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AN ANALYTIC PROBABILISTIC METHODOLOGY FOR RESOURCE APPRATSAL
OF UNDISCOVERED OIL AND GAS RESOURCES IN PLAY ANALYSIS

by
Robert A. Crovelli
INTRODUCTION

An analytic method using probability theory was developed for petroleum
resource appraisal of undiscovered oil and gas in an assessment area. An
objective was to replace an existing Monte Carlo simulation method in order to
increase the efficiency of the petroleum resource appraisal process. The
resulting analytic method is a geo-stochastic system for estimating the
undiscovered o0il and gas potential of a geologic play and an aggregation of
plays. Play analysis is a general term for various geologic models and
probabilistic methods for analyzing a geologic play.

A geologic model for the quantity of undiscovered petroleum resources in
a play involves uncertainty due to the incomplete or fragmentary geologic
information generally available. The geologic model used in this study was
developed by the U.S. Department of the Interior and applied by the U.S.
Geological Survey in petroleum assessments of the National Petroleum Reserve
in Alaska and the Arctic National Wildlife Refuge (U.S. Department of the
Interior, 1979; White, 1979). The probabilistic methodology used in those two
assessments was a Monte Carlo simulation method.



GEOLOGIC MODEL

In play analysis a petroleum assessment area is partitioned into geologic
plays, and the individual plays are analyzed. A play consists of a collection
of prospects having a relatively homogeneous geologic setting. A prospect is
a potential hydrocarbon accumulation. A hydrocarbon accumulation is a
discrete oil or gas deposit, which may consist of one or more pools depending
upon the specific play concept. A prospect is modeled by separately
considering the uncertainty as to the presence of a hydrocarbon accumulation,
and its size if present. An accumulation of hydrocarbon is modeled as either
crude oil with its dissolved gas or nonassociated gas. The amount of
dissolved gas present in an accumulation of o0il is calculated from a gas-oil
ratio. Because gas refers to either nonassociated gas or dissolved gas, the
amount of gas in a play is the sum of the two types of gas from the prospects.
There are three sets of geologic attributes or random variables involved in
this play-analysis approach; these are for the play, the prospect, and the
hydrocarbon volume. The play and prospect attributes are concerned with the
presence or absence of certain geologic characteristics at the play and
prospect levels, respectively. The hydrocarbon-volume attributes are
concerned with the size of the hydrocarbon accumulation.

The play attributes are (1) existence of a hydrocarbon source, (2)
favorable timing for migration of hydrocarbons from source to trap, (3)
potential migration paths, and (4) existence of potential reservoir facies.
The presence of all four play attributes (in which case the play is said to be
"favorable"”) is a necessary, but not sufficient, condition for the existence
of oil or gas deposits in the play. Thus, if one or more of these attributes
is not present, all the prospects within the play are dry. Subjective
judgments are made by experts for estimating the probability of the presence
of each play attribute. Assuming independence, the product of these four
probabilities is the probability that the play is favorable for the existence
of hydrocarbon accumulations and is called the marginal play probability.

The prospect attributes are (1) trapping mechanism, (2) effective
porosity, and (3) hydrocarbon accumulation. Given a favorable play, the
presence of all three prospect attributes is a necessary and sufficient
condition for the existence of a hydrocarbon accumulation in the prospect.
Subjective judgments are made by experts for estimating the probability of the
presence of each prospect attribute. Assuming independence, the product of
these three probabilities is the probability that a prospect is a hydrocarbon
accumulation, given the play is favorable, and is called the conditional
deposit probability.

