DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

National Earthquake Information Center Waveform Catalog October 1985

by

Madeleine D. Zirbes
Janna M. Lishner
Beverly J. Moon
U.S. Geological Survey
Denver, Colorado

Open-File Report 85-660J 1985

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards.

Contents

	Introduction		
1.	1985 October 1	15:54:51.35	Fox Islands. Aleutian Islands 1749
2.	1985 October 2	20:40:02.90	Vanuatu Islands 1755
3.	1985 October 4	08:41:37.96	Bonin Islands Region 1760
4.	1985 October 4	12:25:51.12	Near East Coast of Honshu, Japan 1766
5.	1985 October 5	15:24:02.25	Northwest Territories, Canada 1773
6.	1985 October 6	12:00:47.95	Vanuatu Islands 1781
7.	1985 October 8	09:47:21.90	Jujuy Province, Argentina 1787
8.	1985 October 9	01:15:05.09	Java
9.	1985 October 9	09:33:32.80	South of Alaska 1799
10.	1985 October 11	19:29:46.14	Kermadec Islands 1807
11.	1985 October 12	02:12:58.32	Fiji Islands Region 1812
12.	1985 October 12	22:20:37.69	Central Mid-Atlantic Ridge 1819
13.	1985 October 13	15:59:53.55	Tajik SSR
14.	1985 October 18	03:22:23.19	Near West Coast of Honshu, Japan 1832
15 .	1985 October 18	04:19:08.36	Northwest of Kuril Islands
16.	1985 October 21	02:36:11.44	Vanuatu Islands
17.	1985 October 23	00:49:13.92	Timor Sea
18.	1985 October 23	17:16:23.88	Tonga Islands
19.	1985 October 24	01:48:56.05	San Juan Province, Argentina 1864
2 0.	1985 October 25	02:09:04.47	Fox Islands, Aleutian Islands 1870
21.	1985 October 25	18:12:19.75	Banda Sea
2 2.	1985 October 26	15:59:36.17	South of Alaska
2 3.	1985 October 27	19:34:57.08	Algeria
24.	1985 October 28	12:52:31.24	Tonga Islands
2 5.	1985 October 29	13:13:42.79	Iran
2 6.	1985 October 29	14:10:39.53	East Papua New Guinea Region 1909
27 .	1985 October 29	15:02:27.15	Michoacan, Mexico 1916
2 8.	1985 October 30	19:05:37.46	Rat Islands, Aleutian Islands 1922
29.	1985 October 31	19:33:07.12	Fox Islands, Aleutian Islands 1928
3 0.	1985 October 31	21:49:20.01	Santiago Del Estero Prov., Arg 1935

Introduction

This report provides a visual catalog of digitally recorded waveform data available from the event tapes produced by the United States Geological Survey's National Earthquake Information Center (NEIC). It is intended to provide the researcher with a quick index both to the availability of data and to the character of the data for each event (e.g., complexity and directionality).

The network-event tapes are a data service initiated by the NEIC in 1984. Currently, these tapes contain data from the Global Digital Seismograph Network (GDSN), the Regional Seismograph Test Network (RSTN), and the Glen Almond, Canada, SRO station. In the future, data from other high-quality stations and arrays, installed and operated by countries around the world, will be added to the event tapes as they are made available to us.

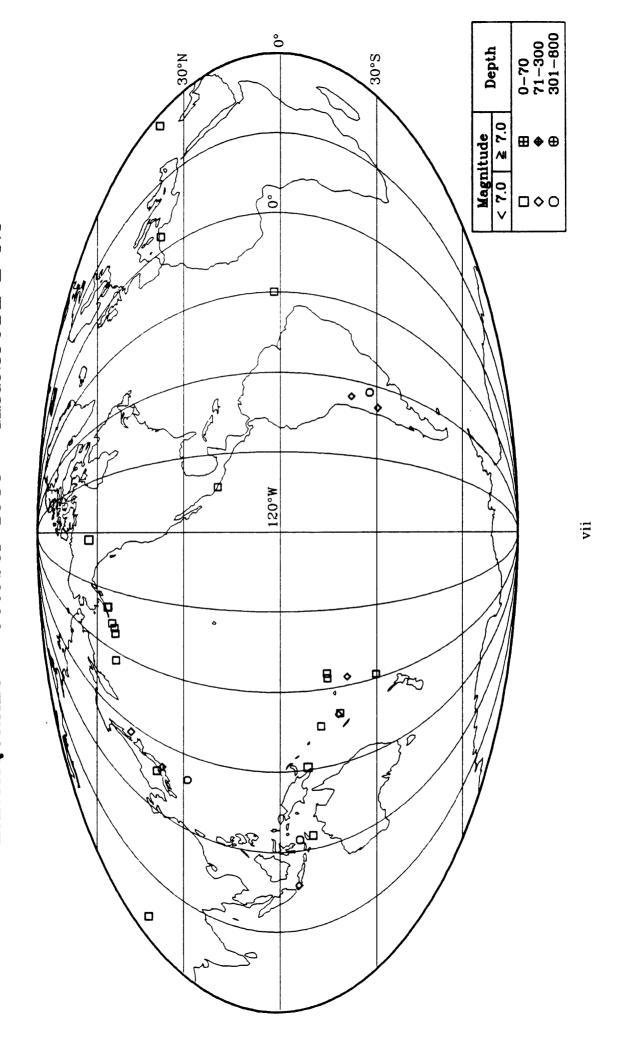
Network-event tapes contain digital data for earthquakes of magnitude 5.5 or greater in the NEIC network-day tape format. For this catalog, all available vertical component recordings in all period bands are shown, including those for stations that were saturated or nonoperational or that had some other difficulty during the event. Horizontal component records were omitted in order to minimize the size of this catalog. In general, one can expect them to be of approximately the same quality as the vertical component records at any particular time. Most of the available stations do not record short-period horizontal components. All stations that have intermediate-period recordings, however, record all three components in this band. Only long-period components are recorded continuously: short-and intermediate-period channels are recorded only when an event is detected. Horizontal components (where available) are recorded whenever the vertical component is, and never otherwise.

This report mainly consists of vertical component waveforms from all reporting stations, organized by event. The section for each event is prefaced by a station coverage map, in which stations and geography within 100° of the source are shown in an azimuthal equidistant projection centered at the epicenter. Following the coverage map, all short-period, vertical component waveforms are shown in order of increasing epicentral distance. Each short-period waveform is two minutes long and is identified by station code, start

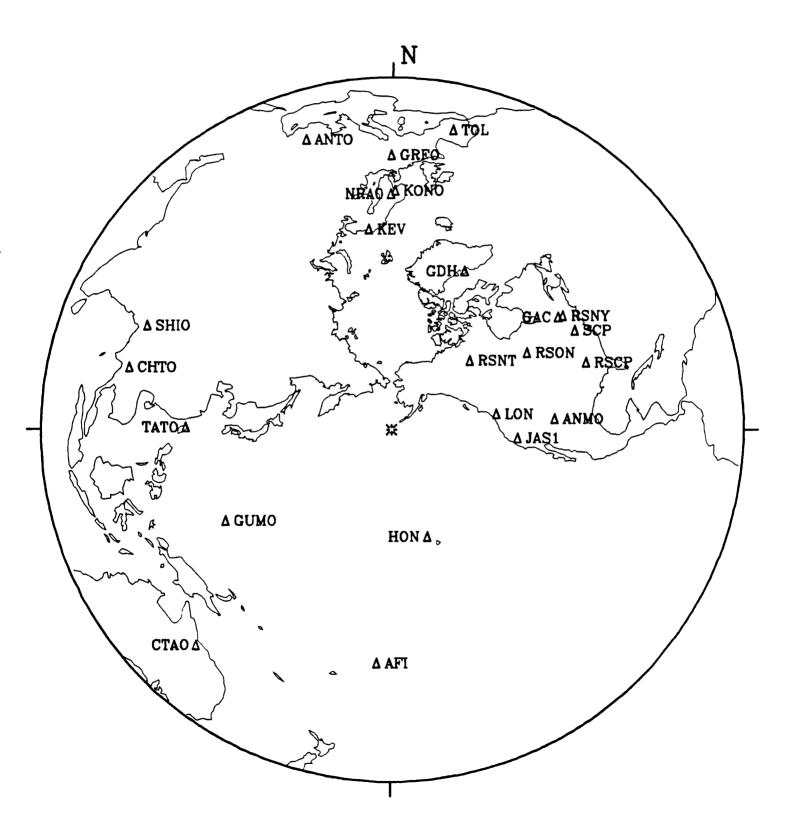
time, and epicentral distance, Δ , in degrees. The start time is chosen to be about 15 seconds before the earliest theoretical arrival time of interest (P, Pdiff, or PKPdf, depending on distance). The vertical scale is in microns of ground displacement at the dominant period of the instrument response, which is taken to be 1 second. Each page of waveforms is titled with the event origin date-time, the Flinn-Engdahl region name, and the component identifier (SPZ, LPZ or IPZ). Also, the depth of the event (h) in kilometers and its average body (m_b) and vertical surface wave (M_{SZ}) magnitudes are shown for convenience.

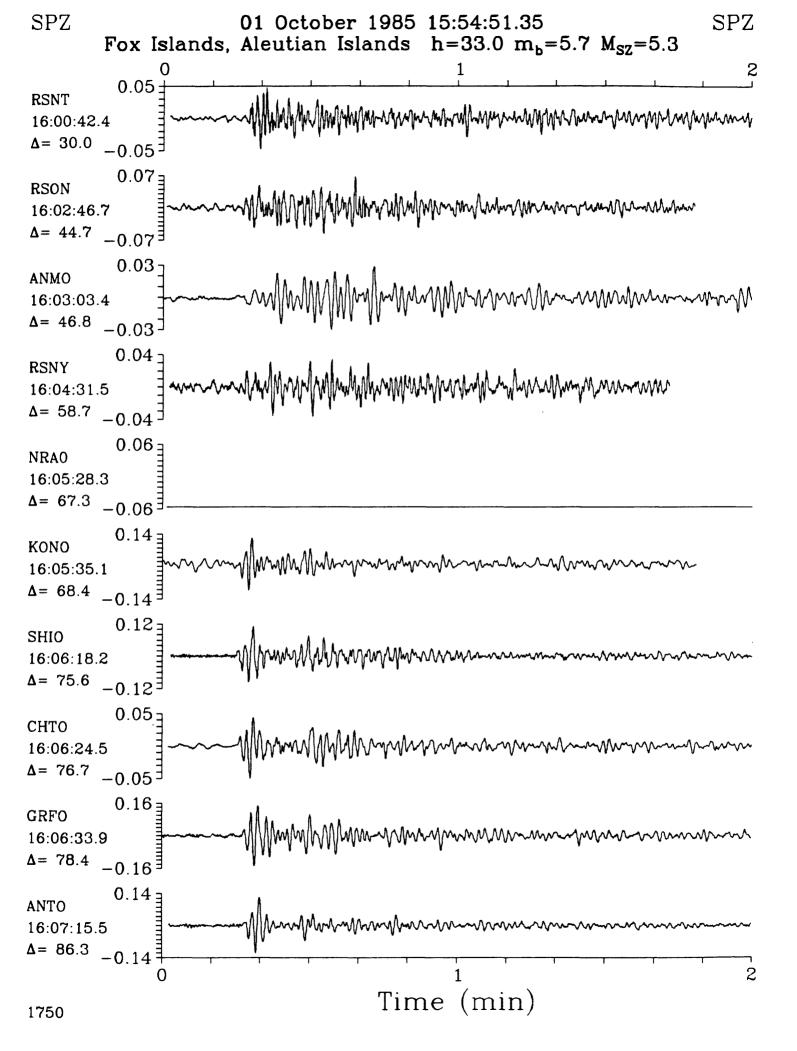
Following the short-period waveforms (SPZ), long-period vertical (LPZ) and finally intermediate-period vertical (IPZ) waveforms are shown. In each case, the format is the same as for the short-period waveforms. Fifty minutes of long-period data are shown beginning 1 minute before the theoretical first arrival, and the dominant period is taken to be 25 seconds. Four minutes of intermediate-period data are shown beginning 30 seconds before the theoretical first arrival, and the dominant period is assumed to be 1 second. Because (1) the event detection algorithm is not perfect, (2) only about half of the available stations have intermediate-period channels, and (3) one station (GAC) has no short-period recordings, it is not uncommon for stations with good long-period recordings to have no intermediate-period and perhaps no short-period recordings at all.

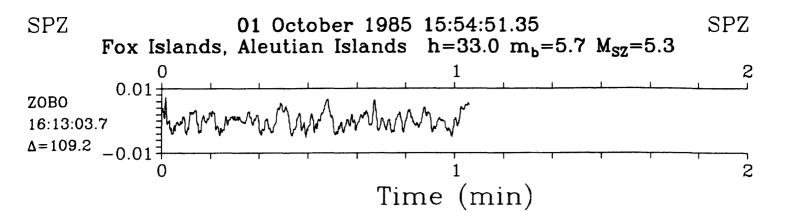
With the inclusion of the Network of Autonomously Registrating Stations (NARS) in September 1985, it was difficult to list the name of each station in the network on the station coverage map because of their close proximity. Instead, a new symbol (\square) will be used to denote each station of the network, with the name NARS. When other networks are included with stations situated close together, a new symbol will be used to denote each station of each network. The name used will be the network name only.

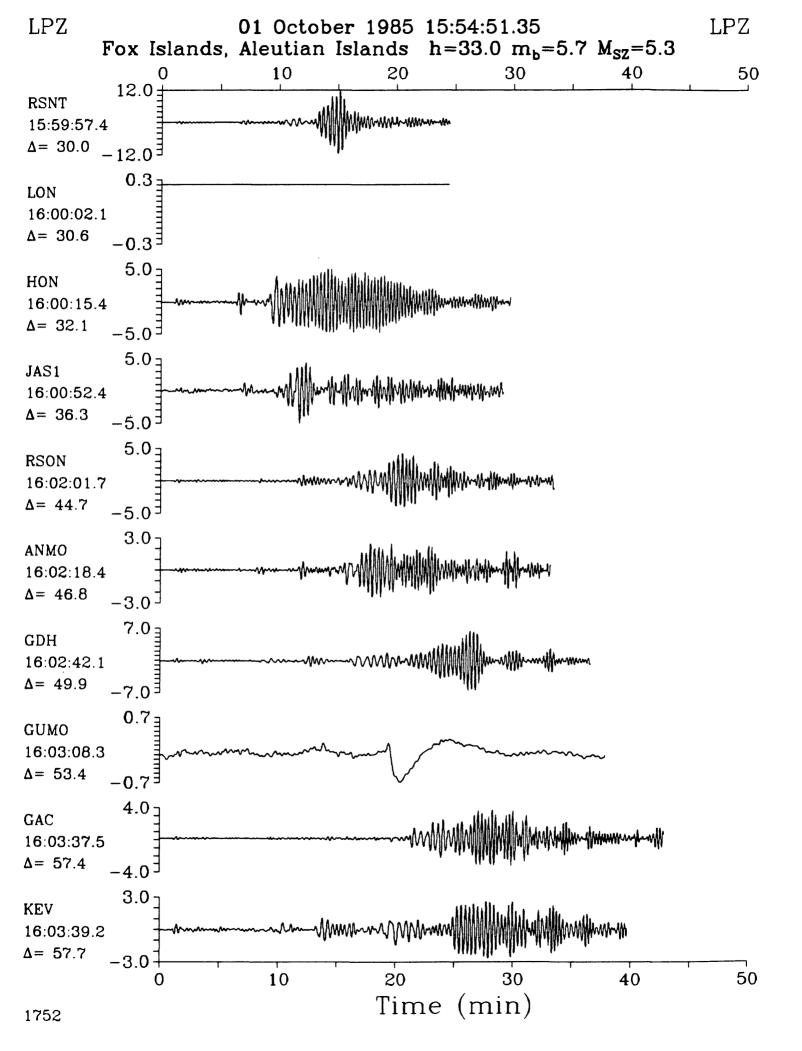

Table 1. Earthquakes for October 1985 with magnitudes > 5.5

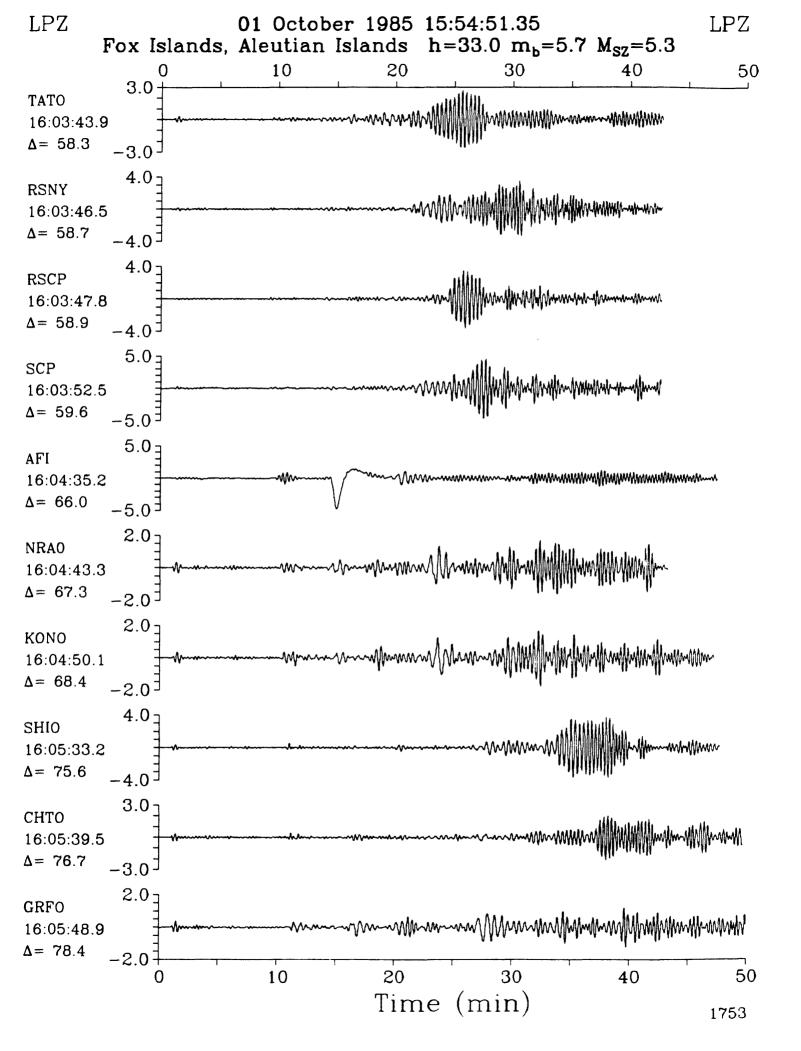
Flinn-Engdahl Region Name	Fox Islands, Aleutian Islands	Vanuatu Islands	Bonin Islands Region	Near East Coast of Honshu, Japan	Northwest Territories, Canada	Vanuatu Islands	Jujny Province, Argentina	Java	South of Alaska	Kermadec Islands	Fiji Islands Region	Central Mid-Atlantic Ridge	Tajik SSR	Near West Coast of Honshu, Japan	Northwest of Kuril Islands	Vanuatu Islands	Timor Sea	Tonga Islands	San Juan Province, Argentina	Fox Islands, Aleutian Islands	Banda Sea	South of Alaska	Algeria	Tonga Islands	Iran	East Papua New Guinea Region	Michoacan, Mexico	Rat Islands, Aleutian Islands	Fox Islands, Aleutian Islands	Santiago Del Fistero Prov. Arg
Magnitude	5.3	5,3			6.6				6.5			6.0	5.9	4.9		5.0	5.3			5.6		4.6	5.9	5.7	5.9	6.7	5.4	5.4	5.7	
Magt	5.7	5.6	5.6	8.3	6.5	5.7	ν. γ.	5.9	6.3	5,6	5.8	5,3	5.8	5.8 8.2	0.0	5.5	0.9	5.9	5.7	5.6	5.9	5.6	5.5	5.5	0.9	0.9	5.6	5.6	5.8	υ. 8.
Depth (km)	33.0	37.0	180.4	80.2	10.0	255.9	222.0	158.4	31.2	28.3	157.4	10.0	33.0	33.0	291.0	46.3	33.0	33.0	110.7	33.0	598.5	33.0	10.0	33.0	33.0	10.0	33.0	33.0	33.0	594.5
Longitude	168.805° W	169.824。臣	139.900° 医	140,003° E	124.312° W	169.393° E	66.426° W	107.1001 臣	159.573° W	178.284° W	176.493° W	29.876° W	69.840° E	136.859。 圧	146.287° E	166.020° E	125.116° E	174.215° W	68.636° W	171.319° W	124.269° E	159.467° W	6.746° E	175.941° W	54.805° E	150.992° E	102.549° W	175.553° E	166.924° W	63.186° W
Latitude	52,334° N	19.462° S	27.631° N	35.764° N	62.257° N	18.926° S	23.050° S	6.887° S		30.729° S	21.619° S	0.857° N	40.317° N	37.549° N	46.300° N	13.555° S	11.150° S	15.313° S	31.410° S	52.083° N	7.108° S	54.857° N	36.402° N	15.431° S	36.720° N	9.564° S	18.168° N	51.774° N	53.258° N	28.747° S
Origin Time	1985 10 01 15:54:51.35	1985 10 02 20:40:02 90	1985 10 04 08:41:37:96	1985 10 04 12:25:51.12	1985 10 05 15:24:02.25	1985 10 06 12:00:47.95	1985 10 08 09:47:21.90	1985 10 09 01:15:05.09	1985 10 09 09:33:32.80	1985 10 11 19:29:46.14	1985 10 12 02:12:58.32	1985 10 12 22:20:37.69	1985 10 13 15:59:53.55	1985 10 18 03:22:23.19	1985 10 18 04:19:08.36	1985 10 21 02:36:11.44	1985 10 23 00:49:13.92	1985 10 23 17:16:23.88	1985 10 24 01:48:56.05	1985 10 25 02:09:04.47	1985 10 25 18:12:19.75	1985 10 26 15:59:36.17	1985 10 27 19:34:57.08	1985 10 28 12:52:31.24	1985 10 29 13:13:42.79	1985 10 29 14:10:39.53	1985 10 29 15:02:27.15	1985 10 30 19:05:37.46	1985 10 31 19:33:07.12	1985 10 31 21:49:20.01
	- i	2.	3.	4	rė.	9	7.	œ.	6	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	.92	27.	28.	29.	30.

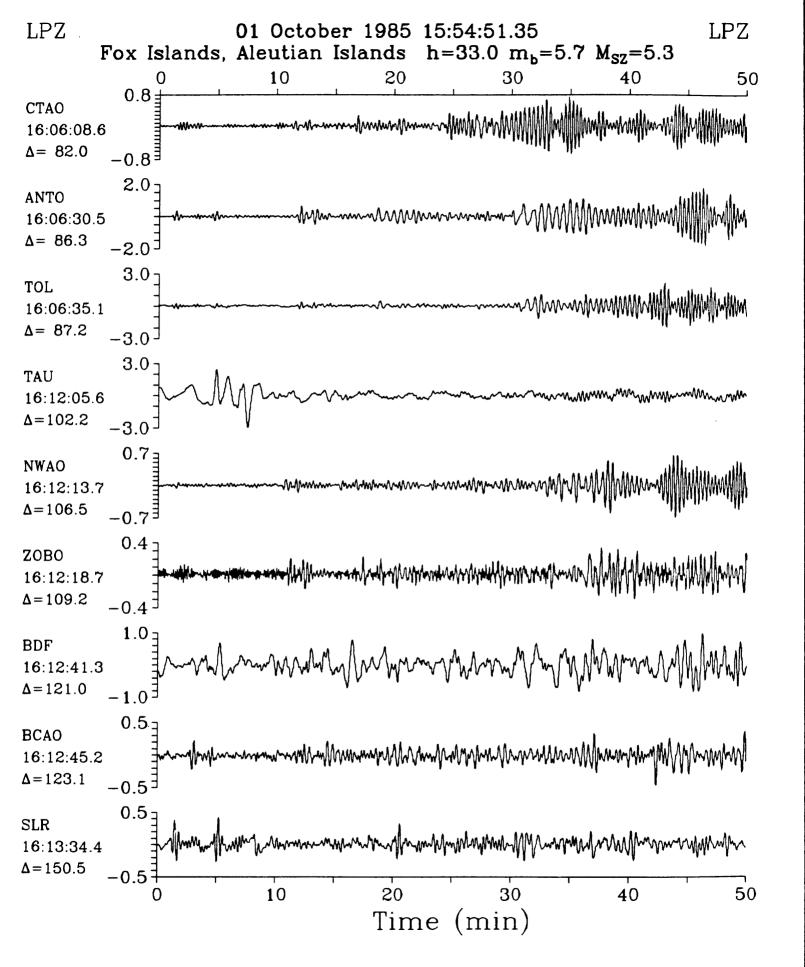

Table 2. Current network-event tape station list

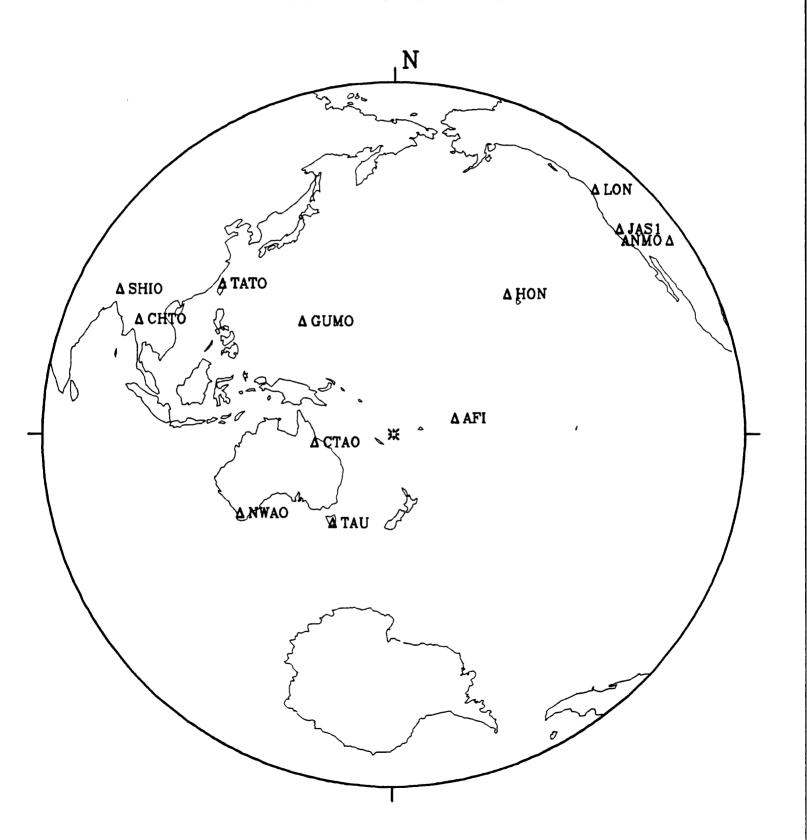

Code	ID	Station	Latitude	Longitude	Elevation (m)	Type'	
AFI	69	Afiamalu, Western Samoa	13.91° S	171.78° W	706.0	DWWSSN	
ANMO	30	Albuquerque, New Mexico	34.95° N		1740.0	SRO	
ANTO	31	Ankara, Turkey	39.87° N		883.0	SRO	
BCAO	37	Bangui, Central African Republic	4.43° N		336.0	SRO	
BDF	72	Brasilia, Brazil	15.66° S		1500.0	DWWSSN	
CHTO	33	Chiang Mai, Thailand	18.79° N		316.0	SRO	
COL	62	College, Alaska	64.90° N	147.79° W	320.0	DWWSSN	
CTAO	50	Charters Towers, Australia	20.09° S	146.25° E	357.0	ASRO	
GAC	43	Glen Almond, Quebec, Canada	45.70° N	75.48° W	620.0	SRO	
GDH		Godhavn, Greenland	69.25° N	53.53° W	23.0	DWWSSN	
GRA1	302	Haidhof, Germany	49.69° N	11.22° E	500.0	GRF	
GRFO	39	Graefenberg, Germany	49.69° N	11.22° E	500.0	SRO	
GUMO	35	Guam, Mariana Islands	13.59° N	144.87° E	14.0	SRO	
HON	66	Honolulu, Hawaii	21.32° N	158.01° W	2.0	DWWSSN	
JAS1	64	Jamestown, California	37.93° N	120.42° W	425.0	DWWSSN	
KEV	67	Kevo, Finland	69.76° N	27.01° E	80.0	DWWSSN	
KONO	54	Kongsberg, Norway	59.65° N	9.60° E	216.0	ASRO	
LEM	76	Lembang, Indonesia	6.83° S	107.62° E	1247.0	DWWSSN	
LON	6 3	Longmire, Washington	46.75° N	121.81° W	854.0	DWWSSN	
MAJO	53	Matsushiro, Japan	36.54° N	138.21° E	422.0	ASRO	
NE02	202	Monsted, Denmark	56.459° N	9.170° E	60.0	NARS	
NE03	203	Logumkloster, Denmark	55.045° N	9.153° E	25.0	NARS	
NE04	204	Witteveen, Netherlands	52.813° N	6.668° E	17.0	NARS	
NE06	206	Dourbes, Belgium	50.097° N	4.595° E	225.0	NARS	
NE07	207	Villiers-Adam, France	49.074° N	2.232° E	70.0	NARS	
NE09	209	Les-Eyzies, France	44.852° N	0.981° E	160.0	NARS	
NE10	210	Arette, France	43.086° N	0.699° W	480.0	NARS	
NE11	211	Ainzon, France	41.814° N	1.517° W	440.0	NARS	
NE13	213	Puertollano, Spain	38.685° N	4.091° W	700.0	NARS	
NE14	214	Granada, Spain	37.190° N		774.0	NARS	
NE15	215	Valkenburg, Netherlands	50.867° N	5.785° E	100.0	NARS	
NE16	216	Clermont-Ferand, France	45.763° N	3.103° E	80.0	NARS	
NE17	217	Toledo, Spain	39.881° N	4.049° W	480.0	NARS	
NRA0	301	NORESS array site A0	60.735° N		302.0	NRSA	
NWAO	38	Mundaring (Narrogin), Australia	32.93° S	117.24° E	265.0	SRO	
RSCP	81	Cumberland Plateau, Tennessee,	35.60° N		481.0	RSTN	
RSNT	82	Yellowknife, Northwest Territories	62.48° N		90.0	RSTN	
RSNY	84	Adirondack, New York	44.55° N	74.53° W	351.0	RSTN	
RSON	85	Red Lake, Ontario	50.86° N	93.70° W	302.0	RSTN	
RSSD	83	Black Hills, South Dakota	44.12° N	104.04° W	1948.0	RSTN	
SCP	61	State College, Pennsylvania	40.79° N	77.87° W	352.0	DWWSSN	
SLR	71	Silverton, South Africa	25.73° S	28.28° E	1348.0	DWWSSN	
SNZO	42	Wellington (South Karori), New Zealand	41.31° S	174.70° E	-12.0	SRO	
TATO	41	Taipei, Taiwan	24.98° N	121.49° E	5 3.0	SRO	
TAU	74	Hobart, Tasmania	42.91° S	147.32° E	132.0	DWWSSN	
TOL	73	Toledo, Spain	39.88° N	4.05° W	480.0	DWWSSN	
ZOBO	51	La Paz (Zongo), Bolivia	16.27° S	68.13° W	4450.0	ASRO	

