. % volume change for a super- 
stretched inclusion. Inclusion 32-a, overheated at 717 bars external 
pressure, had a salinity of 4.414 molal or 20.51 weight % NaCl equivalent, 
giving an isochoric slope of 10.5/°C; T H /, ... n was 145°C and log inclusion 
volume, 3.33. niimtiaij
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Although the stress concentration around the tunnel and strength of the wall 
material is the same in both cases, the larger diameter tunnel will fail under 
a smaller load because it will intersect a greater number of the fractures, 
joints, and planes of weakness that are randomly distributed throughout the 
rock (M. Hood, pers. comm., 1982). As mentioned above there is a certain 
ambient density of dislocations in a fluorite cyrstal, and a large inclusion 
will be more likely to intersect one or more dislocations than will a small 
inclusion. If initial stretching does take place by propagation of 
dislocations, then it would seem logical for the inclusions whose walls 
intersected more dislocations to stretch (yield) at lower internal pressures.

When overheating was continued at the 400, 717, and 1034 bar confining 
pressures, the P-T paths of 18 inclusions turned downward (for example, figure 
17). The pressure drop indicates a sudden increase in volume (figure 18) 
believed to represent a stretching mechanism different from the initial, 
postulated plastic deformation. A sharp increase in TH and discontinuity in 
the T^j vs. overheating curve (figure 19) are evidence of the sudden volume 
increase. At the 717 and 1034 bar external pressures, this "super-stretching" 
phenomenon was accompanied by the appearance of scores of much smaller, new 
(daughter) inclusions which surrounded but did not touch the original parent 
inclusions (figure 20). At 200 bars external pressure, overheating was not 
extended into the temperature range where super-stretching might have 
occurred. At 400 bars external pressure, only two inclusions super-stretched 
and no new (daughter) inclusions were trapped. The daughter inclusions lie in 
the plane of the parent inclusions, and at 625X a distinct vapor bubble and 
faint inclusion outline can just be distinguished; they are too small to 
recognize homogenization, however. It has been suggested that the 
concentration of stress in the plane of the secondaries (parent inclusions), 
as they are stretching, causes a fracture to open and then heal rapidly on 
cooling, trapping new inclusions. It should be noted that any fractures 
formed during overheating had healed and were no longer visible when examined 
under the microscope. Since the runs in which new inclusions appeared were 
quenched in water at room temperature, the cooling time and therefore the time 
during which the hypothesized fracture healed was on the order of minutes. 
The fluid in the new inclusions presumably leaked from the parent inclusions, 
thereby explaining their sudden, large increase in T^|. Similar halos of tiny, 
daughter inclusions have been reported around inclusions known to have 
stretched either in nature or in the laboratory (Lemmlein, 1956, figures 6a,b 
and 7; Roedder, 1965, figure 18).

Upper external pressure limit

Figure 21 shows the increase of PS with increased Pex for a given volume, 
as defined by the regression equation. Below the 'limiting line' along with 
pin=pex ( s l 0 Pe °f 1-0)» the external pressure exceeds internal pressure, and 
stretcning, at least in the sense defined in this study, cannot take place. 
The curve LogV=0 is extrapolated from the regression equation and is 
interpreted as a theoretical maximum tensile strength for fluorite over a 
range of external pressures. An inclusion of LogV=0 is analogous to a tunnel 
of essentially zero diameter in the discussion above. The slopes of less than 
one appear to indicate diminishing mineral strength with increased external 
pressure, possibly as the result of the increased temperature (Ts ) needed to 
generate P~. Increasing temperature is implicit in increasing P s and the two 
are related by the isochoric slope (dP/dT) v for a specific fluid 
composition. Clearly the Ps =Pex-LogV relationship defined for the pressure,
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Figure 17. P-T path of a super-stretched inclusion

