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TWO- AND THREE-DIMENSIONAL LOW-FREQUENCY RADIATION FROM AN ARBITRARY SOURCE
IN A FLUID-FILLED BOREHOLE

By Myung W. Lee

ABSTRACT

Far-field displacement fields were derived for an impulsive point force
acting on a fluid-filled borehole wall under the assumption that the borehole
diameter is small compared to the wavelength involved. The displacements due
to an arbitrary source can be easily computed by combining the solutions for
the impulsive sources.

In general, the borehole source generates not only longitudinal and
vertically polarized shear waves but also horizontally polarized shear waves.
This study also indicates that only the axis-symmetrical motion around the
borehole due to normal stress is affected by the presence of the fluid in the
borehole. The tangential stresses acting on a fluid-filled borehole do not
affect the radiation into the surrounding medium due to the presence of the
fluid in the long-wavelength limit.

INTRODUCTION

The far—-field radiation pattern from a seismic source inside a
fluid-filed borehole is very important in understanding not only the effect of
the borehole fluid on the seismic radiation but also the characteristics of
the different borehole sources. Recently, Lee and others (1984) observed an
anomalous radiation pattern from a downhole airgun source during a
well-to-well vertical seismic profiling experiment and concluded that the
borehole fluid had a substantial effect on the measured seismic radiation
patterns. Current development of vertical seismic profiles necessitated a
better understanding of the borehole sources as well as the borehole and fluid
effect on the measured seismic signal.

This investigation focuses on the derivation of the far-field seismic
radiation pattern from an arbitrary source acting on the wall of the
fluid-filled borehole under the assumption that the borehole diameter is very
small compared to the wavelengths of interest.

Heelan (1953) discussed P~ and S-wave radiation pattern from
axis—symmetric borehole sources acting on the wall of an empty borehole. Lee
and Balch (1982) derived the far—-field radiation pattern from axis-symmetrical
sources in a fluid-filled borehole and discussed in detail the effect of the
borehole fluid on the seismic radiation into the surrounding medium. White
and Sengbush (1963) also formulated the effect of borehole fluid on the
seismic radiation pattern combining Heelan's solution with the tube wave
inside the borehole. All of the above-mentioned authors treated only the
axis-symmetrical waves propagating around the borehole under the low-frequency
assumption.

White (1960) derived the far-field radiation pattern from radial and
tangential pairs of forces acting on the wall of an empty borehole using a
seismic reciprocity theorem. Greenfield (1978) obtained the seismic
displacement fields from a point force applied to the surface of a cylindrical
cavity in an elastic medium without any assumption about the size of a
borehole relative to the wave length.
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In this investigation, the three scalar potentials, which describe the
elastic wave propagation in the surrounding medium, were formulated using an
infinite sum of Bessel functions gnd the complex Fourier transform. Retaining
the terms proportional to a and a“ (where "a" is the radius of the borehole),
and expanding the azimuthal dependence of the source function into the complex
Fourier series, exp(ip8), it is shown that only P = 0, 1, and 2 terms are
needed to describe the seismic radiation around the borehole under the
low-frequency assumption.

Two—-dimensional radiation patterns and some mathematical details are
enclosed in the appendix.

DERIVATION OF THE SOLUTION

Consider a cylindrically circular, fluid-filled borehole with a radius
"a" in a homogeneous elastic medium of density o, compressional speed o
and shear speed B . The fluid medium has a compressional velocity o, and

density p. . The elastic wave field inside the fluid-filled borehole can be
described:%y a scalar potential ¢°, and the elastic wave propagating around
the borehole can be represented by three scalar potentials ( ¢, ¢, X).

The three scalar potentials in the surrounding medium can be written as
the following formula in the frequency domain (e. g., Harkride, 1964):

72F = - 2
Vliﬁ:—_ﬁ)f_q (1

2
Vx:_ L\)l)(

and in the fluid the potential is given by:

vi@ = - 3,,

f

In a cylindrical coordinate system (r, &, z), shown in figure 1, the
displacement field can be derived from the scalar potentials by the following

formulae. In the surrounding medium, Ur’ Ue, and U , (r, ©, and z direction
displacement, respectively) are: _ z
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Figure l.--Coordinate system for solution. An orthogonal cartesian
coordinate (x, y, z), & cylindrical coordinate system (r, 6, z),
and a spherical coordinate system (R, @}, 6) are shown



The solutions of the displacement potentials in the surrounding medium
may be written, imposing the radiation boundary conditions, as:

o e cz) -A‘.f < I
¢ - pz-: P e e g 3
= -0

and

(2)
P

and the radial wave numbers m and n are given by:
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In equation (3), H is the second kind of Hankel function of order P,
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Inside the fluid-filled borehole, the potential can be written as:
o0
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In equation (4), Jp is the Bessel function of order p, and % is given by:

A
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The value of p should be taken only integer values in order that the

displacement fields are single valued functions of the azimuthal angle 6. The
unknown constants Ap, Bp, and Cp can be evaluated by applying appropriate

boundary conditions on the wall of the fluid-filled borehole.