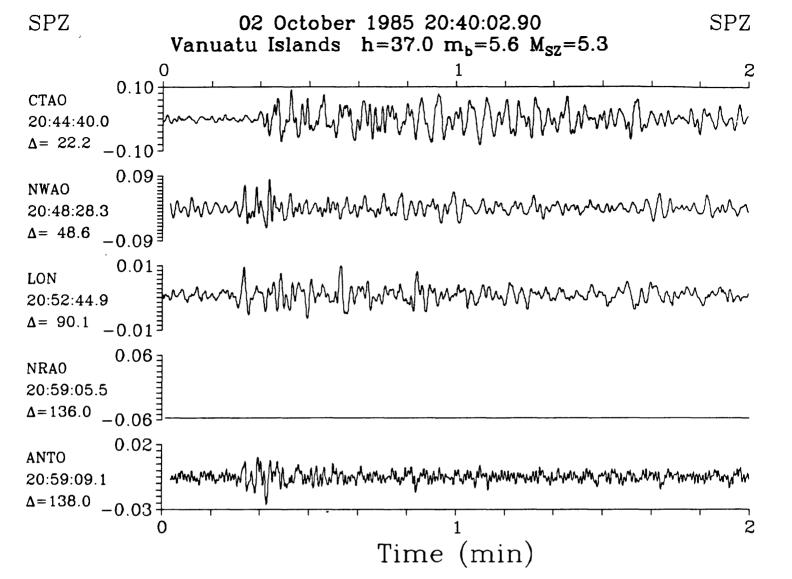

EARTHQUAKES - October 1985 - MAGNITUDE ≥ 5.5

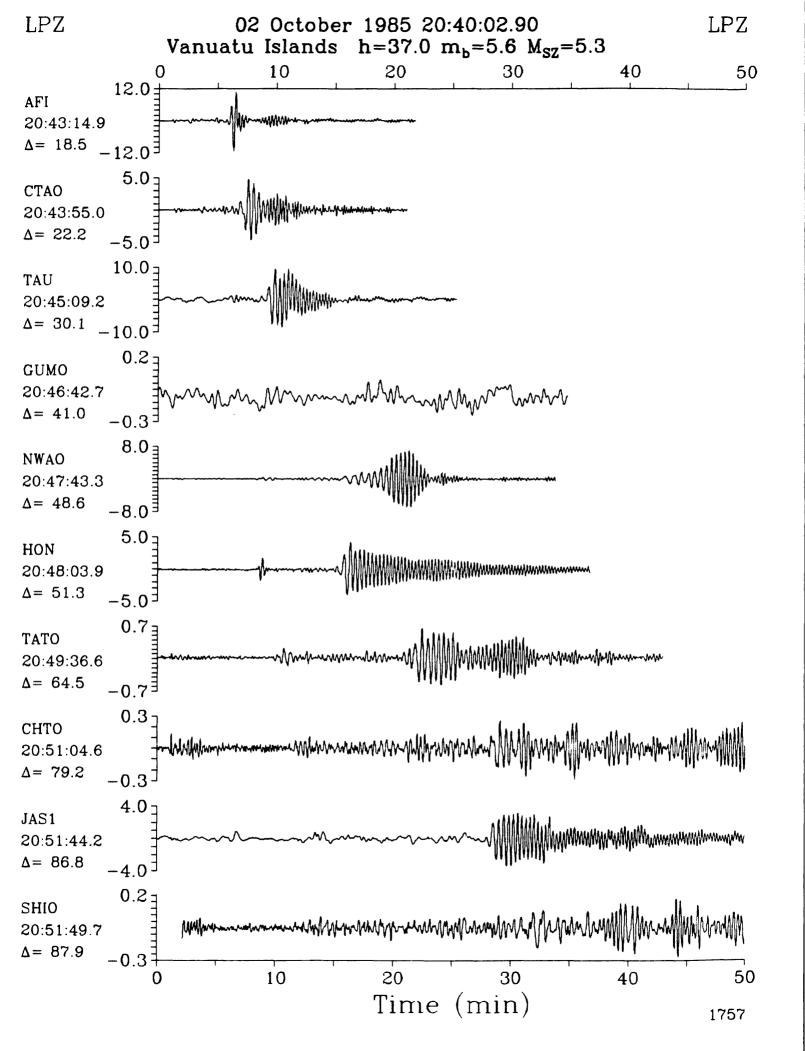


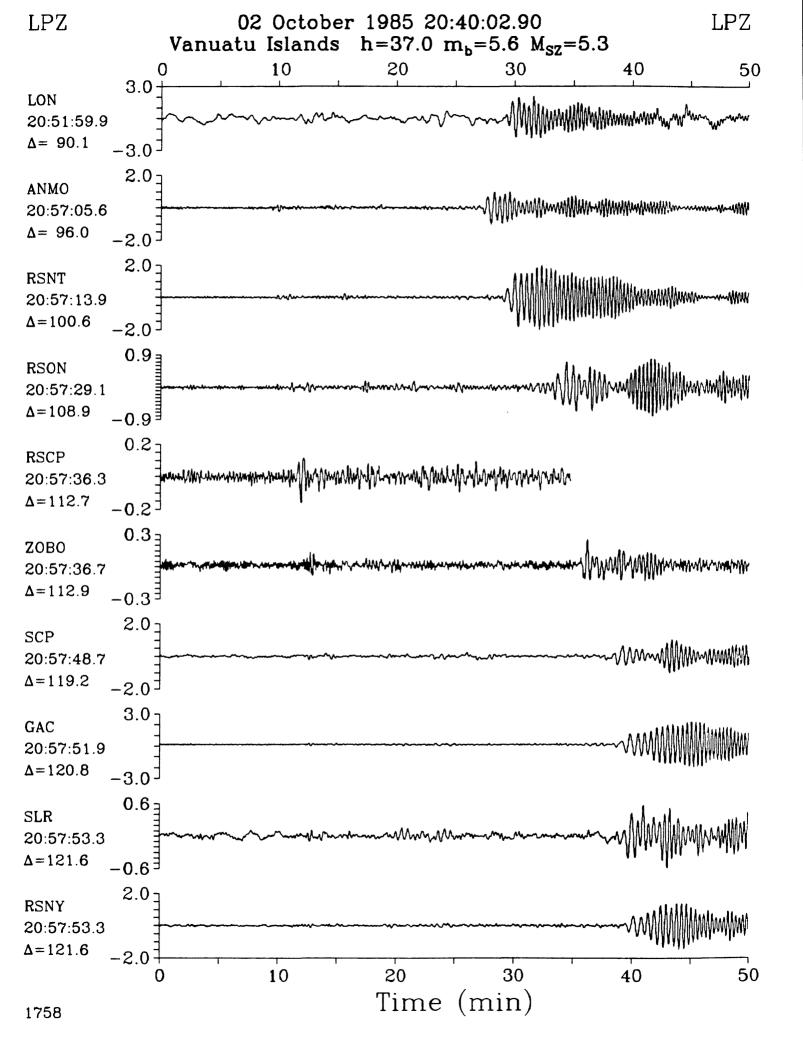

01 October 1985 15:54:51.35 Fox Islands, Aleutian Islands

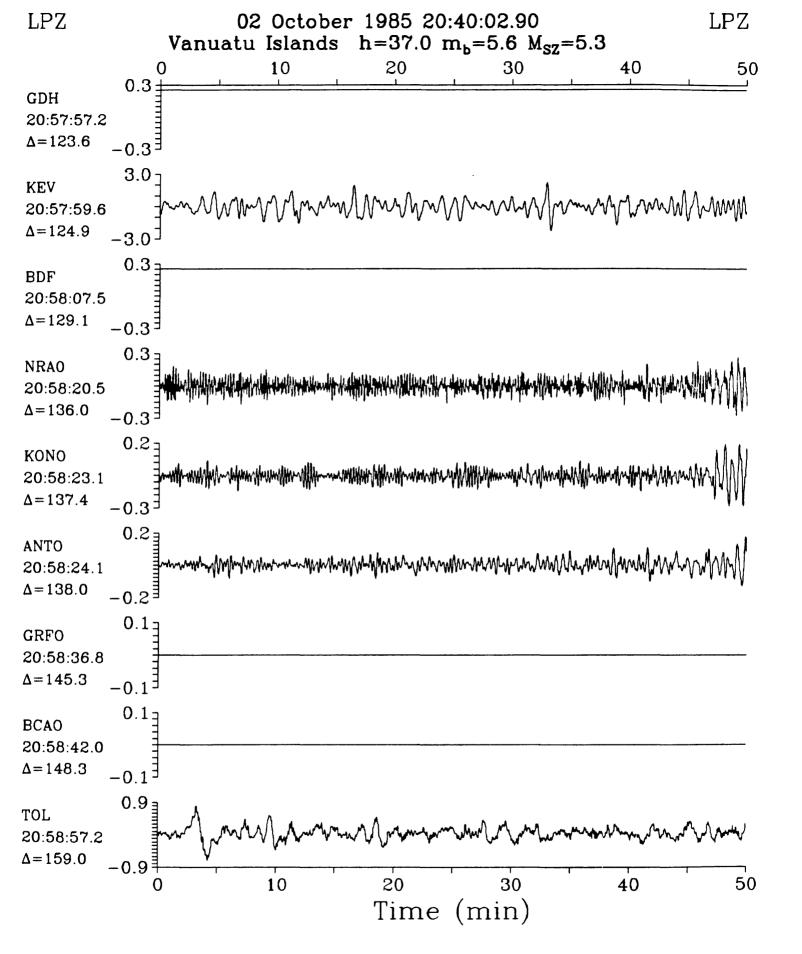


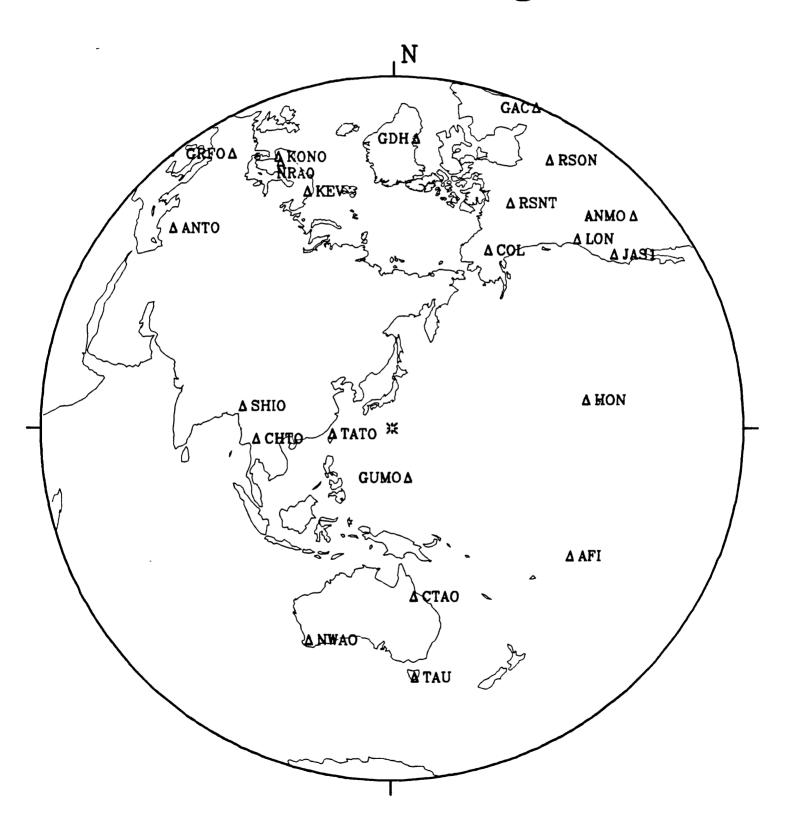


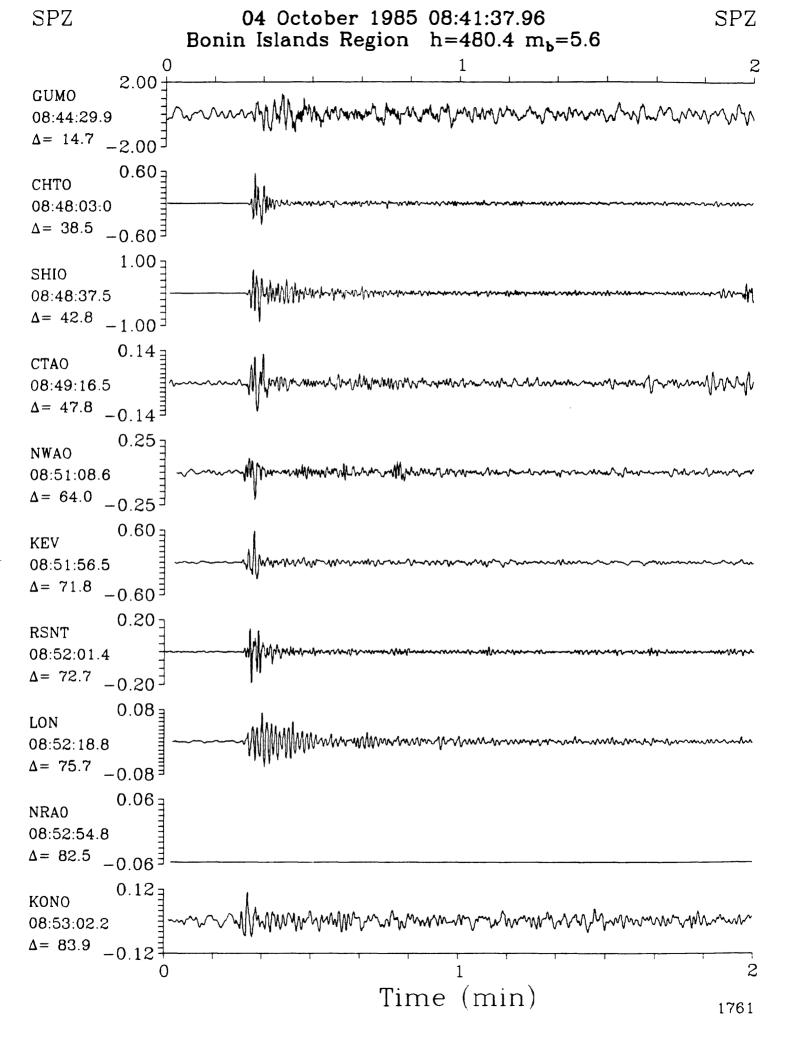


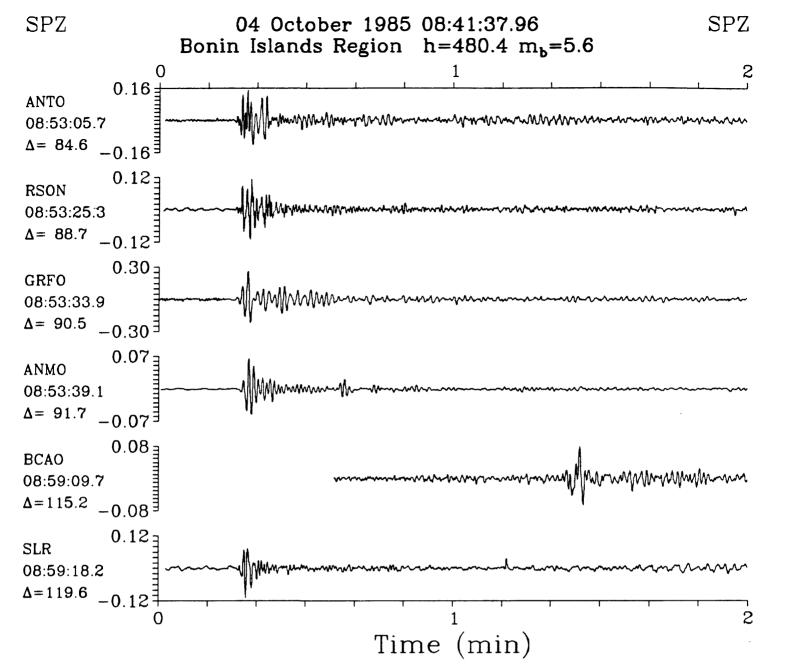


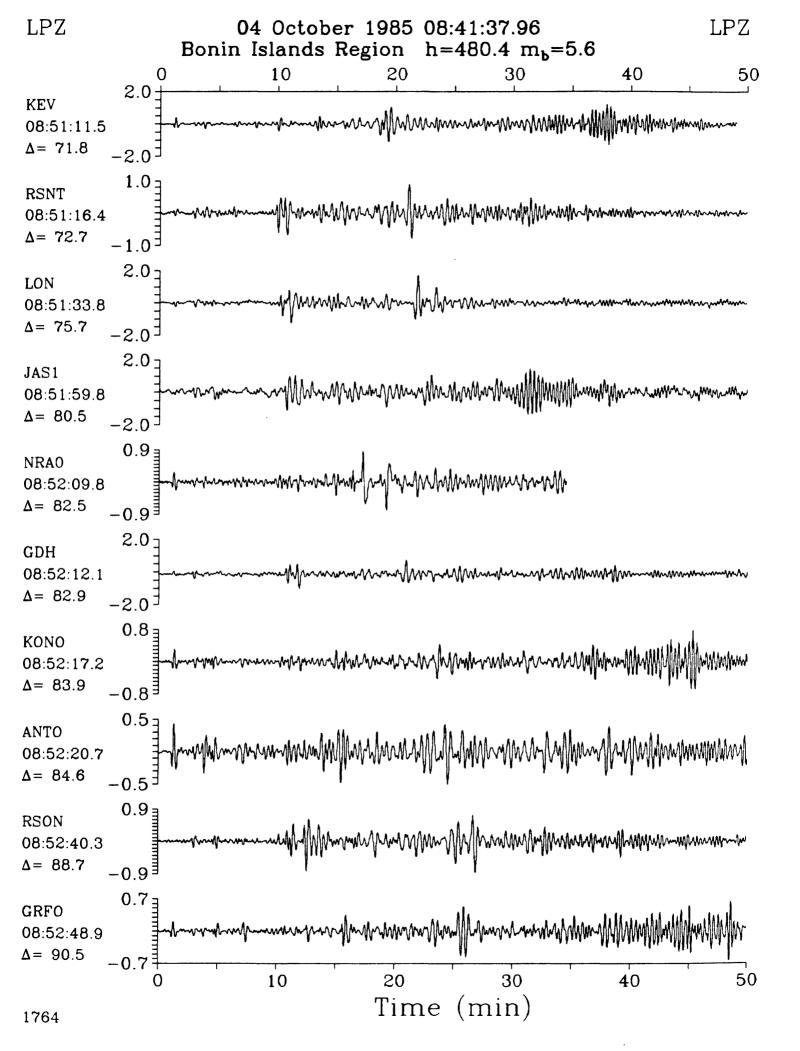


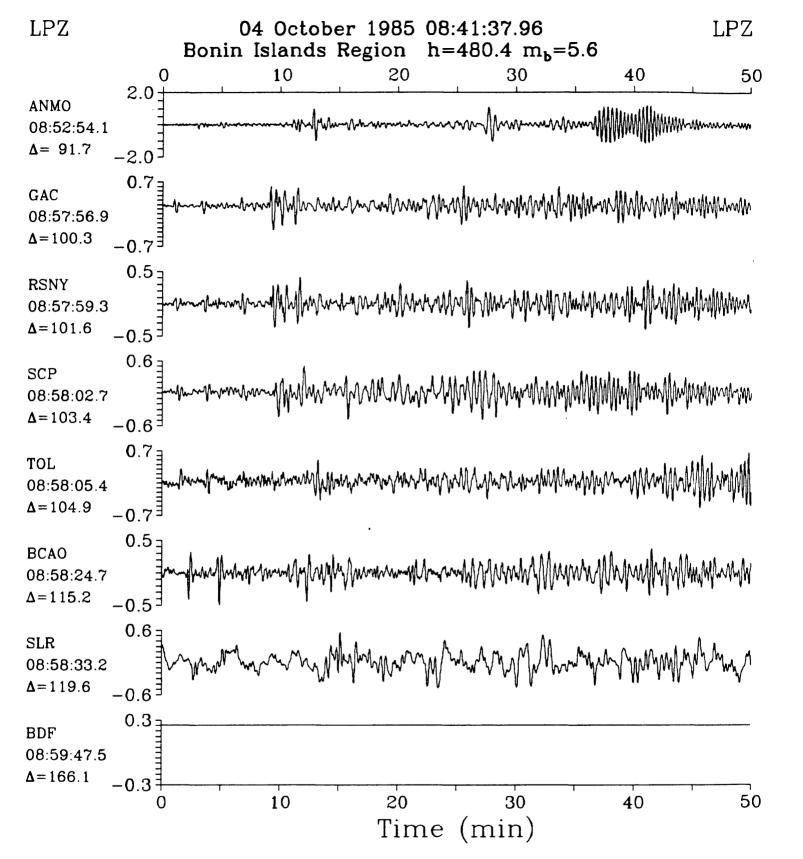

02 October 1985 20:40:02.90 Vanuatu Islands

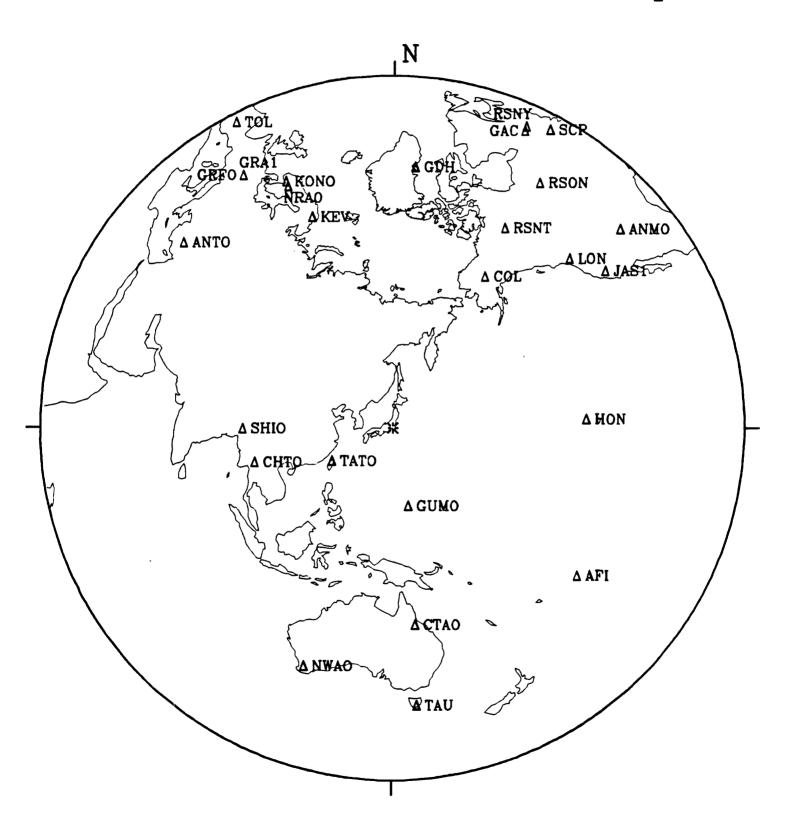


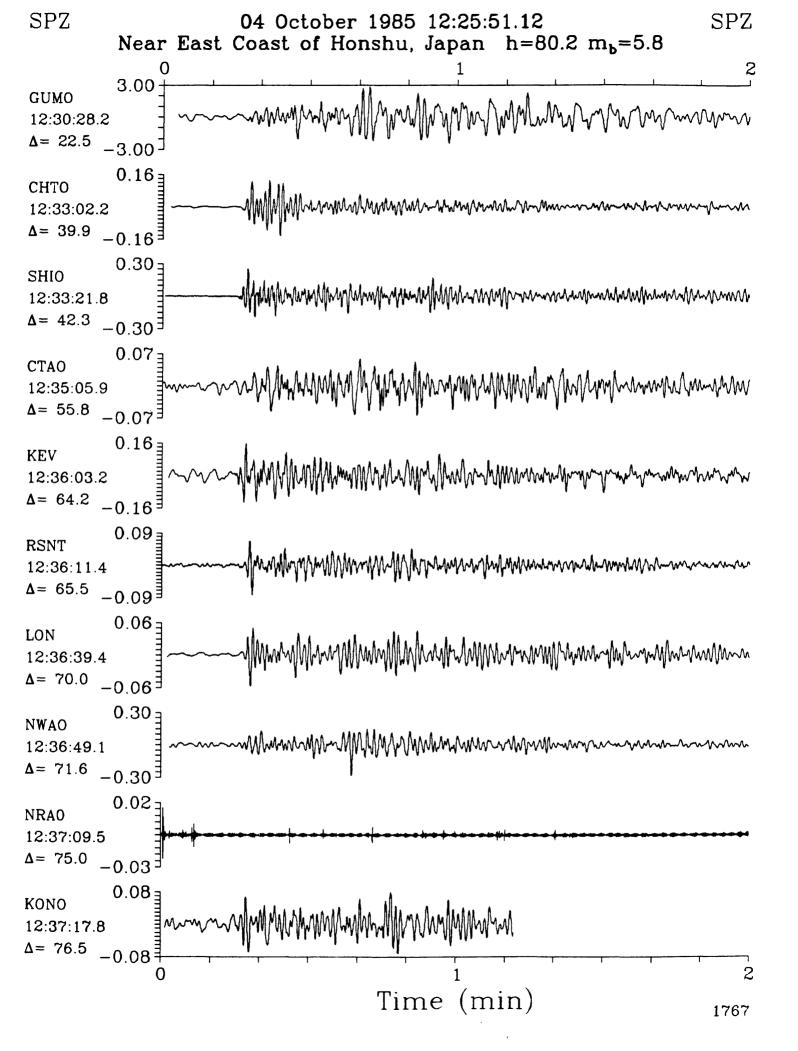


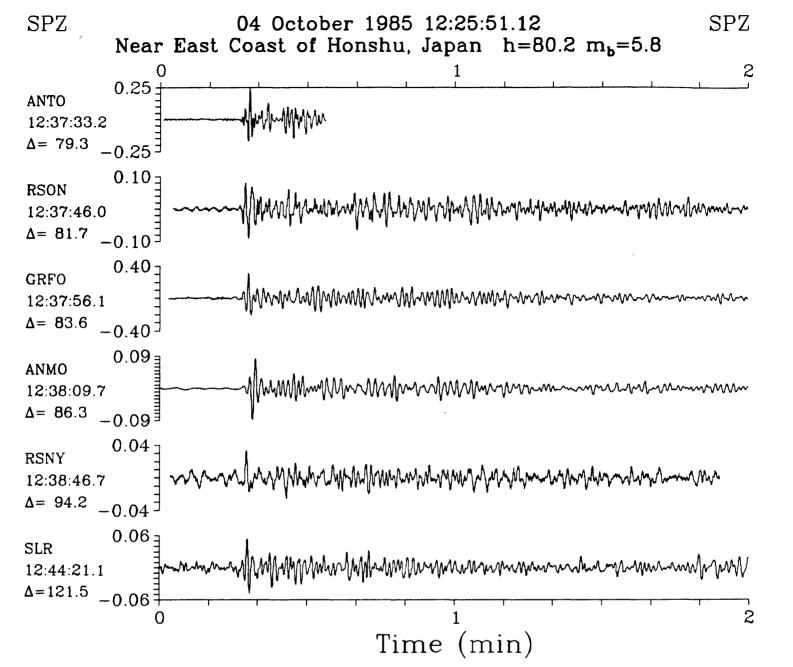


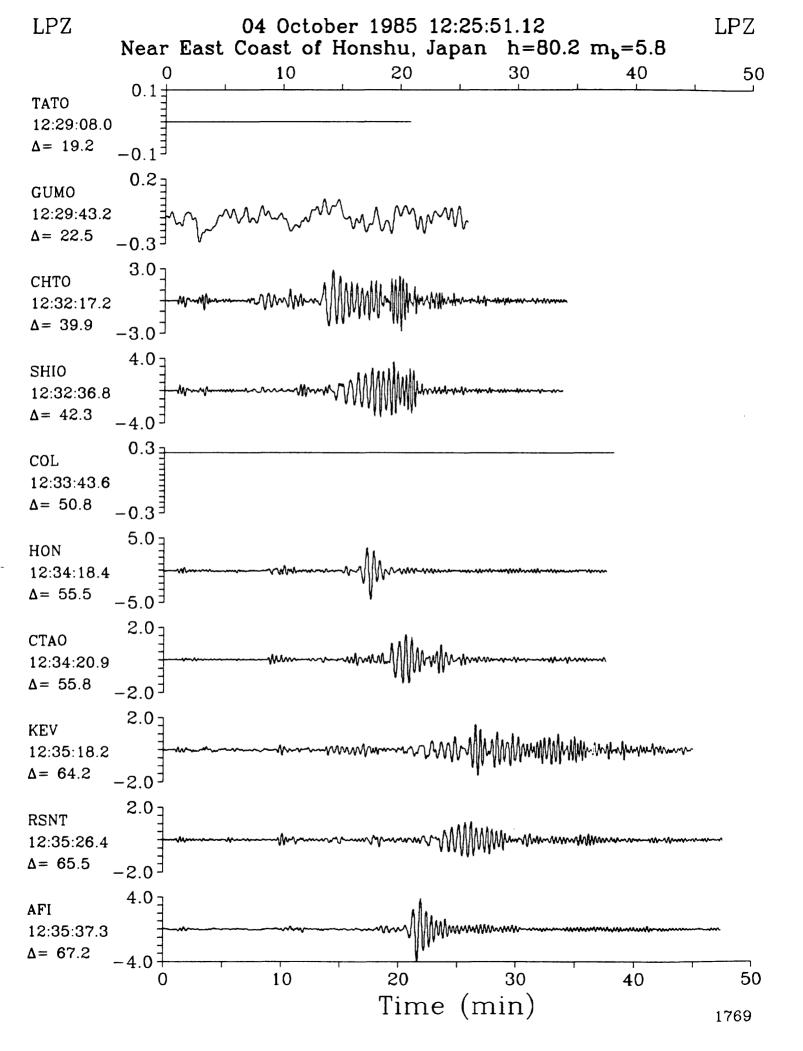

04 October 1985 08:41:37.96 Bonin Islands Region

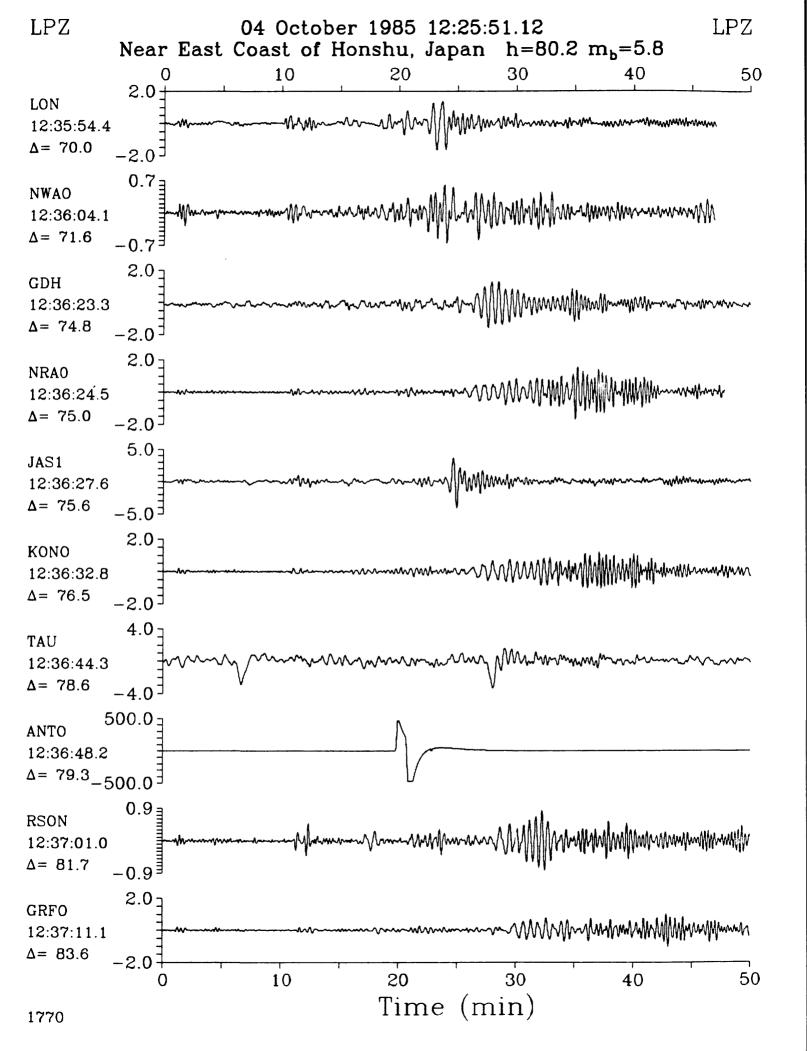


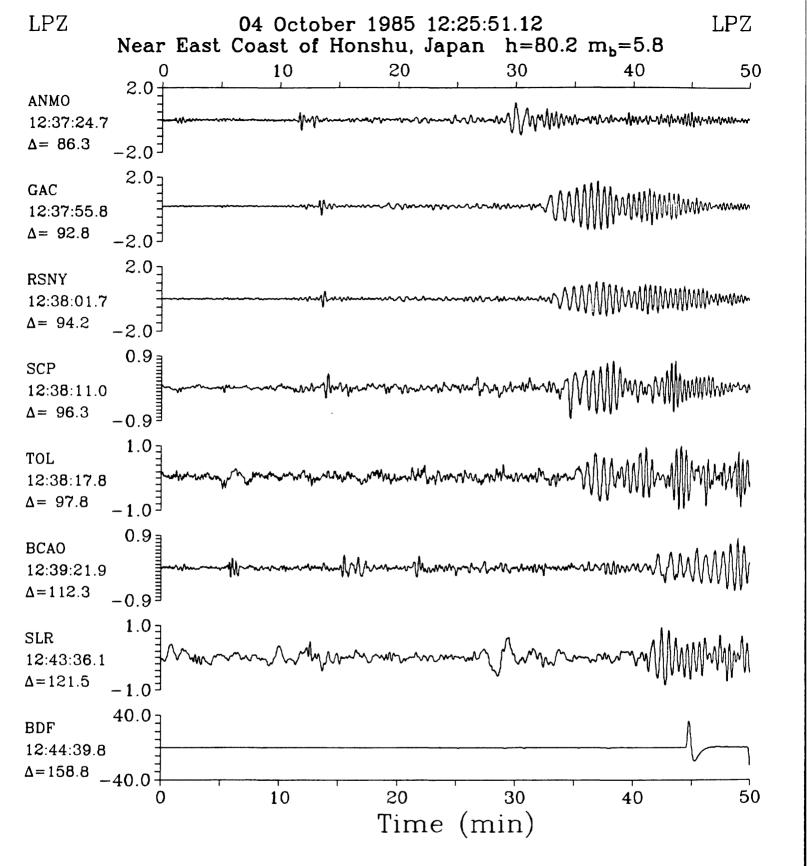


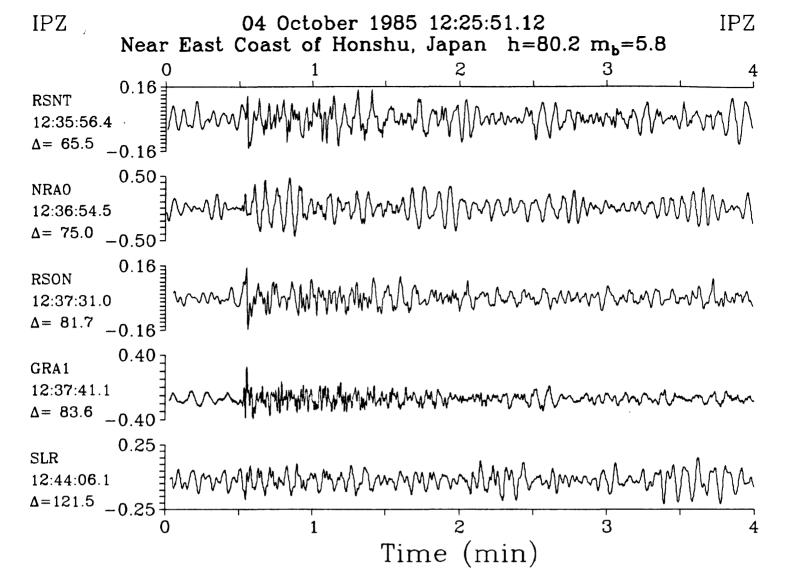


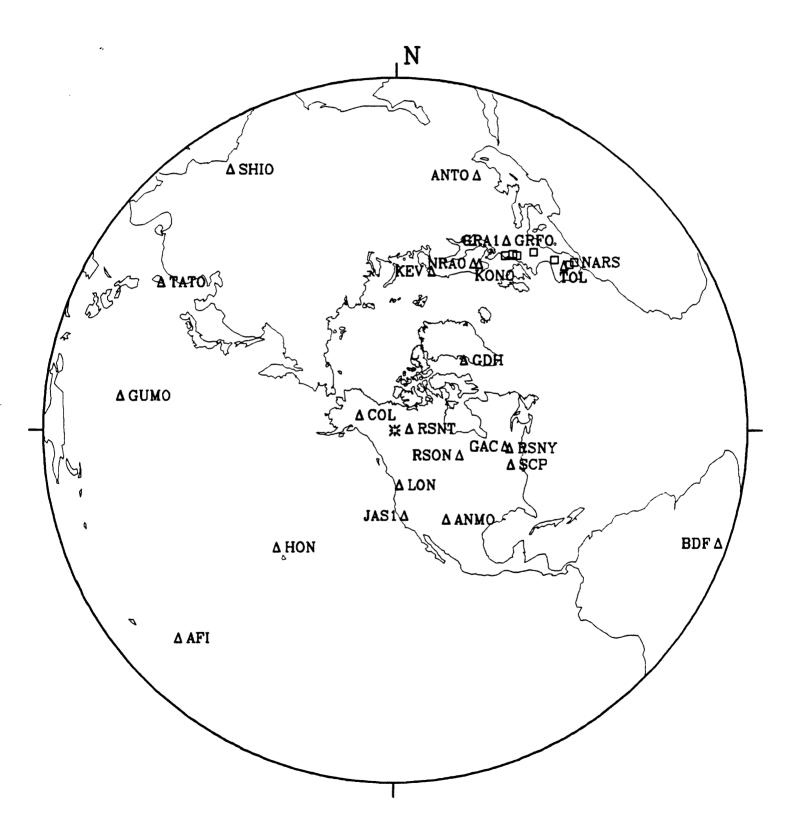


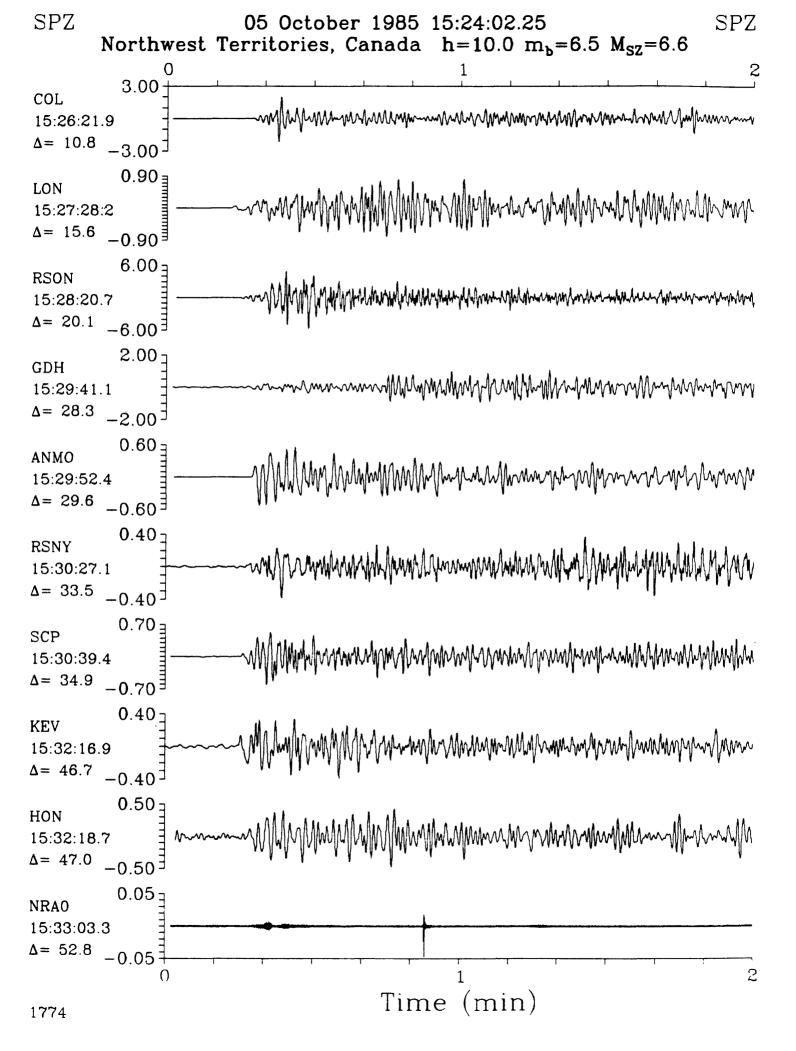


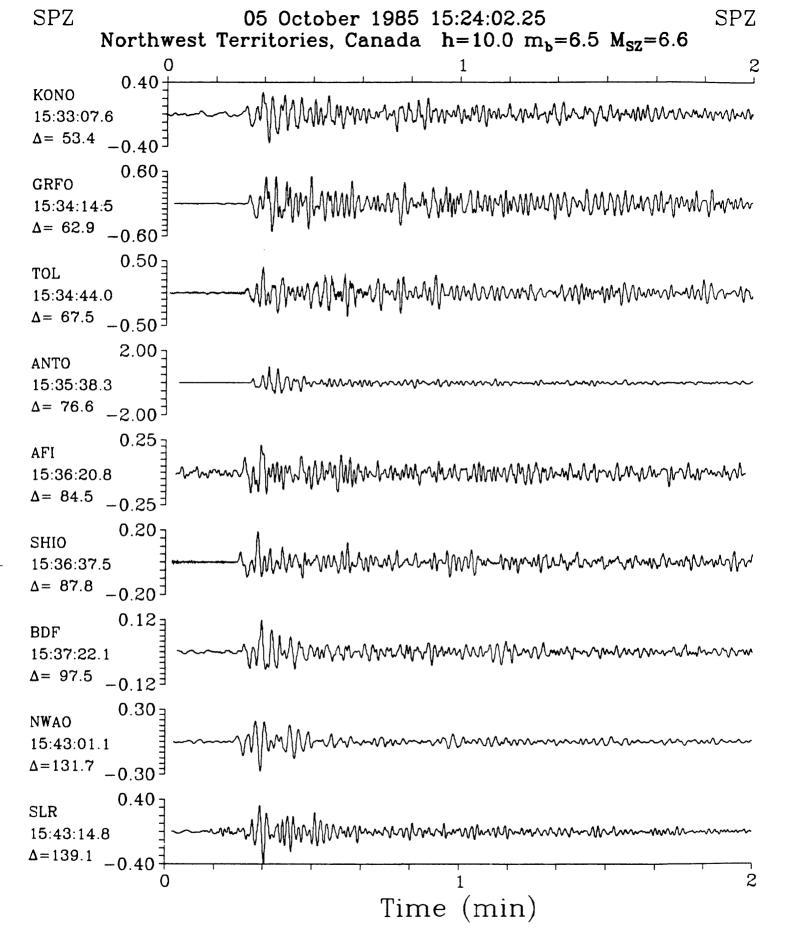

04 October 1985 12:25:51.12 Near East Coast of Honshu, Japan

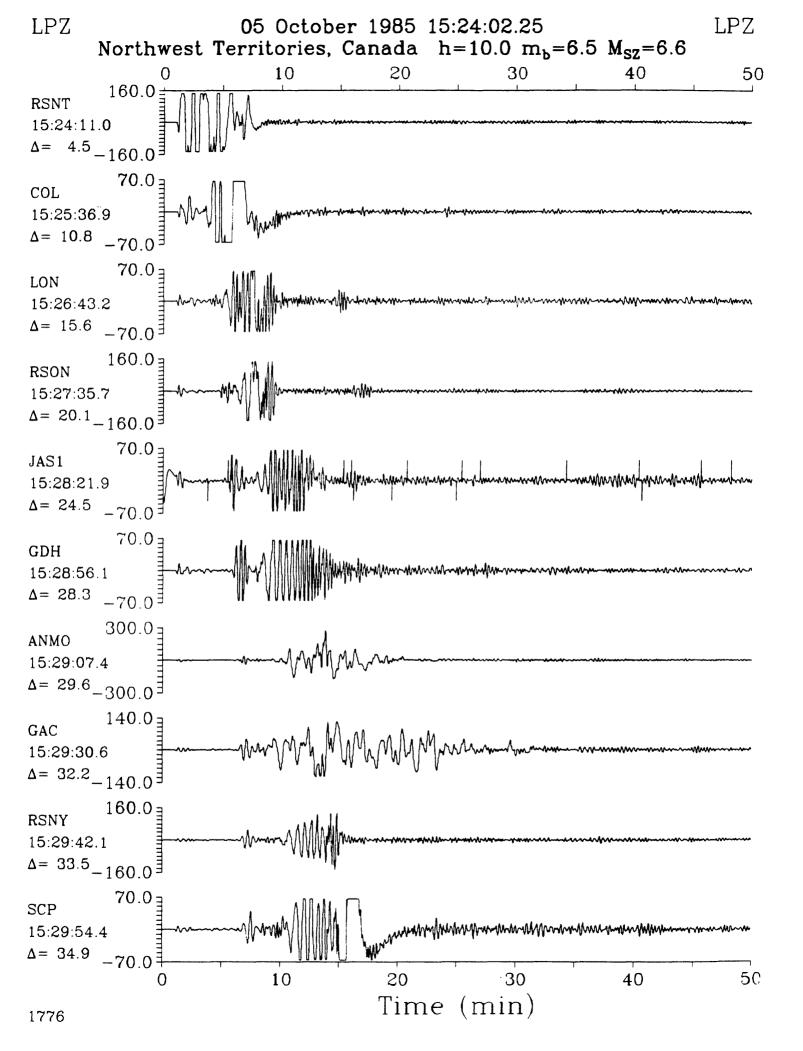


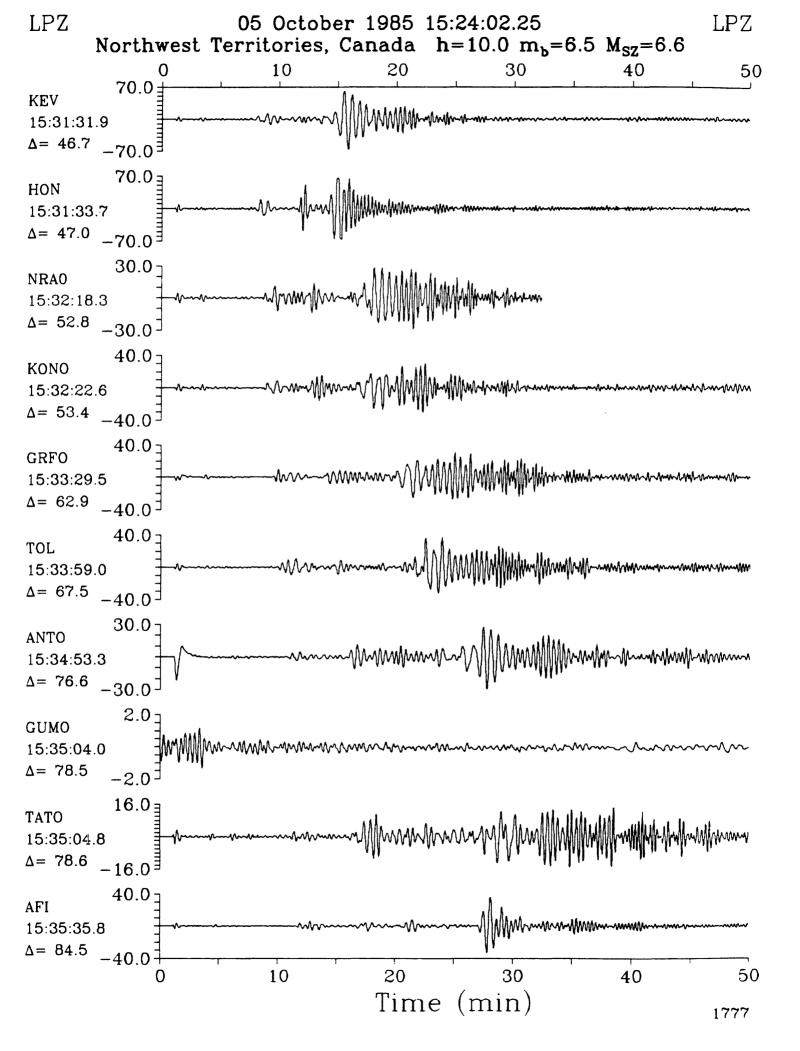


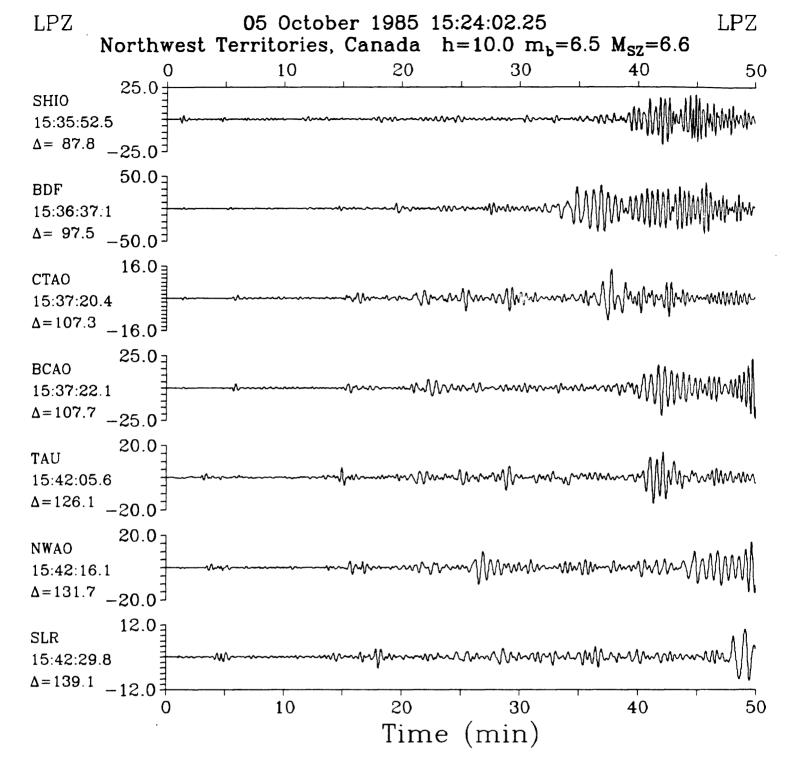


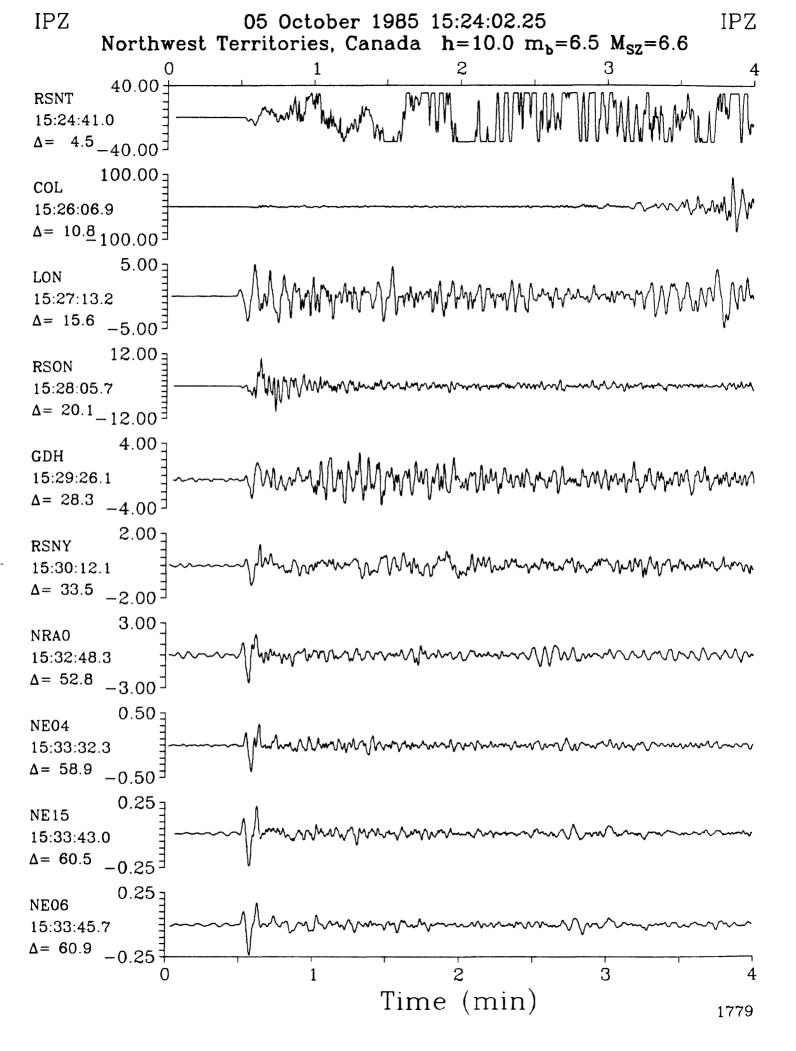


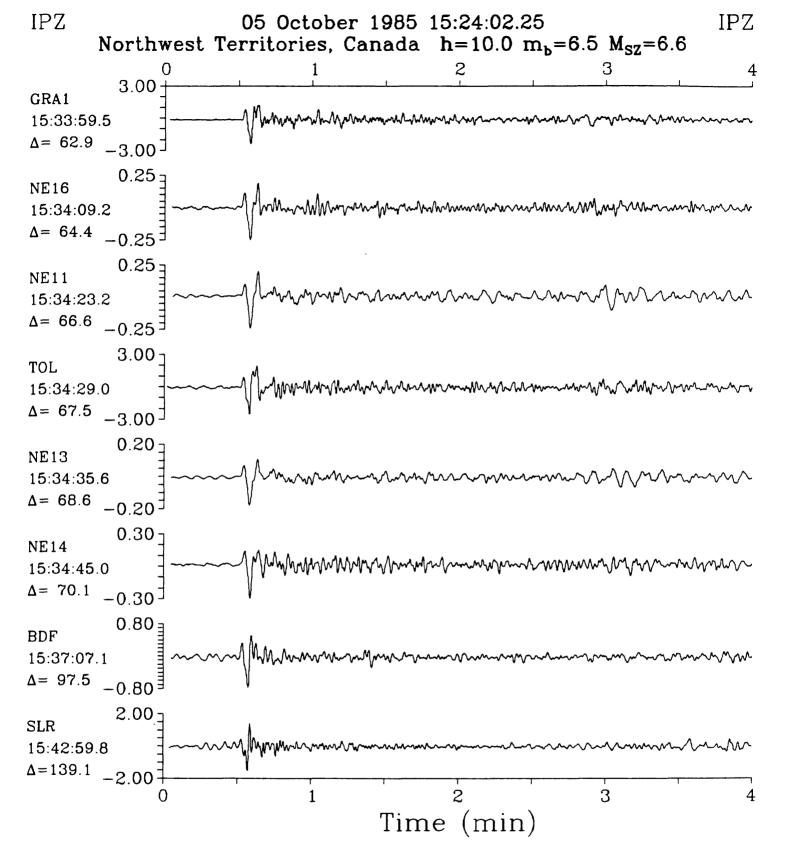


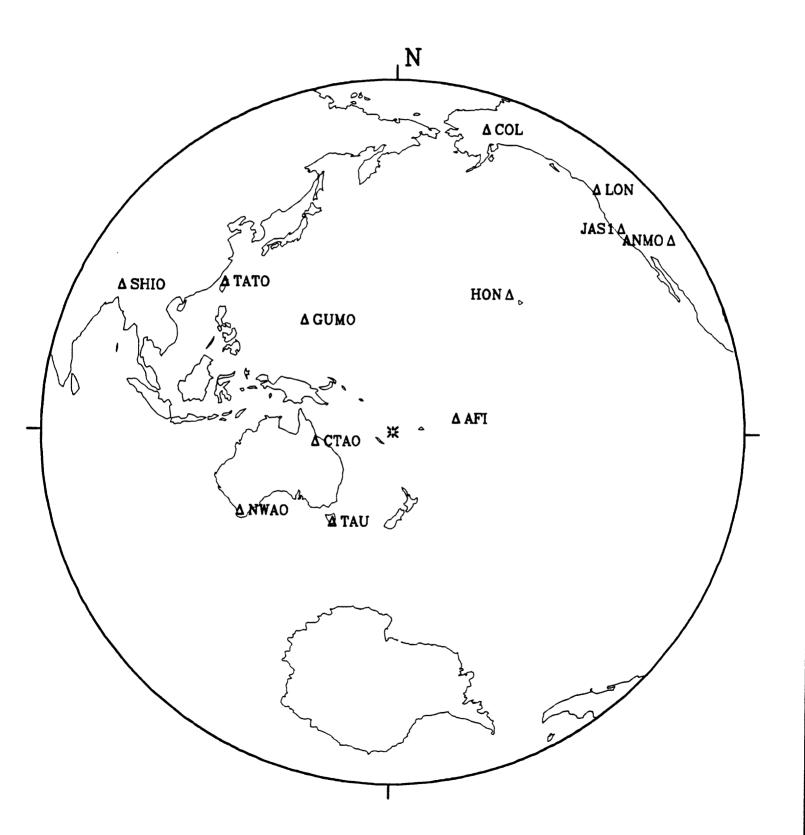


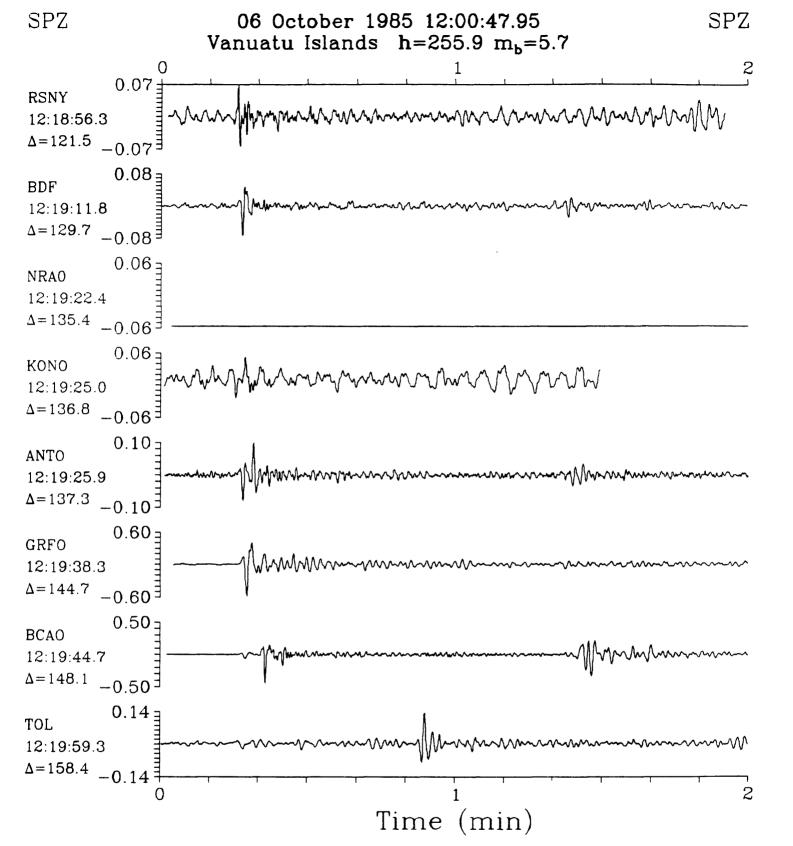

05 October 1985 15:24:02.25 Northwest Territories, Canada

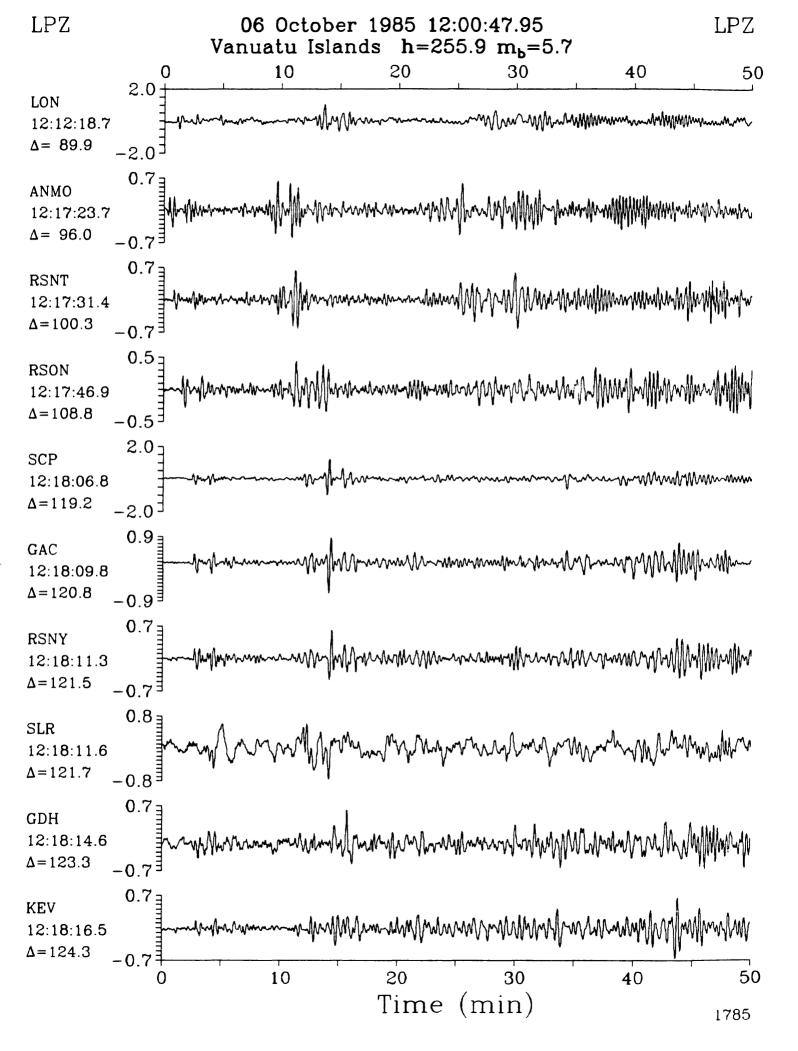


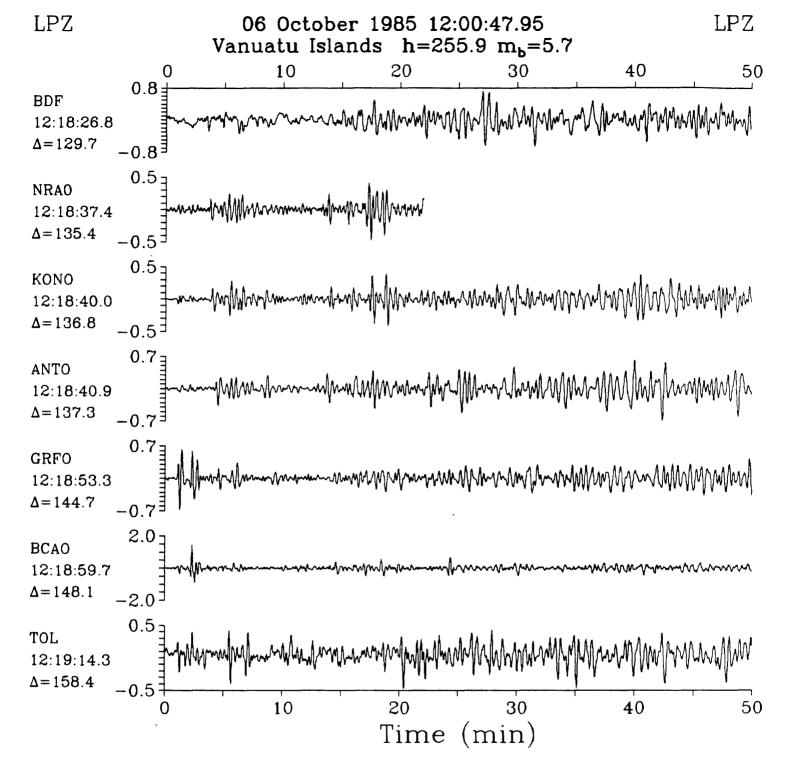




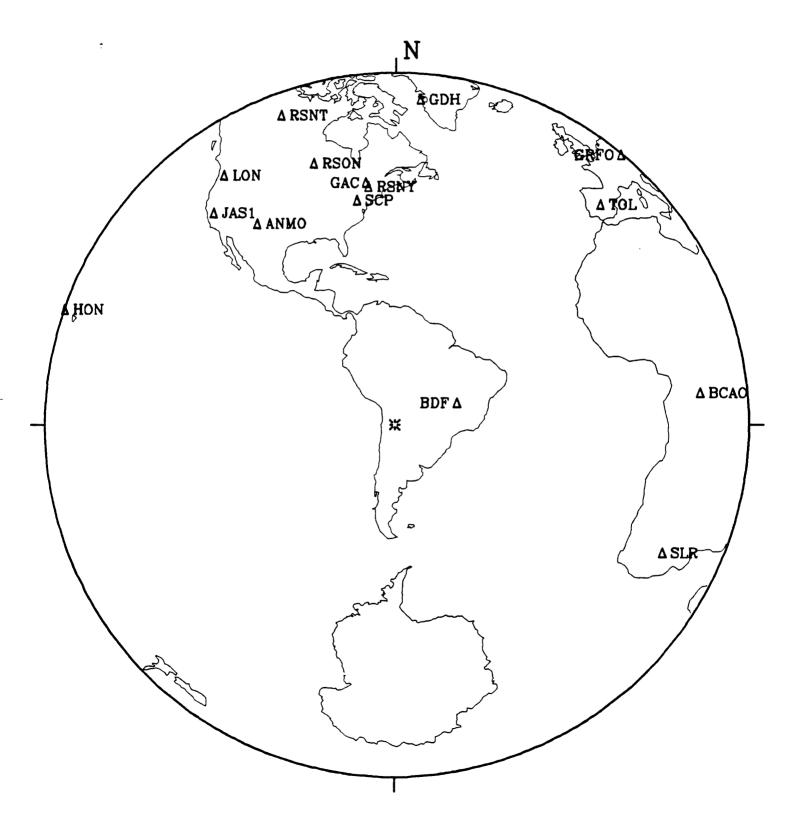


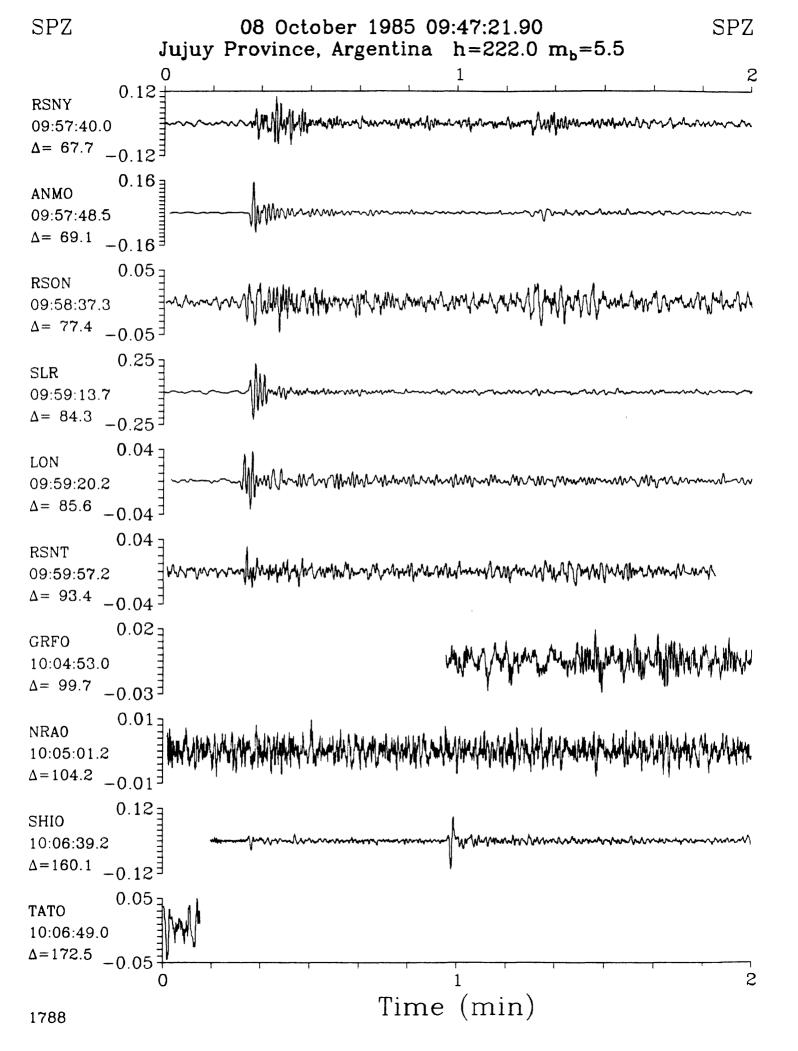


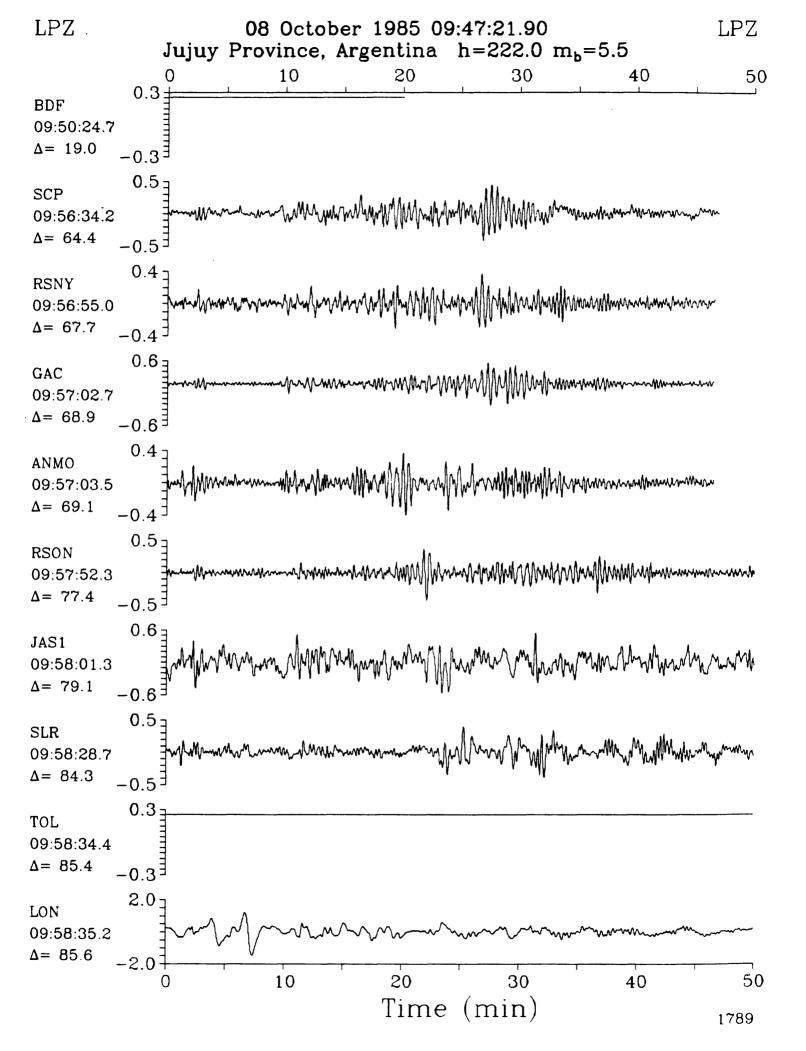


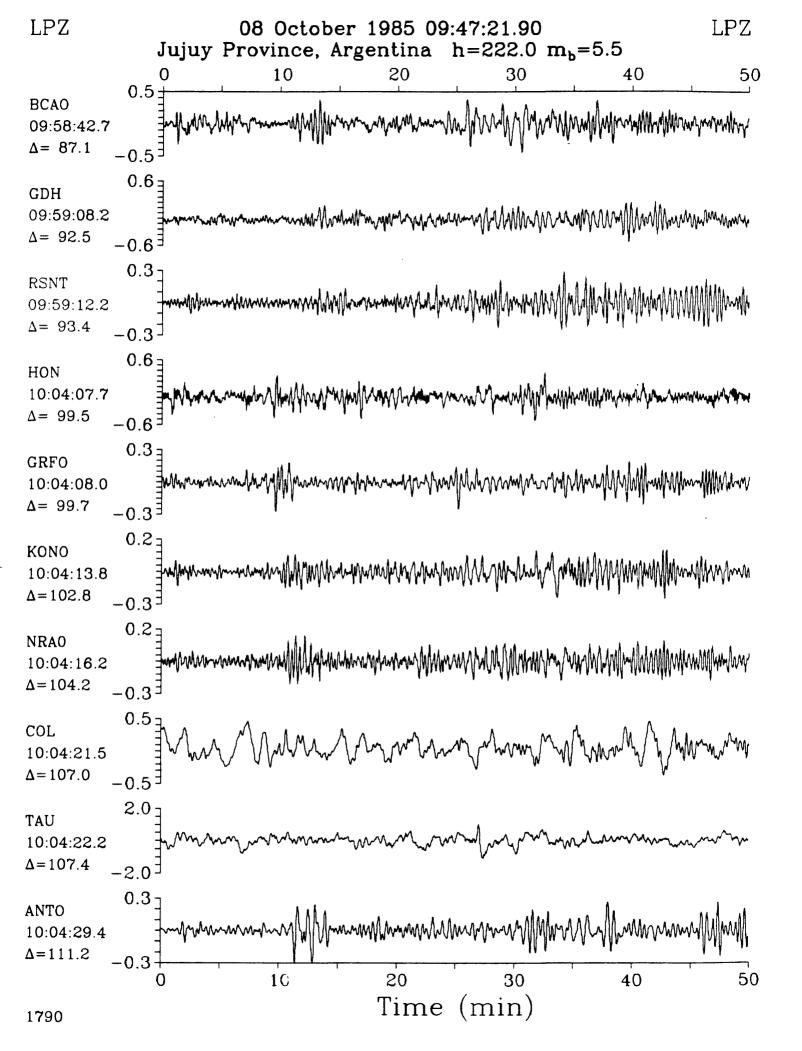


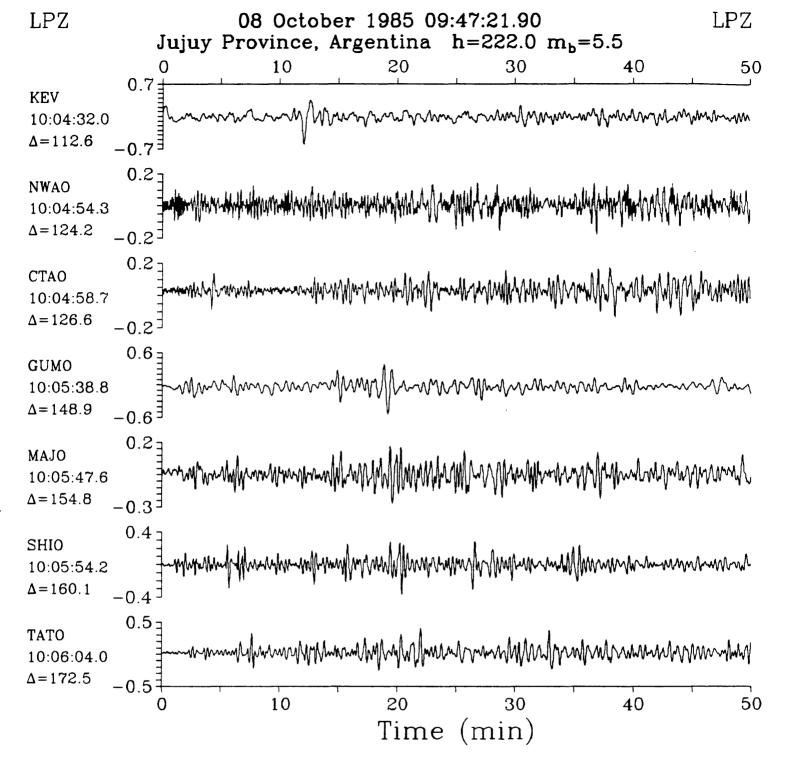
06 October 1985 12:00:47.95 Vanuatu Islands