The path in P-T space during overheating, stretching, and super-stretching is 
shown for inclusion lOA-c. The stretching path for this inclusion is similar 
to the paths shown in figures 10 and 13 except that above a certain 
temperature and internal pressure (281°C, 1138 bars) this inclusion undergoes 
super-stretching, a volume increase great enough to lower the internal 
pressure. This drop in internal pressure corresponds to a sharp increase in 
T H (see figure 19) and in volume (figure 15"). Above 290°C stretching 
continues at approximately the previous rate. TU.J is the initial T^ and each 
numbered T H value (e.g. TH 1 Q=172°C) is the result of overheating to the 
indicated temperature (e.g. T.Q=281°C). The salinity of inclusion lOA-c was 
4.18 molal or 19.62 weight % NaCl equivalent, giving an isochoric slope of 
10.3 bars°C; TH(i n itial) was 145 ° ancl ^ og inc ^ usion volume (microns) 3 , 2.95. 
The external pressure was 400 bars.
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500

F?B (bars)
1000

Figure 18. P inte rnal vs - % volume change for a super-stretched inclusion

Pressure inside inclusion lOA-c, P in , is plotted against the % increase in 
inclusion volume as a result of stretching. Below 793 bars internal pressure, 
stretching has not yet begun and there is no change in inclusion volume. 
Between 793 and 1138 bars stretching proceeds 'normally' with a smooth 
increase in volume (compare figure 16). At approximately 1138 bars, however, 
a rapid increase in volume associated with super-stretching causes a marked 
decrease in internal pressure. With continued overheating Pi nternd i hu "V ds 
and volume begins gradually to increase again (figure 17). Inclusion lOA-c 
was overheated at 400 bars external pressure. Its salinity was 4.18 molal or 
19.62 weight % NaCl equivalent, giving an isochoric slope of 10.3 bars/ L; 
TH(initial) was 145 ° C and 1og inclusion volume (microns) , 2.95.
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New TH

200

150

150 200 250 300 350

Temperature (°C) to which inclusion 
has been heated

Figure 19. Overheating vs. new TH for a super-stretched inclusion

New homogenization temperatures for inclusion lOA-a are plotted as a function 
of successively higher overheating temperatures. Below 221°C no stretching has
occurred and TM is
causes a relatively smooth
stretching (see

at its initial value. 
increase in T 

also figures 15 and 17).

Between 221° 
representing 
Between 281°

and 
the 
and

281°C overheating 
'normal 1 phase of 
290°C there is an

abrupt increase in T^ corresponding to super-stretching. Above 290°C 
overheating causes gradual continued increase in the new Tu values. Inclusion 
lOA-a was overheated at Pex =400 bars. Its salinty was 4.18 molal or 19.62 
weight % NaCl equivalent, giving an isochoric slope of 10.3 bars/°C;

"^(initial ) ° 3was 143°C, and inclusion volume (microns) 3 , 2.82.
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Figure 21. P S vs. P at fixed volumes
tl A

P s vs. P_ v curves derived from the equation (2)," X

Ps = -178.0LogV +0.7Pex + 1018.9,

have been drawn for five inclusion volumes. The solid lines lie within the 
experimental P and volume range, and dashed lines are extrapolated. Units 
of volume are cubic microns and the smallest inclusion used had a log volume 
of 1.92. The line LogV=0 represents a theoretical maximum yield strength for 
inclusions in fluorite. The 'limiting line', P-j n =Pex > has a slope of 1.0; 
below this line Pex exceeds Pin and stretching, in tfie sense defined in this 
study, cannot occur. The isovolume curves may approach the 'limiting line' 
asymptotically.
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temperature, and volume range of this study, breaks down as the isovolume 
curves approach the 'limiting line 1 . It is possible that the curves approach 
the 'limiting line' asymptotically.