The usual boundary conditions to be satisfied on the borehole wall, at r
= a, are:
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In equation (5), Pij is the stress component in the cylindrical
coordinate system and § (z) is the Dirac delta function, and Ti(O), i=r, z,
or 8, is the source stress acting on the borehole wall as a function of 8. The
primed quantities in equation (5) represent the quantities in the fluid.

The stresses appropriate in solving boundary conditions are:
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Here )X and y are Lame's constants and relate to the seismic velocity as:
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The first term of equation (5) requires the continuity of the radial

stress at the borehole wall, and the remaining three terms require the
continuity of the stresses acting on the borehole wall. Because the shear
modules Mg in the fluid are assumed to be zero, the boundary conditions for

the tangential stresses (Prz and P e) are identical to those for the empty
borehole. T

Let's define the radial stress on the borehole wall as:

;(‘9)5/5) _ L Z"" /mgre-aﬁ}e L/’&a%. | (7)
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Defining the other tangential stresses like the radial stress, the solution

for the unknown constants Ap, Bp, Cp, and Dp can be represented by the

following matrix equation.
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The matrix elements of gij of Gp are given by:
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The E; in equation (7) or (8) can be derived using the complex Fourier

series expansion of the stress function, and given by:

-2/ ~7y
> = a7/ L€ 6 (10

Equations (2), (3), and (9) provide exact solutions for the borehole
sources acting on the fluid-filled borehole wall.,

LOW-FREQUENCY APPROXIMATION

The exact solution of the matrix equation shown in equation (8) consists
of the infinite series of terms with increasing periodicity around the

borehole. The coefficients of the unknown constants A , B, C , and D should
be solved for each value of p. P P

When the borehole radius is very small compared with the wavelengths of

interest, the coefficients Ap, Bp, Cp, and Dp can be expanded in terms of

parameter a. If terms proportional to a and a2 are kept for the solution,
only p=0, p=+1, and p = +2 are required. In the following, the
approximate solution for equation (8) is presented for each p.

A. p = 0.--When p = 0, the solutions are independent of the azimuthal
angle, which are axis—-symmetrical solutions. For this case, Lee and Balch
(1982) derived the solution for the radial stress source in a fluid-filled
borehole, and Heelan (1953) derived the far-field radiation for the radial and
tangential stresses acting on an empty borehole.

Retaining only the dominant terms of the matrix equation (8), the

zero~order solution can be written as:
y
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where

2
2 A
M ,
P
© = L 2 p-1)/
N 7 (ma)"
. P
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For an empty borehole, which is p _ = 0 in equation (11), the solutions

are identical to the Heelan's (1953) detrivation. In a radial stress source in
the fluid-filled borehole, this solution is identical to Lee and Balch (1982).

When p = 0, the D, term, which is appropriate to the solution in the

0
fluid, is included as a solution, because only in this case does the fluid in
the borehole affect the radiation in the surfounding medium,

Substituting Dy into equation (4), we find that the poles of the integral
are determined by Tu = 0. This pole corresponds to the tube wave velocity in
the low-frequency limit, and this proves the existence of the tube wave in the
fluid-filled borehole (Balch and Lee, 1984). Equation (11) also indicates
that only normal stress, Tr’ can generate the tube wave in the borehole. The
above observation implies that "tube wave” in the fluid-filled borehole, which

is caused by the cross-sectional area change of the borehole, can affect the

seismic radiation pattern in the surrounding medium.

B. p = +1.--The determinant of matrix Gp, Ap’ can be written as:

A A N
/p B —Cg;‘ ¥ ” é2z43.44/

-~

where Aij is the minor of gij'



The leading term analysis of the determinant indicated that the first
term is dominant for the solution when p > 1. This implies that the solution
outside the borehole is independent of the fluid in the borehole. 1In other
words, when p > 1, the solution for the fluid-filled borehole is identical to
the solution for the empty borehole.