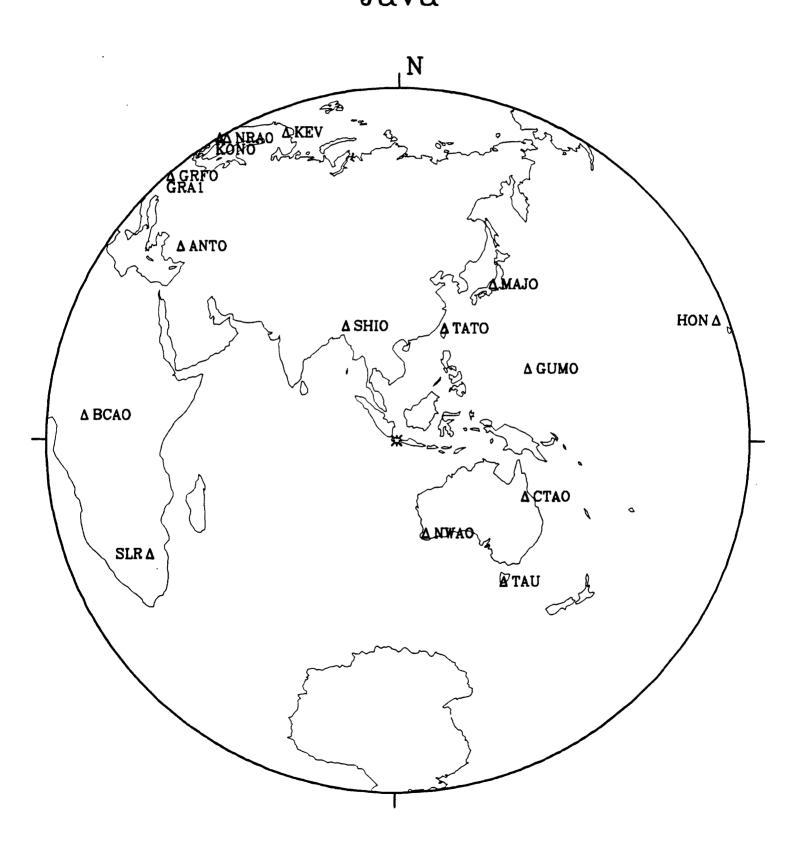


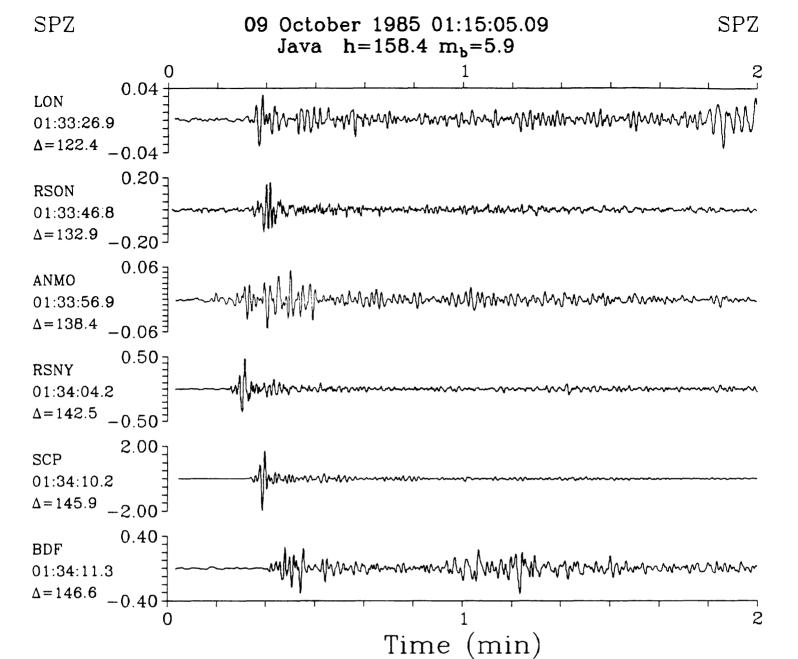


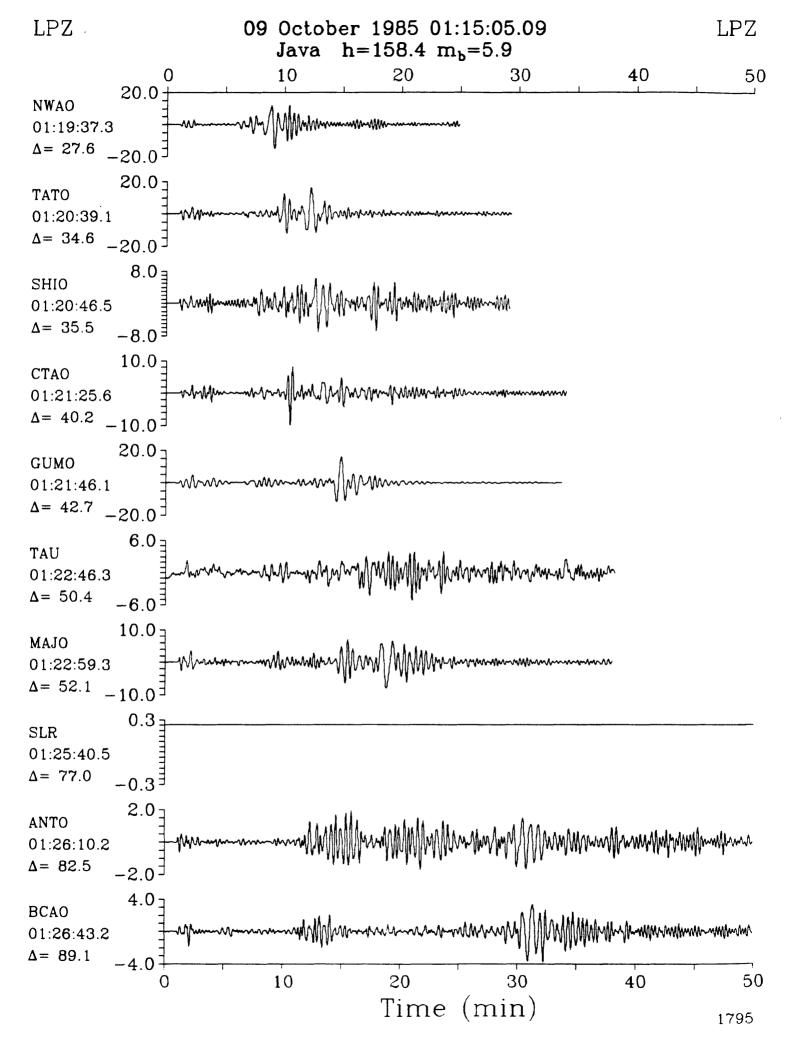


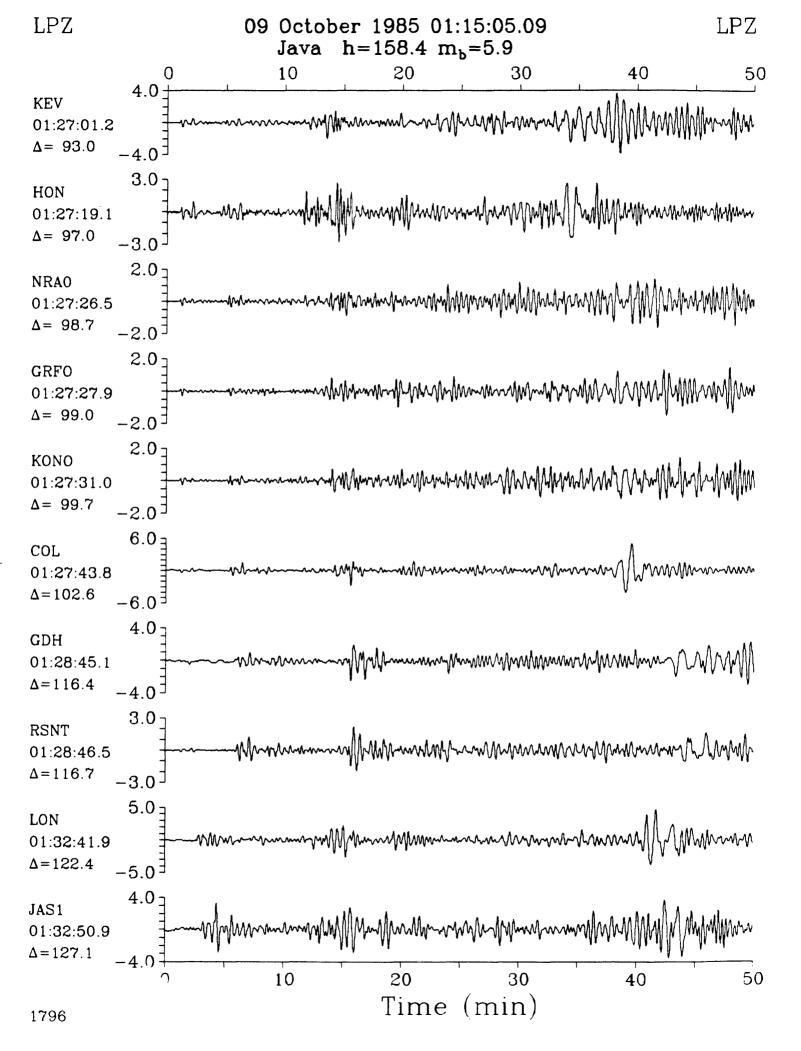


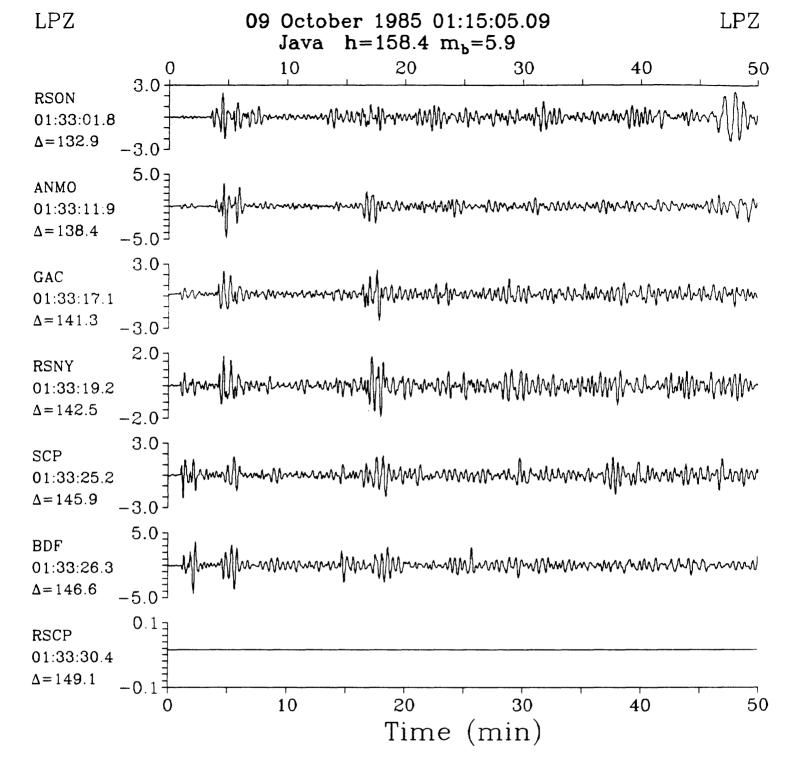

08 October 1985 09:47:21.90 Jujuy Province, Argentina

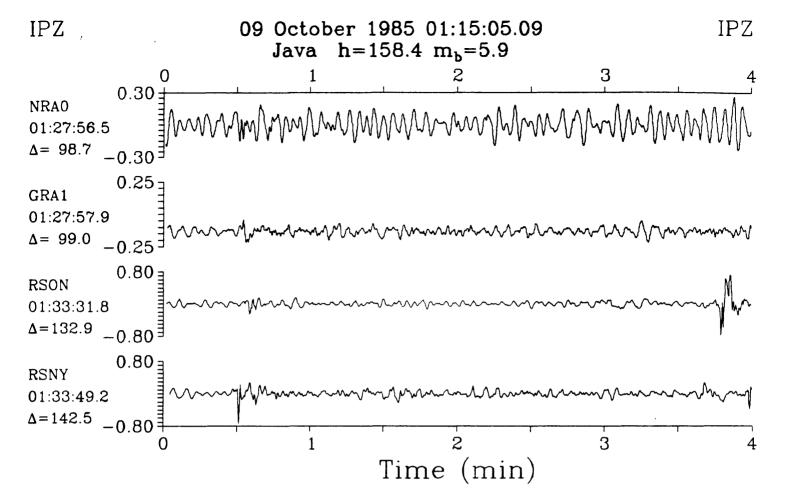


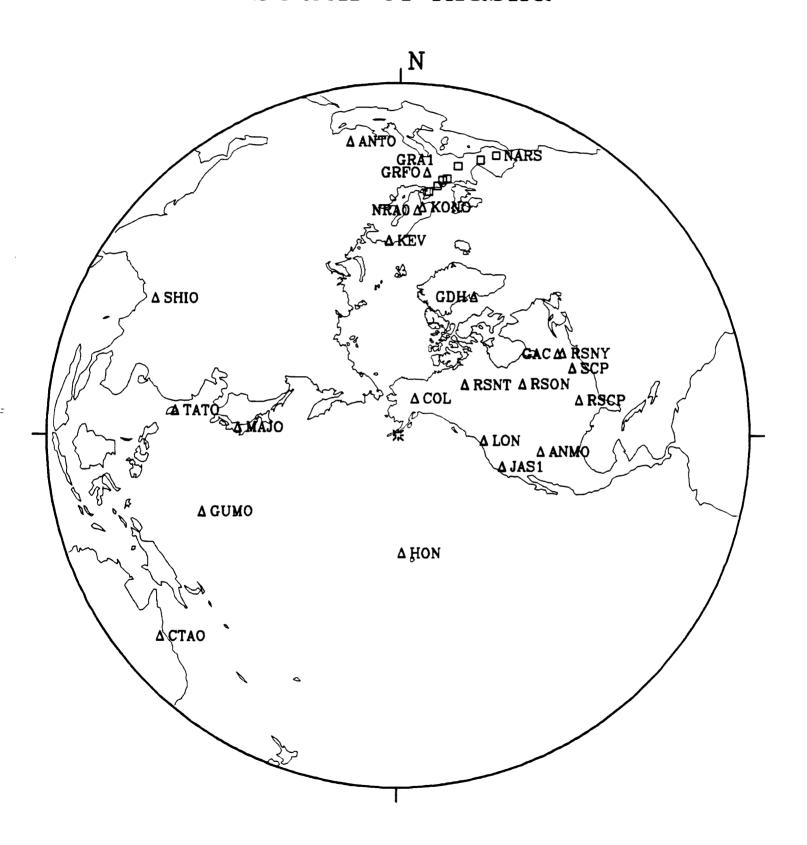


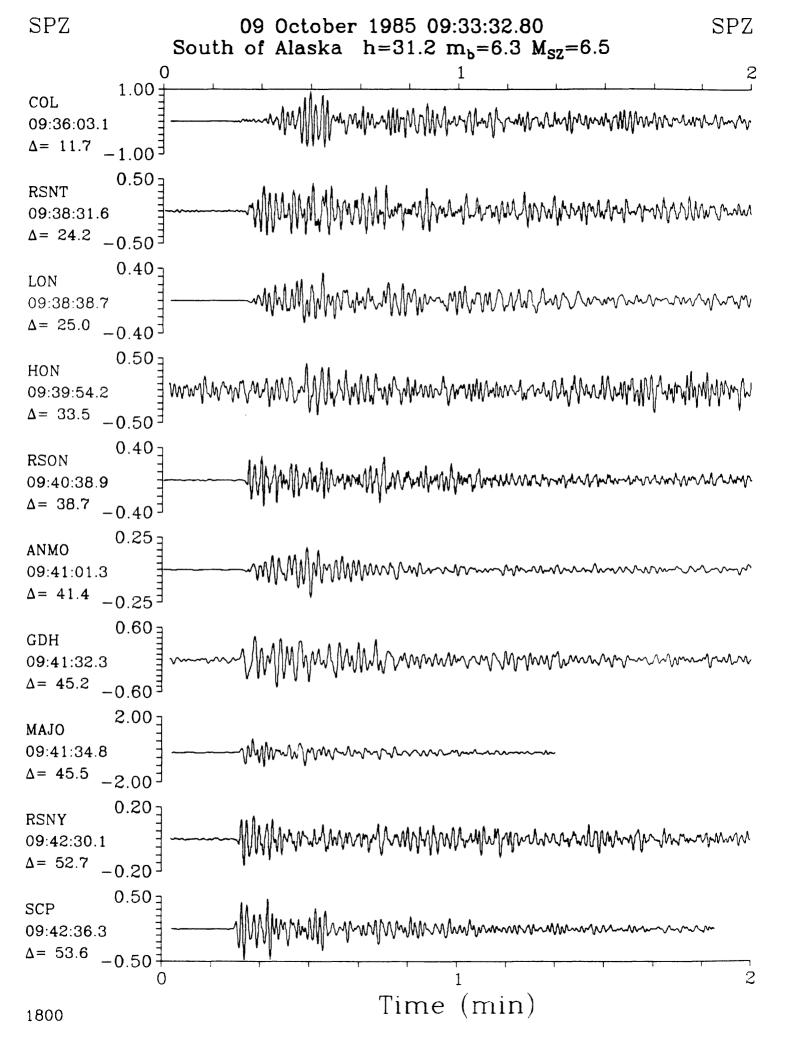


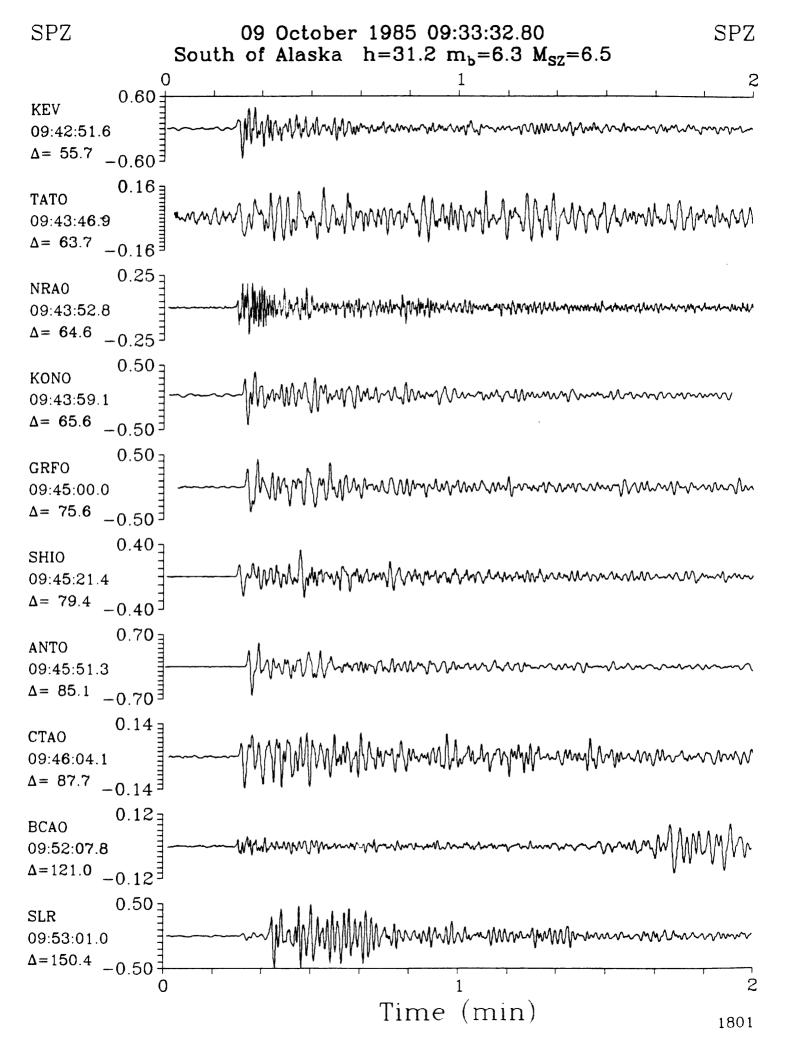


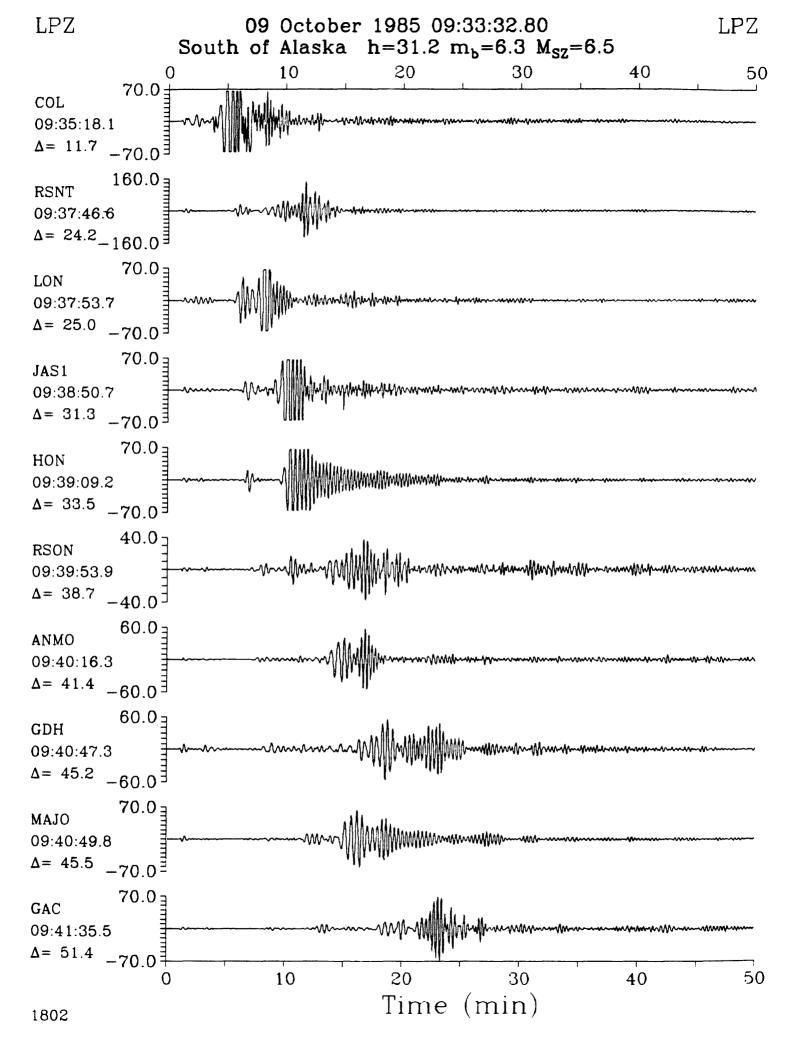

09 October 1985 01:15:05.09 Java

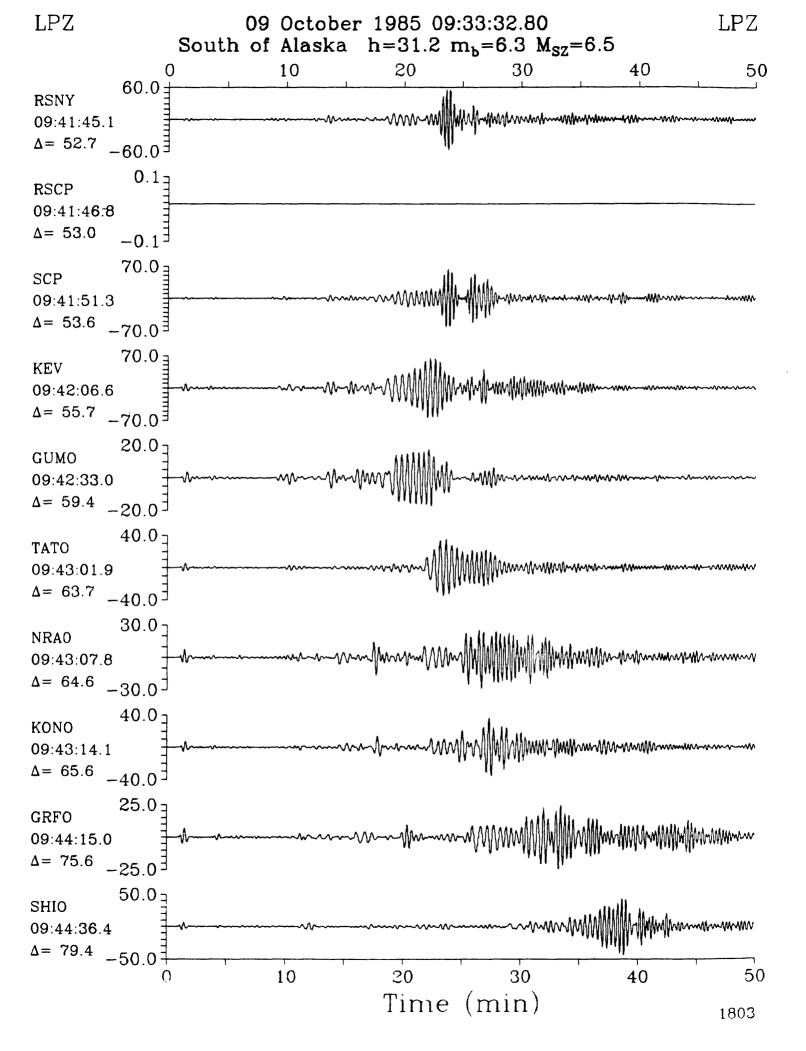


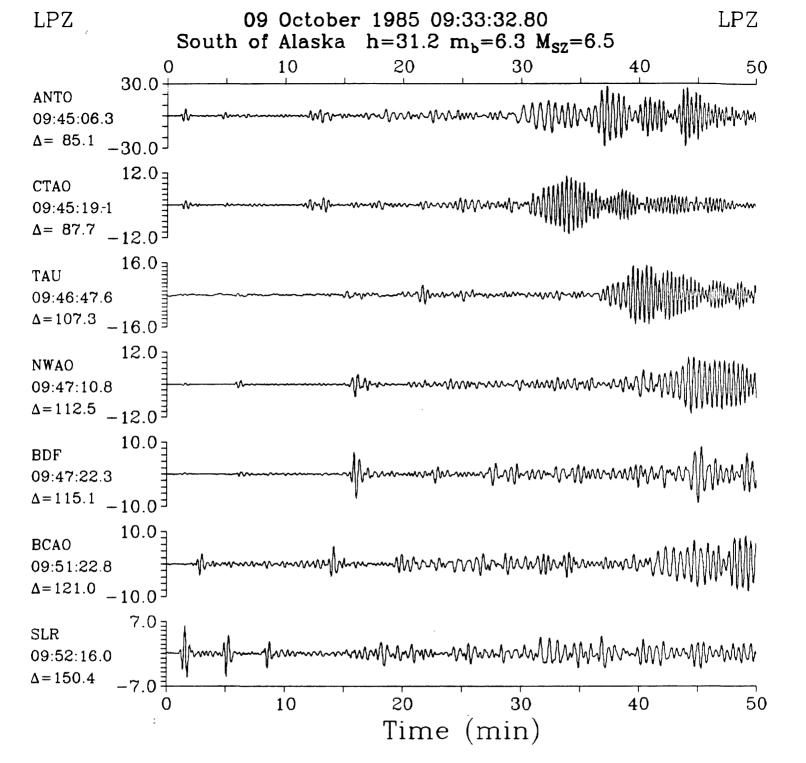


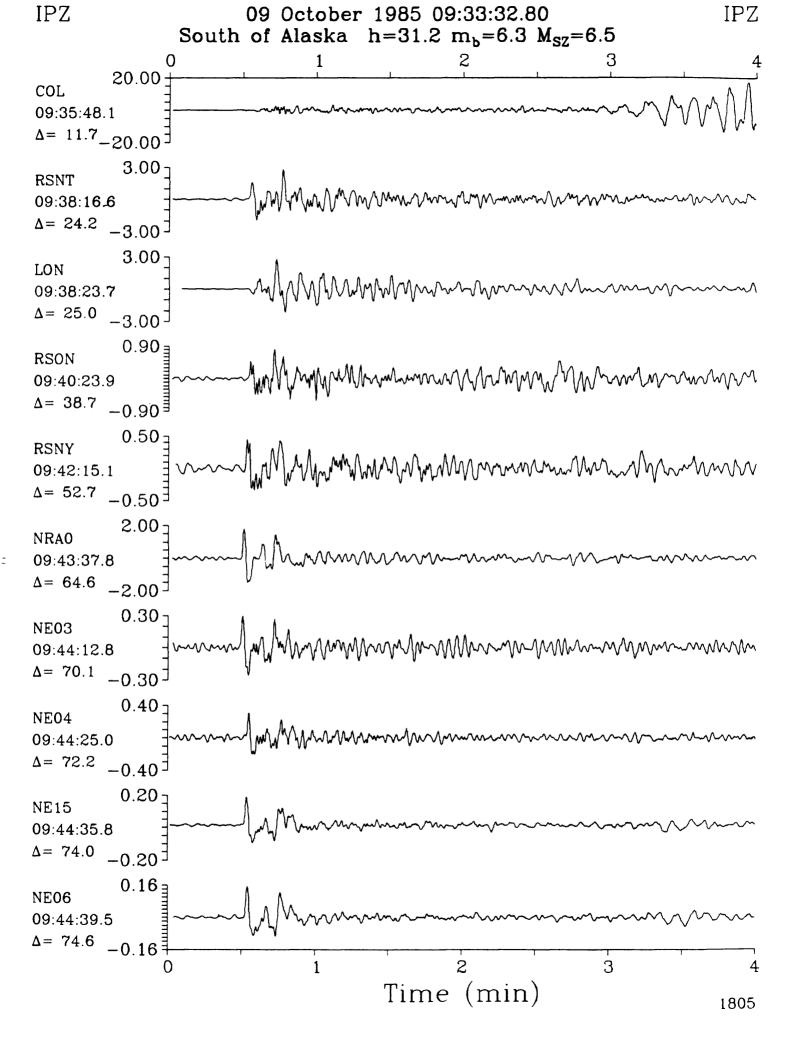


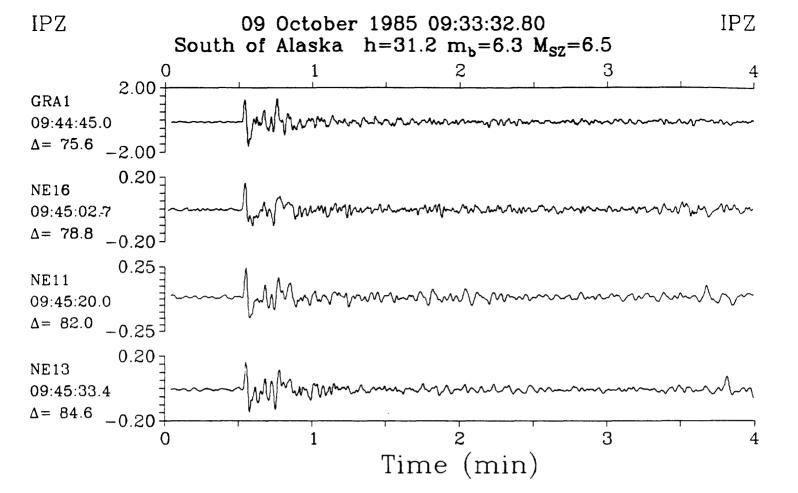


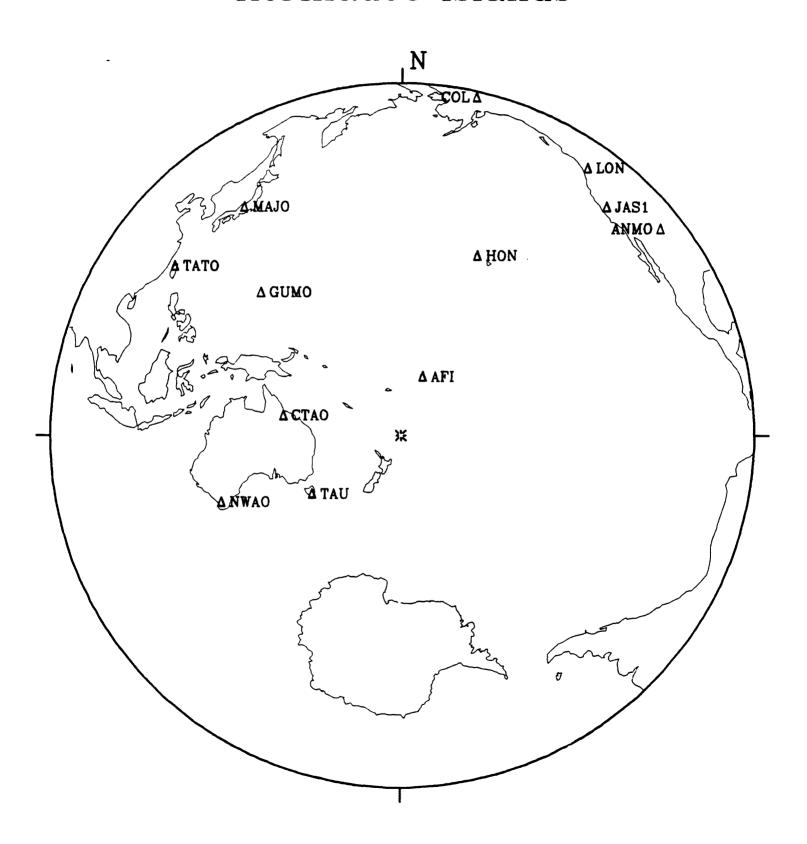


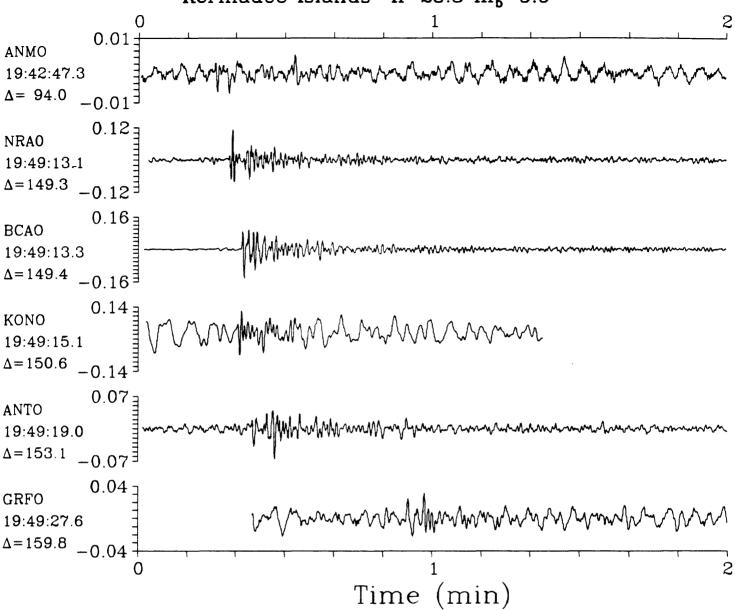

09 October 1985 09:33:32.80 South of Alaska

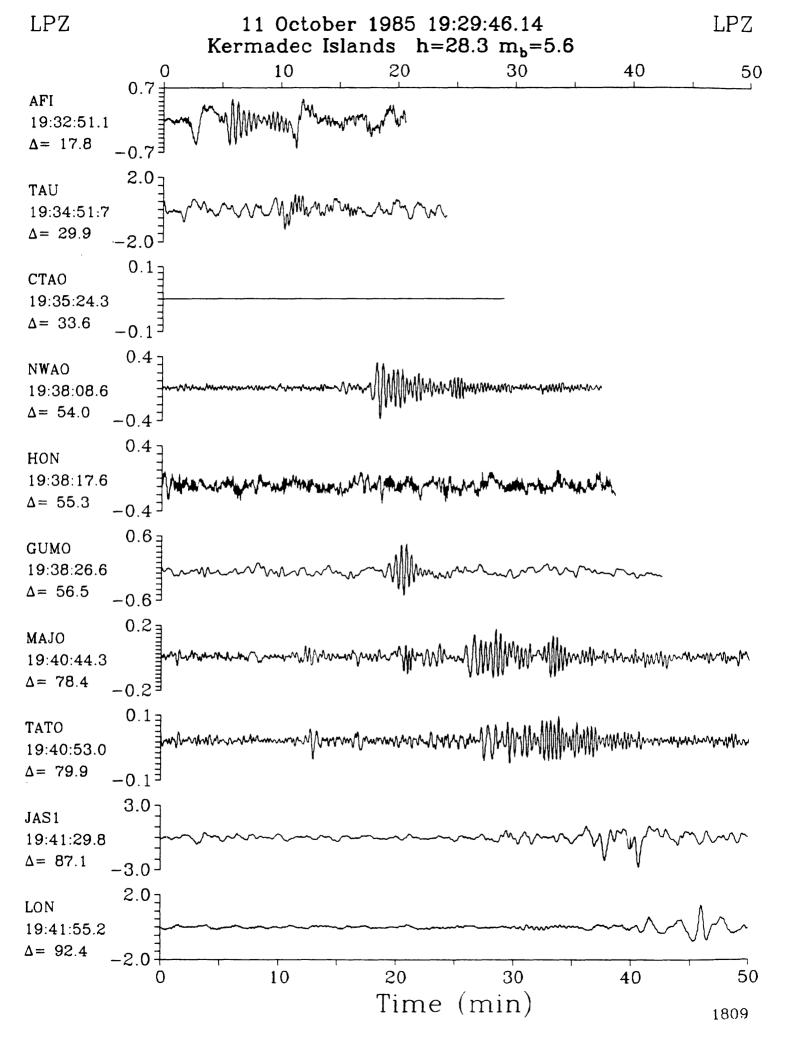


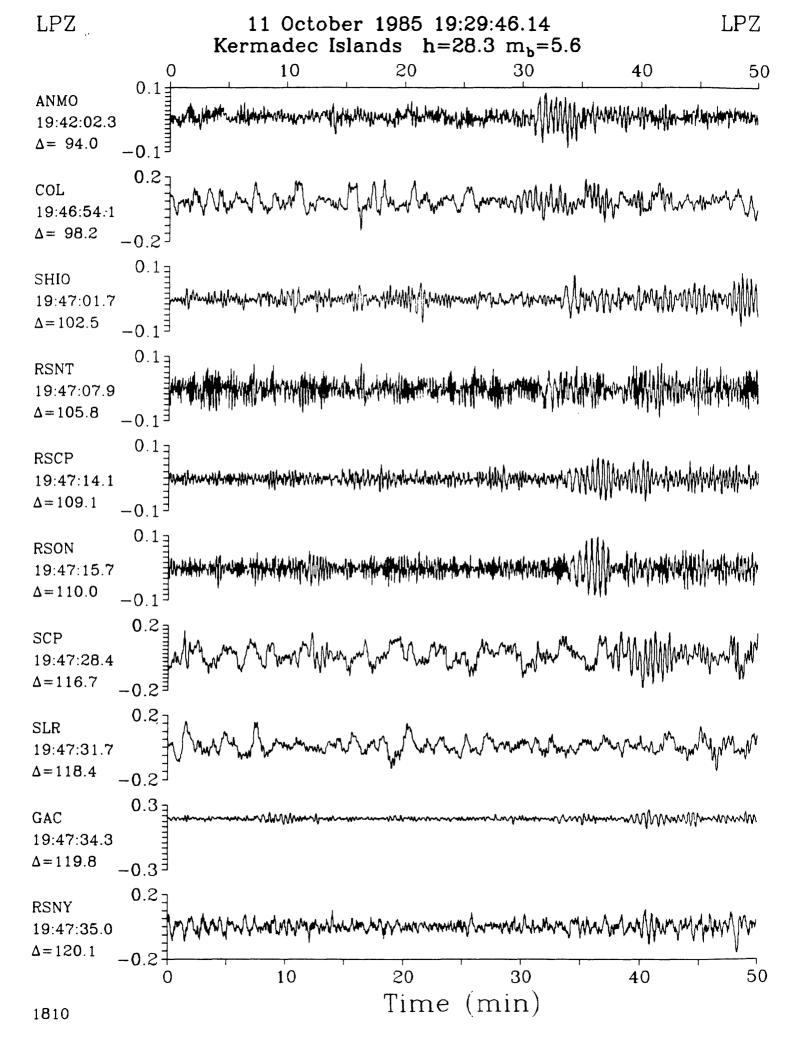


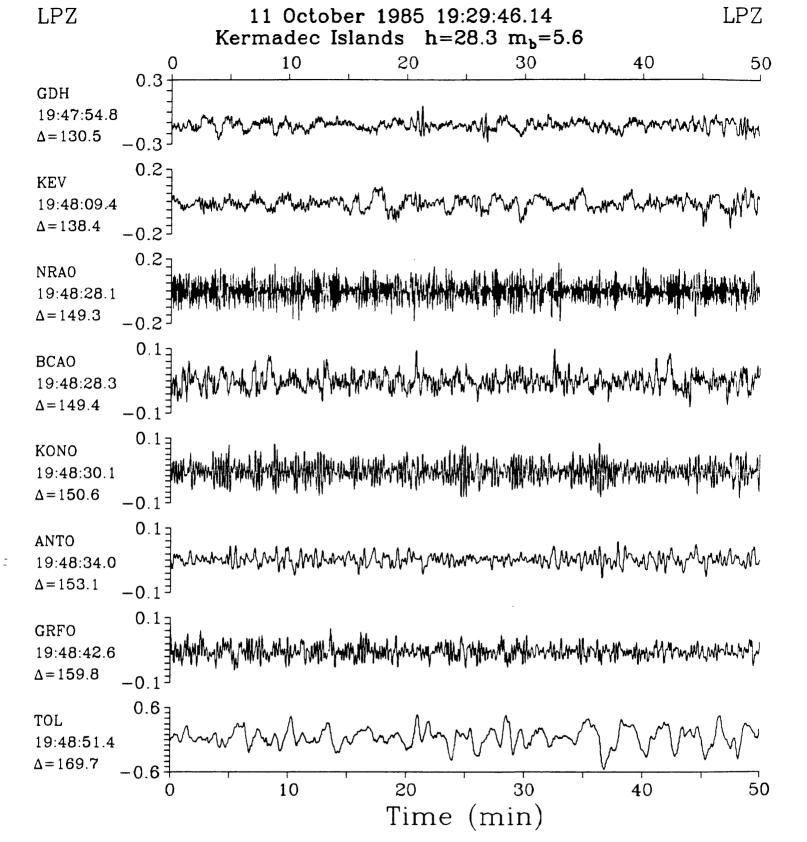


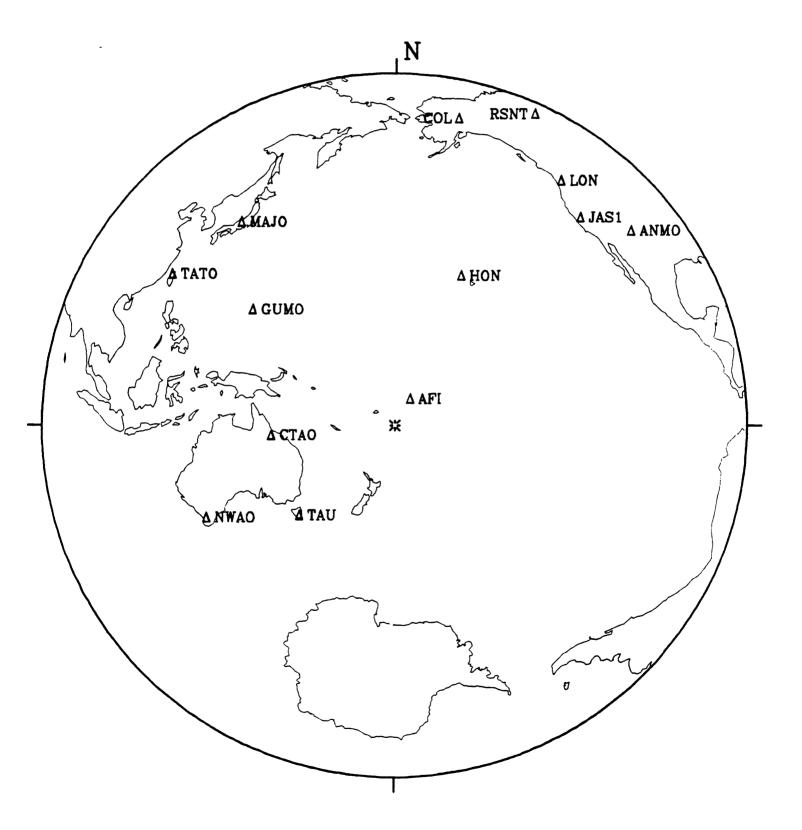


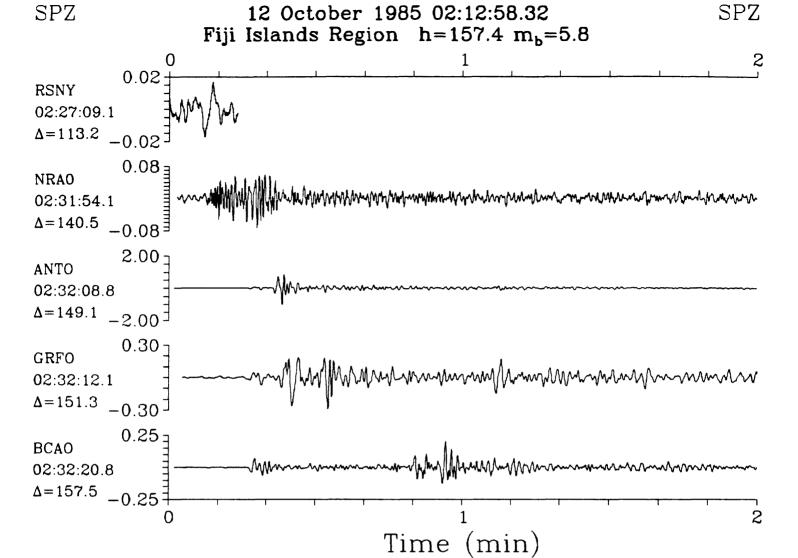


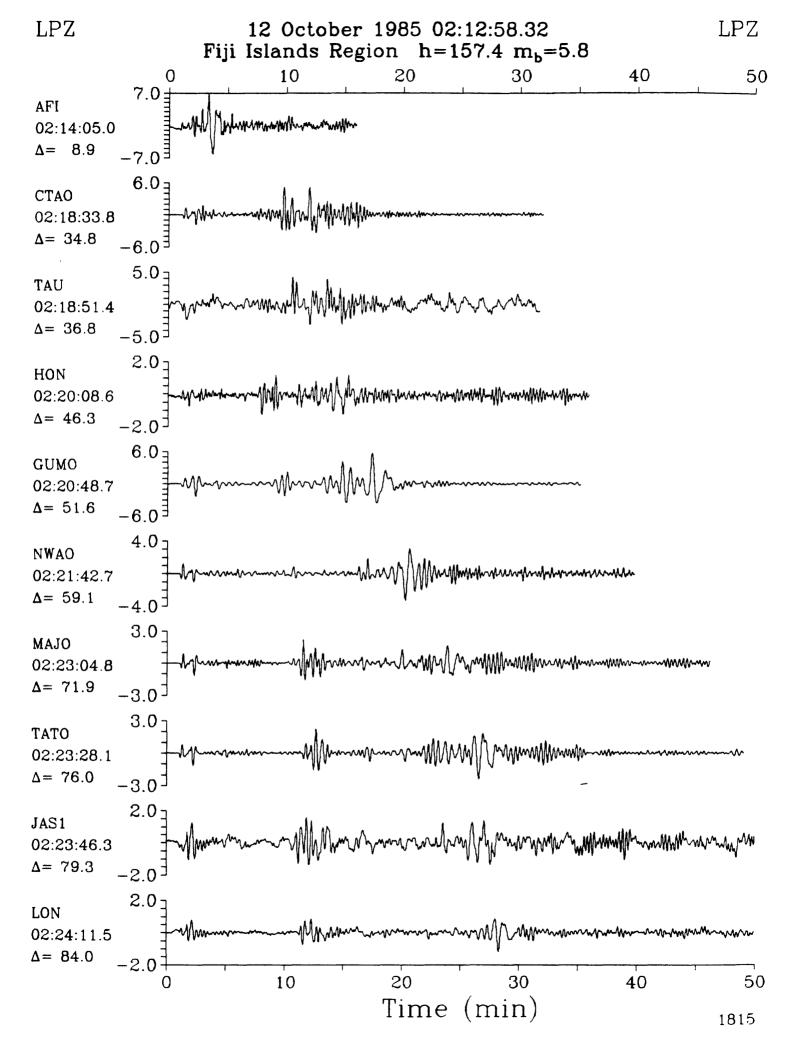


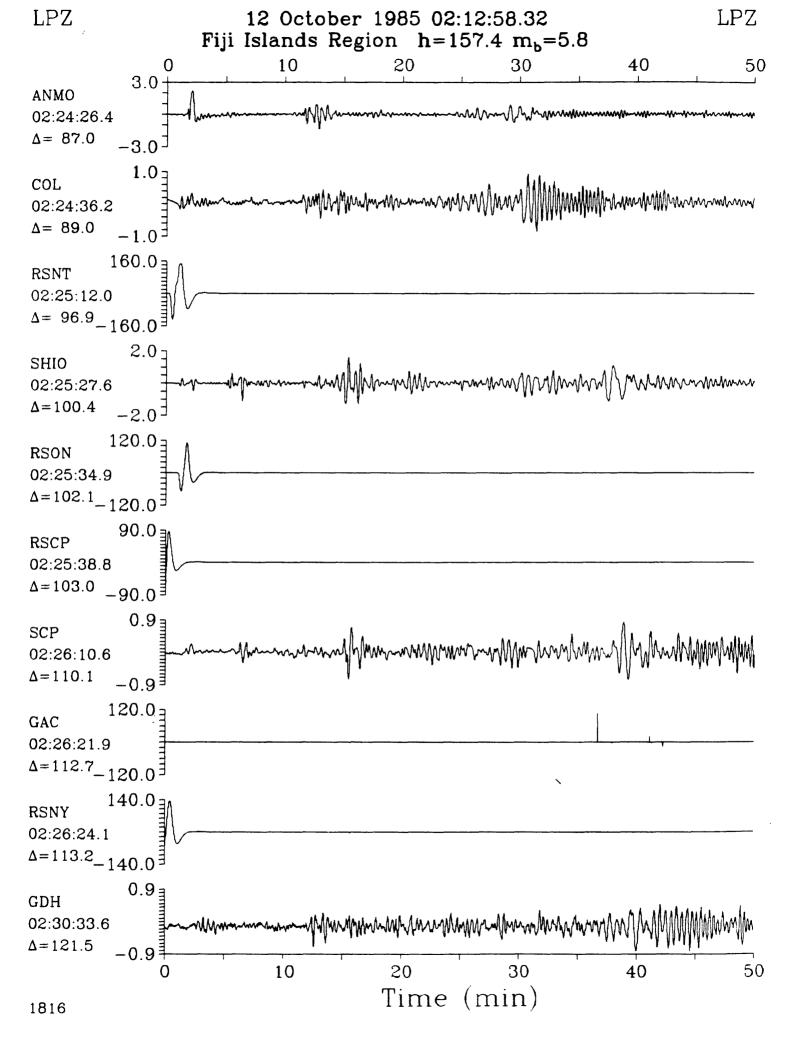


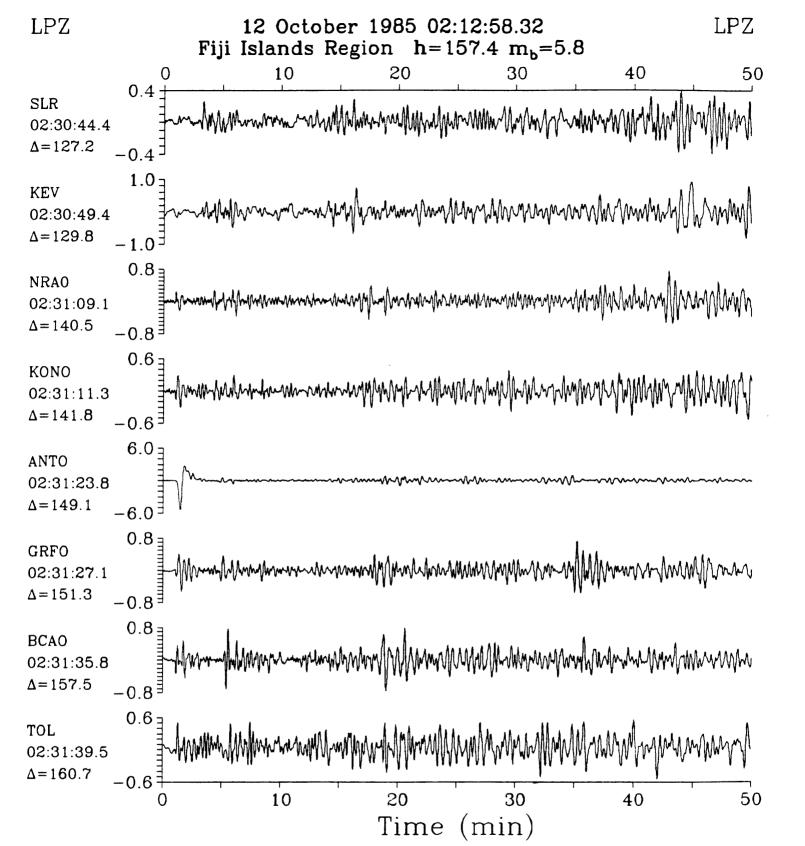

11 October 1985 19:29:46.14 Kermadec Islands

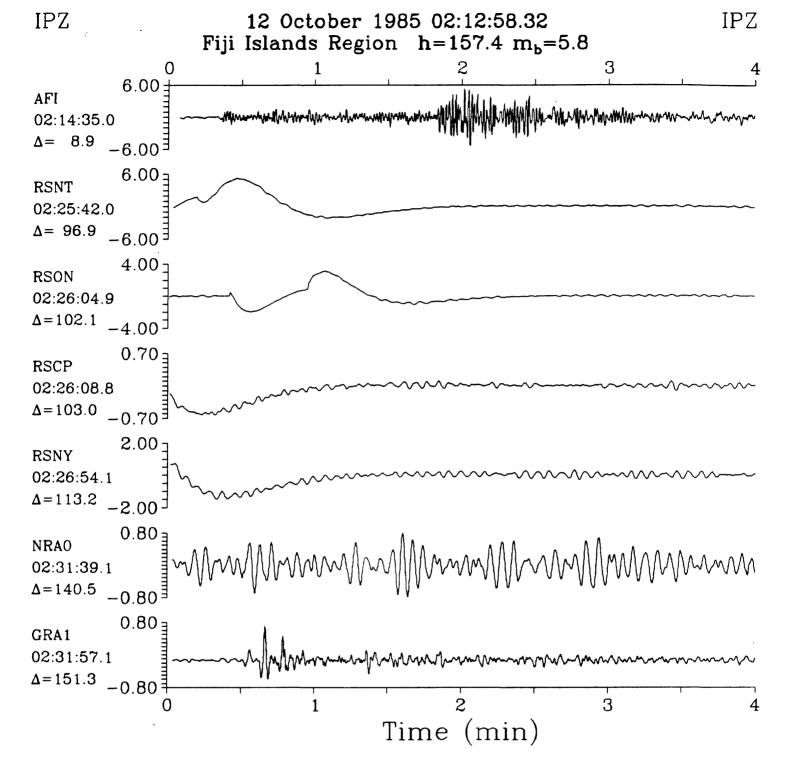


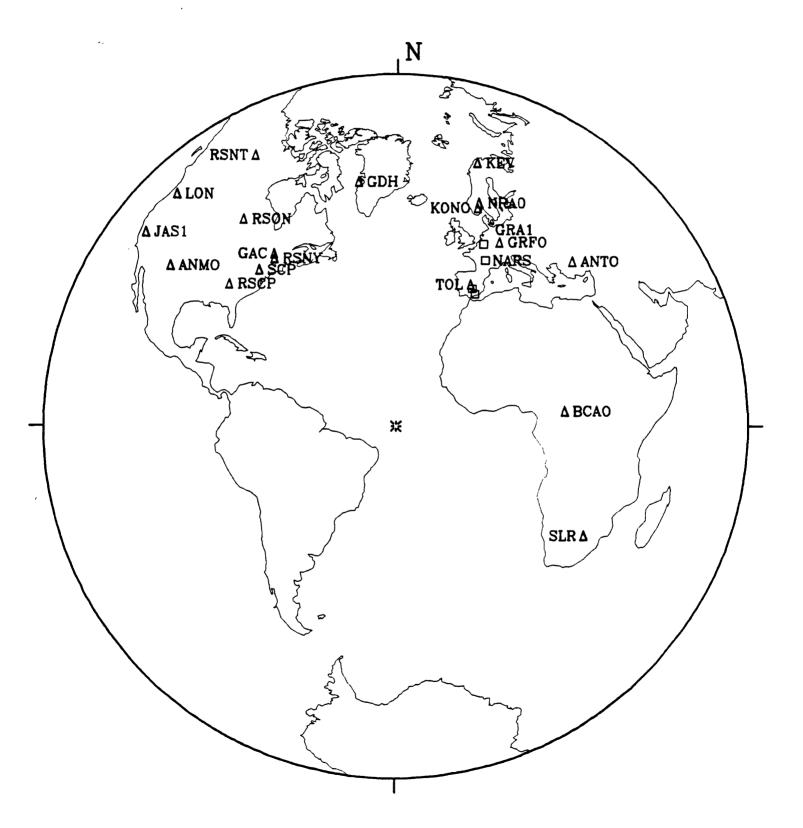

12 October 1985 02:12:58.32 Fiji Islands Region

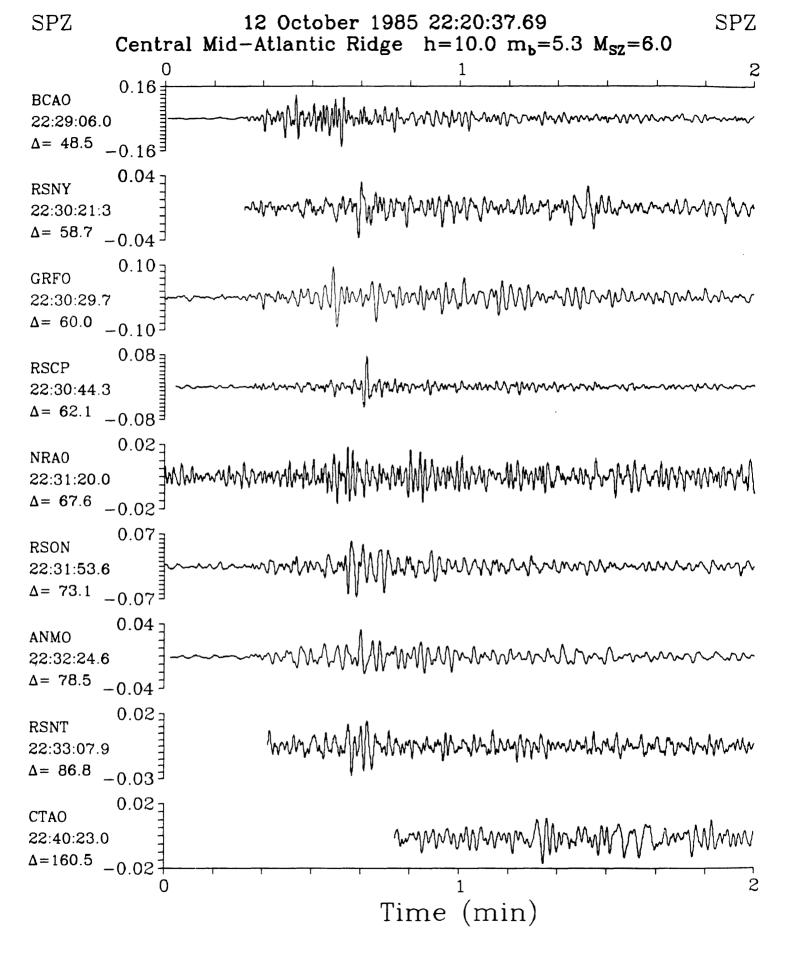


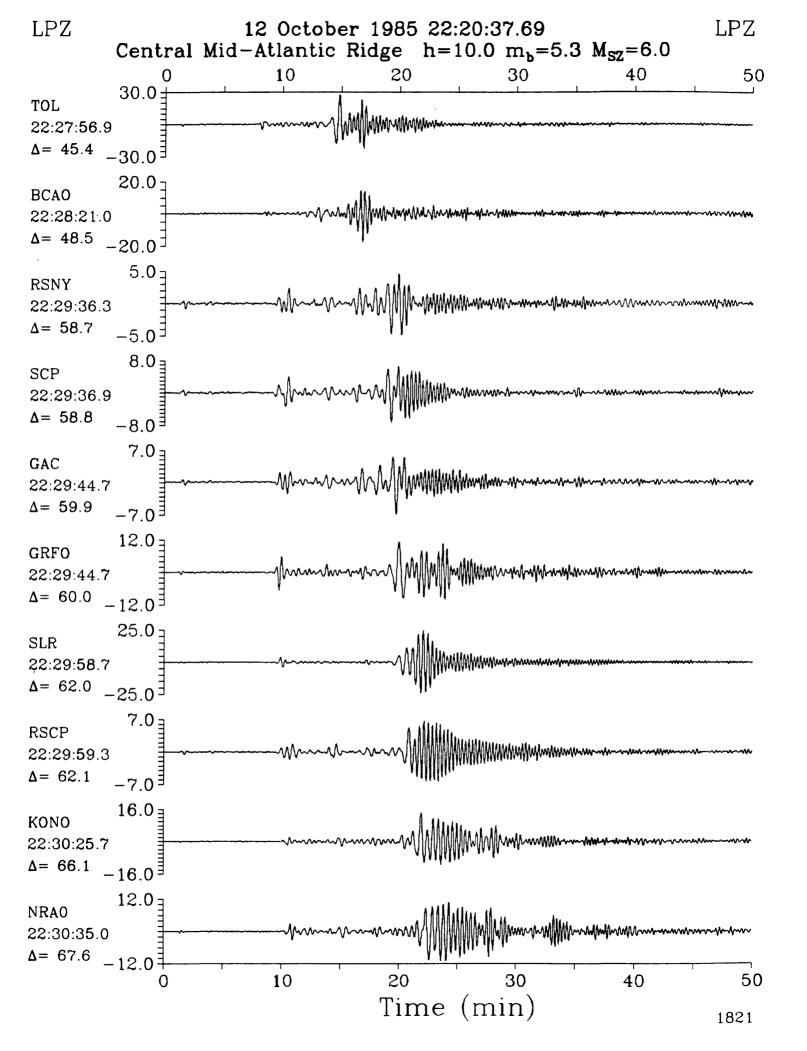

Time (min)