No data were collected above 1034 bars external pressure because, for 
reasons not fully understood, T^s dropped instead of increasing. Inclusions 
left overnight at room temperature and 2 kbars water pressure showed no change 
in T^s. However, inclusions heated to their homogenization temperatures for 
less than an hour at 2 kbars water pressure and cooled showed decreases in TH 
in the vicinity of 10°C. This phenomenon seems to be associated with the 
combination of high P and cooling from elevated temperature. A similar set 
of experiments by James Grunig (reported in Kennedy, 1950) gave essentially 
the same results: Tu dropped approximately 10°C when inclusions in fluorite 
were subjected to 1500 bars water pressure at 150°C. It should be noted that 
up to about 1 kbar in this study, external pressures exceeding internal 
pressures had no observed effect on T^.

Stress and temperature versus strain

In addition to providing information on the behavior of fluid inclusions, 
experiments such as those of the present study have been recognized as a new 
way of determining the tensile strength of fluorite (Sabouraud, 1981). 
Internal pressure is a stress exerted on the cavity walls which yield very 
slightly in the elastic range below P-. Above P the elastic limit has been 
exceeded and permanent deformation or strain in the form of an inclusion 
volume increase results. Figure 18 shows stress (P-j n ) versus strain (% volume 
change) in an indivudual inclusion. Because elastic deformation is not 
visible at this scale, internal pressure rises vertically to the yield 
strength of the fluorite at 793 bars. The cavity walls yield steadily until, 
at an internal pressure of 1138 bars, the tensile strength of the fluorite has 
been reached. The internal pressure at which super-stretching takes place is 
the breakdown pressure, or pressure at which tensile cracks begin to propagate 
away from the inclusion into the crystal. Although the applied stress at 
failure is sometimes referred to in the literature as the strength of a 
material, strictly speaking, further calculations are required to translate 
the breakdown pressure to a tensile strength for fluorite (C. Barton, pers. 
comm., 1982). Above 1138 bars, brittle failure of the cavity walls causes a 
major volume increase from 2.15% to 14.26% over the original volume and P^ n 
drops markedly. As overheating continues, P^ n builds again and volume begins 
to increase slowly. Figure 15 is a similar graph showing the percent volume 
change with the temperature to which the inclusions were overheated. Only 18 
of the 95 inclusions examined could be considered clear examples of super- 
stretching; their calculated breakdown pressures at 400 bars external pressure 
ranged from 1106 to 1442 bars, from 1503 to 1639 bars at 717 bars external 
pressure, and from 1964 to 2237 bars at 1034 bars external pressure. These 
values compare with (dry) 'rupture' strength reported by Handin (in Clark, 
1966, p. 277) of 1230 to 4350 bars varying with sample geometry. The presence 
of water commonly has a significant effect, increasing the strength of some 
minerals, e.g., halite, and weakening others such as gypsum or quartz 
(Robertson, 1955). For quartz, water has been shown to increase dislocation 
mobility, and to decrease fracture toughness, i.e., resistance to crack 
propagation (Atkinson, 1979). Although the effect of water on dislocation 
mobility and fracture toughness is not known for fluorite, it should be noted 
when comparisons are made, that the walls of an inclusion are in contact with 
fluid, whereas conditions in many laboratory experiments where stress is 
applied mechanically are dry.
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SUGGESTIONS FOR FUTURE STUDY

An extension of the Ps -Pex-LogV relationship to other minerals, calcite, 
sphalerite, quartz, feldspars, and olivine to name a few, would perhaps be of 
most practical value to researchers using, or potentially using fluid 
inclusions in the study of mineral deposit genesis. Work by Tugarinov and 
Naumov (1970) relating the Mohs hardness of a mineral to the internal pressure 
corresponding to mass decrepitation (figure 22) suggests that the relationship 
defined for fluorite may be similar for other minerals, but may shift up or 
down depending on the strength, hardness, and cleavability of the individual 
mineral. Comparison of the relationship between P $ and LogV at 1 bar external 
pressure for fluorite and sphalerite has been examined in detail by Bodnar and 
Bethke (1984).