If only the leading terms of the matrix element are used, the
determinant, when P > 1, is proved to be identical to zero. One way to derive
non-zero determinant in order to solve equation (8) is including the next
order terms in the expansion of the matrix element. For example, when p = 1,
the g31 term can be expanded as:

L @, orat
j]/ . —-ja—’——é- (/ + "—_42—" )}

§2) (ma).

where Q2 is the leading term of H

After some lengthy algebra, the solution for p = 1 can be written as:
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In equation (12), the matrix elements with the parentheses indicate the

terms which changes the algebraic sign for p = -l.
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C.

p = +2.—-Applying the same method as

given by:

for p = +1, the solution is

-2 / 4 -y c?
m 67’:— 28, \am ((;.zgf) &, anB-%7)Q | | 274
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Like the p = *+1 case, the matrix elements with a parenthesis denotes the terms

which changes the algebraic sign when p = -2.

FAR-FIELD APPROXIMATION

Substituting equations (3), (11), (12), and (13) into equation (2), the

displacement field can be evaluated under the low-frequency approximation.

When an observation point is very far from the source region, the far-field
radiation can be formulated simply by applying the following formula to the
equation (3).

N

ZIM)

A
A/g“), ey

(14)

—

R =0

I(é o) ()

P+ 2€ /6

A .

where R, @, 8, is the spherical coordinate system.
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Retaining the 1/R decay terms and the coordinate transformation, the
far-field radiation in the spherical coordinate system can be written as:

U, = zé/{é 4 (% of) (15)
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Up = e éz ;;'3’?‘/%/ A (7‘;@0%)
A e—f;}%/\) oind 5 5, (ﬁc@%)(e‘pif )iy
R 2= r ‘ ’
w - Zh jﬁﬁw G Cheod)

—n7gR

Y - 2 ~ —-_— - P

-SRIl 5 o) (M)
P

Here, St = 1, when the source stress function is given by E; or E:, and

St = -1, when the source stress functi?g is given by ES.



Finally, the far-field, low-frequency approximated solutions for the
impulse-like borehole sources in the fluid-filled borehole retaining only a

and a2 terms with 1/R decay can be written as:

A) Tr(e) is given and defined as Tr(G) = Trs(e).

. c
Uy = - Ty con af
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cwawt | T (7 ’Zﬁ&aphﬁ/"")
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where

al
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c) Te(e) is given and defined as Te(O) = Tea(e).
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DISCUSSION

As mentioned previously, the zero-order solution (p = 0) from the normal
stress acting on the wall of the fluid-filled borehole has a fluid effect on
the seismic radiation into the surrounding medium. The detailed description
of this case can be found in Lee and Balch (1982). Also when the tangential
stresses act on the fluid-filled borehole, the radiation into the surrounding
medium is independent of the fluid in the borehole under low-frequency
assumption.

As shown in equations (16), (17), and (18), the radiation pattern is a
function of frequency, thus the propagating wave changes its waveform
depending upon the frequency content of the source function. Table 1 shows
magnitude and phase angle of the radial displacement from an impulsive
tangential stress, T,, with @ = 90° and 6 = 45°. This radiation was computed
assuming a Poisson's solid with a = 10 em and o = 2,357 m/s. At 300 Hz, the
amp%itude is about 0.6% higher than that at 0 Hz, and its phase angle is about
6.5 . This example indicates that the frequency dependence of the radiation
could be ignored for normal seismic exploration purposes.

The solutions presented in equations (16), (17), and (18) offer a simple
way to compute radiation patterns for an arbitrary source acting on the wall
of the fluid-filled borehole. By performing the complex Fourier series
expansion of the source function and substituting only p = 0, 1, and 2 terms
of the series expansion into equations (16), (17), and (18), the
long-wavelength, far-field radiation patterns can be easily obtained.

For example, consider the source distribution shown in figure 2. Three
equal normal stresses 120 degrees apart act on the fluid-filled borehole wall.
The total displacement fields from this source distribution can be derived
simply by summing the individual contribution. That is:

no

% = %(6) ,L%(éf-/a?o) 7%(97*2440))

where the quantity with ~denotes the total displacement field from the three
normal stresses. Using the trigonometric relation such as:

