

UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

CATALOG OF EARTHQUAKES IN SOUTHERN ALASKA FOR 1984

by

K. A. Fogleman, C. D. Stephens, J. C. Lahr and J. A. Rogers

OPEN-FILE REPORT 86-99

This report is preliminary and has not been edited or reviewed for conformity
with U.S. Geological Survey editorial standards.

Any use of trade name and trademarks in this publication is for
descriptive purposes only and does not constitute endorsement by the
U.S. Geological Survey

Menlo Park, California
1986

CATALOG OF EARTHQUAKES IN SOUTHERN ALASKA FOR 1984

K. A. Fogleman, C. D. Stephens, J. C. Lahr, and J. A. Rogers

CONTENTS

	Page
Introduction	1
Instrumentation	6
Data Processing	8
Velocity Models	10
Traveltime Delay Models and Trial Focal Depths	12
Magnitude	13
Analysis of Hypocentral Quality	14
Focal Depths	15
Completeness of Catalog	16
Discussion of Catalog	16
Availability of Data	23
Acknowledgements	23
References	24

ILLUSTRATIONS

	Page
Figure 1 Map showing principal seismograph stations used in locating earthquakes.....	2
2 Block diagram of the USGS telemetered seismograph system.	7
3 System response curves of typical USGS telemetered seismograph stations.....	9
4 Map showing earthquake epicenters with magnitudes greater than 3.0.....	18
5 Map showing earthquake epicenters with depths deeper than 30 km.....	19
6 Map showing earthquake epicenters with depths shallower than 30 km.....	20
7 Map showing location of cross sections.....	21
8 Cross sections showing depth distribution of earthquake hypocenters	22
9 Relationship between the confidence ellipsoid and SEH, MAXH, SEZ, and MAXZ	27

TABLES

	Page
Table 1 Station parameters.....	3
2 Record of station use.....	5
3 Geographical boundaries, velocity models, starting depths, and delay models.....	12

APPENDICES

	Page
Appendix A Southern Alaska earthquakes for 1984.....	26
B Reference of previously published catalogs.....	104

The Office of Earthquakes, Volcanoes, and Engineering (formerly the Office of Earthquake Studies) of the U.S. Geological Survey (USGS) has operated a regional network of telemetering seismographs in south-central Alaska since 1971. The principal purpose of this network has been to record seismic data to be used to precisely locate earthquakes in the active seismic zones of southern Alaska, delineate seismically active faults, assess seismic risk, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals is the routine cataloging of earthquake parameters for earthquakes located within and adjacent to the seismograph network.

The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. During the subsequent years the region covered by the network has remained relatively fixed while effort has been made to make the stations more reliable through improved electronic instrumentation and strengthened antenna systems. The majority of the stations installed since 1980 have been operated only temporarily (from one to several years) for special studies in various areas within the network.

The locations of the stations of the USGS seismograph network operating during 1984 are plotted in Figure 1 and listed in Table 1 along with the stations from other institutions from which readings were obtained. Table 2 summarizes for each station the number of earthquakes per month for which readings were obtained. Each USGS station has a single vertical-component seismometer except for stations BRLK, GLB, RDT, SKN, and VLZ, which also have two horizontal-component seismometers. The horizontal-component seismometers at BRLK were removed on July 2, 1984.

This catalog presents origin times, focal coordinates and magnitudes for 3446 earthquakes occurring in 1984. Readings from total of 99 stations were used to locate the shocks, including 15 stations operated by the NOAA Alaska Tsunami Warning Center (ATWC, formerly Palmer Observatory), 14 stations operated by the Geophysical Institute of the University of Alaska, Fairbanks (U of A), 3 stations operated jointly by the USGS and U of A, 4 stations operated by the Earth Physics Branch of the Department of Energy, Mines and Resources, Canada (EMRC), and one station (TTV) operated cooperatively by the University of Washington (U of W) and the USGS.

Earthquakes in south-central Alaska as small as magnitude 3.0 have been routinely located by the National Earthquake Information Service (NEIS) of the USGS and its predecessor since the great Alaska earthquake of 1964 and are published in "Preliminary Determination of Epicenters" (PDE) reports. In contrast, the shocks included in this catalog are as small as magnitude -0.8 and most are smaller than magnitude 3.0. Data for the larger historic earthquakes that occurred in south-central Alaska through 1975 have been tabulated by Meyers (1976). Maps of the seismicity of Alaska and the Aleutian Islands from 1960-1983 have been published by Espinosa (1984).

1984 SOUTHERN ALASKA SEISMOGRAPHS

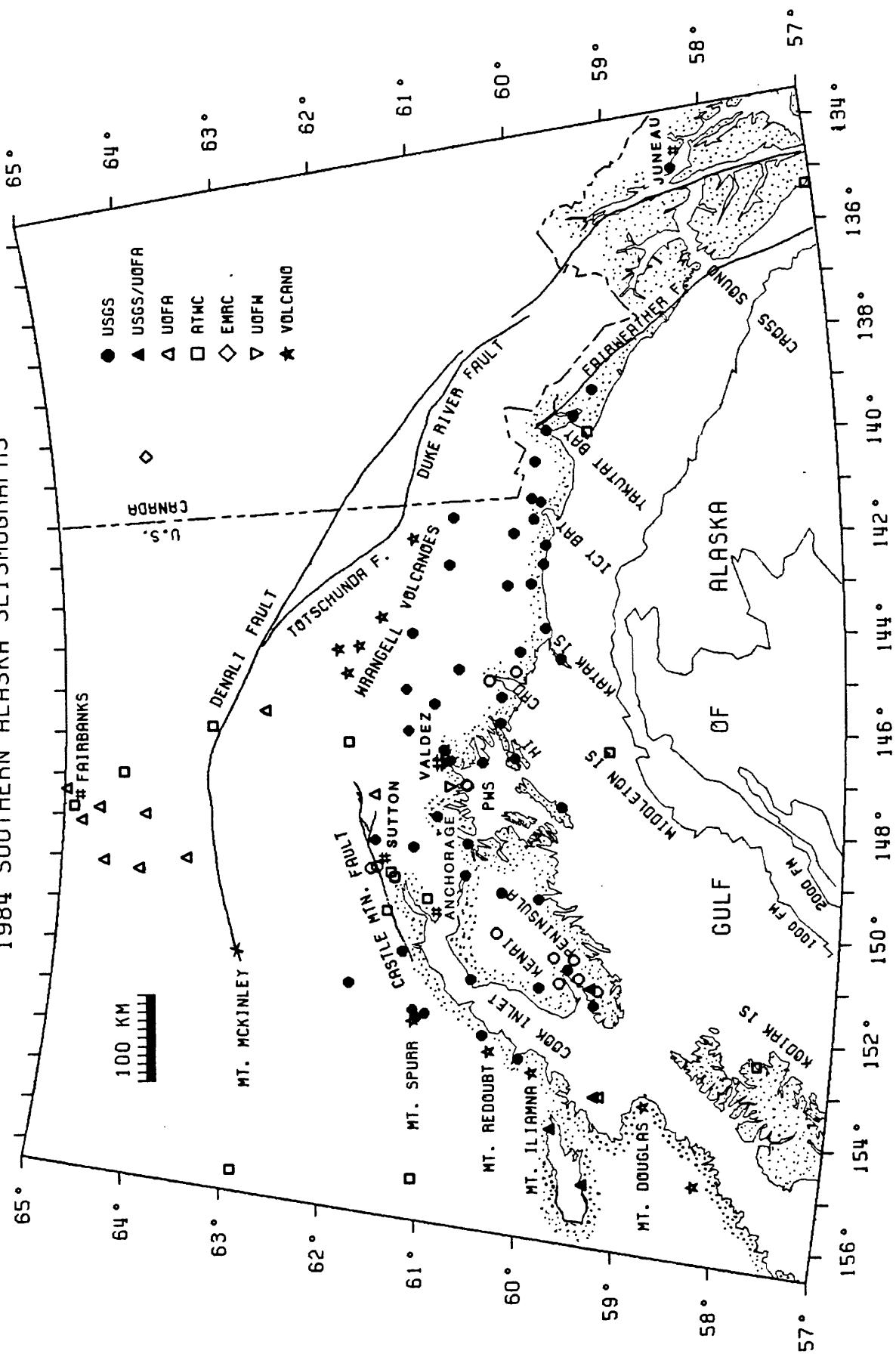


Figure 1. Map showing the locations of all USGS seismograph stations in southern Alaska and of other stations used in the preparation of this catalog. Symbols not listed in the key are as follows: open circles, USGS stations that opened or closed in 1984 (see Table 1); heavy lines, principal faults in southern Alaska; CRD = Copper River Delta; HI = Hinchinbrook Is.; PWS = Prince William Sound. Stations BRW, FYU, IMA, INK, MBC, SDN, and YKA, are located outside the map borders and are not plotted.

Table 1. Station parameters

STA CODE	STATION NAME	LATITUDE N	LONGITUDE W	ELEV M	P MOD	D KM	DLY1 SEC	DLY2 SEC	DLY3 SEC	TDLY SEC	MAG AT 1 Hz	INST	REMARKS
ABF	AUKE BAY	58 22.88	134 38.68	3	3	0.01	0.00	0.00	0.00	0.00	186400	USGS	
AGA	AGASSIZ LAKES	60 9.25	141 2.00	1024	3	0.01	0.00	0.00	0.00	-0.27	228000	USGS	
AUI	AUGUSTINE ISLAND	59 20.05	153 25.62	282	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
AUL	AUGUSTINE LAVA FLOW	59 22.93	153 26.87	360	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
BAL	BALDY	61 2.17	142 20.67	1300	3	0.01	0.00	0.00	-0.19	0.00	182400	USGS	
BCP	BANCAS POINT	59 57.20	139 38.18	396	3	0.01	0.00	0.00	-0.00	-0.27	790000	USGS	
BGM	BIG MOUNTAIN	59 22.56	155 13.76	625	1	0.01	0.00	0.00	0.00	-0.27	638000	USGS/UCFA	
BLR	BLACK RAPIDS	63 36.10	145 50.70	809	2	0.01	0.00	0.00	0.00	0.00	0.00	ATWC	
BMR	BREMNER RIVER	60 58.09	144 36.18	823	2	0.01	0.00	0.00	0.37	-0.27	987000	USGS	
BRLK	BRADLEY LAKE	59 46.85	150 53.13	631	1	0.01	0.00	0.00	0.00	0.00	185400	USGS	
BRNE	BRADLEY LAKE NE	59 54.65	150 39.13	1219	1	0.01	0.00	0.00	0.00	0.00	912000	USGS	CLOSED 6/29/84
BRNW	BRADLEY LAKE NW	59 58.25	151 10.15	582	1	0.01	0.00	0.00	0.00	0.00	482000	USGS	CLOSED 6/29/84
BRSE	BRADLEY LAKE SE	59 42.33	150 48.25	975	1	0.01	0.00	0.00	0.00	0.00	851000	USGS	CLOSED 6/29/84
BRSW	BRADLEY LAKE SW	59 38.46	151 2.69	951	1	0.01	0.00	0.00	0.00	0.00	866000	USGS	CLOSED 6/29/84
BRW	BARROW	71 16.43	156 47.00	13	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
CCB	CLEAR CREEK BUTTE	64 38.80	147 48.33	219	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
CFI	COLLEGE FIORD	61 18.96	147 45.99	3	2	0.01	0.00	0.00	0.00	0.00	456000	USGS	
CGL	CHITNA GLACIER	61 18.46	152 0.40	1082	1	0.01	0.00	0.00	0.00	0.00	836000	USGS	
CHX	CHAIX HILLS	60 2.78	141 7.00	1067	3	0.01	0.00	0.00	-0.05	-0.27	395000	USGS	
CNP	CHINA POOT	59 31.55	151 14.16	564	1	0.01	0.00	0.00	0.00	0.00	380000	USGS/UCFA	
CRP	CRATER PEAK	61 16.02	152 9.33	1622	1	0.01	0.00	0.00	0.00	0.00	380000	USGS	
CSG	CHILDS GLACIER	60 39.66	144 51.30	678	2	0.01	0.00	0.00	0.00	0.00	820000	USGS	OPENED 7/28/84
CTG	CHITNA GLACIER	60 57.90	141 28.00	1554	3	0.01	0.00	0.00	-0.53	0.00	790000	USGS	
CVA	CORDOVA	60 32.79	145 44.96	98	2	0.01	0.00	0.00	0.00	-0.81	209000	USGS	
DWY	DAWSON CITY	64 3.20	139 25.90	346	3	0.01	0.00	0.00	0.00	0.00	0.00	EMRC	
FBA	COLLEGE OUTPOST	64 54.00	147 47.60	328	1	0.01	0.00	0.00	0.00	0.00	0.00	ATWC	
FID	FIDALGO	60 43.73	146 35.79	486	2	0.01	0.00	0.00	0.00	-0.27	885000	USGS	
FYU	FORT YUKON	66 33.63	145 12.60	137	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
GHO	GLORYHOLE	61 46.33	148 55.45	1021	1	0.01	0.00	0.00	0.00	0.00	836000	USGS	OPENED 9/11/84
GKC	GOLD KING CREEK	64 18.72	147 56.00	490	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
GLB	GILAHINA BUTTE	61 26.51	143 48.63	845	3	0.01	0.00	0.00	1.60	0.00	1672000	USGS	
GLC	GLACIER ISLAND	60 53.44	147 4.38	3	2	0.01	0.00	0.00	0.00	-0.27	942000	USGS	CLOSED 9/17/84
GLI	GLACIER ISLAND	60 52.78	147 5.65	429	2	0.01	0.00	0.00	0.00	0.00	942000	USGS	OPENED 9/17/84
GLM	GILMORE DOME	64 59.23	147 23.33	820	2	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
GYO	GUYOT	60 8.78	141 28.29	183	3	0.01	0.00	0.00	-0.06	-0.27	288000	USGS	
HDA	HARDING LAKE	64 24.35	146 57.23	458	1	0.01	0.00	0.00	0.00	0.00	0.00	ATWC	
HIN	HINCHINBROOK ISLAND	60 23.81	146 38.10	611	2	0.01	0.00	0.00	0.00	-0.81	425000	USGS	
HMT	HAMILTON	60 20.19	144 15.64	620	3	0.01	0.00	0.00	1.28	-0.27	820000	USGS	
HQN	HARLEQUIN	59 27.10	138 52.62	372	3	0.01	0.00	0.00	0.00	-0.27	987000	USGS	
ILM	ILIAMNA	60 18.92	152 48.97	550	1	0.01	0.44	0.00	0.00	0.00	760000	USGS	
IMA	INDIAN MOUNTAIN	66 4.11	153 49.72	1388	1	0.01	0.00	0.00	0.00	-0.27	ATWC		
INK	INUVIK	68 17.50	133 38.00	40	3	0.01	0.00	0.00	0.00	0.00	0.00	EMRC	
KAI	KAYAK ISLAND	59 55.61	144 24.98	311	2	0.01	0.00	0.00	1.50	-0.81	380000	USGS	
KDC	KODIAK	57 44.87	152 29.50	13	1	0.01	0.00	0.00	0.00	-0.27	ATWC		
KLU	KLUTINA	61 29.57	145 55.21	1021	2	0.01	0.00	0.00	0.00	0.00	3161000	USGS	
KMP	KIMBALL PASS	61 30.78	145 1.00	1143	2	0.01	0.00	0.00	0.00	-0.27	1732000	USGS	
KNK	KNIK GLACIER	61 24.75	148 27.34	595	2	0.01	0.00	0.00	0.00	0.00	957000	USGS	
LVY	LEVY	64 13.00	149 15.20	230	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
MBC	MOULD BAY	76 17.50	119 21.60	15	3	0.01	0.00	0.00	0.00	0.00	0.00	EMRC	
MCK	MCKINLEY PARK	63 43.94	148 56.10	610	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
MID	MIDDLETON ISLAND	59 25.67	146 20.34	37	2	0.01	0.00	0.00	0.00	-0.27	ATWC		
MSE	MOOSE CREEK	61 58.30	148 58.03	1318	1	0.01	0.00	0.00	0.00	0.00	817000	USGS	OPENED 9/11/84
MSP	MOOSE PASS	60 29.35	149 21.64	150	1	0.01	0.00	0.00	0.00	0.00	912000	USGS	
MTG	MONTAGUE ISLAND	59 54.71	147 29.82	31	2	0.01	0.00	0.00	0.00	-0.81	184000	USGS	
NEA	NENANA	64 34.63	149 4.63	365	1	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
NKA	NIKISHKA	60 44.58	151 14.28	100	1	4.00	1.36	0.00	0.00	0.00	57000	USGS	
NNL	NINILCHIK	60 2.53	151 17.78	366	1	4.00	0.67	0.00	0.00	0.00	289000	USGS	
PAX	PAXSON	62 58.25	145 28.11	1130	2	0.01	0.00	0.00	0.00	0.00	0.00	UCFA	
PDB	PEDRO BAY	59 47.27	154 11.55	305	1	0.01	0.00	0.00	0.00	-0.27	790000	USGS/UCFA	
PIN	PINNACLE	60 5.80	140 15.40	975	3	0.01	0.00	0.00	-0.01	-0.27	836000	USGS	
PLR	PALMER (USGS)	61 35.53	149 7.85	100	1	0.01	0.00	0.00	0.00	0.00	199000	USGS	OPENED 9/11/84
PME	PALMER EAST	61 37.90	149 1.70	232	1	0.01	0.00	0.00	0.00	0.00	0.00	ATWC	
PMR	PALMER OBSERVATORY	61 35.53	149 7.85	100	1	0.01	0.00	0.00	0.00	0.00	0.00	ATWC	
PMS	ARCTIC VALLEY	61 14.68	149 33.63	716	1	0.01	0.00	0.00	0.00	0.00	0.00	ATWC	
PNL	PENINSULA	59 48.00	139 23.82	585	3	0.01	0.00	0.00	-1.10	-0.27	775000	USGS	