An important step in understanding the stretching mechanism would be a 
detailed comparison by TEM of sections cut to intersect fluid inclusions, both 
stretched and unstretched. The density and type of dislocations surrounding 
and intersecting the inclusion walls could provide key information on the 
importance of dislocations in the stretching process. Only brief 
reconnaissance examinations of this type have been made so far because 
ionization by the electron beam of the TEM rapidly damages the fluorite 
crystal obscuring the field of view. A more detailed study would probably be 
successful using a special low temperature TEM to minimize sample damage.

A better understanding of the behavior of fluid inclusions in fluorite at 
external pressures above 1 kb would be of practical value as well as 
potentially important to understanding the stretching mechanism. Use of very 
slow cooling rates, with care taken to maintain internal pressure only 
slightly below external during cooling, might forestall the decreases in T^ 
and permit extension of the present relationship to higher pressures.

SUMMARY OF CONCLUSIONS

The principal result of this study is the equation relating P S to Pex and 
V. With information on the volume, fluid composition, and THof an inclusion, 
and with estimates of the maximum temperature and minimum confining pressure 
to which inclusions may have been exposed, this relationship,

Ps = -178.0LogV + 0.7Pex + 1018.9, (2)

can be used to determine whether inclusions greater than a given volume have 
stretched. In cases where recognition of stretching is possible based on a 
relationship between T^ and volume, the function P s =f(LogV, P ) permits, 
given a confining pressure, estimates of the temperatures that resulted in 
stretching.

Fluid inclusions are a valuable tool in the study of mineral deposit 
genesis, but the temperature information they yield must be used with great 
discretion. Very misleading T^s and formation temperatures can be obtained if 
stretching or leakage go undetected. Leakage is commonly evident due to 
visible fractures around the inclusions, but stretching is a more insidious 
problem because it causes no visible damage to the crystal. The Ps - pex-V 
relationship improves the current understanding of the conditions under which 
stretching takes place in fluorite and improves the chances that a population 
of stretched inclusions will be identified. The end result, it is hoped, will 
be greater confidence in temperature data from fluid inclusions in the future.
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Figure 22. Decrepitation pressure vs. Mohs 
Tugarinov and Naumov, 1970, table 2)

hardness for ten minerals (from

The internal pressure at the beginning of mass decrepitation of gas-liquid 
inclusions in ten minerals is shown as a function of Mohs hardness. The slope 
is approximately 100 to 120 atm/hardness unit. Abreviations are as follows: 
orp (orpiment), stib (stibnite), wh (whewellite), vil (villiaumite, sph 
(sphalerite), fl (fluorite), wol (wolframite), and qz (quartz).
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Other results of this study have been the observation of two apparently 
distinct types of inclusion wall failure, first stretching, believed to be a 
plastic failure, followed in a few cases by super-stretching which is almost 
certainly a brittle failure. Finally, the fluid inclusions represent a new 
approach to determination of the strength of fluorite. The results of this 
study may ultimately contribute to the understanding of the relationship 
between elastic parameters, mechanisms of failure, and internal stresses 
necessary to initiate various levels of deformation in fluorite and other 
crystals.
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Appendix A 

Calculation of Inclusion Volumes

In any fluid inclusion study it is useful to be able to find inclusion 
volumes. A new method developed by Robert Bodnar (1983) relies only on a 
knowledge of the P-V-T-X properties of the inclusion fluid and on the volume 
of the vapor phase at a given temperature. Where the vapor bubble is assumed 
spherical, the only measurement involved is that of the vapor bubble diameter; 
the vapor phase volume is then easily computed. For an inclusion which 
homogenizes to a liquid phase the method can be stated as follows:

% change in V (liquid) X V(total inclusion)=V(vapor bubble)
The first term represents the percent change in specific volume of the liquid 
between room temperature and T^, relative to the specific volume at T^. Given 
the density data for the fluid, this term is simply
{d (TH ) - d" i (25°)} /d" 1 (TH ), where specific volume (d" 1 ) is the inverse of 
density, d. Vapor bubble volume is computed from the diameter measured at 
room temperature and the equation is solved for the total inclusion volume.