The hydrocarbon-volume attributes are (1) area of closure, (2) thickness
of reservoir rock, (3) effective porosity, (4) trap fill, (5) depth to
reservoir, and (6) hydrocarbon saturation. The hydrocarbon-volume attributes
jointly determine the volume of the hydrocarbon accumulation within the
prospect. The following reservoir engineering equations are used to calculate
the in-place volumes of o0il and nonassociated gas, respectively:



0il in place = 7,758*1,000*A*F*H*P*SH/B0

Nonassociated gas in place = 1,537.8*1,OOO*A*F*H*P*SH*(PE/T)*(I/Z)

where A = area of closure (1,000 acres)

F = trap fill (decimal fraction)

H = reservoir thickness (feet)

P = effective porosity (decimal fraction)

S, = hydrocarbon saturation (decimal fraction)
B, = oil formation volume factor
PE = original reservoir pressure

T = reservoir temperature (degrees rankine)

Z = gas compressibility factor

Both equations consist of a product of factors that are functions of the
hydrocarbon-volume attributes. The attributes are treated as continuous
independent random variables, with the exception of effective porosity which
is approximately perfectly positively correlated with hydrocarbon saturation.
The probability distribution for an attribute is determined from subjective
judgments made by experts, usually geologists, based either on actual
geological and geophysical data, when available, or on the experience and
knowledge of the experts using analog data and geologic extrapolations when
data is unavailable. The probability distribution for each attribute is
described by a complementary cumulative distribution function determined from
seven estimated fractiles (100th, 95th, 75th, 50th, 25th, 5th, Oth). (The 5th
fractile, for example, is an attribute value such that there is a 57 chance of
at least that value.) In each play analyzed the seven fractiles are estimated
for all of the hydrocarbon-volume attributes, except hydrocarbon saturation
whose seven fractiles are one of two possible sets of fixed values depending
upon the expected reservoir lithology, which is estimated by the geologists as
either sandstone or carbonate. The experts also estimate the hydrocarbon-type
probabilities which are the respective probabilities of a given accumulation
being either oil or nonassociated gas; however, if the reservoir depth is
greater than a specified depth, say for example 15,000 feet, the accumulation
is always assumed to be nonassociated gas.

The number of drillable prospects in the play is treated as a discrete
random variable, and seven fractiles are estimated.



Probability judgments concerning each of the three sets of attributes are
developed by experts familiar with the geology of the area of interest. The
experts first review all existing data relevant to the appraisal, identify the
major plays within the assessment area (e.g., basin or province), and then
assess each identified play. All of the geologic data required by this model
for a play is entered on an oil and gas appraisal data form (Figure 1).
Information from the data form is entered into computer data files as the
input for a computer program based on a method of analysis.



Figure 1.--0il and gas appraisal data form. (Modified from U.S. Department of
Interior, 1979.)
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ANALYTIC METHOD OF PLAY ANALYSIS

An analytic method using probability theory is proposed as a more
efficient alternative to the costly and time—consuming Monte Carlo simulation
method for petroleum play analysis. The analytic method is based upon the
same geologic model, same type data, and same probability assumptions as the
simulation method.

The analytic method was developed by the application of many laws of
expectation and variance in probability theory. The analytic method
systematically tracks through the geologic model, computes all of the means
and variances of the appropriate random variables, and calculates all of the
probabilities of occurrence., The lognormal distribution is used as a model
for various unknown distributions in order to arrive at probability fractiles.
0il, nonassociated gas, dissolved gas, and gas resources are each assessed in
turn. Separate methodologies have been developed for analyzing individual
plays and for aggregating the plays.

The basic steps of the analytic method of play analysis are:
1. Select the play.
2. Select oil as the first resource to be assessed.

3. Compute the mean and variance of each of the following hydrocarbon-
volume attributes: (1) area of closure, (2) thickness of reservoir
rock, (3) effective porosity, (4) trap fill, (5) depth to reservoir,
and (6) hydrocarbon saturation. Determine the mean and variance
from the estimated seven fractiles, assuming a uniform distribution
between fractiles, that is, a piecewise uniform probability density
function (as was done in the case of the simulation method). Recall
that the hydrocarbon saturation distribution depends on whether the
estimated reservoir lithology is sandstone or carbonate. Calculate
the mean and variance of the product of effective porosity and
hydrocarbon saturation, assuming they are approximately perfectly
positively correlated. Also compute the mean and variance for the
reciprocal of the o0il formation volume factor, which is a function
of reservoir depth through a series of formulas.