TABLE 1 (continued). Station parameters

STA CODE	STATION NAME	LATITUDE N	LONGITUDE W	ELEV M	P MOD	D KM	DLY1 SEC	DLY2 SEC	DLY3 SEC	TDLY SEC	MAG AT 1 Hz	INST	REMARKS
PRG	PORTAGE	68 51.87	149 1.21	55	1	0.01	0.00	0.00	0.00	0.00	00500	USGS	
PWA	HOUSTON	61 39.05	149 52.72	137	1	0.01	0.70	0.00	0.00	0.00		ATWC	
PWL	PORT WELLS	68 51.56	148 28.09	549	2	0.01	0.00	0.00	0.00	0.00	00100	USGS	
RAG	RAG	68 23.22	144 48.51	739	2	0.01	0.00	0.00	0.00	0.00	47100	USGS	
RDS	RICHARD D. SIEGRIST	64 49.59	148 8.68	510	2	0.01	0.00	0.00	0.00	0.00		UOFA	OPENED 7/28/84
RDT	REDOUBT	68 34.43	152 24.37	930	1	0.01	0.36	0.00	0.00	0.00	77500	USGS	
SAW	SAWMILL	61 48.49	148 19.98	740	2	0.01	0.00	0.00	0.00	0.00	167200	USGS	
SCM	SHEEP MOUNTAIN	61 50.00	147 19.66	1820	2	0.01	0.00	0.00	0.00	0.00		UOFA	
SDE	SADIE COVE	59 26.60	151 16.92	770	1	0.01	0.00	0.00	0.00	0.00	79000	USGS	CLOSED 6/29/84
SDN	SAND POINT	55 28.48	160 29.75	38	1	0.01	0.00	0.00	0.00	0.00		UOFA	
SGA	SHERMAN GLACIER	68 32.04	145 12.42	424	2	0.01	0.00	0.00	0.00	0.00	-0.01	74400	USGS
SIT	SITKA	57 3.42	135 19.47	19	3	0.01	0.00	0.00	0.00	0.00	-0.27	ATWC	
SKL	SKILAK	68 30.86	150 12.96	640	1	0.01	0.10	0.00	0.00	0.00	41000	USGS	
SKN	SKWENTNA	61 58.82	151 31.78	564	1	0.01	0.00	0.00	0.00	0.00	167200	USGS	CLOSED 7/28/84
SLK	SKILAK	68 30.74	150 13.26	655	1	0.01	0.10	0.00	0.00	0.00	97200	USGS	OPENED 7/28/84
SLV	SELDONIA	59 28.28	151 34.83	91	1	0.01	0.00	0.00	0.00	0.00	36400	USGS	
SPU	SPURR	61 18.90	152 3.26	880	1	0.01	0.39	0.00	0.00	0.00	182400	USGS	
SSN	SUSITNA	61 27.83	150 44.60	1297	1	0.01	0.67	0.00	0.00	0.00	47100	USGS	
SSP	SUNSHINE POINT	68 12.30	142 49.80	385	3	0.01	0.00	0.00	0.79	-0.27	28900	USGS	
SUK	SUCKLING HILLS	68 4.42	143 46.62	454	3	0.01	0.00	0.00	2.14	-0.81	22000	USGS	
SVW	SPARREVDHN	61 6.49	155 37.30	762	1	0.01	0.00	0.00	0.00	0.00	-0.27	ATWC	
SWD	SEWARD	68 6.22	149 26.96	91	1	0.01	0.00	0.00	0.00	0.00	38000	USGS	
TOA	TOLSONA	62 6.29	146 18.34	989	2	0.01	0.00	0.00	0.00	0.00		ATWC	
TSI	TSINA	61 13.57	145 28.24	1113	2	0.01	0.00	0.00	0.00	0.00	-0.27	76000	USGS
TTA	TATALINA	62 55.00	156 1.32	914	1	0.01	0.00	0.00	0.00	0.00	-0.27	ATWC	
TTV	TERRENTIEV LAKE	61 3.29	147 7.29	533	2	0.01	0.00	0.00	0.00	0.00		UOFL	OPENED 9/19/84
VLZ	VALDEZ	61 7.89	146 19.92	18	2	0.01	0.00	0.10	0.00	-0.27	45600	USGS	
VZW	VALDEZ WEST	61 3.54	146 33.24	796	2	0.01	0.00	0.00	0.00	-0.27	86600	USGS	
WAX	WAXELL RIDGE	68 26.90	142 51.10	975	3	0.01	0.00	0.00	0.61	-0.27	79000	USGS	
WRG	WHITE RIVER GLACIER	68 2.27	142 1.90	550	3	0.01	0.00	0.00	0.66	-0.27	19000	USGS	
YAH	YAHTSE	68 21.51	141 44.70	2135	3	0.01	0.00	0.00	0.17	-0.27	197500	USGS	
YKA	YELLOWKNIFE ARRAY	62 29.59	114 36.32	280	3	0.01	0.00	0.00	0.00	0.00		EMRC	
YKG	YAKATAGA	68 4.20	142 25.33	46	3	0.01	0.00	0.00	0.00	-0.27	5500	USGS	
YKU	YAKUTAT	59 32.72	139 43.73	15	3	0.01	0.00	0.00	0.35	-0.27		ATWC	

This table lists geographic coordinates and other pertinent information for seismograph stations operated by the USGS and institutions in southern Alaska used in the preparation of this catalog. P-MOD is the number of the preferred P-wave velocity model assigned to the station unless the earthquake occurs east of longitude 144.5°W and outside the Icy Bay region, in which case the Eastern model is assigned to all the stations (see Table 3). The numbers 1, 2, and 3 correspond to the Western, Central, and Icy Bay models. D is the thickness of the low-velocity surficial sedimentary layer in kilometers assigned in the calculation of traveltimes to a given station. DLY is the station P-phase traveltime delay correction in seconds. The station traveltimes to a given station are all currently set to 0.00 s and are not listed. TDLY is the telephone line delay correction in seconds. The magnification (MAG) of the vertical seismograph component is given at 1 Hz. The institutions (INST) other than the USGS operating the stations are the Alaska Tsunami Warning Center (ATWC), the Geophysical Institute of the University of Alaska (UOFA), the University of Washington (UOFL) and the Department of Energy, Mines, and Resources, Canada (EMRC). Station BGM was not operational during 1984 and is not included in Table 2.

USGS STATIONS

A A B B B R R R R C C C C F G G G G H H I K K K M M M N N P P P P R S S S S S S S S T T V V V W W Y											
B G A C M L N N S S S F G H N R S S T V I H L L L Y I M O L A L M N S S T K N D I L N R W A D A D G K K L P S S S S S S S S T V V V W W Y											
F A L P R K E W E W I L X P P G G A D O B C I O N T N M I U P K E P G A L B N R L G L G T W E A L N K V U N P K D I V Z U X G H G											
JAN	F	L	A	C	18	7	5	415	6	9	G
FEB	G	J	7	119	8	6	6	512	5	6	E
MAR	G	K	N	C	18	6	7	511	4	6	I
APR	G	9	9	7	61F	8	8	61	1	7	H
MAY	B	H	9	319	8	6	7	512	8	8	A
JUN	B	7	C	6	319	7	6	7	512	8	B
JUL	B	9	F	9	412	7	4	512	6	6	C
AUG	B	8	E	8	316	7	4	512	5	6	D
SEP	B	9	F	19	417	7	4	512	5	6	E
OCT	B	9	F	7	316	7	4	512	6	6	F
NOV	B	A	F	7	215	7	4	512	6	6	G
DEC	A	F	8	316	7	4	512	6	6	H	
0	1	1	0	0	0	0	0	0	0	0	0
STA	0	3	9	0	5	9	4	4	35	0	2
TOT	0	2	8	8	5	7	4	1	0	229	5
7	8	9	9	9	9	2	1	6	5	3	12
8	9	9	9	9	9	1	4	6	6	4	8
9	9	9	9	9	9	2	1	4	6	6	9
10	9	9	9	9	9	2	1	4	6	6	9
11	9	9	9	9	9	2	1	4	6	6	9
12	9	9	9	9	9	2	1	4	6	6	9
13	9	9	9	9	9	2	1	4	6	6	9
14	9	9	9	9	9	2	1	4	6	6	9
15	9	9	9	9	9	2	1	4	6	6	9
16	9	9	9	9	9	2	1	4	6	6	9
17	9	9	9	9	9	2	1	4	6	6	9
18	9	9	9	9	9	2	1	4	6	6	9
19	9	9	9	9	9	2	1	4	6	6	9
20	9	9	9	9	9	2	1	4	6	6	9
21	9	9	9	9	9	2	1	4	6	6	9
22	9	9	9	9	9	2	1	4	6	6	9
23	9	9	9	9	9	2	1	4	6	6	9
24	9	9	9	9	9	2	1	4	6	6	9
25	9	9	9	9	9	2	1	4	6	6	9
26	9	9	9	9	9	2	1	4	6	6	9
27	9	9	9	9	9	2	1	4	6	6	9
28	9	9	9	9	9	2	1	4	6	6	9
29	9	9	9	9	9	2	1	4	6	6	9
30	9	9	9	9	9	2	1	4	6	6	9
31	9	9	9	9	9	2	1	4	6	6	9
32	9	9	9	9	9	2	1	4	6	6	9
33	9	9	9	9	9	2	1	4	6	6	9
34	9	9	9	9	9	2	1	4	6	6	9
35	9	9	9	9	9	2	1	4	6	6	9
36	9	9	9	9	9	2	1	4	6	6	9
37	9	9	9	9	9	2	1	4	6	6	9
38	9	9	9	9	9	2	1	4	6	6	9
39	9	9	9	9	9	2	1	4	6	6	9
40	9	9	9	9	9	2	1	4	6	6	9
41	9	9	9	9	9	2	1	4	6	6	9
42	9	9	9	9	9	2	1	4	6	6	9
43	9	9	9	9	9	2	1	4	6	6	9
44	9	9	9	9	9	2	1	4	6	6	9
45	9	9	9	9	9	2	1	4	6	6	9
46	9	9	9	9	9	2	1	4	6	6	9
47	9	9	9	9	9	2	1	4	6	6	9
48	9	9	9	9	9	2	1	4	6	6	9
49	9	9	9	9	9	2	1	4	6	6	9
50	9	9	9	9	9	2	1	4	6	6	9
51	9	9	9	9	9	2	1	4	6	6	9
52	9	9	9	9	9	2	1	4	6	6	9
53	9	9	9	9	9	2	1	4	6	6	9
54	9	9	9	9	9	2	1	4	6	6	9
55	9	9	9	9	9	2	1	4	6	6	9
56	9	9	9	9	9	2	1	4	6	6	9
57	9	9	9	9	9	2	1	4	6	6	9
58	9	9	9	9	9	2	1	4	6	6	9
59	9	9	9	9	9	2	1	4	6	6	9
60	9	9	9	9	9	2	1	4	6	6	9
61	9	9	9	9	9	2	1	4	6	6	9
62	9	9	9	9	9	2	1	4	6	6	9
63	9	9	9	9	9	2	1	4	6	6	9
64	9	9	9	9	9	2	1	4	6	6	9
65	9	9	9	9	9	2	1	4	6	6	9
66	9	9	9	9	9	2	1	4	6	6	9
67	9	9	9	9	9	2	1	4	6	6	9
68	9	9	9	9	9	2	1	4	6	6	9
69	9	9	9	9	9	2	1	4	6	6	9
70	9	9	9	9	9	2	1	4	6	6	9
71	9	9	9	9	9	2	1	4	6	6	9
72	9	9	9	9	9	2	1	4	6	6	9
73	9	9	9	9	9	2	1	4	6	6	9
74	9	9	9	9	9	2	1	4	6	6	9
75	9	9	9	9	9	2	1	4	6	6	9
76	9	9	9	9	9	2	1	4	6	6	9
77	9	9	9	9	9	2	1	4	6	6	9
78	9	9	9	9	9	2	1	4	6	6	9
79	9	9	9	9	9	2	1	4	6	6	9
80	9	9	9	9	9	2	1	4	6	6	9
81	9	9	9	9	9	2	1	4	6	6	9
82	9	9	9	9	9	2	1	4	6	6	9
83	9	9	9	9	9	2	1	4	6	6	9
84	9	9	9	9	9	2	1	4	6	6	9
85	9	9	9	9	9	2	1	4	6	6	9
86	9	9	9	9	9	2	1	4	6	6	9
87	9	9	9	9	9	2	1	4	6	6	9
88	9	9	9	9	9	2	1	4	6	6	9
89	9	9	9	9	9	2	1	4	6	6	9
90	9	9	9	9	9	2	1	4	6	6	9
91	9	9	9	9	9	2	1	4	6	6	9
92	9	9	9	9	9	2	1	4	6	6	9
93	9	9	9	9	9	2	1	4	6	6	9
94	9	9	9	9	9	2	1	4	6	6	9
95	9	9	9	9	9	2	1	4	6	6	9
96	9	9	9	9	9	2	1	4	6	6	9
97	9	9	9	9	9	2	1	4	6	6	9
98	9	9	9	9	9	2	1	4	6	6	9
99	9	9	9	9	9	2	1	4	6	6	9
100	9	9	9	9	9	2	1	4	6	6	9
101	9	9	9	9	9	2	1	4	6	6	9
102	9	9	9	9	9	2	1	4	6	6	9
103	9	9	9	9	9	2	1	4	6	6	9
104	9	9	9	9	9	2	1	4	6	6	9
105	9	9	9	9	9	2	1	4	6	6	9
106	9	9	9	9	9	2	1	4	6	6	9
107	9	9	9	9	9	2	1	4	6	6	9
108	9	9	9	9	9	2	1	4	6	6	9
109	9	9	9	9	9	2	1	4	6	6	9
110	9	9	9	9	9	2	1	4	6	6	9
111	9	9	9	9	9	2	1	4	6	6	9
112	9	9	9	9	9	2	1	4	6	6	9
113	9	9	9	9	9	2	1	4	6	6	9
114	9	9	9	9	9	2	1	4	6	6	9
115	9	9	9	9	9	2	1	4	6	6	9
116	9	9	9	9	9	2	1	4	6	6	9
117	9	9	9	9	9	2	1	4	6	6	9
118	9	9	9	9	9	2	1	4	6	6	9
119	9	9	9	9	9	2	1	4	6	6	9
120	9	9	9	9	9	2	1	4	6	6	9
121	9	9	9	9	9	2	1	4	6	6	9
122	9	9	9	9	9	2	1	4	6	6	9
123	9	9	9	9	9	2	1	4	6	6	9
124	9	9	9	9	9	2	1	4	6	6	9
125	9	9	9	9	9	2	1	4	6	6	9
126	9	9	9	9	9	2	1	4	6	6	9
127	9	9	9	9	9	2	1	4	6	6	9
128	9	9	9	9	9	2	1	4	6	6	9
129	9	9	9	9</td							

INSTRUMENTATION

The instrumentation used in the USGS seismograph network is illustrated in the block diagram in Figure 2. Data from each seismometer are telemetered to the NOAA Alaska Tsunami Warning Center in Palmer. The standard equipment at each field site includes a vertical seismometer with a natural frequency of 1.0 Hz (Mark Products, Model L-4), an electronics package consisting of an amplifier, calibrator, and a voltage-controlled oscillator (A1VCO), and "air-cell" storage batteries (McGraw-Edison, Model ST-2-1000) or a solar panel and 80 amp-hr storage batteries.