Rvn 8 + Bon (6 7/30) + A (8424) =0

7

the far-field displacement field can be written as:

scwa o R (/728w /x) il )
2p% (%¥+ &) R

A T T ind o0 &
e et R
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Table 1.--Magnitude and phase angle of the Ur component with ¢ = 90°

and 6 = 45° from an impulsive tangential stress at 6 = 0°

Frequency Amplitude Phase
(Hz) (degree)
0 1.000 0.00
25 1.000 0.54
50 1.0002 1.18
75 1.0004 1.62
100 1.0007 2.16
125 1.0011 2.70
150 1.0016 3.23
175 1.0022 3.77
200 1.0028 4,31
225 1.0036 4.85
250 1.0044 5.38
275 1.0054 5.92
300 1.0064 6.45

17



‘G0 = a\ma pue ‘gfh=g/0 ‘41 = wa\a 2a® siojouweieg °aueld z-x 9yl UT suidljed uoTlefpea Y3
smoys uotriziod IYySta 2yl pue asueTd A-x uf uorlIean3dTJUOD IDANOS IYl SMOYs uoflaod 3IFST *dToYaioq
"POTITIJ-PINIJ ® uo Sufloe S9SS9IIS [EBUIOU § Y] WOIJ SOABM-AS PUB —-J 10J suioljed UOTIBIPERY--°'¢ 9In3TJ

18

anen-g ﬁf/

DABM-A\S




The radiation pattern from this source distribution, shown in figure 2,
is identical to that from the uniform stress distribution on the borehole
wall.

This example illustrates the simplicity in computing radiation patterns
for arbitrary borehole sources.

When Te(e) = TBG(O), which is single force, the radiation patterns of P-

and SH-waves in the X-Y plane (§ = 90°) are shown in figure 3 with a Poisson
solid and ¢J = 0. The P-wave radiation is proportional to cos® and the

SH~wave radiation pattern is proportional to sin®. The maximum displacement
amplitude of the SH-wave is 3 times greater than that of the P-wave.

When Tg(e) = Teﬁ(e) + Tgo(8 + 180°), which is double forces at the

opposite side of the borehole, the radiation patterns are shown in figure 3
with a Poisson solid. Because of the property of the trigonometric function,
the p = 1 solution is cancelled; thus only p = 0 and p = 2 solutions are
retained. As can be seen from figure 4, P-wave radiation is almost negligible
compared to the SH-wave motion. The displacement waveform for the single
force is the same as the source stress waveform, while the displacement
waveform for the couple forces is the derivative of the source waveform.

CONCLUSIONS

In this paper, the far-field radiation patterns from an impulsive source
acting on the wall of the fluid-filled borehole were derived under the
assumption that the borehole radius is very small compared to the wavelength
of interest. The following conclusions can be made from this investigation:
1. The radiation patterns from a point force, or point stress, are almost
independent of frequency within the seismic frequency band.

2. The fluid effect on the radiation pattern into the surrounding medium can
be detected for the axis-symmetrical waves propagated around the borehole only
when the normal forces are acting on the wall.

3. In general, the borehole sources generated not only P- and SV-waves but
also SH-waves around the borehole.

4, Combining the solutions from the impulsive sources, the radiation
patterns from an arbitrary source can be easily obtained.

4, Applying the seismic reciprocity theory, the solution could be used to
evaluate the wall motion from the plane waves incident on the borehole.
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APPENDIX
This appendix provides some of the mathematical details omitted in the
main text and derived displacement fields for the two—-dimensional case.

A) Proof of equation (9).--The following abbreviation should be
understood throughout this derivation:

© ® -4?£ s
2. f/%lq,(éy)e }e 7or8 — @,\/T,,/é»)

/0:-619 —o0

Using equations (2), (3), and (6), the following displacement and stress
components can be derived.

l. Inside the fluid:
| - '
vl =D 3i(fr)

2
Py= Dprud o) (a-1)

1 ] L
Prz PrO

(]
o
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2.

In the surrounding medium:
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Substituting equations (A-1) and (A-2) into equation (6) with r = a and
utilizing equation (10), equations (8) and (9) can be obtained.

B. Derivation of equations (11), (12), and (13).--The derivation of
equations (11), (12), and (13) requires a good deal of algebra. The
derivative formula I used for the coefficients of the determinant is the
following.

Ky YD = o 4y €M) _/J:éfi’)

”N

_;fiffféi_égaﬁty - 4y%¢{6¢f) - -757—65075{

2

X
>
(g\
NS
i

The expansion of the Hankel functions can be written, when P > 1, as:

12
scp-r)

22’
P

~ - .

) = (-0l 7

/ T

As mentioned in the main text, the expansion of the Hankel function
should include the second term in order to get non-zero determinant, when p‘Z
1. For the Hankel function order 1, which appears in the zero order (p = 0)

solution,
(3) . 24
AP0 = L
X

was used.