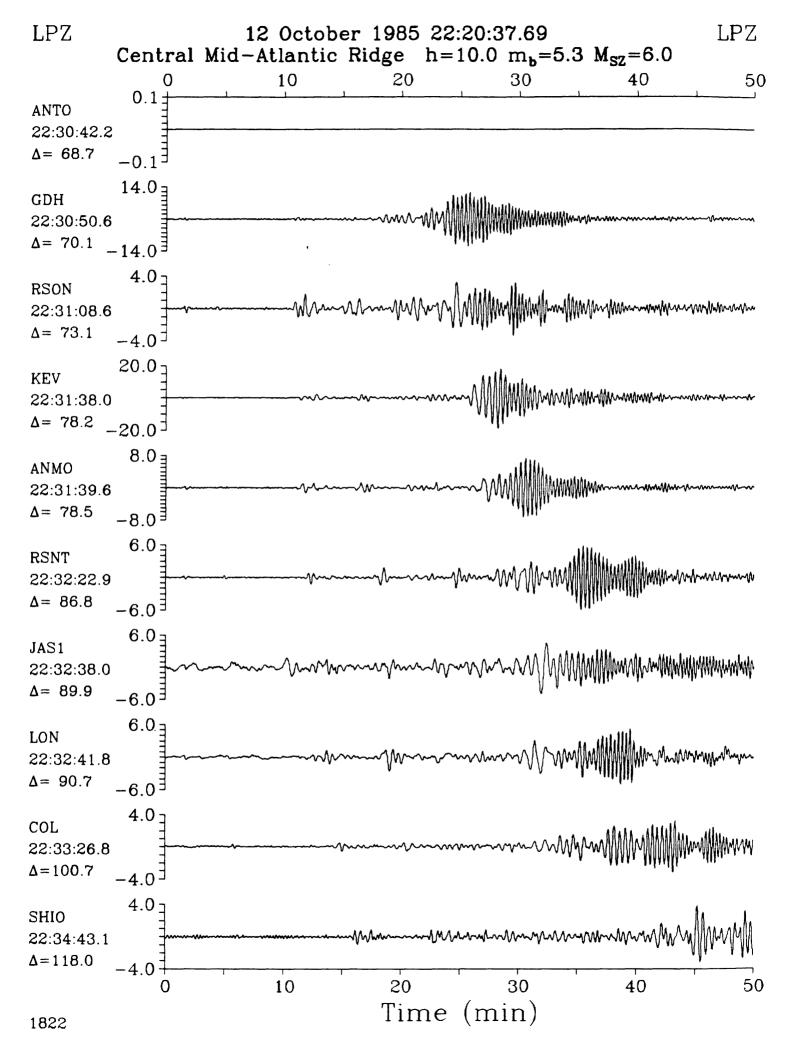

2

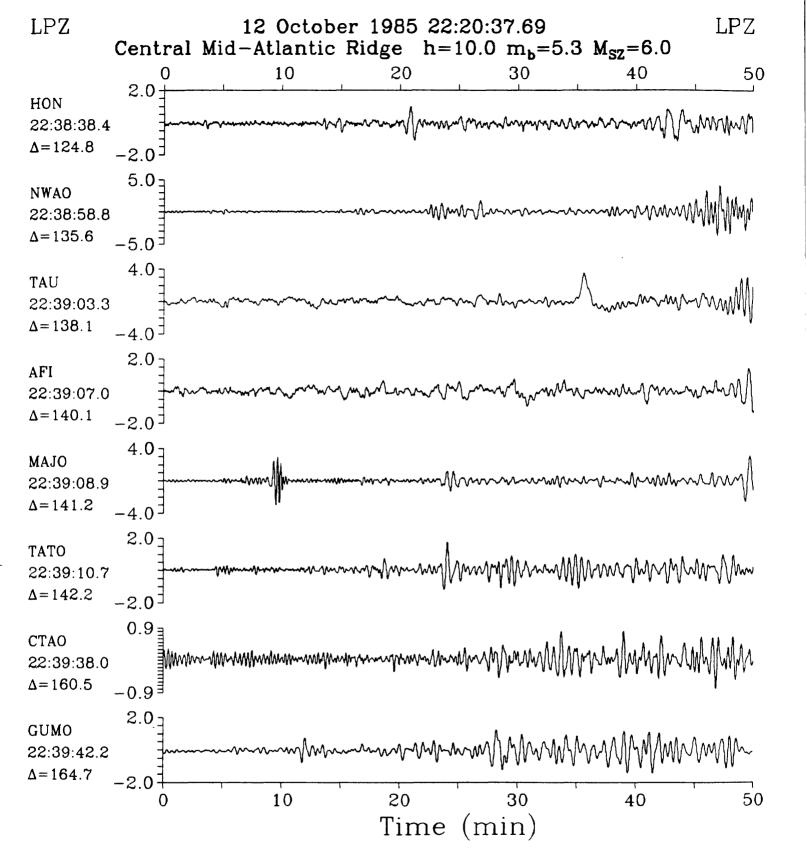

1813

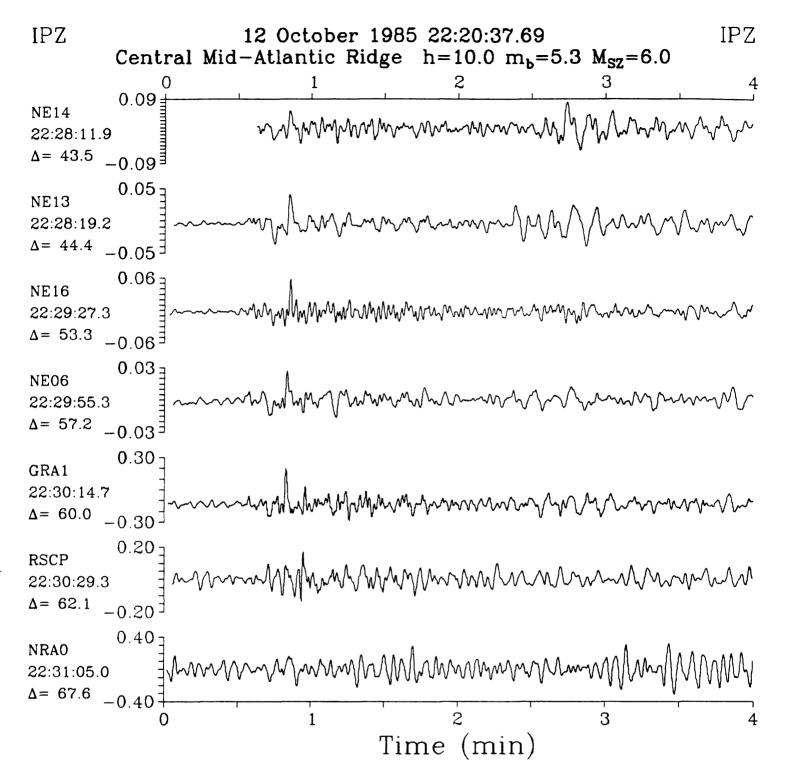


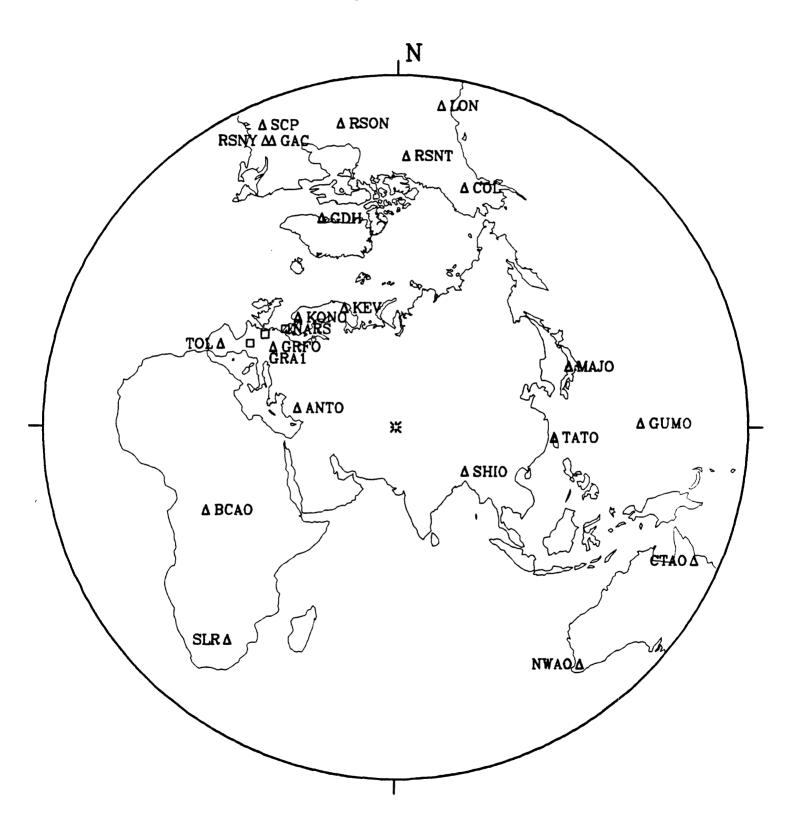


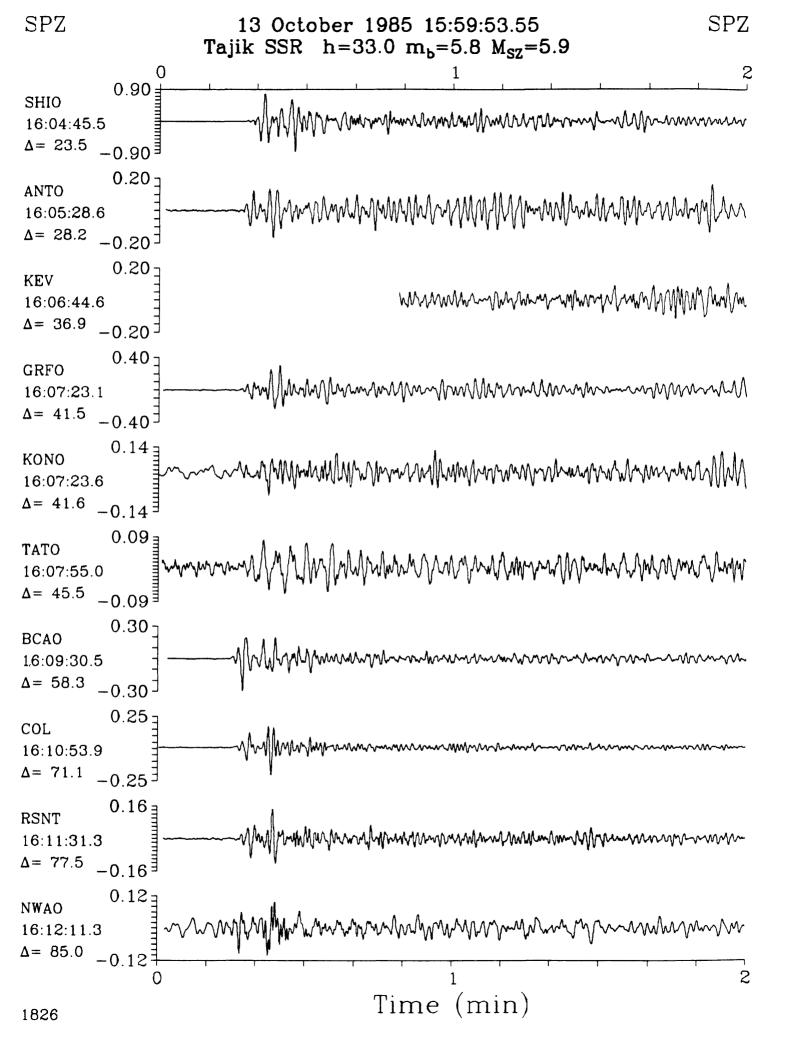


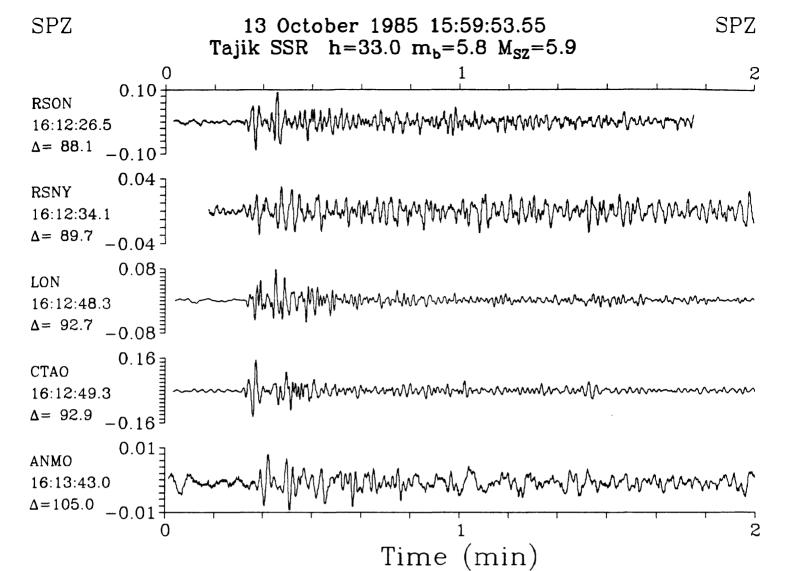


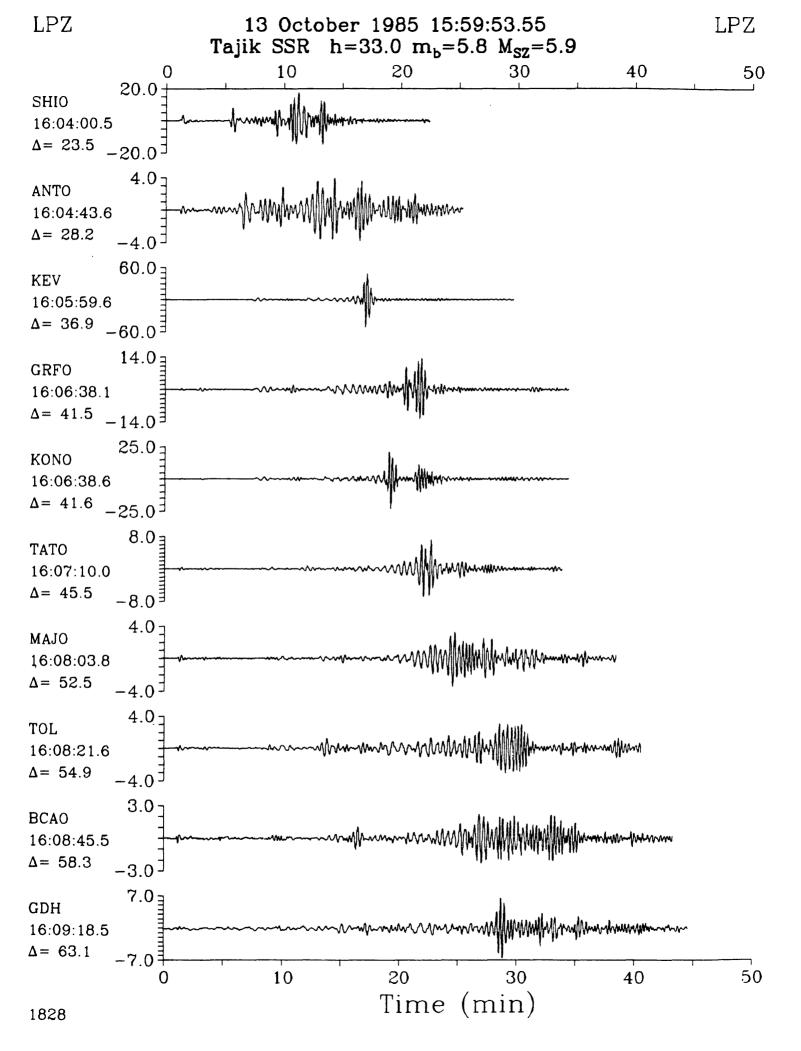

12 October 1985 22:20:37.69 Central Mid-Atlantic Ridge

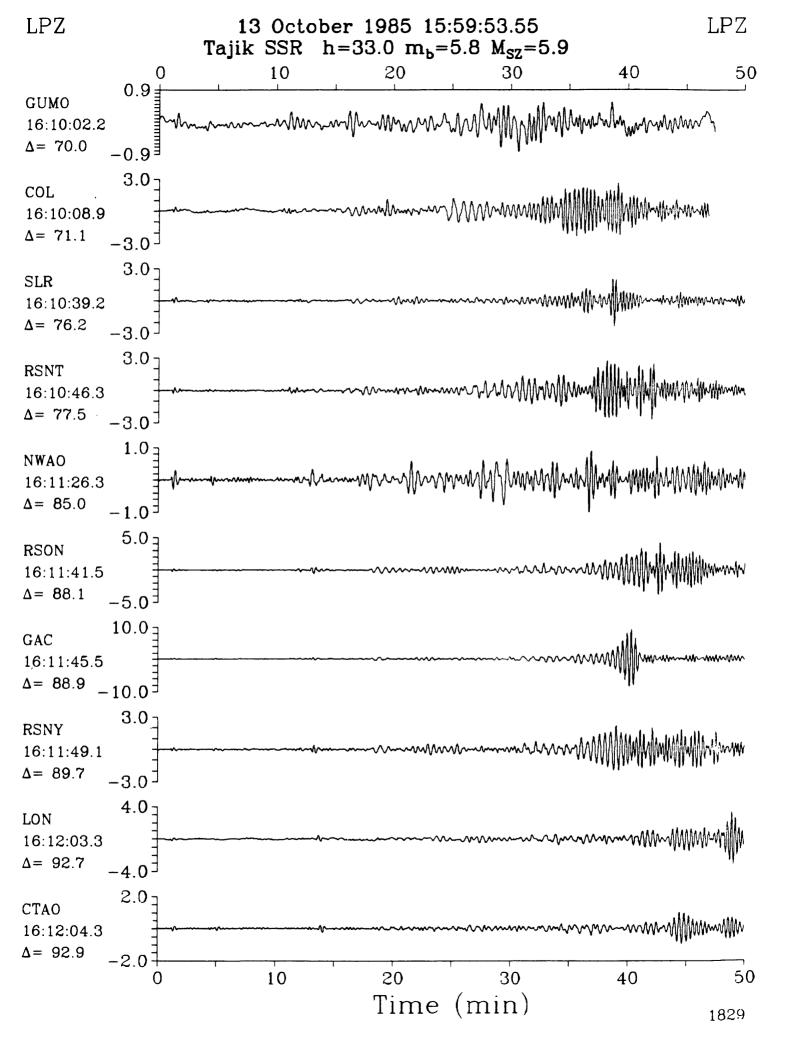


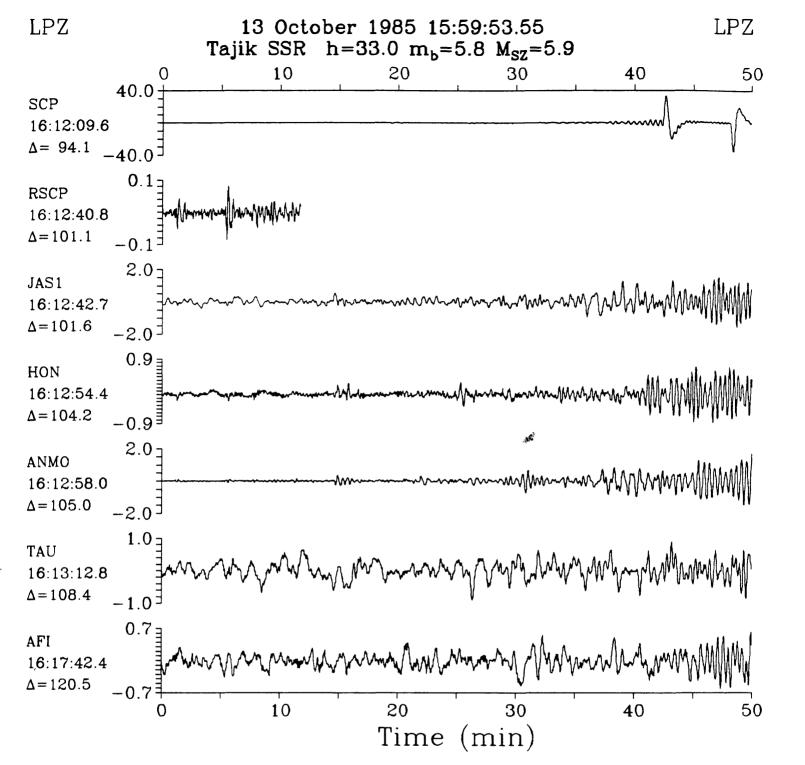


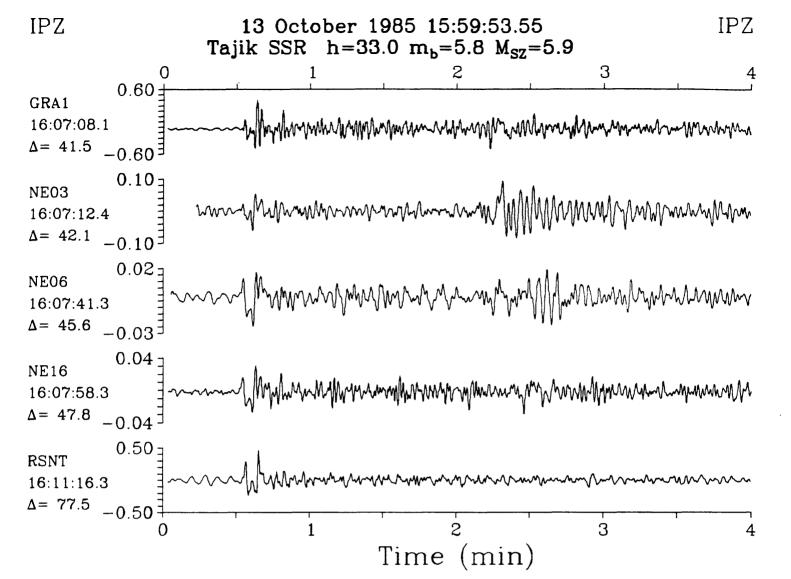


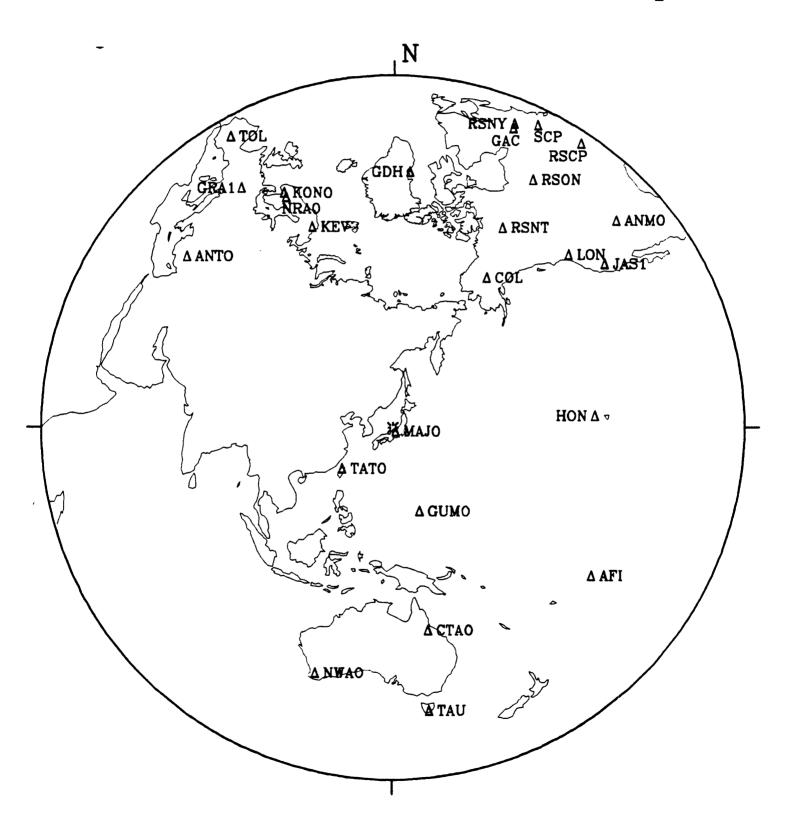


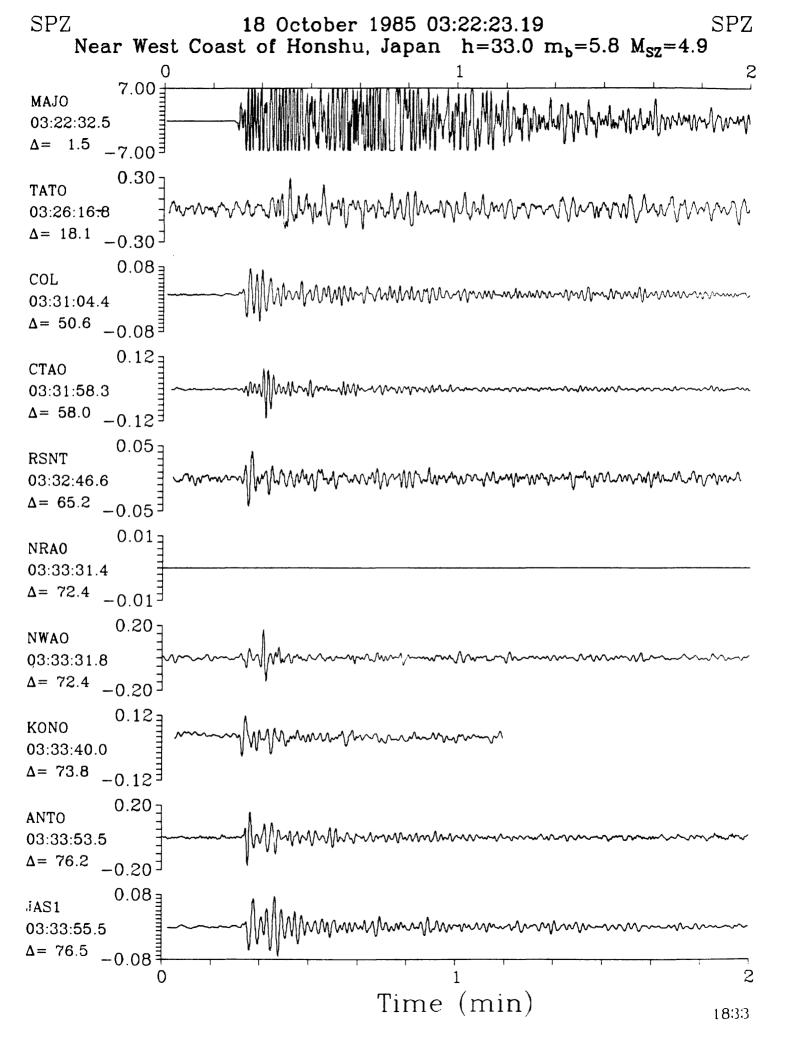


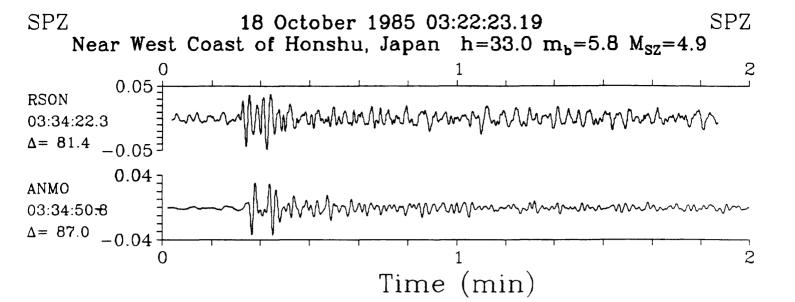

13 October 1985 15:59:53.55 Tajik SSR

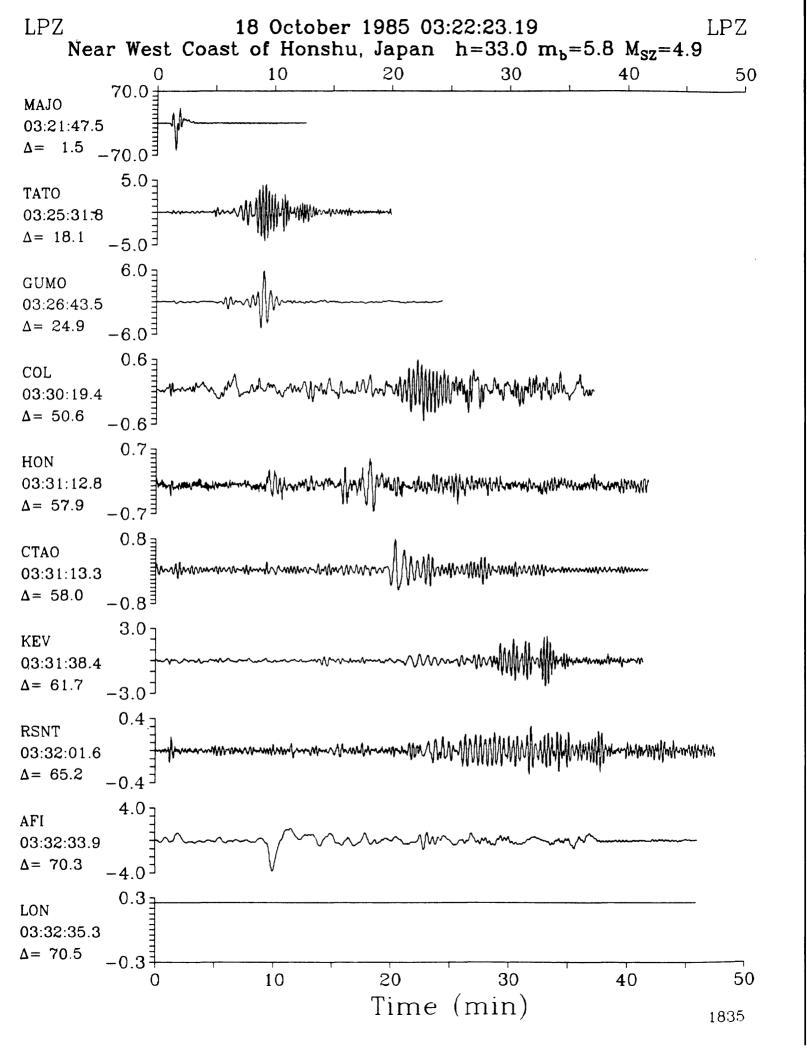


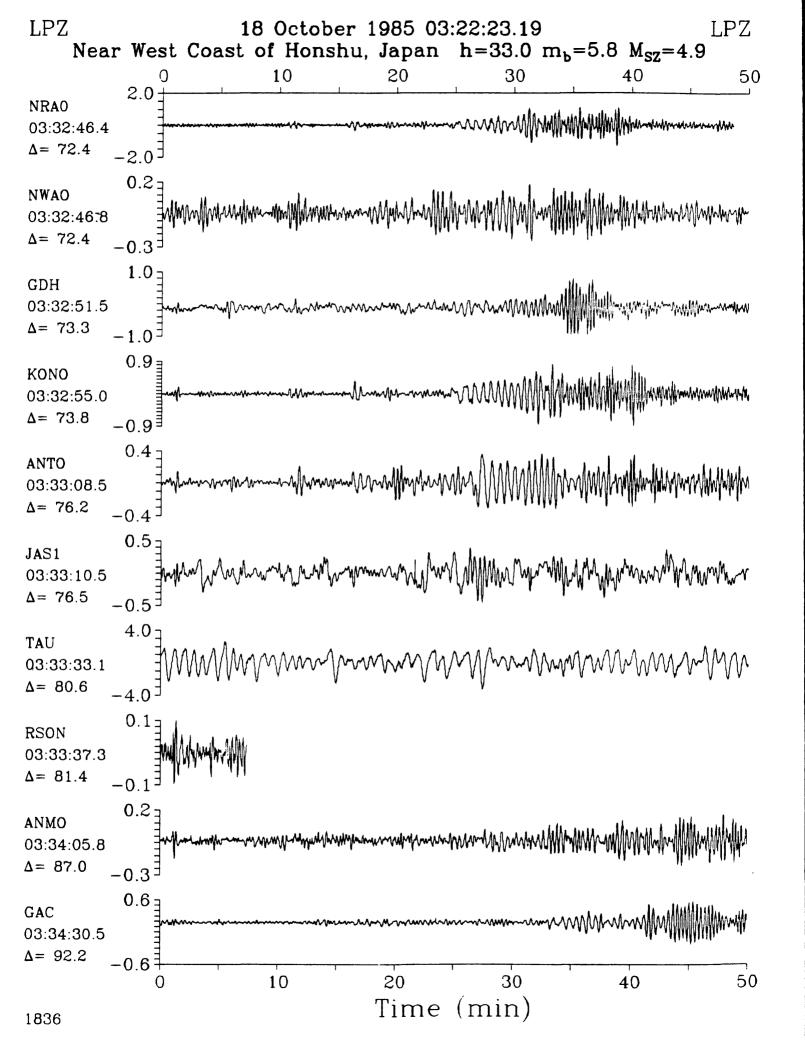


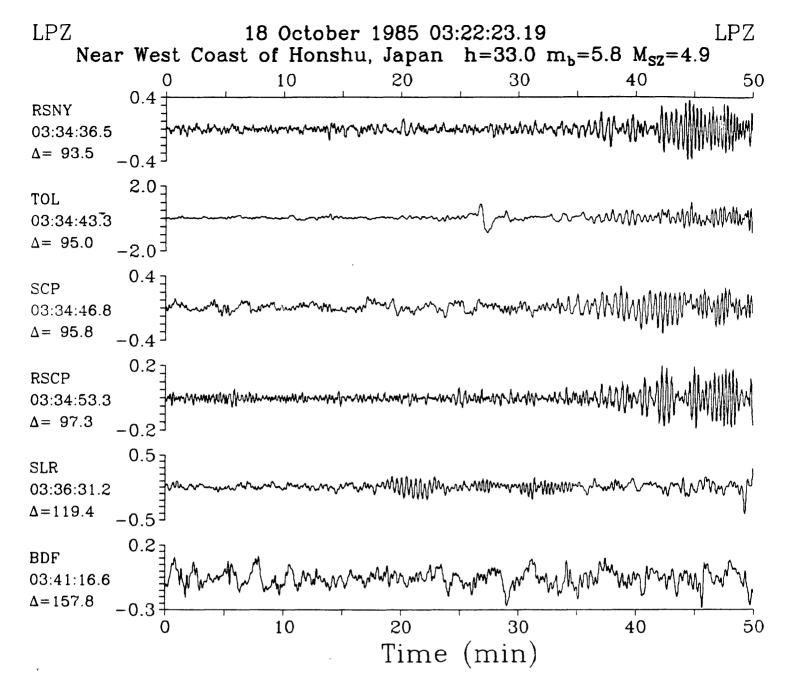


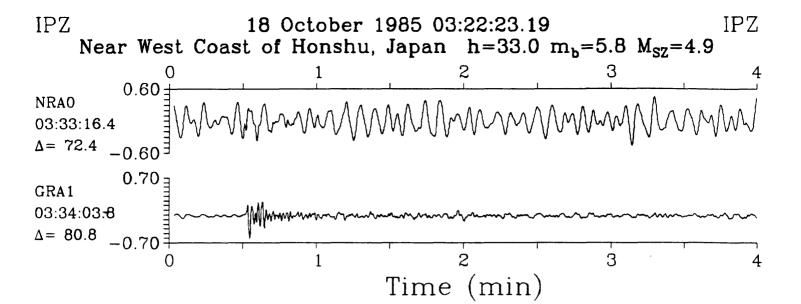


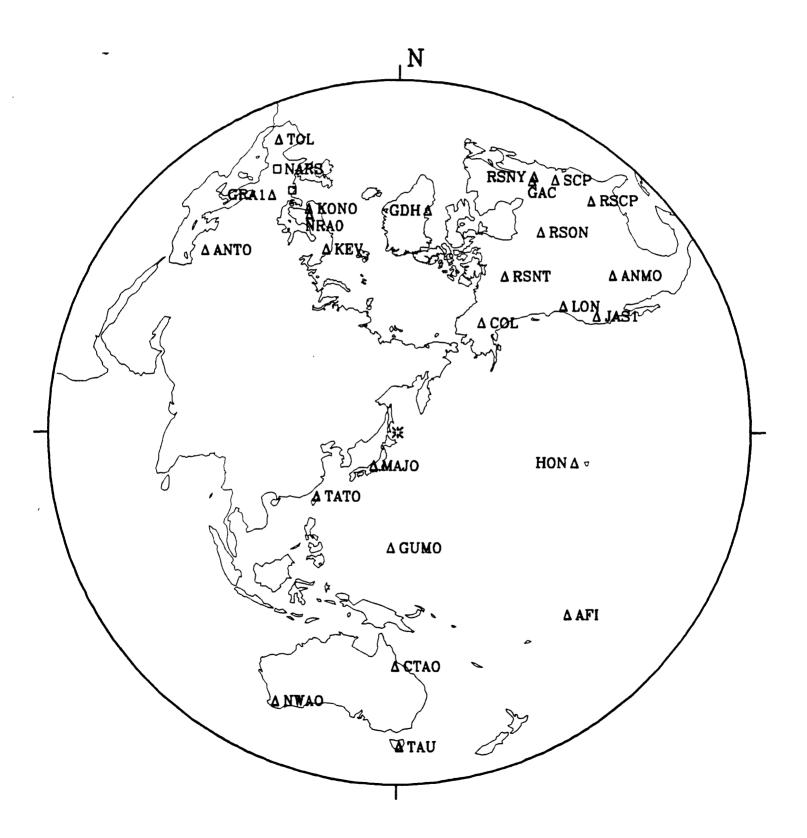


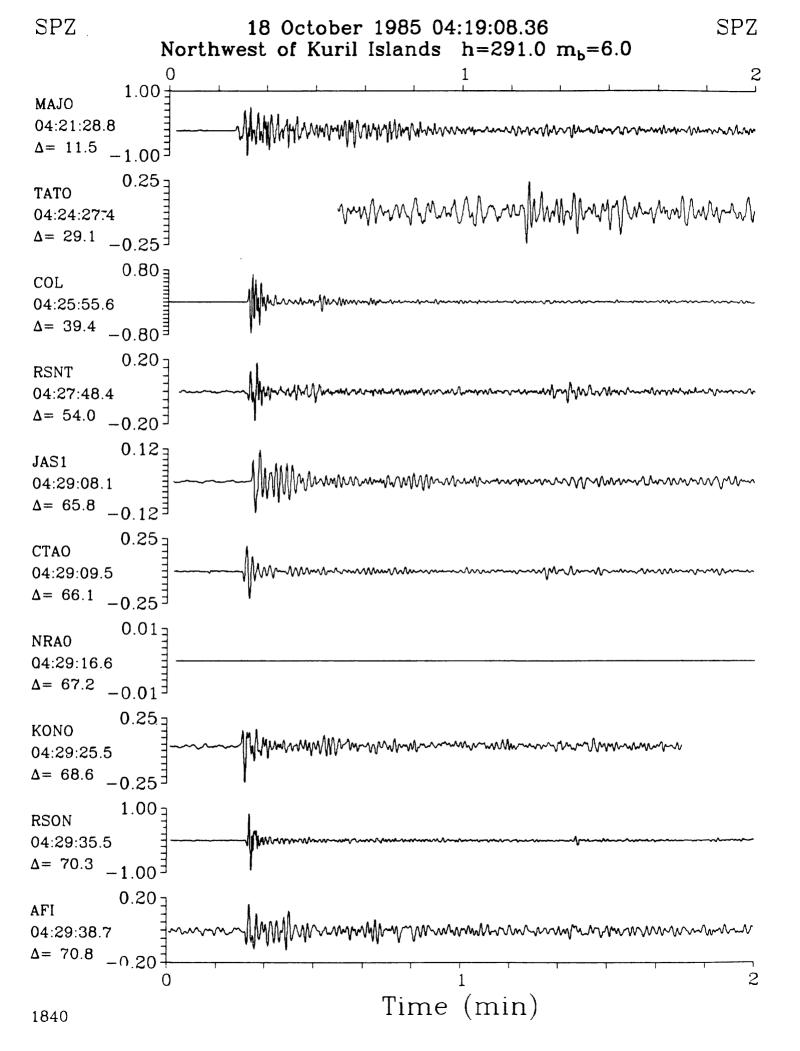


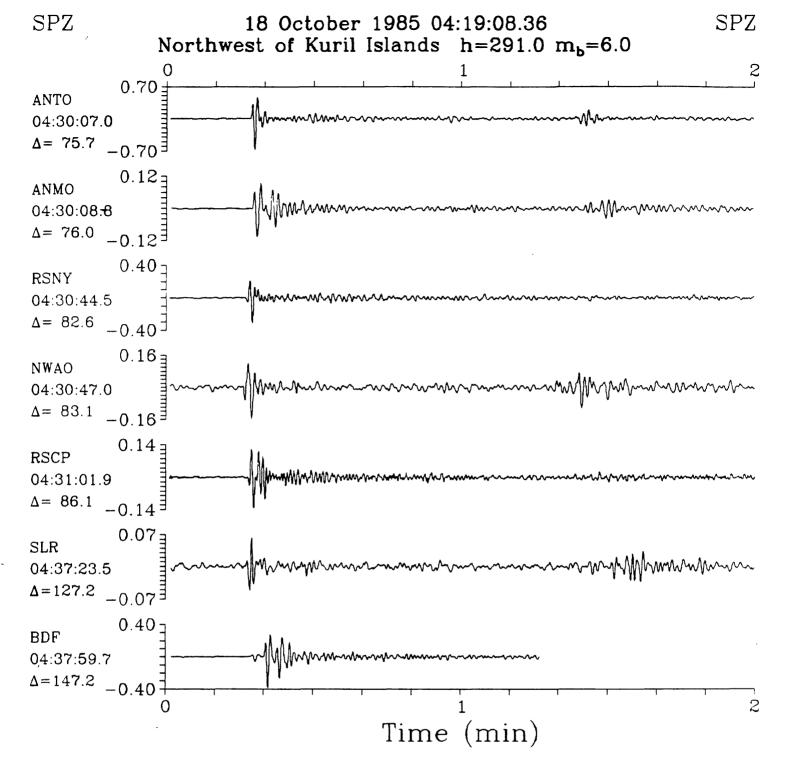

18 October 1985 03:22:23.19 Near West Coast of Honshu, Japan

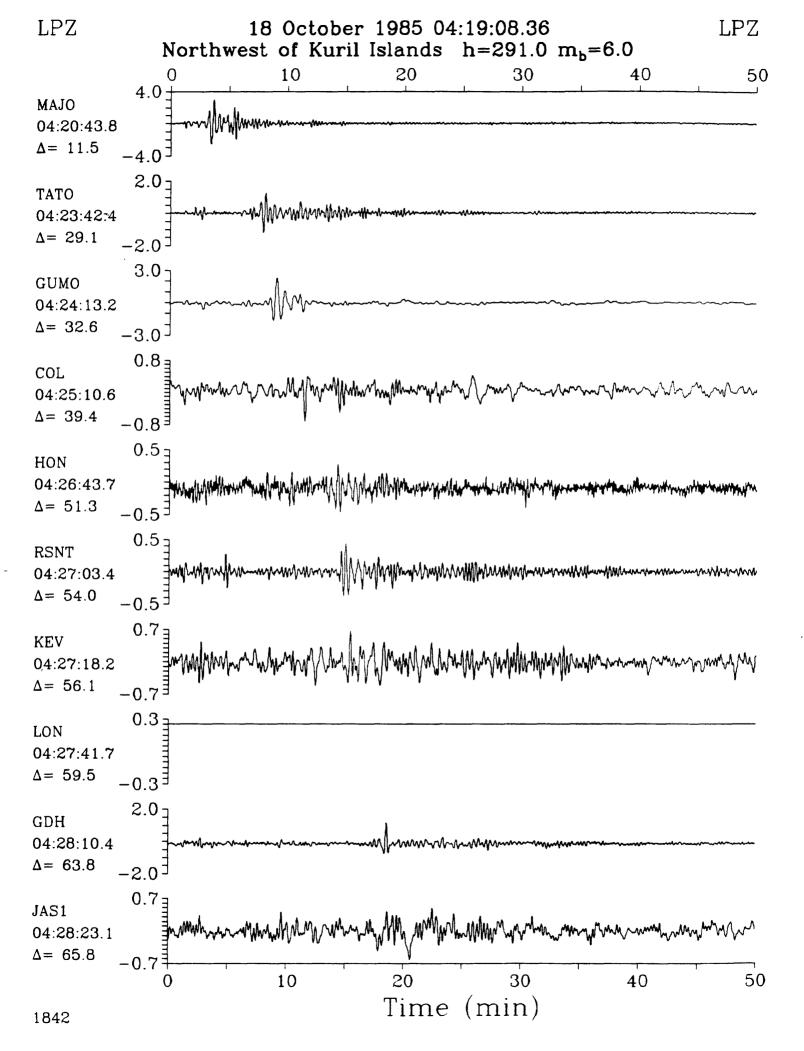


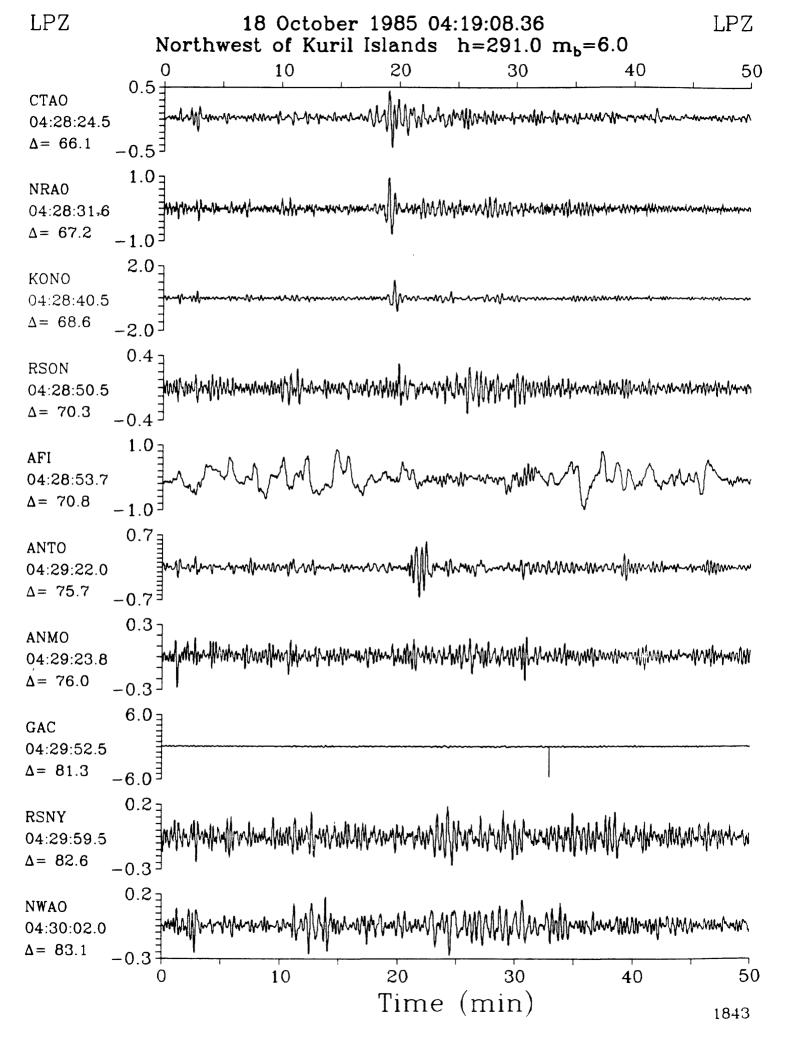


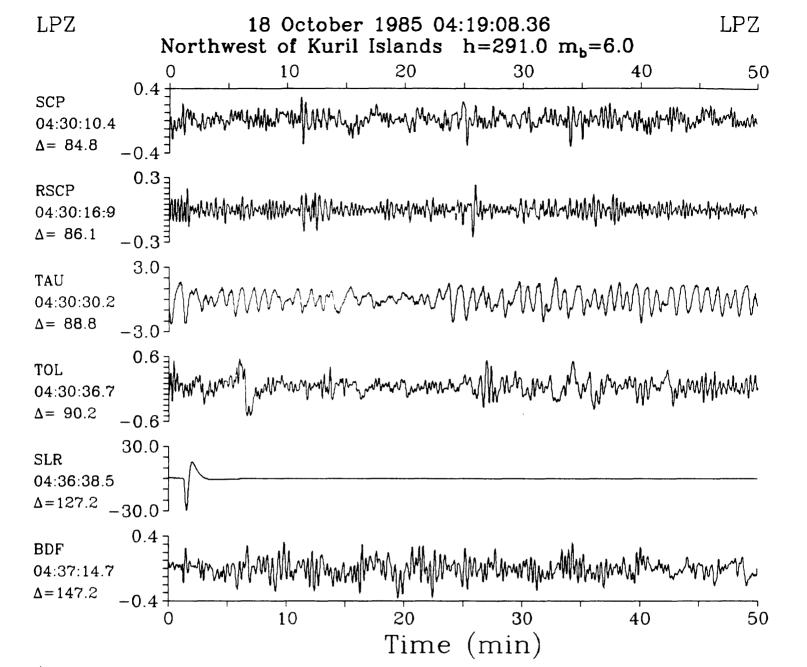


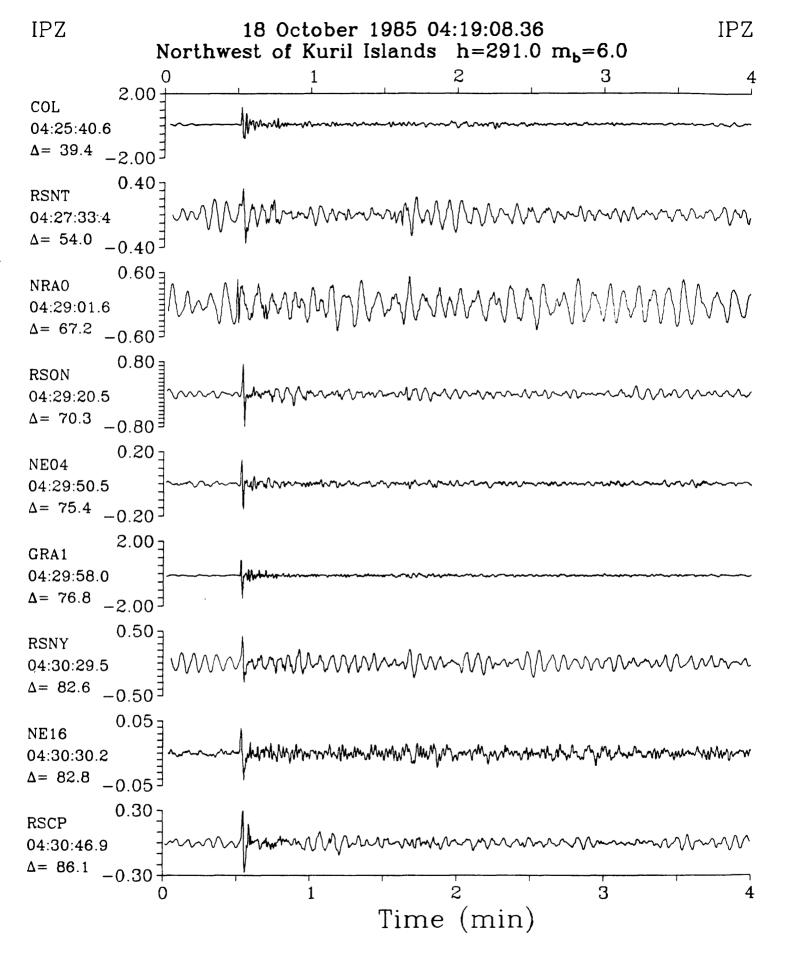


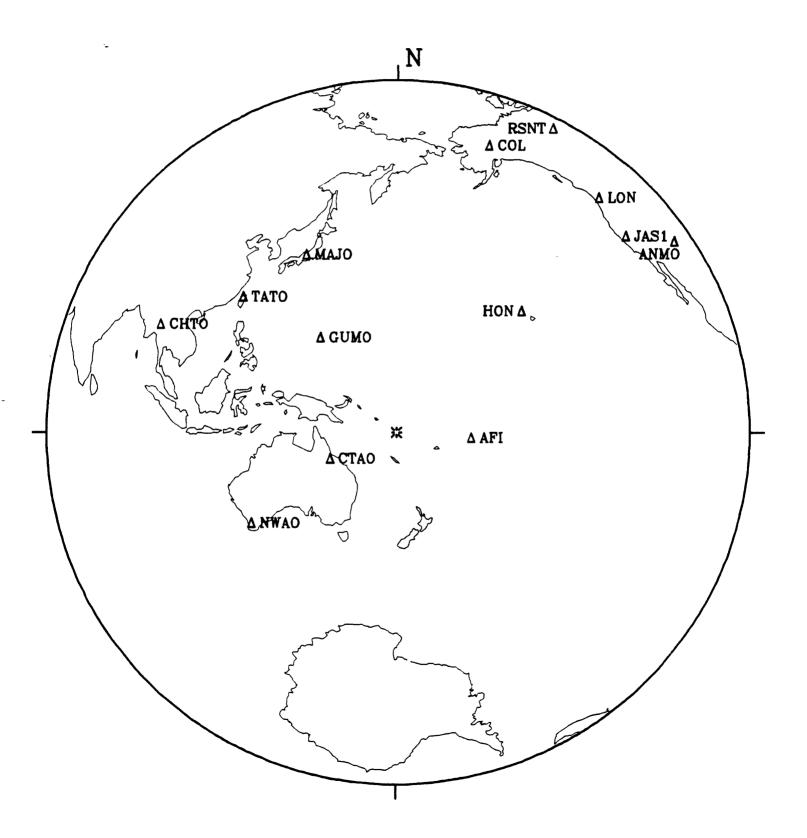


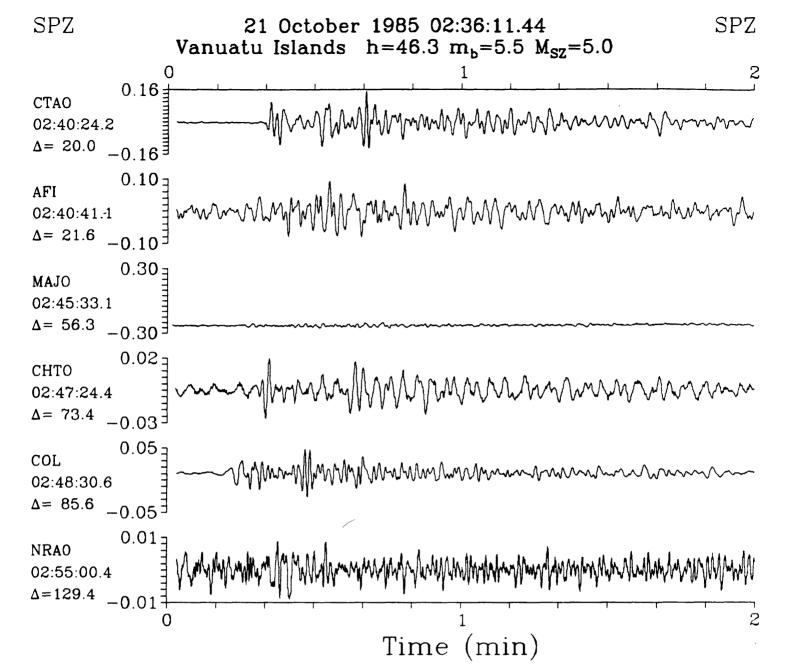


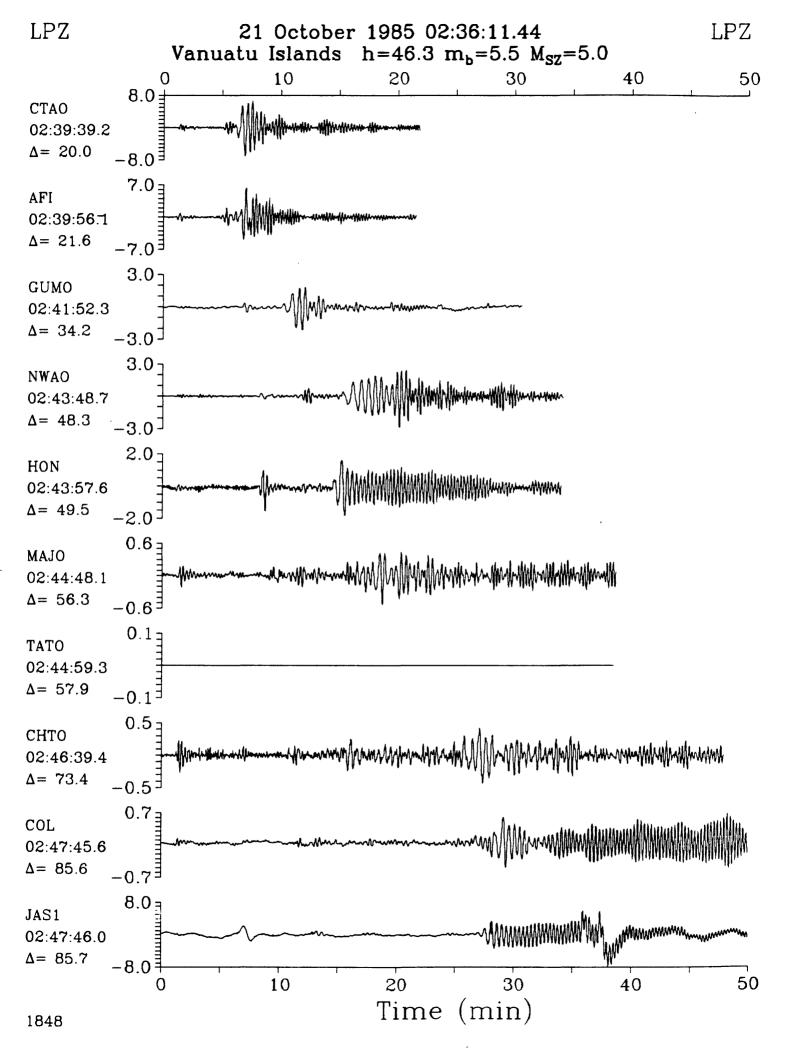

18 October 1985 04:19:08.36 Northwest of Kuril Islands

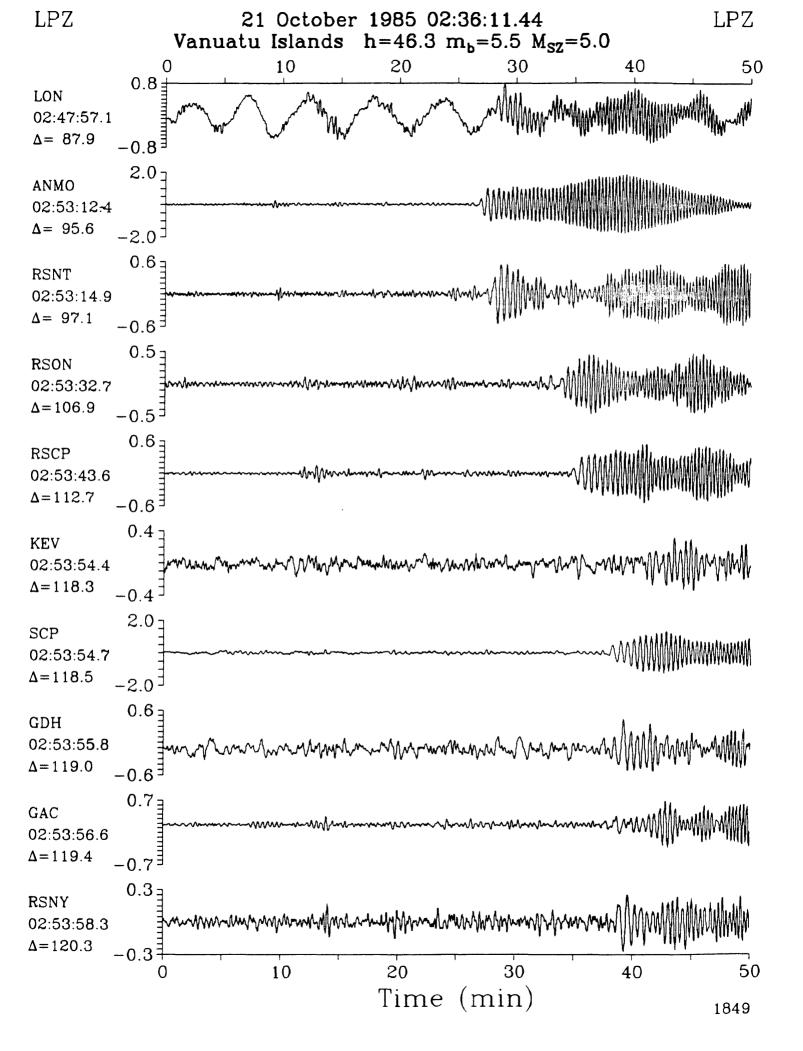


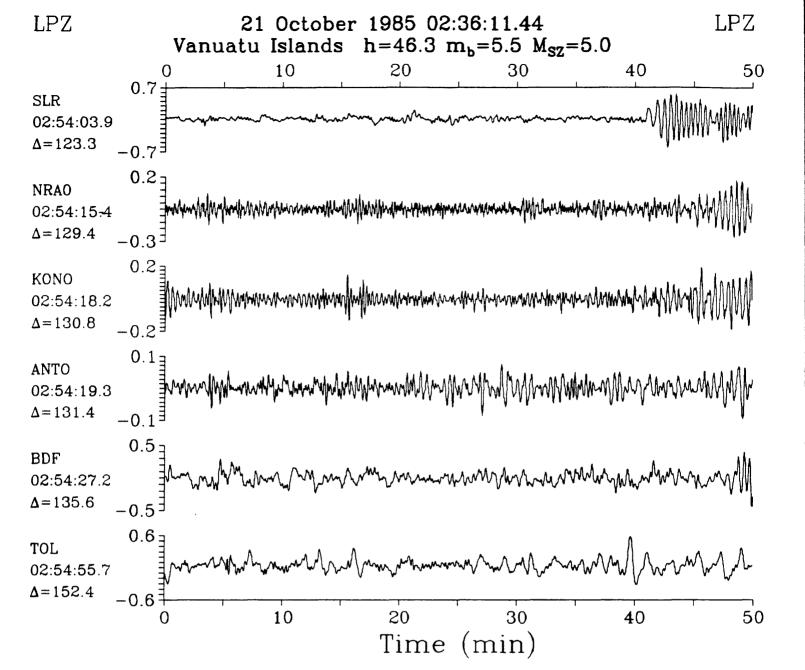


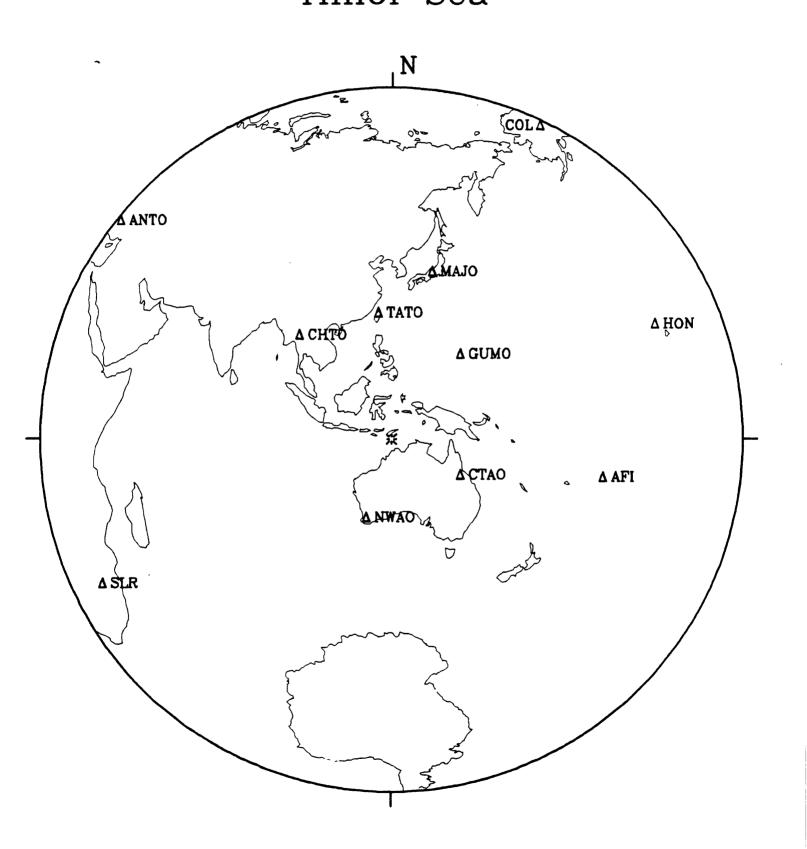


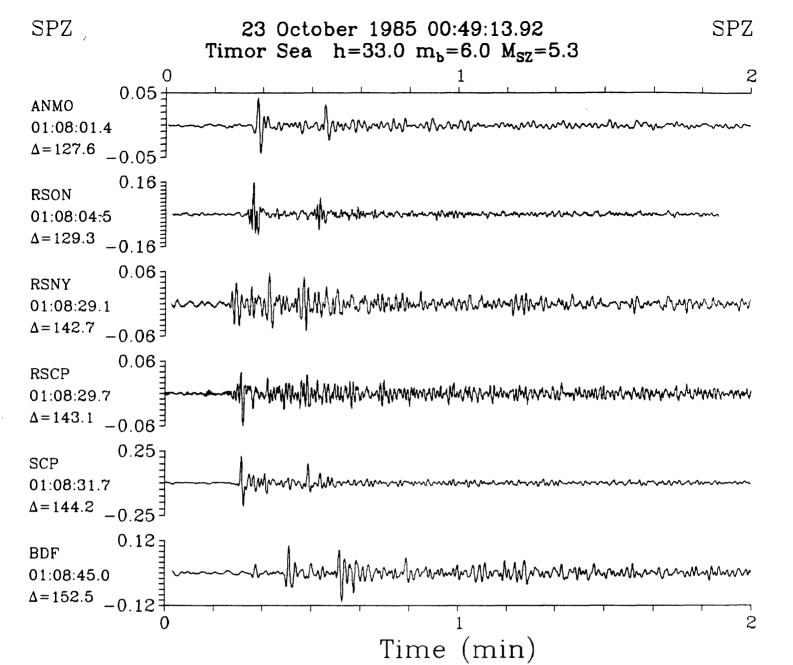


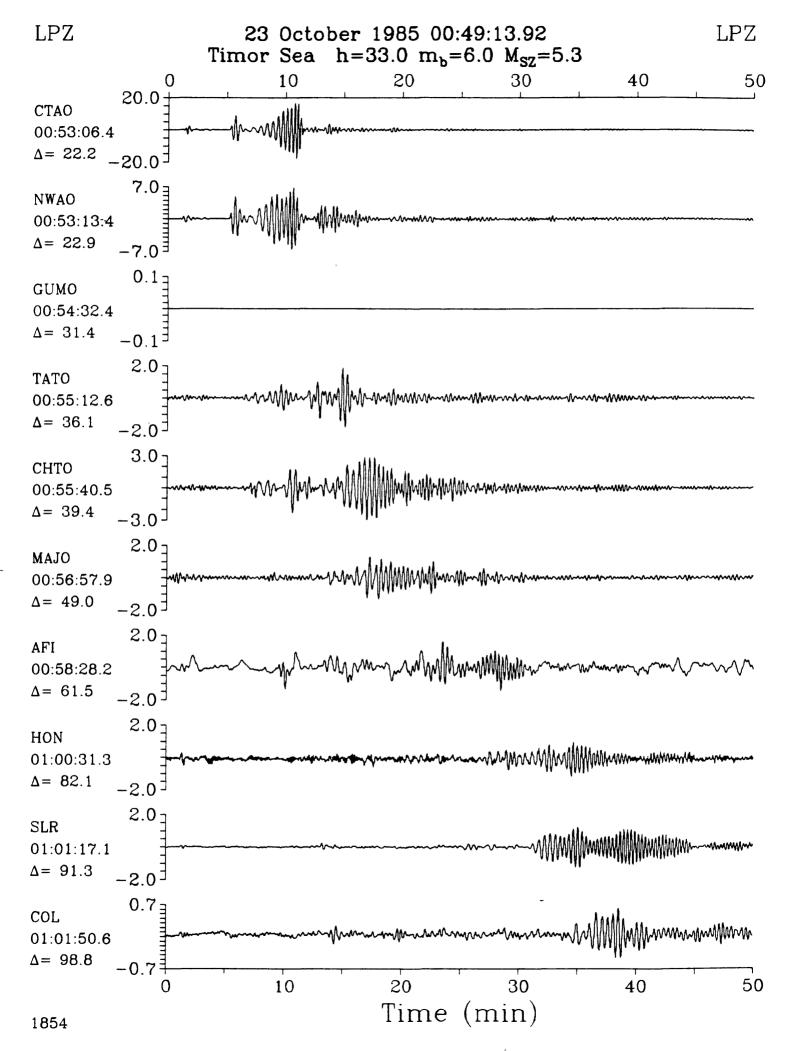


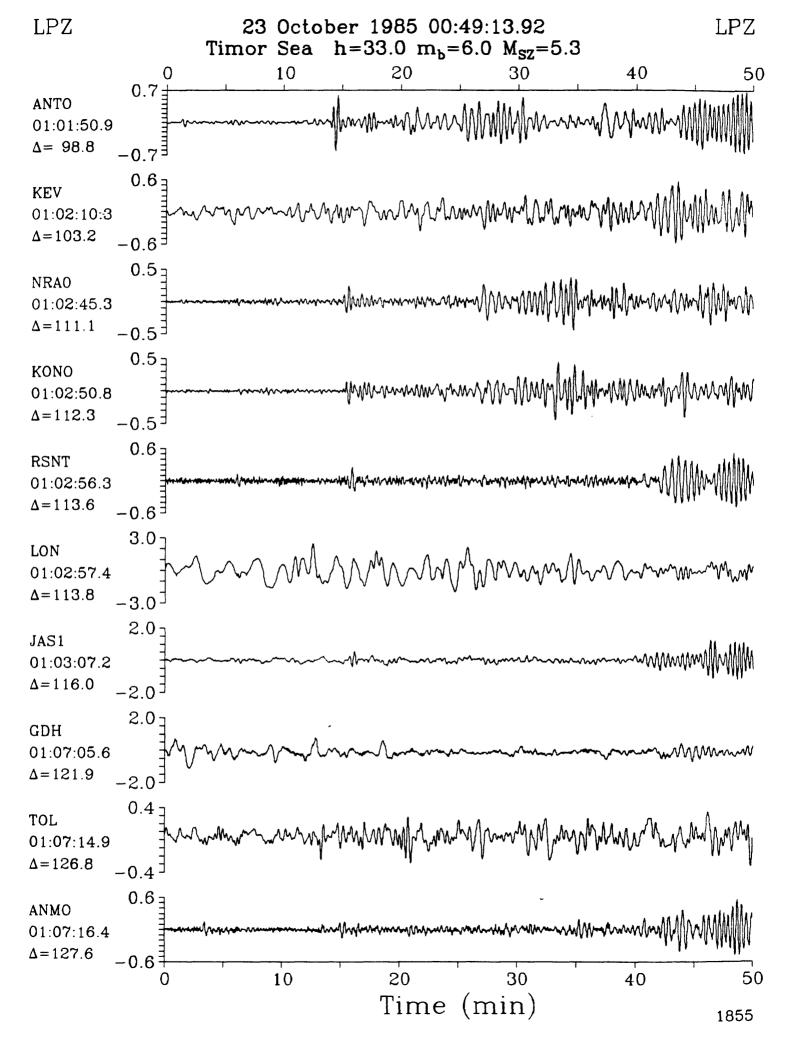


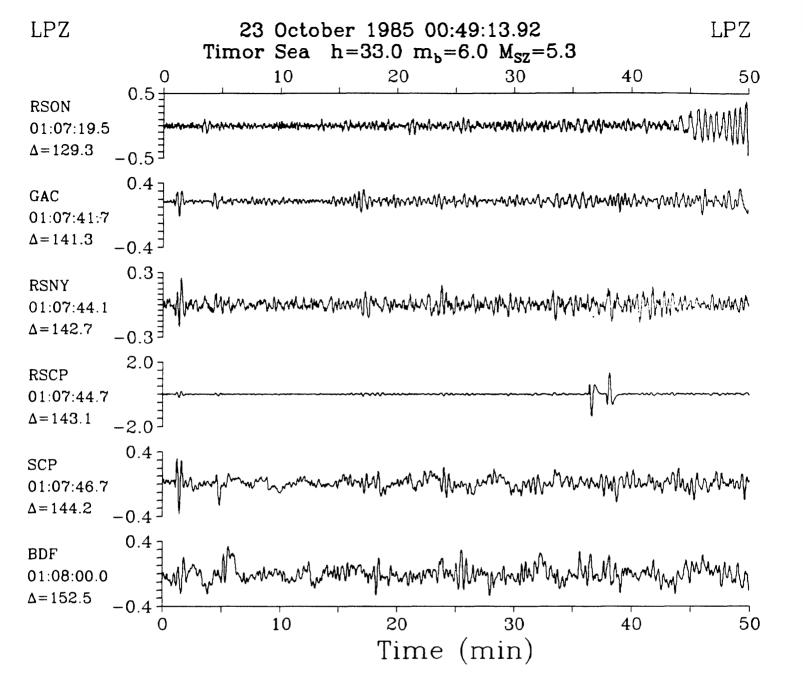

21 October 1985 02:36:11.44 Vanuatu Islands

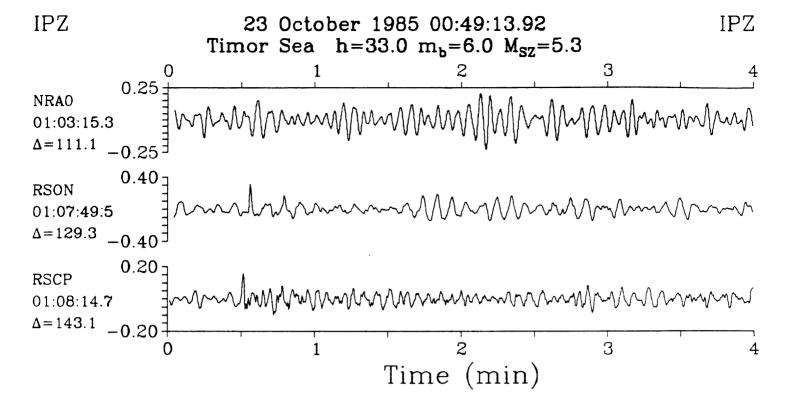


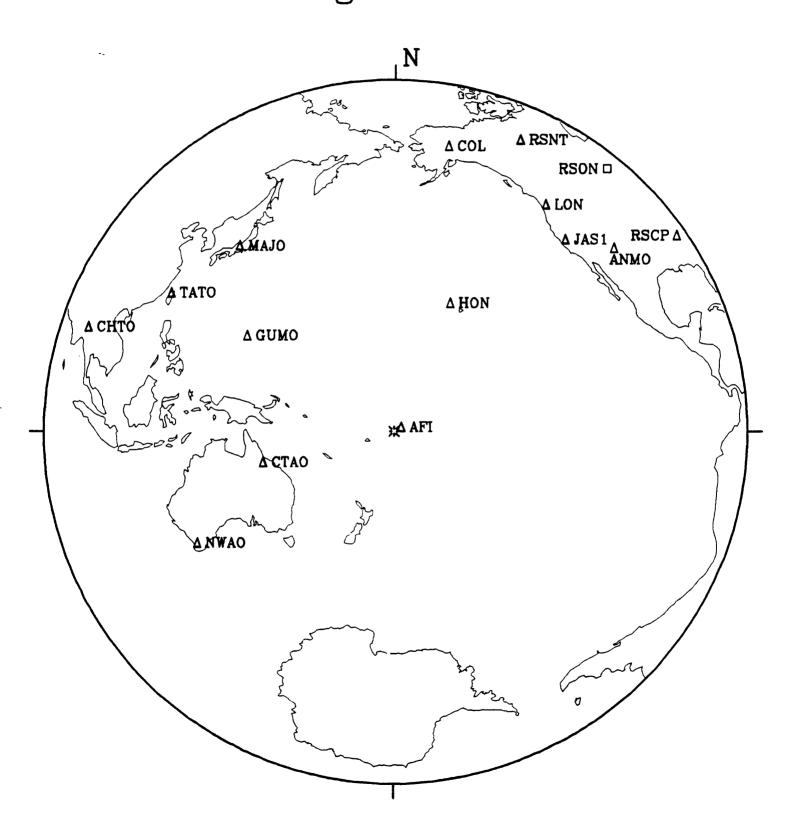


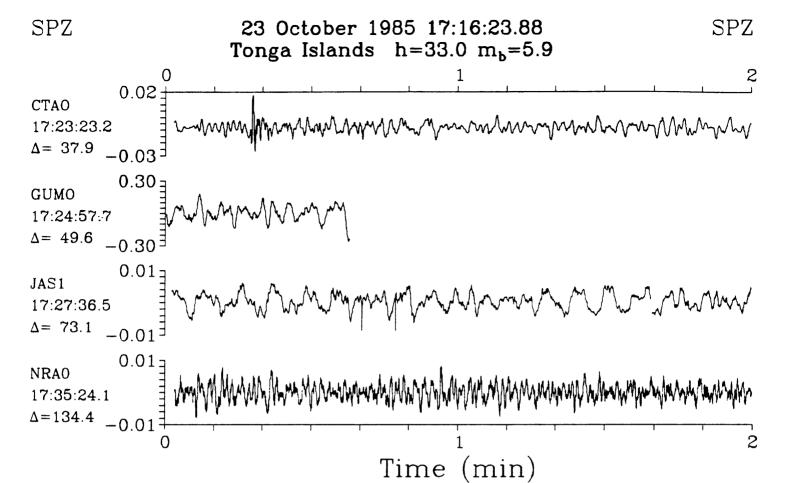

23 October 1985 00:49:13.92 Timor Sea

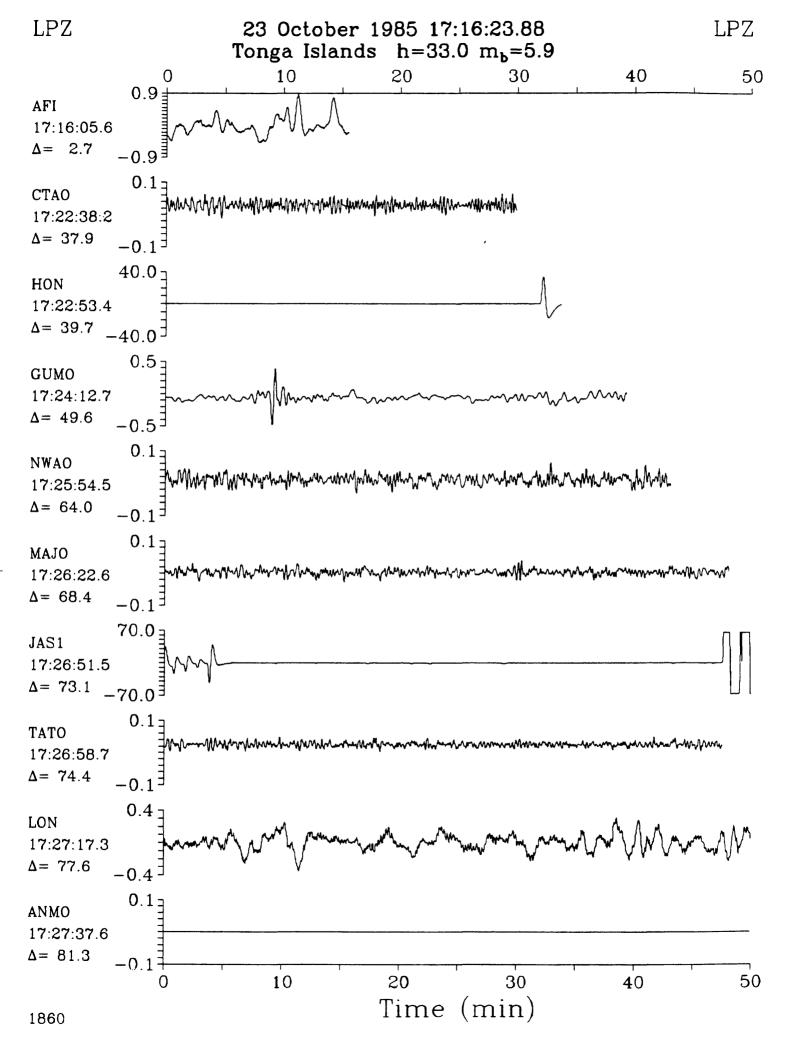


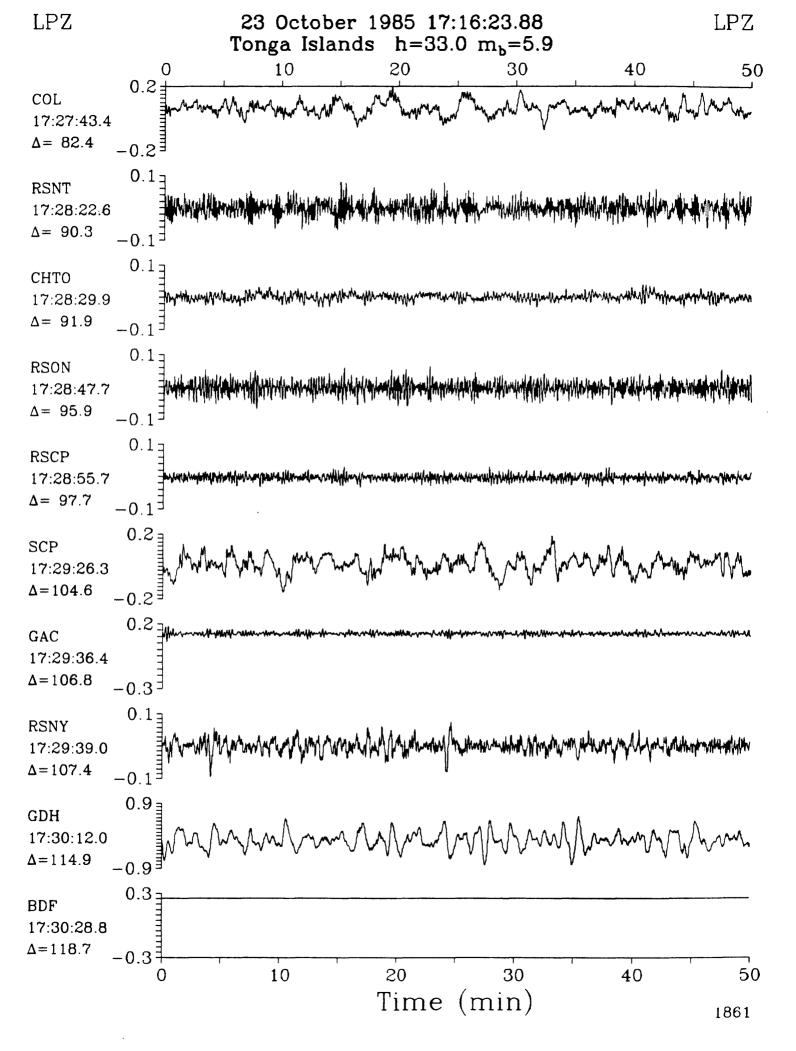

Time (min)