The USGS-designed A1VCO amplifier-oscillator (Rogers and others, 1980) features crystal-referenced center frequency, digital channel selection, firm-ware based calibration cycle, ultra-low noise synthesized FM output and automatic gain-ranging (Rogers, 1986). The crystal reference eliminates the problem of carrier drift experienced with previous VCO designs. In addition, by using digital techniques to synthesize and shape the carrier waveform, the A1VCO reduces channel noise, eliminates lengthy tuning procedures, and allows for the field selection of channel frequencies. The A1VCO automatically calibrates the seismograph system every 24 hours providing information on electronic noise, geophone response, amplifier/VCO response, overall system response, station identification code, field gain setting, air temperature, and battery voltage. With this information the operational status of the station can be monitored, and equipment problems can be diagnosed prior to visiting the field installation. The A1VCO incorporates an automatic gain-ranging feature so that larger events are less likely to clip. Gain-ranging reduces the original gain by a factor of 10 within one millisecond after the input signal exceeds a preset threshold. A few of the stations now have an additional gain-range step which reduces the original gain by a total factor of 500. Another feature of the A1VCO is the monitoring of a remote strong-motion earthquake recorder co-located with the high-gain seismic station. When the recorder triggers and when the recording ends, a distinctive signal is superimposed on the A1VCO output. This signal can be accurately timed to determine the time of operation of the strong-motion recorder.

Data are telemetered via a combination of VHF (162-174 MHz) radio links and leased telephone circuits, some of which use satellite links having a 0.27 s transmission delay per hop. The radio equipment consists of low-power (100 mW) transmitters and receivers adapted from HT-200 Motorola handie-talkie transceivers, and either Yagi antennae with 9 db directional gain (Scala, Model CAS-150) or log periodic antennae (Scala, Model CL-150). At the receive sites, where the seismic signals enter the telephone circuits, base-station radio receivers (G.E. Model R46AP66B) with greater sensitivity are used. The central recording facility incorporates a bank of discriminators (USGS-designed NCER J101 or Develco Model 6203), four 16 mm-film 20-channel oscillographs (Teledyne Geotech Developorder, Model RF400 and 4000D), a 14-track FM magnetic tape recorder (Bell and Howell Model VR3700B), three 3-channel drum recorders (Teledyne Geotech Helicorder, Model RV301B), and a time-code generator (Datum, Model 9100).

The principle of operation is as follows: The seismometer translates ground velocity into an electrical voltage that is fed into the amplifier/VCO unit. There the amplified voltage causes the frequency of the VCO to fluctuate about its center frequency. The frequency-modulated (FM) tone from the

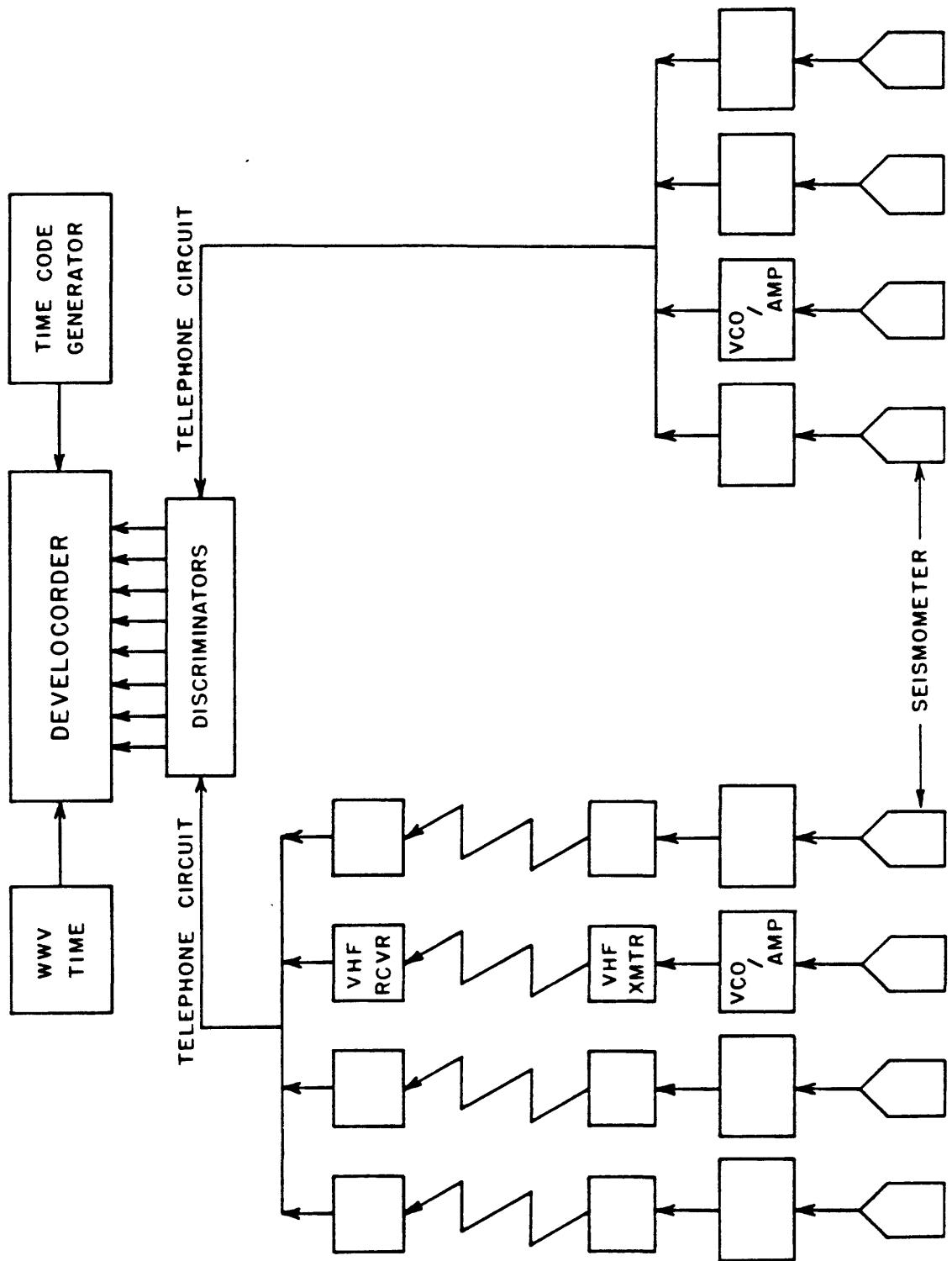


Figure 2. Block diagram of telemetered seismograph system in the USGS Alaska seismic network.

amplifier/VCO unit is carried directly to the recording site by VHF radio links and/or voice-grade telephone circuit. Signals from nine seismograph stations can be transmitted on a single telemetry circuit using standard frequency division multiplexing techniques with a 340 Hz separation between carriers and a constant bandwidth of 250 Hz per channel. The channel frequencies range from 340 to 3,060 Hz. At the recording site the FM seismic signal is demodulated by a discriminator. The demodulated signal, which is simply an amplified and filtered form of the initial signal from the seismometer, is recorded on the oscillograph and tape recorder together with time signals from the time-code generator. Twenty-four hours of data from 18 stations can be recorded on a single 43 m-long roll of 16-mm film, while data from nine stations can be recorded on a single track of a 7,200 ft-long, 14-track tape. Several stations are also recorded on Helicorder records for monitoring purposes.

Figure 3 illustrates the response characteristics of the entire seismic system from seismometer to film viewer. The response level at each station is adjusted in steps of 6 decibels so that the ambient seismic noise produces a small deflection of the trace on the film. As a result, the actual response for an individual station may differ from that of the typical station by a factor of 2, 4, 8, etc. The magnification of the typical station is about 6×10^4 at 1 hz and 10^6 at 10 Hz.

DATA PROCESSING

The 16-mm films (four per day), magnetic tapes (one per day), and Helicorder records (three per day), are mailed weekly from Palmer to Menlo Park where the seismic data are processed by the following multi-step routine:

1. Scanning. The scan film, which records data from 18 stations distributed throughout the network, is scanned to identify and note times of all seismic events whether of local, regional, or teleseismic origin.
2. Timing. For the "well-recorded" local earthquakes identified in the scanning process, the following data are read from each station: P- and S-wave arrival times, direction of first motion, duration of signal in excess of a given threshold amplitude, and period and amplitude of maximum recorded signal. The criterion for choosing earthquakes to be timed is the duration of the signal, which is related to the magnitude. The network is divided into two regions--western and eastern--bounded approximately by longitudes 156° and 145° W., and 145° and 134° W., respectively, and by latitudes 58° and 63° N. Starting on April 1, 1984, the northern border for timing earthquakes was moved south to latitude 62.5° N, closer to the northern edge of the network, to reduce the number of events processed outside the network. In the western region, only events with signal durations longer than 30s are timed. In the eastern region, all earthquakes that are recorded by at least three stations and that produce at least four clear arrivals are timed. These criteria were established to select from the large number of earthquakes recorded by the network those shocks that are of greatest interest to current research objectives. In areas where special studies are being conducted, exceptions to the standard criterion may be made to facilitate the study. For example, to investigate the distribution of small, shallow crustal earthquakes near the city of Anchorage and the active volcanoes, Mt. Spurr and Mt. Redoubt, any earthquake with an S-phase minus P-phase time interval of less than or equal to 5 at one of the stations PMS, SSN, SPU, and RDT was timed if it was recorded at three or more stations.

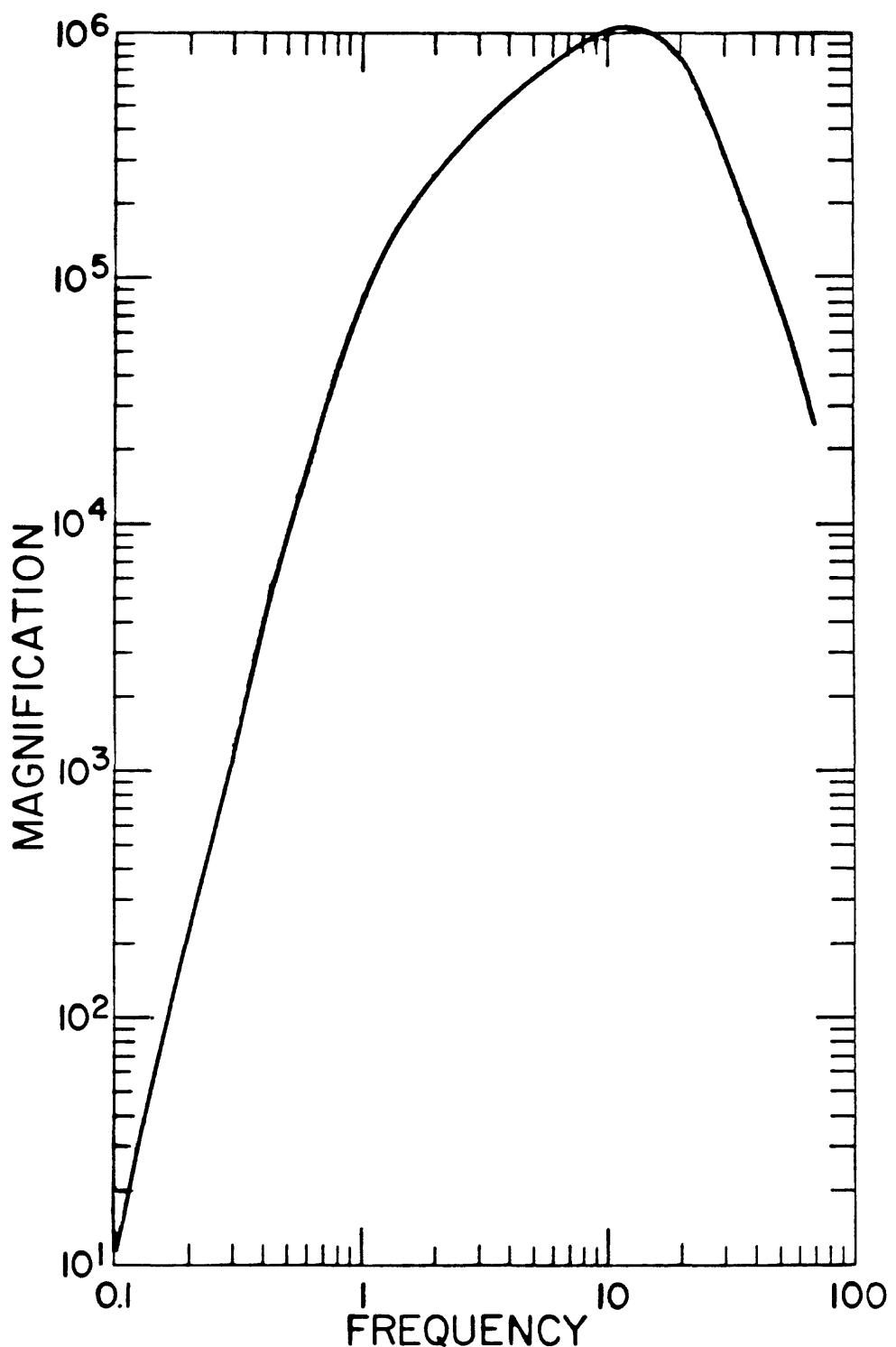


Figure 3. System response curve for typical USGS Alaska seismographs that incorporate the A1VCO unit.

The bulk of timing is done by projecting the seismic traces from the film onto a one-film wire-grid or four-film sonic (Astrue and others, 1983) computer-based digitizing table, where the P- and S-phases and magnitude information are fed into a computer and reformatted using the program DIGIT3 (written by P. Ward and W. Ellsworth, USGS) for input into a hypocentral location program. Since the fall of 1983 a part of the timing has utilized digital waveform data obtained by digitizing the daily FM magnetic tapes at 100 samples per second. An interactive, computer-based processing system (Stevenson, 1978) is used to display the seismic traces and to pick the phase data.

3. Initial computer processing. The phase data for the timed events are batch processed by computer using the program HYPOELLIPSE (Lahr, 1984) to obtain origin times, hypocenters, magnitudes and, if desired, first-motion plots for fault-plane solutions. The HYPOELLIPSE computer program determines hypocenters by minimizing differences between observed and computed traveltimes through an iterative least-squares scheme. In many respects the program is similar to HYPO71 (Lee and Lahr, 1972), which has been used in the preparation of catalogs of central California earthquakes since January 1969. An important feature available in HYPOELLIPSE is the calculation of confidence ellipsoids for each hypocenter. The ellipsoids provide valuable insight into the effect of network geometry on possible hypocentral errors.