This method is based on the assumption that the inclusion is an isolated 
system, with the mass of the inclusion contents and the total volume fixed. 
Homogenization (to a liquid phase) represents the point where the liquid has 
expanded to fill the entire cavity, therefore the liquid at TH has lower 
density and higher specific volume than at room temperature. The percent 
change in specific volume multiplied by the total inclusion volume gives the 
amount of expansion of liquid in absolute volume units. Since the liquid 
expands at the expense of the shrinking vapor bubble which vanishes at T^, the 
vapor bubble volume must exactly equal the amount of the liquid's expansion.

Inclusion volumes can also be determined by measuring the dimensions of 
an inclusion, and computing the volume of the closest geometric form of the 
same dimensions. The main drawbacks of this method are (1) that the choice of 
usable inclusions is severely limited because the method is applicable only to 
inclusions of very regular shape, and (2) since the third dimension cannot be 
measured it must be estimated, introducing error of unknown size. Comparisons 
of volumes of regularly shaped inclusions computed by each method showed good 
agreement indicating that either method is satisfactory for these inclusions 
(Bodnar and Bethke, 1984). For irregualrly shaped inclusions however, the 
Bodnar method provides the best volme estimates available.

There are a number of sources of error in the Bodnar method, the most 
significant of which is the accuracy of the computed vapor bubble volume. The 
bubble diameter is measured using a calibrated ocular micrometer with a 
precision of ±0.5 microns and this may represent substantial error when the 
radius is cubed to get the vapor phase volume. These errors are directly 
proportional to errors in total inclusion volume so that a vapor bubble volume 
10% too high would yield a total volume 10% too high as well. There are also 
difficulties inherent in the accurate microscopic measurement of spheres. The 
refractive index of the medium surrounding the sphere, the focal position, 
condenser aperture and position all influence the apparent diameter to some 
degree (Saylor, 1965). In addition, Roedder (1972, Plate 11, figs. 7, 8) has 
shown that a curved inclusion wall may act as a negative lens distorting the 
apparent diameter of the vapor bubble. This problem becomes less serious as 
the refractive index of the host mineral approaches that of the inclusion 
fluid. Compared with a high index mineral such as sphalerite (n=2.37) the 
index of fluorite, 1.43, is relatively close to the index of the fluid,
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approximately 1.10. Finally, it should be pointed out that the vapor bubbles 
could not be true spheres unless they floated in the liquid. Assuming that 
they touch one of the cavity walls, their shape will be that of a sphere 
slightly flattened on one side. In this study, only inclusions whose vapor 
bubbles showed no measurable elongation along either axis were used. These 
sources of error have not specifically been taken into account because they 
are believed to be far outweighed by the uncertainty in the vapor bubble 
diameter measurement.
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APPENDIX B 

Data Tables

Table 1. Multiple Regression Input. Data for 141 secondary inclusions 
are listed; all data at PQX*! bar are from Bodnar and Bethke (198:4).

Inclusion 
Number

i
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13

K1
K2
K3
K4
K8

K10
LI
L2
L3
L4
L5
L7
L8
L9

L10
L11

M1
M2
M3
M4

I M5
i M6

M7
P1

PS

505
657
585
477
567
482
477
454
432
482
500
494
485
333
390
436
707
230
388
173
276
475
504
516
432
333
425
515
481
299
317
383
240
233
312
276
644

LogV

3-32
1.68
2.58
2.58
2.58
2.88
3-11
3.32
2.88
2.58
3.11
3-32
3.11
3-11
3.64
2.03
2.58
3-32
2.38
4.00
3-32
1.68
2.38
2.58
3.49
3.78
2.88
3-32
2.20
4.38
4.20
4.11
3.78
4-46
4.11
4.54
2.20