The approximate coefficients, which are valid under the assumption that
the radius of the borehole is very small compared to the wavelength of
interest, are shown below.

Let's define: P
6> = ___i_fL____ CZL/)‘/
4 7 aay” ’
74)
N o
S‘ = - O? (ﬁ‘/),/
4 7/'(/m)’
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When p = 0, the leading term of the matrix elements are given by:

g1 = ™mQ

g12 = inkS1

813 =0

€14 = Far

8yp = 24kmQ
22

8yp = (k n )nS1

g3 = 0

8y, = 0

g31 =0 (A-3)

839 = 0

B3 = 0

841 = 2mQ,/a
g42 = —Ziknsl/a
843 = 0

B4 = O/

The determinant of the zero-—order of Gp, Ao, is given by:

Ajo = ;ag';%Q (;Z%-jii "EL/JZ1,>"Jia:ﬁE;f'aZ,Jig - AZJZA)

(A-4)

~ —20°77 ?22@, ,5;'z (/z,_/_ i’s h)’)
a A7

Applying Cramer's rule to equation (8) with equations (A-2) and A-3), equation
(11) can be obtained.
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When p = 1, as mentioned in the main text, the leading term of the
determinant is:

~ A
[, = - pu Py

where A14 is the minor of gl&'

Therefore, the following matrix elements are required to solve equations
for A, B, and C.

L
t;az . (ﬁ%woalOJ;

‘C- %M @z

e

= 2 (A-5)
J ~ A1 5%
B &
-2im & w’a’
c?J/ ~ R Gz (/ £ 7_

Iz -2%2 /5% [/ = __”_)ﬁi.)

n

a #
-27 5;
iz F -
N 2
0? ~ 2 &, L (ﬁ’z-my 222 )0
% a /g

f

Ty & 1R Sa (/—”—243-)

a. A
~ _TReNSA [/ + _2ar
Iy = A & )
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The dominant term of determinant A1 is given by:

(A-6)
A,:—_;;“M/:{Q&

/3

Applying Cramer's rule to equation (8) with equations (A-5) and (A-6),
equation (12) can be obtained.

When p = 2, the procedures are identical to the case of p = 1.

The
necessary element of the determinant is given by:

jx/ = 5,;,/\}@
ax =

Z

(A-7)

D23 = A0 Ss
23 = T

s

[

—3ém G5 m3a*
_— / —_—
2 4 Py

2

02%& = ~3%4 I3 (’/ -+ _;foii-/)

a /R
o —20 'S; / # ___?Z:_
Srs = @ ( /R )
2 2 2).2
;4/ = 37 &.3 /) -+ (')0’ +E =~/ )a
a /8
o 3L En S
g, & 2T
A
202
443 = 2 /02
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The dominant term of the determinant AZ is given by:

- 2 A'8)
P R R PX ‘

Applying Cramer's rule to equation (8) with equations (A-7) and (A-8),
equation (13) can be obtained.

C. Derivation of equation (15).—The leading terms of the displacement
fields when the observation point is very far from the source are, from
equation (2):

28 Y

&7" = 2?’ 2),.2;_ , (A-9)
2 _ 22X

Oé - '2 P )
_ 9@

v = +(§ i)ip

Using the relation of equation (14), the far-field displacements are:

Ak
U = (4@@,4)2{4%;(/)@‘/”‘9——?———
s 4
: e
_ & (£ e € T
=, % z};wo /Ama/)(z e =z .
-,;f,,e (A-10)
2 . P pe e
Vo = =S Co(Bind) 28 pn(0) ™" =
& /o=,z /O F é F( ﬁ

~ %R
V>
U = T f )ik wd @ e = —

=-2
bt
+” G, (4 confl) 37 4t gy e £ y

b
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By the coordinate transformation, the displacement field in the spherical
coordinate system is:

(A-11)

U = U

Substituting equation (A-10) into (A-11) and utilizing the property of the
solution matrix shown in equations (11), (12), and (13), equation 15 can be
derived.

D.

Two-dimensional case.—-—~In the two—-dimensional wave propagation in the

X-Y plane, the two scalar potentials are needed to describe the displacement
field. It can be written as follows from equation (1):

v P —fifﬁ)
. o 2 (A-12)
v X = ?;X. .

The formal solution of equation (A-12) could be written as:

1

e cpb (2 _
£ 2 5emput, o

- = e HPAr
K= 2, e 7 %7,

case, the source function is defined by:

o " AVDQ
e = = Ele
with

In the two-dimensional

I

&7 .
E = & [ e e b

The coefficients Ab and Cp are the solution of the following equatiom.