4. Analysis of initial computer results. Each hypocentral solution is checked for traveltimes residuals greater than or equal to 0.75 seconds and for a poor spatial distribution of stations. Arrival times that produce large residuals are re-read. For shocks with a poor distribution of stations, readings from additional stations, including those outside the USGS network, are sought.

5. Final computer processing. Poor hypocentral solutions are rerun with corrected and/or additional data, and the new solutions are checked for large residuals that might be due to remaining errors. Corrections are made as required before the final computer run.

The earthquake locations are based on P- and S- arrivals. S-arrivals are important for determining epicenters of shocks outside the network and depths of events in the Benioff zone beneath the network in Cook Inlet. For some large events timed from the films S-arrivals cannot be read at any station because the traces on the film overlap each other or are too faint to read. However, S-arrivals not readable from the films can often be picked when the digital waveform data is used.

VELOCITY MODELS

Our experience with locating earthquakes in southern Alaska suggests that significant lateral variations are present in the velocity structure across the network. Such variations might be expected from the complicated geology and tectonics of the region (e.g., Plafker, 1967; Fuis and others, 1985). Four velocity models were used in locating the 1984 earthquakes, as described below and summarized in Table 3.

1. Western Model

<u>Layer</u>	<u>Depth (km)</u>	<u>P velocity (km/s)</u>
1	0 - D	2.75
2	D - 4	5.3
3	4 - 10	5.6
4	10 - 15	6.2
5	15 - 20	6.9
6	20 - 25	7.4
7	25 - 33	7.7
8	33 - 47	7.9
9	47 - 65	8.1
10	below 65	8.3

This model is based on a study of earthquakes below the Kenai Peninsula (Model A, Matumoto and Page, 1969). The thickness, D, of the first layer is allowed to vary between stations to account for the presence of thick sections of low-velocity sediments beneath the stations NKA and NNL, which are located in the Cook Inlet basin. For these stations, D is 4 km; for all other stations, D is 0.01 km. It is recognized that a model comprised of uniform horizontal layers is a poor representation of the actual velocity structure in the vicinity of a subduction zone (Mitronovas and Isacks, 1971; Jacob, 1972, McLaren and Frohlich, 1985), however such a model does have the advantage of simplifying the computation of traveltimes. In order to determine any bias that might result from the approximation, a set of events in the Benioff zone below Cook Inlet was relocated using a ray-tracing program of E. R. Engdahl and incorporating a more realistic, three-dimensional velocity model (Lahr, 1975). Hypocenter shifts, apparently due to the oversimplified flat-layer model, ranged from near zero at a depth of 60 km to as great as 25 km at the 160 km depth. The offsets were oriented in such a way that the dip of the Benioff zone would appear to be too great for locations based on a flat-layered model.

2. Central Model

<u>Layer</u>	<u>Depth (km)</u>	<u>P velocity (km/s)</u>
1	0.0	2.75
2	0.01	6.4
3	below 39	8.0

This model was developed empirically by minimizing the RMS traveltime residuals for a set of selected earthquakes in the Valdez region.

3. Icy Bay Model

The Icy Bay model consists of a layer of linearly increasing velocity with depth over a constant-velocity half space and was developed for aftershocks of the 1979 St. Elias earthquake by Stephens and others (1980). The P-wave velocity of the first layer increases from 5.0 km/s at the surface to 7.8 km/s at 32 km depth, while the half-space has a velocity of 8.2 km/s.

4. Eastern Model (exclusive of Icy Bay)

Layer	Depth (km)	P velocity (km/s)
1	0.0	2.75
2	0.01	6.25
3	below 30.0	7.5

This model is based on a study of earthquakes below the Wrangell volcanoes (Stephens and others, 1984).

The velocity model used to calculate the traveltime from an earthquake to a given station is based on the location of both the earthquake and the station. This particular method of assigning velocity models was chosen to minimize possible spurious offsets between hypocenters on opposite sides of a model boundary. Table 3 summarizes the assignment of velocity models. Work continues on improving our modeling of the first-order velocity features of southern coastal Alaska.

Table 3. Geographical boundaries used to assign velocity model, starting depth, and delay models

EARTHQUAKE LOCATION	VELOCITY MODEL			TRIAL DEPTH KM	DELAY MODEL		
	station location						
	Western West of 148.75°W	Central Between 148.75°W and 144.5°W	Eastern East of 144.5°W				
Western (West of 148°W)	1	2	3	75.	1		
Central (148°-144.5°W)	1	2	3	30.	2		
Icy Bay (59.25°-61.0°N, 138°-142.25°W)	1	2	3	15.	3		
Eastern (East of 144.5°, but exclusive of Icy Bay)	4	4	4	15.	4		

The velocity model assigned to a particular station depends on the location of both the station and the event. The trial depth and delay model are assigned on the basis of the earthquake location only. The numbers 1-4 refer to the Western, Central, Icy Bay, and Eastern models, respectively.

TRAVELTIME DELAY MODELS AND TRIAL FOCAL DEPTHS

Corrections for P-phase traveltimes delay are applied at stations in the network that have consistent large residuals for large groups of earthquakes. Corresponding corrections for S-phase traveltimes are determined by multiplying the P-delay by 1.78, the P- to S-velocity ratio. Each station has

four P-delay corrections assigned to it (see Table 1). The particular correction that is used to locate an earthquake is determined by the region in which the earthquake occurs (see Table 3). For example, a station near Icy Bay that is used to locate an earthquake beneath Cook Inlet will be assigned a correction DLY1, but the same station will use DLY3 to locate an earthquake that occurs beneath Icy Bay.

Additional corrections are applied at several stations to correct for telemetry delays associated with one or more satellite links in the relay of the signal (Table 1).

The initial or trial focal depths for earthquakes which occur in the western, central, and eastern parts of the network are 75, 30, and 15 km, respectively, and reflect a progressive decrease in the range of depths of earthquakes from the west to east (see Table 3).

MAGNITUDE

Magnitudes are determined from either the coda duration or the maximum trace amplitude. Eaton and others (1970) approximated the local Richter magnitude, whose definition is tied to maximum trace amplitudes recorded on standard Wood-Anderson horizontal torsion seismographs, by an amplitude magnitude based on maximum trace amplitudes recorded on high-gain, high-frequency vertical seismographs, such as those operated in the Alaskan network. The amplitude magnitude, XMAG, used in this catalog is based on the work of Eaton and his co-workers and is given by the expression (Lee and Lahr, 1972):

$$XMAG = \log_{10} A - B_1 + B_2 \log_{10} D^2 \quad (1)$$

where A is the equivalent maximum trace amplitude in millimeters on a standard Wood-Anderson seismograph, D is the hypocentral distance in kilometers, and B_1 and B_2 are constants. Differences in the frequency response of the two seismograph systems are accounted for in A. It is assumed, however, that there is no systematic difference between the maximum horizontal ground motion and the maximum vertical motion. The terms $-B_1 + B_2 \log_{10} D^2$ approximate Richter's $-\log_{10} A_0$ function (Richter, 1958, p. 342), which expresses the trace amplitude for an earthquake of magnitude zero as a function of epicentral distance, and which was derived for earthquakes in southern California. The constants used are $B_1 = 0.15$ and $B_2 = 0.08$ for $D = 1-200$ km, and $B_1 = 3.38$ and $B_2 = 1.50$ for $D = 200-600$ km. The constants in the attenuation function have not been calibrated for southern coastal Alaska.

Coda durations are also used because the maximum trace amplitude is often off scale due to the limited dynamic range of the film recording. For small, shallow earthquakes in central California, Lee and others (1972) express the duration magnitude, FMAG, at a given station by the relation:

$$FMAG = -0.87 + 2.00 \log_{10} T + 0.0035 D \quad (2)$$

where T is the signal duration in seconds from the P-wave onset to the point on the Develocorder film where the peak-to-peak trace amplitude of the coda envelope measured on a film viewer with 20X magnification falls below 1 cm and D is the epicentral distance in kilometers.

Comparison of XMAG and FMAG estimates from equations (1) and (2) for 77 southern Alaskan shocks in the depth range 0 to 150 km and in the magnitude range 1.5 to 3.5 reveals a systematic linear decrease of FMAG relative to XMAG

with increasing focal depth. However, no systematic dependence of T on D has been found. The following equation, including a linear depth-dependence term but not a distance term, is therefore used for Alaska:

$$FMAG = -1.15 + 2.00 \log_{10} T + 0.007 Z \quad (3)$$

where Z is the focal depth in kilometers.

The coda duration magnitudes calculated from the network data are systematically less than the magnitudes reported in the Earthquake Data File (EDF) of NOAA (Lahr and Stephens, 1983). Based on a preliminary analysis, the empirical relationship between body-wave magnitude m_b and duration magnitude, M_D , is:

$$m_b = 1.3 M_D - 0.39 \quad (4)$$

The magnitude preferentially assigned to each earthquake in this catalog is the mean of the FMAG (equation 3) estimates obtained for USGS stations. When no FMAG can be determined, the mean of the XMAG (equation 1) estimates for USGS stations is reported.

ANALYSIS OF HYPOCENTRAL QUALITY

Two types of errors enter into the determination of hypocenters: systematic errors limiting the accuracy and random errors limiting the precision. Systematic errors result mainly from incorrect modeling of the seismic velocity structure in the earth and from incorrect phase identification. Random errors arise primarily from timing errors and their effect on the solution can be estimated for each earthquake through the use of standard statistical techniques.

The HYPOELLIPSE computer program determines hypocenters by minimizing difference between observed and computed traveltimes through an iterative least-squares process. For each earthquake, HYPOELLIPSE calculates the lengths and orientations of the principal axes of the joint confidence ellipsoid. The one-standard-deviation confidence ellipsoid describes the region of space within which one is 68 percent confident that the hypocenter lies, assuming that the only source of error is random reading errors. The confidence ellipsoid is a function of the geometry of the stations recording each individual event, the velocity model assumed, and the standard deviation of the random reading error; it is a measure of the precision of the hypocentral solution (see descriptions of SEH and SEZ in Appendix A). The standard deviation determined from repeated readings of the same phases by four seismologists is as small as 0.01 to 0.02 s for the most impulsive arrivals and as large as 0.10 to 0.20 s for emergent arrivals. The confidence ellipsoids are computed for a standard deviation of 0.16 s and therefore likely overestimate the 68 percent confidence regions. The standard deviation of the residuals for an individual solution is not used to calculate the confidence ellipsoid because it contains information not only about random reading errors but also about the incompatibility of the velocity model to the data. In a few extreme cases the value calculated for one of the ellipsoid axes becomes very large corresponding to a spatial direction with very great uncertainty. In these cases an upperbound length of 25 km is tabulated. In most hypocentral solutions, the epicentral precision (SEH) is better determined than the focal depth precision (SEZ) so that SEH is generally

smaller than SEZ.

To fully evaluate the quality of a hypocenter one must consider both the size and orientation of the confidence ellipsoid and the root-mean-square (RMS) residual (see description of RMS in Appendix A). In addition to reflecting random errors, the RMS residual can be large due to the misfit of the velocity model to the actual velocities within the earth, misinterpretation of phases, and systematic timing errors. In areas where the velocity structure is accurately known, a large RMS residual would probably indicate errors in the phase data. If the assumed velocity model does not represent the true seismic velocity structure within the earth, the RMS residuals could be large and reflect the incompatibility; alternatively, the RMS residuals could be small and not indicate the actual error in a mislocated hypocenter.

Other parameters provided by HYPOELLIPSE that are helpful in evaluating the quality of a hypocentral solution are: 1) GAP, the largest azimuthal separation between stations measured in degrees at the epicenter. If GAP exceeds 180°, the earthquake lies outside the network of stations used to locate the shock, and the solution is generally less reliable than that for an event occurring inside the network. 2) D1, the epicentral distance in kilometers of the closest station used in the solution. Solutions where D1 is less than the calculated depth generally have smaller SEZ values (better depth precision) than for events which have calculated depths that exceed the epicentral distance to the closest station. 3) NP and NS, the number of P- and S-arrivals, respectively, used in the solution. The accuracy of the solutions generally improves with an increase in the number of P- and S-arrivals. The RMS residual may actually increase, however, if distant stations are included in locating an event, because the differences between the observed and calculated traveltimes commonly increase with increasing epicentral distance due to the errors in the assumed velocity model. Such systematic errors may cause the RMS residual to increase, even though the addition of distant stations well-distributed in azimuth generally improves the accuracy of the solution.

FOCAL DEPTHS

Previous studies (e.g., Francis and others, 1978; Lilwall and Francis, 1978; Uhrhammer, 1980; and McLaren and Frohlich, 1985) have shown that the accuracy of focal depths for shocks occurring in the vicinity of a seismic network is primarily a function of the geometrical configuration of the network, the number of P- and S-phase arrivals read, and the adequacy of the assumed velocity model. Depths are generally more accurate for events located within the network or on its periphery than for those occurring outside and for earthquakes where the distance from the epicenter to the closest station (D1) is less than the calculated focal depth. The accuracy of focal depths usually increases as the number of S-phase arrivals increases.

Focal depths for shallow (depth less than about 20-30 km) shocks within the southern Alaska network generally are not well constrained due to the relatively large distances between stations and to a lack of knowledge about the velocity structure. Calculated depths for the same event can vary by several kilometers depending on the number of P- and S-phase arrivals used in the location, the trial focal depth, the velocity model, and the P-phase traveltime corrections used to locate the earthquake. Ambiguity in the calculated depth arises in cases where the traveltimes to receiving stations are similar for upward-leaving rays from a deep source and for

downward-leaving rays from a shallow source; this situation leads to double minima in the variation of RMS residuals with depth.

COMPLETENESS OF CATALOG

The magnitude threshold at which the catalog is complete varies geographically as a function of the density of stations and the criteria for timing earthquakes (see section on Data Processing). East of longitude 145°W, Lahr and Stephens (1983) found that the magnitude level for completeness was about coda magnitude 1.6 for an approximately 100-km wide zone extending inland from the coast but was about 2.4 for areas north and south of the 100-km wide coastal zone. West of longitude 145°W we estimate that this catalog is reasonably complete within the boundaries of the network for shallow events (0-40 km) of about coda magnitude 2.0 and larger. The completeness level increases with increasing depth for the events in the Benioff zone so that for earthquakes deeper than 100 km the catalog is complete above about magnitude 2.8.

DISCUSSION OF CATALOG

Hypocenters have been determined for 3446 earthquakes recorded by the USGS seismograph network in southern Alaska for 1984 (see Appendix A). The precision of the hypocenters, or the relative location accuracy of neighboring events, is represented by the confidence ellipsoids. The precision of epicenters, expressed in terms of the maximum semi-axes of the projected one-standard-deviation confidence ellipsoid (SEH), averages 1.9, 1.0, and 1.7 km, respectively, in the eastern (east of longitude 145°W.), central (between longitudes 145° and 150°W.) and western (west of longitude 150°W.) parts of the network. Similarly, the precision of focal depth (SEZ) averages about 2.9, 1.4 and 2.6 km, respectively. The variation in the precision of hypocenter determination across the network is strongly influenced by differences in the station coverage in the different regions. Hypocenter biases equal to and larger than the dimensions of the confidence ellipsoids are not unlikely as a consequence of the over-simplified velocity models assumed in the preparation of this catalog.

During 1984, the largest event located by the network was a magnitude 5.7 m_b (5.2 M_S) shock on August 14 located within the crust near Sutton, about 80 km northeast of Anchorage (see Figure 4). The focal mechanism and distribution of aftershocks for this event suggest that it occurred on the ENE-WSW-trending Talkeetna segment of the Castle Mountain fault, thus providing the first clear evidence that this segment of the fault is active (Lahr and others, 1985). Two shocks of magnitude 5.5 m_b (5.2 M_S , 4.2 M_D) and 5.1 m_b (4.7 M_S , 3.9 M_D) with nearly identical epicenters occurred 11 minutes apart on September 20 at shallow depth southeast of Hinchinbrook Island. The pair of events did not have a detectable aftershock sequence. However, in the surrounding offshore region, it is not unusual for double or single shocks of comparable magnitude to occur without significant aftershock activity. Two other events exceeding magnitude 5 m_b occurred during 1984, both within the Aleutian Benioff zone; a 5.3 m_b (4.3 M_D) shock on March 23 west of Mt. Douglas and a 5.1 m_b (4.3 M_D) shock on April 18 about 100 km southwest of Anchorage.