4, Compute the mean and variance of the accumulation size of o0il in
place using a reservoir engineering equation. The equation involves
the product of a constant, area of closure, reservoir thickness,
trap fill, effective porosity, hydrocarbon saturation, and the
reciprocal of the o0il formation volume factor. Various laws of
expectation and variance are involved in the calculations.

5. Model the accumulation-size distribution by the lognormal
probability distribution with mean and variance from step 4.
Calculate various lognormal fractiles of the accumulation size for
oil.



7.

8.

9.

10.

11.

12.

13.

14,

Compute the probability that a prospect has an oil accumulation,
given the play is favorable. This is called the conditional
prospect probability of oil. This probability is the product of the
conditional deposit probability, the probability that the reservoir
depth is less than 15,000 feet, and the hydrocarbon-type probability
of oil,

Compute the mean and variance of the conditional prospect potential
for oil, which is the quantity of oil in a prospect, given the play
is favorable. They are arrived at by applying the conditional
prospect probability of o0il to the mean and variance of the
accumulation size of oil.

Compute various fractiles of the conditional prospect potential for
oil by a transformation to appropriate lognormal fractiles of the
accumulation size of o0il using the conditional prospect probability
of oil.

Compute the mean and variance of the number of prospects from the
estimated seven fractiles, assuming a uniform distribution between
fractiles (as is also the case in the simulation method).

Compute the mean and variance of the number of 0il accumulations,
given the play is favorable. They are arrived at by applying the
conditional prospect probability of oil to the mean and variance of
the number of prospects.

Compute the mean and variance of the conditional (A) play potential
for oil, which is the quantity of oil in the play, given the play is
favorable. They are determined from the probability theory of the
expectation and variance of a random number (number of prospects) of
random variables (conditional prospect potential).

Compute the conditional play probability of o0il, which is the
probability that a favorable play has at least one oil accumulation,
and is a function of the conditional prospect probability of oil and
the number-of-prospects distribution.

Compute the mean and variance of the conditional (B) play potential
for oil, which is the quantity of oil in the play, given the play is
favorable and there is at least one oil accumulation within the
play. They are arrived at by applying the conditional play
probability of oil to the mean and variance of the conditional (A)
play potential for oil.

Compute the unconditional play probability of oil, which is the
probability that the play has at least one oil accumulation, and is
the product of the conditional play probability of oil and the
marginal play probability.



15.

16.

17.

18.

19.

20.

21.

Compute the mean and variance of the unconditional play potential
for oil, which is the quantity of oil in the play. They are arrived
at by applying the unconditional play probability of oil to the mean
and variance of the conditional (B) play potential for oil.

Model the probability distribution of the conditional (B) play
potential for oil by the lognormal distribution with mean and
variance from step 13. Calculate various lognormal fractiles.

Compute various fractiles of the conditional (A) play potential for
oil by a transformation to appropriate lognormal fractiles of the
conditional (B) play potential for oil using the conditional play
probability of oil.

Compute various fractiles of the unconditional play potential for
0il by a transformation to appropriate lognormal fractiles of the
conditional (B) play potential for oil using the unconditional play
probability of oil.

Select nonassociated gas as the second resource to be assessed.
Repeat steps 3 through 18, substituting nonassociated gas for oil,
with two basic modifications as follows. A reservolr engineering
equation is used to calculate the accumulation size of nonassociated
gas in place. The conditional prospect probability of nonassociated
gas is equal to the conditional deposit probability minus the
conditional prospect probability of oil.

Select dissolved gas as the third resource to be assessed. Repeat
steps 3 through 18, substituting dissolved gas for oil, with two
basic modifications as follows. The reservoir engineering equation
for the accumulation size of o0il in-place is multiplied by a gas-oil
ratio which is a function of reservoir depth. The conditional
prospect probability of dissolved gas is the same as the conditional
prospect probability of oil.