p ji Inclusion 
ex || Number

n
1 I P2
1 II P3
1 i P4
4 II T 4
1 || XI

4 II T01 n X24 n T-T I n X3
1 II X4
1 II X6
1 I!
1 I 35-a
1 I! 35-b
1 I
1
1
1
1

35-c
35-e
35-f
35-g
35-h

1 I 35-i
1 II 35-3
1
1
1

35-k
35-1

1 35-m
1 I 35-n
1 35-o
1 I 35-p
1
1
1

35-q
35-r
35-s

1 II 35-t
1 II 35-u
1 I! 35-v
1 II 35-w
1 I! 35-x
1 35-y
1 II 35-25
1 1 35-aa
1 I 35-bb
1 || 35-cc

PS

644
652
697
185
104
266
188
268

621
616
510
609
520
606
759
752
713
713
806
617
662
314
474
661
609
622
757
723
719
711
622
765
760
710
813
812

LogV

2.20
1.68
1.97
4.91
4.54
4.68
4.54
4.54

3-11
3-14
3-14
3-08
3-33
3-14
2.47
2.85
2.51
2.47
2.47
2.56
2.78
2.47
3-03
2.38
2.35
2.47
2.81
1.94
2.285
2.81
2.51
2.47
2.51
2.85
2.47
2.23

r

1

1
1
1

1

1
1

1

200
200
200
200
200
200|
200 |
200|
200 |
200
200 |
200
200 |
200 j
200
200
200
200
200
200
200
200
200
200!
200!
200
200|
200
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Table 1. (Cont.)

i Inclusion 
i Number

9A-b
9S-a
9E-d
9E-f

! 10A-a
! 10A-b

10A-c
10A-d
10A-e
10A-f

! 10A-g
I 10A-h
! 12B-a
i 12B-b
! 12B-C

12B-d
12B-e

i 12B-f
12B-g
12B-i

32-a
32 -b

! 32 -c
32 -d
32 -e

! 32 -f
32 -g
32-h

! 32 -i
32-j
32 -k
32-1
32 -m
32 -n

PS

632
768.5
705
609
750.5
846
337

1056
342
851
843
853

1003
887
382
381
379

1093
1104
1106

919
990

1113
1111
1116.5
1212
1067
995-5

1175
994
994
998

1224
1118

LogV

3-89
3-23
3.13
3-23
2.82
3.00
2.95
1.92
2.63
2.83
3-26
2.95
2.27
2.90
2.34
2.55
2.55
2.37
1-93
2.06

3-33
2.78
2.81
2.51
2.56
1.94
2.81
2.84
2.07
2.56
2.63
2.63
1.94
2.60

?ex I ex ,

400 i
400 !
400 !
400 !
400 !
400
400
400 !
400 !
400 !
400 !
400 !
400
400
400
400 !
400
400
400
400

i

717 !
717
717
717
717
717
717
717
717 !
717
717
717
717
717

i Inclusion 
Number

I 32-o
j 32-p
! 32-q
i 32-r
! 32-s

32 -t
32 -u
32-v

! 32-w
32 -x
32-y
32-2

i
21A-a

i 21 A-b
i 21 A-c

21 A-d .
! 21 A-e

21A-f
21B-g

i 21 B-h
j 21 B-i

21B-J
21B-fc
21B-1
21B-m
21B-0

j 22 -a
22 -b
22-c
22 -d

! 22-e
| 22-f
! 22 -g
| 22-h

?3

1002
1114
1123
1113
363
999
922
997

1060
1118
996

1223

1261
1138
1370
1474

' 1285
1237
1290
1133
1275
1039
1154
1143
1141
1270
1384
1394
1410
1144
1228
1484
1258
1125

LogV

2.81
2.51
2.60
2.51
2.84
2.73
3-11
2.67
2.56
2.47
2.81
2.07

3-07
3-07
1.97
2.23
2.23
2.45
2.23
2.63
2.80
3-40
2.80
2.94
2.94
2.63
1.97
2.11
2.23
2.80
2.34
2.34
2.94
3-54

?ex

717
717
717
717
717
717
717
717
717
717
717
717

1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
1034
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Table 2. Statistics from (SPSS) Multiple Regression of the data gathered 
for 141 secondary inclusions (see Table 1.).