Below 30 km depth the distribution of earthquakes is dominated by activity within the northwest-dipping Aleutian Benioff zone west and north of the Cook Inlet region (Figure 5 and Figure 8, sections C-E). The depth to the top

of this zone varies from about 50 km beneath the western Kenai Peninsula to about 115 km beneath the active volcanoes west of Cook Inlet. Clusters of intense seismic activity in the Benioff zone below 70 km depth observed beneath Mts. Iliamna and Denali (Mt. McKinley) are persistent features that characterize this segment of the subducted Pacific plate. The seismicity east of the Cook Inlet region appears to be bounded by a northwest-southeast trending line, which passes about 50 km northeast of Valdez. Such a line approximately delineates the northeastern terminus of the Aleutian Benioff zone (Stephens and others, 1984). The diffuse appearance of the Aleutian Benioff zone in Figure 8, section C, may be attributed in part to a lack of focal depth control for earthquakes north of the USGS network (north of latitude 62°N). No events deeper than 35 km were located in the weakly active, NNE-dipping Wrangell Benioff zone (Stephens and others, 1984) south of the Wrangell volcanoes.

Epicenters of shocks shallower than 30 km depth are shown in Figure 6. West of about longitude 148°W., nearly all events occur within the overriding North American plate. The rate of activity within the overriding plate is low compared to that of the Aleutian Benioff zone in the upper part of the subducting Pacific plate. The most prominent feature in the distribution of the shallow seismicity is aftershock activity from the August 14, 1984, earthquake near Sutton. The plotted data are not complete below magnitude 2; areas of special study marked by numerous events with magnitude less than 2 events are apparent, and include the volcanic arc west of Cook Inlet, the southern Kenai Peninsula, and the Anchorage region. In general, the crustal activity is not concentrated along the mapped traces of major faults. In fact, the Sutton earthquake is the first shallow event within the network that can be unequivocally associated with a major mapped fault since the regional network began recording in 1971.

North of Prince William Sound two concentrations of events occur in the shallow seismicity (Figure 6). The tight cluster of events about 50 km west of Valdez along the northern margin of Prince William Sound is due to continuing aftershock activity from the 1983 Columbia Bay shocks (Page and others, 1985), which are attributed to normal slip on a NNE-striking fault within the subducted Pacific plate. A more diffuse concentration of events located about 40 km to the northeast has a similar trend, but is offset from the strike of the Columbia Bay aftershock zone. A more detailed description of the earthquake activity around Valdez for 1983-1984 can be found in Fogleman and others (1986).

East of longitude 145°W., the apparent high rate of shallow activity is due at least in part to a lower magnitude threshold used in selecting events for processing. In contrast to the region west of Prince William Sound, most of the earthquakes within the prominent concentration of activity north of Icy Bay in the 1979 St. Elias aftershock zone (Stephens and others, 1980), occur in a thin subhorizontal tabular zone that may be the thrust interface between the North American plate and either the underthrusting Pacific plate or the colliding Yakutat block. Well-located events from the St. Elias area indicate that the crust above the inferred thrust interface is also seismically active, but the rate of activity is low compared to that along the interface. In the Waxell Ridge and Copper River Delta areas, about 75 and 200 km west of the St. Elias aftershock zone, respectively, the nature of the activity is less certain because of uncertain focal depths. Nonetheless, the broad areal distribution of activity in these areas is similar to that observed within the St. Elias region and suggests that the Waxell Ridge and Copper River Delta activity may also reflect low-angle faulting. The Waxell Ridge and Copper

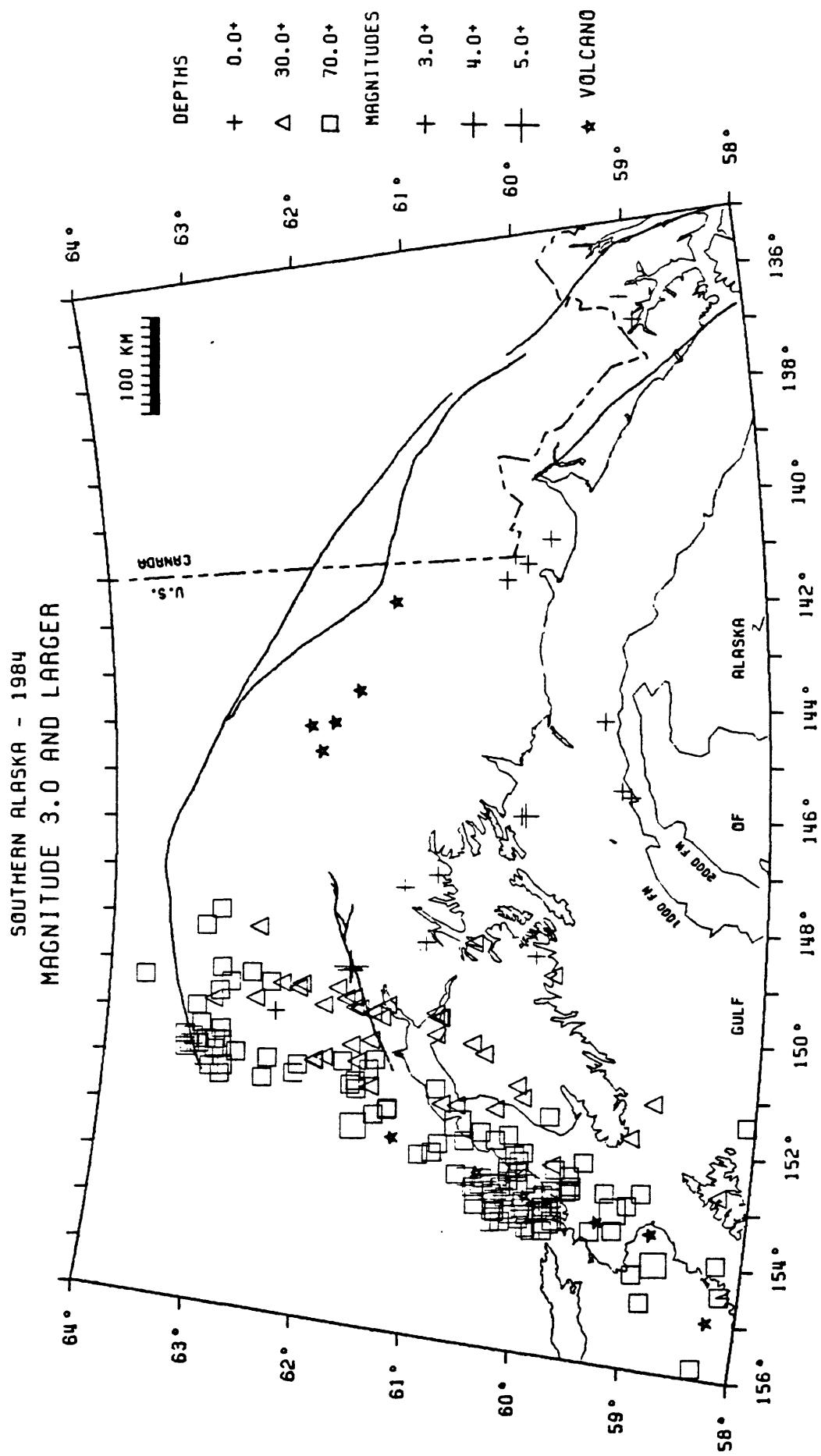


Figure 4. Map showing the epicenters of earthquakes of magnitude 3.0 or larger in 1984. Quaternary volcanoes are indicated by stars.

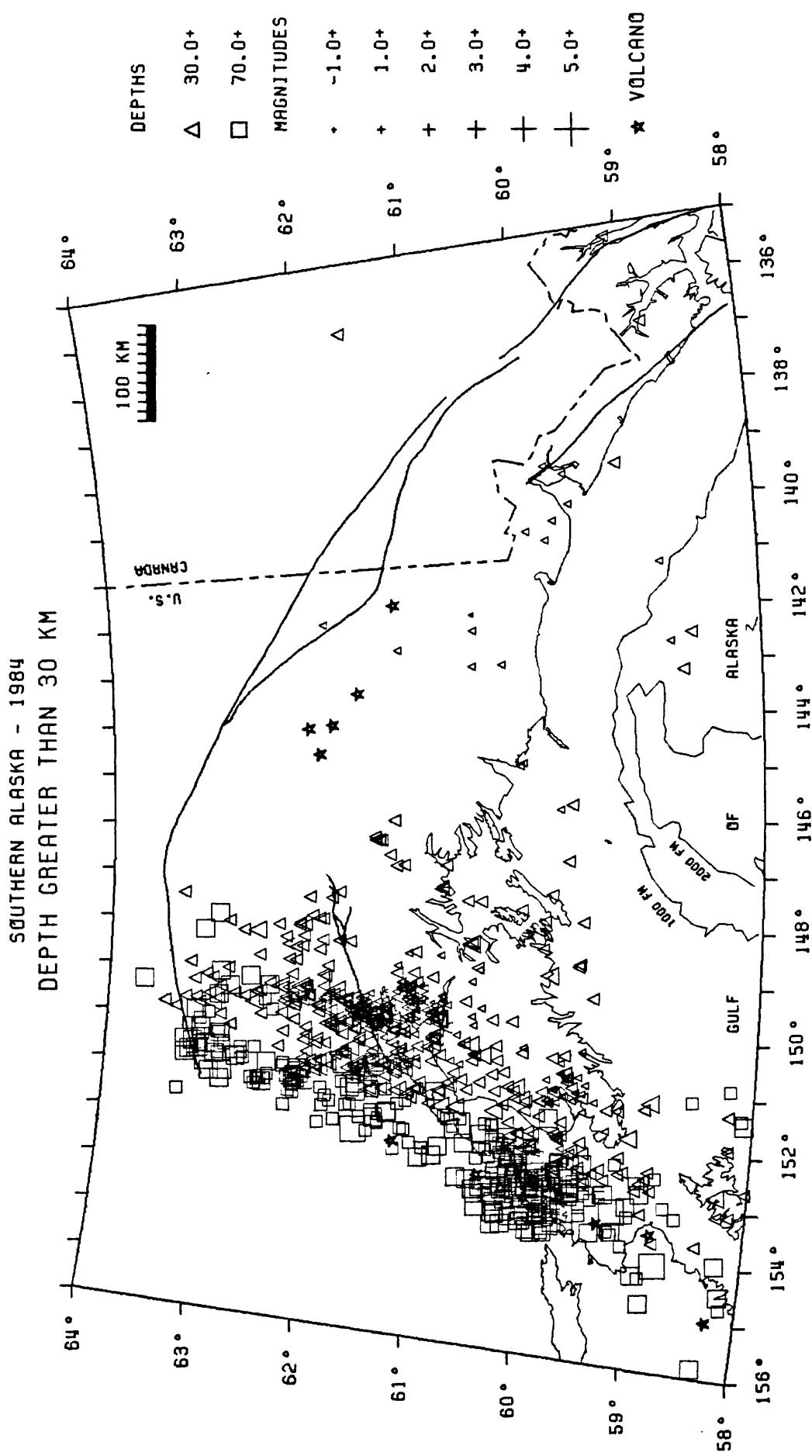


Figure 5. Map showing epicenters of earthquakes with depths deeper than 30 km during 1984. Volcanoes are indicated by stars.

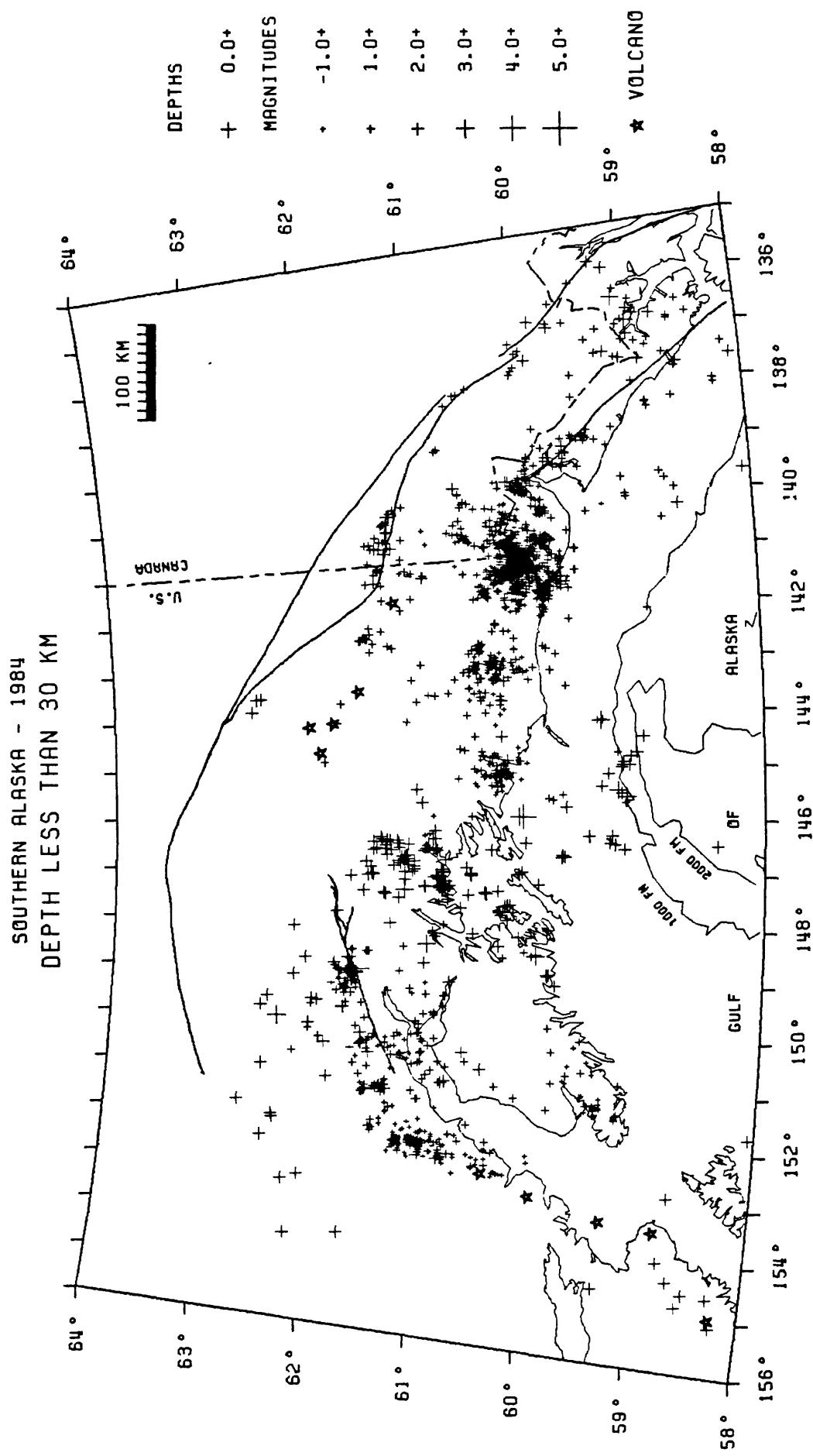


Figure 6. Map showing epicenters of earthquake epicenters with depths shallower than 30 km during 1984. Quaternary volcanoes are indicated by stars.