Select gas as the fourth resource to be assessed. Repeat steps 4
through 18, substituting gas for oil, with two basic modifications
as follows. Replace step 4 to compute the mean and variance of the
accumulation size of gas in-place by using conditional probability
theory and conditioning on the type of gas. The conditional
prospect probability of gas is the same as the conditional deposit
probability.

A simplified flow chart of the analytic method of play analysis is presented
in Figure 2.

On the basis of the analytic method, a computer program was designed and
called the Fast Appraisal System for Petroleum (FASP). Because both cost and
running time are negligible, FASP allows for quick feedback evaluation of
geologic input data. FASP can be easily adapted to most mainframe computers
and microcomputers.



Figure 2.--Flow Chart of Analytic Method of Play Analysis
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lOil, nonassociated gas, dissolved gas, and gas resources are each assessed in turn.




NUMERICAL EXAMPLE OF PLAY ANALYSIS

A numerical example of the application of the analytic method of play
analysis is illustrated using an actual resource assessment of an individual
play, Sag River. The play is from a U.S. Geological Survey assessment of an
area in Alaska (U.S. Department of the Interior, 1979). The completed oil and
gas appraisal data form used in that study 1is given in Figure 3 as filled out
by the USGS resource appraisal team of experts for that study. The data has
now been reanalyzed by the analytic method of play analysis using the computer
program FASP., The probability histogram of porosity for Sag River is given as
an example in Figure 4, and the corresponding complementary cumulative
distribution is given in Figure 5. The input data and calculated parameters
of the geologic variables and probabilities of occurrence for one play, Sag
River, are given as printed by FASP in Table 1. Estimates of undiscovered
in-place petroleum resources for the Sag River play are presented in FASP
output form in Table 2. The corresponding graphs of the complementary
cumulative distribution functions, again in direct computer output form, are
displayed in Figures 6 through 25.
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Figure 3.--Data used in appraisal of Sag River play, AAlaska, developed during
U.S. Department of Interior Study, 1979.
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ANALYTIC METHOD OF PLAY AGGREGATION

A separate methodology was developed for estimating the aggregaton of a
set of plays. In this method the resource estimates of the individual plays
from the analytic method of play analysis using the FASP program are
aggregated by means of probability theory. 0il, nonassociated gas, dissolved
gas, and gas resources are each aggregated in turn.

The basic steps of the analytic method of play aggregation are:

Select plays to aggregate.
Select o0il as the first resource to be aggregated.

Compute the mean and variance of the unconditional aggregate
potential for oil, which is the quantity of oil in the assessment
area. They are determined by adding all of the individual play
means and variances of the unconditional play potential for oil,
respectively, assuming independence among the plays.

Compute the unconditional aggregate probability of oil, which is the
probability that the assessment area has at least one play with oil,
and is a function of the individual unconditional play probabilities
of oil.

Compute the mean and variance of the conditional aggregate potential
for oil, which is the quantity of oil in the assessment area, given
the assessment area has at least one play with oil., These are
arrived at by applying the unconditional aggregate probability of
0il to the mean and variance of the unconditional aggregate
potential for oil.

Model the probability distribution of the conditional aggregate
potential for oil by the lognormal distribution with mean and
variance from step 5. Calculate various lognormal fractiles.

Compute various fractiles of the unconditional aggregate potential
for oil by a transformation to appropriate lognormal fractiles of
the conditional aggregate potential for oil using the unconditional
aggregate probability of oil.

Select nonassociated gas as the second resource to be aggregated.
Repeat steps 3 through 7 using play analysis estimates of
nonassociated gas, namely the individual play means and variances of
the unconditional play potential for nonassociated gas, along with
the individual unconditional play probabilities of nonassociated
gas.

Select dissolved gas as the third resource to be aggregated. Repeat
steps 3 through 7 using play analysis estimates of dissolved gas,
namely the individual play means and variances of the unconditional
play potential for dissolved gas, along with the individual
unconditional play probabilities of dissolved gas.
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10, Select gas as the fourth resource to be aggregated. Repeat steps 3
through 7 using play—-analysis estimates of gas, namely the
individual play means and variances of the unconditional play
potential for gas, along with the individual unconditional play
probabilities of gas.