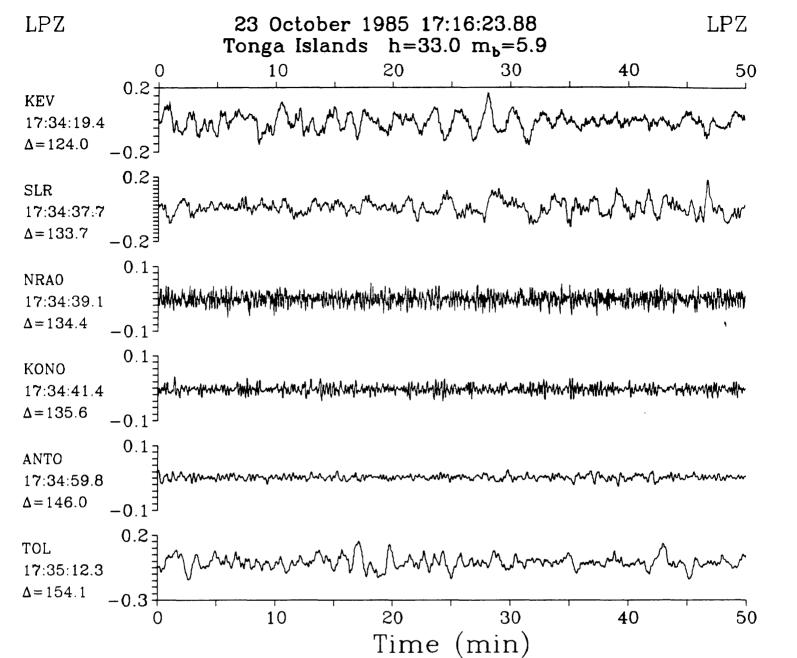

1852

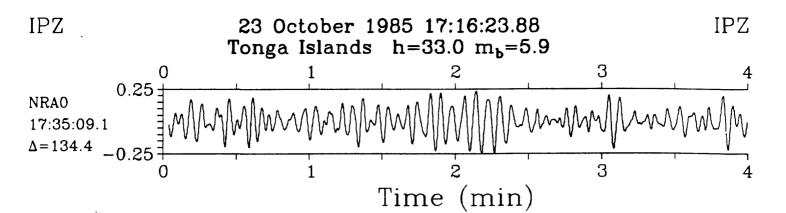


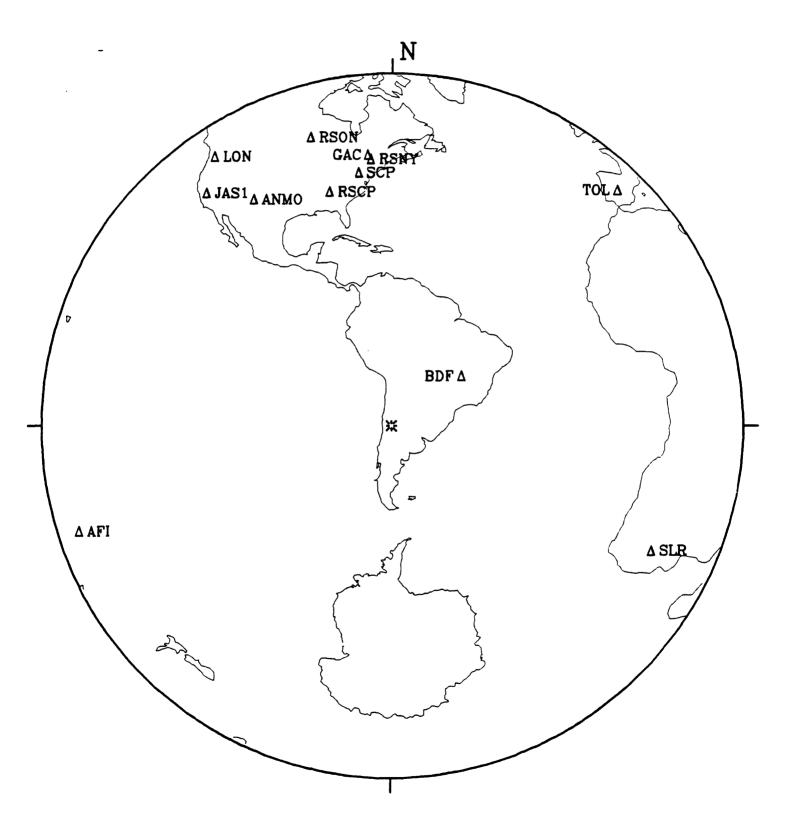


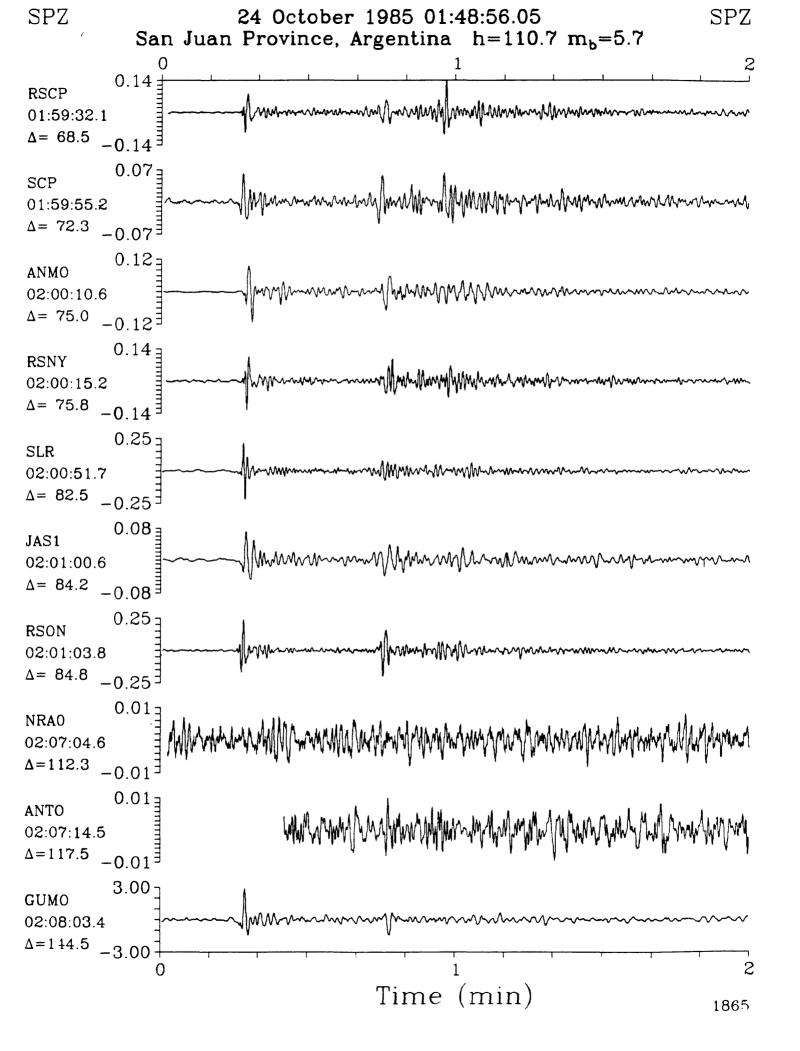


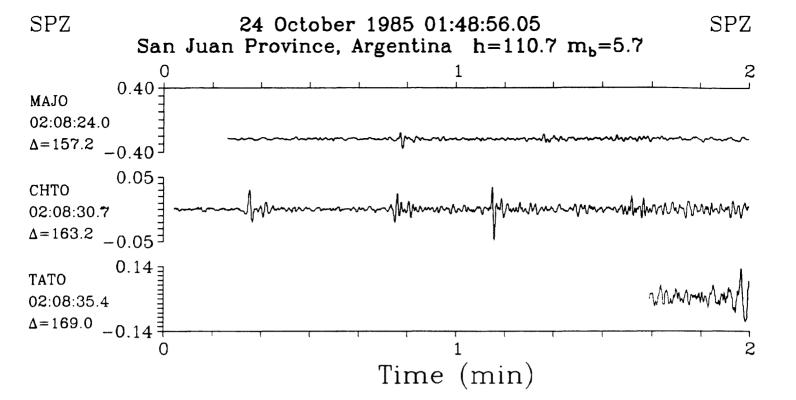


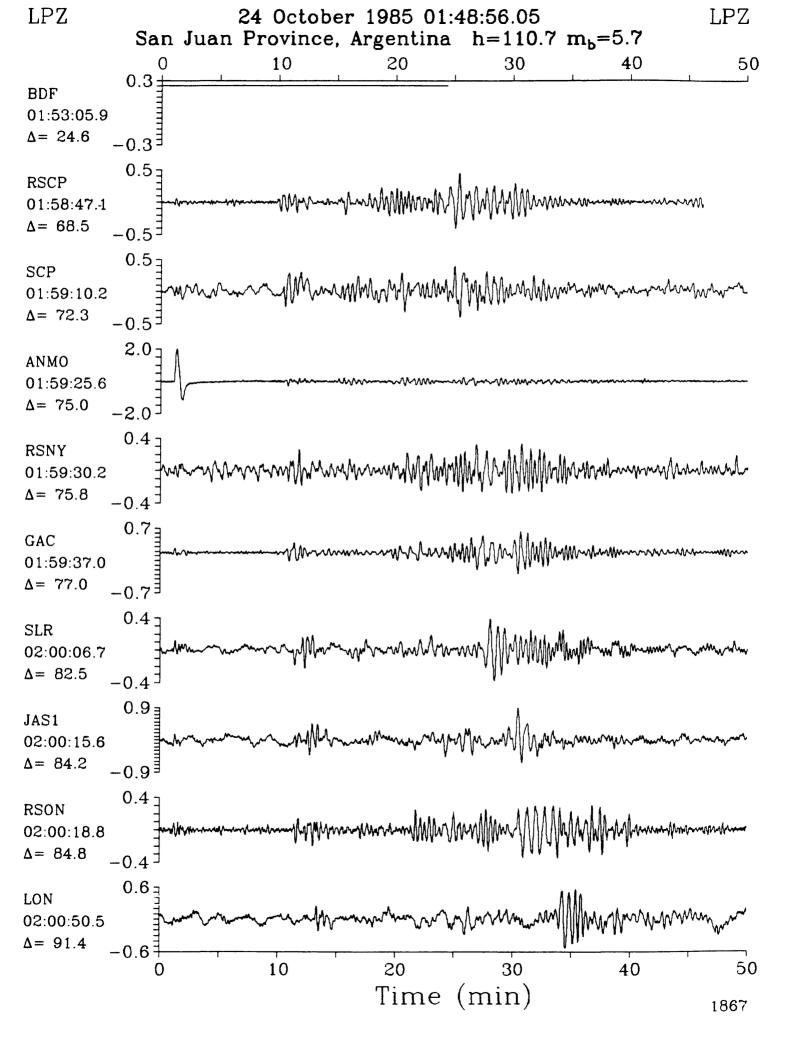

23 October 1985 17:16:23.88 Tonga Islands

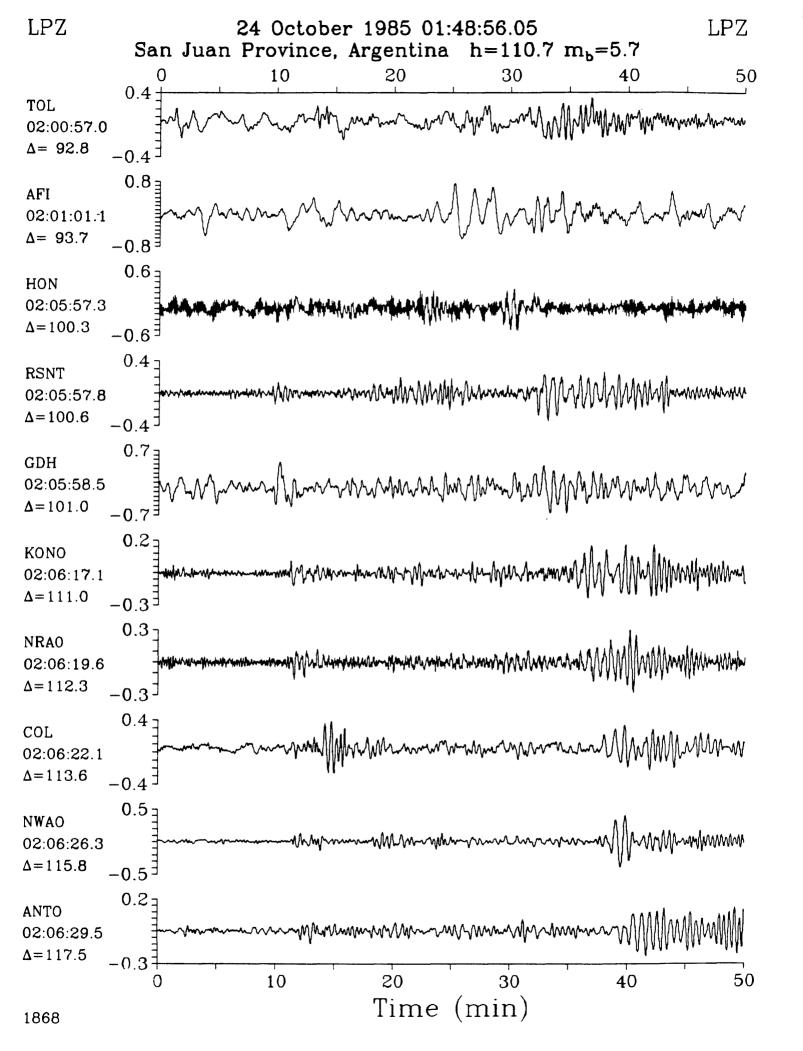


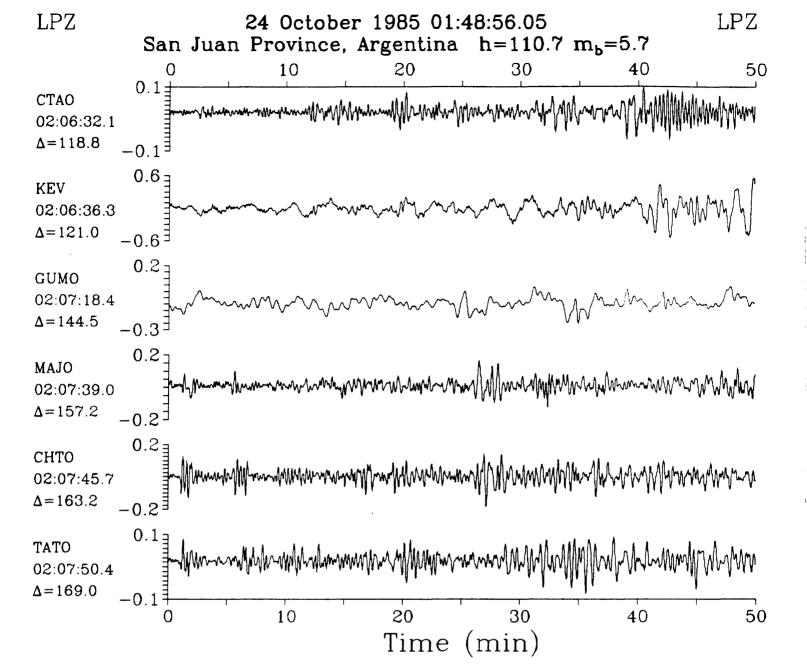


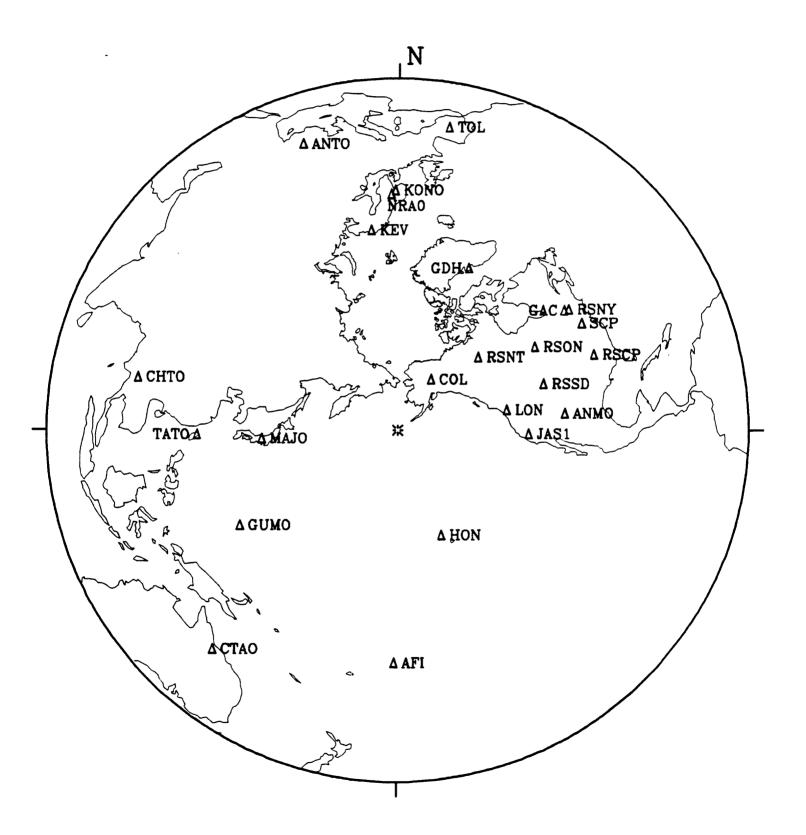


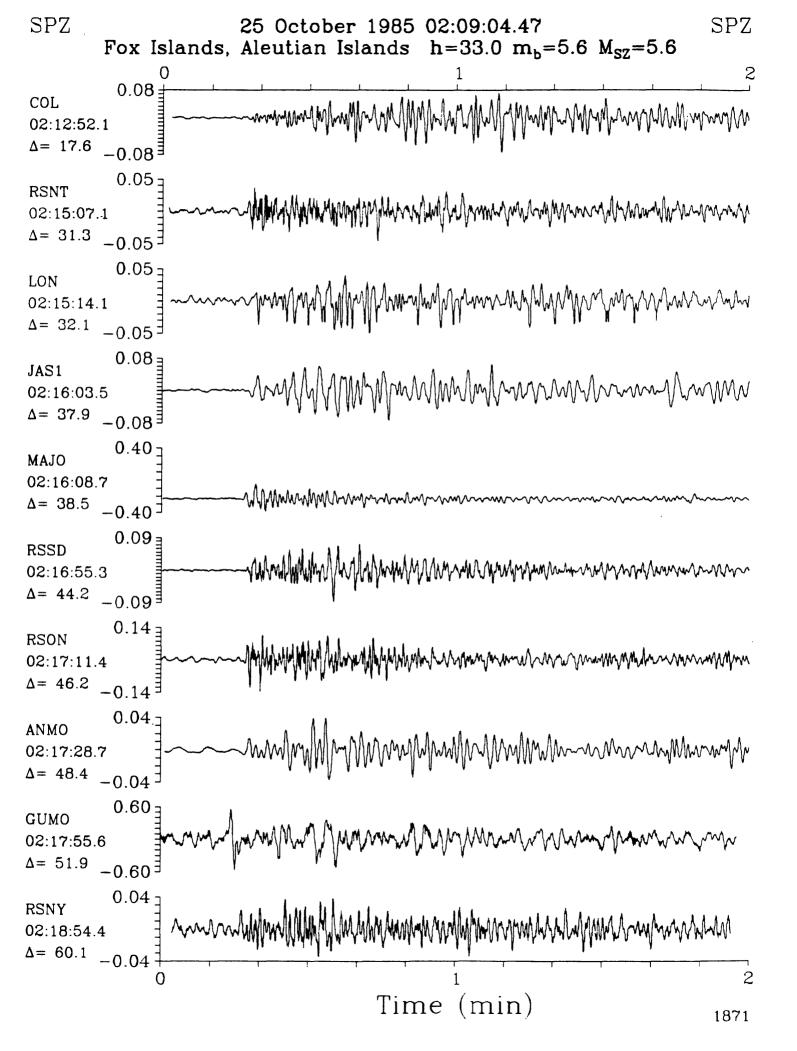


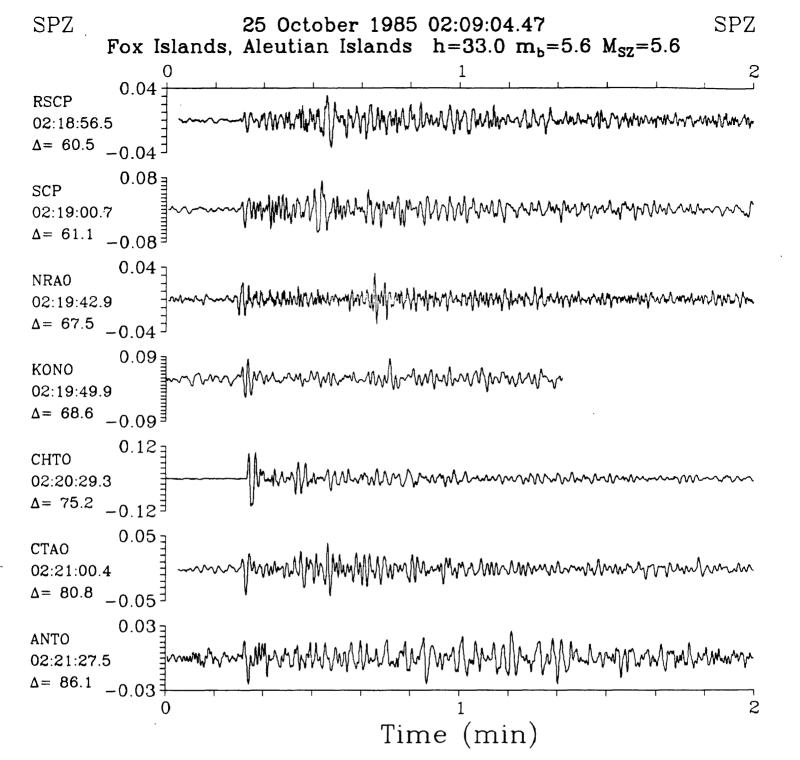


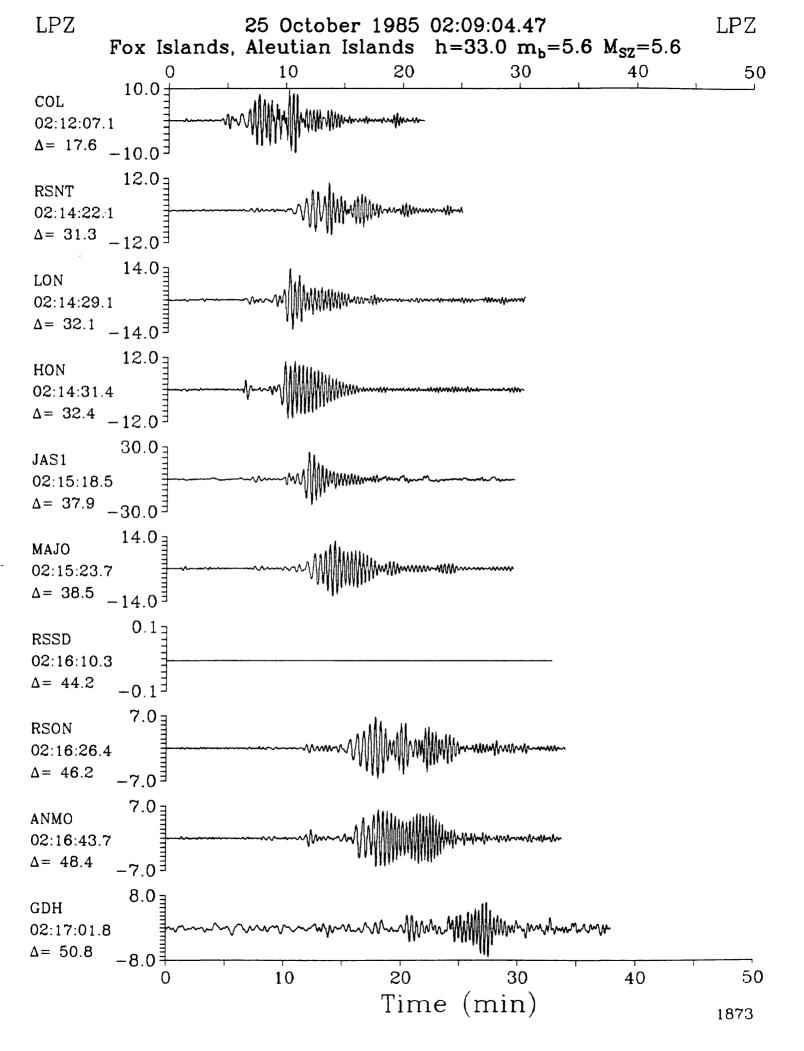

24 October 1985 01:48:56.05 San Juan Province, Argentina

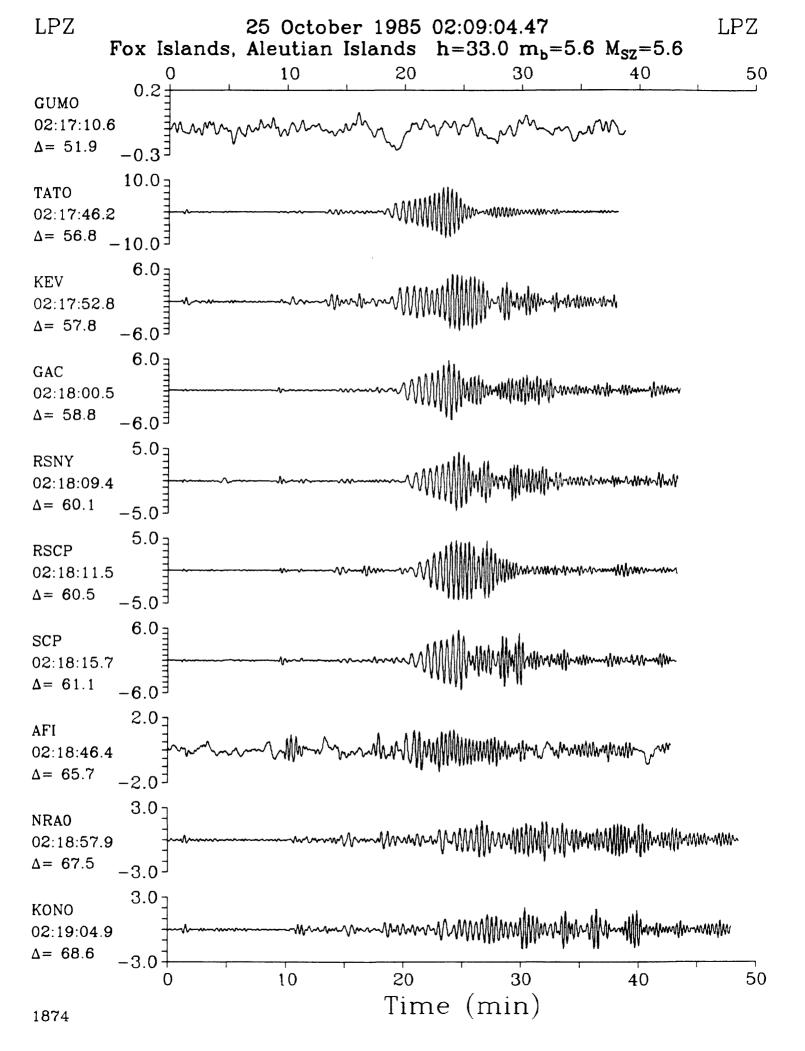




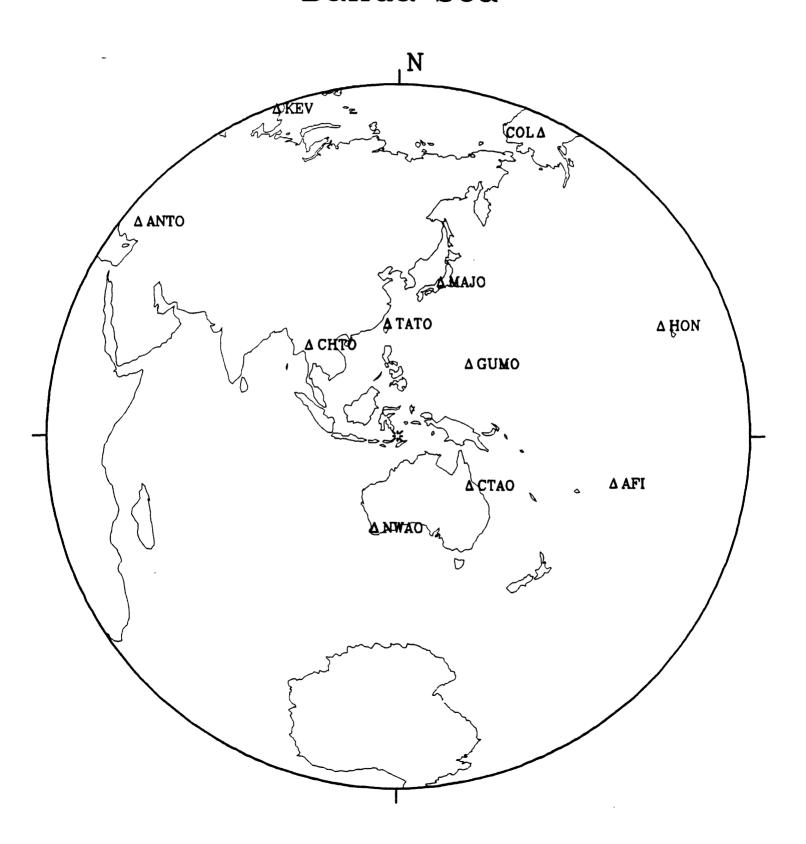


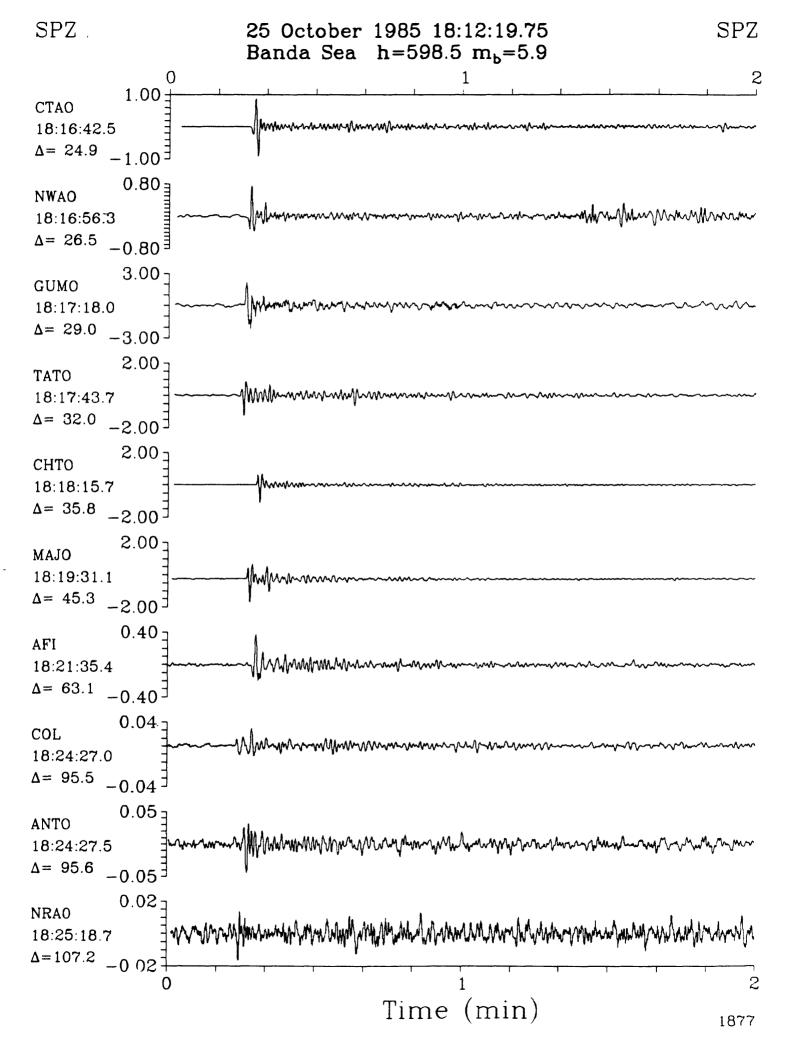


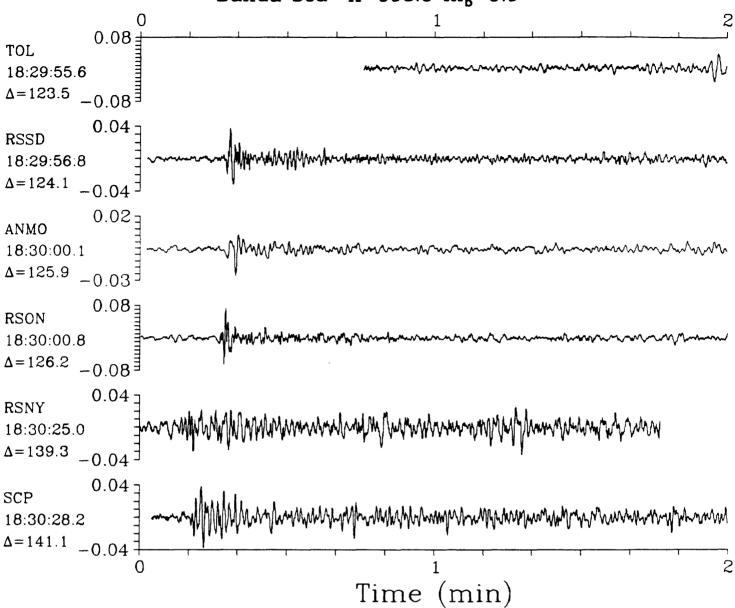


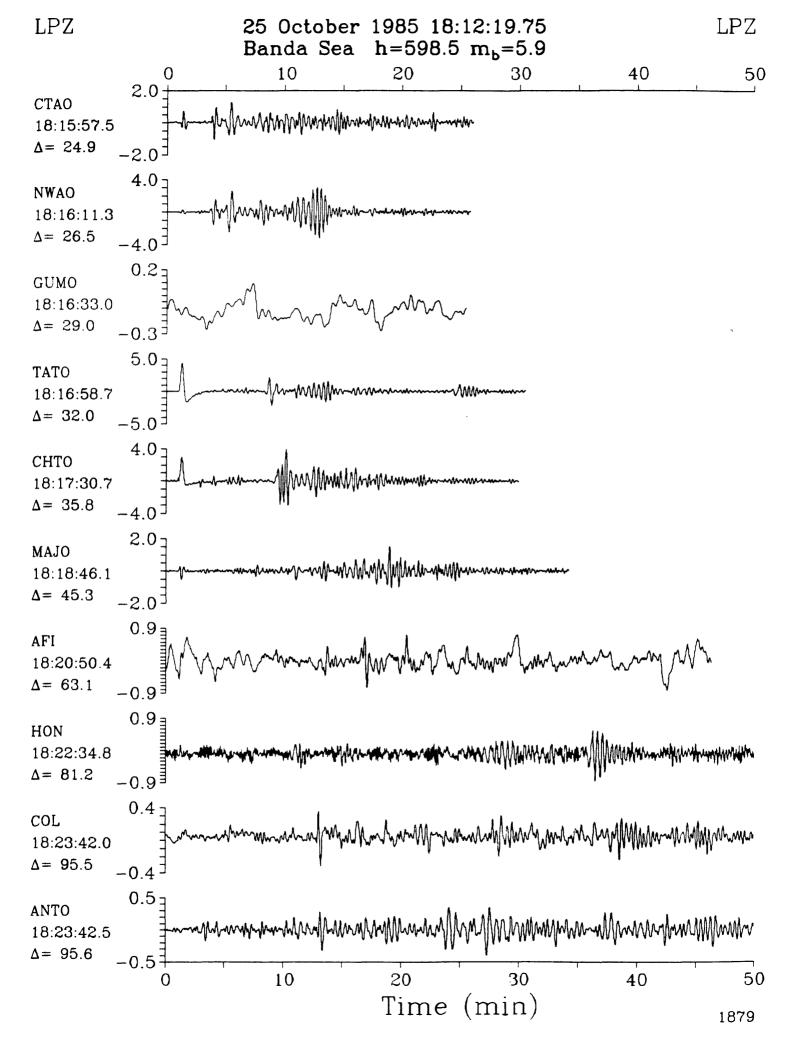

25 October 1985 02:09:04.47 Fox Islands, Aleutian Islands

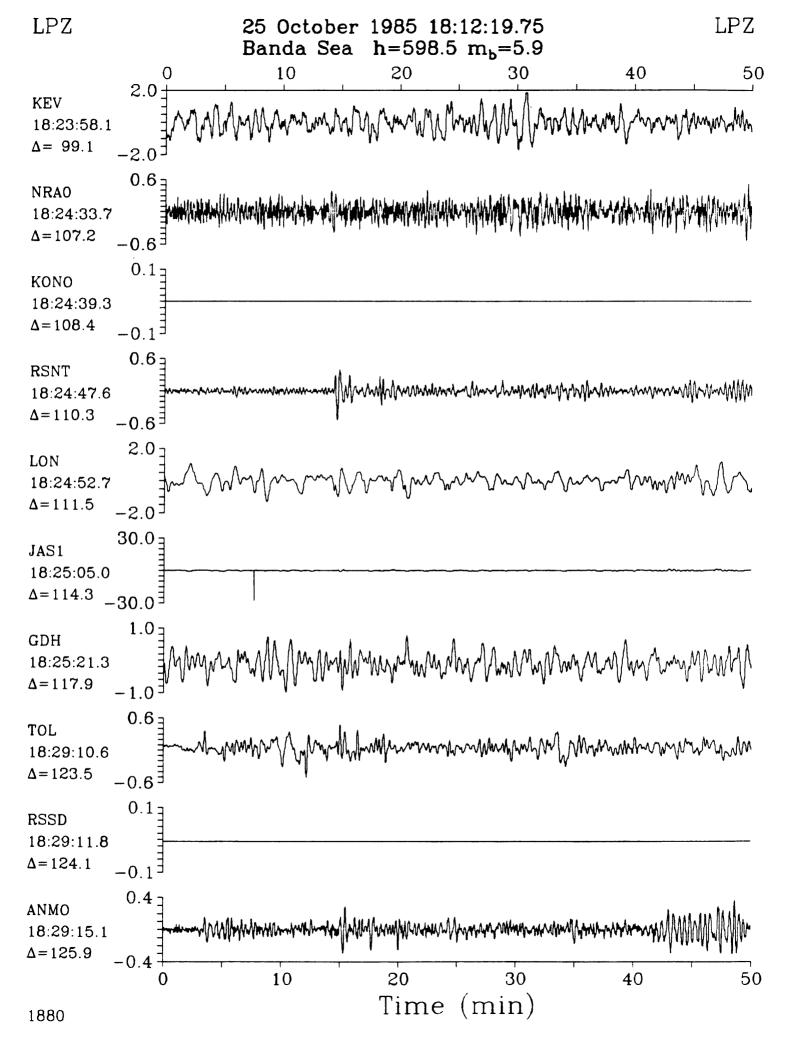


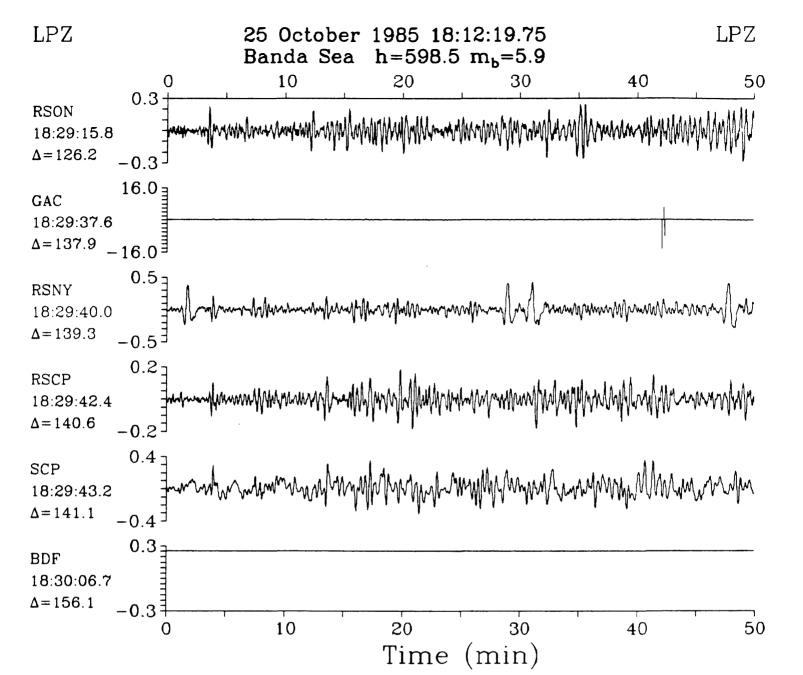


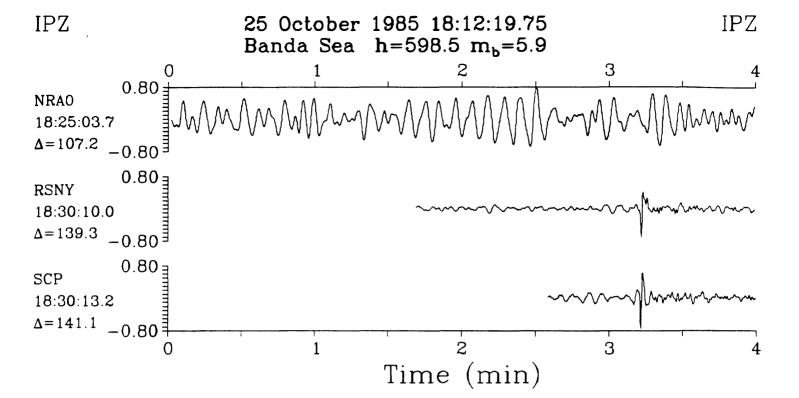


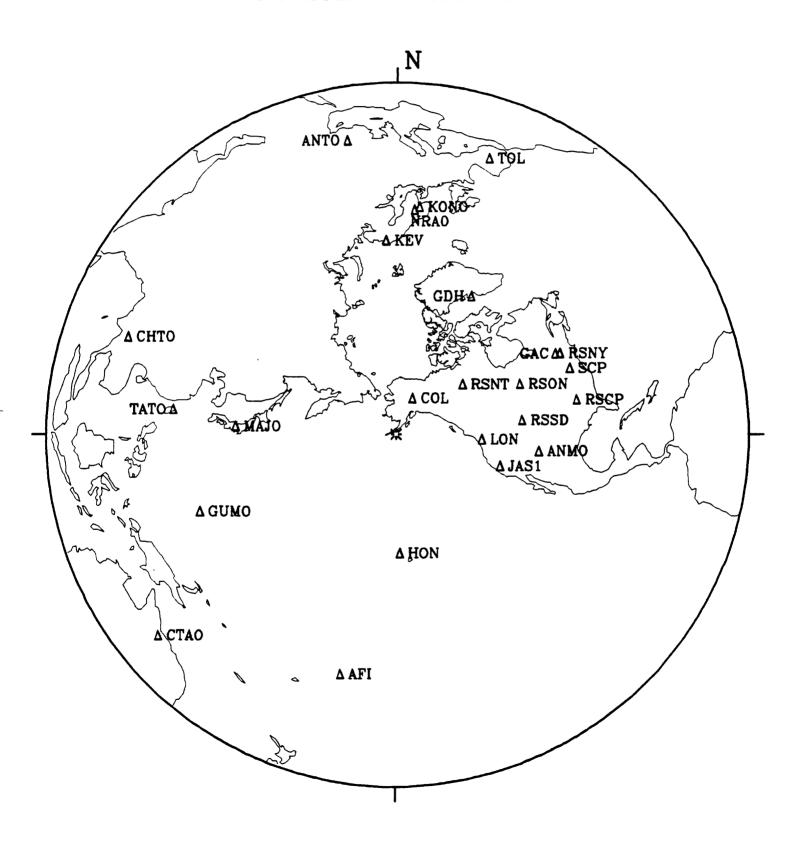


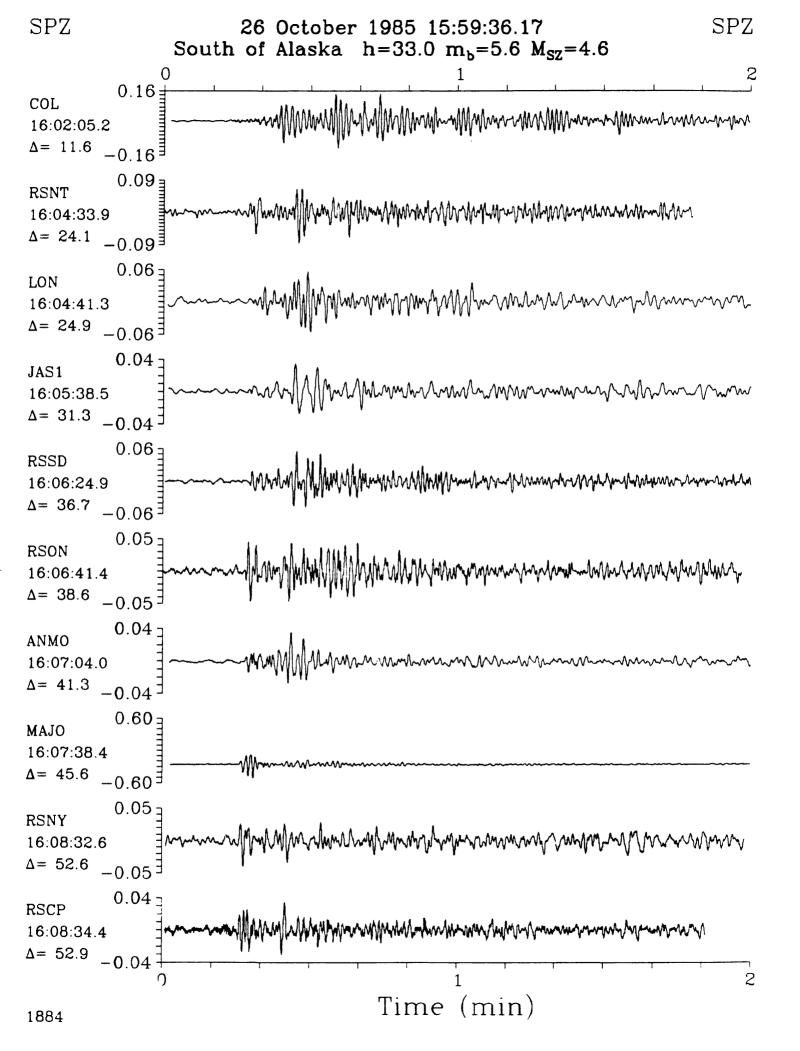


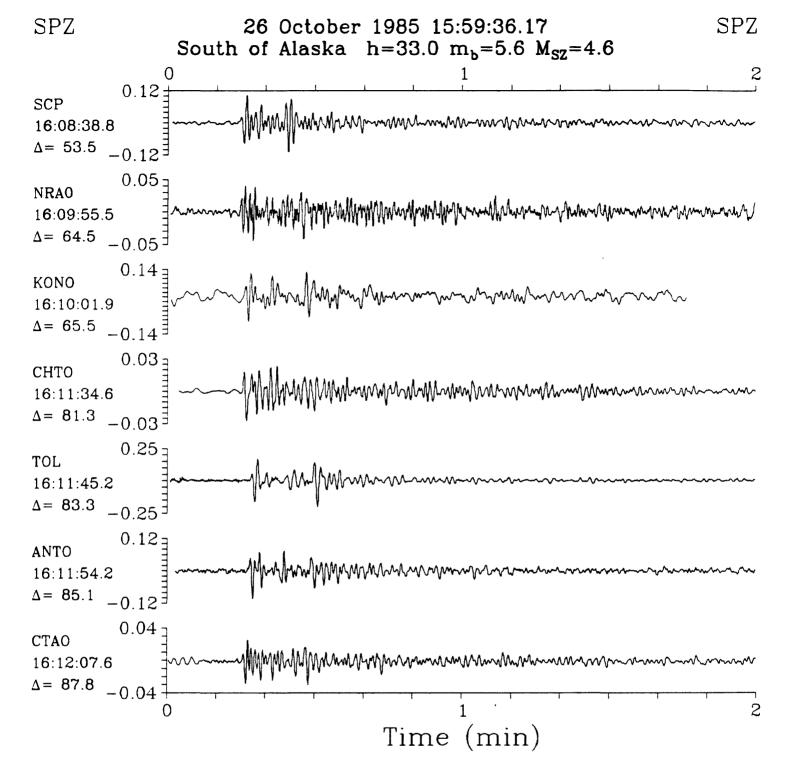

25 October 1985 18:12:19.75 Banda Sea

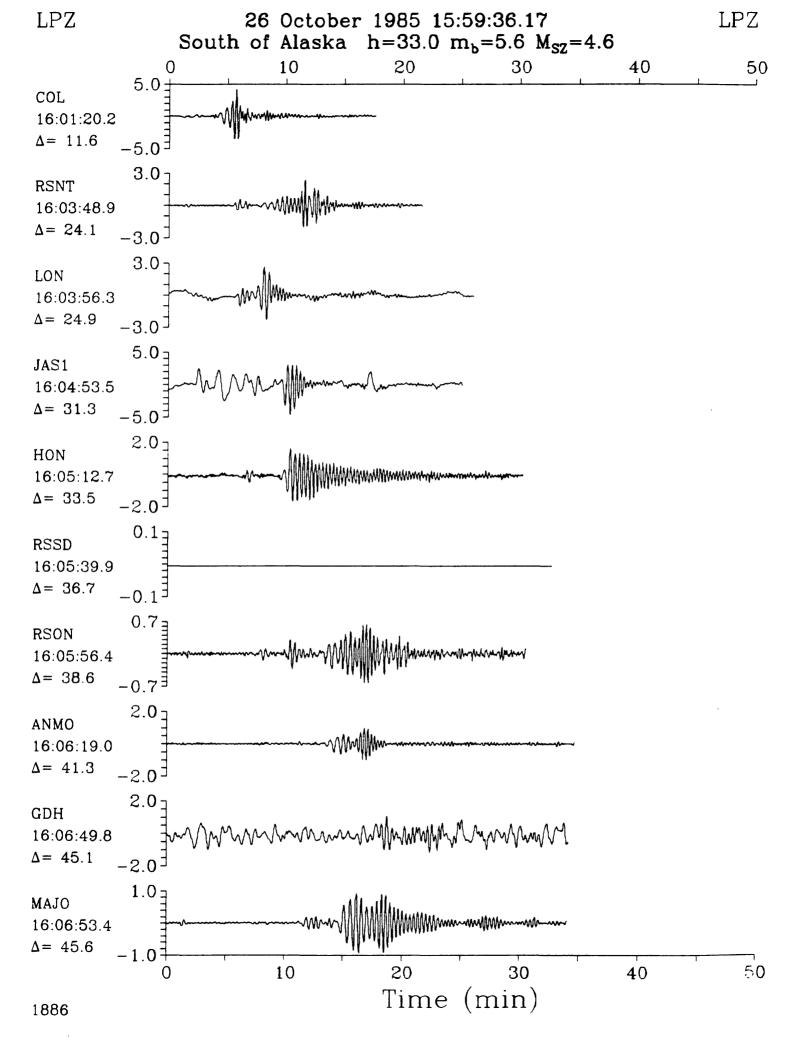


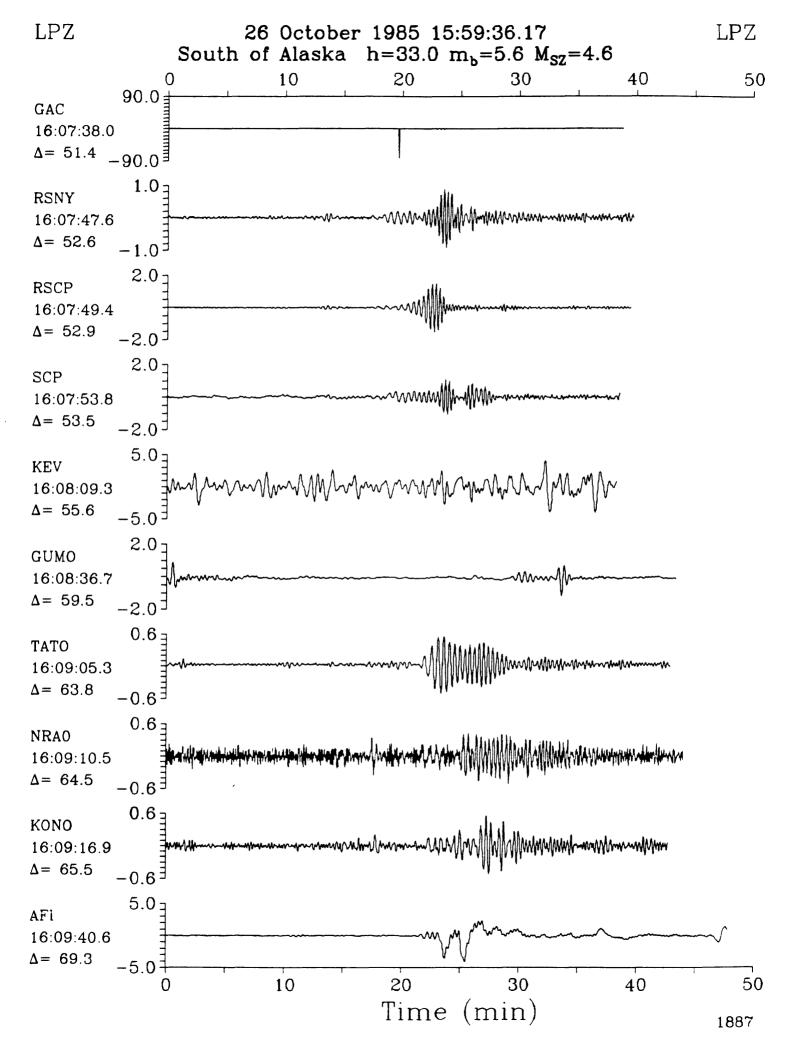


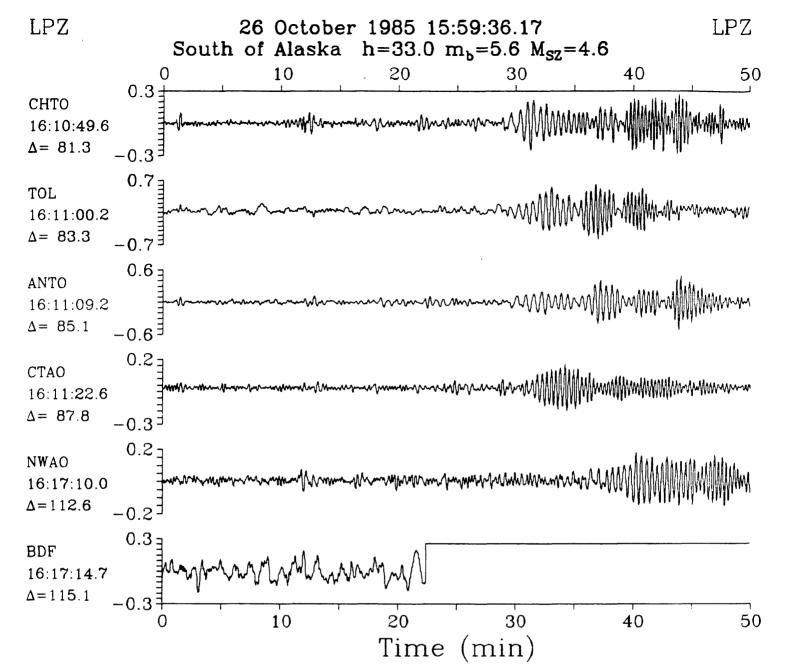


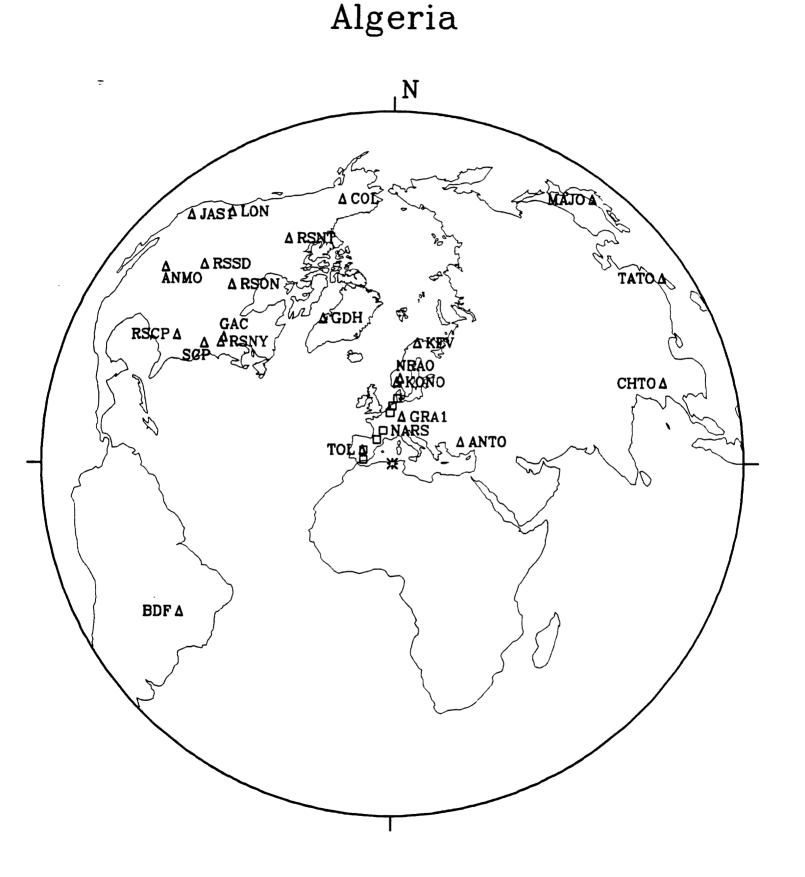


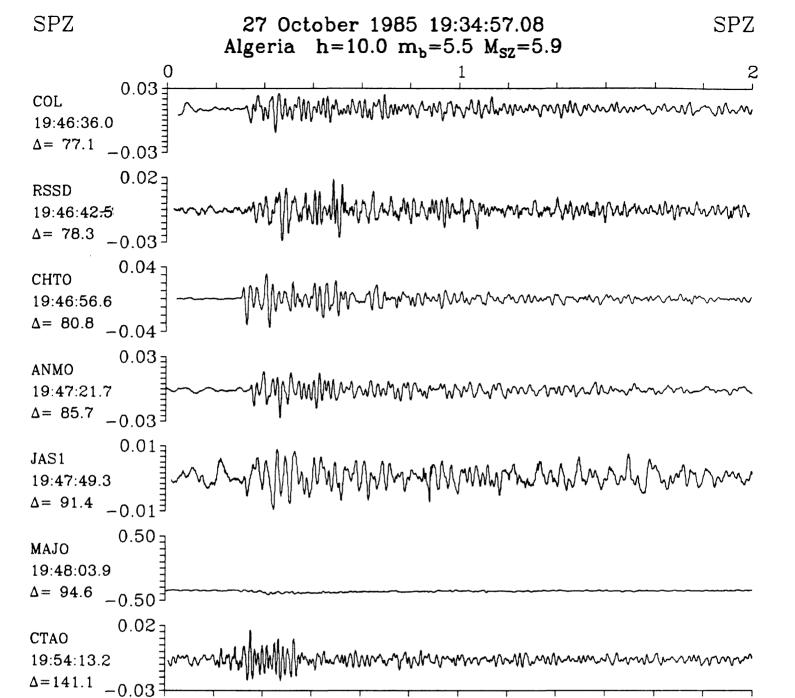




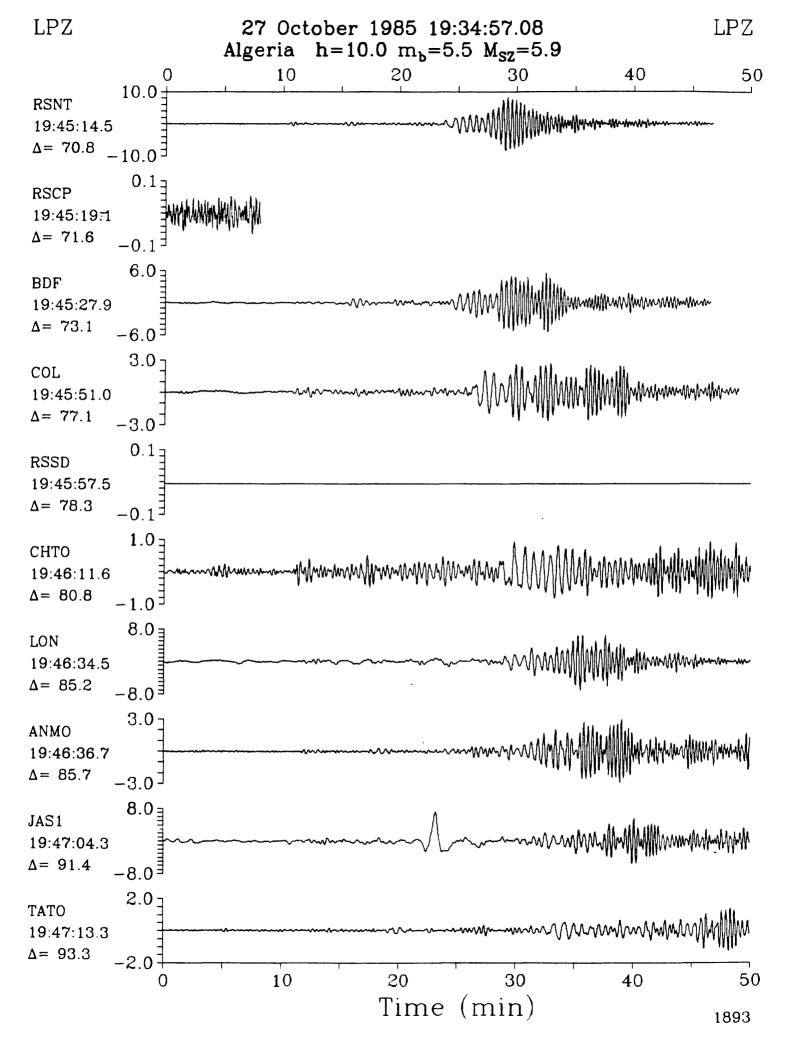

26 October 1985 15:59:36.17 South of Alaska

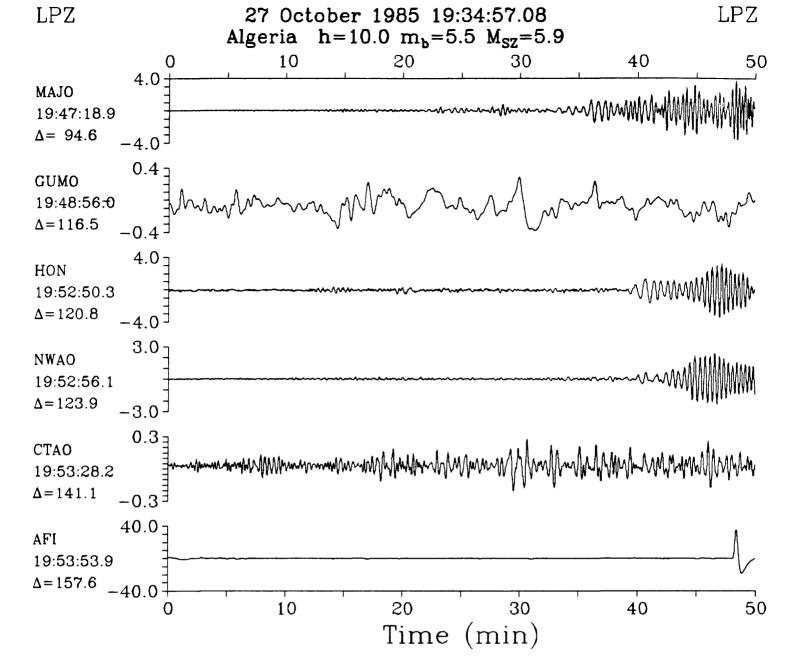


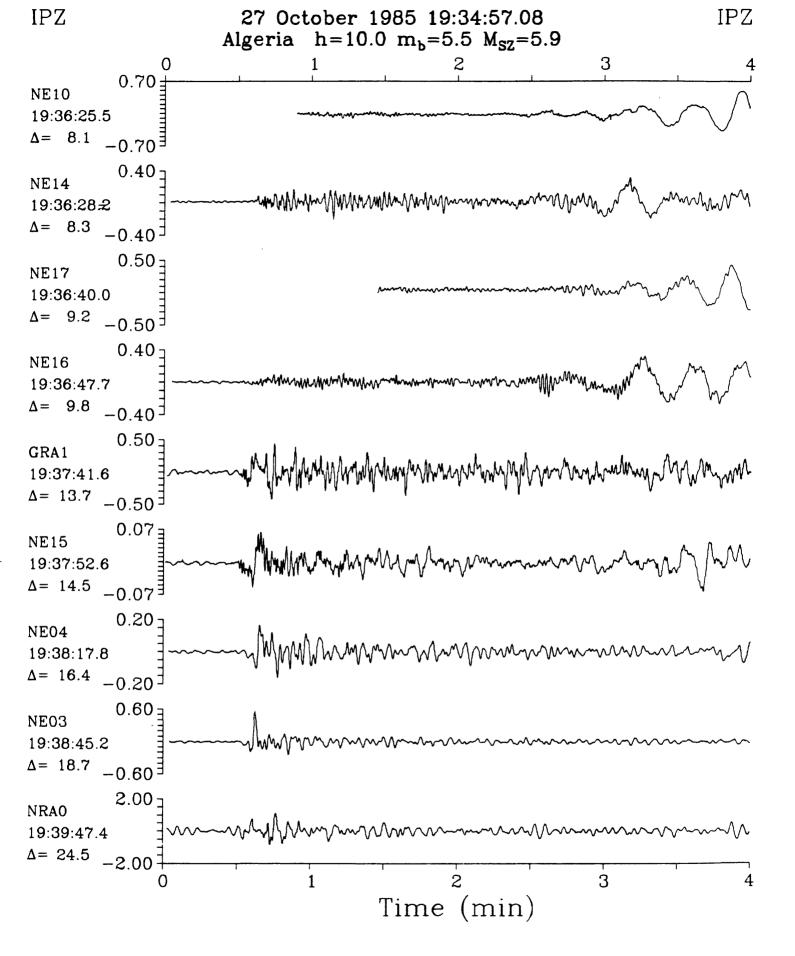




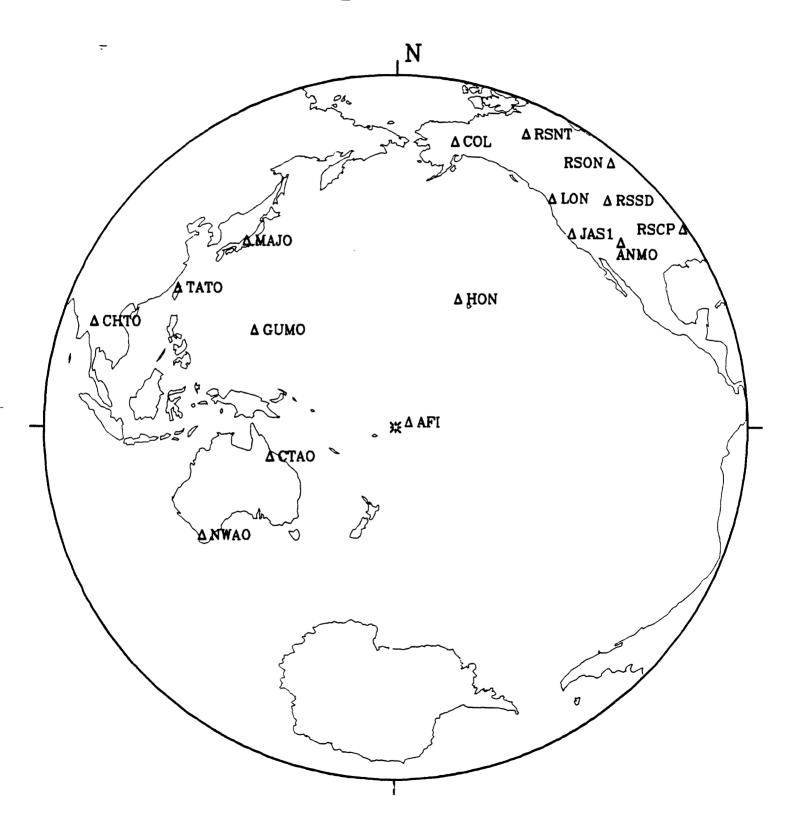


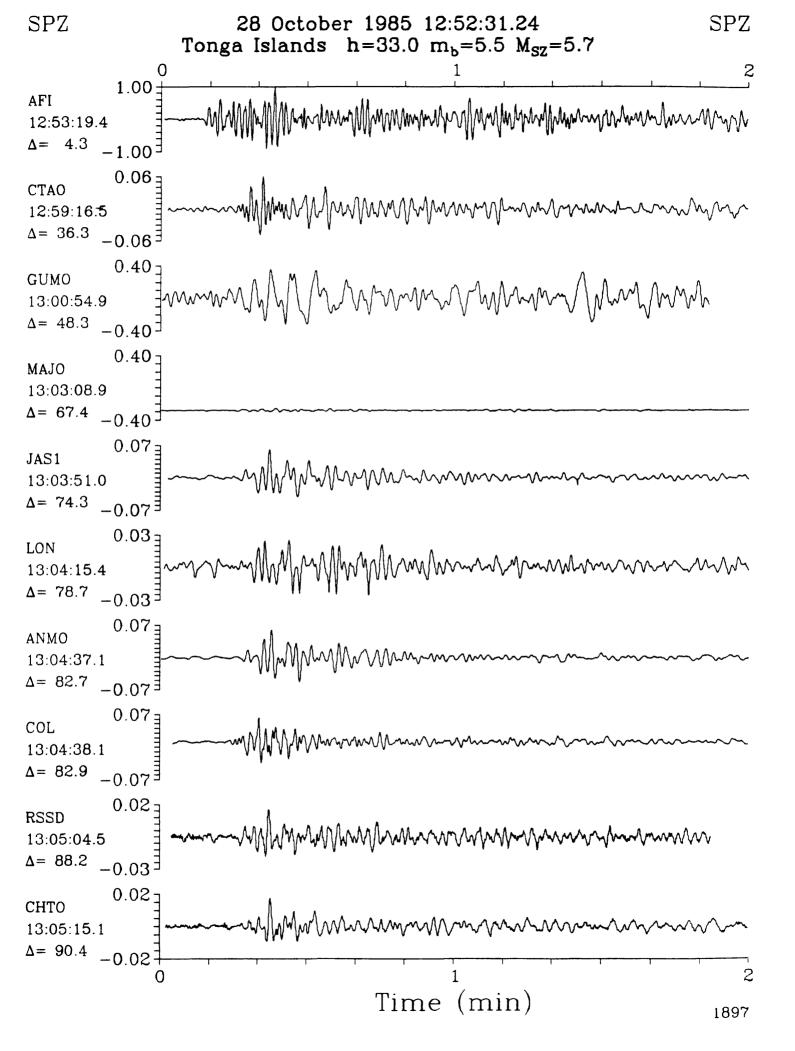

27 October 1985 19:34:57.08

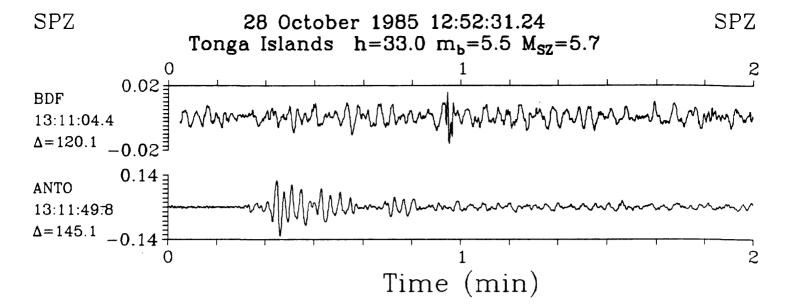


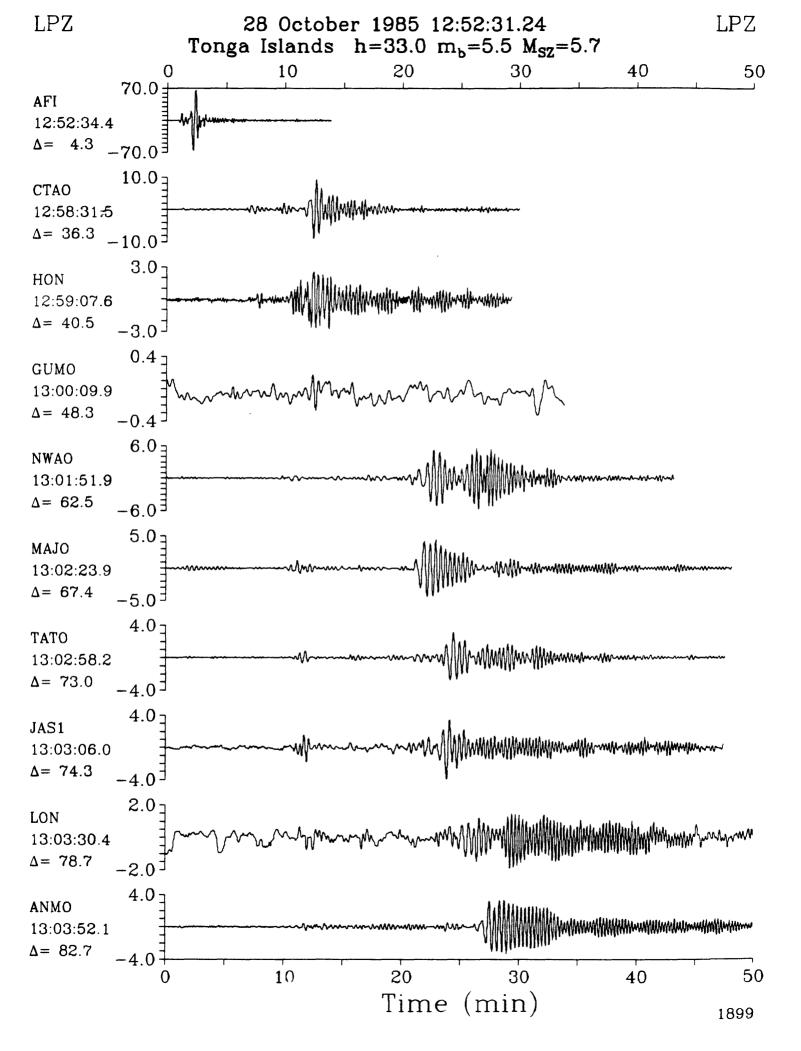


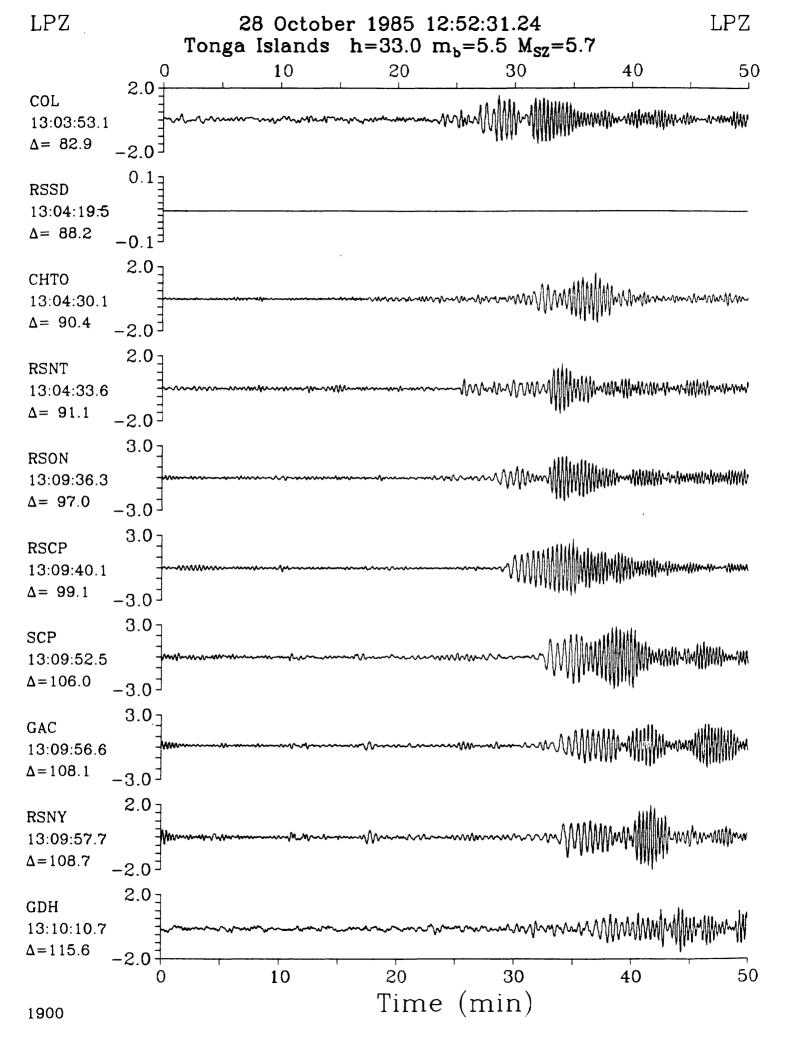
Time (min)

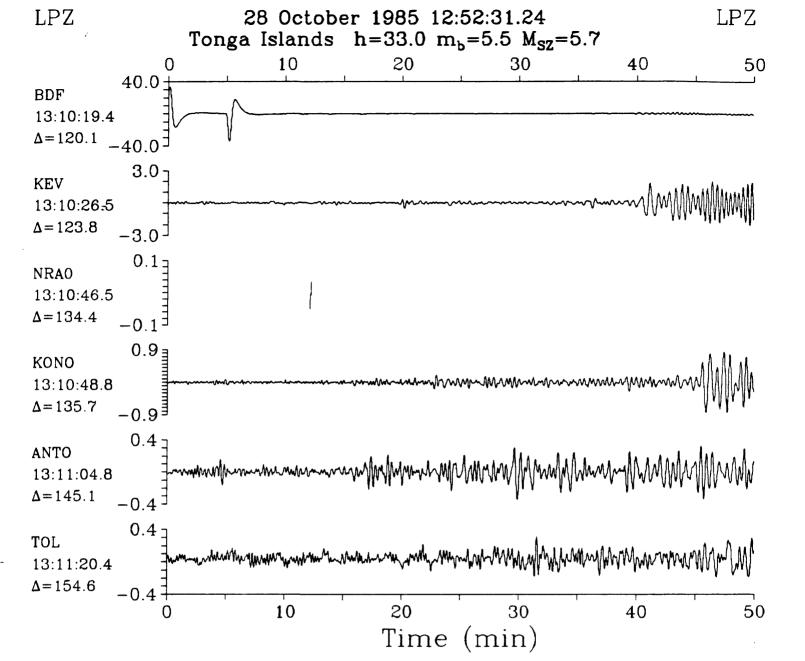


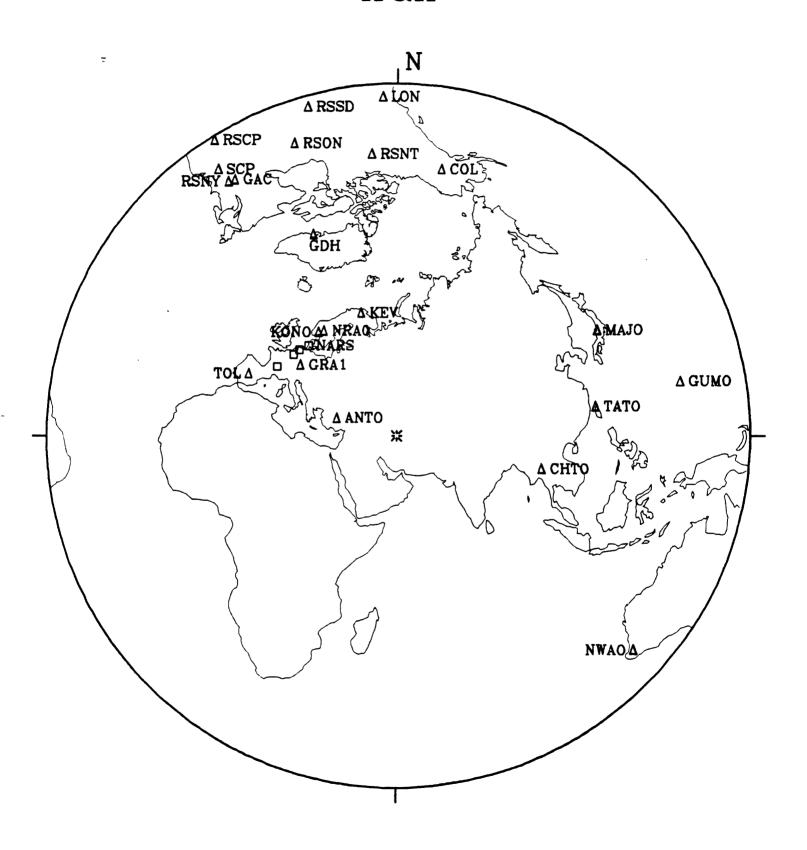


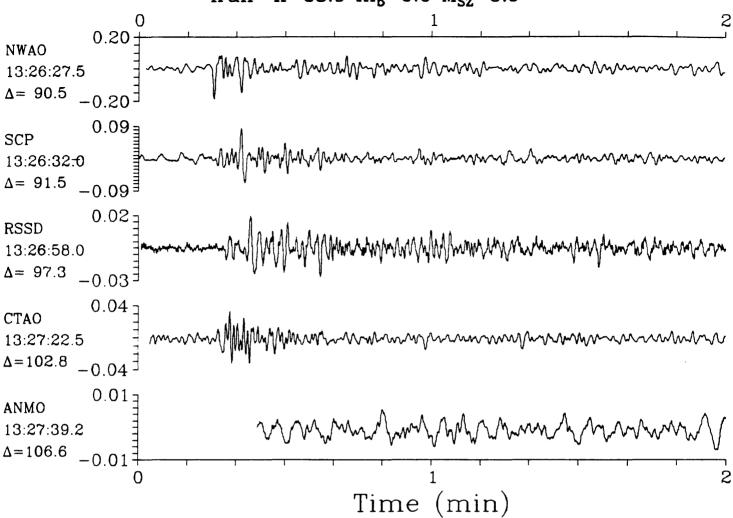


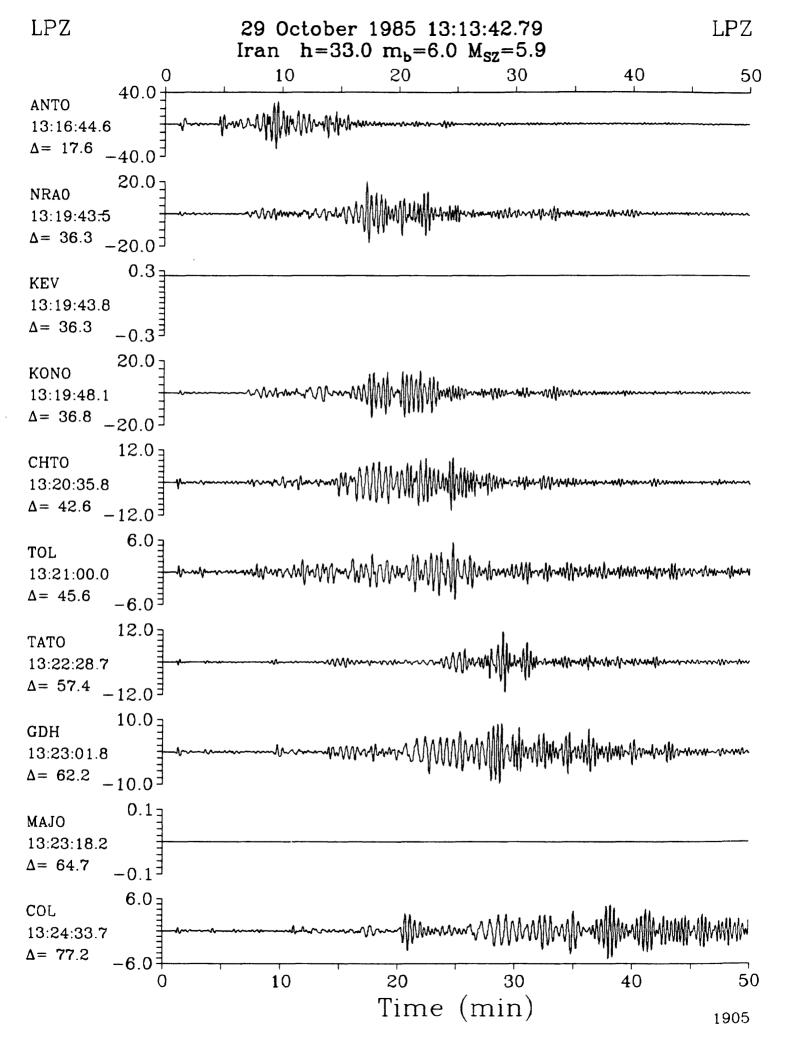


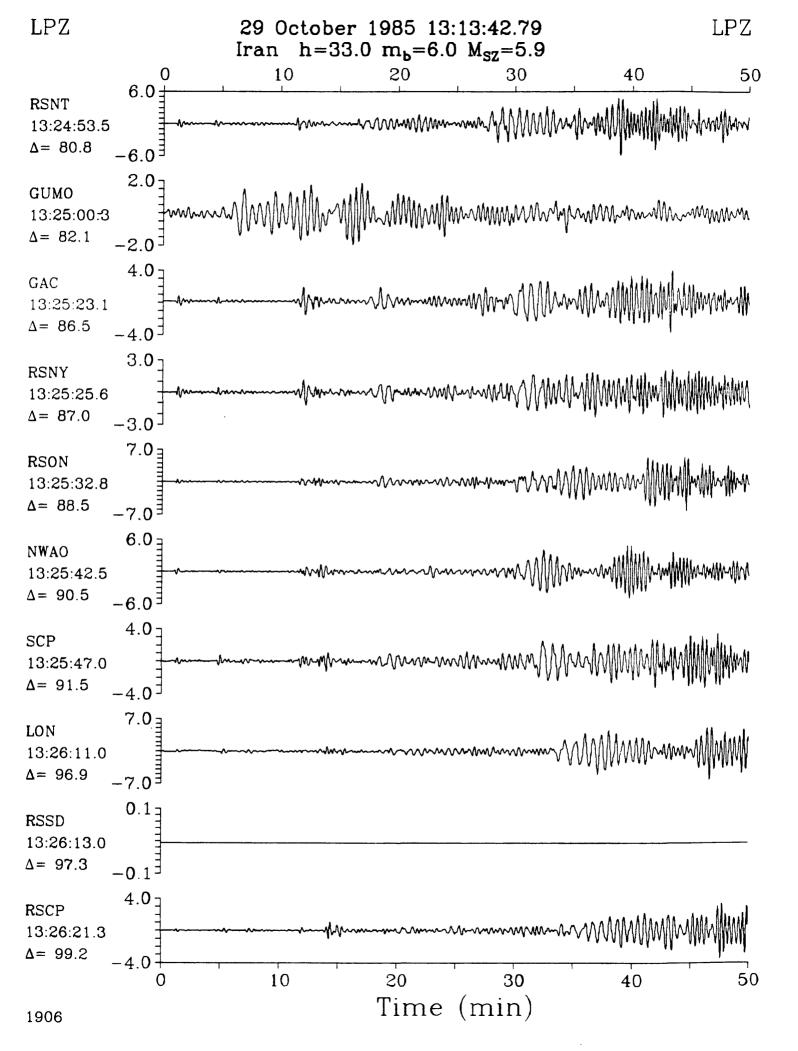

28 October 1985 12:52:31.24 Tonga Islands

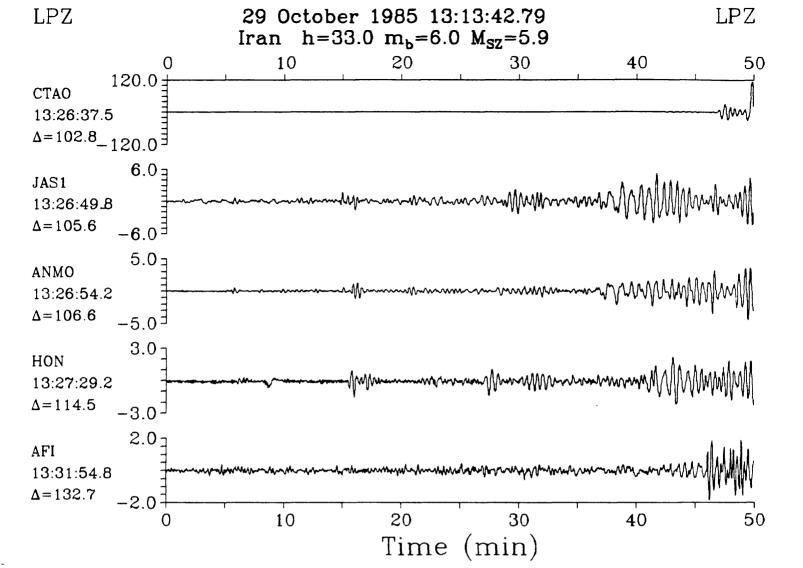


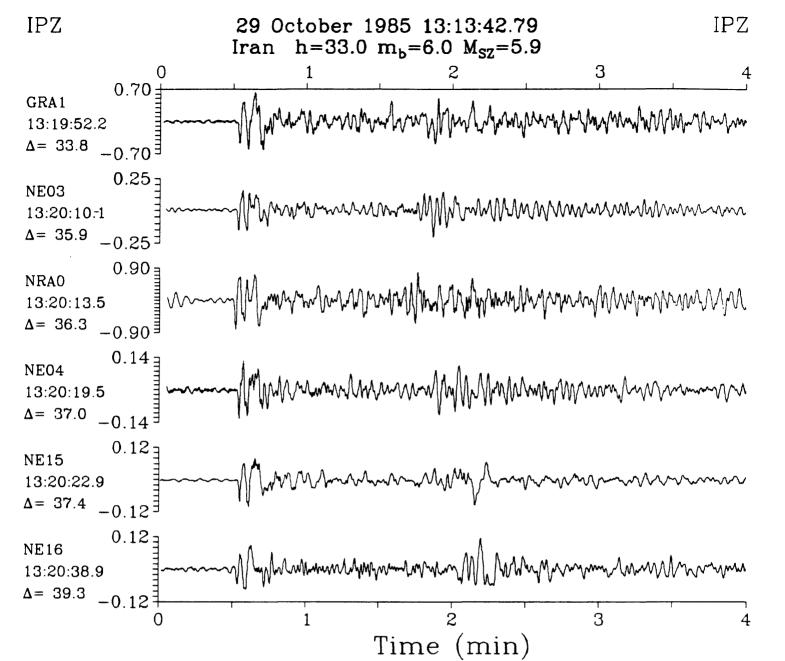


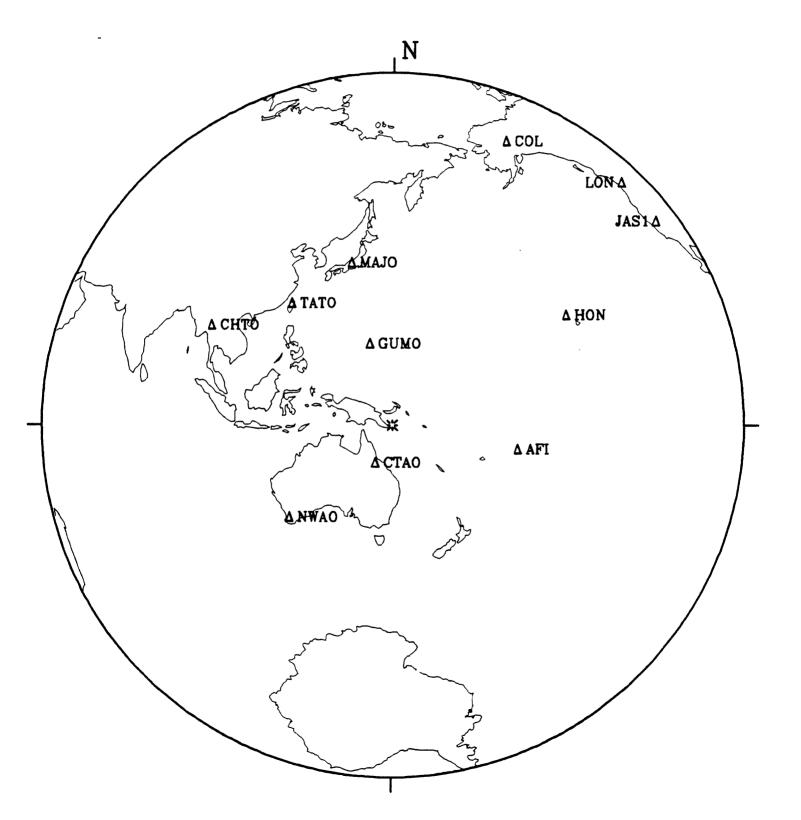

29 October 1985 13:13:42.79 Iran

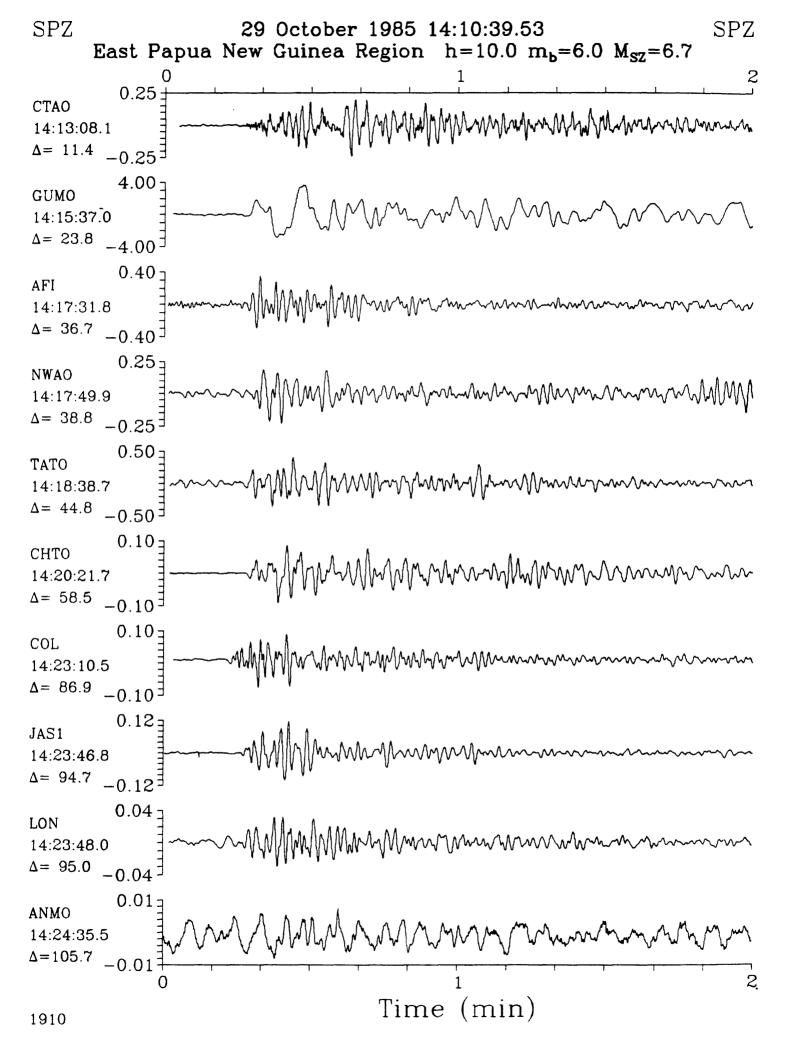


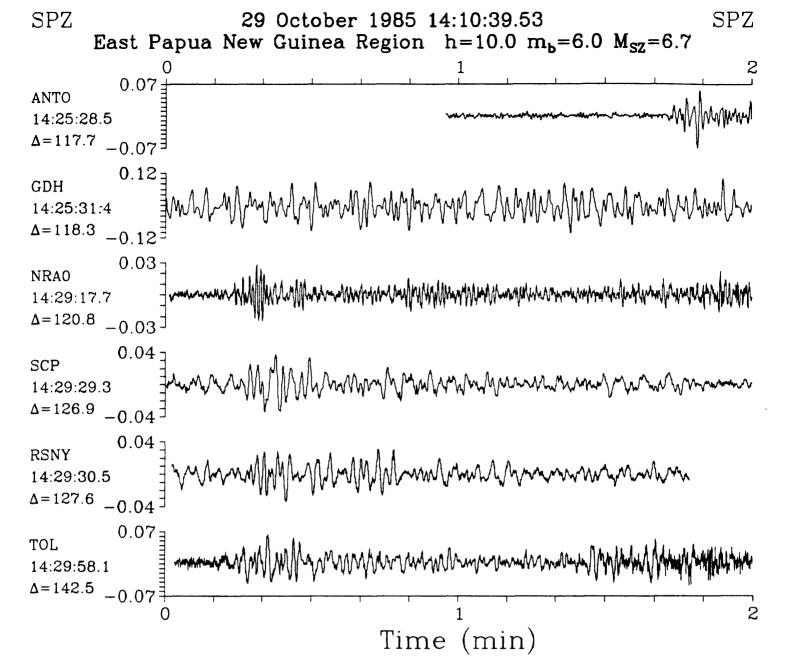

Time (min)