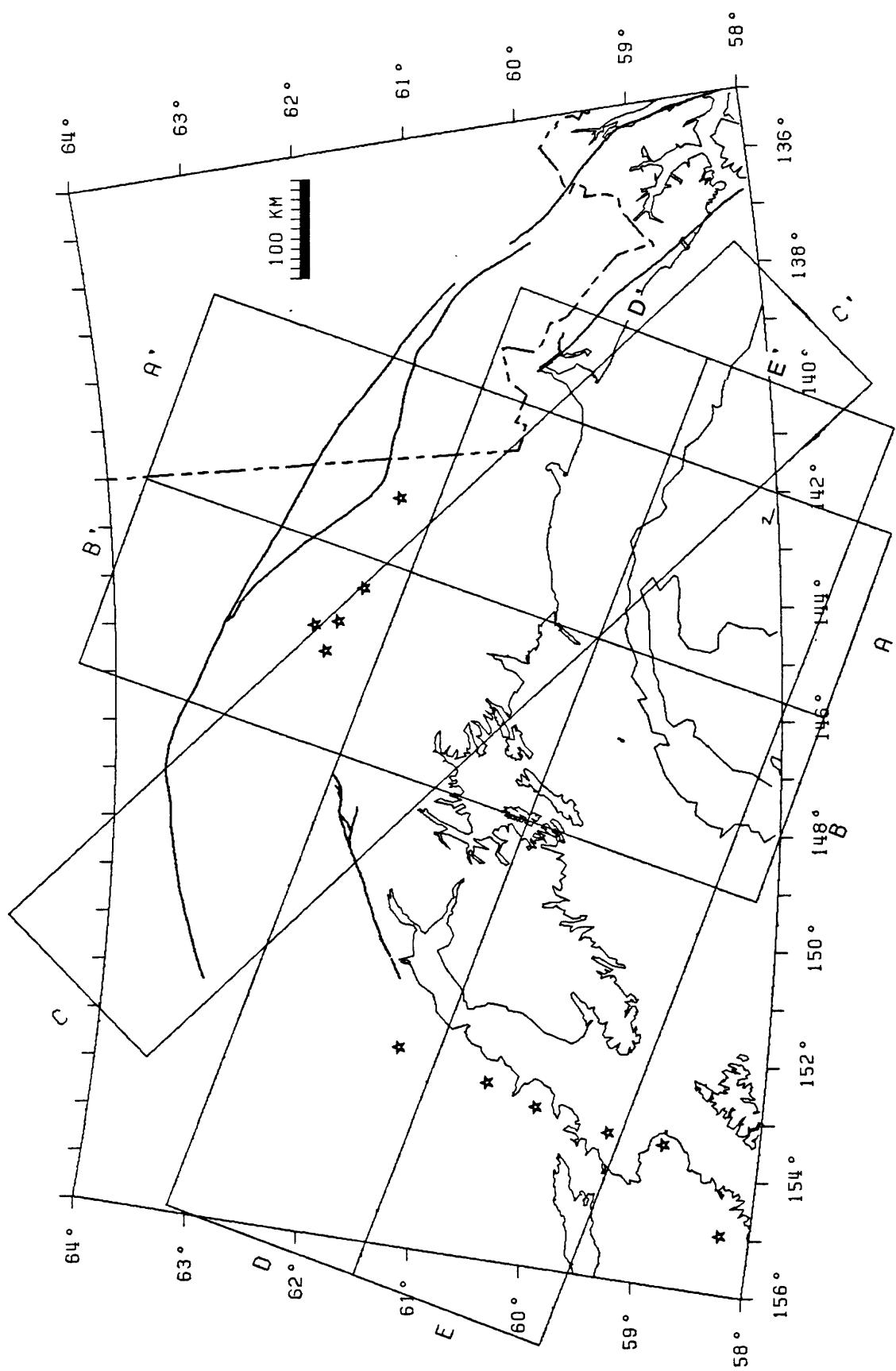


Figure 7. Reference map showing the areas represented in the cross sections in Figure 8.

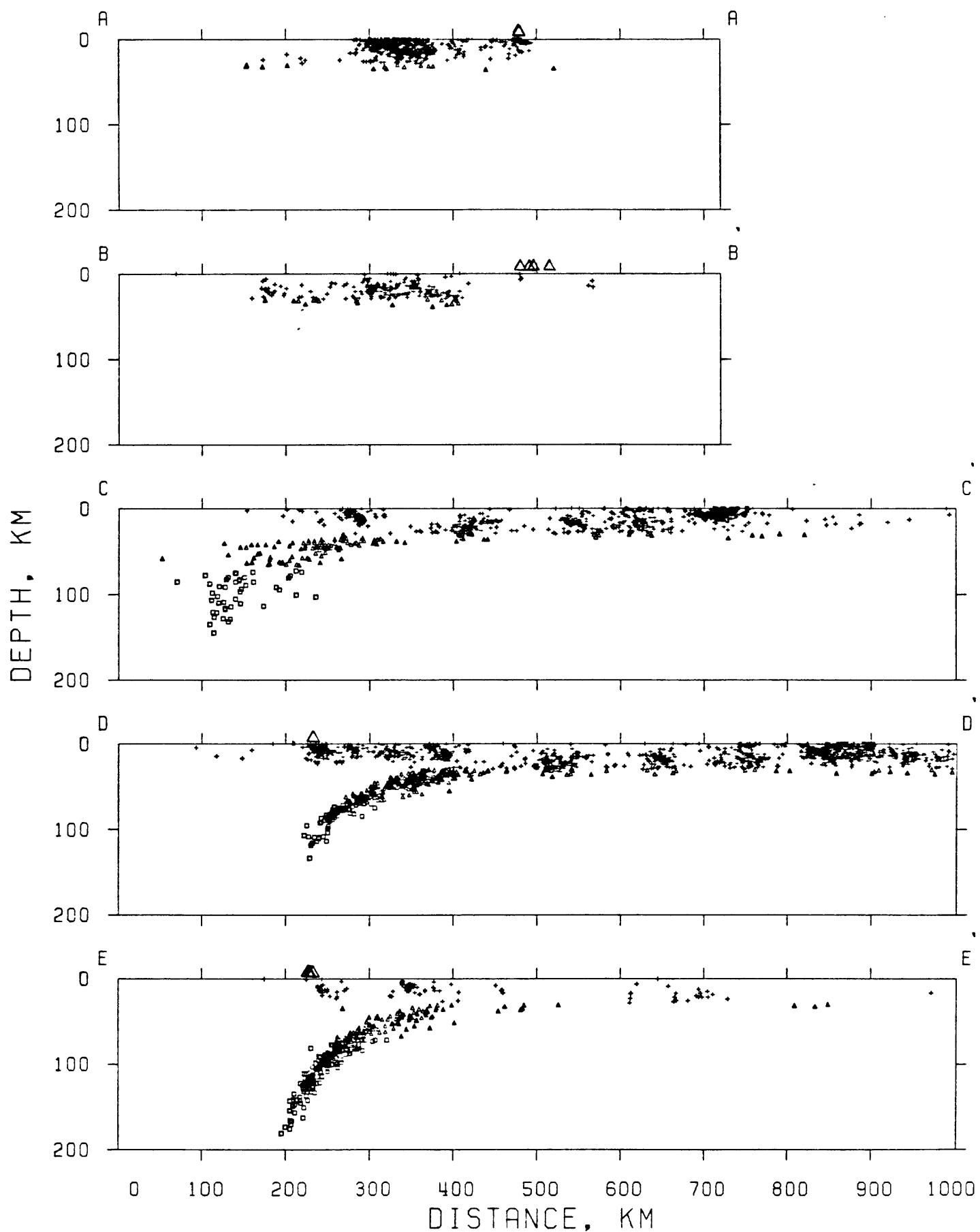


Figure 8. Vertical sections of hypocenters for the areas indicated in Figure 7. Quaternary volcanoes are plotted as triangles above zero depth. No vertical exaggeration. Symbol types are same as Figures 4-6.

River Delta concentrations of seismicity occur near the center and western edge, respectively, of the Yakataga seismic gap, which extends westward from the western limit of the St. Elias aftershock zone to the eastern extent of the 1964 rupture near the longitude of Kayak Island. The Yakataga gap is a likely site for a great ($M_s > 7.8$) thrust earthquake within the next one or two decades (McCann and others, 1980). Over the past ten years, the spatial distribution of microearthquake activity in and around the gap has been remarkably stable, and, except for the continuing but slowly decaying aftershock activity from the 1979 St. Elias earthquake, the rate of activity during 1984 does not differ markedly from that observed over the past decade (see Appendix B, References of Previously Published Catalogs). Concentrations of earthquakes are observed along the Fairweather fault north and east of Yakutat Bay and along the western section of the Duke River fault, but the earthquake hypocenters are not sufficiently well constrained to associate confidently the seismicity with particular mapped fault traces. The diffuse character of the seismicity east of longitude 138° W. and south of latitude 59.5° N. is at least partially attributed to this area being outside the seismograph network.

AVAILABILITY OF DATA

The contents of the Appendix may be obtained on magnetic tape by contacting the authors. Appendix B lists previously published catalogs available from the USGS Open-File Services section, Western Distribution Branch, Box 25425, Federal Center, Denver, CO 80225. Information about the availability of this data and other preliminary data on magnetic tape can be obtained by contacting the principal investigators.

ACKNOWLEDGEMENTS

We thank Tom Sokolowski, Wayne Jorgensen, John Sindorf, George Carte and the entire staff of the NOAA Tsunami Warning Center for their assistance in maintaining our recording equipment in Palmer, Alaska, as well as making their seismic data available to us.

We thank Hans Pulpan, of the Geophysical Institute of the University of Alaska, for cooperating in the operation of southern Cook Inlet seismograph stations.

Jan Peterson, Roy Tam, Jane Freiberg, Frank Mandel, Paula Brown, and Harold Macbeth contributed to the routine processing of data.

We are indebted to all of those who have spent time fabricating, installing, and maintaining the seismograph network in Alaska.

REFERENCES

- Astrue, M. C., Pelton, J. R., Lee, W. H. K., and Page, R. A., 1983, Operator's manual for a four-film computer-based, sonic digitizing table to locate earthquakes, U.S. Geological Survey Open-File Report 83-319, 40 p.
- Eaton, J. P., O'Neill, M. E., and Murdock, J. N., 1970, Aftershocks of the 1966 Parkfield-Cholame, California, earthquake: a detailed study, Bulletin of the Seismological Society of America 60, p. 1151-1197.
- Espinosa, A. F., 1984, Seismicity of Alaska and the Aleutian Islands, 1960-1983, U.S. Geological Survey Open-File Report 84-855, 1 over-size sheet, scale 1:12,500,000.
- Fogleman, K., Stephens, C., Lahr, J. C., Helton, S., and Allan, M., 1978, Catalog of earthquakes in southern Alaska, October-December 1977, U.S. Geological Survey Open-File Report 78-1097, 28 p.
- Francis, T. J. G., Porter, I. T., and Lilwall, R. C., 1978, Microearthquakes near the eastern end of St. Paul's Fracture Zone, Geophysical Journal Royal Astronomical Society, v. 53, p. 201-217.
- Fuis, G. S., Ambos, E. L., Mooney, W. D., Page, R. A., and Campbell, D. L., 1985, Preliminary results of TACT 1984 seismic-refraction survey of southern Alaska, in, Bartsch-Winkler, Susan, ed., The United States Geological Survey in Alaska, Accomplishments during 1984, U.S. Geological Survey Circular 967, p. 56-60.
- Jacob, K. H., 1972, Global tectonic implications of anomalous seismic P traveltimes from the nuclear explosion Longshot, Journal of Geophysical Research 77, p. 2556-2573.
- King, P. B., compiler, 1969, Tectonic Map of North America, U.S. Geological Survey, scale 1:5,000,000.
- Lahr, J. C., 1975, Detailed seismic investigation of Pacific-North American plate interaction in southern Alaska, Ph.D. dissertation, Columbia University, 141 p.
- Lahr, J. C., 1984, HYPOELLIPSE/VAX: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern, U.S. Geological Survey Open-File Report 84-519, 60 p.
- Lahr, J. C., Engdahl, E. R., and Page, R. A., 1974, Locations and focal mechanisms of intermediate depth earthquakes below Cook Inlet, Alaska, EOS 55, 349 p.
- Lahr, J. C., Page, R. A., Stephens, C. D., and Fogleman, K. A., 1985, The 1984 Sutton, Alaska earthquake: Evidence for activity on the Talkeetna segment of the Castle Mountain fault system, (in prep).
- Lahr, J. C., and Stephens, C. D., 1983, Eastern Gulf of Alaska seismicity: final report to the National Oceanic and Atmospheric Administration for July 1, 1975 through September 30, 1981: U.S. Geological Survey Open-File Report 83-592, 48 p.
- Lee, W. H. K., Bennett, R. E., and Meagher, K. L., 1972, A method of estimating magnitude of local earthquakes from signal duration, U.S. Geological Survey Open-File Report, 28 p.
- Lee, W. H. K., and Lahr, J. C., 1972, HYPO71: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geological Survey Open-File Report, 100 p.
- Lilwall, R. C., and Francis, T. J. G., 1978, Hypocentral resolution of small ocean bottom seismic networks, Geophysical Journal Royal Astronomical Society, v. 54, p. 721-728.

- Matumoto, T., and Page, R. A., 1969, Microaftershocks following the Alaska earthquake of 28 March 1964: "Determination of hypocenters and crustal velocities in the Kenai Peninsula-Prince William Sound area," The Prince William Sound, Alaska, Earthquake of 1964 and Aftershocks, vols. 2B & C, U. S. Coast and Geodetic Survey Publication 10-3, U.S. Government Printing Office, Washington, D.C., p. 157-173.
- McCann, W. R., Perez, O. J., and Sykes, L. R., 1980, Yakataga seismic gap, southern Alaska: Seismic history and earthquake potential: *Science*, v. 207, p. 1309-1314.
- McLaren, J. P., and Frohlich, C., 1985, Model calculations of regional network locations for earthquakes in subduction zones, *Bulletin of the Seismological Society of America*, v. 75, no. 2, p. 397-413.
- Meyers, H., 1976, A historical summary of earthquake epicenters in and near Alaska, NOAA Technical Memorandum EDS NGSDC-1, 57 p.
- Mitronovas, W., and Isacks, B. L., 1971, Seismic velocity anomalies in the upper mantle beneath the Tonga-Kermadec island arc, *Journal of Geophysical Research* 76, p. 7154-7180.
- Page, R. A., Stephens, C. D., Fogelman, K. A., and Maley, R. P., 1985, The Columbia Bay, Alaska, earthquakes of 1983, in Bartsch-Winkler, Susan, and Reed, K. M., eds., *The United States Geological Survey in Alaska, Accomplishments during 1983*, U.S. Geological Survey Circular 945, p. 80-83.
- Plafker, G., 1967, Geologic map of the Gulf of Alaska Tertiary Province, Alaska, U.S. Geological Survey Miscellaneous Investigations Map I-84, scale 1:500,000.
- Richter, C. F., 1958, *Elementary Seismology*, W. H. Freeman and Co., San Francisco, CA, 768 p.
- Rogers, J. A., 1986, Increasing dynamic range in analog seismic data systems used in Alaska, U.S. Geological Survey Open-File Report, 86-78, 16 p.
- Rogers, J. A., Maslak, S., and Lahr, J. C., 1980, A seismic electronic system with automatic calibration and crystal reference, U.S. Geological Survey Open-File Report 80-324, 130 p.
- Stephens, C. D., Fogelman, K. A., Lahr, J. C., and Page, R. A., 1984, Wrangell Benioff zone, southern Alaska, *Geology*, v. 12, p. 373-376.
- Stephens, C. D., Lahr, J. C., Fogelman, K. A., Allan, M. A., and Helton, S. M., 1979, Catalog of earthquakes in southern Alaska, January-March 1978, U.S. Geological Survey Open-File Report 79-718, 31 p.
- Stephens, C. D., Lahr, J. C., Fogelman, K. A., and Horner, R. B., 1980, The St. Elias, Alaska, earthquake of 28 February 1979: regional recording of aftershocks and short-term pre-earthquake seismicity, *Bulletin of the Seismological Society of America* 70, p. 1607-1633.
- Stevenson, P. R., 1978, Program ISDS an interactive display for displaying and measuring seismic waves forms, U.S. Geological Survey-Open File Report 79-205, 175 p.
- Uhrhammer, R. A., 1980, Analysis of small seismographic station networks, *Bulletin of the Seismological Society of America*, v. 70, no. 4, p. 1369-1379.