Dependent Variable P9

Sample Size 141

Multiple Correlation Coefficient 0.97139

Standard Deviation 79-51453

Variable Name

LogV

p

Constant

Value

-177.99162

.70512190

1018.9445

Standard Error

10.998620

.019038850

35-307778

P Statistic

261.89228

1371.6616

832.83748

Significance 
Level of P

.000

0

0
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Table 3- Data for Inclusion 10A-c, used in plotting figures 15,17, and 
13. Inclusion 10A-C vas overheatad at Pex-400 bars. Salinity: 4.18 
oolal or 19-62 veight % NaCl equivalent; iaochoric slope: 10.3 bars/°C; 
TH(initial) : 1 *5 C; log inclusion volume (microns)^ 2-95-

! No.

i
! initial

1 i
2 !

3

4

5

6

7

8

9

10

11

12

13
i
! 14
1

15

(^
145

191
!
I

201

211

221

231

241

251

263

271

231

290

299

311
i
! 320
i

342

<%
i

145-0

145-0

145-0

145-0

145-0

150.8

151-6

155.6

161.4

167.8

172.0

285-4

286.8

285-8

285.7

288.5

D i 
(gn/cc)

1.065 !

1.065
ii

1.065

1.065

1.065

1.060

1.059

1.056

1.051

1.046

1.042

  932

  930
i

  931

  932

  929

(cc/gm)
!

  939

  939

  939

  939

  939

  943

  944

.947

.951

 956

.959

1.073

1.075

1.074
i

1.073

1.077

(Y-Y0)/v0 |
i° iii

o !ii
0

0

0
1

.443
i

.505

.818

1.280

: 1.803

2.153

14.256
t

14.443

14.309
i

14-296
i

14.672

?in 
(bars) i

i
4

484
i

587

690

793

836

932

994

1058

1078

1138

107 !
i
i

189 |

323

416 !

616
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Table 4* Data for Inclusion 32-a, used in plotting figures 13 and 16. 
Inclusion 32-a Yas overheated at P9x*717 bars. Salinity: 4*414 nolal or 
20.51 weight % Had equivalent; isochoric slope: 10.5 bars/ C; 

C; log inclusion volume: 3-33.

Ho. j

initiali
i

1

2

i '3 !i i

4 !i

5

6

7

8

9i
10

11

12

13

14

15

(T<9c )

145 i
221

ii
232

245

255

265

278

289

301

315

328

341

353

367

380

390

(°c)

145

145

145

148

150.5

153

156

164

171

176

187

196

204.5

214

226

234

D i 
(gn/cc)

1.071

1.071
ii

1.071

1.069

1.067

1.065

1.062

1.056

1.050

1.046

1.036

1.028

1.021

1.012

1.000

  993

(cc/gffl)

  933

.933

.933

  935 ii
  937

  939

  941

.947

  952

.956

.965

  972

.980

.983

1.000

! 1.007

(V-YO)/VO

0

0
II

0

.224

.413

.604

.835

1.466

2.034

2.450

3-393

4.196

4-981

5-891

7.090

7.921

(bars)

4

803

919

1024

1103
i

1182

1288

1321

1375

1470

1493

1537

1576

1628i

1642

1667



Table 5« Data for inclusion 10A-a, used in plotting figure 19. Inclu­ 
sion 10A-a vas overheated at 400 bars external pressure. Salinity: 4*13 
racial or 19.62 weight % Had equivalent; isochoric slope: 10.3 bars/ C; 
TH(initial) U3°C; log inclusion volume: 2.82.

No.

initial

1
i

2

3

4

5

6

7ii
8

9

10
i
1 11

12

13

14

15

143

143
i

142 !
I 

143

143

145

148

153

157

164

169

262i

266

266
j

267

268

ai
i 

143
i

191

201 i

211

221

231

241 !

251

263

271

281

290

299

I 311

| 320

342
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