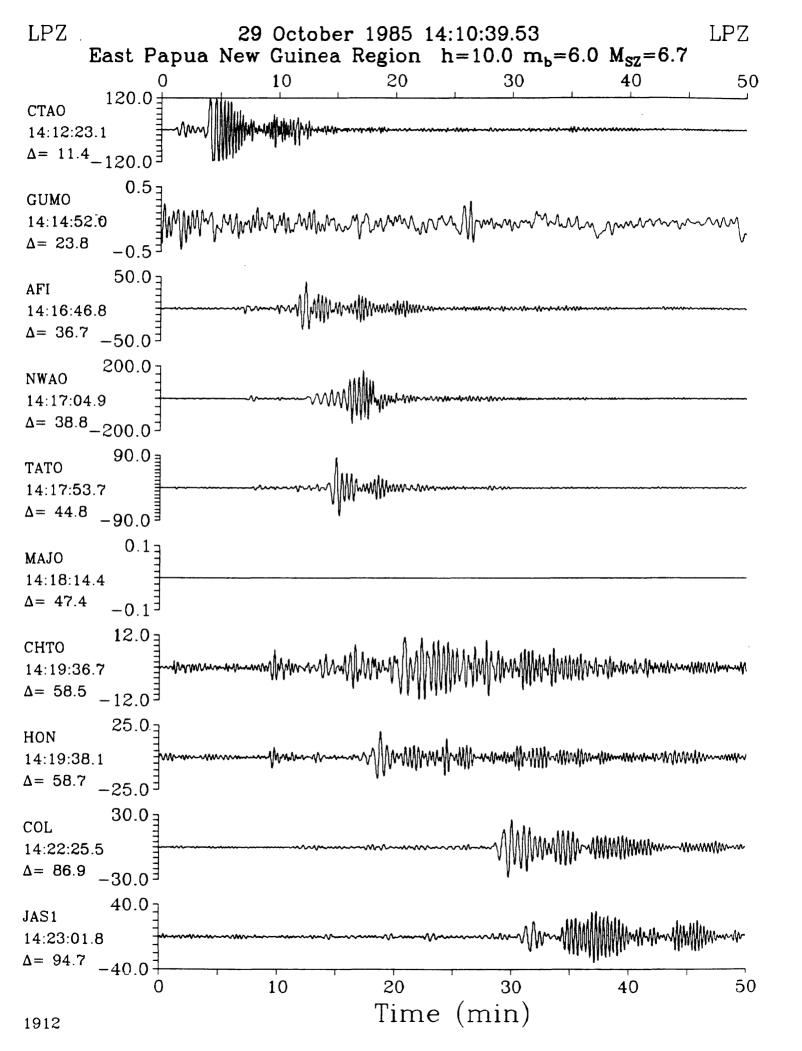

2

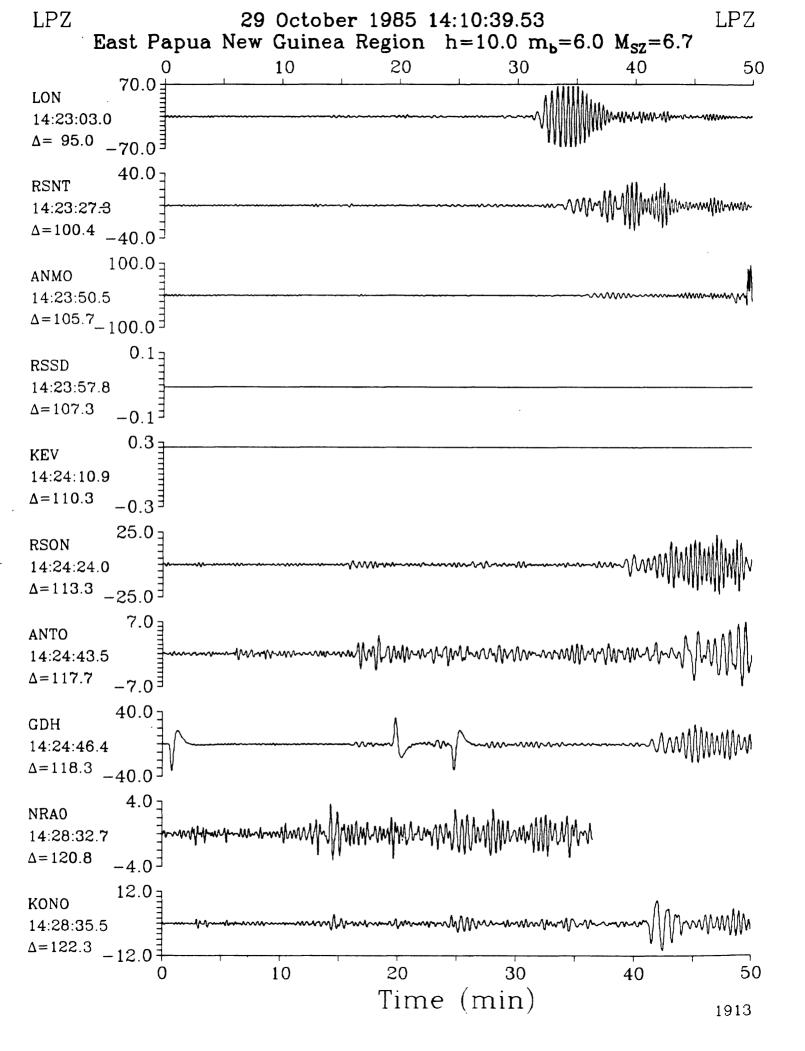

1903

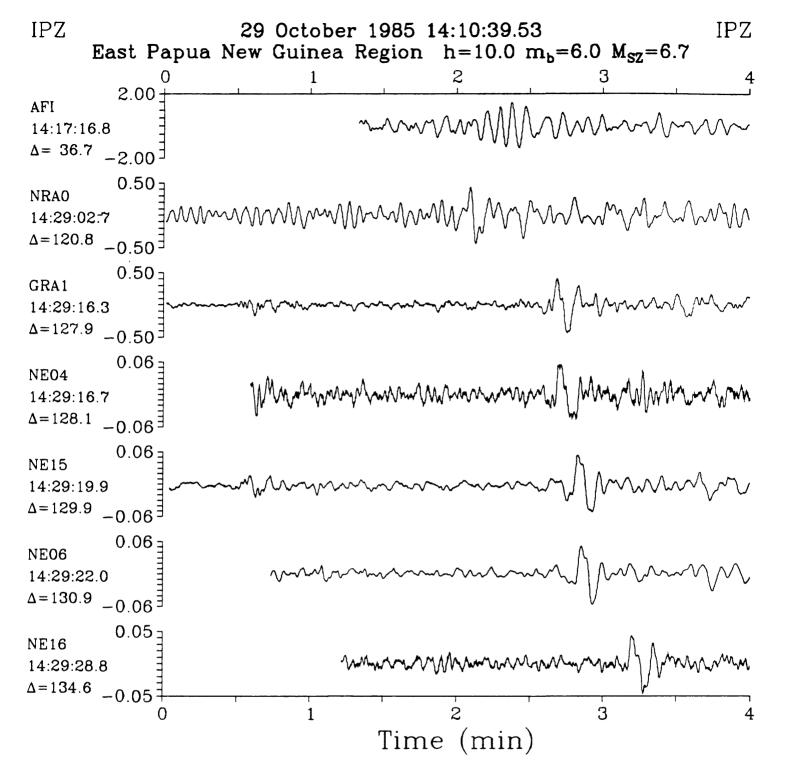


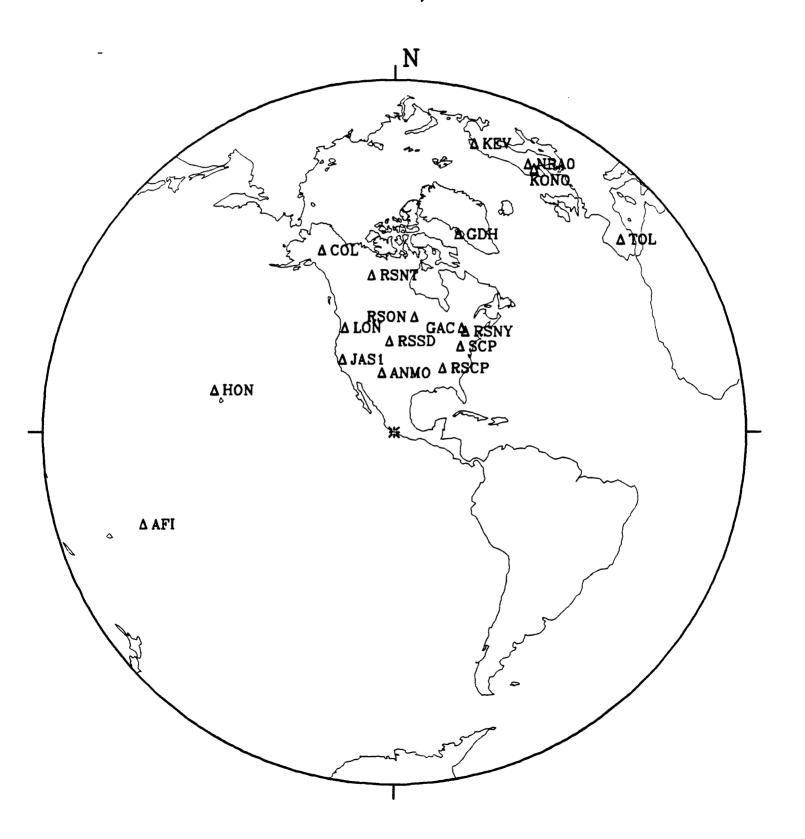


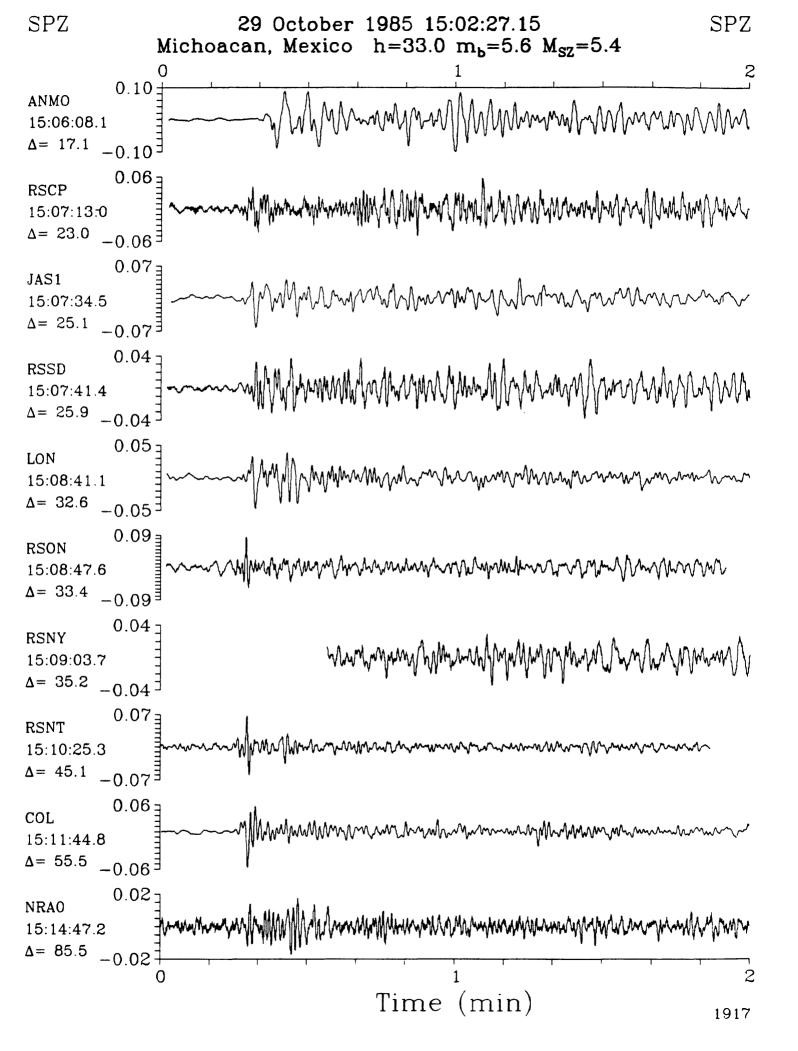


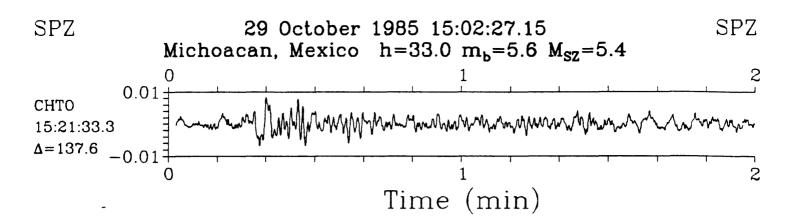


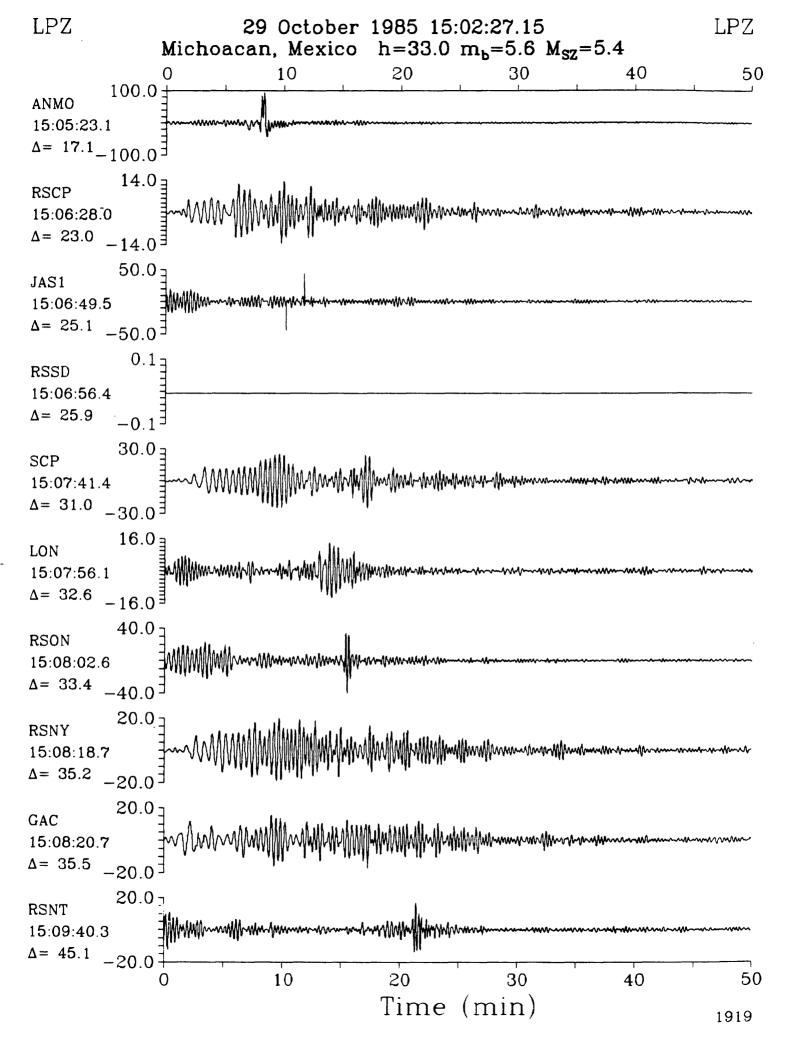

29 October 1985 14:10:39.53 East Papua New Guinea Region

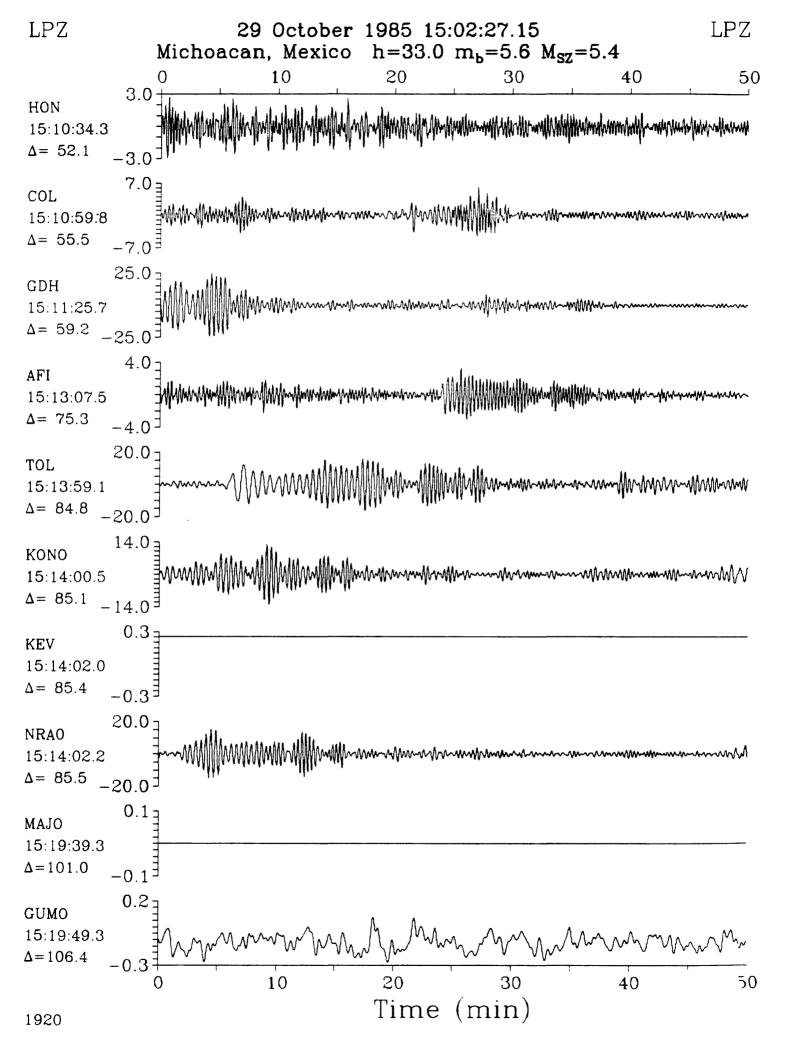


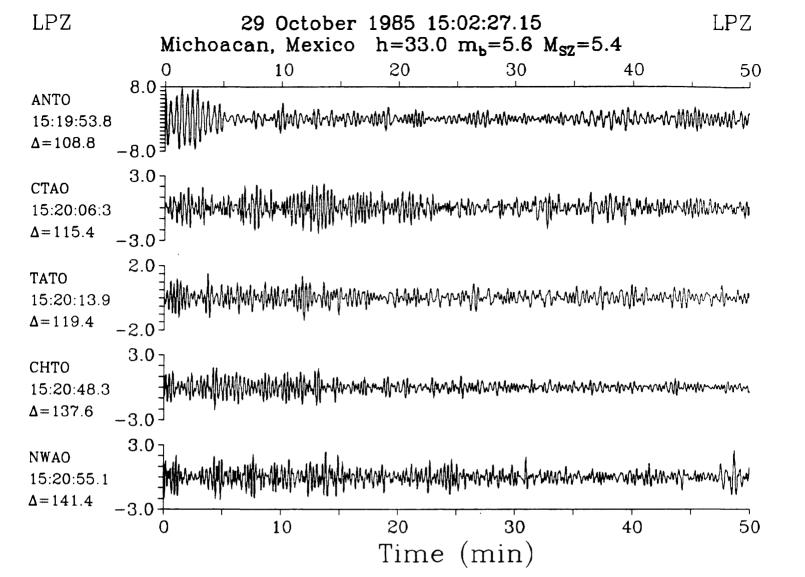


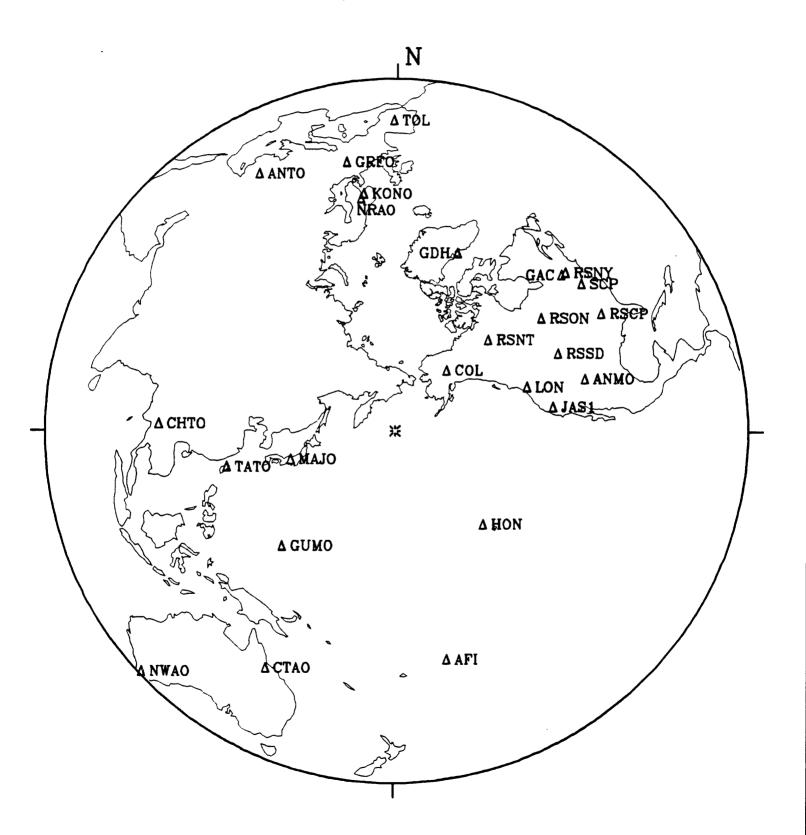


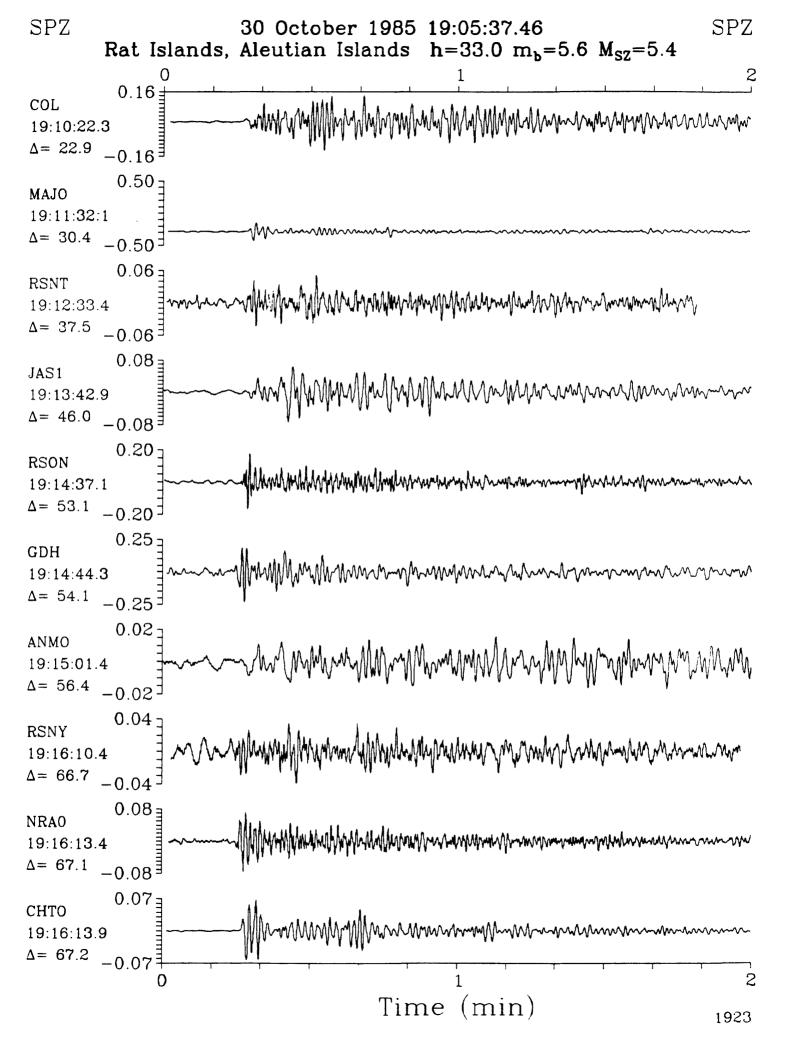


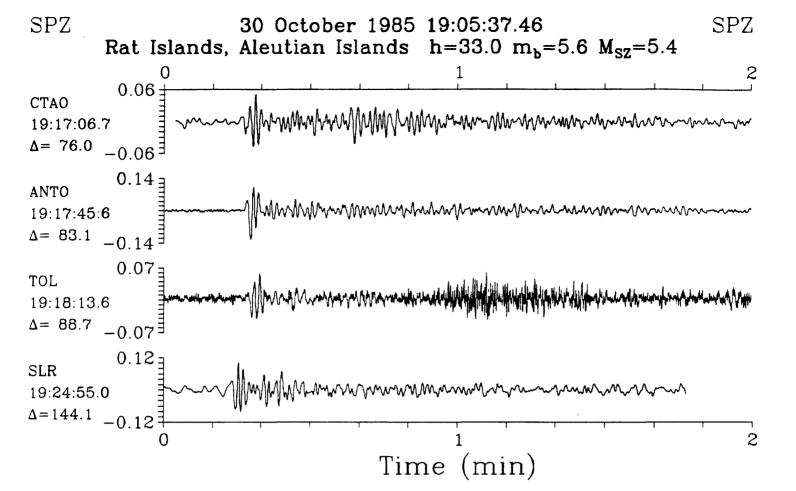


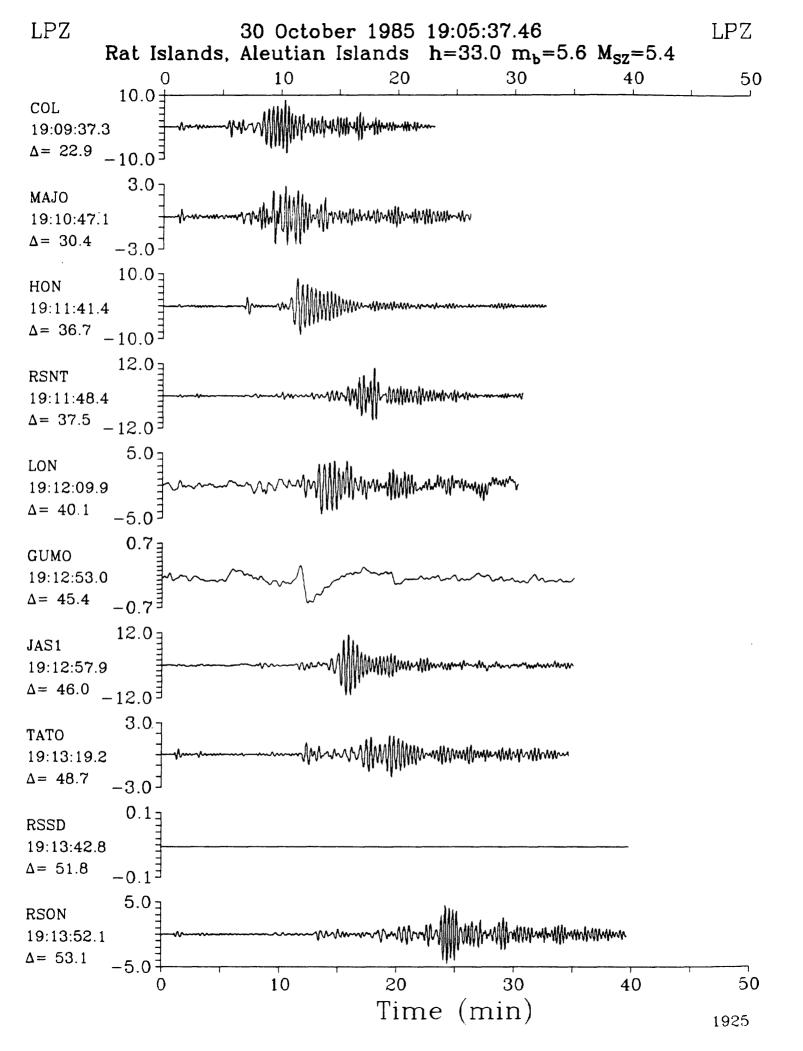

29 October 1985 15:02:27.15 Michoacan, Mexico

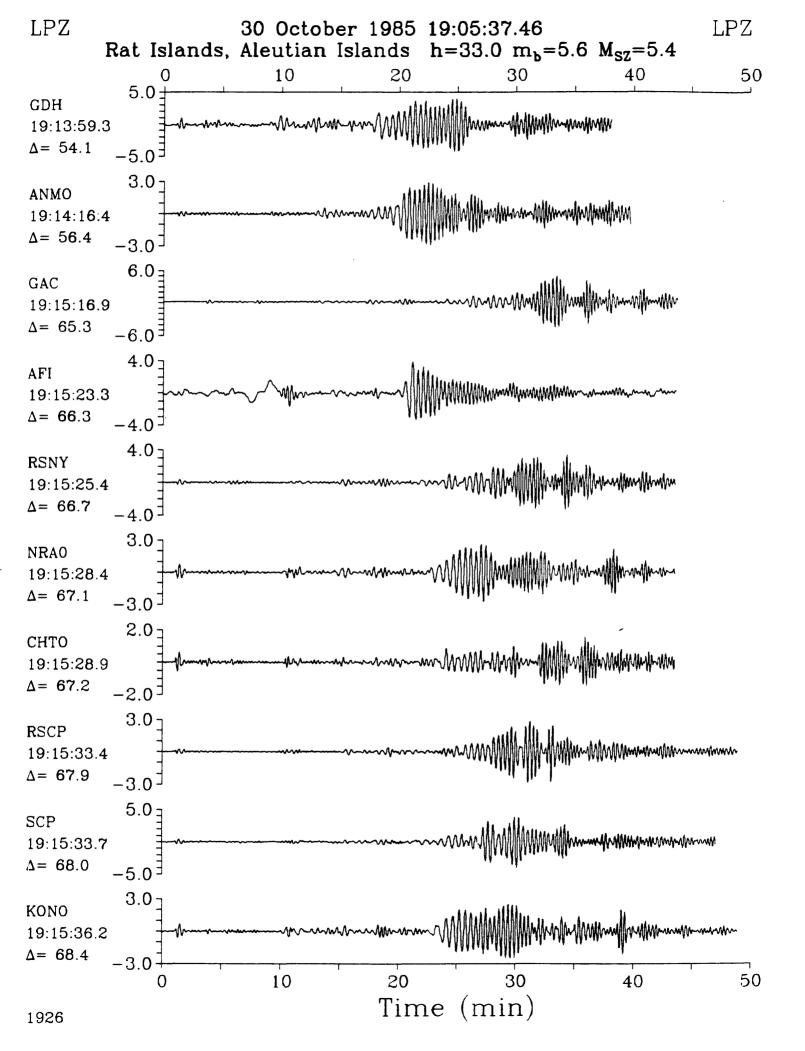


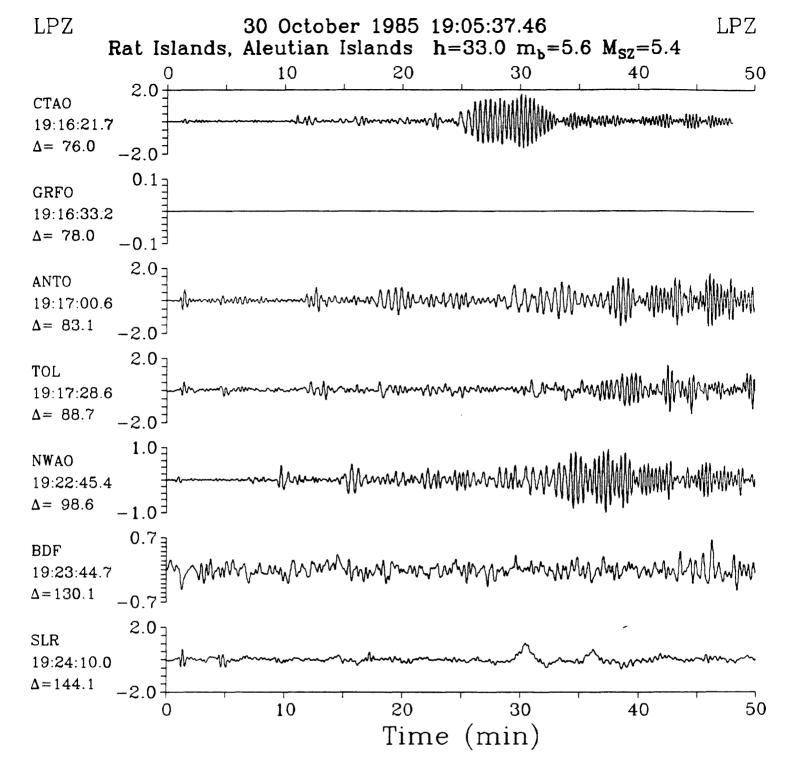


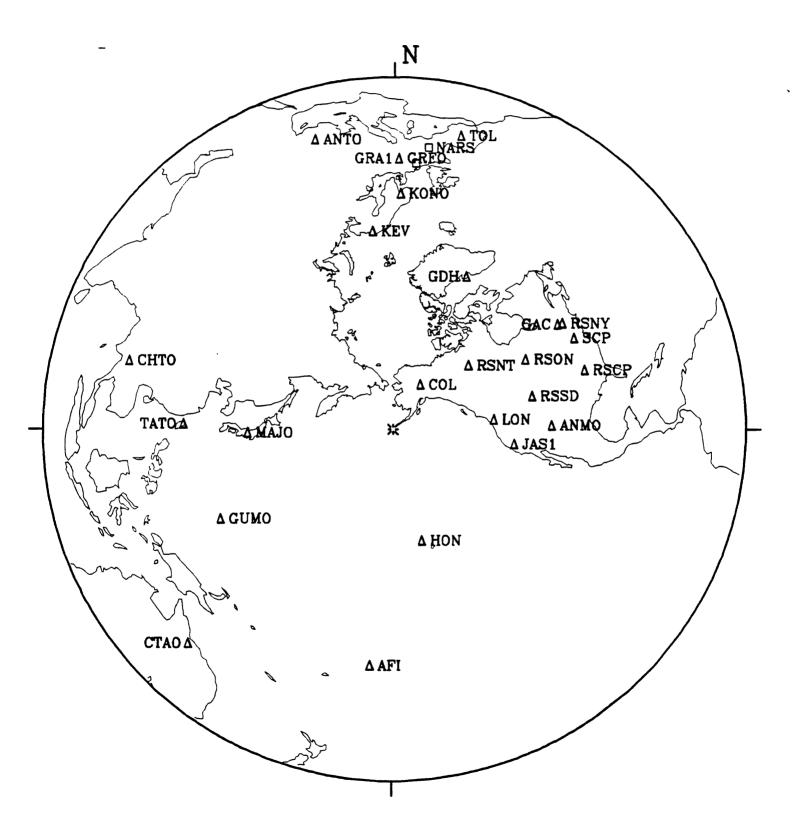


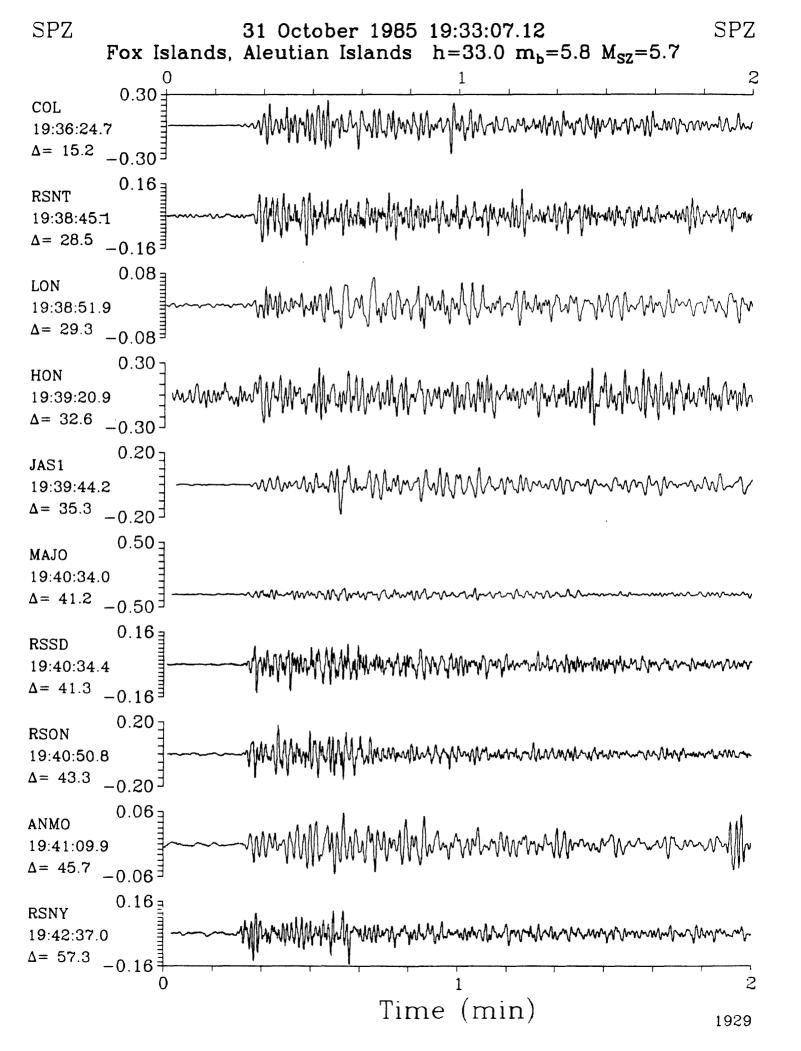


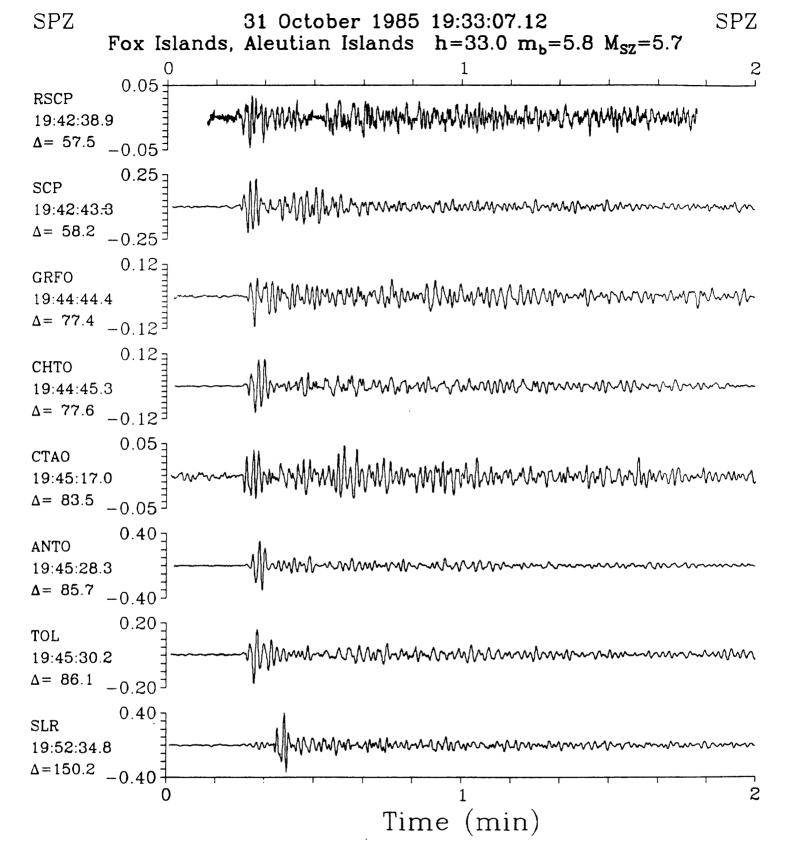


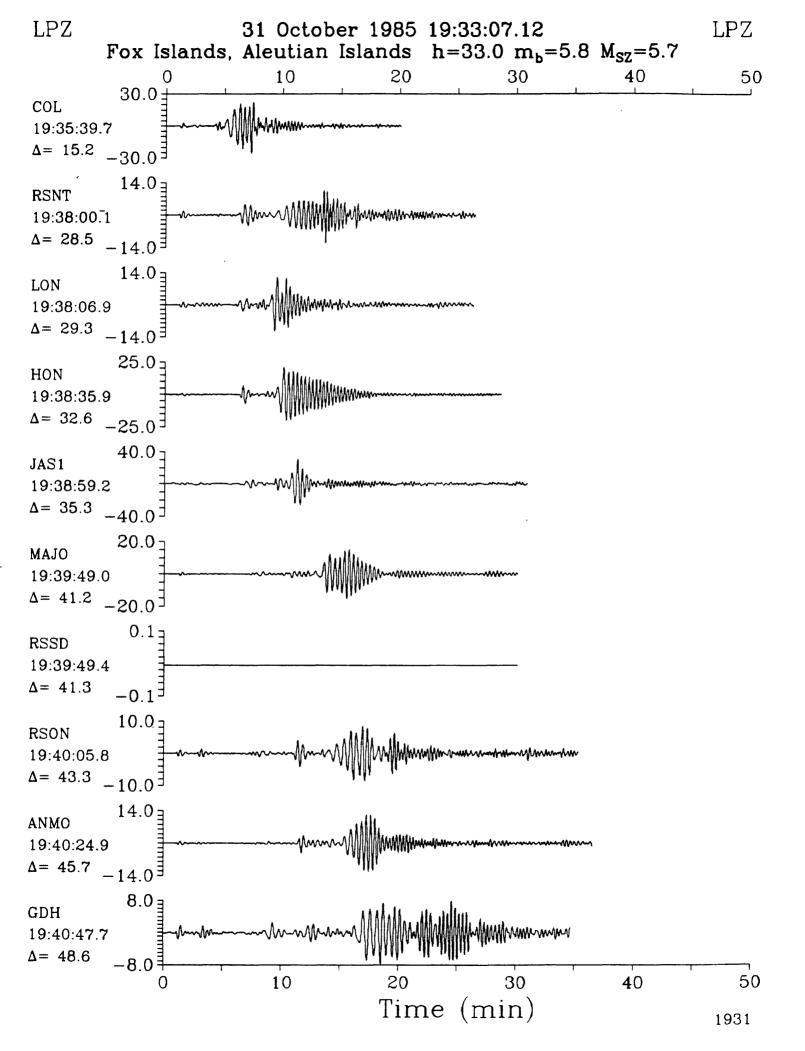

30 October 1985 19:05:37.46 Rat Islands, Aleutian Islands

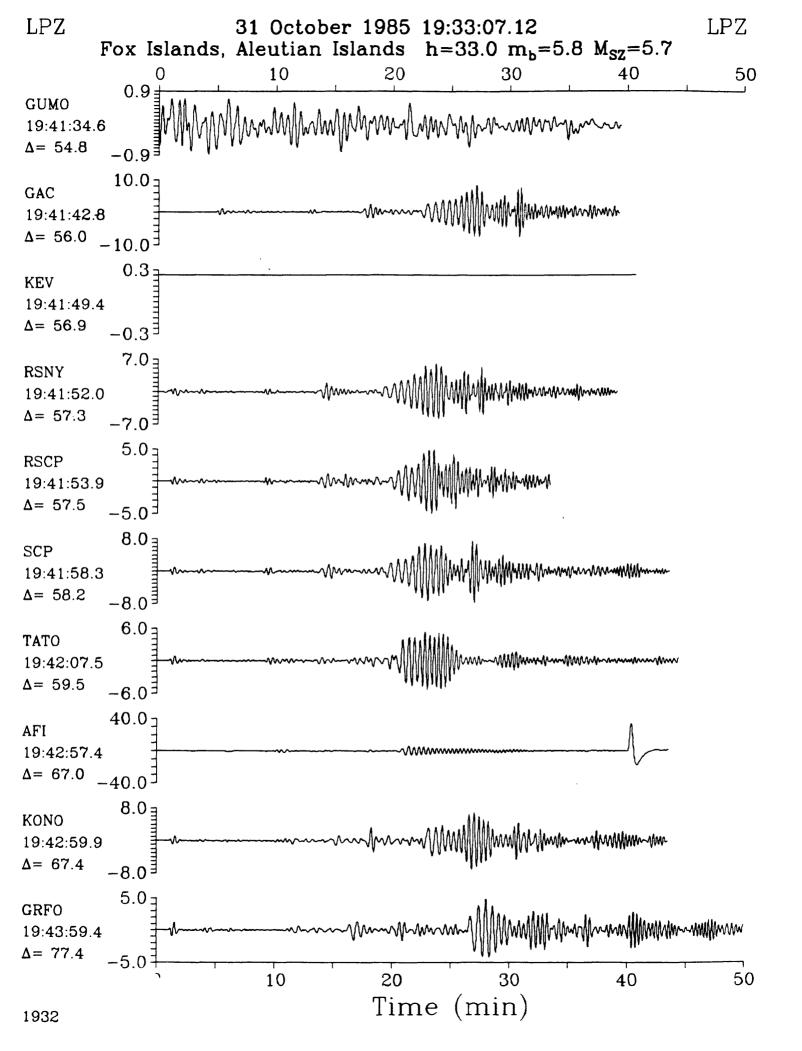


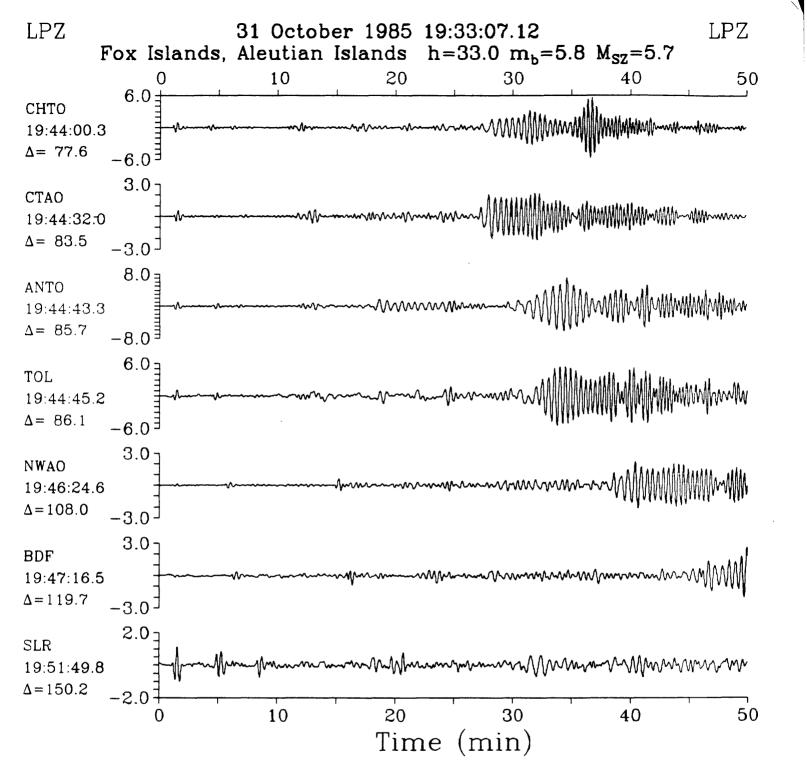


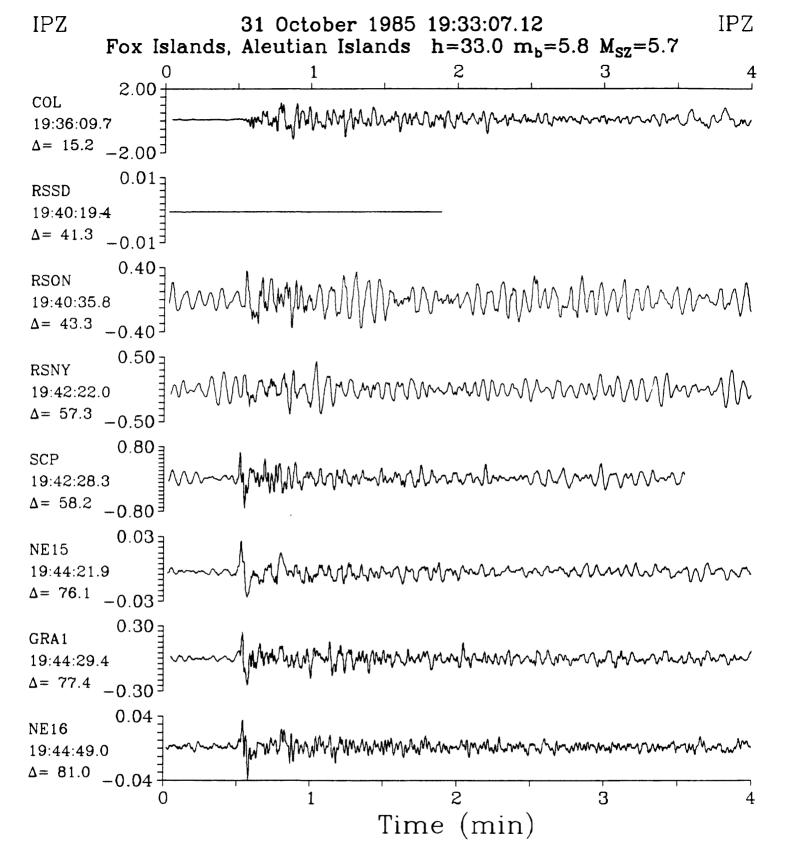


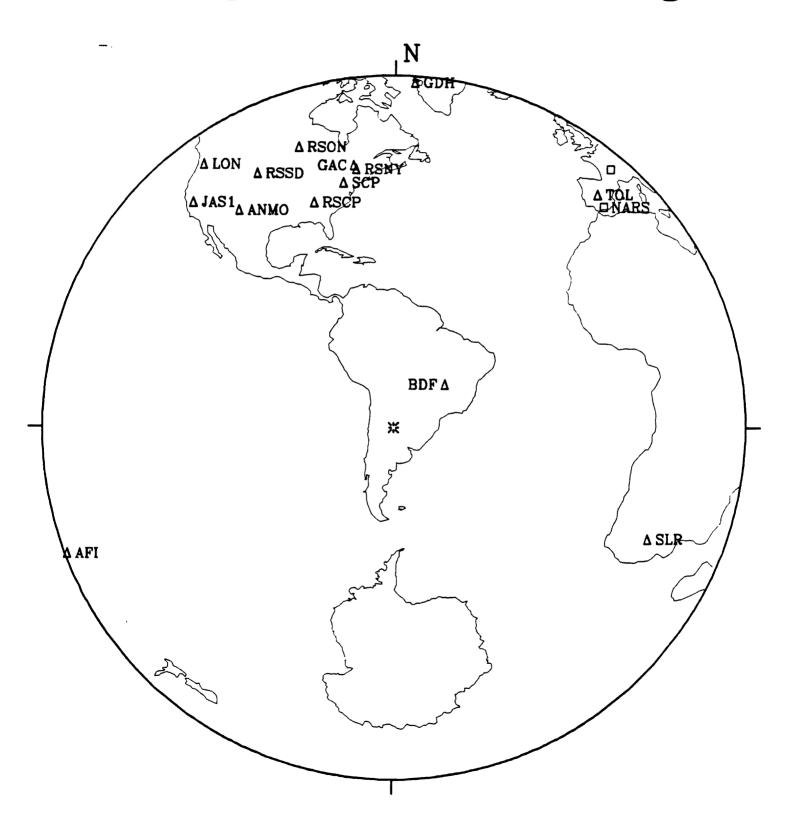


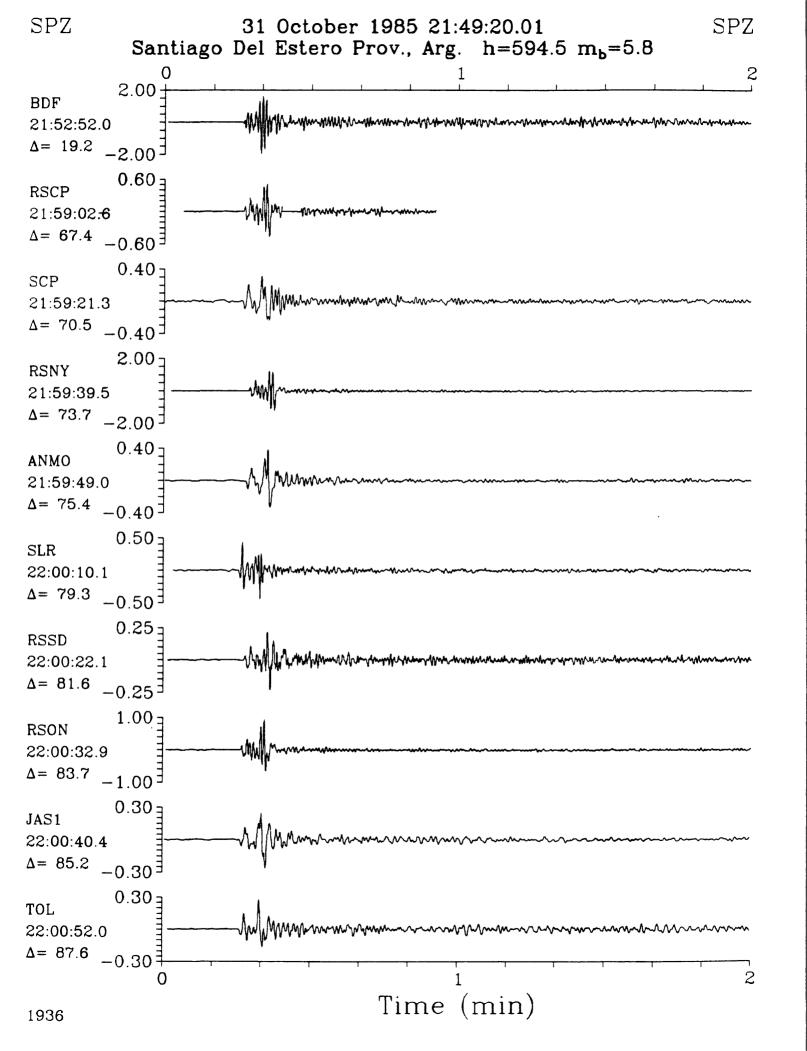


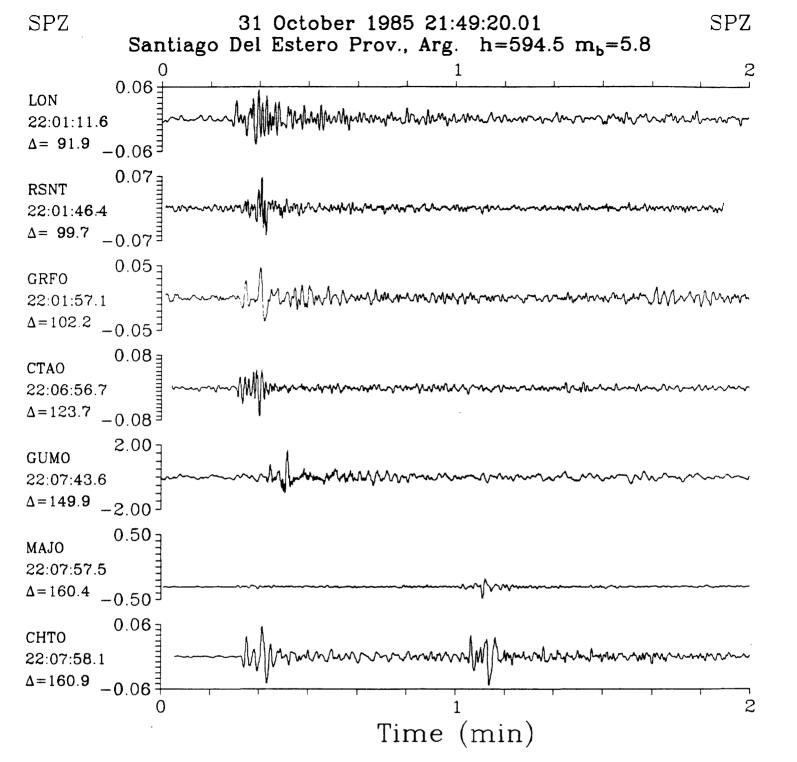

31 October 1985 19:33:07.12 Fox Islands, Aleutian Islands

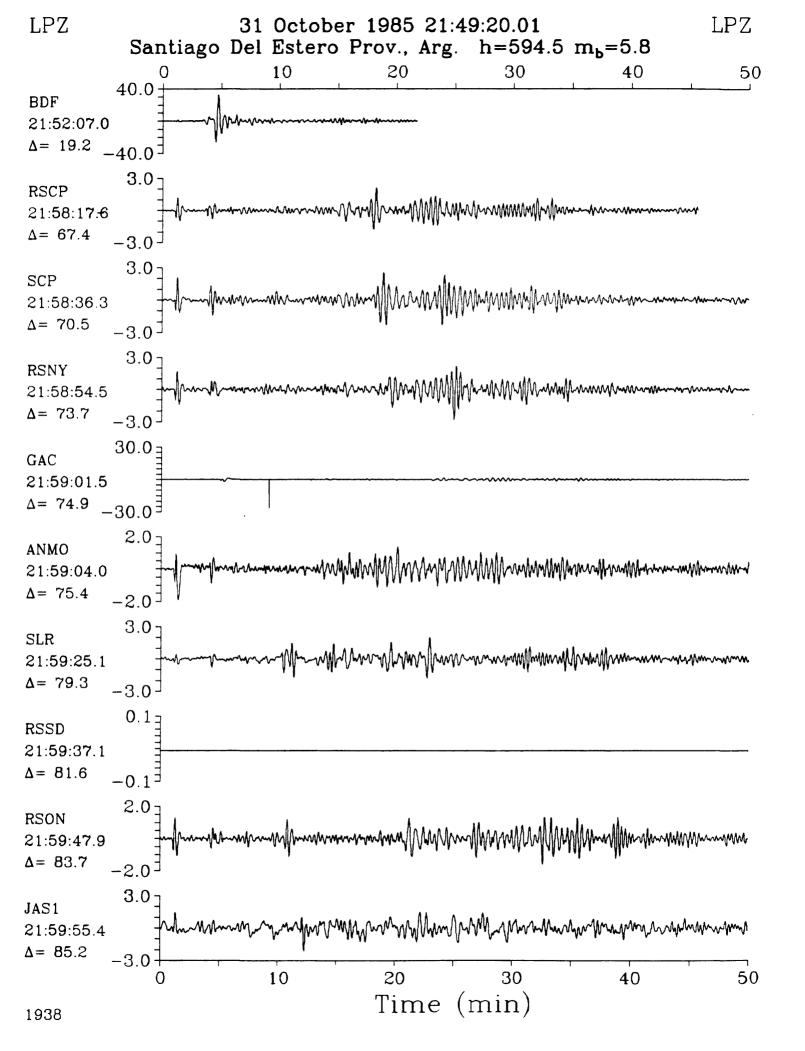


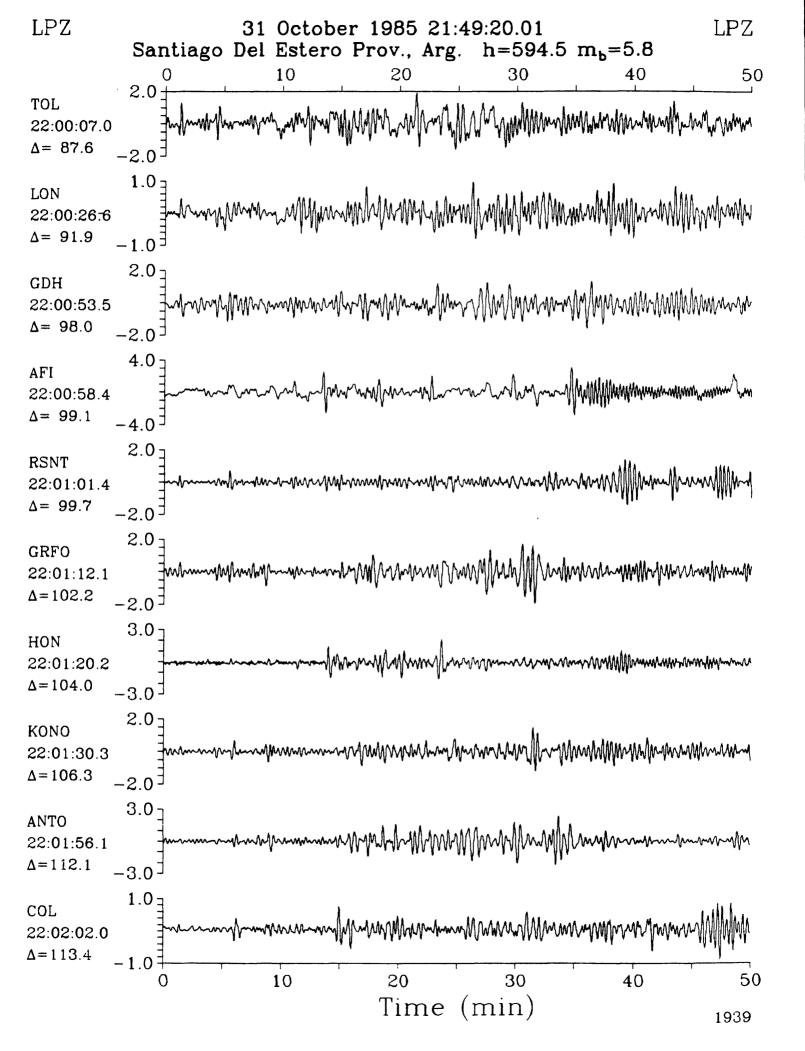


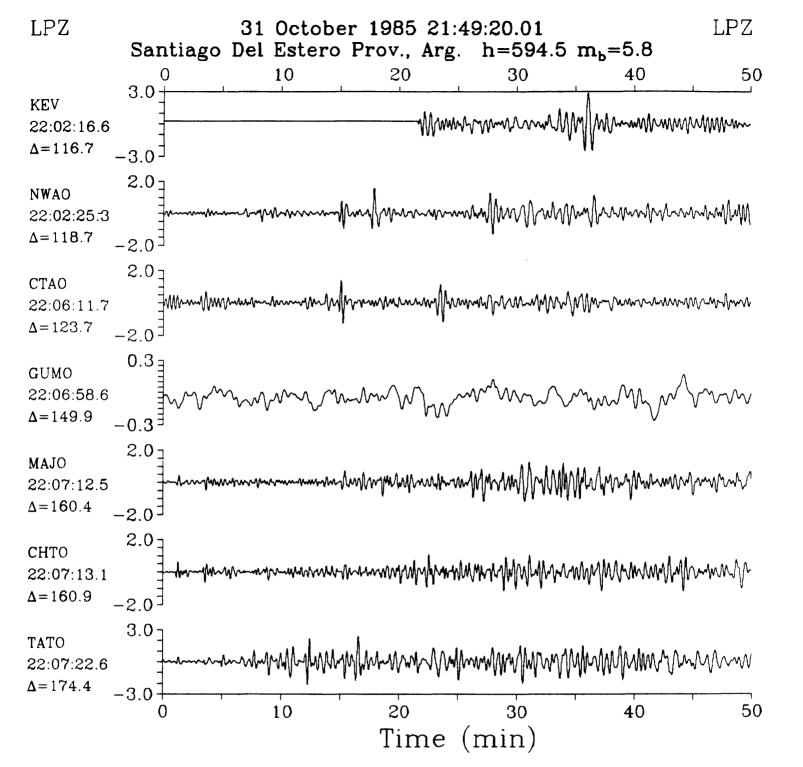


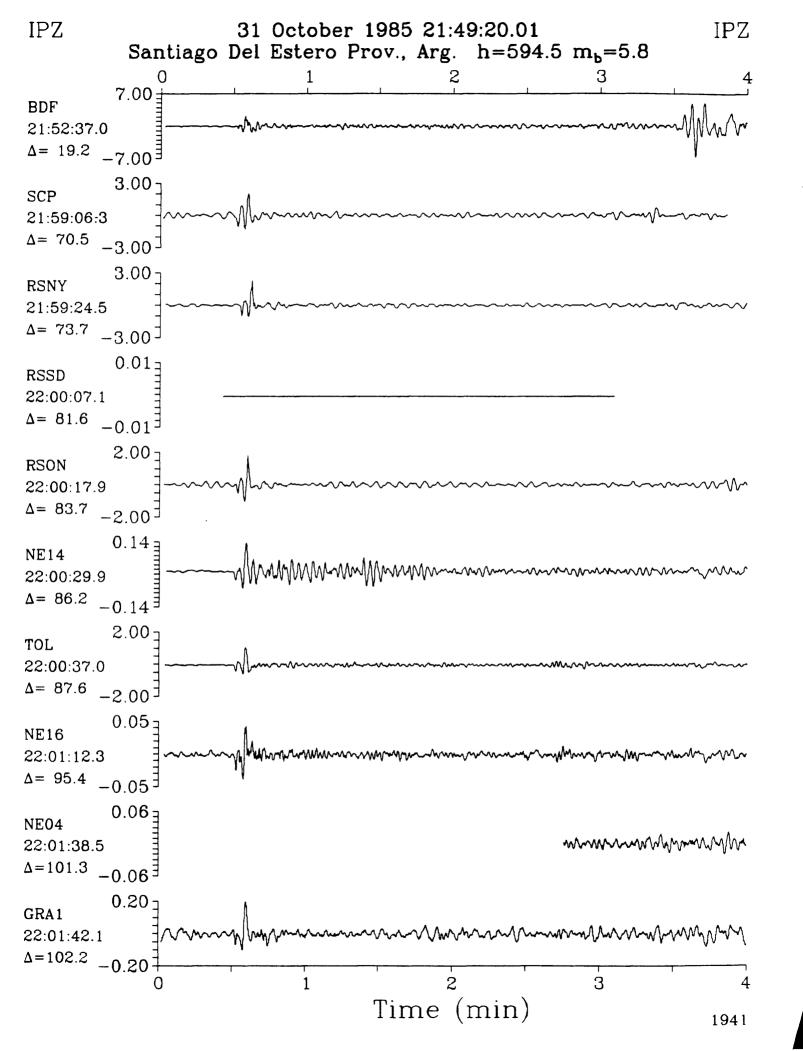







31 October 1985 21:49:20.01 Santiago Del Estero Prov., Arg.





RESULTS OF A PREIMPOUNDMENT WATER-QUALITY STUDY
OF SWATARA CREEK, PENNSYLVANIA

By David K. Fishel and John E. Richardson

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 85-4023

Prepared in cooperation with the

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES, BUREAU OF STATE PARKS

Harrisburg, Pennsylvania

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey, WRD P.O. Box 1107 Harrisburg, Pennsylvania 17108-1107 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 234-5888)

CONTENTS

Abstract	
Introduction	-
Purpose and scope	_
Proposed Swatara Creek Reservoir	_
Previous studies	_
Location of study area and sampling sites	-
Factors affecting water quality of Swatara Creek Reservoir study	
area	_
Climate and precipitation	
Topography, geology, and soils	_
Land use and population	_
Streamflow	-
Data Collection and Methodology	_
Streamflow data	-
Water-quality data	
Hydrology of Swatara Creek	
Streamflow	_
Physical and other related characteristics	
Sediment	
Suspended sediment concentrations and loads	
Particle-size distribution	
Chemistry of bottom material	-
Nutrients	
Metals	
Major dissolved ions	-
Part and all and and a house to state a	
Bacteriological characteristics	_
Preliminary estimation of the water quality of the planned Swatara Creek Reservoir	_
Detention time	
Thermal and chemical stratification	
Sedimentation	-
Chemical loads and concentrations	
Hypothetical effects of the reservoir on downstream water quality Summary and conclusions	_
·	-
References	
•	
ILLUSTRATIONS	
ITTOSIKALIONO	
Figures 1-2Maps showing:	
1Location of planned Swatara Creek Reservoir	_
2.—Location of Swatara Creek Reservoir study area	-
and sampling sites	
and samhting sifes	_

ILLUSTRATIONS-Continued

Page

Figures 3-4Hydrographs of:	
3Streamflow for Lower Little Swatara Creek at Pine	
Grove (station 01572000) and Swatara Creek above	
Highway 895 at Pine Grove (station 01571919)	•
during storms	9
4Mean daily streamflow for Swatara Creek above	
Highway 895 (station 01571919) and Lower Little	
Swatara Creek at Pine Grove (station 01572000),	1.0
1982 water year	10
5-7Graphs showing:	
5Monthly streamflow for Lower Little Swatara Creek at	
Pine Grove (station 01572000) and Swatara Creek	
above Highway 895 (station 01571919), 1982	
water year	16
6Flow duration curves for Lower Little Swatara Creek	17
at Pine Grove	17
7Relation between instantaneous streamflow at Swatara	
Creek at Inwood and instantaneous streamflow at	
Swatara Creek above Highway 895 at Pine Grove	1/
8-15Graphs showing monthly variation of:	٥,
8Water temperature during baseflow	24
9Dissolved oxygen during baseflow	25
10pH during baseflow	26
11Alkalinity during baseflow	27
12Acidity during baseflow	27
13Specific conductance during baseflow	28
14Chemical oxygen demand during baseflow	29
15Turbidity during baseflow	30
16-17Graphs showing median concentrations of:	25
16Dissolved nitrate, ammonia, and organic nitrogen	
17Total and dissolved aluminum, iron, and manganese	30
18-23Graphs showing:	
18Relation between concentrations of total aluminum	20
and suspended sediment during high flows	20
19.—Relation between concentrations of total iron and	4.0
suspended sediment during high flows	40
20.—Relation between concentrations of total manganese	4.0
and suspended sediment during high flow	40
21Relation between concentrations of total lead and	4.9
suspended sediment during high flows	42
22Median concentrations of total lead, copper, and	4.2
	42
23Stiff diagrams of major ions for Swatara Creek	4.3
Reservoir sampling sites	43

TABLES

		Page
Table	1Precipitation data for Swatara Creek study area	8
	in Pine Grove by the National Oceanic and Atmospheric	8
	3Population and land use changes in Swatara Creek basin, 1960-80	11
	4Physical, chemical, and bacteriological analyses performed on water-quality samples	14
	5Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous discharges 1982 water year	18
	6.—Summary of annual suspended-sediment loads and yields, 1982 water year	32
	7Metals and nutrients associated with bottom material on September 14, 1982	33
	8.—Summary of bacteriological data, 1982 water year9.—Surface-water and water-quality data, July 1981 through	45
	September 1982	54

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEMS OF UNITS (SI)

Multiply inch-pound unit	Ву	To obtain SI unit				
	Length					
inch (in.)	2.540 25.40	centimeter (cm)				
foot (ft)	0.3048	millimeter (mm) meter (m)				
mile (mi)	1.609	kilometer (km)				
	<u>Area</u>					
square mile (mi ²)	2.590	square kilometer (km²)				
Flow						
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)				
million gallons per day (Mgal/d)	0.04381	cubic meter per second (m ³ /s)				
	Volume					
gallon (gal)	3.785	liter (L)				
acre-foot (acre-ft)	3,785 1,233	milliliter (mL) cubic meter (m ³)				
	Mass					
pound per day (1b/d)	0.4545	kilograms per day (Kg/d)				
ton per day, short ton per square mile per year	0.9072 0.3503	megagram per day (Mg/d) metric ton per square kilo-				
$[(ton/mi^2)/yr]$		meter per year [(t/km²)/annum]				
Specific conductance						
micromhos per centimeter at 25° Celsius	1.000	microsiemens per centimeter at 25° Celsius				
(µmho/cm at 25°C)		(µS/cm at 25°C)				
Temperature						
degree Fahrenheit (°F)	C=5/9 (°F-32)	degree Celsius (°C)				
<u>Density</u>						
pounds per cubic feet (lb/ft ³)	16.05	kilograms per cubic meter (Kg/m ³)				

RESULTS OF A PREIMPOUNDMENT WATER-QUALITY STUDY

OF SWATARA CREEK, PENNSYLVANIA

By David K. Fishel and John E. Richardson

ABSTRACT

The water quality of Swatara Creek prior to impoundment by the proposed Swatara Creek Reservoir in south-central Pennsylvania was studied from July 1981 through October 1982. This report, done in cooperation with the Pennsylvania Department of Environmental Resources (PaDER), Bureau of State Parks, presents information on existing water-quality conditions. A discussion of possible water-quality conditions in and downstream from the planned impoundment is also included.

Precipitation measured near the study area at Lebanon, Pennsylvania from October 1981 through September 1982 was 8 percent below normal. for the same period at Swatara Creek at Harper Tavern just downstream from the study area was 15 percent below the average annual flow. Swatara Creek above Highway 895 has been degraded by acid mine drainage. The main inflow to the planned impoundment has 2.1 times the discharge of Lower Little Swatara Creek--a forested and agricultural basin that is also tributary to the proposed impoundment. During the 1982 water year, 17,400 tons of suspended sediment were transported from the study area. About 46 percent of the annual load was transported during 3 days of high flow. Inflows to the planned impoundment from both Lower Little Swatara Creek and Swatara Creek above Highway 895 were poorly buffered. Measured concentrations of alkalinity and acidity were usually less than 10 mg/L (milligrams per liter) and 5 mg/L as CaCO3, respectively. The inflows contain high concentrations of nutrients and metals that would probably stratify in a reservoir. Maximum concentrations of dissolved nitrate and total phosphorus were 2.6 mg/L and 0.31 mg/L, respectively, at Lower Little Swatara Creek; these concentratons are well above those needed for growth of algae. Maximum observed concentrations for total recoverable iron, aluminum, and manganese at Swatara Creek above Highway 895 at Pine Grove were 100,000 μg/L (micrograms per liter), 66,000 $\mu g/L$ and 2,300 $\mu g/L$, respectively.

Large increases in metal concentrations along with simultaneous decreases in pH and increases in acidity confirm that mine drainage continues to degrade the water quality of Swatara Creek and may have a large impact on water quality of the planned impoundment. Iron, lead, copper, and zinc concentrations periodically exceeded the U.S. Environmental Protection Agency (U.S. EPA) criteria for freshwater aquatic life. Concentrations of manganese and lead also exceeded the U.S. EPA criteria for domestic water supplies and human health, respectively.

The water quality of the Swatara Creek Reservoir will depend on characteristics such as (1) the detention time of water in the lake, (2) the timing and extent of thermal and chemical stratification, (3) sedimentation,

and (4) the chemical loading and concentrations in the lake. Each of these characteristics may depend in part, on streamflow.

The impoundment will act as a sediment trap and thus reduce the concentrations of total phosphorus, iron, aluminum, lead, copper, and zinc immediately downstream from the impoundment. Large storm discharges and releases from the hypolimnion of the reservoir to attain the winter-pool level may contain low oxygen concentrations and elevated concentrations of iron, aluminum, lead, copper, and zinc. Unless conservation releases from the multilevel release gates are carefully controlled, low dissolved-oxygen levels and high metal concentrations may degrade the downstream water quality and be detrimental to the aquatic community.

INTRODUCTION

The PaDER (Pennsylvania Department of Environmental Resources), Bureau of State Parks plans to build a multipurpose reservoir in Swatara State Park in southcentral Pennsylvania (fig. 1). The primary uses of the reservoir will be for recreation and as a supplemental water supply for Lebanon and downstream communities. The reservoir's potential use for hydropower generation is also being investigated by the PaDER.

The proposed impoundment is to be built downstream from areas extensively mined for anthracite during the past two centuries. Large amounts of $\operatorname{culm}^{1}/\operatorname{and}$ sediment have been and continue to be transported by Swatara Creek from abandoned and active mines, culm piles and breaker plants. Acid mine drainage from the Swatara Creek headwaters and high nutrient loads from downstream tributaries flow into the proposed impoundment area.

The U.S. Geological Survey, in cooperation with the PaDER, Bureau of State Parks, began collecting hydrologic data in June 1981 to characterize the water and sediment entering the planned Swatara Creek impoundment and to estimate the effect of the impoundment on water quality. Data from the study will be used to design and operate an impoundment that will provide optimum water quality in and downstream from it.

Purpose and Scope

This report describes the results of a study to (1) determine the concentrations of sediment, nutrients, and constituents common to acid mine drainage in the waters of Swatara Creek, and the average annual load of the same constituents transported to the planned impoundment area; (2) determine the concentration of nutrients and metals in the streambed material and soils in the impoundment area; and (3) to estimate the future water quality in and downstream from the impoundment.

^{1/} Refuse coal screenings

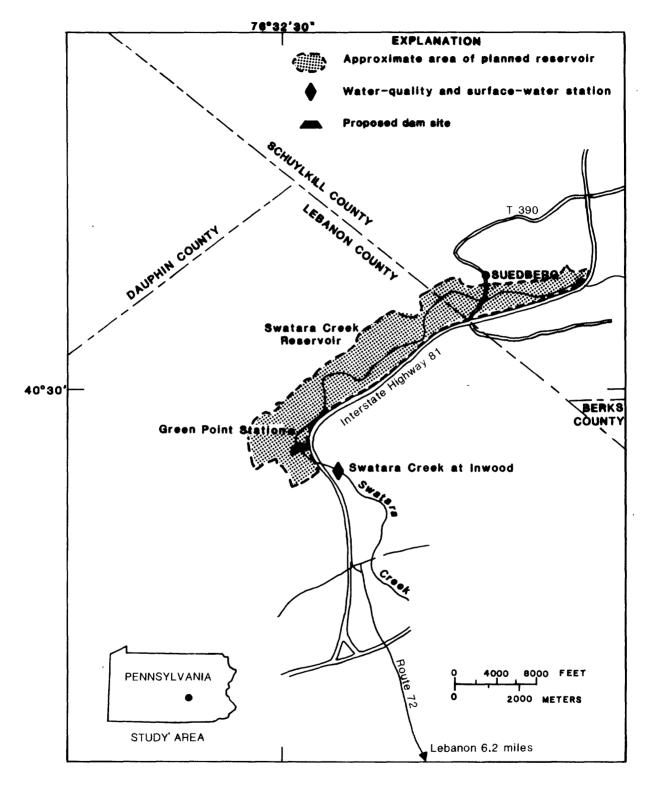


Figure 1.--Location of planned Swatara Creek Reservoir.

The report provides preliminary information on the concentrations of sediment, nutrients, dissolved ions, metals and bacteria transported by Swatara Creek to the planned impoundment area during July 1981 through October 1982. It includes discussions on the relation between chemical constituent concentrations and discharges, streamflow, and suspended sediment. Measured concentrations of nutrients and metals in streambed material also are included. Lastly, a preliminary estimation is made of the water quality of the planned reservoir, and the possible effects of streamflow, and effects of the reservoir on downstream water quality.

Proposed Swatara Creek Reservoir

Plans for Swatara Creek Reservoir began in July 1968 when \$2 million was authorized by the Pennsylvania General Assembly legislation (Act 220) for dam and reservoir construction, to be administered by the Pennsylvania Department of General Services (DGS Project No. 152-1). The initial plans included building a multipurpose recreation and water-supply impoundment. Recreational activities included were boating, swimming, and fishing. Water supply was designated for Lebanon and downstream communities. More recently, designs for the reservoir have added the potential for hydropower generation, however, no additional water storage or release would be allocated for power generation.

The recommended location of the dam shown in figure 1 is at latitude $40^{\circ}28'59"$ and longitude $76^{\circ}32'07"$, approximately 0.6 m1 upstream from Interstate Highway 81. The site is near the village of Green Point Station in Lebanon County.

The dam will be a concrete gravity type with a 445-foot non-gated spill-way (Terraqua Resources Corporation, 1982). The spillway crest, at an elevation of 473.0 feet above sea level, will impound 10,500 acre-ft of water and create a lake area of 775 acres. About 7,000 acre-ft of water in the reservoir, below elevation 468 ft, will be allocated for sediment deposition, recreation, fish, and wildlife. Another 3,500 acre-ft, from elevation 468 to 473 ft, will be designated for a 10 Mgal/d water supply for Lebanon, low flow releases to Swatara Creek, and evaporation. Water may be released from the surface, from two intermediate levels, or from the bottom of the lake to enhance downstream water quality. The approximate reservoir depth at the dam will be 40 ft, and the reservoir length will be about 6.8 mi.

A subimpoundment was recommended by the Pennsylvania Fish Commission to reduce the suspended-sediment load to the reservoir (Hoopes 1981). This structure, with total drawdown capability, could be located near township road 390 at Suedberg. The subimpoundment could retard bedload transport and reduce the amount of suspended metals and nutrients transported to and trapped in the reservoir.

Previous Studies

Several investigators have reported on the hydrology of Swatara Creek basin. These investigations include water-quality studies, basin-wide hydrologic investigations, mine drainage abatement studies, and fisheries surveys.

McCarren and others (1961 and 1964) studied the water quality of the basin. They reported that ground water had a dominant influence on the quality of surface water during low flows. Their field tests also showed all ground water in the basin was non-acidic. However, the surface water above Ravine was found to be acidic. Sources of the acid drainage were identified as overflows from unworked coal mines. Water quality was reported to improve downstream near Pine Grove as acidic water was diluted and neutralized by inflows from Upper and Lower Little Swatara Creeks. Their study determined that a high percentage of the sediment load carried by streams in the Swatara Creek basin is transported during a few storms each year.

Stuart and others (1967) evaluated the hydrologic system of the Swatara Creek basin. Eight hydrologic zones, based on runoff, natural use of the water, and chemical characteristics of the water were defined in their study. Boundaries of the zones were generally the same as those for geologic formations transecting the basin.

Berger Associates Inc. (1972) determined sources and amounts of mine drainage entering the Swatara Creek headwaters. Their study identified five abandoned deep-mine pool overflows as the primary source of acid mine drainage in a 14.9-mi² area. The combined average acid discharge for the five overflows was 5,909 lb/d. Coal mine refuse piles were the second largest source of acid, and strip mines were the third largest source.

Potter and others (1976) surveyed fishes of the Swatara Creek as part of a study to determine effects due to operation of Three Mile Island Nuclear Station on aquatic life in the Susquehanna River. The surveys found no fish above Swatara Creek at Ravine where pH values below 6.0 were measured. They concluded that the moderate to low diversity indices throughout the Swatara drainage basin was probably due to poor water quality, and that the headwaters were biologically degraded by iron compounds, mine drainage, and coal dust.

Location of Study Area and Sampling Sites

The 169-mi² watershed for the Swatara Creek Reservoir lies in Schuylkill and Lebanon Counties in southcentral Pennsylvania (fig. 2). The headwaters originate in Broad Mountain and flow southwesterly about 29 mi before reaching Inwood, just below the proposed dam.

Streamflow and suspended-sediment data collection began in July 1981, and chemical-quality data collection began in December 1981 at three sites. Two of the sites were selected upstream of the proposed dam to characterize discharges entering the impoundment area. The most upstream site is on the mainstem of Swatara Creek, 0.3 mi. upstream from Highway 895 at Pine Grove. The predominant land use in this 72.6-mi² drainage basin is coal mining. The second site is on Lower Little Swatara Creek at Highway 501, about 0.6 mi. upstream from the confluence with Swatara Creek. This basin area is 34.3 mi² and is mostly forest and agriculture. A third site is located at Inwood, 11 mi. below the confluence of Swatara and Lower Little Swatara Creeks about 0.8 mi. downstream from the proposed dam. Data collected from this site reflect the suspended sediment and chemical constituents transported by Swatara Creek downstream of the impoundment prior to reservoir construction.

Bottom-material samples were collected from the streambed at three additional sites (fig. 2) on Swatara Creek. These sites are within the proposed impoundment area, and data at these sites will be used to characterize the initial chemistry of the proposed impoundment bottom.

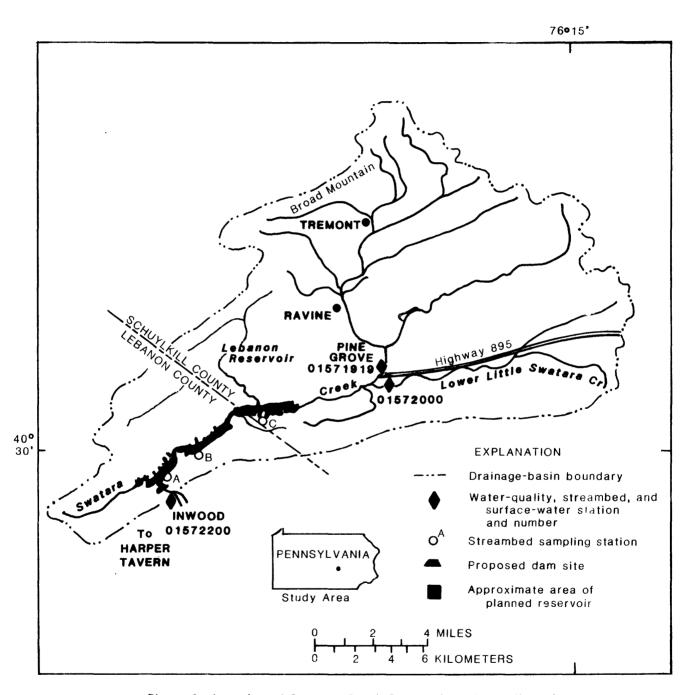


Figure 2.--Location of Swatara Creek Reservoir and sampling sites.

FACTORS AFFECTING WATER QUALITY OF SWATARA CREEK RESERVOIR STUDY AREA

Climate and Precipitation

Climate and precipitation are two factors which greatly affect the water quality of a stream. Climate is often described in terms of air temperature, which directly affects the water temperature and, therefore, the rates of chemical reactions occurring in a body of water. Warmer temperatures result in faster rates of chemical reactions. Precipitation through its relationship with runoff has a direct effect on water quality. Generally, the greater the precipitation, the greater the amount of runoff that increases chemical-constituent discharges to the streams.

The climate of the study area reflects the temperate conditions in Pennsylvania. Seasonal climatic differences are evident by a growing season beginning in April and ending in October. Air temperatures from winter to spring often differ by more than $100^{\circ}F$ ($56^{\circ}C$). Air temperatures for October 1981 to September 1982 ranged from $-6^{\circ}F$ ($-21^{\circ}C$) to $94^{\circ}F$ ($34^{\circ}C$); the average was $51.7^{\circ}F$ ($10.9^{\circ}C$) at Lebanon. In the middle of the study area, at Pine Grove, the average air temperature for the same period was $49.1^{\circ}F$ ($9.5^{\circ}C$). The annual normal air temperature at Lebanon is $52.1^{\circ}F$ ($11.2^{\circ}C$) (National Oceanic and Atmospheric Administration, 1982).

Precipitation is greatly influenced by the orographic effects of the Appalachian Mountains. Table 1 gives a comparison of precipitation measured at Pine Grove near the middle of the study area in the valley and ridge area, with that measured at Lebanon just south of Blue Mountain and the study area. Precipitation data has not been collected long enough to determine a long-term annual precipitation for the Pine Grove station; however, total precipitation at Lebanon for the 1982 water year was 8 percent drier than that for 1931-60. About 30 percent more precipitation, 11.9 in. was measured at Pine Grove than at Lebanon in the 1982 water year. Much of the difference in total precipitation between the stations resulted from a local storm on August 8, 1982 which dropped 6.5 in. of rain at Pine Grove within 12 hours. A precipitation event of this intensity and duration has a 100-year recurrence interval. February, April, May and June 1982 were wetter than normal with June being 121 percent above normal (8.70 in. of precipitation measured at Lebanon).

Total precipitation for the three storms during which water-quality samples were collected and the antecedent soil conditions for each storm are listed in table 2. Although each storm had nearly the same amount of total precipitation, the streamflow hydrographs in figure 3 indicate gage heights and, therefore, corresponding runoff for each storm varied according to rainfall intensities, durations, and antecedent soil conditions. The sharp rise in gage height at Lower Little Swatara Creek (station 01572000) on February 2, 1982 was due to ice conditions that were present prior to the storm which began on February 3. As a result of the ice conditions, the gage height indicated flow greater than the actual discharge; Swatara Creek above Highway 895 (station 01571900) had no ice during this particular event.

Table 1.--Precipitation data for Swatara Creek study area [National Oceanic and Atmospheric Administration, 1981-82]

	Pine Grove (inches)	Lebanon (inches)	Lebanon, normal- 1931-60 (inches)	Lebanon, variation from normal (inches)	Lebanon, percent variation from normal
0-4-1 1001	/ 00	0 (1	2 55	0.04	26
October 1981	4.09	2.61	3.55	-0.94	- 26
November	1.34	1.17	3.36	-2.19	- 65
December	2.75	2.10	3.28	-1.18	-36
January 1982	3.37	2.48	3.10	62	-20
February	3.02	3.12	2.59	•53	20
March	2.59	2.94	3.75	81	-22
April	5.43	4.51	3.65	.86	24
May	5.29	4.78	4.23	.55	13
June	8.28	8.70	3.93	4.77	121
July	3.05	2.80	4.39	-1.59	-36
August	9.66	1.30	4.27	-2.97	-70
September	3.29	3.75	3.89	14	- 4
Total	52.16	40.26	43.99	-3.73	- 8

Table 2.--Summary of storm precipitation tabulated from data collected in Pine Grove by the National Oceanic and Atmospheric Administration

Storm	Date	Total precipitation (inches)	Antecedent soil conditions			
1	Fohmung 2 5 1002	1.39	fmann amaund			
L	February 2-5, 1982	1.39	frozen ground			
2	April 26-27, 1982	1.75	preplanting (dry-unplowed)			
3	August 24-26, 1982	1.45	midsummer (dry, vegetative cover)			

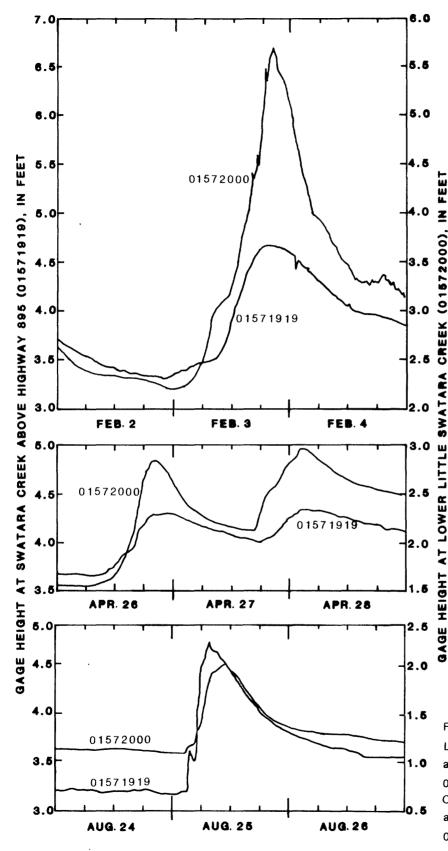


Figure 3.--Streamflow for Lower Little Swatara Creek at Pine Grove (station 01572000) and Swatara Creek above Highway 895 at Pine Grove (station 01571919) during storms.

Topography, Geology, and Soils

The entire study area lies in the Valley and Ridge physiographic province, which is characterized by steep rugged ridges and valley terrain that trends to the northeast above Inwood. Elevations in the area range from 450 ft above sea level near Inwood to about 1,700 ft above sea level near Tremont. The Swatara Creek descends rapidly at a gradient of 78 ft/mi between the headwaters and Pine Grove. The gradient flattens to about 6 ft/mi from Pine Grove to Inwood. Deposition of suspended material occurs in this flat reach. The process of deposition is particularly visible during lowflow conditions in the late summer and early fall.

The geology and soils in the headwaters differ from those downstream and largely influence the water quality of Swatara Creek. In the headwaters, Swatara Creek flows primarily over Paleozoic sedimentary rocks of Pennsylvanian age. The rock layers consist of shale, sandstone, conglomerate, and anthracite. As the rocks weather, the residual and colluvial materials form soils that are then washed into the stream during storms. Soluble materials within the sedimentary rocks and soils include calcium, magnesium, carbonate, sulfate, aluminum, iron, manganese, copper, and phosphate. Their presence in Swatara Creek are reflected by the high dissolved solid concentrations, whereas low pH values, measured upstream of Tremont, indicate the presence of acidic discharges from the anthracite. Between Tremont and Inwood, alternating layers of sandstone, shale, and conglomerate form steep ridges and narrow valleys. Soils here are composed of residue from sandstone and siltstone. Tributaries in this area that contain low concentrations of dissolved solids enter Swatara Creek and begin to dilute and neutralize the acid mine drainage.

Land Use and Population

Changes in land use and population may increase sedimentation and, therefore, degrade water quality. As the study area becomes highly urbanized, the demand for potable water will increase. Previous investigations have predicted urbanization and water use to greatly increase east of Harrisburg and near Lebanon from 1960 to 2000. Population densities were expected to reach 500 people per square mile and water use to rise to 2.0 (Mgal/d)mi² (Stuart and others, 1967). Population in the Swatara Creek basin was expected to increase 60 percent, thus increasing demands for water from Swatara Creek. However, population densities have not reached predicted levels.

Table 3 lists total population and land use for the Swatara Creek basin from 1960 through 1980. The table shows a small shift in land use from agricultural, forested, and public uses to urban and mining uses as population increased 6 percent from 1960 through 1980. Note also that population increased by 59 percent for a density of about 349 people per square mile.

Table 3.--Population and land use changes in Swatara Creek basin, 1960-80

		Land use	, as percent of bas	in
		Agricultural	Urban	Mining
		forested,	(residential,	(strip
		and	commercial,	and
Year	Population	public	and industrial)	quarries)
1960 <u>1</u> /	126,200	95.3	3.3	1.4
10702/	156 000			
1970 <u>2</u> /	156,000			
1980 <u>3</u> /	201,100	91.2	6.4	2.4

^{1/} Stuart, W. T., Schneider, W. V., and Crooks, J. W., (1967, p. 18-21).

Streamflow

The effects of streamflow on the water quality of the Swatara Creek Reservoir study area is especially important during periods of high and low flows. The Swatara Creek has a long history of repeated flooding. Streamflow records from 1919-81 indicate that overbank flooding, beginning at a discharge of 5,000 ft 3/s, has occurred 187 times in Swatara Creek at Harper Tavern, 16 mi. downstream of the study area. Floods at Harper Tavern often occur in March, April, and May and are associated with basin-wide frontal storms. Local flooding occurs in the summer and is due to heavy precipitation accompanying local thunderstorms. This was the case during the study on August 8, 1982 when 6.5 in. of rain fell within 12 hours causing extensive flooding of homes and businesses in Pine Grove. Most of the suspended metals and nutrients are transported from the study area during high flows.

Low flows in the study area often occur from August through November. Inflow to the planned impoundment during this period may not be capable of completely exchanging the water in the planned reservoir, and thermal and chemical stratification may intensify. For example, at a typical flow of $40~{\rm ft}^3/{\rm s}$, as recorded during October and November 1981 and September 1982, the planned reservoir would require 204 days for a complete exchange of water.

 $[\]overline{2}$ / Wright, S. K., (1976, p. 58).

^{3/} Commonwealth of Pennsylvania (1982, p. V-25).

DATA COLLECTION AND METHODOLOGY

Streamflow Data

Streamflow data were collected at the three stations shown in figure 2, and are published in the Survey's "Water Resources Data for Pennsylvania, Volume 2, Water Year 1982." Continuous streamflow data were collected beginning July 1981 for Lower Little Swatara Creek at Pine Grove and October 1981 for Swatara Creek above highway 895 at Pine Grove. These gaging stations are equipped with analog to digital-stage recorders and continuous strip-chart stage recorders. A partial-record station was established at Swatara Creek at Inwood in November of 1981.

Stage-discharge relationships were defined at each station by measuring streamflow over a wide range of stream stages including base flow and storm conditions using a Price current meter. Stage-discharge relations were used to determine instantaneous streamflows when water-quality samples were collected. These streamflows were then used to compute chemical constituent discharges.

Streamflow data for Lower Little Swatara Creek and Swatara Creek at Harper Tavern have been collected for 13 and 63 years, respectively. Streamflow records from these stations were used to characterize the flow conditions during the study period.

Water-quality Data

Suspended-sediment data collection began in July 1981 at Lower Little Swatara Creek at Pine Grove and in October 1981 at Swatara Creek above Highway 895 at Pine Grove. Daily suspended-sediment samples were collected manually at these stations during baseflow conditions. During storms, samples were collected more frequently with a U.S. Geological Survey PS-69 automatic pumping sampler. Suspended-sediment samples were collected manually each month and during storms at Swatara Creek at Inwood. During storms at each station, additional samples were collected manually for analysis of percentages of sand and fine particles or for a complete particle-size analysis.

Analyses for suspended sediment were done in the Survey's sediment laboratory in Harrisburg, PA., by methods described by Guy (1969). Daily values for suspended-sediment concentration and discharge were computed using the techniques of Porterfield (1972).

Chemical-quality data collection began in December 1981 at each of the three stations. Samples were collected monthly during base-flow conditions and at selected stages during storms to develop transport curves for chemical constituents. Storms were selected so that the water quality at each station could be related to different phases of the growing season. Chemical-quality samples were collected using depth-integrating samplers and the equal-width increment procedure (Guy and Norman, 1970). Bacteriological and dissolved oxygen samples, and water temperature measurements were taken at the centroid of flow at each station.

Chemical-quality samples were analyzed or preserved for analysis immediately after collection at the sampling location. Field analyses included measurements of water temperature, pH, alkalinity, acidity, specific conductance, dissolved oxygen, fecal coliform, and fecal streptococcal bacteria. Samples analyzed for dissolved constituents were filtered in the field using a 0.45 micron membrane filter mounted in a peristaltic filter assembly. Samples for dissolved organic carbon were filtered through a 0.45 micron silver filter in a stainless steel pressure filtration unit. Bacteriological analyses were done during base flow in the field by techniques described by Greeson and others (1977). Bacteriological samples collected during base flow and storms also were packed on ice and delivered to the PaDER, Bureau of Laboratories in Harrisburg, PA for analysis within 24 hours of sample collection. Table 4 lists the physical, chemical, and bacteriological analyses performed on water-quality samples.

Statistical analysis of water-quality data was performed using the computer package "Statistical Analysis System" (Helwig, 1978). Basic univariate statistics for water-quality characteristics were calculated, including maximum, minimum, and median concentrations, and maximum and minimum instantaneous discharges. Preliminary regression statistics using the least-squares method were computed for constituents determined to be normally distributed and whose means and variances were not directly related. Logarithmic transformations using log (X) or log (X+1) were used when needed to meet the assumption of normal distributions. Chemical constituent hydrographs were plotted to determine trends during the study period. Storm hydrographs were used to show relationships between chemical concentrations and streamflow.

HYDROLOGY OF SWATARA CREEK

Water quality is highly variable and either beneficial or detrimental depending on the designated use of the water. Because the water in the proposed Swatara Creek Reservoir is designated for water supply, fishing, swimming, and boating, the impoundment's influence on the physical, sediment, chemical, and bacteriological characteristics of the water will be important. Although no additional water is designated for possible hydro-power generation, current plans call for an intake which will draw water from the bottom of the reservoir for this function; therefore, the impact of this operation on the water-quality characteristics also may be important. The results presented in this report are those observed prior to impoundment construction. The data are listed in the back of the report in table 9.

Streamflow

Streamflow records at Harper Tavern were examined to determine flow conditions during the study since the stations in the study area did not have long records. Annual flow for 1982 at Swatara Creek at Harper Tavern was 15 percent below the average annual flow computed for the previous 63 years. Based on this analysis, it is assumed that the annual flows measured in the study area during the 1982 water year are about 15 percent less than that expected over a long period.

Table 4.-- Physical, chemical, and bacteriological analyses performed on water-quality samples

Physical and other related analyses

acidity (mg/L as CaCO₃) alkalinity (mg/L as CaCO₃) oxygen, dissolved (mg/L) pH (units) specific conductance (µS/cm at 25°C) water temperature (°C) chemical oxygen demand (mg/L) turbidity (FTU)

Chemical Analyses

Nutrients (mg/L)

nitrogen, nitrite dissolved
nitrogen, nitrite total
nitrogen, nitrate dissolved
nitrogen, nitrate total
nitrogen, ammonia dissolved
nitrogen, ammonia total
nitrogen, Kjeldahl dissolved
nitrogen, Kjeldahl total
phosphorus, orthophosphate dissolved
phosphorus, orthophosphate total
phosphorus, dissolved
phosphorus, total
carbon, organic

Dissolved ions (mg/L)

calcium
chloride
magnesium
silica
sodium
sulfate
potassium

Metals (µg/L)

aluminum, dissolved
aluminum, total-recoverable
chromium, total-recoverable
copper, total-recoverable
iron, dissolved
iron, total-recoverable
lead, total-recoverable
manganese, dissolved
manganese, total-recoverable
mercury, total-recoverable
zinc, total-recoverable

Bacteriological Analyses

fecal coliform (colonies/100 mL)
fecal streptococci (colonies/100 mL)

Daily mean streamflow hydrographs and monthly streamflow bar charts for Lower Little Swatara Creek and Swatara Creek above Highway 895, shown in figures 4 and 5, reflect the similarity in streamflow characteristics of these two stations. Annual discharge from Swatara Creek above Highway 895 was 2.1 times greater than that from Lower Little Swatara Creek during the 1982 water year. This ratio is nearly equal to the 2.12 ratio for the drainage areas of the two basins, so the discharge per square mile from each stream is about equal. About 47 percent of the annual flows for both stations occurred during April, May, and June. Maximum and minimum monthly flows occured during June and October, respectively, for both stations. Maximum daily flows during the study for both stations occured on June 6; streamflow was 526 ft³/s at Lower Little Swatara Creek and 884 ft³/s at Swatara Creek above Highway 895. Minimum daily flows for both stations occurred in October and were 3.1 ft³/s for Lower Little Swatara Creek, and 21 ft³/s for Swatara Creek above Highway 895.

A flow-duration curve (fig. 6) was computed for Lower Little Swatara Creek based on 14 years of records (1920-32, 1982). The 1982 flow-duration curve is similar to the 1920-32 curve. The maximum daily flow of 526 ft³/s measured at Lower Little Swatara Creek on June 6 will recur less than 0.6 percent of the time based on the flow-duration curve. However, this figure could be slightly higher when a long-term record is considered since Swatara Creek at Harper Tavern annual flow for 1982 was 15 percent below the average annual flow.

Instantaneous flows at Lower Little Swatara Creek were compared for 1982 and the period of record. A maximum instantaneous flow of 1,370 $\rm ft^3/s$ for 1982 occurred on August 8; this flow was only 9 percent less than the maximum flow for the period of record.

Results of regression analysis using the least-squares method show a good relationship ($r^2 = 0.95$) exists between the common logarithm of the instantaneous flow measured at Swatara Creek at Inwood and the common logarithm of the flow recorded at Swatara Creek above Highway 895 at Pine Grove for a range of flows at Inwood from 53.5 ft 3 /s to 1770 ft 3 /s. Figure 7 shows the relation between the flows at the two stations based on 15 measurements over a range of flows. The equation for the regression line in figure 7 based on preliminary data was used to determine the daily discharges at Inwood and is as follows:

$$Log Q_I = 1.1756 (Log Q_{895}) - 0.0286$$
 (1)

where $\log Q_{I}$ = the logarithim of the instantaneous flow of Swatara Creek at Inwood, in ft³/s

1.1756 = the slope of the regression line,

Log Q_{895} = the logarithim of the instantaneous flow of Swatara Creek, above Highway 895 at Pine Grove, in ft^3/s

-0.0286 = the intercept of the regression line

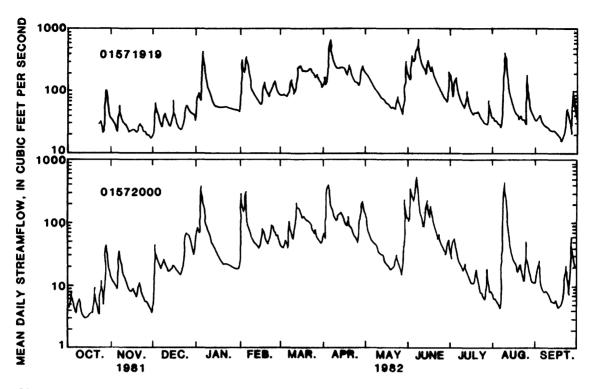


Figure 4.--Mean daily streamflow for Swatara Creek above Highway 895 (station 01571919) and Lower Little Swatara Creek at Pine Grove (station 01572000), 1982 water year.

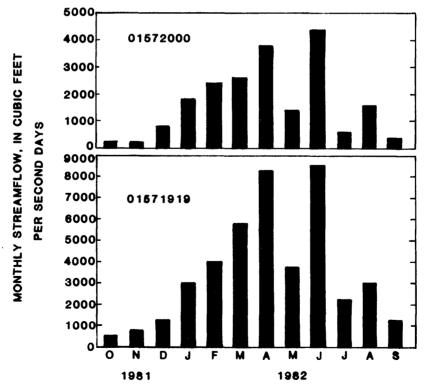


Figure 5.--Monthly streamflow for Lower Little Swatara Creek at Pine Grove (station 01572000) and Swatara Creek above Highway 895 (station 01571919), 1982 water year.

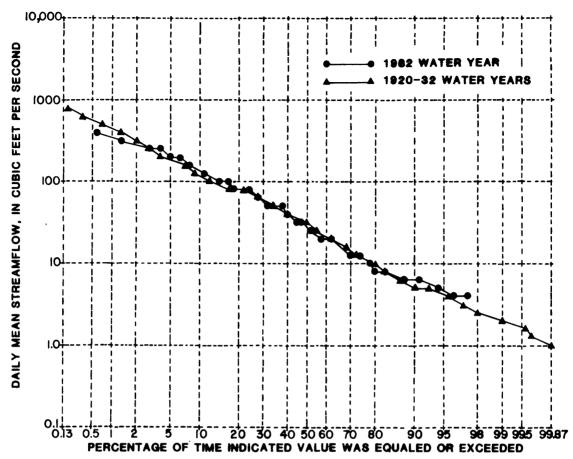


Figure 6.--Flow-duration curves for Lower Little Swatara Creek at Pine Grove.

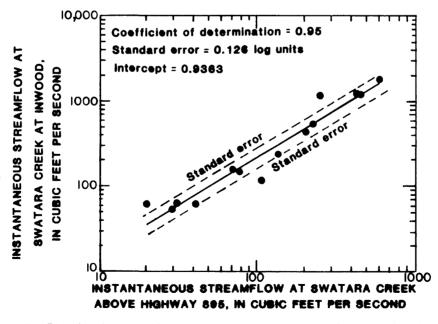


Figure 7.--Relation between instantaneous streamflow at Swatara Creek at Inwood and instantaneous streamflow at Swatara Creek above Highway 895 at Pine Grove.

Water Quality

Table 5 lists basic statistics for instantaneous water-quality concentrations and discharges measured at each station from October 1981 to September 1982. Concentrations and discharges listed in these tables are from manually collected depth-integrated composite samples and are used for discussions throughout this report. Qualitative relationships between water-quality constituents and streamflow are given, but available data are inadequate to report results quantitatively.

Table 5.--Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous discharges, 1982 water year

				Location				
Characteristic or S constituent	ic Statistic	Swatara C above hig 895 at Pine	hway	Lower Li Swatara at Pine	Cre	ek	Swatara Creek at Inwood	
Acidity	Median concentration Number of samples Min - max concentration Min - max discharge	4.0 19 .0 -	21.0 21.09	2.0 21 .0	-	10.0 17.98	3.0 16 0.0 - 0.00 -	12.0 13.91
Alkalinity	Median concentration Number of samples Min - max concentration Min - max discharge	4.0 21 .0 - 0 -	8.0 6.39	7.0 21 1.0 .15	-	15 4.88	6.0 16 1.0 - .46 -	9.0 13.82
рĦ	Median Number of samples Minimum - maximum	6.5 21 5.6 -	7.2	7.0 21 6.2	_	8.4	6.6 16 6.3 -	6.9
Specific conductance (µS/cm at 25°C)	Median Number of samples Minimum - maximum	164 21 123 -	348	72 21 59	_	88	132 16 93 -	205
Water temperature (°C)	Median Number of samples Minimum - maximum	12.0 21	22.0	12.0 21	_	23.5	13.0 16	24.5
Dissolved oxygen	Median Number of samples Minimum - Maximum	10.4 21 5.6 -	13.5	10.2 21 7.0	-	14.0	10.3 16 7.2 -	13.6
Chemical oxygen demand	Median concentration Number of samples Min - max concentration Min - max discharge	22 16 <10 - .73 -	405 407	15 15 <10	-	56 46.75	10 12 <10 - 1.46 -	556 967

Table 5.--Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous discharges, 1982 water year--continued

Characteristi or constituent	c Statistic	Swatara Creek above highway 895 at Pine Grove	Lower Little Swatara Creek at Pine Grove	Swatara Creek at Inwood
Turbidity (FTU)	Median Number of samples Minimum — maximum	16.5 20 3.0 - 840	13 19 2.5 - 120	9.0 15 1.4 - 230
2/ Sediment, suspended	Median concentration Number of samples Min - max concentration Min - max discharge	26 21 6 - 3,900 .44 - 3,920	22 21 1 - 201 .06 - 361	14 16 2 - 652 .40 - 1,130
Streamflow (ft ³ /s)	Median Number of samples Minimum - maximum	225 21 27.1 - 592	68 21 5.69 - 666	219 16 54 - 1,280
Nitrate, dissolved	Median concentration Number of samples Min - max concentration Min - max discharge	0.79 21 .31 - 1.80 .03 - 2.88	1.4 20 .53 - 2.6 .01 - 2.52	0.90 16 .47 - 1.70 .08 - 5.53
Nitrate, total	Median concentration Number of samples Min - max concentration Min - max discharge	.79 21 .31 - 1.80 .03 - 2.88	1.4 21 .53 - 2.6 .01 - 2.52	.90 16 .47 - 1.70 .08 - 5.53
Nitrite, dissolved	Median concentration Number of samples Min - max concentration Min - max discharge	.01 21 < .0102 < .0102	.01 20 < .0102 < .0102	.01 16 < .0101 < .0103
Nitrite, total	Median concentration Number of samples Min - max Min - max discharge	.01 21 < .0102 < .0103	.01 21 < .0102 < .0105	.01 16 < .0102 < .0107
Ammonia, dissolved	Median concentration Number of samples Min - max concentration Min - max discharge	.15 21 .0782 .0340	.03 21 .0126 < .0147	.08 16 .0118 < .0162

 $[\]underline{2}/$ Values for these characteristics were determined for samples which were collected manually.

Table 5.--Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous discharges, 1982 water year--continued

	-	Location							
Characteristic or constituent	Statistic	Swatara Creek above highway 895 at Pine Grove	Lower Little Swatara Creek at Pine Grove	Swatara Creek at Inwood					
	Median concentration	0.15	0.04	0.09					
•	Number of samples	21	21	16					
=	Min - max concentration		.0230	.0120					
	Min - max discharge	.0304	< .0154	< .0169					
	Median concentration	.70	.75	.60					
Organic	Number of samples	20	21	16					
nitrogen,	Min - max concentration	.23 - 1.20	.19 - 1.2	.01 - 1.0					
- ·	Min - max discharge	.03 - 1.24	.0151	.05 - 3.18					
	Median concentration	.78	.80	.77					
Organic	Number of samples	20	21	15					
	Min - max concentration		.29 - 1.4	.23 - 2.4					
•	Min - max discharge	.05 - 2.21	.01 - 1.07	.08 - 4.17					
Ammaonia +	Median concentration	.85	.83	.70					
organic	Number of samples	20	21	16					
_	Min - max concentration		.30 - 1.3	.30 - 1.20					
▼ 1	Min - max discharge	.06 - 3.80	.0181	.06 - 3.80					
Ammonia +	Median concentration	.98	.83	.90					
organic	Number of samples	20	21	15					
nitrogen,	Min - max concentration	.30 - 2.40	.35 - 1.5	.30 - 2.60					
	Min - max discharge	.08 - 4.52	.01 - 1.34	.08 - 4.5					
	Median	1.7	2.1	1.9					
Nitrogen,	Number of samples	19	19	7					
dissolved	Min - max concentration		.94 - 3.3	1.3 - 2.7					
	Min - max discharge	.11 - 3.68	.02 - 3.42	.38 - 9.3					
	Median	1.9	2.3	2.0					
Nitrogen,	Number of samples	19	20	7					
	Min - max concentration		.94 - 3.5	1.4 - 2.7					
	Min - max discharge	.14 - 4.00	.02 - 3.78	.40 - 9.3					
112.00	Median concentration	<.01	.01	<.01					
Ortho-	Number of samples	20	20	16					
phosphate,	Min - max concentration		<.0104	•					
dissolved	Min - max discharge	<.0102	<.0105						
	Median concentration	<.01	.01	<.01					
Ortho-	Number of samples	20	19	15					
phosphate,	Min - max concentration		.0105						
total	Min - max discharge	<.0110	<.0109						
	won discharge			,-UL .U					

Table 5.—Ranges and medians of water-quality characteristics, constituent concentrations and instantaneous discharges, 1982 water year--continued

		Location						
Characteristic or constituent	c Statistic	Swatara Creek above highway 895 at Pine Grove	Lower Little Swatara Creek at Pine Grove	Swatara Creek at Inwood				
Phosphorus, dissolved	Median concentration Number of samples Min - max concentration Min - max discharge	0.02 21 .0106 <.0107	0.03 21 <.0110 <.0118	0.02 16 .0104 <.0110				
Phosphorus,	Median concentration Number of samples Min - max concentration Min - max discharge	.05 21 .0328 <.0132	.07 21 .0231 <.0156	.04 16 .0225 <.0155				
Organic carbon, dissolved	Median concentration Number of samples Min - max concentration Min - max discharge	2.3 15 <1.0 - 7.0 .17 - 7.67	2.0 16 1.1 - 7.0 .02 - 12.6	2.0 11 1.0 - 4.4 .20 - 15.2				
Organic carbon, total	Median concentration Number of samples min - max concentration Min - max discharge	2.2 13 <1.0 - 7 .10 - 8.95	2.1 15 <1.0 - 8.8 .02 - 15.82	1.3 11 <1.0 - 4.9 .17 - 16.93				
Aluminum, * dissolved	Median concentration Number of samples Min - max concentration Min - max dischage	100 20 30 - 500 < .0153	110 19 <10 - 330 < .0116	100 16 20 - 560 .0181				
Aluminum, * total	Median concentration Number of samples Min - max concentration min - max discharge	1,100 21 300 - 66,000 .02 - 66.29	670 21 70 - 3,400 < .01 - 6.11	450 16 90 - 13,000 .03 - 22.6				
Chromium, *	Median concentration Number of samples Min - max concentration Min - max discharge	10 12 <10 - 40 < .0104	10 11 <10 - 50 < .0109	10 7 <10 - 20 < .0107				
Copper, *	Median concentration Number of samples Min - max cncentration Min - max discharge	20 12 10 - 220 .0122	20 12 10 - 30 < .0105	20 7 10 - 60 .0110				
Iron, * dissolved	Median concentration Number of samples Min - max concentration Min - max discharge	430 21 40 - 1,500 .01 - 8.0	85 20 40 - 210 < .0118	70 16 30 - 270 .0138				

^{*} Concentrations for these constituents are in micrograms per liter.