A simplified flow chart of the analytic method of play aggregation is
presented in Figure 26.

A computer program was designed on the basis of the analytic method for
the aggregation of plays and called the Fast Appraisal System for Petroleum
Aggregation (FASPA). FASPA interfaces with FASP as follows. FASP not only
generates a file of resource estimates for an individual play, but also
outputs a second file of results which consists of the mean and standard
deviation of the unconditional play potential for each of the four resources,
along with the corresponding unconditional play probabilities. The second
file is needed for an aggregation of plays and forms an input file for FASPA.
Therefore, after FASP is run on each play in a set of plays, any subset of
plays can be aggregated by running FASPA on the corresponding subset of
aggregation input files. FASPA not only generates a file of resource
estimates for an aggregation of plays, but also outputs a second file of
results needed for an aggregation of aggregations, which forms yet another
input file for FASPA. Hence, after FASPA is run on each aggregation in a set
of aggregations, any subset of aggregations can be aggregated at once.
Compared to the simulation method, the application of FASPA can result in
tremendous savings of time and cost, especially when analyzing many
aggregations involving hundreds of plays. FASPA also possesses the capacity
of aggregating a set of plays under a dependency assumption. In which case,
all of the individual play standard deviations (instead of the variances) of
the unconditional play potential for a resource are added together.
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Figure 26.--Flow Chart of Analytic Method of Play Aggregation

Select plays
to aggregate

r

Select resource1

y

Means & variances of
uncond play potential
for individual plays

y

Mean & variance of — e e | Fractiles
uncond aggregate potential

4
uncond aggregate probability
'

Mean & variance of Lognormal
cond aggregate potential fractiles

1

0il, nonassociated gas, dissolved gas, and gas resources are each aggregated
in turn.
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NUMERICAL EXAMPLE OF PLAY AGGREGATION

A numerical example of the application of the analytic method of play
aggregation is illustrated using an actual resource assessment involving an
aggregation of ten plays. The data is from a U.S. Geological Survey
assessment of an area in Alaska (Mast, R. F., and others, 1980). The
assessment area had been partitioned into ten geologic plays. An oil and gas
appraisal data form (Figure 1) had been filled out for each of the ten plays
by USGS resource appraisal experts (U.S. Department of Interior 1980, written
commun.). The data for the aggregation was analyzed by the analytic method of
play analysis using the computer program FASP for the ten individual plays,
and then FASPA for their aggregation. The aggregation input files from the
ten individual plays to be aggregated is given as printed by FASPA in Table 3.
Estimates of undiscovered in-place petroleum resources for the aggregation of
the ten plays, assuming independence among the plays, are presented in FASPA
output form in Table 4., The corresponding graphs of the complementary
cumulative distribution functions are displayed, again in direct computer
output form, in Figures 27 through 34.
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CONCLUSIONS

The analytic method using probability theory is a practical alternative
to the simulation method for petroleum play analysis. The computer program
FASP based on the analytic method operates thousands of times faster than the
computer program RASP based on the simulation method. Because the cost and
running time are negligible, FASP allows for quick feedback evaluation of the
estimated geologic data, a feature which is invaluable during actual resource
assessment meetings. Moreover, FASP and FASPA can be adapted to most
microcomputers; they need no system—dependent subroutines or unusual library
functions. The analytic method produces not only numerical estimates of
petroleum resources, but also mathematical equations of probabilistic
relationships involving these resources; whereas the simulation method
produces no such equations.

A tremendous savings of time and cost can result using FASP, especially
when analyzing hundreds of individual plays. However, the greater advantage
of the analytic method might lie in the aggregation of a set of plays,
especially if the set is large and there are many combinations of aggregations
required. The computer program FASPA based on the analytic method can
aggregate any subset of plays almost instantly, and it can aggregate
aggregations. FASPA has considerable flexibility, even aggregating under a
dependency assumption.
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