£;5
' )
623/ 55;3 /e% A
E”
a?/t/ ‘743 C/" "/{T ,
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The coefficients of gij could be obtained by k ==> 0 in equation (9).

Following the same procedures in the main text, the coefficient of A_ and
Cp can be derived and it is shown as: P

/ Y 7 N
6
a £
'62 o 2 (A-14)
27 @8, M
o — & &
e an s, ° M
\ / N A\ y
¢ \ , \ s . \
A, A ~/ ) E,
a,/;;/;"’*c\')&/ an’m &, e
c / ¢ 74
/ ( ansS, ) o7 552, A
\ / L AN\ /
/ v N T )
-4/ 6
s 4¢ 4 E;
am (m=n°) 8, Gm =)@y || M
-y /[ -4 E]
G Canmint) Ss K ¥4 (m‘ia*)é‘b) M
/ ~ \ /
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In equation (A-14), the matrix elements with a parenthesis denote the
terms which change the algebraic sign when p is negative.

The far-field displacement can be derived utilizing the following

formulae:
0:_:__3:{)
r Ya
Uy = . 20X
é S 7 )
(A-15)

with
HE) -
s = - K HBr)
Nhr) 2
S = RATAY
//’ {,) ~ 2z ’9//(2)(‘{?) .
or

The far-field displacement fields were obtéined by substituting equation
The desired displacements are given below.

(A-14) into equation (A-15).
1) Tr(G) is given and defined as Tr(e) = Trc(e).

_ il 2w | pyP
> [/ * Tpana |

> sa
el @ (4-16)
Zﬁ&Jutyhl /%;, (léi):) >
(. = /y (A R O A?(Q)/ ’>
A » AL 1P
T £@° in 20 / ////:)(? »).

B Py (1)
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v

2) Te(G) is given and defined as Te(e) = T8%(9).

- - <
Y = Lo laf® ., 4% r)
4U o %

cadw  B*
su (= O YaIA*

- 2 (-.
0 = facaé [/ L R 6/@({)!\17)

¢ u ¢ -t |7 P

-+

i A (47)

- ___M_Cooé /@(/7‘
4 M § /9)

When the normal stresses act on at 8 = 0 and © = 180° with equal
magnitude, then the radial and tangential displacement can be written as:

0,;.: Url8) + Y (6 #/¢s)
- he a’?f;( a )éegﬁ 3 e

#u 7/;@ r €

/. zwoza/?J
/

(A-18)

(7~ PY x> %2

3. .
Urg _ - 7}: L-az ( a )'/4164 748-4,5;7.‘ /
S (g ==

Here the following relation was used.

—Br- 25
/%KE%ZQ)) e 7 % u)

_ A
o e
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The displacements shown in equation (A-18) are identical to those of White
(1960), who derived the same equation using the seismic reciprocity theorem.

E. Source description.—-Let's define spatial Fourier transform as:

~ - d i
Fetr 2 [“ocpe Py
-0
and its inverse Fourier transform as:
_ A3
s =L [ Saye CdE,

The source located at r = a and z = 0 can be written as:

78,30 = 7)), (A-19)

Therefore, using complex Fourier analysis and Fourier transfer of § (z), we can
write equation (A-19) as:

a0 -Aﬁj &0 <
reeg) =g | & E £ et
e Pz )

with

7 .
= A -A—fﬁ
& =27 /: 7e0) e e,
Let's define other source distribution such as

75e,3) = 7 LyF)

where C/

4{4}) =/  when o([g,(-aj
= 0 otherwise.

Using the following relation,

~ A3 ./ Ad
Nz, =f04/f;)e /3 = 2 (5
A Z

/
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we can show that

oo . s B
ey e 2 ettt [Tl T A
f(gjg) /):—a) /oe Mf__/aa £ € 0%

As far as the far-field displacement field is concerned, the contribution
of the source T* can be evaluated by substituting k = k cos@ or kBsin(b
a
depending on the wave type considered.

Let's use kssinﬂ for k.

Then, \ (ﬁai)
746,3) , > £,d ’é""ﬁ 2’ o7
R =00 p=- 7é’£f .

s

Using the following formula:

_ﬁ'f‘w "%9 =/ A/b Ca» .,dou; ﬂtf
=20 O /

v < pPb
,g/ad—m P

This implies that as long as w <£ 2g/d, we can treat the distributed source
in the z-direction as a point source at z = 0.
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