Table 5.--Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous discharges, 1982 water year--continued

	specification of military leads	Location					
Characteristi or constituent	.c Statistic	Swatara Creek above highway 895 at Pine Grove	Lower Little Swatara Creek at Pine Grove	Swatara Creek at Inwood			
	Median concentration	2,200	850	760			
Iron, total	Number of samples Min - max concentration Min - max discharge	21 410 - 100,000 .03 - 100	21 100 - 7,900 < .01 - 14.2	16 70 - 21, .01 -	000 36.5		
	Median concentration	19	5.8	9.3			
Lead, total	Number of samples Min - max concentration Min - max discharge	12 4 - 172 < .0117	12 < 5 - 40 < .0102	7 5 - 2 < .01 -	52 .08		
Manganese,	Median concentration Number of samples	640 21	20 20	330 16			
dissolved	Min - max concentration Min - max discharge		10 - 150	210 -	.73		
	Median concentration	740	50	350			
Manganese, total	Number of samples Min - max concentration Min - max discharge	21 410 - 2,300 1.02 - 7.53	21 30 - 670 3 < .0156	16 230 - .05 -	710 1.28		
Mercury,	Median concentration Number of samples	< 2.0	< 2.0 12	< 2.0			
total	Min - max concentration Min - max discharge		< 2.0 - < 2.0	< 2.0 -	< 2.0 .01		
Zinc,	Median concentration Number of samples	85 12	20 11	60 7			
total	Min - max concentration Min - max discharge		10 - 50	<10 -	120 .38		
Calcium, **	Median concentration Number of samples	11 21	4.6 20	8.6			
dissolved	Min - max concentration Min - max discharge		2.5 - 6.1 .06 - 6.83	5.7 -	14 19.7		
Chloride, **	Median concentration Number of samples	8.0 21	6.0 21	7.5 16			
dissolved	Min - max concentration Min - max discharge		5.0 - 8.0 .09 - 12.59	6.0 -	12 34.6		

^{**} Concentrations for these constituents are in milligrams per liter.

Table 5.--Ranges and medians of water-quality characteristics, constituent concentrations, and instantaneous discharges, 1982 water year--continued

		Location						
Characteristic or constituent	c Statistic	Swatara Cr above high 895 at Pine	way	Lower Lit Swatara C at Pine G	reek	Swatara Creek at Inwood		
	Median concentration	6.8		2.2		5.0		
Magnesium,	Number of samples	21		20		16		
dissolved .	Min - max concentration Min - max discharge	3.9 - .10 -	18 .79	1.6 - .03 -	5.1 2.88	2.7 - 1.22 -	12 9.33	
	Median concentration	1.2		1.2		1.2		
Potassium,	Number of samples	21		20		16		
dissolved	Min - max concentration	.80 -	3.4	.70 -	3.8	.78 -	2.8	
	Min - max discharge	.13 -	4.64	.01 -	6.83	.20 -	8.99	
	Median concentration	5.9		4.5		5.5		
Silica,	Number of samples	21		20		16		
dissolved	Min - max concentration		7.1	.50 -	6.2	2.4 -	6.9	
	Min - max discharge	.52 -	6.76	.03 -	3.78	.49 -	12.4	
	Median concentration	5.8		3.0		5.3		
Sodium,	Number of samples	21		20		16		
dissolved	Min - max concentration		13	2.3 -	4.7	3.4 -	8.3	
	Min - max discharge	.73 -	14.6	.05 -	6.83	.82 -	21.1	
	Median	50		5		30		
Sulfate,	Number of samples	21	120	21 < 5 -	25	16		
dissolved	Min - max concentration	25 - 6.59 -	130 50.2	.08 -	25 18.0	15 - 5.83 -	60 52.2	
	Min - max discharge	6.39 -	50.2	- 80-	18.0	2.83 -	32.2	
	Median	55		21		40		
Hardness,	Number of samples	21		21		16		
dissolved	Min - max concentration	36 -	140	16 -	43	25 -	71	
Fecal	Median concentration	31		140		25		
Coliform	Number of samples	10		10		9		
(colonies/ 100 mL)	Min - max concentration	кз -	570	16 -	800	< 2 -	180	
Fecal	Median concentration	105		185		78	-1 	
Streptococci	Number of samples	10		10		10		
(colonies/ 100 mL)	Min - max concentration	K21 -	3,500	K61 -	2,000	K4 -	240	

K = Value based on non-ideal colony count

Physical and Other Related Characteristics

Physical and other related characteristics measured include water temperature, dissolved oxygen, pH, alkalinity, acidity, specific conductance, chemical oxygen demand and turbidity. Figures 8 to 15 show monthly variations of the physical characteristics measured during base flow.

Water temperatures for all three sites (fig. 8) were very similar ranging from 0°C at Lower Little Swatara Creek to 24.5°C at Swatara Creek at Inwood. Maximums occurred in July and minimums in December and January.

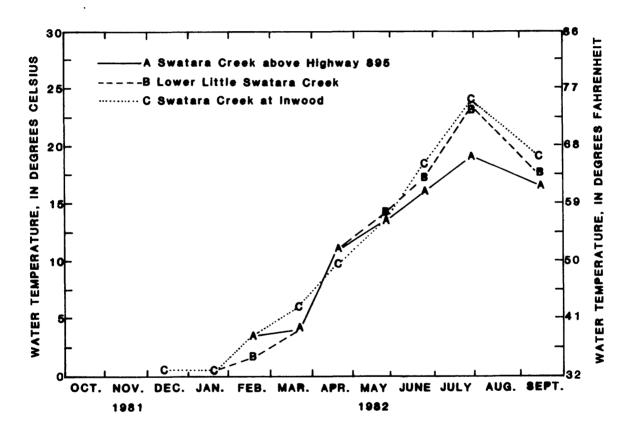


Figure 8.--Monthly variation of water temperature during baseflow.

Base flow dissolved oxygen values ranged from 8.0 to 14.0 mg/L, and showed the expected inverse relationship with water temperature as maximums occurred in December and minimums in July (fig. 9). Dissolved oxygen concentations were generally higher at Lower Little Swatara Creek because depths were shallower allowing greater reaeration and photosynthetic activity. The percent saturation of oxygen was greater than 84 percent at each station at every measurement during base flow. However, during high flow on August 25, the percent saturation dropped as low as 64 percent at Swatara Creek above Highway 895, 76 percent at Lower Little Swatara Creek, and 78 percent at Swatara Creek at Inwood due to high concentrations of chemical oxygen demand. Detecting these sudden decreases in oxygen will be important to the successful management of the aquatic biota in the study area. Continuous monitoring for dissolved oxygen upstream from and within the impoundment area would be helpful in detecting these sudden changes.

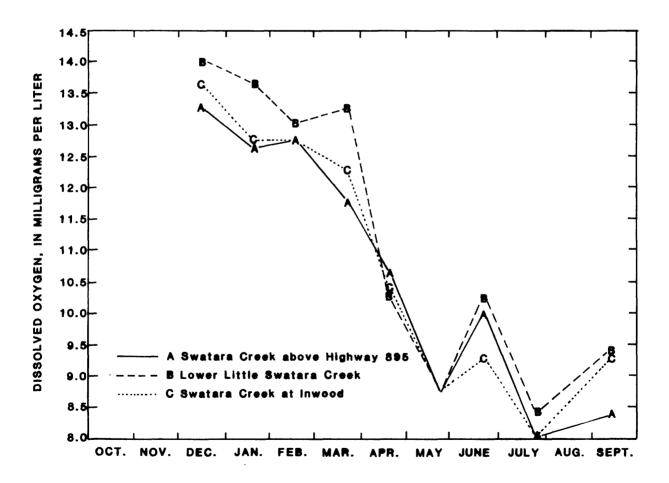


Figure 9,--Monthly variation of dissolved oxygen during baseflow.

Alkalinity, acidity, and pH are important in determining buffer capacity or the ability to neutralize an acid or base discharged into a given body of water (figs. 10-12). Water with a pH between 4.5 and 8.3 has both alkalinity and acidity, and therefore, can neutralize both acids and bases. Because the Swatara Creek headwaters originate in an area heavily mined for anthracite, the ability of the water to neutralize the acidic mine drainage is important. The buffering capacity of Swatara Creek and Lower Little Swatara Creek is low; alkalinity was usually less than 10 mg/L as CaCO3, and acidity was less than 5.0 mg/L as CaCO3. The addition of any acid or base into the Swatara Creek may rapidly alter the pH and, therefore, be detrimental to the aquatic biota. Preliminary data indicate that a pH of 6.0, necessary to support a warm-water fishery (Moran and Wentz, 1974), is narrowly met at all three stations during base-flow conditions. At Lower Little Swatara Creek the pH steadily increased during the warmer months when photosynthetic activity increased and dissolved carbon dioxide was taken up by aquatic organisms. During periods of high flow, pH dropped to 5.6, at Swatara Creek above Highway 895, whereas corresponding alkalinity and acidity were 4.0 mg/L and 21.0 mg/L as CaCO3, respectively. The simultaneous decrease in pH and increase in acidity, sulfate, iron, aluminum, and manganese concentrations above Highway 895 are indicative of the acidic discharges from the mining areas entering Swatara Creek during storms.

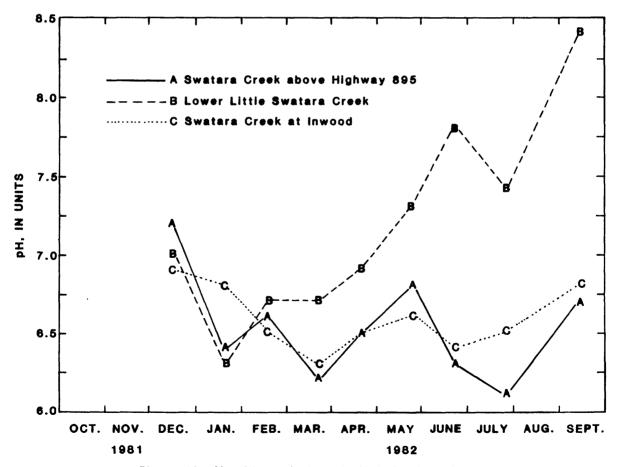


Figure 10.--Monthly variation of pH during baseflow.

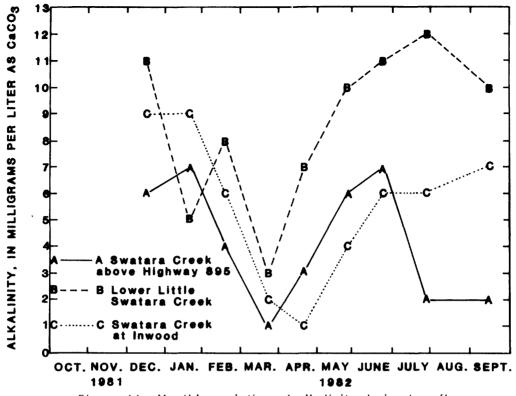


Figure 11.--Monthly variation of alkalinity during baseflow.

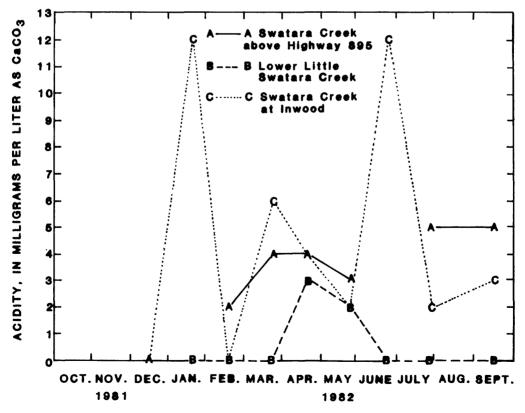


Figure 12.--Monthly variation of acidity during baseflow.

Specific conductance—the ability of a substance to conduct an electrical current—is an indication of the presence of ions such as calcium, magnesium, sodium, potassium, chloride, sulfate, and metallic ions in solution. Specific conductance for Swatara Creek above Highway 895 (fig. 13) was about three times greater than Lower Little Swatara Creek during base flow due to the discharges from the mining areas. The median value for Swatara Creek above Highway 895 was 164 μ S/cm compared to 72 μ S/cm at Lower Little Swatara Creek. Dilution by Lower Little Swatara Creek and other tributaries resulted in a median value of 132 μ S/cm downstream at Swatara Creek at Inwood.

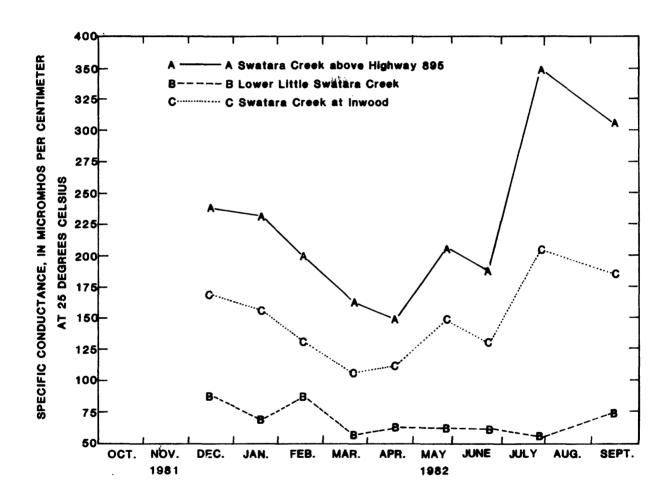


Figure 13.--Monthly variation of specific conductance during baseflow.

Chemical oxygen demand is a measure of the materials that can be oxidized in the waters, and is a helpful tool in determining the amount of organic and reducing material present. The high chemical oxygen demand concentrations at all three sites on June 22 (fig. 14), were measured during a high base flow when large amounts of organic material, sewage, were observed floating in the streams. Preliminary data also indicate substantial organic material is discharged into the Swatara Creek above Highway 895 during high flows. On August 25, a maximum chemical oxygen demand of 405 mg/L was measured at Swatara Creek above Highway 895 and 556 mg/L at Swatara Creek at Inwood. These values were 40 to 50 times greater than the 10 mg/L commonly measured during base flow.

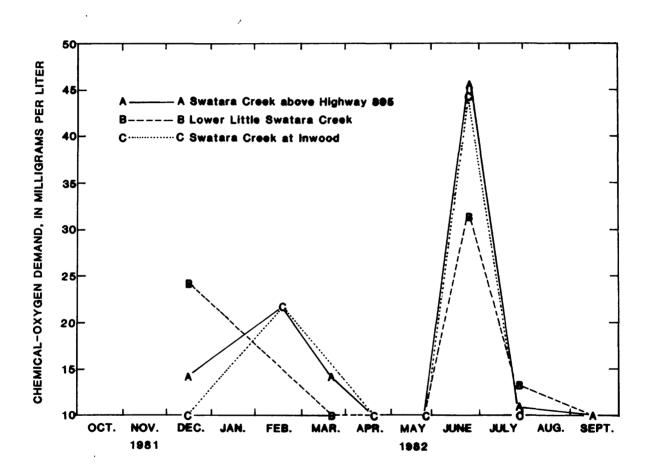


Figure 14.--Monthly variation of chemical oxygen demand during baseflow.

Turbidity is a measure of the ability of the suspended or colloidal material in a solution to reduce light penetration. Excessive turbidity degrades the aesthetic value of recreational water, is a safety hazard in swimming, diving, and boating, and interferes with light penetration required for photosynthesis and plant growth. Turbidity of the Swatara Creek and Lower Little Swatara Creek during base flow (fig. 15) was usually below 15 NTU (Nephelometric turbidity units). Turbidity increased to a maximum of 840 NTU during high flow on August 25, 1982 at Swatara Creek at Inwood.

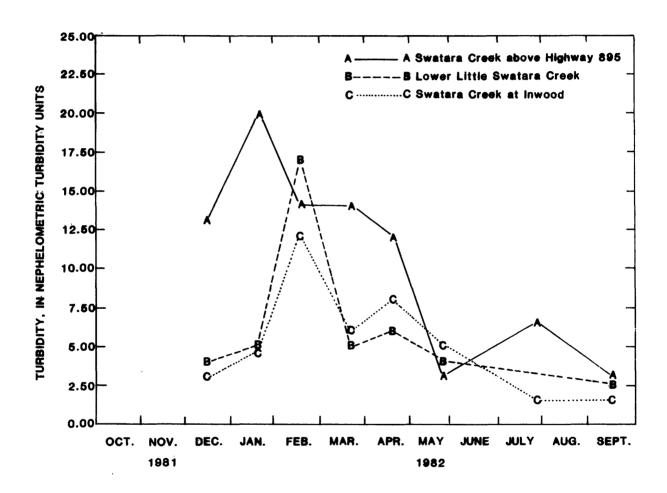


Figure 15.--Monthly variation of turbidity during baseflow.

Sediment

Most fluvial sediment studies report the concentrations and discharges of suspended sediment transported in a given time period. However, the amount of bedload transported by a stream is also important in reservoir studies. A significant amount of the total sediment load transported to the Swatara Creek impoundment may be the result of bedload transport, because much of the sediment is coal and its low specific gravity (1.65) permits it to be transported readily.

Recently, O'Leary and Beschta (1981) measured the bedload of a small forested watershed, and made several observations that apply to the Swatara Creek study area. They stated, "....large fluctuations in bedload transport rates over time intervals during which streamflow did not appreciably change seems an important characteristic of bedload transport in a mountain stream. Our data further indicate that these temporal fluctuations occur rapidly within minutes." Their study found that stream characteristics that influence bedload fluctuations include nonuniform channel geometry, nonuniform particle size, and nonuniform streamflows. Each of these characteristics are evident in Swatara Creek and greatly affect the sediment available for bedload transport. Pool and riffle channel configurations result in sudden changes in stream velocities and cause some deep stream reaches with slow velocities to fill with organic debris and culm while other reaches are shallow, have faster velocities, and have only bedrock present. Bed material ranges from sand to coarse gravel and cobbles. The size of particles transported and streamflows sharply rise and fall within several hours in response to precipitation. Thus, the amount of bedload measured and used to develop a bedload transport curve for one storm will not necessarily estimate the bedload accurately for another storm even at similar flow conditions.

As no actual measurements of bedload transport during the preliminary study have been made for Swatara Creek or Lower Little Swatara Creek, a bedload transport rating curve has not been made for Swatara Creek. Bedload transport in Swatara Creek probably occurs only during large storms of short duration.

Suspended-Sediment Concentrations and Loads

Daily mean suspended-sediment concentrations from October 1981 through September 1982 (table 5) ranged from 1 to 947 mg/L at Swatara Creek above Highway 895 and from 1 to 614 mg/L at Lower Little Swatara Creek. Suspended-sediment discharges for the same period ranged from 0.14 to 2,620 ton/d at Swatara Creek above Highway 895 and 0.02 to 1,260 ton/d at Lower Little Swatara Creek. During this 1-year period the combined suspended-sediment load from the study area above the planned reservoir was about 16,000 tons.

The streamflow relation developed earlier between the continuous recording station at Swatara Creek above Highway 895 and the partial record station at Inwood, was used to estimate daily flows for Inwood. These daily streamflows, along with the preliminary equation (2) developed by regressing instantaneous sediment discharge versus streamflow at Inwood, were used to determine the sediment discharges for Swatara Creek at Inwood. The ranges of flows and suspended-sediment discharges used to develop the equation were

from 54 to 1,280 ft³/s and 0.40 to 1,130 con/d, respectively, and therefore the equation should not be used to estimate discharges above these values. The annual sediment load was then calculated by summing the estimated daily sediment discharges, by the following relationship:

$$Log S_T = 2.1982 (Log Q_T) - 4.1988$$
 (2)

where $Log S_I$ = the logarithim of the daily sediment discharge at Inwood in tons/d

2.1982 = the slope of the regression line

Log $Q_{\tilde{I}}$ = the logarithim of the water (average daily) discharge at Inwood in ft³/s

and -4.1988 = the intercept of the regression line

Results from this method are not accurate for short periods of record particularity if high flow days are to subdivided as in this case; however, they do indicate that at least 17,400 tons of suspended sediment were transported by Swatara Creek at Inwood from October 1981 to September 1982. These results are about half the 35,000 ton average annual sediment load estimated by Terraqua Resources Corporation (1982), and are due in part to the 15-percent below-normal streamflows during the study. The quantities and yields of sediment for the stations are listed below in table 6.

Table 6.--Summary of annual suspended-sediment loads and yields,

Station	Drainage area (mi ²)	Load (tons)	Yield (ton/mi ²)
Swatara Creek above Highway 895 Lower Little Swatara Creek at	72.6	11,3001/	157
Pine Grove	34.3	4,700	137
Swatara Creek at Inwood	169	17,400	103

¹ Sediment records at this station began on October 23, 1981. However, no storms occurred between October 1 and October 23, 1981; therefore the annual sediment load would not have been significantly different.

The low sediment yield at Inwood compared to that at the other stations is due to several factors. First, there is a large increase in forest cover between Pine Grove and Inwood that reduces the amount of sheet erosion and the amount of sediment transported from tributaries entering below Pine Grove. Secondly, some of the sediment discharged by Lower Little Swatara Creek and Swatara Creek at Pine Grove may be deposited in the relatively flat stretch of channel between Pine Grove and Inwood. Thirdly, the main tributary entering Swatara Creek below Pine Grove at Suedberg flows through Lebanon Reservoir,

which traps much of the suspended material before it reaches Swatara Creek and the planned impoundment area at Inwood. In summary, about 17,400 tons of suspended sediment were transported to the planned impoundment area in the 1982 water year, and 65 percent of the suspended sediment was transported by Swatara Creek above Highway 895 which occupies 43 percent of the drainage area.

Particle-Size Distribution

Assuming that the discharge weighted particle-size analyses (table 9) are representative, 32 percent of the suspended sediment is clay, 37 percent is silt, and 31 percent is sand at Swatara Creek above Highway 895. Sand and silt analyses of the suspended sediment from Swatara Creek at Inwood also show a similar composition. At Lower Little Swatara Creek, 41 percent of the suspended sediment is clay, 51 percent silt, and only 8 percent is sand. Therefore, of the 17,400 ton suspended-sediment load transported from the study area, about 6,000 consisted of clay, 7,100 tons of silt, and 4,300 tons of sand.

Chemistry of Bottom Material

The streambed at and above Inwood contains high concentrations of metals that are contributed primarily by the Swatara Creek headwaters (table 7 and fig. 2). As shown in the table, concentrations of aluminium, iron, and manganese were 7, 4, and 2 times greater, respectively, at Swatara Creek above Highway 895 than at Lower Little Swatara Creek. These conditions are caused by acid mine drainage and the associated precipitation and sorption of metals to bottom material in Swatara Creek. Concentrations of these metals are not conducive to aquatic biota.

Table 7.--Metals and nutrients associated with bottom material on September 14, 1982 [constituent concentrations in µg/g except as footnoted]

Location	Aluminum	Iron	Manganese	Carbon 1/ inorganic as C	Carbon 1/ organic as C	Nitrogen organic as N	Nitrogen nitrite plus nitrate as N	Nitrogen Ammonia as N	Phosphorus as P
Swatara Creek above									
highway 895	5,600	13,000	650	<0.1	420	7,800	5	11	170
Lower Little Swatara									
Creek at Pine Grove	900	2,900	340	.2	16	2,000	4	4	250
Swatara Creek at									
Suedberg .	580	2,500	220	< .1	97	1,400	<2	<0.4	72
(site C on fig. 2)									
Swatara Creek 2.3 miles									
upstream from Inwood s	1te 660	2,800	370	< .1	69	1,900	<2	.6	260
(site B on fig. 2)									
Swatara Creek 1.6 miles upstream from Inwood									
(site A on fig. 2)	1,700	5,700	1,000	•5	290	1,400	3	2	130
Swatara Creek at Inwood	870	3,300	720	< .1	280	6,000	<2	0.5	51

^{1/} Concentrations for these constituents are g/Kg.

In addition to the metals, substantial quantities of nutrients are found in the bottom material in the study area. The highest concentrations of organic nitrogen were found in the bottom material at Swatara Creek above Highway 895 and Swatara Creek at Inwood (table 7). Organic nitrogen and ammonia nitrogen concentrations were at least 2.5 times greater at Swatara Creek above Highway 895 than at any other site except for organic nitrogen at Inwood. Organic carbon was also significantly higher at Swatara Creek above Highway 895 than any other site. Phosphorous was highest at site B on Swatara Creek, 2.3 miles upstream of Inwood and at Lower Little Swatara Creek.

The sewage-treatment plant at Pine Grove has secondary treatment facilities, but untreated sewage from outside the borough is discharged into Swatara Creek. Visible quantities of sewage have been observed during routine visits to Swatara Creek above Highway 895. Presence of this sewage accounts for the high nutrient content of bottom material in Swatara Creek.

Chemical Characteristics

Nutrients

The two major nutrients required for algal growth are dissolved nitrogen and phosphorus. When these two constituents are coupled with proper light intensities and water temperatures, excessive algal growth may occur. The literature suggests 0.3 mg/L of inorganic nitrogen and 0.01 mg/L of phosphorus are critical concentrations which, when exceeded, can stimulate excessive growth of algae (McKee and Wolf, 1963; Harms and others, 1974). The U.S. Environmental Protection Agency (1976) recommends that total phosphorus should not exceed 0.05 mg/L at the point where it enters any lake or reservoir.

Measured nitrogen concentrations for discharges from both Swatara Creek above 895 and Lower Little Swatara Creek exceeded the critical values during the entire study period. Most nitrogen at both Swatara Creek above Highway 895 and Lower Little Swatara Creek was transported as dissolved nitrate; however, the concentrations varied greatly between the two stations as indicated by the median values in table 5 and figure 16. The median concentration for dissolved ammonia nitrogen of 0.15 mg/L at Swatara Creek above Highway 895 was five times greater than the median for Lower Little Swatara Creek, and the median concentration for dissolved nitrate nitrogen of 1.4 mg/L at Lower Little Swatara Creek was almost twice the median of Swatara Creek above Highway 895. Median total organic nitrogen concentrations were similar at both Lower Little Swatara Creek and Swatara Creek above Highway 895 as values were 0.80 mg/L and 0.78 mg/L, respectively. Median dissolved organic and ammonia nitrogen concentrations measured downstream at Swatara Creek at Inwood indicate both decrease between Pine Grove and Inwood. The median concentration at Inwood was 0.90 mg/L for dissolved nitrate nitrogen and 0.08 mg/L for dissolved ammonia nitrogen. The median total organic nitrogen concentration of 0.77 mg/L for Inwood was similar to that calculated for both upstream stations.

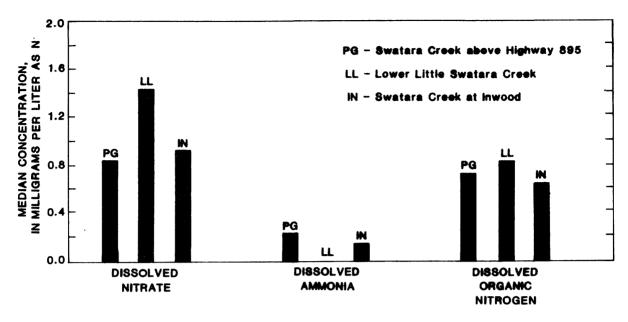


Figure 16.--Median concentrations of dissolved nitrate, ammonia, and organic nitrogen.

The maximum instantaneous ammonia nitrogen concentration of 0.82 mg/L at Swatara Creek above Highway 895 occurred during low flow in September and was 40 times greater than the concurrent concentration measured at Lower Little Swatara Creek and 80 times greater than the concurrent concentration measured at Swatara Creek at Inwood. The source of these high ammonia concentrations may be due to sewage discharges or other point sources upstream from Highway 895. Maximum ammonia nitrogen concentrations at Lower Little Swatara Creek occurred during high flow in February. Maximum concentrations for dissolved nitrate of 2.6 mg/L were measured in January and February at Lower Little Swatara Creek, whereas, corresponding measurements at Swatara Creek above Highway 895 were 1.1 and 1.6 mg/L, respectively. The maximum total organic nitrogen concentration, however, was much higher at Swatara Creek above Highway 895 (2.2 mg/L); whereas a maximum of 1.4 mg/L was measured at Lower Little Swatara on the same day, August 25, 1982.

Instantaneous discharges for nitrogen constituents ranged from less than 0.01 ton/d for total nitrite nitrogen at all three stations to 5.53 ton/d for dissolved nitrate nitrogen at Swatara Creek at Inwood. Maximum nitrite, nitrate, and ammonia nitrogen discharges at Swatara Creek above Highway 895 were nearly equal to those at Lower Little Swatara Creek (table 5). However, the maximum dissolved and total organic nitrogen discharges of Swatara Creek above Highway 895 of 1.24 ton/d and 2.21 ton/d were over two times greater than the maximum discharges at Lower Little Swatara Creek.

In summary, most of the nitrogen transported by the Swatara Creek above Highway 895 and Lower Little Swatara Creek is dissolved nitrate, which will be available for biological uptake. The high ammonia concentrations in Swatara Creek above Highway 895 indicate the presence of sewage discharges or other point-source discharges upstream from the sampling site. Substantial quantities of dissolved and suspended organic nitrogen will be transported to the impoundment from the Swatara Creek above Highway 895.

Measured dissolved phosphorus concentrations were commonly 0.01 mg/L or less, indicating that phosphorus may be the limiting nutrient for plant growth. Total phosphorus concentrations measured at both the Swatara Creek above Highway 895 and Lower Little Swatara Creek were usually two to three times greater than dissolved concentrations, indicating that much of the phosphorus transported in the study area is associated with the suspended sediment. The median total phosphorus concentrations for Lower Little Swatara Creek and Swatara Creek above Highway 895 were 0.07 mg/L and 0.05 mg/L, respectively; while corresponding median dissolved phosphorus concentrations were 0.03 mg/L and 0.02 mg/L. Similar results were seen downstream at Inwood where the median total phosphorus concentration was 0.04 mg/L and the median dissolved phosphorus concentration was 0.02 mg/L. Conservation efforts to reduce the phosphorus, especially that attached to the suspended sediment, discharged from Lower Little Swatara Creek probably would greatly reduce the phosphorus available for algal growth.

The maximum instantaneous total phosphorus concentrations for both upstream stations occurred during the storm of February 2 to 5, 1982 when 0.31 mg/L was measured at Lower Little Swatara Creek and 0.28 mg/L at Swatara Creek above Highway 895. The maximum total phosphorus concentration measured for Swatara Creek at Inwood was 0.25 mg/L during the storm of August 24 to 26, 1982.

Instantaneous total phosphorus discharges ranged from less than 0.01 ton/d at all three stations to 0.56 ton/d at Lower Little Swatara Creek. Dissolved phosphorus discharges ranged from less than 0.01 ton/d at all three stations to 0.18 ton/d at Lower Little Swatara Creek at Pine Grove.

Thus, unlike nitrogen, most of the phosphorus transported by Swatara Creek is suspended, and therefore may deposit to the stream bottom. During high flows, resuspension and resolution of this phosphorus may occur, making it available as nutrients for plant growth. Brown and others (1983) say that generally 20 to 40 percent of sediment phosphorus from agricultural watersheds is bioavailable, and Young and others (1982) indicate 55 percent of particulate phosphorus in municipal wastewaters is avaible in the short term and 63 percent is ultimately available.

Metals

Aluminum, iron, and manganese are often contained within coal-bearing formations, and therefore are common to acid-mine drainage. Iron and manganese concentrations measured in Swatara Creek at both Pine Grove and Inwood exceeded the recommended U.S. EPA criteria (U.S. Environmental Protection Agency, 1976, 1980) and Pennsylvania water-quality standards (PaDER, 1979). The concentrations and discharges in table 5 reflect the large differences in metal concentrations between the mine drainage of Swatara Creek above Highway 895 and the forested and agricultural drainage of Lower Little Swatara Creek. These results confirm that mine drainage affects the water quality at both Pine Grove and Inwood.

In the past, aluminum was thought to be harmless because it is the most abundant metal on earth and usually occurs as complex aluminum silicates such as feldspar. By using treatment processes, these suspended forms of aluminum

can readily be removed from water to be used for drinking. Subsequently, no criterion for aluminum has been established by the U.S. EPA, and the Pennsylvania water-quality standard states that aluminum should not be greater than 0.1 of the 96-hr LC 50 (lethal concentration for 50 percent of the specific species if maintained for 96 hours) for representative important species. The 96-hr LC 50 value has not been determined for many fish species and may be quite different depending on other characteristics of the native water such as pH. Thus, water with high suspended aluminum concentrations, like that which enters the planned impoundment area, is generally felt to be safe for drinking after treatment. However, recent investigations at Cornell University, Darmouth College, and the University of Vermont, have linked free aluminum, caused by the effects of acid rain, with potentially toxic concentrations in mountain soil, water, and streams (Davis, 1983). Further studies need to be done to determine what concentrations constitute toxic levels and the possible effects on public health.

Differences between the median dissolved and total aluminum concentrations in table 5 indicate most aluminum is transported in the suspended phase and is deposited on the streambed before reaching Inwood. The median total aluminum concentration at Inwood of 450 µg/L was less than half the median for Swatara Creek above Highway 895 (fig. 17 and table 5). The median concentration of 1,100 µg/L for total aluminum at Swatara Creek above Highway 895 was nearly twice the median concentration of 670 µg/L at Lower Little Swatara Creek. The median concentration for dissolved aluminum was about 100 µg/L for all three stations. Figure 18 illustrates the direct relation between concentrations of total aluminum and suspended sediment during high flows at each station. Maximum concentrations for total aluminum at Swatara Creek above Highway 895 and at Inwood of 66,000 µg/L and 13,000 µg/L, respectively, were measured during the storm of August 25, 1982, which occurred during the mid-summer growing phase. The maximum total aluminum concentration of 3,400 µg/L for Lower Little Swatara Creek was measured during the storm in February when the ground was frozen. Conversely, the maximum dissolved aluminum concentrations were highest at the mine drainage sites above Highway 895 and at Inwood during the colder months, and highest at Lower Little Swatara Creek during the storm in August.

The maximum instantaneous discharge for total aluminum at Swatara Creek above Highway 895 was 66.3 ton/d, more than 10 times greater than the maximum for Lower Little Swatara Creek and three times greater than the maximum of 22.6 ton/d measured at Swatara Creek at Inwood.

The U.S. EPA criteria (U.S. Environmental Protection Agency, 1976, 1980) for iron concentrations are 0.3 mg/L for domestic water supplies and 1.0 mg/L for freshwater aquatic life. The Pennsylvania water-quality standard states, "total iron concentrations should not be more than 1.5 mg/L and dissolved iron concentrations more than 0.3 mg/L." The U.S. EPA criteria for domestic water supplies were exceeded by 100 percent and 71 percent of the samples, respectively, for total and dissolved iron at Swatara Creek above Highway 895. The U.S. EPA criteria for freshwater aquatic life were exceeded by 90 percent and 10 percent of the samples, respectively, for total and dissolved iron at Swatara Creek above Highway 895, whereas 71 percent of the samples for both total and dissolved iron exceeded the Pennsylvania water-quality standard. At both Lower Little Swatara Creek and Swatara Creek at Inwood,

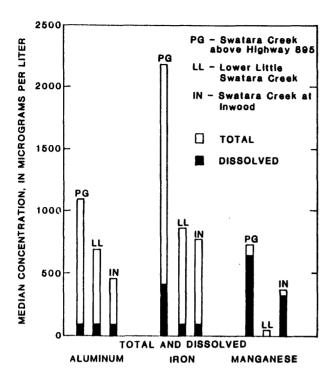


Figure 17.--Median concentrations of total and dissolved aluminum, iron, and manganese.

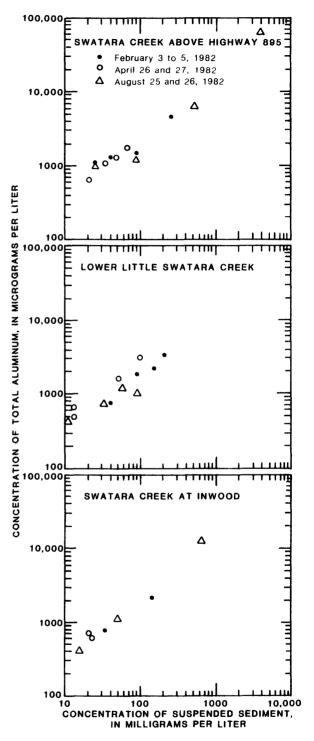


Figure 18,--Relation between concentrations of total aluminum and suspended sediment during high flows.

25 percent of the total iron samples exceeded the Pennsylvania standard and 75 percent of the samples exceeded the U.S. EPA criterion for domestic water supplies.

Like aluminum, differences between the total and dissolved median iron concentrations indicate most of the iron is transported in the suspended phase (fig. 17). The median total iron concentration measured at Inwood was less than one-third of that measured above Highway 895 (fig. 16), indicating that iron may be deposited on the streambed between Pine Grove and Inwood. The median concentrations for total iron at Swatara Creek above Highway 895 (2,200 μ g/L) was significantly higher than the median concentration at Lower Little Swatara Creek (850 μ g/L). The median concentration for dissolved iron was over five times greater at Swatara Creek above Highway 895 (430 μ g/L) than at Lower Little Swatara Creek at Pine Grove (85 μ g/L).

Figure 19 illustrates the direct relation between total iron and suspended sediment during high flows at each station. The maximum total iron concentration for Swatara Creek above Highway 895 of $100,000~\mu g/L$ was measured during the midsummer storm of August 25, 1982, whereas the maximum for Lower Little Swatara Creek (7,900 $\mu g/L$) was measured during the storm of February 3, 1982.

Dissolved-iron concentrations, also like aluminum, were highest during the colder months at Swatara Creek above Highway 895 and at Inwood, whereas dissolved iron concentrations at Lower Little Swatara Creek showed less variation throughout the year.

The maximum instantaneous discharge for total iron of 100 ton/d measured at Swatara Creek above Highway 895 was more than seven times greater than the maximum of 14 ton/d measured for Lower Little Swatara Creek and 2.7 times greater than that measured for Swatara Creek at Inwood.

The U.S. EPA criterion for manganese is $50~\mu g/L$ for domestic water supplies. The Pennsylvania water-quality standard states, "manganese should not be greater than 1.0 mg/L." These values were not established on toxicological basis, but were established primarily to reduce aesthetic damage and prevent objectional tastes in beverages. Removal of manganese from water for domestic uses requires special treatment such as pH adjustment, aeration, superchlorination, or chemical precipitation.

All measured concentrations of dissolved and total manganese at Swatara Creek above Highway 895 and at Inwood exceeded the U.S. EPA criterion. Forty-five percent of the samples for total manganese and 19 percent of the samples for dissolved manganese from Lower Little Swatara Creek exceeded U.S. EPA criteria.

Median total and dissolved manganese concentrations in figure 17 and table 5 show that most manganese transported at Swatara Creek above Highway 895 and at Inwood is dissolved and most at Lower Little Swatara Creek is suspended. The median concentrations for total and dissolved manganese were 740 μ g/L and 640 μ g/L, respectively, at Swatara Creek above Highway 895. They were about two times greater than median concentrations at Inwood and more than 14 times greater than the median at Lower Little Swatara Creek. Figure 20 illustrates that the relation between total manganese and suspended-sediment at Lower Swatara Creek is well defined, but the relations at Swatara

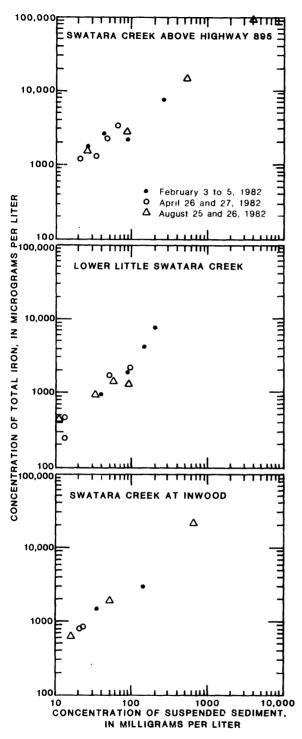


Figure 19.--Relation between concentrations of total iron and suspended sediment during high flows.

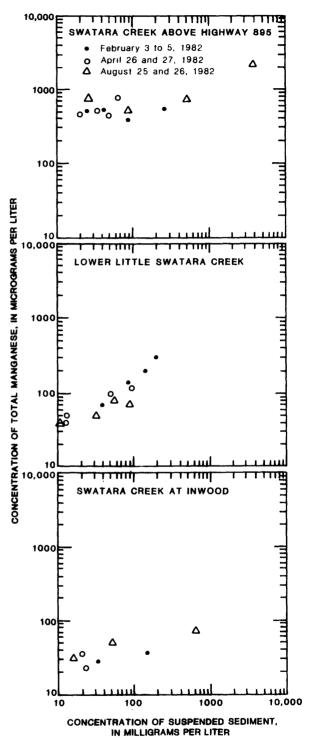


Figure 20.--Rélation between concentrations of total manganese and suspended sediment during high flows.

Creek above Highway 895 and at Inwood are not well defined. These results may be due in part to the changes in the solubility of manganese at the minedrainage sites where pH is lower and the oxidation potential higher and is consistent with work presented by Hem (1970). Maximum concentrations for total manganese at Swatara Creek above highway 895 and at Inwood were 2300 $\mu g/L$ and 710 $\mu g/L$, respectively, and occurred during the midsummer storm of August 25, 1982. The maximum for Lower Little Swatara Creek was 670 $\mu g/L$ and occurred in June.

The maximum instantaneous total manganese discharge at Swatara Creek above Highway 895 (7.53 ton/d) was more than 13 times greater than the maximum for Lower Little Swatara Creek at Pine Grove and almost 6 times greater than that for Swatara Creek at Inwood.

The U.S. EPA criterion for total lead for freshwater aquatic life in water with a hardness of 100 mg/L as $CaCO_3$ is 3.8 μ g/L, and the human-health criterion is 50 μ g/L. At both Swatara Creek above Highway 895 and Lower Little Swatara Creek, more than 50 percent of the samples analyzed for total lead exceeded the U.S. EPA criterion for freshwater aquatic life. The human-health criterion was exceeded at both Swatara Creek above Highway 895 and at Inwood during a storm on August 25, 1982. Preliminary data in figure 21 suggest that the primary source of lead is from Swatara Creek above Highway 895, and a direct relationship exists between total lead and suspended sediment during particular storms. Median lead concentrations (fig. 22) were greatest at Swatara Creek above Highway 895 (19.0 μ g/L) and decreased from dilution downstream to Swatara Creek at Inwood (9.3 μ g/L). Because lead does not naturally occur in the concentrations measured, there may be a point source that contributes lead to Swatara Creek above Highway 895.

Maximum instantaneous concentrations for total lead measured at Swatara Creek above Highway 895 and at Inwood were 172 $\mu g/L$ and 52 $\mu g/L$, respectively, and occurred during the August 25, 1982 storm. The maximum total lead concentration measured at Lower Little Swatara Creek (40 $\mu g/L$) also occurred during the August 25, 1982 storm.

The maximum instantaneous total lead discharge at Swatara Creek above Highway 895 of 0.17 ton/d was 8 times greater than the maximum measured for Lower Little Swatara Creek at Pine Grove and 2 times greater than that at Swatara Creek at Inwood.

Copper and zinc concentrations at Swatara Creek above Highway 895 and at Inwood also occasionally exceeded the respective U.S. EPA criteria for fresh-water aquatic life. The U.S. EPA criterion for total copper states, that copper concentrations should not exceed 22 $\mu g/L$ at any time, if water has a hardness of 100 mg/L as CaCO3, and total zinc should not exceed 47 $\mu g/L$ as a 24-hour average (U.S. Environmental Protection Agency 1980). The maximum concentrations for copper measured at Swatara Creek above Highway 895 and at Inwood were 220 and 60 $\mu g/L$, respectively. Median concentrations were below the U.S. EPA criterion. Maximum zinc concentrations measured at Swatara Creek above Highway 895 and at Inwood were 310 and 120 $\mu g/L$, respectively. The median concentrations for total zinc of 85 $\mu g/L$ and 60 $\mu g/L$, at these sites, respectively, also exceeded the criterion.

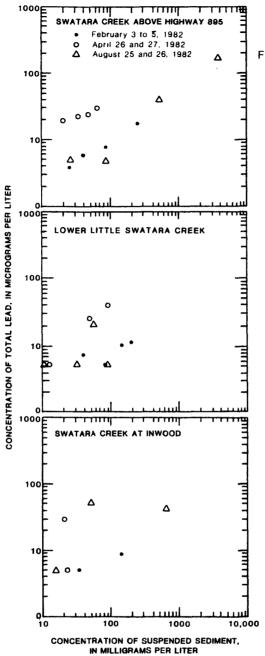


Figure 21.--Relationship between concentrations of total lead and suspended sediment during high flows.

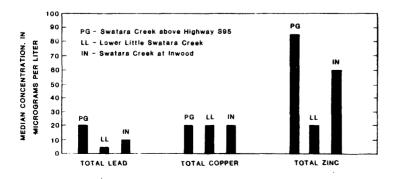
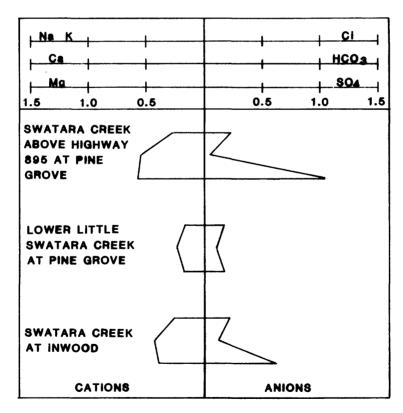



Figure 22.--Median concentrations of total lead, copper, and zinc.

Major Dissolved Ions

The ionic composition of Swatara Creek changes from above Highway 895 to Inwood. These changes result mostly from dilution of Swatara Creek by the inflow of Lower Little Swatara Creek. The median sulfate concentration is 10 times higher for mine drainage from Swatara Creek above Highway 895 than agricultural and forested drainage from Swatara Creek (table 5). Stiff diagrams that depict the median concentrations of each major ion (fig. 23), show the differences in ionic composition at the three sites. The water at Swatara Creek above Highway 895 is a mixed cation-sulfate type, whereas Lower Little Swatara Creek is a mixed cation and mixed anion type. Lower Little Swatara Creek water mixes with Swatara Creek, thereby reducing the concentrations of all ions, particularly sulfate, at Inwood.

Major-ion concentrations at all three sites indicate that water in the Swatara Creek State Park Reservoir is generally soft, with hardness values usually less than 70 mg/L as CaCO3 for Swatara Creek and 30 mg/L as CaCO3 for Lower Little Swatara Creek. No ions exceeded U.S. EPA criteria or Pennsylvania water-quality standards. However, instantaneous and median sulfate concentrations and discharges (table 5) indicate that most sulfate in

MILLEQUIVALENTS PER LITER

Figure 23.--Stiff diagrams of major ions for Swatara Creek Reservoir sampling sites.

Swatara Creek originates from the mine drainage upstream from Highway 895. The maximum measured sulfate concentration was 130 mg/L at Swatara Creek above Highway 895 and 25 mg/L at Lower Little Swatara Creek. Median concentrations were 50 and 5 mg/L, respectively. Downstream at Inwood, the maximum concentration was 60 mg/L and the median concentration was 30 mg/L. Instantaneous maximum sulfate discharges for Swatara Creek above Highway 895, Lower Little Swatara Creek, and Swatara Creek at Inwood were 50.2, 18.0, and 52.2 ton/d, respectively.

Bacteriological Characteristics

Fecal coliform concentrations in Swatara Creek and Lower Little Swatara Creek were usually below the U.S. EPA criterion of 200 colonies per 100 mL of water for bathing waters. Bacteria concentrations, however, exceeded the criterion and persisted at high levels for several days during and after a storm.

Samples analyzed in the field commonly had higher bacteria concentrations, probably due to the increased die off of bacteria in samples that were held up to 24 hours before being analyzed by PaDER laboratory personnel. Concentrations for both FC (fecal coliform) and FS (fecal streptococci bacteria) were usually higher at Lower Little Swatara Creek than at Swatara Creek above highway 895 and at Inwood. Although the FC:FS ratio // is commonly used to differentiate animal and human sources of bacteria, it cannot be used for these sites because the acid mine drainage in Swatara Creek probably reduces the survival rate of the bacteria (Hackney and Bissonnette, 1978). If conservation measures are taken to reduce or neutralize the acid mine drainage entering the Swatara Creek headwaters, bacteria concentrations at Swatara Creek above Highway 895 and at Inwood may significantly increase, and the FC:FS ratio may be useful in determining the sources of bacterial contamination.

PRELIMINARY ESTIMATION OF THE WATER QUALITY OF THE PLANNED SWATARA CREEK RESERVOIR

In order to predict the water quality of the planned Swatara Creek Reservoir, numerous characteristics of the lake must be considered. These characteristics include the detention time of water in the lake, the timing and extent of thermal and chemical stratification, sedimentation within the lake, the chemical loads entering the lake, and the chemical concentrations in the lake. These factors, which are at least partly related to streamflow, are discussed below.

Any land use or water treatment above the lake may significantly affect future water quality in the lake. For example, if mine drainage into Swatara Creek is reduced and if corresponding improvements in sewage treatment are not made, fecal coliform and fecal streptococci bacteria concentrations above Highway 895 may increase and have a detrimental impact on the lake.

^{1/} If FC:FS is less than 0.7, then animal source is suspected; if FC:FS is greater than 4.0, then human source is suspected.

Table 8.--Summary of bacteriological data, 1982 water year

		Fecal co (colonies	oliform s/100 mL)		reptococci es/100 mL)
Date	Time	Field	Laboratory	Field	Laboratory
Swata	ara Cre	ek above H	ighway 895 at 1	Pine Grove	
December 15, 1981	0850	34	40	220	40
January 20, 1982	1230	к8	10	80	40
February 3, 1982	1345		900		4,200
February 3, 1982	2130		1,000		3,600
February 4, 1982	1050		600		3,100
February 5, 1982	1400	K570		K3500	
February 16, 1982	1135	32	140	240	50
March 23, 1982	0900	<4	10	K21	10
April 20, 1982	1130	кз	25	54	25
April 26, 1982	1630		2 5		300
April 26, 1982	2345		420		620
April 27, 1982	0220		120		380
April 27, 1982	0945		340		340
May 25, 1982	1150	к39	30	100	80
June 22, 1982	0900	30	10	88	50
July 27, 1982	0945	K4	10	110	50
August 25, 1982	0615	•	9,200		2,200
August 25, 1982	1030		,,_,,		-,=00
August 25, 1982	1815		2,400		4,800
August 26, 1982	1415		40		4,000
September 14, 1982	0900	44	20	800	3
September 14, 1702					· · · · · · · · · · · · · · · · · · ·
<u>L</u>	ower Li	ttle Swata	ra Creek at Pir	ne Grove	
December 15, 1981	1115	25	80	100	20
January 20, 1982	1500	16	110	84	60
February 3, 1982	1830		2,900		22,000
February 4, 1982	0150		1,900		21,000
February 4, 1982	1245		1,000		2,700
February 5, 1982	1110	K260	340	2,000	340
February 16, 1982	0915	800	2,100	>240	5,100
March 23, 1982	1130	100	10	K61	10
April 20, 1982	1345	K32	75	170	25
April 26, 1982	1430		180	2,0	120
April 26, 1982	2000		2,800		2,200
April 27, 1982	0100		2,400		1,500
April 27,1982	1215		780		2,500
		400		200	-
May 25, 1982	1330	400	410	200	220
June 22, 1982	1200	260	260	280	20
July 27, 1982	1300	160	140	270	4 000
August 25, 1982	0430		1,400		4,000
August 25, 1982	1110		01 000		48,000
August 25, 1982	1635		21,000		23,000
August 26, 1982	1145		6,100		1,800
September 14, 1982	1130	120	120	67	190
		Swatara Cr	eek at Inwood		
December 15, 1981	1330	K 6	10	18	10
January 20, 1982	1000	<2	10	K6	10
February 4, 1982	0745		1,000		5,200
February 5, 1982	1615	K130		42	370
February 16, 1982	1435	K25	100	>240	280
March 3, 1982	1455	<4	10	K4	10
April 20, 1982	0745	K9	25	160	25
April 26, 1982	1830		600		100
April 27, 1982	1500		270		110
May 25, 1982	0845	180	200	110	50
June 22, 1982	1400		30	94	90
July 27, 1982	1445	39	50	200	10
August 25, 1982	0745	-,	7,000	_50	17,000
August 25, 1982	1430		3,500		4,000
August 26, 1982	1645		1,700		100
			1,700		100
September 14, 1982	1445	K67	70	62	40

Detention Time

The detention time of water in the planned lake will be much longer than in the fast-moving water of Swatara Creek. This will allow slow physical and chemical reactions to come closer to completion (Hem, 1970). The detention time in the Swatara Creek Reservoir will be longest during low flows, which usually occur from August through November. For example, at a typical flow of $40~\rm ft^3/s$, recorded during October and November 1981, and September 1982, the planned lake will require 204 days for a complete exchange of water. As a result, the lake will become a holding basin in which thermal and chemical stratification may occur. At high flows of about 1,000 ft $^3/\rm s$ an exchange would occur in about 8 days.

Thermal and Chemical Stratification

As the morphometric characteristics of the planned Swatara Creek Reservoir will be similar to those at nearby Blue Marsh Lake, the lake's processes of thermal stratification are expected to be similar (Barker, J. L., oral commun. 1983). However, because the chemical composition of the inflows for these impoundments is different, chemical stratification in Swatara Creek Reservoir will probably be different from Blue Marsh Lake and can only be discussed qualitatively as suggested by Flippo (1970).

Like many lakes in the temperate zone, the planned Swatara Creek Reservoir can be expected to thermally stratify in response to the seasonal conditions found in this area. Base-flow water temperatures reflected these seasonal differences in the 1982 water year. Water temperatures ranged from 0.0° C in the winter to 24.5° C in the summer. During spring base flow, as the detention time of the water in the lake increases and the lake becomes calm, solar radiation will be absorbed by the surface of the lake. As the surface water of the lake becomes warmer and less dense, a thermal resistance to mixing will develop. Gradually, three regions of different temperatures and densities (epilimnion-upper, metalimnion-middle, hypolimnion-lower) can be expected to form. Wetzel (1975) states, "When streamflow enters a lake or reservoir, the incoming water will flow into the density layer in the lake which is most similar to its density; this process is governed by temperature, dissolved material and suspended sediment." In early summer, warm base flow will flow over top of the denser, cooler impounded water. In contrast, the winter base flow will be cooler and denser than summer base flow, and will create little mixing in the shallow upstream part of the lake. The main part of these discharges flow down the slope of the reservoir bed, to a depth where its density is in equilibrium with that of the impounded water, and then flow horizontally to the point of outflow.

In the narrow Swatara Creek Reservoir, the introduction of the cooler base flows during the winter and late spring will result in an accumulation of organic nitrogen, phosphorus, and metals in the hypolimnion. If large amounts of oxidizable material are transported to the planned lake during storms and hase flow, and if organic material is deposited in the spring and summer from the epilimnion, dissolved oxygen in the hypoliminion may be depleted as early as mid-June. Hydrogen sulfide may also be generated in the anaerobic part of the lake as organic material decomposes in the summer and winter. Dissolved-metal concentrations in the hypolimnion can be expected to increase as anoxic

conditions persist and increased retention times during low flows permit reduction and leaching of the lake sediments. As low base flows persist during the summer, dissolved nitrate and phosphorus concentrations may decrease in the warmer epilimnion due to consumption by algae and other aquatic plants. As the algae die and settle into the hypolimnion, decomposition of the organic matter will use oxygen.

Sedimentation

Data from the investigation showed 46 percent of the annual suspended-sediment load at both Swatara Creek above Highway 895 and Lower Little Swatara Creek was transported during three days: April 3, June 29, and August 28, 1982; these results support McCarren's (1964) conclusion that a high percentage of suspended sediment carried by streams in the Swatara Creek basin is transported during a few storms each year. Therefore, during storms, the proposed impoundment will be impacted by sudden discharges of suspended material. During base flow, much of the suspended material may be trapped in the lake.

The amount of sedimentation that would have occurred in the planned Swatara Creek Reservoir during the 1982 water year was estimated using techniques described by Brune (1953). Assuming the suspended sediment has a density of 55 lb/ft³ and the reservoir has a 78 percent trap efficiency, 494,000 ft3 or 11.4 acre-ft of suspended sediment would have been trapped in the impoundment from October 1981 to September 1982. Because 7,000 acre-ft of the reservoir is designated for sediment deposition, the preliminary data indicate that life expectancy of the lake would be about 614 years. Because streamflows for this part of the study were 15 percent below normal, the average annual suspended-sediment load transported to the planned impoundment may be higher, which would shorten the life expectancy of the lake. Although preliminary data indicate a subimpoundment is not necessary to reduce the suspended-sediment load to the reservoir, a subimpoundment may provide other beneficial water-quality improvements. The deposition and precipitation of sediment, coal fines, and associated metals during low flows will probably be greater in the shallow inflow sections of the lake where velocities are insufficient to keep the particulate matter suspended. As a result, the lake bottom probably will be largely covered by particulate coal. Preliminary data indicate that storm discharges and wave action along the shore line of the lake may resuspended this material and increase the turbidity of the lake substantially.

Initial information also indicates that large storms probably transport significant quantities of coal as bedload in the Swatara Creek. The impact of bedload transport into the planned impoundment will probably be sudden but infrequent.

Chemical Loads and Concentrations

Water-quality data collected during this preliminary investigation show the chemical loads entering and chemical concentrations in the planned impoundment area will largely depend on flow conditions. Base flow waterquality data indicate that the lake will probably be poorly buffered because measured concentrations of alkalinity and acidity were usually less than 10 mg/L and 5 mg/L as CaCO₃, respectively. As a consequence, the lake may be impacted by acid mine discharges from Swatara Creek above Highway 895, like those measured during storms when the pH dropped to 5.6 and acidity and metal concentrations simultaneously increased. In the absence of acid mine drainage and in response to the consumption of carbon dioxide by photosynthesis in the epilimnion, the pH of portions of the lake may increase substantially higher than the median of 6.5 measured at Inwood.

Nitrogen concentrations measured during both base flows and storms at inflows to the planned lake exceeded the critical values necessary for algal growth during the entire study period. As most of the nitrogen was dissolved, it will be available for biological uptake in and downstream from the planned impoundment. Dissolved phosphorus concentrations were commonly 0.01 mg/L or less, indicating that phosphorus may become a limiting nutrient for plant growth in the lake, especially during base flows from March through July. However, a significant loading of phosphorus and organic nitrogen associated with the suspended sediment occurs during storms. Storms of sufficient magnitude, as those measured in February, April, and August 1982, may resuspend these nutrients and transport them to the planned lake, where they may be trapped along with sediments in the lake's bottom material. Ultimately, these nutrients may become available for resolution, plant enrichment, and algal growth. Brown and others (1983) report that generally 20 to 40 percent of sediment phosphorus from agricultural watersheds is available to aquatic life, and Young and others (1982) indicate 55 percent of particulate phosphorus in municipal wastewaters is available in the short term; 63 percent is ultimately available. Measured base-flow concentrations of dissolved and suspended organic and ammonia nitrogen and bottom-material data indicate that most of the organic and ammonia nitrogen is transported from Swatara Creek above Highway 895. Although sewage from the borough of Pine Grove undergoes secondary treatment, visible discharges of untreated sewage from outside the borough were observed during base flows in Swatara Creek. The high biological oxygen demand created from such high concentrations of nutrients may result in low dissolved oxygen concentrations similar to the case on August 25, 1982 at 6:15 a.m. when 5.6 mg/L (64 percent saturation) of dissolved oxygen was measured.

Water-quality data collected during the 1982 water year indicated that most metal loads to the planned impoundment area were transported during storms and associated with suspended sediment. High concentrations of aluminum, iron, and manganese transported from the Swatara Creek headwaters to the study area were also measured in the bottom material of Swatara Creek at low flows. Like phosphorus, much of the iron, aluminum, lead, copper, and zinc was suspended and may be trapped in the lake and deposited on the lake bottom.

HYPOTHETICAL EFFECTS OF THE RESERVOIR ON DOWNSTREAM WATER QUALITY

As suggested during the preceeding discussion, the water quality of Swatara Creek in and downstream from the impoundment will need to be monitored closely. Because the reservoir will stratify thermally and chemically in the summer and autumn, releases during this part of the year will have the most impact on downstream water quality. Conservation releases need to be care-

fully controlled from the release gates, so that water from the hypolimnion with low dissolved oxygen levels and high dissolved metal concentrations will not degrade the downstream water-quality conditions and be detrimental to the aquatic community.

The reservoir will act as a sediment trap and, therefore, reduce the concentrations of total phosphorus, iron, aluminum, lead, copper, and zinc discharged immediately downstream of the impoundment during low and medium flows. Because streamflows at Harper Tavern and other points downstream of Inwood will be affected by the impoundment, and peak flows will probably be reduced, the reservoir is expected to reduce the frequency of large discharges of nutrients and metals such as those currently being measured at Inwood.

When storm discharges are large or when the winter-pool level is to be maintained by releasing water from the hypolimnion, rapid flushing of high concentrations of iron, aluminum, lead, copper, and zinc that may occur could have an adverse effect on the downstream aquatic community.

Acid conditions similar to those reported by the Pennsylvania Fish Commission for Tioga-Hammond Lakes (Baltimore Corps of Engineers, oral commun., 1984) also may occur in the Swatara Creek reservoir. If severe ice buildup occurs on the lake, little mixing may occur because the inflow current will be constricted. When acidic storm discharges from Swatara Creek above Highway 895 enter the lake, they may be trapped in pockets or accumulate near the release structure. This acid buildup may be detrimental to fish in the lake, and release of this water may kill fish downstream.

SUMMARY AND CONCLUSIONS

The preimpoundment water-quality of the proposed Swatara Creek Reservoir was studied and preliminary results for the period June 1981 to October 1982 are summarized below.

Precipitation and streamflow data for the 1982 water year indicate that preliminary data collection was performed during atypical conditions. Near the study area at Lebanon, precipitation in Pennsylvania was 8 percent below normal. Streamflow for the same period just downstream at Swatara Creek at Harper Tavern was 15 percent below the average annual flow.

During this 1-year period, about 2.1 times more discharge entered the planned impoundment area from the coal mining region of the Swatara Creek headwaters above Highway 895 than that from the forested and agricultural area of Lower Little Swatara Creek.

Swatara Creek reservoir will probably result in a poorly buffered lake with inflows containing high concentrations of nutrients and metals that will probably chemically stratify during the summer. Measured concentrations of alkalinity and acidity for Lower Little Swatara Creek and Swatara Creek above Highway 895 were usually less than 10 and 5 mg/L as CaCO3, respectively. Dissolved inorganic nitrogen and phosphorus concentrations flowing to the planned impoundment area were measured as high as 2.6 and 0.10 mg/L, respec-

tively. The critical concentrations for dissolved inorganic nitrogen and phosphorus of 0.3 mg/L and 0.01 mg/L, respectively, which are necessary to stimulate excessive algal growth, were commonly exceeded. Phosphorus may become the limiting nutrient for algal growth from March through July; however, phosphorus in the bottom material will be available for re-solution, plant enrichment, and algal growth. Even if substantial amounts of organic nitrogen are prevented from being discharged into the Swatara Creek and transported to the planned impoundment area, oxygen depletion may occur which will be harmful to the acquatic life in and downstream of the impoundment. High metal concentrations, including maximums of 66,000 µg/L for total aluminum, $100,000 \mu g/L$ for total iron, and $2,300 \mu g/L$ for total manganese, along with simultaneous decreases in pH and increases in acidity, indicate that mine drainage continues to degrade the water-quality of Swatara Creek. Concentrations of iron, lead, copper, and zinc concentrations in inflows to the planned impoundment occasionally exceeded U.S. EPA freshwater aquatic-life criteria. Concentrations of manganese and lead also exceeded U.S. EPA waterqualtiy criteria for domestic water supplies and human health, respectively. The water quality of the planned Swatara Creek reservoir will depend largely on the (1) detention time of water in the lake: (2) the timing and extent of thermal and chemical stratification; (3) sedimentation; and (4) chemical loads to, and concentrations in the lake; each factor is influenced, in part, by the frequency of occurrence of particular streamflows.

The impoundment will act as a sediment trap and, therefore, reduce the concentrations of total phosphorus, iron, aluminum, lead, copper, and zinc immediately downstream from the impoundment. Large storm discharges from the Swatara Creek headwaters, and releases from the hypolimnion to maintain a winter-pool level, may contain low oxygen concentrations and high concentrations of iron, aluminum, lead, copper, and zinc. Unless conservation releases are controlled carefully from the multilevel release gates, low dissolved-oxygen levels and high metal concentrations may degrade the downstream water quality and be detrimental to the aquatic community.

REFERENCES

- Berger Associates, Inc. 1972, Swatara Creek mine drainage pollution abatement project, part two, Operation Scarlift, Commonwealth of Pennsylvania, SL-126-2, 168 p.
- Brune, G. M., 1953, Trap efficiency of reservoirs: American Geophysical Union Transactions, v. 34, no.3, p. 407-418.
- Brown, M. P., Rafferty, M. R., and Longabucco, P., 1983, Nonpoint source control of phosphorus a watershed evaluation, Volume 3. Phosphorus transport in the West Branch of the Delaware River watershed: New York State Department of Environmental Conservation, Albany, New York, CR 806839, P 002137-01, 112 p.
- Commonwealth of Pennsylvania, 1982, Proposed Comprehensive Water Quality Management Plan, Lower Susquehanna Area, Bureau of Water Quality Management, Department of Environmental Resources, Publication no. 64, chapter V, p. V-25.
- Davis, H., 1983, Acid Rain, Aluminum Link Found, The Washington Post, May 24, 1983, p. A9.
- Flippo, H. N., Jr., 1970, Chemical and biological conditions in Bald Eagle Creek and prognosis of trophic characteristics of Foster Joseph Sayers Reservoir, Centre County, Pennsylvania: U.S. Geological Survey Open-File Report, 48 p.
- Greeson, P. E., Ehlke, T. A., Irwin, G. A., Lium, B. W., and Slack, K. V., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Water-Resources Investigations, Book 5, Chapter A4, 332 p.
- Guy, H. P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter Cl, 58 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Hackney, C. R., and Bissonnette, G. K., 1978, Recovery of indicator bacteria in acid mine streams, Journal of Water Pollution Control Federation, v. 50, p. 775-780.
- Harms, L. L., Darnbush, J. N., and Anderson, J. R. 1974, Physical and chemical quality of agricultural land runoff, Journal Water Pollution Control Federation, V. 46, no. 11, 2,460 p.
- Helwig, J. T., 1978, SAS Introductory Guide, SAS Institute Inc., Raleigh, North Carolina, 83 p.

REFERENCES-Continued

- Hem, J. D., 1970 Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hoopes, R. L., 1981, Swatara Lake (707D) Swatara State Park, preimpoundment design and operations specifications a contribution from the Pennsylvania Fish Commission, 4 p.
- McCarren, E. F., Wark, J. W., and George, J. R., 1961, Hydrologic processes diluting and neutralizing acid streams of the Swatara Creek basin, Pa., in Geological Survey Research, 1961: U.S. Geological Survey Prof. Paper 424-D, p. D64-D67.
- , 1964, Water quality of the Swatara Creek Basin, Pa.: U.S. Geological Survey Open-File Report., 88 p.
- McKee, J. E., and Wolf, H. W., 1963, Water quality criteria: The Resources Agency of California, State Water Quality Control Board, Pub. No. 3-A, 300 p.
- Moran, R. E., and Wentz, D. S., 1974, Effects of metal-mine drainage on water quality in selected areas of Colorado, 1972-73: Colorado Resources Circular no. 25, 38 p.
- National Oceanic and Atmospheric Administration, 1981-1982: Climatological data, Pennsylvania.
- O'Leary, S. J., and Beschta, R. L., 1981, Bedload transport in an Oregon coast range stream: Water Resources Bulletin, v. 17, no. 5, p. 886-894.
- Pennsylvania Department of Environmental Resources, 1979, Water quality standards, PA. Bulletin, 9(36), p. 3051-3183.
- Porterfield, George, 1972, Computation of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Potter, W. A., Malick, R. W., Jr., and Polk, J. L., 1976, The composition and Distribution of ifshes of the Swatara Creek drainage, Pennsylvania, Proceedings of the Pennsylvania Academy of Science, v. 50., p. 136-140.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, v. 3, no. 10, p. 15-17.
- Stuart, W. T., Schneider, W. J., and Crooks, J. W., 1967, Swatara Creek basin of southeastern Pennsylvania: U.S. Gelogical Survey Water-Supply Paper 1829, 79 p.
- Terraqua Resources Corporation, 1982, Feasibility study report, dam and reservoir project, Swatara State Park: Commonwealth of Pennsylvania,
 Department of General Services, Project Number 152-1, 66 p.

REFERENCES-Continued

- U.S. Environmental Protection Agency, 1976, Quality criteria for water: Washington, D.C. 256 p.
- Register, v. 45, no. 231, p. 79318-79341.
- Wetzel, R. G., 1975, Limnology, W. B. Saunders Company, Philadelphia, Pennsylvania, 743 p.

Table 9.--Surface-water and water-quality data, July 1981 through September 1982 01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

Time	Stream- flow, instan- taneous	Spe- cific con- duct- ance (µS/cm)	pH (Units)	Temper- ature (°C)	Tur- b1d- ity (FTU)	Oxygen, dis- solved (mg/L)	Oxygen demand, chem- ical (high level) (mg/L)	Coli- form, fecal, 0.7 UM-MF (Cols./	Strep- tococci fecal, KF Agar (Cols. per 100 mL)	Hard- ness (mg/L as CaCO ₃)
0820	98 01	237	7.2	0.5	13	13.2	14	34	220	96
. 1230	09 01	231	6.4	3.	70	12.6	ł	К8	80	104
. 134			6.3	1.0	06	13.2	99	}	1	38
2130	10 592		9.9	1.0	27	12.0	34	!	1	36
. 140		143	6.2	2.0	77 18	13.6	(10 (10 (10	K570	K3,500	41
. 113			9.9	4.0	14	12.8	22	32	240	62
0060	00 225	164	6.2	4.5	14	11.8	14	*	K21	55
20 113			6.5	11.5	12	10.6	<10	ξX	K54	53
1630		193	6.4	12.5	53	10.4	i	!	!	55
			6.7	12.0	17	10.4	!	1	!	70
		134	9.9	12.0	15	10.4	!	!	!	4,9
	298		8.0	14.0	01	TO.4	!	1	!	4 0
25 1150	0 73	208	6.8	14.0	3.0	8	10	K39	100	69
0060	126	190	6.3	16.5	-	10.0	46	30	88	69
0945	.5 34	348	6.1	19.5	7.9	8.0	11	К4	110	140
. 061	.5 372	188	5.6	22.0	840	5.6	405	1	1	89
. 103			6.5	18.5	125	7.6	258	-	1	4 ×
1415	66 5	204	6.4	19.5	77 16	7.6	388			65
0060	10 27	305	6.7	17.0	3.0	8.4	<10	77	800	110

K = Results based on non-ideal colony count.