APPENDIX A

Southern Alaska Earthquakes for 1984

Earthquakes from southern Alaska are listed in chronological order. The following data are given for each event:

1. Origin time in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST) subtract 9 hours.
2. Epicenter in degrees and minutes of north latitude (LAT N) and west longitude (LONG W).
3. DEPTH, depth of focus in kilometers.
4. MAG, magnitude of the earthquake, coda duration magnitude (FMAG) unless noted otherwise. A letter following the magnitude indicates a magnitude other than FMAG as follows:
 - A - Amplitude magnitude (XMAG), USGS.
 - B - Body-wave magnitude (m_b), USGS National Earthquake Information Service (NEIS).
 - C - Local magnitude (ML), EMRC.
 - G - Local magnitude (ML), UOFA.
 - H - Approximate coda duration magnitude obtained from Helicorder records based on an empirical relation between coda durations measured on Developorder records and coda durations measured on Helicorder records.
 - P - Local magnitude (ML), Alaska Tsunami Warning Center.
 - S - Surface-wave magnitude (M_s), NEIS.
5. NP, number of P arrivals used in locating earthquake.
6. NS, number of S arrivals used in locating earthquake.
7. GAP, largest azimuthal separation in degrees between stations.
8. D1, epicentral distance in kilometers to the station closest to the epicenter.
9. RMS, root-mean-square traveltime residual in seconds:

$$RMS = \left[\frac{\sum_{i=1}^N w_i [R_i]^2}{N} \right]^{\frac{1}{2}}$$

where R_i is the observed minus computed arrival time of the i^{th} arrival, w_i is the corresponding weight of the arrival, and the weights are normalized so that their sum equals N , the total number of P, S, and S-P readings used in the solution.

10. SEH, standard error in kilometers in the horizontal direction with least control. $SEH = MAXH/1.87$, where MAXH is the largest horizontal deviation in kilometers of the one-standard-deviation confidence ellipsoid (see Figure 9 below). In previous catalogs MAXH was referred to as ERH. Values of SEH that exceed 25 km are tabulated as 25 km.

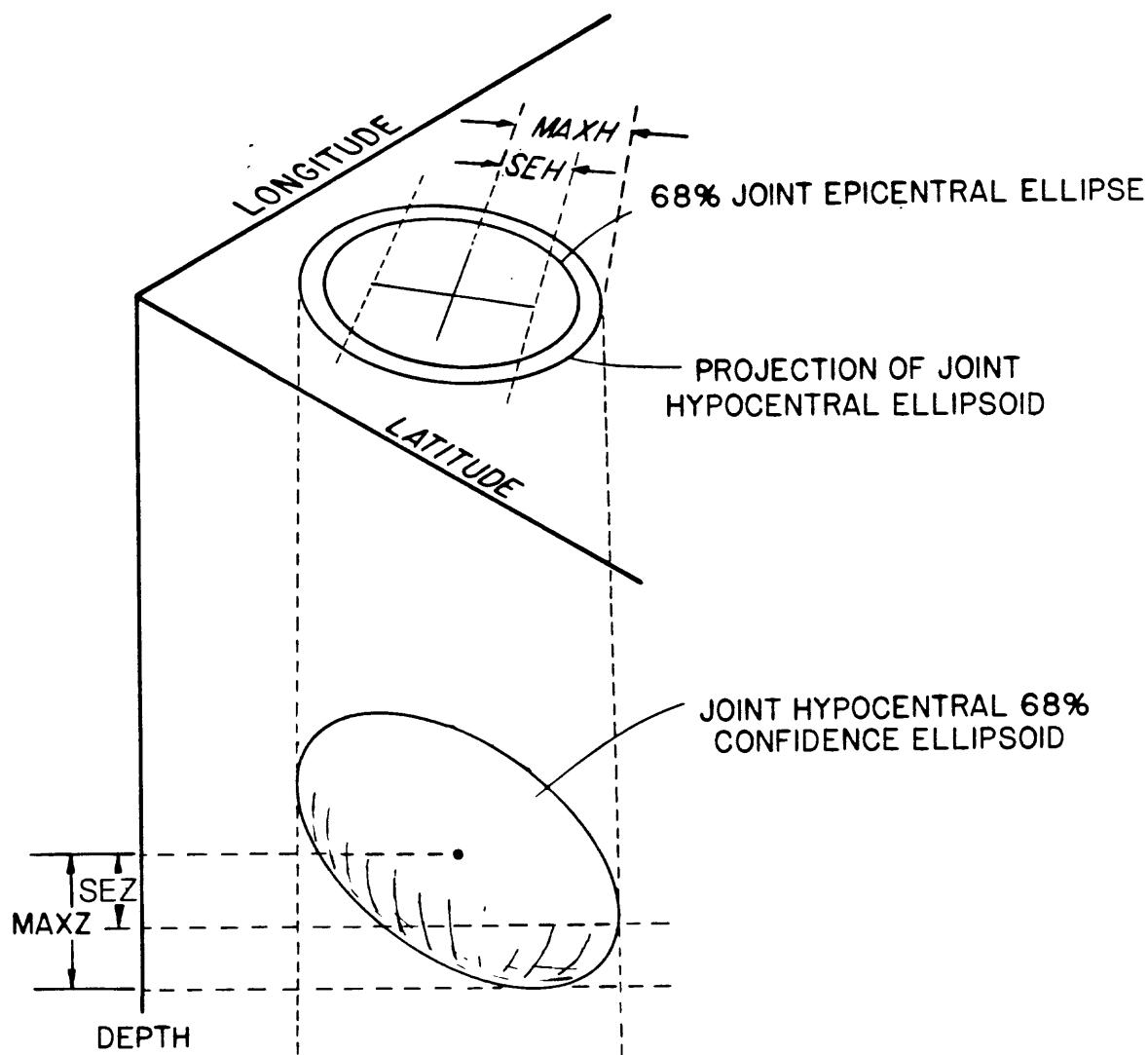


Figure 9. Relationship between the confidence ellipsoid and SEH, MAXH, SEZ, and MAXZ. The projected ellipse has the same orientation and eccentricity as the joint epicentral 68-percent confidence region, but is 1.23 times larger. The error ellipsoid is calculated assuming a constant standard deviation of 0.16 sec for the arrival time readings.

11. SEZ, standard error in kilometers of depth. $SEZ = MAXZ/1.87$ where MAXZ is the largest vertical deviation in kilometers of the one-standard-deviation confidence ellipsoid (see Figure 9). In previous catalogs MAXZ was referred to as ERZ. Values of SEZ that exceed 25 km are tabulated as 25 km.
12. Q, quality of the hypocenter. This index is a measure of the precision of the hypocenter (see section Analysis of hypocentral Quality) and is calculated from SEH and SEZ as follows:

<u>Q</u>	<u>Larger of SEH and SEZ (km)</u>
A	≤ 1.34
B	≤ 2.67
C	≤ 5.35
D	> 5.35

13. AZ1, DIP1, and SE1 are the azimuth in degrees (clockwise from north), dip in degrees, and length in kilometers of the most nearly horizontal of the three principal semi-axes of the one-standard-deviation error ellipsoid. Values of SE1 that exceed 25 km are tabulated as 25 km.
14. AZ2, DIP2, and SE2 are defined as above, but correspond to the principal semi-axis of intermediate dip.
15. AZ3, DIP3, and SE3 are defined as above, but correspond to the most nearly vertical principal semi-axis.

Magnitudes and felt reports listed below an event were obtained from the Preliminary Determination of Epicenters of the USGS National Earthquake Information Service (NEIS), from the Department of Energy, Mines and Resources, Canada (EMRC), or from the NOAA Alaska Tsunami Warning Center (ATWC). The body-wave (m_b) and surface-wave (M_s) magnitudes are those determined by the NEIS.

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ Q
1984	HR MN	SEC	DEG MIN	DEG MIN	DEG	MIN	KM	DEG	DEG	DEG	AZ1 DIP1 SE1
JAN 1 40 33.0	60 19.7	141 22.2	17.9	1.4	1.2	8	111	21	0.28	0.7	0.9 A
1 5 1 28.8	60 6.6	141 19.5	7.7	1.2	1.3	8	163	9	0.59	0.7	0.4 A 108
1 7 32 20.3	60 12.6	141 8.3	13.1	1.1	1.0	9	111	9	0.33	0.7	0.7 A 299
1 9 57 58.8	60 10.4	141 10.7	16.1	0.3A	7	5	104	8	0.20	1.0	0.8 A 303
1 10 20 27.5	60 22.6	141 21.6	14.3	0.9	1.0	9	114	21	0.43	0.6	0.9 A 308
1 11 26 31.9	60 1.9	140 42.6	8.7	1.1	9	6	157	23	0.49	1.0	0.9 A 104
1 11 27 33.4	63 9.5	149 46.1	45.3	2.6	1.2	8	117	160	0.70	3.1	7.6 D 330
1 14 18 44.0	59 40.0	150 6.9	25.2	1.2	1.0A	11	4	253	32	0.14	1.4
2 2 44 49.6	60 8.7	141 4.0	8.8	1.0	1.0	8	137	2	0.52	0.9	0.4 A 26
2 15 55 22.8	61 40.7	150 20.8	50.0	2.0	2.0	11	137	25	0.40	0.7	0.9 A 273
2 18 46 54.5	59 58.3	139 58.2	22.8	0.8	4	4	175	19	0.17	3.8	3.1 C 125
2 19 11 55.8	61 32.3	150 57.0	61.9	2.1	2.7	12	108	14	0.53	0.6	1.0 A 82
2 1 48 31.2	59 18.7	151 29.6	13.6	0.6A	8	5	298	18	0.24	1.3	0.8 A 345
2 2 44 49.6	60 8.7	141 4.0	8.8	1.0	1.0	8	137	2	0.52	0.9	0.4 A 26
2 4 32 10.9	61 18.4	150 7.7	43.0	1.9	22	12	63	31	0.73	0.4	0.8 A 271
2 5 31 53.8	60 16.3	141 21.0	8.6	0.8	8	7	109	22	0.35	0.5	1.0 A 310
2 8 59 14.6	60 16.7	141 16.5	11.8	0.5A	6	5	154	19	0.34	1.7	2.0 B 306
2 12 6 50.9	60 15.0	141 12.3	5.0	0.6A	8	5	113	14	0.47	1.0	1.2 A 296
2 12 33 16.5	60 13.8	141 16.1	10.7	0.9	11	8	121	16	0.69	0.6	0.7 A 112
2 14 22 42.0	60 40.1	149 5.0	31.3	1.6	23	10	125	22	0.47	0.7	0.6 A 81
2 16 57 53.9	58 57.9	136 25.9	2.5	1.7	5	4	221	150	0.17	15.3	5.3 D 205
2 17 2 23.9	60 11.1	141 0.7	10.3	0.8A	8	7	114	4	0.37	1.2	0.7 A 308
2 17 26 47.0	59 41.5	141 18.3	17.1	1.3A	10	8	195	54	0.58	0.9	1.4 B 125
2 17 46 27.7	60 44.3	140 37.1	12.2	0.9A	6	5	221	46	0.89	1.1	1.5 B 145
2 22 9 15.0	60 8.3	141 9.2	4.6	1.2	12	3	138	7	0.47	0.7	0.6 A 279
2 23 18 44.5	61 10.0	152 7.8	3.0	-0.8A	3	285	4	67	1.1	2.0 B 218	11
3 2 17 30.3	60 19.7	141 21.4	17.5	-1.7	1.5	9	111	22	0.26	0.5	0.6 A 121
3 3 14 1.5	61 45.8	149 46.0	43.3	2.3	22	13	152	14	0.46	0.5	0.9 A 91
3 3 40 9.2	62 19.1	151 9.6	83.4	2.8	17	6	256	42	0.28	1.6	1.4 B 183
3 3 57 6.9	61 9.3	152 11.2	9.5	1.2	8	5	170	8	0.46	1.2	0.6 A 101
3 4 44 17.2	60 22.2	141 19.0	18.1	1.6	15	10	116	24	0.56	0.4	0.7 A 311
3 5 37 1.9	60 5.6	141 10.9	0.4	0.6A	6	3	205	11	0.28	1.3	3.0 C 178
3 7 6 46.2	61 2.3	148 13.3	23.1	1.7	22	6	86	21	0.52	0.4	0.7 A 24
3 11 40 10.7	61 44.6	149 44.4	39.1	3.5	33	9	88	13	0.39	0.6	1.1 A 95
3.8 MB	3.6 ML ATWC FELT (III) AT PALMER AND (II) AT ANCHORAGE.										
3 13 41 56.0	60 7.4	141 9.1	12.1	1.0A	8	6	172	42	0.48	1.3	1.4 B 298
3 14 41 55.2	60 10.5	141 6.4	4.3	1.6	13	6	132	41	0.50	0.7	1.0 A 116
3 16 17 54.0	60 53.3	152 24.6	2.3	1.1	9	6	182	35	0.55	2.1	2.3 B 12
3 16 21 11.0	61 20.2	150 22.8	46.2	1.9	22	10	77	24	0.55	0.5	0.8 A 107
3 18 52 49.4	63 2.7	149 45.6	57.5	3.2	17	5	114	150	0.31	3.4	14.1 D 81
3 23 32 15.6	60 23.1	141 21.6	16.0	0.7A	7	5	116	21	0.29	2.0	2.4 B 322
4 0 37 48.5	60 54.0	151 13.1	63.7	2.3	29	14	41	18	0.66	0.4	1.1 A 81
4 4 53 13.3	59 55.9	152 55.6	91.7	2.7	21	7	189	29	0.25	1.6	1.2 B 332
4 7 28 31.0	60 1.3	140 39.7	4.6	1.2	11	6	159	24	0.57	1.1	1.0 A 95
4 7 42 55.9	62 54.5	151 8.4	110.1	3.0	12	5	198	105	0.26	2.9	4.1 C 301
4 19 53 16.1	61 36.6	140 34.6	0.4	1.2A	5	4	269	83	0.16	3.4	25.0 D 275
4 20 14 8.6	60 50.8	145 10.2	25.0	1.6	19	8	45	34	0.51	0.3	0.5 A 33
4 21 17 23.7	60 15.2	151 41.8	53.6	2.3	26	13	87	32	0.51	0.6	1.4 B 333
4 21 50 38.9	60 11.4	141 10.7	8.9	0.8A	7	4	155	52	0.34	2.6	3.3 C 303
4 22 36 0.1	60 11.6	141 11.8	0.7	1.0A	8	3	150	53	0.38	2.0	3.5 C 296
4 22 43 9.2	61 23.9	151 15.8	72.0	2.2	19	13	84	29	0.47	0.6	0.9 A 81
5 2 4 15.1	61 17.0	140 50.0	11.7	1.2	8	3	144	38	0.35	0.9	1.8 B 304