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

1982
SEPTEMBER
Ţ
1981
OCTOBER
YEAR
WATER
DATA,
WATER-QUALITY

			_	_	_		_	_		_			_				٠.	_		_	
Silica, dis- solved (mg/L as SiO ₂)	6.9	7.1	0.9	3.9	3.9	4.2	6.7	5.9	6.2	0.9	5.5	5.5	5.7	6.5	3.4	8.9	5.2	5.9	9•9	2.9	7.1
Chlo- ride, dis- solved (mg/L as Cl)	10	10	21	13	11	10	12	8.0	8.0	8.0	0.9	0.9	0.9	7.0	0.9	8.0	7.0	7.0	8.0	7.0	0.6
Sulfate dis- solved (mg/L as SO ₄)	80	80	30	25	35	35	55	54	20	55	30	35	93	09	09	130	20	35	30	75	06
Alka- linity field (mg/L as CaCO ₃)	9	7	0	4	4	3	4	1	3	7	4	5	5	9	7	2	4	9	80	9	2
Potas- sium, dis- solved (mg/L as K)	1.4	6.	3.4	2.9	2.8	2.5	6.	6.	6.	1.0	1.0	œ.	6.	æ	1.0	1.4	1.5	1.3	1.2	1.4	3.3
Sodium ad- sorp- tion ratio	0.3	4.	6.	9.	5.	4.	9.	.3	e.	£.	.3	.2	e.	ε,	ε.	4.	.2	.3	.3	÷.	4.
Percent Sodium	14	17	70	31	26	22	56	17	16	17	18	15	16	16	15	14	12	16	18	15	16
Sodium, dis- solved (mg/L B	6.9	9.6	13	8.3	7.3	6.1	10	5.3	4.8	5.5	4.2	4.0	4.0	6.8	5.8	9.5	4.1	4.2	4.8	5.3	10
Magne-sium, dis-solved (mg/L as mg)	12	18	4.3	3.9	5.0	5.4	7.6	7.0	8.9	8.9	4.7	5.8	9.6	8.6	9.2	18	7.5	5.3	5.4	7.8	14
Calcium dis- solved (mg/L as Ca)	18	12	8.2	7.9	8.3	9.2	12	11	11	11	8.4	10	9.1	14	14	20	12	10	10	13	50
Acidity (mg/L as CaCO ₃)	0.0	ł	4.0	5.0	8.0	4.0	2.0	4.0	4.0	0.9	3.0	4.0	3.0	3.0	1	5.0	21	5.0	3.0	5.0	5.0
Date	DEC 15	20	03	03	04	05	16	MAR 23	20	26	26	27	27	25	22	27	25	25	25	26	3EF 14

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	•	Nitro-		Nitro-		Nitro-		Nitro-	Nitro-	N1 ro-	
	N1tro-	gen,	Nitro-	gen,	Nitro-	gen,	Nitro-	gen,	gen, am-	gen, am-	,
	gen,	nitrate dis-	gen,	nicrice	gen,	ammonia dia-	gen,	organic dis-	monia +	monta +	NICTO
	total	solved	total	solved	total	solved	total	solved	t)tal	dis.	total
	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L	(mg/L
Date	as N)	as N)	as N)	as N)	as N)	as N)	as N)	as N)	as N)	as N)	as N)
DEC											
15	0.81	0.79	0.010	0.010	0.200	0.200	0.30	0.30	0.50	0.50	1.3
JAN											
20	1.1	1.10	.010	010	.180	.180	.65	.43	.83	.61	1.9
E B											
33	1.5	1.50	.020	.020	.290	.290	1.1	1.1	1.40	1.4	2.9
3	1.8	1.80	.020	.010	.250	.250	.35	. 28	.70	.53	2.5
70	1.6	1.60	.020	.010	.290	.290	.31	.31	.60	09.	2.2
50	1.2	1.20	.010	010.	.150	.150	.62	.62	11.	.17	2.0
16	1.1	1.10	.020	.020	.110	.110	69.	64.	.80	09.	1.9
¥											
23	.58	.56	<.010	<.010	.070	.070	.23	.23	.30	.30	.90
P.R.											
20	.89	68.	.010	010.	.120	.120	1.1	1.1	1.20	1.2	2.1
97	.63	.61	.010	010.	.250	.250	1.0	1.0	1.20	1.2	1.8
26	.79	.79	.010	.010	.120	.120	.83	.83	.95	.95	1.8
27	.65	.65	.010	.010	.120	.120	.78	.78	.90	.90	1.6
27	.75	.75	.010	.010	.080	.080	.72	.72	.80	.80	1.6
ΑY											
25	.35	.35	.010	.010	.220	.220	1.4	1.2	1.60	1.4	2.0
NN											
22	1.1	1.10	<.010	<.010	.130	.130	.87	.87	1.00	1.0	ł
70											
27 Aug	.31	.31	.010	.010	.620	.620	09.	.30	1.20	.92	1.5
25	.51	.49	.010	.010	.170	.170	2.2	.83	2.40	1.0	2.9
25	.58	. 58	.020	.010	.130	.130	.87	.67	1.00	.80	1.6
25	.78	.78	.020	.020	.110	.110	1.2	69.	1.30	.80	2.1
26	.89	.87	.010	.010	.150	.150	ł	ļ	•	i	1
SEP											
14	.45	.45	.010	.010	.820	.820	.78	.78	1.60	1.6	2.1

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued 01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Iron, dis- solved (µg/L) as Fe)	860	1,500	440	760	630 1,000	1,100	650	800	340	430	310	300	430	40 90 120	460
Iron, total recov- erable (µg/L) as Fe)	2,500	3,100	7,700	2,600	1,700	2,600	1,800	3,400	2,200	1,300	970	1,100	1,200	100,000 15,000 2,800	1,600
Copper, total recoverable (µg/L) as Cu)	ţ	-	20	50	유	!	!	01	2 6	30	ł	1	1	220 60 20	50 1
Chro-mium, total recov-erable (µg/L) as Cr)	ł	;	30	01	07	ŀ	ł	<10	¢10 ¢,	40 <10	I	ł	1	40 <10 <10	<10
Alum- inum, dis- solved (µg/L) as Al)	100	40	470	140	. 00	70	90	130	200	330	06	20	30	120 240 150	9 7 7 8
Alum- inum, total recov- erable (µg/L) as Al)	1,000	1,200	4,700	1,300	1,100 680	099	620	1,800	1,300	1,100	580	200	069	66,000 6,700 1,200	300
Phos- phorus, ortho, dis- solved (mg/L as P)	1	.010	010.	.010	.010	<.010	.010	<.010	<.010	<.010 <.010	<.010	<.010	<.010	<.010 <.010 <.010	.010
Phos- phorus, ortho, total (mg/L as P)	<0.010	.010	.010	.020	.030	<.010	.010	<.010	<.010	010.>	<.010	<.010	<.010	<.010 .010 <.010	.010
Phos- phorus, dis- solved (mg/L as P)	0.040	.030	.060	.020	.020	.010	.020	.010	.020	.020	.010	.020	.010	.020	.030
Phos- phorus, total (mg/L as P)	0.070	090.	.280	.120	.070 .040	.030	.040	090.	.050	040	.030	.040	.050	.280 .250 .120	.030
Nitro- gen dis- solved (mg/L as N)	1.3	1.7	2.9	2.2	1.7	06.	2.1	1.8	1.8	1.6	1.8	ļ	1.2	1.5	2.1
Date	DEC 15	20	03	04	05	MAR 23	AFK 20	26	26	27	MAY 25	22	27	25 25 25	26 SEP 14

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

		WATE	R-QUALITY	DATA, WAT	FER YEAR	OCTOBER 1	WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982	TEMBER 1	982	
Date	Lead, total recoverable (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Mercury total recov- erable (µg/L as Hg)	Zinc, total recov- erable (µg/L as Zn)	Carbon, organic total (mg/L as C)	Carbon, organic dis- solved (mg/L as C)	Sed1- ment, sus- pended (mg/L)	Sedi- ment, dis- charge, sus- pended (ton/d)	Sed. susp. sleve dlam. percent fluer than
DEC 15		1,200	1,200	1 1		1.7	1.3	22	5.1	
FEB 03	18 8 6	570 410 550	400 350 540	<2.0 <2.0 <2.0	100 60 90	5.0	4.8	265 89 42	298 142 44	77 68 91
05 16 MAR	4	540 740	530	<2.0	8	2.6	2.5	26 14	9.8	93
APR 20 26 27	7 7 7 7 7 7 7 7 7 7 7 7	580 790 460 540 470	550 790 460 510 460	(2.0 (2.0 (2.0 (2.0	1 1000	1.7	1.7 2.2 2.4 2.4 <1.0	20 21 66 48 34 21	12 43 43 29 17	77 77 66 70 61
25 JUN 22 JUL 27		830 770 2,000	830 670 2,000	1 1 1		<1.0 <1.0 1.1	(1.0	8 2 8 9 9	1.6	1 1 1
AUG 25 25 25 26 SEP 14	172 40 45 \$\$	2,300 770 540 800 1,300	790 530 540 720 1,300	<pre><2.0 <2.0 <2.0 <2.0 </pre>	310 130 80 110	7.0	3.2	3,900 523 88 26	3,920 555 55 6.9	82 73 88

Table 9. --Surface-water and water-quality data, July 1981 through September 1982--Continued

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, OCTOBER 1981 TO SEPTEMBER 1982 01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

				Sed. susp. steve diam. percent finer than 1.00 mm 100 100 99
Sed. susp. fall diam. percent finer than	36	40 41 75	62	Sed. susp. sleve dlam. flam. finer than 0.500 mm 99 99
Sed. susp. fall. diam. percent finer than 0.004 mm	26 26	36 99 99	46	Sed. susp. sleve diam. percent finer than 0.250 mm 95 95
Sedi- ment, dis- charge, sus- pended (ton/d)	409	2,600 64	213	Sed. susp. sleve diam. percent than 0.125 mm 88 88 86 74
Sedi- ment, sus- pended	233 233	135	251	B B
Temper- ature (°C)	6	2.0	22.5	e l
Stream- flow, instan- taneous (ft³/s)	650	592 836 566	314	Sed. susp. fall dlam. percent finer than 0.031 mm 67 67 67 82
Tine	1325	1830 1850 0640	1400	Sed susp. fall diam. percent finer than 0.016 mm 48 48 48
Date	JAN 04 04 FEB	03 MAY 29	A0G 25	Date JAN 04 04 FEB 03 APR 29 AUG
			;	

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued TEMPERATURE (°C) OF WATER, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

ONCE-DAILY

SEP	19.0	23.5	21.0	17.0	19.5	21.0	17.0	17.0	20.5	22.0	21.5	21.0	22.5	21.5	21.5	19.5	18.5	18.5	17.0	14.5	16.5	14.5	15.5	17.5	16.0	15.5	16.5	17.0	18.5	17.0	!	18.5
AUG		!	-	1	1	1	!	1	1	!	21.0	1	22.0	!	1	23.5	22.0	23.0	23.0	20.0	17.5	18.5	19.5	23.0	22.5	22.0	19.0	18.5	17.0	19.0	20.0	20.5
JUL	22.0	!	16.0	1	22.0		21.0	!	20.5	1	22.5	!	23.0	1	20.0		24.5	1	21.5	!	24.5	!	26.5	!	!	!	27.0	1	25.0	1	1	22.5
JUN	17.0	!	15.0	15.0	!	14.0	16.5	14.0	16.0	14.5	!	14.0	12.5	12.5	19.0	17.5	19.0	1	19.0	!	18.0	16.5	15.0		21.0	!	19.5		20.0	!		16.5
MAY		17.0	!	17.5	!	15.0	!	16.0	1	13.5	-	18.5	!	19.5		22.0	1	22.0	!	18.5	1	16.5	1	12.0	14.0	21.5	!	16.5	14.5	19.0	19.0	17.5
APR	11.5	12.0	10.5	2.0	0.9	0.9	6.5	0.6	ļ	8.0	-	10.5	!	11.5	1	14.0	1	13.5	1	11.5	1	13.0	1	16.0	1	12.5	12.0	16.0	1	14.5	-	11.0
MAR	3.0	2.5	2.0	1.5	2.0	2.5	1.5	1.5	1.0	1.5	3.0	3.5	4.0	0.9	4.5	4.0	4.0	6.5	0.9	0.9	0.9	7.0	0.6	8.0	9.5	7.0	8.0	8.0	6.5	12.0	ი.6	5.0
FEB	1.5	1.0	1.5	2.5	3.0	2.5	1.0	2.0	1.5	1.5	2.0	2.0	1.5	2.5	2.0	3.0	2.5	2.0	2.0	2.0	2.0	2.5	4.5	4.0	2.5	1.5	1.0	2.0		1	1	2.0
JAN	3.5	2.5	2.0	4.0	4.0	3.5	4.0	1.5	1.0	۲.	٠.	٤.	٠.	٠.	5.	٥.	٤.	۶.	٠.	٥.	٥,	۶.	'n	٠.	٠.	٠.	.5	۲,	٠.	٠.	•5	1.0
DEC	3.0	3.0	4.0	5.0	4.5	3.0	3.5	4.5	3.0	2.0	1.5	2.5	2.0	1.0	1.5	1.5	1.0	1.0	1.0	1.0	.5	1.0	1.5	1.5	2.0	2.0	2.5	1.0	2.0	1.5	2.0	2.0
NOV	13.0	14.0	12.0	11.0	11.0	10.5	0.6	10.0	8.5	7.5	9.5	7.5	7.0	9.0	0.6	0.6	0.6	0.6	9.5	9.0	6.5	5.5	5.5	5.0	4.0	4.5	0.9	5.0	5.0	4.5	1	8.0
LOO	1	!	1 1	1	1	-	!	!	-	-	1	!	!	1	1	1 1	1	1	1			!	12.5	8.5	7.0	11.0	13.0	12.0	10.0	11.5	10.0	10.5
DAY	1	7	٣	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Mean

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

SEDIMENT DISCHARGE, SUSPENDED (TON/D), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Day	Mean discharge (ft³/s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)
		OCTOBER			NOVEMBER			DECEMBER	
	1	1	1	36	œ	0.78	27	16	1.2
7	!	!	!	34	· 00	.73	89	25	4.6
'n	!!!	1	1	78	· œ	09.	57	7	-
4	1	!	!	23	11	. 68	48	. 10	.65
2	1	1	1	22	&	.48	41	5	.55
9	!	1	1	56	70	12	36	6	.87
7	!!!	!	!	45	6	1.1	31	œ	.67
∞	1	!	1	36	9	.58	47	56	3.3
6	1	1	!	31	12	1.0	49	13	1.7
10	!!	!	!	78	14	1.1	41	9	99.
11	!	1	1	28	13	86.	38	7	.72
12	-	!!!		56	13	.91	33	9	.53
13	1	1		23	10	.62	32	ν	.43
14	1	1	!	22	12	.71	49	13	2.5
15	1	!	1	24	10	•65	89	19	3.5
16	ł	!	1	5 6	12	.84	41	11	1.2
17	-	1	!	5 6	14	86.	31	80	.67
18	1	1	!!!	25	16	1.1	28	9	.45
19	-	1	1	24	6	.58	25	9	.41
20	1	-	!	33	19	1.7	30	2	.41
21	!	!	!	33	œ	.71	26	9	.42
22	1	!	1	29	S	.39	31	6	.75
23	1	1	-	28	5	.38	42	7	.79
54	42	16	1.8	25	7	.27	26	7	1.1
25	27	٣	.22	24	S	.32	26	7	1.1
56	30	13	1.6	22	7	.24	67	9	.79
27	115	122	35	23	7	.25	48	7	.52
28	98	46	12	22	9	.36	45	12	1.5
53	59	13	2.1	21	72	.28	45	11	1.3
30	67	12	1.6	21	m	.17	41	10	1.1
31	41	12	1.3	!	t I I	!	36	10	.97
Total	478	1	55.62	844	}	31.49	1,295	1	36.46
 			! > >	· •		:			· · · · · · · · · · · · · · · · · · ·

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

1982
SEPTEMBER
L TO
1981
YEAR OCTOBER
YEAR
WATER
D),
(TON/
SUSPENDED
DISCHARGE,
SEDIMENT

ау	Mean discharge (ft ³ /s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	concentration (mg/L)	Sediment discharge (ton/d)
		JANUARY			FEBRUARY			MARCH	
	72	23	4.5	360	54	52	92	12	3.0
7	98	28	6.5	180	48	23	97	12	3.1
6	89	21	3.9	339	111	145	66	13	3.5
4	458	288	416	424	46	53	06	15	3.6
'n	403	94	20	239	25	16	103	21	5.8
9	246	25	17	177	18	8.6	106	16	4.6
_	171	15	6.9	140	20	7.6	144	29	11
ഹ	136	11	4.0	110	16	8.4	174	27	13
6	111	11	3.3	100	16	4.3	126	25	8.5
C	88	6	2.1	26	15	3.9	103	5 6	7.2
_	7.2	20	3.9	86	15	3.5	113	77	13
7	99	20	3.6	78	16	3.4	262	224	172
9	62	11	1.8	72	22	4.3	275	177	139
. †	09	18	2.9	99	12	2.1	288	69	54
	59	17	2.7	70	13	2.5	268	35	25
٠,	58	16	2.5	133	30	11	236	24	15
_	57	21	3.2	153	19	7.8	246	19	13
m	57	13	2.0	108	19	5.5	236	33	21
•	58	13	2.0	66	18	4.8	243	31	20
_	09	23	3.7	88	16	3.8	239	17	11
_	59	17	2.7	108	19	5.5	262	47	33
~	58	16	2.5	136	20	7.3	249	33	22
<u>س</u>	22	20	3.1	159	19	8.2	220	23	14
à	26	20	3.0	168	19	8.6	202	16	8.7
	55	15	2.2	123	13	4.3	189	23	12
S	54	15	2.2	101	19	5.2	214	36	21
7	53	16	2.3	97	14	3.7	186	22	11
~	52	18	2.5	96	10	2.5	162	22	9.6
6	51	18	2.5	!	;	1	142	14	5.4
0	20	25	3.4	1	1	1	131	16	5.7
	09	27	4.4	1	1	1	165	139	92
TOTAL	3.053	!	573.3	4,105		412.2	5,662	1	764.7
ļ				•			•		

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued 01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

										į
	Mean discharge	Mean concent tration	Sediment discharge	Mean discharge	Mean concentration	Sediment	Mean discharge	Mean concen- tration	Sediment	
Day	(ft ³ /8)	(mg/L)	(ton/d)	(ft³/s)	(mg/L)	(ton/d)	(ft³/8)	(mg/L)	(ton/d)	
		APRIL			MAY			JUNE		
	196	88	47	217	11	6.4	177	82	7.1	
	147		9.5	202	10	5.5	473	84	112	
_	9.4		1,770	177	10	4.8	37.5	7.5	81	
4	764		413	162	11	4.8	379	28	29	
	417		99	147	12	4.8	488	250	529	
	403		36	131	12	4.2	884	114	274	
	333		22	123	12	0.4	613	99	93	
	294		14	120	12	3.9	428	34	39	
	278		14	118	11	3.5	339	22	20	
	265	17	12	106	10	2.9	285	20	15	
	285	15	12	76	12	3.0	262	18	13	
	285	14	11	92	15	3.7	227	16	8.6	
	278	16	12	92	12	3.0	362	9	7.1	
	262	18	13	84	œ	1.8	389	23	54	
	233	21	13	7.7	10	2.1	291	19	15	
	211	22	13	75	13	2.6	252	59	21	
	214	69	50	7.2	11	2.1	307	28	23	
	301	101	83	99	6	1.6	233	53	18	
	217	35	21	99	∞	1.4	199	20	11	
	199	13	7.0	99	æ	1.4	174	25	12	
	177	80	3.8	62	6 0	1.3	150	16	6.5	
	165	8	3.6	7.7	10	2.1	126	19	6.5	
	165	8	3.6	66	8	2.1	133	14	5.0	
	156	6	3.8	88	7	1.7	113	18	5.5	
	150	6	3.6	75	7	1.4	101	13	3.5	
	214	58	77	62	2	.33	96	16	4.1	
	281	34	26	53	1	.14	90	11	2.7	
	310	43	36	90	136	99	84	17	3.9	
	259	14	8.6	443	151	220	249	246	860	
	233	13	8.2	233	14	8.8	211	99	42	
	[] [1 1 1	! ! !	193	3	C T	ļ			
TOTAL	8,228	}	2,780.9	3,760	}	384.37	8,488	1	2,426.5	

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued 01571919 SWATARA CREEK ABOVE HIGHWAY BRIDGE 895 AT PINE GROVE, PA

SEDIMENT DISCHARGE, SUSPENDED (TON/D), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

discharge ay (ft³/s)	concentration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/8)	Mean Concentration (mg/L)	Sediment discharge (ton/d)
	JULY			AUGUST			SEPTEMBER	
1 118	26	8.3	45	11	1.3	42	11	1.2
	24	6.3	41	13	1.4	67	20	5.6
3 144	168	101	41	13	1.4	53	12	1.7
	99	43	38	10	1.0	38	7	.72
5 128	16	5.5	37	7	.70	35	9	.57
	11	3.1	33	9	.53	33	80	.71
	10	2.4	34	9	.55	33	80	.71
	11	2.5	421	787	2,620	33	6	.80
	12	2.4	528	96	156	31	6	.75
	10	1.8	291	38	30	30	7	.57
	15	2.7	174	21	6.6	53	10	.78
	116	67	131	20	7.1	29	17	1.3
13 79	18	3.8	88	9	1.4	29	80	.63
	15	2.5	7.2	9	1.2	29	9	.47
	11	1.7	62	œ	1.3	28	4	.30
16 54	13	1.9	57	10	1.5	28	n	.23
	10	1.4	54	∞	1.2	26	80	• 56
	18	2.7	54	6	1.3	56	2	.35
	13	1.9	94	80	66.	56	2	.35
29	16	2.5	48	15	1.9	27	9	77.
	15	2.3	53	7	1.0	28	က	.23
	10	1.3	41	10	1.1	42	54	2.7
	4	94.	41	15	1.7	7.2	53	2.6
	e	.33	38	10	1.0	38	80	.82
	2	.51	233	607	572	32	8	69.
	7	.72	111	27	8.1	28	2	.38
	10	1.0	72	14	2.7	126	141	9
	257	93	61	11	1.8	89	22	4.0
	18	3.0	53	11	1.6	84	11	1.4
0 48	11	1.4	43	10	1.2	38	80	.82
	12	1.6	41	6	1.0	1	!	!
TOTAL 2,331	1	352.02	3,082	1	3,433.87	1174	-	92.38

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DEC. 1115 24 88 7.0 0.5 4.0 14.0 24 25 100 20 JAN 1015	DATE	Time	Stream- flow, instan- taneous (ft ³ /s)	Spe- cific con- duct- ance (µS/cm)	pll (Units)	Temper- ature (°C)	Tur- bid- ity (FTU)	Oxygen, dis- solved (mg/L)	Oxygen demand, chem- ical (high level) (mg/L)	Coli- form, fecal, 0.7 UM-MF (Cols./	Strep- tococct fecal, KF Agar (Cols. per 100 mL)	Hard- ness (mg/L as CaCO ₃)
1015	3.5	1115	24	88	7.0	0.5	4.0	14.0	24	25	100	20
1500 21 68 6.3 5.0 10.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 1.0 2.0	7.0	3101		0	r	c		9	,		7	9
1830 666 72 6.2 .5 120 10.4 26	::	1500	21	68	6.3	5.	5.0	13.6	3	16	84 84	27
1830 666 72 6.2 .5 120 10.4 26 1245 244 78 6.2 1.0 30 13.0 19 1245 244 78 6.2 1.0 30 13.0 410 1110 123 83 6.5 1.0 17 13.0 410 800 5240 1345 80 65 6.9 11.0 6.0 10.2 410 100 K61 420 1345 80 65 6.9 11.0 6.0 10.2 410 K61 170		•	;		,	•	•	•	;			,
1245 244 78 6.2 1.0 30 13.0 <10		1830	999 723	7.7	7.0	ů.	120	13.0	97			r 00
1110 123 83 6.5 1.0 13 13.6 <10	: :	1245	244	78	6.2	1.0	2 8	13.0) (1)	ļ	;	21
1130 78 66 6.7 2.0 17 13.0 800 >240 1130 78 59 6.7 4.5 5.0 13.2 <10	:	1110	123	83	6.5	1.0	13	13.6	<10	K260	2,000	22
1130 78 59 6.7 4.5 5.0 13.2 <10 100 K61 1345 80 65 6.9 11.0 6.0 10.2 <10	:	0915	55	86	6.7	2.0	17	13.0	ł	800	>240	24
1330 78 80 65 6.9 11.0 6.0 10.2 4.0 13.2 4.0 13.2 170 80 170 80 170 1			ř	C L	,		ŭ	•		•	174	•
1345 80 65 6.9 11.0 6.0 10.2 <10	:	1130	0	60			0.0	7.61	QT /	001	100	07.
1430 68 61 7.0 13.0 8.0 10.0 2000 228 64 6.9 12.0 35 10.0 1215 116 63 7.1 13.5 9.0 10.8 1330 21 63 7.3 14.5 4.0 8.8 <10	:	1345	80	65	6.9	11.0	0.9	10.2	<10	K32	170	20
2000 228 64 6.9 12.0 35 10.0 1215 116 63 7.1 13.5 9.0 10.8 1330 21 63 7.3 14.5 4.0 8.8 <10	:	1430	89	61	7.0	13.0	8.0	10.0	}	!	1	16
0100 198 62 6.6 12.0 24 10.0 1215 116 63 7.1 13.5 9.0 10.8 1330 21 63 7.3 14.5 4.0 8.8 <10	:	2000	228	99	6.9	12.0	35	10.0	!	1	!	17
1215 116 63 7.1 13.5 9.0 10.8 1330 21 63 7.3 14.5 4.0 8.8 <10	:	0100	198	62	9.9	12.0	24	10.0	}	;	!	18
1330 21 63 7.3 14.5 4.0 8.8 <10	:	1215	116	63	7.1	13.5	0.6	10.8	ł	1	!	18
1200 57 63 7.8 17.5 10.2 32 260 280 1300 6.0 59 7.4 23.5 8.4 13 160 270 0430 17 81 7.1 18.0 28 7.6 15 1110 90 76 7.2 18.5 33 7.2 32 11435 53 9 7.2 20.0 23 7.0 28 1145 25 88 7.5 18.0 11 8.6 56 1130 57 75 8 7.5 18.0 25 9 7.0 170 67	:	1330	21	63	7.3	14.5	4.0	80	<10	400	200	<20
1200 57 63 7.8 17.5 10.2 32 260 280 1300 6.0 59 7.4 23.5 8.4 13 160 270 0430 17 81 7.1 18.0 28 7.6 15 1110 90 76 7.2 18.5 33 7.2 32 1145 25 88 7.5 18.0 11 8.6 56 1130 57 75 84 18.0 25 94 7.0 120 67			•	,								
1300 6.0 59 7.4 23.5 8.4 13 160 270 0430 17 81 7.1 18.0 28 7.6 15 1110 90 76 7.2 18.5 33 7.2 32 1635 53 9 7.2 20.0 23 7.0 28 1145 25 88 7.5 18.0 11 8.6 56 1130 57 75 8 7.5 18.0 7 7 7	:	1200	57	63	7.8	17.5	}	10.2	32	260	280	43
. 0430 17 81 7.1 18.0 28 7.6 15 . 1110 90 76 7.2 18.5 33 7.2 32 . 1635 53 9 7.2 20.0 23 7.0 28 . 1145 25 88 7.5 18.0 11 8.6 56 . 1130 5.7 75 8.4 18.0 2.5 9.4 7.0 120 67	. :	1300	6.0	59	7.4	23.5	}	8.4	13	160	270	20
. 1110 90 76 7.2 18.5 33 7.2 32 1635 53 9 7.2 20.0 23 7.0 28 1145 25 88 7.5 18.0 11 8.6 56 1130 57 75 84 18.0 25 94 75 75 87 75 87 18.0 25 94 75 75 87 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 87 18.0 25 94 75 75 95 95 95 95 95 95 95 95 95 95 95 95 95	:	0430	17	81	7.1	18.0	28	7.6	15	;	!	6
. 1635 53 9 7.2 20.0 23 7.0 28	:	1110	90	97	7.2	18.5	33	7.2	32	;	;	5
. 1145 25 88 7.5 18.0 11 8.6 56 1130 57 75 87 18.0 25 94 710 120 67	:	1635	53	6	7.2	20.0	23	7.0	28	1	!	25
א אנו או אי אי אר אר ארוו אין אר אר ארוו	:	1145	25	88	7.5	18.0	11	8.6	99	¦	}	56
	_	1130	n L	7	0	91	c	0	(1)	120	7.9	90

K = Results based on non-ideal colony count.

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Date	Acidity (mg/L as CaCO ₃)	Calcium dis- solved (mg/L as Ca)	Magne- slum, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Percent sodium	Sodium ad- sorp- tion ratio	Potas- slum, dis- solved (mg/L as K)	Alka- linity field (mg/L as CaCO ₃)	Sulfate dis- solved (mg/L as SO ₄)	Chlo- ride, dis- solved (mg/L as CL)	Silica, dis- solved (mg/L as SIO ₂)
DEC											
15	0.0	6.1	2.8	4.5	56	0.4	1.1	11	5.0	8.0	5.1
JAN	1	,		•	;	•	•	4	!	,	
18	0.1	3.8	2.0	m 0.	7 58 10 61	u, ci	ي و	۸ د	25	0.0	2.5
FEB	?))	•)	`	ı	,		
03	10	3.8	1.6	3.8	28	4.	3.8	2	10	7.0	2.1
04	4.0		1.8	3.8	27	4.	3.2	4	10	7.0	2.6
04	2.0		2.2	4.2	27	4.	2.5	4	10	8.0	3.9
05	0.	5.2	2.3	4.3	27	4.	2.1	e	5.0	8.0	3.9
16	0.		2.5	4.7	27	4.	2.7	∞	10	8.0	4.4
MAR	Ć							•			
23	·	!	1	!	!	!	!	า	0	0.0	1
AFR 20	3.0	٧. ٦	1.0	9.6	23		7.	7	10	6.0	4.6
26	? .		1.7	2.4	23	. "			<5.0	5.0	4.3
26	0.4	4.1	1.6	2.7	25		1.0	7	<5.0	0.9	4.4
27	2.0	4.4	1.7	2.3	21	.2	1.1	9	5.0	5.0	4.6
27	0.	3.9	1.9	3.0	26	£.	6.	7	5.0	0.9	5.0
MAY											
25	2.0	4.3	2.1	3.1	25	e.	.7	10	5.0	0.9	5.4
JUN	,		,	,	;	•	•	,	,	,	,
22	0.	7.4	2.3	3.1	23	r.	•	=	2	2.0	7.4
3 6	c	•	-		22	~	đ	13	15	4	~
AUG	•	· •	•	7	3	?	:	:	3	•	•
25	3.0	5.4	2.4	2.5	18	.2	1.4	د	5.0	7.0	4.6
25	2.0	5.3	2.2	2.4	18	.2	1.5	13	5.0	7.0	5.4
25	2.0	5.9	2.5	2.9	19	e.	1.8	12	5.0	8.0	6.2
26	2.0	6.0	2.7	2.6	17	.2	1.7	15	10	7.0	5.9
SEP											
14	0.	5.2	2.5	3.8	23	£.	2.9	10	2.0	0.9	4.2

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

2.2 2.00 0.010 0.010 0.010 2.6 1.80 <.010 <.010 1.4 1.40 .030 .010 2.6 2.60 .010 .010 2.6 2.60 .010 .010 2.3 1.80 .010 .010 1.9 1.90 .020 .010 1.1 1.70 <.010 .010 1.2 1.20 .010 .010 1.1 1.10 .020 .010 1.2 1.20 .010 .010 1.2 1.20 .010 .010 1.2 1.20 .010 .010 1.3 1.90 <.010 <.010 1.4 1.40 .010 .010 1.3 1.30 .020 .010 1.4 1.40 .030 .020 1.4 1.40 .030 .020 1.4 1.40 .010 .010	Nitro-gen, gen, ammonia ammonia dis- cotal solved (mg/L (mg/L as N)	Nitro- gen, organic total (mg/L as N)	gen, organic dis- solved (mg/L as N)	gen, ammonia + organic total (mg/L as N)	gen, am- monta + organic dis. (mg/L as N)	Nitro-gen, total (mg/L as N)
2.6 1.80 <.010	030 0.020	0.58	0.58	0.61	09.0	2.8
1.4 1.40 .030 .010 2.6 2.60 .010 .010 2.3 1.80 .010 .010 1.9 1.90 .020 .010 1.9 1.90 .020 .010 1.7 1.70 <.010	110 .110	67.	84.	09.	95.	j v
1.4 1.40 .030 .010 2.6 2.60 .010 .010 2.3 1.80 .010 .010 1.9 1.90 .020 .010 1.9 1.90 .020 .010 1.7 1.70 <.010) •	•	2		,
2.6 2.60 .020 .010 2.3 1.80 .010 .010 1.9 1.90 .020 .010 1.1 1.90 .020 .010 1.2 1.7 1.70 <.010	300 .260	07.	.19	.70	.45	2.1
1.33 1.80 .010 .010 1.99 1.90 .020 .010 1.7 1.70 <.010		.56	.56	.70	69.	3.3
. 1.9 1.90 .020 .010 . 1.7 1.70 <.010		.62	.53	.70	.61	3.0
1.7 1.70 <.010		.75	.75	.93	06.	2.8
1.6 1.60 .010 .010 1.2 1.20 .010 .010 1.0 1.00 .010 .010 1.2 1.20 .010 .010 .91 .91 .010 .010 1.9 1.90 <.010	010. 090	. 29	. 29	.35	.30	2.0
1.2 1.20 .010 .010 1.0 1.00 .010 .010 1.1 1.10 .020 .010 1.2 1.20 .010 .010 91 .91 .010 .010 1.9 1.90 <.010 <.010 53 .53 .010 .010 1.4 1.40 .010 .010 1.4 1.40 .030 .020 1.6 1.60 .010 .010	030 .030	.87	.87	.90	06.	2.5
1.0 1.00 .010 .010 1.1 1.10 .020 .010 1.2 1.20 .010 .010 91 .91 .010 .010 1.9 1.90 <.010 <.010 53 .53 .010 .010 1.4 1.40 .010 .010 1.4 1.40 .020 .010 1.4 1.40 .020 .010 1.4 1.60 .010 .010		.75	.75	.81	.80	2.0
1.1 1.10 .020 .010 1.2 1.20 .010 .010 91 .91 .010 .010 1.9 1.90 <.010 <.010 53 .53 .010 .010 1.4 1.40 .010 .010 1.4 1.40 .020 .010 1.4 1.40 .020 .010 1.4 1.60 .010		.92	.83	1.00	06.	2.0
91 .91 .010 .010 1.9 1.90 <.010 .010 53 .53 .010 .010 1.4 1.40 .010 .010 1.3 1.30 .020 .010 1.4 1.40 .010 .010 1.4 1.40 .010 .010	060. 001	98.	98.	96.	. 95 63	2.1
91 .91 .010 .010 1.9 1.90 <.010 <.01053 .53 .010 .010 1.4 1.40 .010 .020 1.3 1.30 .020 .010 1.4 1.40 .030 .020 1.6 1.60 .010 .010		8	•			•
1.9 1.90 <.010 <.01053 .53 .010 .010 1.4 1.40 .010 .010 1.3 1.30 .020 .010 1.4 1.40 .030 .020 1.6 1.60 .010	030 .030	1.3	1.2	1.30	1.2	2.2
1.4 1.40 .010 .010 .010 .010 .010 .0	040 .040	96.	.86	1.00	· 90	1
1.4 1.40 .010 .010 1.3 1.30 .020 .010 1.4 1.40 .030 .020 1.6 1.60 .010 .010	.020	.38	.38	.40	04.	. 94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.4	1.2		1.3	2.9
1.6 1.6 0.030 0.020	020 .020	.78	.68	 	.70	2.1
1.6 1.60 .010 .010		66.	96.		0.1	7.4
7.10		66.	. 99		1.0	2.6
14 87 .87 .010 .010 .020	020 .020	04.	.40	.42	.42	1.3

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

	Nitro-	į	Phos-	Phos-	Phos-	Alum- inum,	Alum-	Chro- mium,	Copper,	Iron,	
	gen	Phos	Fnorus,	phorus,	ortho,	rotal	inum,	rocal	rocal	rocal	lron,
	oolwed	rotes,	פטןמס	total,	an lyad	arable	פטןמפ	orable	erable	orahla	Ponto
	T/am)	(me/L	(me/l	(me/L	(me/L	(ue/L	(ue/L	(ue/L	(ue/L	(ue/L	(ue/L
Date	as N)	as P)	as P)	as P)	as P)	as AL)	as AL)	as Cr)	as Cu)	as Fe)	AS Fe)
DEC											
15	2.6	0.050	0.040	<0.010	<0.010	410	110	ŀ	1	850	210
JAN											
18	i	.030	.010	<.010	<.010	06	30	!	1	120	40
20	;	.030	.030	.010	<.010	70	30	i i	!	100	20
FEB	•	,					;	1	;		,
03	1.9	.310	.100	.050	.020	3,400	06	20	9	7,900	100
04	2.2	. 220	.080	.040	.040	2,200	70	30	30	4,300	Š
04	3.3	.110	.040	.020	.020	1,900	30	30	20	1,900	Š
05	2.4	.070	.030	.030	!	160	80	Î	30	066	80
16	2.8	.100	090.	.050	.040	066	09	1	1	980	8
A.	,				,	1				1	
23	2.0	.020	.010	<.010	<.010	08	ł	ł	1	1/0	1
20	2.5	.070	.020	ł	<.010	140	110	1	ł	790	40
26	2.0	.040	.020	<.010	<.010	670	140	<10	10	250	80
26	1.9	.100	.030	.010	.010	3,100	200	<10	20	2,200	15(
27	2.1	.080	.040	.010	.010	1600	i	40	30	1,700	170
27 AY	2.0	.040	.030	t t	<.010	490	160	10	10	470	8
25	2.1	.030	.020	<.010	<.010	400	160	ł	1	200	110
22		.030	.020	<.010	<.010	160	<10	-	i	400	90
27	.94	.050	.020	<.010	<.010	380	70	i	1	310	100
25	2.7	060.	.040	<.010	<.010	1,000	90	10	30	1,000	80
25	2.0	.120	.030	.010	<.010	1,200	320	10	20	1,400	150
25	2.4	.080	.040	.010	.010	710	330	<10	10	940	180
26	1.0	.050	.040	.010	.010	420	160	<10	20	450	9
SEP											
14	1.3	.030	.030	.010	.010	240	160	1	1	130	90

Table 9. --Surface-water and water-quality data, July 1981 through September 1982--Continued

	-	U15/2000 LOWER LITTLE SWAIARA CREEK AT F WATER-QUALITY DATA, WATER YEAR OCTOBER 1981	UU LOWER LITY DATA	LITTLE SI, WATER YI	WATARA CR EAR OCTOB	EEK AT PI ER 1981 T	UIS/ZUUU LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA ER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982	PA ER 1982		
Date	Lead, total recov- erable (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Mercury total recov- erable (µg/L as Hg)	Zinc, total recov- ersble (µg/L as Zn)	Garbon, organic total (mg/L as C)	Carbon, organic dis- solved (mg/L as C)	Sed1- ment, sus- pended	Sed1- ment, d1s- charge, sus- pended (ton/d)	Sed. susp. sleve diam. percent finer than
DEC 15		80	10	1	1	1.5	1.1	1	90.0	
JAN 18 20	11	30	30	11	11	<1.0 1.8	<1.0 1.8	1 6	71.	1 1
FEB 03 04 05	111 100 45	310 200 140 70	150 100 80 40	<pre><2.0 <2.0 <2.0 <2.0 </pre>	40 30 1 -	80 70 44 EL 10 90 60 EL 10	7.0 5.0 3.7 2.6	201 149 89 40	361 182 59 13	91 87 91 82
MAR 23		30 4	2	1	1	; 1	* !	5 2	1.1	ł
APR 20 26	1 2 3	30	10	<2.0 <2.0	100	2.1	1.7	11 13	2.4	77
27	\$ 22 \$	001 001	30 20	<2.0 <2.0 <2.0	20	1.5	4.3	51 13	27	886 86
MAY 25 JUN 22	1 1	30	20	1 1	1 1	1.1	1.1	25 6	.28	1 1
JUL 27	ł	40	20	;	;	<1.0	}	22	.36	i i
AUG 25 25 25 26	\$ 6 \$ \$	70 80 50 40	30 20 20 10	<2.0 <2.0 <2.0 <2.0	50 20 20 30	3.3	4.4	91 58 33 11	4.2 14 4.7 4.7	52 93 89 85
SEP 14	1	70	20	1	;	1.4	1.4	5	.08	!

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

Sedi-								
Sedi- susp. susp. ment, fall fall fall fall ment, fall fall fall fall fall fall fall fal							Sed.	S ed.
Sed Gis- diam. diam. instant. fall fall fall fall instant. charge, percent percent instant. charge, charge, percent percent instant. charge, charge, percent fines traneous atture pended pended than than than than 1315 536 4.5 364 527 37 55. 1315 536 4.5 364 527 37 55. 1320 984 218 579 43 56. 1820 824 10.0 1,360 3,030 41 579						Sedi-	2000	6010
Sedi- dis- diam. diam. flow, ment, charge, percent percent flow, ment, charge, percent percent traces are charges, percent percent percent charges, c°C) (mg/L) (ton/d) 0.004 mm 0.008 mm 0.009						1 4	6017.	, L C 4
Time Filow			1		77.00	dic,	1101	1191
Time tancous attire pended pended than than than than than than than than			orresul.		oed T.	1875		oran.
Time finetan			flow,		ment,	charge,	percent	percent
Time tancous ature pended pended than than than (ft ³ /s) (°C) (mg/L) (ton/d) 0.004 mm 0.008			instan-	Temper-	-sns	-sns	finer	finer
1315 536 4.5 364 527 37 55 1900 984 218 579 43 56 1900 984 218 579 43 56 1820 824 10.0 1,360 3,030 41 55 1820 824 10.0 1,360 3,030 41 55 1330 77 40 8.3 74 57 1330 77 40 8.3 74 55 1330 77 40 8.3 74 55 1330 77 40 8.3 74 55 1330 77 40 8.3 74 55 1330 77 40 8.3 74 55 1330 77 40 8.3 74 55 1330 77 40 8.3 74 55 5ed. Sed. Sed. Sed. Sed. Sed. Sed. Sed. S		Time	taneous	ature	pended	pended	than	than
1315 536 4.5 364 527 37 55 1900 984 218 579 43 56 1820 824 10.0 1,360 3,030 41 55 0615 335 67 61 60 77 1330 77 40 8.3 74 1330 77 40 8.3 74 1330 77 40 8.3 74 14m. diam. d	Date		(ft ³ /s)	(၁.)	(mg/L)	(ton/d)	0.004 mm	0.008 mm
1315 536 4.5 364 527 37 55 1900 984 218 579 43 56 1820 824 10.0 1,360 3,030 41 55 1820 824 10.0 1,360 3,030 41 55 1330 77 67 61 60 77 Sed. Sed. Sed. Sed. Sed. Sed. Sed. Sed.	JAN							
1820 984 218 579 43 55 55 55 55 55 55 55		1315	536	4.5	364	527	37	52
1820 984 218 579 43 58 58 58 58 58 58 58 5	FEB							
1820 824 10.0 1,360 3,030 41 55	:	1900	984	1	218	579	43	26
1820 824 10.0 1,360 3,030 41 55 0615 335 67 61 60 77 1330 77 40 8.3 74 75 Sed. Sed. Sed. Sed. Sed. Sed. Sed. Sed.	APR							
1330 77 40 8.3 74 55 51 51 50 77 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 74 40 8.3 8.3 74 40 8.3	:	1820	824	10.0	1,360	3,030	41	55
Sed. Sed. Sed. Sed. Sed. Sed. Sed. Sed.	MAY							
Sed. Sed. Sed. Sed. Sed. Sed. Sed. Susp. s	:	0615	335	1	29	61	09	7.2
Sed.	AUG							
Sed. Sed. Sed. Sed. Sed. Sed. Sed. Susp. s	25	1330	11	ļ	40	8.3	7.4	1
Sed. Susp. S								
susp. susp. <th< td=""><td></td><td>Sed.</td><td>Sed.</td><td>Sed.</td><td>Sed.</td><td>Sed.</td><td>Sed.</td><td>Sed.</td></th<>		Sed.	Sed.	Sed.	Sed.	Sed.	Sed.	Sed.
fall fall seive seive sieve sieve sieve sieve diam. diam. diam. diam. diam. diam. diam. diam. diam. diam. percent percent percent percent percent percent percent percent than than than than than than than th		·dsns	·dsns	·dsns	·dsns	·dsns	·dsns	.dsns
diam. percent percent percent finer		fall	fall	seive	seive	sieve	steve	steve
Finer		diam.	diam.	diam.	diam.	diam.	diam.	diam.
finer finer finer finer finer finer finer finer than than than than than than than than		Dercent	percent	percent	percent	percent	percent	percent
than than than than than than than than		finer	finer	finer	finer	finer	finer	finer
ce 0.016 mm 0.031 mm 0.062 mm 0.125 mm 0.250 mm 0.500 mm 1.00 68 80 89 96 99 100 65 73 93 95 97 99 100 72 82 92 97 99 100 84 92 96 97 99 100		than	than	than	than	than	than	than
68 80 89 96 99 100 65 73 93 95 97 99 72 82 92 97 99 100 84 92 96 97 99 100	Date	0.016 1111	0.031					1.00
68 80 89 96 99 100 65 73 93 95 97 99 72 82 92 97 99 100 84 92 96 97 99 100								
65 73 93 95 97 99 100 72 82 92 97 99 100 84 92 96 97 99 100	A.S.	Š	Ġ	Ġ	ò	ć	•	
65 73 93 95 97 99 72 82 92 97 99 100 84 92 96 97 99 100		å	90	89	96	γγ	001	1
65 73 93 95 97 99 72 82 92 97 99 100 84 92 96 97 99 100	FEB	!	į	!	!	;	,	;
72 82 92 97 99 100 84 92 96 97 99 100	03	65	73	93	95	26	66	100
72 82 92 97 99 100 84 92 96 97 99 100	APR							
84 92 96 97 99 100	03	12	87	92	46	66	100	1
84 92 96 97 99 100	MAY							
	29	84	92	96	64	66	100	ļ
	7117							

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM at 25°C), WATER YEAR OCTOBER 1980 TO SEPTENBER 1981 01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

×
Ξ
ç
썱
ž
0

SEP	123	77	70	19	63	99	99	99	69	85	7.2	71	70	49	7.1	89	70	9/	7.2	7.3	75	73	75	7.1	7.1	72	7.1	99	89	29	1	72
AUG	58	57	59	09	58	59	99	26	61	57	55	55	99	58	99	58	28	59	26	55	53	26	53	52	52	54	58	09	81	65	09	58
JUL		1								7.5		1	89	99	99	99	63	63	61	65	75	99	99	65	99	63	62	62	62	99	09	99
JUN																																
MAY																																
APR																																
MAR																																
FEB																																
JAN																																
DEC																																
NOV									•																							
OCT																																
Day	1	2	က	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	29	30	31	MEAN

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued 01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25°C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 ONCE-DAILY

SEP																																	
AUG																																	
JUL																																	
JUN																																	
MAY																																	
APR																																	
MAR																																	
FEB																																	
JAN																																	
DEC	78	85	96	94	95	96	96	90	89	90	91	90	90	90	82	112	18	111	113	107	113	1	112	107	112	115	107	1	-	1	1		26
NOV	102	86	86	96	66	86	101	101	86	76	76	93	92	89	87	91	06	76	93	90	06	91	91	90	90	90	85	84	83	83	1		35
OCT	89	99	67	74	74	7.2	7.0	7.3	72	1	74	72	72	70	70	7.1	72	72	70	7.5	79	83	82	78	76	96	87	116	118	111	106	2	80
Day	1	2	m	4	5	9	7	œ	6	10	11	12	13	14	in H	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	۲	1	MEAN

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued 01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

TEMPERATURE (°C) OF WATER, WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981

ONCE-DAILY

SEP	22.0	21.0	21.0	20.5	21.0	22.0	21.0	20.5	19.5	18.5	21.0	22.0	21.0	23.5	21.0	18.0	19.0	18.0	16.5	17.5	17.0	17.5	15.0	15.0	15.5	16.5	17.0	16.5	14.0	13.0	1	18.5
AUG	24.0	24.5	21.5	24.0	23.5	22.0	23.5	20.5	24.0	26.0	26.0	25.0	24.5	24.5	22.0	23.5	22.0	21.5	22.0	21.5	21.5	20.5	17.5	21.0	21.0	21.5	23.0	23.0	23.0	21.0	22.5	22.5
JUL	1	}	1	!	1	1	1	1	1	25.5	!	1	25.0	25.0	23.5	22.0	24.0	24.5	26.0	24.5	24.0	21.5	21.5	20.0	20.5	21.0	24.0	21.5	21.5	22.5	23.0	23.0
JUN																																
MAY																																
APR																																
MAR																																
FEB																																
JAN																																
DEC																																
NOV																																
OCT							•																									
Day		7	m	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	MEAN

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

TEMPERATURE (°C) OF WATER, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

ONCE-DAILY

SEP	20.5 18.0 19.5 19.5 17.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	19.0
AUG	22.0 22.0 22.0 22.0 22.0 22.0 20.5 20.5	20.5
JUL	21.0 17.0 17.0 22.5 23.0 24.5 26.0 26.0 26.0 26.0 26.0	23.0
JUN	17.5 16.0 15.5 15.0 17.0 14.0 16.0 15.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13	16.5
MAY	17.5 17.0 16.0 16.0 16.0 19.0 20.0 20.0 20.0 19.0 19.0 14.5 11.0 11.0 11.0 11.0 11.0 11.0	18.0
APR	11.0 10.5 10.0 6.0 6.0 6.0 6.0 6.0 10.0 13.0 13.0 13.0 15.5 13.5 13.5	10.5
MAR	22111111111111111111111111111111111111	7.0
BH	0 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5
JAN	60000000000000000000000000000000000000	1.0
DEC	22.44.43.25.00.00.00.00.00.00.00.00.00.00.00.00.00	2.0
NOV	111.5 100.1 100.0	7.0
OCT	12.5 12.5 11.5 12.5 12.5 12.5 12.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	11.0
DAY	10 6 8 4 9 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NEAN

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

SEDIMENT DISCHARGE, SUSPENDED (TON/D), WATER YEAR OCTOBER 1980 TO SEPTEMBER 1981 01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

Sediment discharge (ton/d)		0.13	80.	90.	.07	.07	.07	.07	.30	.36	60.	90.	90.	•00	• 00	.12	.25	.14	60.	.21	.12	.07	.11	.12	•00	60.	80.	.07	60.	.07	90.	!		3.28
Mean concen- tration (mg/L)	SEPTEMBER	7	2	4	5	5	5	9	17	12	9	2	9	4	4	6	10	7	2	7	9	2	œ	6	6	10	œ	7	6	∞	7	1		1
Mean discharge (ft³/s)		6.9	0.9	5.4	6.4	4.9	6.4	4.4	6.5	11	5.4	4.4	3.9	3.9	3.9	4.9	9.2	7.4	6.5	11	7.4	5.4	6.4	4.9	3.9	3.5	3.5	3.5	3.5	3.2	3.2	!		162.3
Sediment discharge (ton/d)		0.21	.21	.24	.30	.19	.14	.17	.30	.21	.11	.12	.14	.11	60.	60.	.10	90.	.11	.11	90.	•00	•05	90.	90.	90.	90.	90.	•05	90.	•00	.16	2	3.78
Mean concen- tration (mg/L)	AUGUST	7	œ	6	10	7	9	œ	10	œ	Ŋ	9	^	9	5	2	2	7	80	œ	2	7	2	ς.	5	2	2	5	Ŋ	9	2	7		1
Mean discharge (ft³/s)		11	8.6	8.6	11	8.6	8.6	8.0	11	8.6	8.0	7.4	7.4	6.9	6.5	6.9	7.4	0.9	4.9	6.4	7.7	3.9	3.9	4.4	4.4	7.7	7.7	4.4	3.9	3,5	3.5	9.8	;	208.8
Sediment discharge (ton/d)		!	1	1	1	!	!	1	1	1	1	!	į	1	į	;	!!!	1	;		!!!	!	1	1	0.56	.62	.43	.41	. 28	.30	.32	. 29	ì	3.21
Mean concen- tration (mg/L)	JULY	!	!	;			-		-	1	!	!	i	!	-	!	!	!	1	-	!	1	!	!	6	11	80	&	7	7	6	σ	`	!
Mean discharge (ft³/s)		!	!	1		1	-	1	1	1	!	!	!	!	!	!	17	15	14	13	20	96	19	32	23	21	20	19	15	16	13	12	:	4 37
Day		-	7	ണ്	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	54	25	5 6	27	28	59	30	31	;	TOTAL

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued 01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

SEDIMENT DISCHARGE, SUSPENDED (TON/P), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

20																																		
Sediment discharge (ton/d)		0.02	.73	.16	.19	.18	.10	.14	.35	.45	.26	.14	.13	.22	.18	.18	.39	. 28	.30	. 24	.16	.19	. 29	64.	.90	1.0	76 .	.45	.83	c c	70.	1.1	12 7.2	74.71
Mean concen- tration (mg/L)	DECEMBER	-	9	5	m	e	2	က	5	7	2	e	e	'n	4	æ	80	9	7	9	4	5	9	9	5	9	9	m	9	αŋ	80	10	į	
Mean discharge (ft³/s)		8.6	4.5	29	24	22	19	17	26	24	19	17	16	16	17	22	18	17	16	15	15	14	18	30	29	49	58	55	51	3,	29	41	4 4 3	0.000
Sediment discharge (ton/d)		0.05	.02	90.	.02	.04	1.2	.18	.11	90.	90.	.05	.02	70 .	.02	.02	.02	60.	80.	.04	90.	.03	.02	.02	.02	.02	.02	.02	.02	C.	.02	1	s ⁷ c	74.7
Mean concen- tration (mg/L)	NOVEMBER	2	,	m	-	7	15	7	e	7	2	7	~4	7	-4	-	1	4	4	2	2	-	-			r-4	-	1	p=4	. •	r-1	-	!	!
Mean discharge (ft³/s)		8.6	9.	0.8	7.4	7.4	29	17	13	11	11	9.8	9.8	7.4	7.4	7.4	9.6	8.0	7.4	7.4	11	11	9.8	7.4	7.4	7.4	7.4	6.9	6.9	٠. ١٠	6.5	1	,	7.107
Sediment discharge (ton/d)		.11	30	80.	90.	90.	.07	.15	.13	.08	.05	90.	90.	.05	90.	80.	80.	.07	.11	.17	60.	.07	.07	.16	.32	.07	.11	1.8	r: H	ć.	.11	90.	9	3.6
Mean concen- tration (mg/L)	OCTOBER	10	15	9	9	9	7	6	10	œ	9	7	7	. 40	7	0 0	6 0	7	œ	7	۲۰	7	7	σ.	10	5	6 0	20	12	1	3	2		!
Mean discharge (ft³/s)		3.9	7.4	6.4	3.9	3.5	3.9	0.9	6.4	3.9	3.1	3.1	3.1	3.1	3.1	3.5	3.5	3.9	6.4	9.2	6.4		3.5		12	6.4	6.4	34	34	7.	£ .1	-	. 766	7.467
Day			2	m	7	5	9	7	8	6	10	.	12	13	14	15	16	17	18	19	20	21	22	23	24	15	26	27	28	à	30	£	£ C	TOTAL

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

SEDIMENT DISCHARGE, SUSPENDED (TON/D), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Sediment on discharge .) (ton/d)	F	0.21	.32	.29	96*	68.	.95	48	5.4	1.1	3.7	22	9/	28	12	3.2	2.2	2.3	2.1	1.8	1.4	1.6	96.	1.0	.55	.17	1.4	87.	.27	.25	.24	1.3	
Mean concen- tration (mg/L)	MARCH	2	e.	9	7	7	6	108	26	7	26	70	133	58	29	6	7	7	7	9	50	9	7	5	E	1	7	3	2	2	2	7	
Mean discharge (ft ³ /s)		39	39	36	51	47	39	66	77	57	52	80	196	163	159	132	115	121	111	109	101	86	89	7.7	68	63	7.5	59	20	47	77	99	
Sediment discharge (ton/d)		51	11	126	96	12	2.9	2.1	3.0	.42	.52	.97	2.3	.89	.84	1.9	10	2.7	.14	.25	.24	.92	2.8	3.1	2.2	64.	1.6	.68	.23	-	1	!	
Mean concen- tration (mg/L)	FEBRUARY	29	53	180	118	48	13	11	18	က	7	6 0	20	&	6 0	15	43	14		2	2	9	12	13	10	က	10	4	2	1	1	ļ	
Mean discharge (ft³/s)		280	140	260	300	94	82	7.2	62	52	48	45	43	41	39	94	78	71	20	47	77	57	87	87	83	9	09	63	43	!	ļ	!	
Sediment discharge (ton/d)		5.5	5.5	2.7	280	97	6.2	2.7	1.5	.95	1.3	1.7	.87	.45	09.	.36	.31	.28	.32	.25	.18	90.	.05	.05	.22	. 26	.10	.05	.05	.24	.10	.11	!
Mean concen- tration (mg/L)	JANUARY	26	25	15	221	55	15	6	7	5	80	12	7	4	9	4	7	4	5	7	က	1		7	4	5	7	-		'n	7	2	1
Mean discharge (ft³/s)		79	81	99	362	267	153	111	79	70	09	52	97	42	37	33	29	56	24	23	22	21	20	20	20	19	19	19	19	18	18	20	;
Day		1	7	٣	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	70	21	22	23	54	25	56	27	28	59	9	31	•

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

SEDIMENT DISCHARGE, SUSPENDED (TON/D), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

1 68 4.0 94 5 1.1 388 153 179 2 6 6 4.0 94 5 1.1 388 153 179 3 316 614 1.260 69 5 .93 262 44 139 4 316 614 289 58 .73 288 73 139 5 189 35 46 5 .73 288 73 139 6 163 16 1.0 49 6 .73 288 73 139 110 8 2.4 49 1.1 213 28 73 139 10 11 3.2 46 8 1.1 8 1.1 31 4 8 1.2 4 4 3.1 4 3.2 4 8 1.1 3.4 8 4 4 3.1 4 4 4	Day	Mean discharge (ft³/s)	concentration (mg/L)	Sediment discharge (ton/d)	mean discharge (ft³/s)	Concentration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	Concentration (mg/L)	Sediment discharge (ton/d)
68 22 4.0 94 5 1.3 102 57 56 614 1,260 69 5 1.1 358 153 370 244 289 5 .78 242 44 370 246 289 5 .78 215 44 189 3.5 45 6 .79 526 73 180 3.5 45 6 .79 526 73 130 10 3.5 45 6 .79 526 73 130 10 3.5 46 6 .79 526 73 100 11 3.2 46 6 .79 526 31 107 11 3.2 46 6 .72 109 16 108 1.2 40 8 .74 109 11 109 11 110 1.2 31 5			APRIL			MAY			JUNE	
56 6 91 80 5 1.1 358 153 316 644 1,260 69 5 .93 242 44 370 244 1,260 69 5 .73 215 245 189 35 18 5 .73 286 73 215 163 16 7.0 49 6 .73 286 73 130 16 7.0 44 9 1.1 213 286 73 110 8 2.4 46 8 .86 150 14 100 11 4.2 31 5 .41 86 9 110 3.7 30 5 .41 18 11 142 3.1 5 .42 19 6 .42 19 130 4 3 5 .41 18 15 18 142 3		68	22	4.0	96	5	1.3	102	57	20
316 614 1,260 69 5 .93 242 44 370 244 289 58 5 .73 286 73 189 35 45 5 .73 286 73 189 3.5 45 7 .73 286 73 130 10 3.5 46 9 1.1 21 28 73 110 8 2.3 46 9 1.1 21 28 73 12 106 8 2.3 40 8 .75 115 11 12 12 12 12 12 12 12 12 12 11 12 12 12 14 18 16 14 18	7	26	9	.91	80	5	1.1	358	153	179
370 244 289 58 7.7 288 71 189 35 18 54 5 .73 288 71 163 16 3.5 45 6 .79 526 73 130 10 3.5 46 6 .79 526 73 110 8 2.4 44 9 1.1 213 22 106 8 2.3 40 8 .42 15 11 107 11 3.2 35 6 .57 115 11 107 11 3.7 30 5 .41 86 9 142 8 3.1 30 5 .41 10 9 142 8 3.1 30 5 .41 86 9 130 7 2.5 4 10 10 10 10 142 13 3.0	ന	316	614	1,260	69	5	.93	242	77	29
189 35 18 54 5 73 288 71 163 16 7.0 49 6 .79 526 73 130 10 3.5 46 6 .79 526 73 110 8 2.4 44 9 1.1 213 226 106 8 2.3 40 8 .86 150 14 107 11 3.2 31 5 .41 86 11 131 12 4.2 31 5 .41 86 9 142 8 3.1 30 5 .41 86 9 142 8 3.1 30 5 .41 86 9 105 6 1.7 23 6 .41 86 18 106 6 1.5 22 6 .42 118 86 18 123	à	37.0	244	289	58	5	.78	215	23	13
163 16 7.0 49 6 .79 526 73 130 10 3.5 45 7 .85 326 31 110 8 2.4 44 9 1.1 213 22 106 8 2.3 40 8 .86 150 14 107 11 3.2 35 6 .57 115 11 131 12 4.2 31 5 .41 86 16 131 12 4.2 30 5 .41 86 96 142 8 3.1 5 .41 86 96 16 130 10 5 .41 86 9 .41 10 11 140 6 1.7 2.5 2.2 7 .42 118 15 11 11 11 11 11 11 11 11 11 11	'n	189	35	18	54	5	.73	288	7.1	80
130 10 3.5 45 7 .85 326 31 110 8 2.4 44 9 1.1 213 22 106 8 2.3 40 8 .86 150 14 107 11 3.2 35 6 .77 115 11 131 12 4.2 31 5 .41 192 54 136 10 3.7 30 5 .41 192 54 130 7 2.5 30 5 .41 192 54 130 7 2.5 26 .37 115 11 105 6 1.7 23 6 .37 153 13 105 6 1.5 22 .42 118 15 18 105 6 1.5 22 .42 118 15 16 107 1 1.6 </td <td>9</td> <td>163</td> <td>16</td> <td>7.0</td> <td>67</td> <td>9</td> <td>.79</td> <td>526</td> <td>73</td> <td>109</td>	9	163	16	7.0	67	9	.79	526	73	109
110 8 2.4 44 9 1.1 213 22 106 8 2.3 40 8 .86 150 14 107 11 3.2 35 6 .37 115 11 131 12 4.2 31 5 .41 86 9 136 10 3.7 30 5 .41 169 16 142 8 3.1 30 5 .41 86 9 142 8 3.1 30 5 .41 86 9 130 7 2.5 26 .41 86 9 13 105 6 1.5 2.2 .41 86 9 9 105 6 1.5 2.2 .41 86 9 9 112 2.3 2.2 3 1.7 1.8 1.8 1.8 12 1.4	7	130	10	3.5	45	7	.85	326	31	27
106 8 2.3 40 8 .86 150 14 107 11 3.2 35 6 .57 115 11 131 12 4.2 31 5 .41 186 9 136 10 3.7 30 5 .41 186 9 142 8 3.1 30 5 .41 192 54 142 8 3.1 30 5 .41 192 54 130 6 1.7 23 6 .37 118 6 .32 22 3 .32 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14	20	110	8	2.4	77	6	1.1	213	22	13
107 11 3.2 35 6 .57 115 11 136 10 4.2 31 5 .42 109 16 136 10 3.7 30 5 .41 192 54 142 8 3.1 30 5 .41 192 54 142 8 3.1 30 5 .41 192 54 105 6 1.7 2.3 6 .37 153 13 105 6 1.7 2.3 6 .37 13 15 105 6 1.7 19 6 .29 90 10 108 6 1.2 31 17 4 6 10 108 6 1.2 9 .62 .21 10 10 109 1.2 1.2 .97 .65 .97 6 1 109 1.2	6	106	80	2.3	70	8	.86	150	14	5.7
131 12 4.2 31 5 .41 109 16 136 10 3.7 30 5 .41 192 5 142 8 3.1 30 5 .41 192 54 142 8 3.1 30 5 .41 186 9 105 6 1.7 2.5 20 6 .32 22 22 7 .42 118 15 22 22 7 .42 118 15 13 13 13 13 13 13 13 13 13 13 13 14 11 14 18 16 .31 10	0	107	11	3.2	35	9	.57	115	11	3.4
136 10 3.7 30 5 .41 86 9 142 8 3.1 30 5 .41 192 54 130 7 2.5 26 5 .35 223 25 105 6 1.7 2.3 6 .37 153 13 90 6 1.7 22 7 .42 118 15 85 13 3.0 20 6 .32 178 118 15 123 9.4 19 6 .29 90 10 10 84 6 1.4 18 6 .29 90 10 10 72 9 1.7 19 6 .31 65 5 5 5 57 4 .62 30 .63 .53 5 5 5 53 6 .86 .25 .7 .47 4		131	12	4.2	31	5	.42	109	16	4.7
142 8 3.1 30 5 .41 192 54 130 7 2.5 26 5 .35 223 25 105 6 1.7 23 6 .37 153 13 105 6 1.5 22 7 .42 118 15 85 13 3.0 20 6 .32 178 56 123 23 9.4 19 6 .29 90 10 124 6 1.4 18 6 .31 75 8 125 9 1.7 19 6 .31 65 5 63 6 1.0 26 9 .63 65 5 63 6 1.0 26 9 .63 6 21 63 6 1.0 26 9 .63 6 21 64 .62 30 12 .97 46 7 7 .66 21 4 .23 40 4 86 18 18 12 9 .63 36 4 144 14 5.4 2	7	136	10	3.7	30	5	.41	98	6	2.1
130 7 2.5 26 5 .35 223 25 105 6 1.7 23 6 .37 153 13 90 6 1.5 22 7 .42 118 15 85 13 3.0 20 6 .32 178 56 123 23 9.4 19 6 .29 90 10 123 23 9.4 19 6 .29 90 10 12 11 2.3 19 6 .31 65 5 63 6 1.0 26 9 .63 6 31 63 6 1.0 26 9 .63 6 5 57 4 .62 30 12 .97 6 4 6 .86 25 7 .47 46 7 20 12 15 3	9	142	8	3.1	30	5	.41	192	54	43
105 6 1.7 23 6 .37 153 13 90 6 1.5 22 7 .42 118 15 85 13 3.0 20 6 .32 178 56 123 23 9.4 19 5 .26 110 12 123 9.4 19 6 .29 90 10 12 84 6 1.4 18 6 .31 75 8 72 9 1.7 19 6 .31 65 5 63 6 1.7 19 6 .31 65 5 57 4 .62 26 9 .63 5 5 53 6 .86 25 7 .47 46 7 49 5 .66 21 4 .23 40 4 109 34 18	.+	130	7	2.5	26	2	.35	223	25	15
90 6 1.5 22 7 .42 118 15 85 13 3.0 20 6 .32 178 56 123 23 9.4 19 5 .26 110 12 84 6 1.4 18 6 .29 90 10 72 9 1.7 19 6 .31 75 8 72 9 1.7 19 6 .31 65 5 63 6 1.0 26 9 .63 55 5 57 4 .62 20 .63 55 5 5 53 6 .86 25 7 .47 .46 7 49 5 .66 21 4 .23 4 4 109 34 18 17 1 .05 36 4 208 38 23	5	105	9	1.7	23	9	.37	153	13	5.4
85 13 3.0 20 6 .32 178 56 123 23 9.4 19 5 .26 110 12 84 6 1.4 18 6 .29 90 10 78 11 2.3 19 6 .31 75 8 72 9 1.7 19 6 .31 65 5 63 6 1.0 26 9 .63 55 5 53 6 1.0 26 12 5 6 53 6 .86 25 7 4 4 7 49 5 .66 21 4 .23 4 4 49 5 .66 21 4 .23 4 4 109 34 18 17 1 .05 36 4 208 38 23 39 88 18 30 4 113 7 2.1 118 31 10 53 53 113 7 2.1 118 31 10	'n	06	9	1.5	22	7	.42	118	15	4.8
123 23 9.4 19 5 .26 110 12 84 6 1.4 18 6 .29 90 10 78 11 2.3 19 6 .31 75 8 72 9 1.7 19 6 .31 75 8 63 6 1.0 26 9 .63 55 5 53 6 1.2 9 .63 55 5 53 6 .86 25 7 .47 .46 7 49 5 .66 21 4 .23 .46 7 49 34 18 17 1 .05 36 .4 109 34 18 17 1 .05 36 .4 208 38 23 39 88 18 30 .4 114 5 4 242 139 120 53 53 113 7 2.1 118 31 10 107 31 10	7	85	13	3.0	20	9	.32	178	99	33
84 6 1.4 18 6 .29 90 10 78 11 2.3 19 6 .31 75 8 72 9 1.7 19 6 .31 75 8 63 6 1.0 26 9 .63 5 5 5 53 6 1.0 26 12 97 62 21 49 5 .66 21 4 .23 40 4 109 34 18 17 1 .05 36 4 109 36 23 39 88 18 30 4 114 5 4 242 139 120 53 33 113 7 2.1 118 31 10 107 31 10	ന	123	23	7.6	19	5	. 26	110	12	3.6
78 11 2.3 19 6 .31 75 8 72 9 1.7 19 6 .31 65 5 63 6 1.0 26 9 .63 55 5 57 4 .62 30 12 .97 62 21 49 5 .66 21 4 .23 40 4 109 34 18 17 1 .05 36 4 109 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 113 7 2.1 118 31 10 53 53 107 31 10	6	84	9	1.4	18	9	. 29	90	10	2.4
72 9 1.7 19 6 .31 65 5 63 6 1.0 26 9 .63 55 5 57 4 .62 30 12 .97 62 21 53 6 .86 25 7 .47 46 7 49 5 .66 21 4 .23 40 4 109 34 18 17 1 .05 36 4 208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 113 7 2.1 118 31 10 53 53 107 31 10	0	7.8	11	2.3	19	9	.31	7.5	&	1.6
63 6 1.0 26 9 .63 55 5 57 4 .62 30 12 .97 62 21 53 6 .86 25 7 .47 46 7 49 .86 21 4 .23 40 4 109 34 18 17 1 .05 36 4 109 38 23 39 88 18 30 4 114 5 4 242 139 120 50 38 113 7 2.1 118 31 10 53 53 107 31 10	_	7.2	6	1.7	19	9	.31	65	2	.88
57 4 .62 30 12 .97 62 21 53 6 .86 25 7 .47 46 7 49 5 .66 21 4 .23 40 4 109 34 18 17 1 .05 36 4 145 26 12 15 3 .12 33 4 208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 113 7 2.1 118 31 10 53 53 107 31 10	c i	63	9	1.0	56	6	.63	55	5	.74
53 6 .86 25 7 .47 46 7 49 5 .66 21 4 .23 40 4 109 34 18 17 1 .05 36 4 145 26 12 15 3 .12 33 4 208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 113 7 2.1 118 31 10 53 53 107 31 10	e	57	7	.62	30	12	.97	62	21	3.5
49 5 .66 21 4 .23 40 4 109 34 18 17 1 .05 36 4 145 26 12 15 3 .12 33 4 208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 113 7 2.1 118 31 10 53 53 107 31 10	√t	53	9	•86	25	7	.47	46	7	.87
109 34 18 17 1 .05 36 4 145 26 12 15 3 .12 33 4 208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 9 113 7 2.1 118 31 10 53 53 9 107 31 10	2	67	5	99.	21	7	. 23	40	4	.43
145 26 12 15 3 .12 33 4 208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 9 113 7 2.1 118 31 10 53 53 9 107 31 10	S	109	34	18	17		.05	36	4	.39
208 38 23 39 88 18 30 4 144 14 5.4 242 139 120 50 38 9 113 7 2.1 118 31 10 53 53 9 107 31 10	_	145	26	12	15	e	.12	33	7	.36
144 14 5.4 242 139 120 50 38 9 113 7 2.1 118 31 10 53 53 9 107 31 10	ac	208	38	23	39	88	18	30	7	.32
113 7 2.1 118 31 10 53 53 107 31 10 53		144	14	5.4	242	139	120	50	38	8.6
107 31 10	. :>	113	7		118	31	10	53	53	0.6
	4	ł	-	!	107	31	01	!	!	1

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572000 LOWER LITTLE SWATARA CREEK AT PINE GROVE, PA

1982
SEPTEMBER
81 TO
198
OCTOBER
YEAR
WATER YEAR
(TON/D)
SUSPENDED
뎚,
DISCHARG

Day	Mean discharge (ft³/s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft³/s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)	Mean discharge (ft ³ /s)	Mean concen- tration (mg/L)	Sediment discharge (ton/d)
		JULY			AUGUST			SEPTEMBER	
-	33	œ	0.71	6.9	v	0.11	11		0.03
	7.0	۸ د	15.	6.9	o u	80		• α	89
1 ~	. 47	` [6.0		, ıc	60.	26	22	6.1
7	9 5	33	9.5) v.	7	90	1.5	1 7	.13
۰ ۲۰	34	23	2.1	. 5.	- 4	90.	9.5	5 -	50.
9	29	16	1.3	9.4	4	.05	8.2	e	.07
7	25	9	.41	4.3	ν.	90.	7.7	9	.12
œ	23	9	.37	217	190	552	8.3	e	.07
6	20	9	.32	441	137	261	8.0	5	.11
10	18	7	.34	225	48	37	7.4	7	80.
11	17	80	.37	111	20	0.9	6.8	7	.13
12	22	80	.48	73	14	2.8	0.9	4	90.
13	16	14	09.	48	80	1.0	5.5	Э	•00
14	14	13	67.	37	7	.70	5.4	7	90.
15	12	7	.13	30	7	.57	5.4	7	.03
16	11	6	.27	24	80	.52	5.7	Э	.05
17	11	œ	.24	23	7	.43	4.7	m	•00
18	11	12	.36	21	œ	.45	4.4	e	*0
19	11	11	.33	17	7	.32	4.8	2	.03
70	18	22	1.5	17	11	.50	5.2	9	.08
21	14	13	67.	22	7	.42	6.3	5	60.
22	0.6	9	.15	14	9	.23	13	11	.39
23	7.9	10	.21	12	9	. 19	22	12	.71
54	7.5	œ	.16	12	9	.19	11	9	.18
25	6.5	5	60.	65	45	7.0	7.9	7	60.
56	6.2	9	.05	24	13	.84	7.1	m	90.
27	5.9	10	.16	19	ю	.15	62	81	17
28	18	15	.72	16	4	.17	31	16	1.3
53	11	10	.30	12	9	.10	22	9	.36
30	7.7	80	.17	11	7	90°	17	m	.14
31	5.7	7	.15	11	2	90.	1	!	!
TOTAL	557.6	1	25.08	1,525.3	1	873.21	366.0	!	24.12
YEAR	2,022.51		4,721.26						

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572200 SWATARA CREEK AT INWOOD, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Hard- ness (mg/L as CaCO ₃)	99	55	25	00 00 00 00	28	34 33	30	97	07	7.1	5.2	41	70
Strep- tococci fecal, KF Agar (Cols. per 100 mL)	18	K6	15	42 fvxd	K4	160	1	110	96	200	1 1	1	62
Coll- form, fecal, 0.7 UM-MF (Cols./	K6	\$	1 0	K130 †v1	**	K9	}	180	1	39	1 1	}	K67
Oxygen demand, chem- 1cal (h1gh leve) (mg/L)	10	!	50	10 vv	uu	<10	;	<10	77	<10	<10 556	99	<10
Oxygen, dis- solved (mg/L)	13.6	12.8	11.2	13.4 jv\$o	ysvt	10.4	10.2	& &	9.5	8.0	7.6	7.2	9.2
Tur- bid- 1ty (FTU)	3.0	5.0	07	}. }.	р\$q	8.0 10	0.6	5.0	i	1.4	27 2 30	11	1.6
Temper- ature (°C)	0.5	5.	5,	1.0 x\$d	P\$1	10.0	13.0	14.0	19.0	24.5	18.5	20.0	19.5
pH (Units)	6.9	6.8	6.4	6.3 b\$1	8\$q	6.5	8.9	9.9	4.9	6.5	6.8	6.9	6.8
Spe- cific con- duct- ance (µS/cm)	166	159	86	110 38d	qpf	115	93	149	130	202	162	134	190
Stream- flow, instan- taneous (ft ³ /s)	75	114	1,280	538 236	1gr	169	268	145	274	62	169	202	54
Tine	1330	1000	0745	1615	Jx11	0745	1500	0845	1400	1445	0745	1645	1445
Date	DEC 15	20	04	16	+>" VBS\$\$	20	27	MAY 25	22	27	25	26	Ji

Table 9. --Surface-water and water-quality data, July 1981 through September 1982--Continued

01572200 SWATARA CREEK AT INWOOD, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Date	Acidity (mg/L as CaCO ₃)	Calcium dis- solved (mg/L as Ca)	Magne- slum, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Percent	Sodium ad- sorp- tion ratio	Potas- slum, dis- solved (mg/L as K)	Alka- linity field (mg/L as CaCO ₃)	Sulfate dis- solved (mg/L as SO ₄)	Chlo- ride, dis- solved (mg/L as Cl)	Silica, dis- solved (mg/L) as SIO ₂)
DEC 15	0.0	12	6.8	6.2	19	0.4	1:1	6	45	10	2.4
JAN 20	12	6.9	12	6.9	18	7.	φ.	6	07	9.0	5.4
FEB 04	3.0	5.7	2.7	6.1	32	'n,	2.6	47	15	10	3.6
16	0.7	8.1	4.4	8.3	31	. 9.	2.0	4 9	25	12	5.5
AAR 23	0.9	6.8	7.0	3.9	20	.3	æ	2	26	6.0	5.6
AFA 20 26	4.0	8.3	5.0	9.4	17 20	ú.ú.	œ. α.	1 4	30	7.0	5.3
27	3.0	6.5	3.3	3.4	19	; eş	ω	ī	15	0.9	5.1
25	2.0	6.6	6.3	5.5	19	e.	φ.	7	35	0.9	5.8
22	12	6.7	5.7	5.1	18	£.	1.0	9	35	6.0	6.9
27	2.0	14	8.7	6.8	17	4.	1.2	9	09	8.0	5.8
25 25 26	3.0	11 10 8.8	6.7 5.1 4.6	4.9 4.0 3.5	16 15 15		1.3	8 4 8	35 30 25	7.0 8.0 6.0	6.3 5.4 6.2
SEP 14	3.0	14	8.4	5.6	14	e.	2.8	7	07	8.0	5.8

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572200 SWATARA CREEK AT INWOOD, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Nitro- gen, total (mg/L as N)	2.0	2.7	2.0	2.0	1.4	1	1	1	111	1
Nitro-gen, am-monia = organic dis. (mg/L as N)	0.70	1.1	06.	.30	.95 .70 .80	1.2	1.1	.35	1.1 .65 .65	09.
Nitro- gen, am- monia = 1 organic total (mg/L as N)	0.80	1.10	99.	.30	-80 -90	1.20	1.10	.50	1.10 2.60 1.40	09.
Nitro- gen, organic dis- solved (mg/L as N)	0.62	 	.52	.23	.86 .62 .77	1.0	1.0	.30	.01 .56 .55	.59
Nitro- gen, organic total (mg/L as N)	0.72	.93	.58	.23	.71	1.0	1.0	.45	1.0 2.4 1.3	.59
Nitro-gen, ammonia dis- solved (mg/L as N)	0.080	.180	.080	.070	.090 .080 .030	.150	.110	.050	.070	010.
Nitro- gen, ammonia total (mg/L as N)	0.080	.200	.140	.070	.090 .090 .030	.150	.110	.050	.080	010.
Nitro-gen, nitrite dis- solved (mg/L as N)	0.010	.010	.010	.010	<.010 .010 <.010	<.010	<.010	<.010	.010	<.010
Nitro- gen, nitrite total (mg/L as N)	0.010	.020	.010	.010	<.010 .010 .010	<.010	<.010	.010	.010	<.010
Nitro- gen, nitrate dis- solved (mg/L as N)	1.20	1.60	1.30	1.70	.80 .59	.50	1.20	.47	. 89 . 90 . 90	09.
Nitro- gen, nitrate total (mg/L as N)	1.2	1.6	1.4	1.7	.84 .61 .72	.50	1.2	.47	69. 69.	09.
Date	DEC 15	FEB 04	05	23	AFR 20 26 27	25 JUN	22 JUL	27 AUG	25 25 26	SEP 14

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572200 SWATARA CREEK AT INWOOD, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Iron, dis- solved (µg/L as Fe)	70	270	70	90	260	30	80	6	70	30	09	09	70	09	20
Iron, total recov- erable (µg/L as Fe	220	400	3,000	1,500	880	740	780	840	280	200	200	1900	21,000	620	70
Copper, total recov- erable (µg/L as Cu)	1	!	20	50	1	}	10	10	;	1	ł	20	09	30	1
Chro-mium, total recov-erable (µg/L as Cr)	*	1	20	2	1	1	<10	10	;	}	ŀ	410	<10	20	!
Alum- inum, dis- solved (µg/L as Al)	170	93	110	260 100	70	70	140	210	90	20	40	410	220	90	100
Alum- inum, total recov- erable (µg/L as Al)	170	06	2,200	800	7 4 90	410	710	910	270	290	210	1100	13,000	400	180
Phos- phorus, ortho, dis- solved (mg/L as P)	<0.010	<.010	<.010	.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
Phos- phorus, ortho, total (mg/L as P)	<0.010	.010	.010	.030	<.010	<.010	<. 010	;	<.010	<.010	<.010	.010	.010	010	<.010
Phos- phorus, dis- solved (mg/L as P)	0.040	.030	.030	.020	.020	.020	010	.020	.010	.010	.010	.020	.020	.030	.030
Phos- phorus, total (mg/L as P)	0.040	.030	.160	.070	.020	040	.030	.040	.020	.030	.030	060.	.250	.030	.030
Nitro- gen dis- solved (mg/L as N)	1.9	1.9	2.7	1.8	2.0	1	1.3	ł	1	;	}	1	;	1	1
Date	DEC 15	20	04	05	MAR 23	APR 20	26	27	MAY 25	22	JUL 27	AUG 25	25	26	SEP 14

Table 9.--Surface-water and water-quality data, July 1981 through September 1982--Continued

01572200 SWATARA CREEK AT INWOOD, PA

WATER-QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DEC 15 JAN 20 FEB 04				as Hg)	(µg/L as Zn)	total (mg/L as C)	solved (mg/L as C)	sus- pended (mg/L)	charge, sus- pended (ton/d)	percent finer than 0.062 mm
JAN 20 FEB 04									: Madiliberational massers. 100 to. 100	T AND PROPERTY STREET,
20 FEB 04		650	610			1.0	1.0	2	0.40	
04		560	550			1.3	1.3	6	1.8	,
05	9	3 70	210	<2.0	110	4.9	4.4	143	494	63
	5	290	28 0	<2.0	50	3.7	2.8	34	49	81
16		340	32 0			3.7	2.7	16	10	
MAR										
23		310	310					11	16	
APR										
20		330	310			2.0	2.0	12	5.5	***
26	30	3 50	350	<2.0	<10		2.0	21	25	69
27	< 5	230	220	<2.0	40		1.5	23	35	68
MAY										
25		470	470			1.1	1.1	4	1.6	MR FIN
JUN		***								
22		340	320			<1.0		10	7.4	
JUI.		250	240			<i>(</i> 1 0			(7	
27 AUG		350	340			<1.0		4	.67	
25	52	500	430	<2.0	90	2.0	***	51	23	93
25	46	710	350	<2.0	120	<1.0			1,130	97
26	40 5	300	270	<2.0	60	\1.0	2.4	16	8.7	97 88
SEP)	300	2/0	(2.0	60		2.4	10	0./	88
14										

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, DECEMBER 1981 to SEPTEMBER1982

Date	Time	Stream- flow, instan- taneous (ft ³ /s)	sedi- ment, sus pended (mg/L)	Sedi- ment, Dis- charge, sus pended (ton/d)	Sed. susp. fall diam. percent finer than 0.004 mm	Sed. susp. fall diam. percent finer than 0.008 mm	Sed. susp. fall diam. percent finer than 0.016 mm	Sed. susp. fall diam. percent finer than 0.031 mm	Sed. susp. sieve diam. percent finer than 0.062 mm	Sed. susp. sieve diam. percent finer than 0.125 mm
AUG 25	1520	629	586	995	51	68	86	95	99	100