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984												
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG			NP NS		GAP		DI	RMS
				DEG	MIN	SEC	KM	DEG	SEC	KM		
1984 JAN 5 4 17 44.1	61 48.3	149 40.1	41.5	1.9	17	8	165	20	0.47	0.9	0.8 A	282
5 4 21 11.9	61 48.0	149 23.5	4.4	1.4	16	9	167	27	0.84	0.5	0.6 A	185
5 13 33 56.8	61 15.6	149 15.7	28.5	1.6	24	5	53	16	0.53	0.5	1.0 A	314
5 15 47 40.9	60 10.9	141 0.1	11.8	0.9A	6	3	164	43	0.18	2.7	1.7 C	289
5 21 54 28.6	59 51.3	139 11.1	20.0	1.3	7	4	202	24	0.53	1.7	1.7 B	328
5 23 42 48.2	61 50.9	149 18.0	3.1	1.5	18	8	161	28	0.89	0.5	0.7 A	167
6 7 33 57.3	60 35.3	145 7.4	17.2	1.0	8	4	97	8	0.40	0.9	0.9 A	5
6 8 46 34.7	60 12.1	141 2.5	10.1	1.1	9	4	162	43	0.13	1.6	2.2 B	299
6 16 57 36.6	60 7.0	141 25.1	11.9	1.2A	6	2	164	33	0.16	1.0	1.3 A	283
6 17 13 23.0	60 2.0	141 14.9	7.8	1.5A	8	3	183	46	0.40	2.0	2.7 C	342
6 10 22 52.9	60 13.0	141 1.2	12.9	1.4	12	4	127	43	0.48	0.8	1.1 A	295
6 11 2 21.9	60 26.7	145 2.8	17.9	1.7	17	6	162	13	0.53	0.6	0.8 A	101
6 13 41 15.9	60 14.5	140 59.7	5.7	1.1A	8	1	158	44	0.21	1.6	3.0 C	302
6 16 17 12.1	60 7.0	141 25.1	11.9	1.2A	6	2	162	43	0.13	1.6	2.2 B	299
6 17 13 23.0	60 2.0	141 14.9	7.8	1.5A	8	3	183	46	0.40	2.0	1.1 A	261
7 7 5 48.6	60 7.9	143 4.6	24.6	1.1A	8	6	200	16	0.18	1.4	0.5 B	186
7 9 22 49.1	60 1.5	140 59.2	7.9	1.0A	8	6	165	41	0.52	1.2	1.3 A	291
7 9 35 29.9	60 13.1	141 2.3	10.5	1.2	12	9	126	42	0.51	0.8	1.1 A	295
7 12 11 35.1	60 15.3	140 56.7	11.2	1.7	15	13	129	42	0.47	0.4	0.8 A	289
7 13 32 58.9	60 21.6	140 30.7	14.8	1.1A	7	3	170	33	0.34	3.2	2.0 B	324
7 19 22 21.9	60 38.0	150 27.1	37.9	1.8	26	11	51	19	0.55	0.5	0.7 A	81
7 20 11 59.2	60 19.1	140 46.5	4.0	1.0A	8	6	145	38	0.60	0.8	0.9 A	300
7 22 11 0.6	59 58.4	140 15.2	4.3	0.9A	6	4	166	14	0.31	1.2	1.5 B	302
7 23 10 49.2	59 58.0	151 32.4	62.0	2.4	24	11	107	16	0.48	0.5	1.2 A	81
8 3 36 44.1	59 7.1	136 21.8	0.0	3.0	10	2	216	183	0.51	12.7	3.4 D	81
3.8 MB	4.3 ML	ATWCG	FELT AT HAINES.									
8 5 22 19.0	60 8.6	141 6.4	7.4	0.9	8	6	88	4	0.59	0.5	0.5 A	291
8 5 27 22.0	60 9.9	141 12.8	0.2	1.4	15	14	101	10	0.70	0.4	0.6 A	281
8 7 36 45.1	60 23.3	152 46.8	8.6	0.6A	4	4	199	23	0.69	1.0	0.5 A	287
8 10 40 22.7	61 17.1	152 12.2	5.1	-0.5A	3	3	292	3	0.02	1.1	0.9 A	22
8 20 16 58.8	60 14.0	141 2.9	10.2	0.7	8	5	119	9	0.23	0.6	0.9 A	91
8 22 46 47.7	61 11.2	152 9.4	6.3	-0.3A	3	3	265	6	0.10	1.2	1.3 A	333
9 6 18 14.4	61 53.0	150 39.0	63.4	2.5	20	7	159	47	0.34	1.0	1.5 B	82
9 7 59 32.6	60 20.8	140 41.0	15.0	1.0	7	4	154	29	0.51	0.8	2.4 B	87
9 10 24 23.5	59 17.3	151 26.1	10.9	1.1	10	5	295	19	0.34	1.1	1.1 A	103
9 14 30 47.0	60 11.5	141 2.6	13.7	0.9A	3	3	267	4	0.04	2.3	1.0 B	333
9 16 22 31.1	60 13.3	141 0.3	13.8	0.7A	3	3	268	8	0.07	2.2	1.2 B	163
9 20 43 32.7	60 12.7	140 57.0	8.0	0.6	6	4	122	8	0.45	1.3	1.2 A	81
10 1 38 58.5	60 15.1	152 17.3	79.4	2.6	23	8	100	30	0.29	1.2	1.4 B	341
10 0 8 24 26.5	60 18.5	141 26.6	3.8	1.6	13	4	105	18	0.29	0.7	1.6 B	48
10 15 13 57.5	60 17.1	141 0.5	9.8	0.8A	2	3	352	15	0.19	2.0	2.8 C	337
10 15 57 31.8	60 32.0	141 36.8	22.7	1.4	11	6	105	44	0.48	0.6	1.6 B	261
10 22 58 37.2	60 25.6	141 29.7	12.7	0.5	2	131	16	0.09	2.4	3.9 C	126	
10 23 33 17.3	60 26.6	141 30.3	11.0	1.0	5	4	116	16	0.26	1.0	1.4 B	293
11 1 3 2 30.8	62 34.8	151 15.3	83.1	2.7	15	7	194	68	0.61	1.4	1.9 B	117
11 1 14 29.3	60 5.3	137 26.9	3.3	1.7	9	2	293	107	0.06	2.2	4.1 C	96
11 3 16 2.8	60 26.6	141 29.5	9.9	1.0	6	5	111	17	0.31	1.5	3.1 C	351
11 5 53 36.2	59 58.0	141 34.7	2.4	0.9A	8	2	229	21	0.30	1.7	1.8 B	283
11 7 43 27.0	60 53.5	150 45.5	20.8	1.5	17	11	50	31	0.51	0.4	1.4 B	273
11 10 42 50.8	60 4.5	140 57.3	12.8	0.7A	4	2	220	10	0.09	5.2	1.5 C	14
11 11 52 52.0	59 31.0	151 19.2	6.7	0.7	10	4	110	5	0.53	0.9	0.8 A	81
11 13 8 11.8	59 29.3	151 17.8	10.9	0.4A	7	4	134	5	0.22	0.9	0.8 A	81

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984

Preliminary Determination of Hiroshima in JOSHIMA, HOKKAIDO - JANUARY 1964												1964										
ORIGIN TIME	LAT N			LONG W			DEPTH			MAG			RMS	DI	SEI	AZI	DIP	SEI	AZ3	DIP3	SE3	
	DEG	MIN	SEC	DEG	MIN	SEC	KM	DEG	SEC	KM	DEG	SEC										
1984	HR	MN	SEC	141	44.9	8.1	1.2A	7	2	221	41	0.54	2.8	3.8	C	266	7	1.3	172	31	3.7	
JAN 11	15	2	59.8	59	59.4	60	16.1	141	5.2	9.6	0.7A	8	2	122	13	0.09	1.2	1.6	B	311	16	0.9
JAN 11	15	2	59.8	59	59.4	60	16.1	141	5.2	9.6	0.7A	8	2	122	13	0.09	1.2	1.6	B	311	16	0.9
JAN 11	20	17	31.0	60	8.1	140	54.8	8.8	1.0A	8	2	165	7	0.24	1.8	0.8	B	195	2	3.3		
JAN 11	20	49	31.9	61	49.7	149	34.8	36.2	3.0	27	8	94	25	0.52	0.7	0.8	A	91	1	0.6		
JAN 12	1	18	50.2	61	44.4	154	8.7	14.7	2.7	10	5	113	106	0.45	1.0	2.4	B	186	4	1.9		
JAN 12	1	18	50.2	61	44.4	154	8.7	14.7	2.7	10	5	113	106	0.45	1.0	2.4	B	186	4	1.9		
JAN 12	2	43	44.7	59	38.1	151	8.9	7.0	1.3	12	6	126	13	0.40	0.5	0.5	A	21	15	0.4		
JAN 12	3	41	57.7	60	16.1	141	5.2	9.6	0.7A	8	2	122	13	0.09	1.2	1.6	B	311	16	0.9		
JAN 12	3	59	32.7	60	10.3	140	57.6	11.6	0.6A	5	3	142	5	0.10	13.0	5.3	D	198	21	26.1		
JAN 12	5	40	10.9	60	8.4	141	10.5	1.9	0.5A	3	2	213	8	0.02	4.0	3.3	C	278	12	0.8		
JAN 12	7	43	12.9	60	19.0	141	19.0	14.2	0.8A	7	3	142	24	0.13	2.7	4.2	C	81	18	2.5		
JAN 12	8	12	32.7	60	15.2	140	55.0	1.8	0.7A	5	2	156	13	0.12	1.3	4.1	C	81	9	0.9		
JAN 12	10	59	7.9	60	0.7	140	55.2	97.9	2.6	19	6	183	20	0.42	1.4	2.0	B	81	6	2.4		
JAN 12	12	23	38.4	60	16.9	141	14.7	7.8	0.8A	7	2	142	19	0.46	1.1	1.5	B	313	15	0.8		
JAN 12	17	23	51.7	59	41.8	136	20.7	1.3	1.9	7	5	242	146	0.63	2.6	2.4	B	118	18	2.0		
JAN 12	18	55	6.8	60	13.3	140	58.0	9.7	1.0A	6	4	123	8	0.10	2.0	2.3	B	97	15	1.0		
JAN 12	22	21	30.0	62	37.0	151	21.4	93.2	2.6	10	3	210	71	0.48	7.1	5.2	D	105	27	3.9		
JAN 13	0	50	27.5	60	17.5	141	3.2	5.7	0.2A	5	4	127	15	0.13	3.2	6.1	D	81	17	1.9		
JAN 13	3	50	30.9	61	19.7	150	1.9	34.0	1.8	19	6	60	27	0.65	0.5	0.9	A	278	9	0.6		
JAN 13	4	11	39.5	60	49.3	150	36.9	40.2	1.9	19	4	42	35	0.38	0.4	2.1	B	291	0	0.8		
JAN 13	6	39	7.7	59	50.8	153	41.6	148.6	2.9	15	5	217	62	0.48	3.8	2.5	C	293	14	3.3		
JAN 13	7	2	57.6	60	19.5	140	39.6	10.5	1.4	8	4	220	36	0.28	3.9	8.2	D	322	3	0.8		
JAN 13	7	10	48.1	61	8.9	150	41.7	18.8	1.8	20	10	50	35	0.73	0.4	0.5	B	313	12	0.5		
JAN 13	8	49	11.9	58	5.8	137	35.8	0.1	2.0	6	4	191	168	0.68	18.7	5.5	D	323	7	3.0		
JAN 13	9	22	10.0	59	54.4	140	43.0	0.3	2.7	14	7	167	33	0.68	0.7	0.7	A	300	8	0.6		
JAN 13	9	51	45.6	59	54.9	138	59.4	14.8	1.2	8	4	220	36	0.28	0.5	0.5	B	322	14	3.3		
JAN 13	10	10	33.9	59	54.6	138	59.8	15.0	0.6	4	4	246	35	0.20	2.9	5.2	C	322	0	0.8		
JAN 13	10	22	23.7	61	16.7	152	11.4	5.4	0.5	3	3	286	2	0.06	1.1	0.9	A	199	2	0.6		
JAN 13	14	58	46.0	60	29.8	141	34.3	14.3	1.4	12	8	105	18	0.31	0.5	0.9	A	352	7	0.5		
JAN 13	16	57	15.6	59	41.5	139	5.9	9.1	1.7	11	4	195	17	0.68	2.0	1.2	B	321	13	0.6		
JAN 13	17	39	48.5	60	15.9	141	2.2	10.7	1.2	11	7	125	12	0.20	0.6	1.0	A	81	7	0.9		
JAN 13	18	30	43.8	59	56.4	152	45.8	91.8	2.5	20	9	188	27	0.53	1.1	1.1	A	152	13	1.0		
JAN 13	19	33	54.7	60	13.1	152	39.3	95.2	3.5	20	12	108	10	0.61	0.8	0.8	A	163	4	0.8		
JAN 13	21	21	16.5	59	55.8	140	42.9	3.1	1.0	9	5	180	31	0.29	1.1	2.2	B	110	9	0.8		
JAN 14	2	4	25.0	60	7.8	141	7.2	5.9	1.0	9	5	101	8	0.46	1.1	1.3	A	303	8	0.6		
JAN 14	7	24	41.0	60	4.6	140	51.2	10.5	1.5	10	7	170	33	0.52	0.9	1.0	A	293	6	0.5		
JAN 14	7	42	12.0	59	47.8	150	42.1	38.3	1.3	12	7	152	10	0.25	1.1	1.2	A	30	17	1.7		
JAN 14	11	44	28.1	59	49.3	153	29.3	124.7	4.1	21	3	99	55	0.31	1.6	2.7	B	322	5	0.7		
JAN 14	4.8	MB	4.4	ML	ATWC	FELT (III) AT HOMER.												261	21	1.5		
JAN 14	13	32	37.5	60	10.9	140	50.6	13.5	1.1	9	6	160	34	0.63	1.0	1.1	A	120	1	0.6		
JAN 14	14	8	25.5	60	13.8	140	58.1	11.1	1.1	7	3	158	42	0.34	1.3	1.3	A	299	6	0.8		
JAN 14	14	53	30.1	60	9.4	141	9.4	8.3	0.8A	6	5	169	40	0.54	1.4	1.9	B	291	0	0.8		
JAN 14	16	46	5.6	60	18.9	140	50.5	10.5	1.1	7	4	146	41	0.17	1.3	2.9	C	294	5	0.8		
JAN 14	19	45	34.5	60	0.8	141	3.5	3.2	0.6A	3	2	238	16	0.11	1.4	3.2	C	125	10	1.0		
JAN 14	20	14	12.8	61	58.0	148	48.8	12.4	2.0	18	7	97	39	0.64	0.7	1.1	A	8	10	0.6		
JAN 14	21	20	0.2	141	11.2	0.5	11.2	0.5	11	1	2	111	2	0.29	1.3	0.5	A	113	8	0.6		
JAN 14	23	19	50.0	61	59.0	141	26.8	46.2	2.4	21	7	175	57	0.7	0.7	1.7	B	89	7	0.9		
JAN 15	0	44	44.9	60	7.0	141	8.0	10.1	0.8A	6	4	200	7	0.25	2.4	1.0	B	25	17	0.9		

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984												
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	CAP	DI	RMS	SEH	SEZ Q	
1984	HR MN	SEC	DEG MIN	MIN	DEG	MIN	DEG	KM	SEC	KM	DEG	
JAN 15	2	5	56.9	59	31.8	138 48.9	5.3	1.0	4	246	9	
JAN 15	3	33	31.9	60	1.3	141 38.3	4.2	1.1	11	164	22	
JAN 15	4	11	21.2	60	0.4	141 40.0	10.8	1.0	12	8	170	
JAN 15	4	20	15.9	60	11.7	141 7.6	7.4	2.0	16	10	120	
JAN 15	6	37	47.9	59	58.4	140 46.9	6.8	1.3	14	7	159	
JAN 15	7	38	15.5	60	13.1	141 11.5	10.8	1.1	13	7	109	
JAN 15	9	7	39.6	60	8.6	140 28.5	9.2	1.0	10	6	140	
JAN 15	10	14	31.5	61	15.4	152 10.9	2.6	-0.6	3	269	2	
JAN 15	13	16	30.0	61	26.2	151 15.9	9.4	2.1	27	8	89	
JAN 15	14	48	8.0	59	35.3	151 24.8	7.6	0.5A	8	5	170	
JAN 15	15	56	54.3	60	16.1	140 57.7	7.5	0.7A	7	5	130	
JAN 15	16	20	6.8	60	17.4	141 12.1	9.5	0.9	14	8	117	
JAN 15	17	0	24.5	60	9.2	141 4.1	3.6	0.7	10	4	97	
JAN 15	19	14	49.2	63	8.6	148 14.9	100.8	3.5	10	5	132	
JAN 15	20	53	48.7	60	7.2	141 11.2	8.3	1.3	17	7	110	
JAN 15	22	53	46.8	61	25.7	149 52.0	43.8	2.2	29	117	47	
JAN 16	4	53	40.6	60	23.8	145 0.1	22.5	2.1	19	7	137	
JAN 16	9	39	52.9	60	13.3	140 56.5	7.8	0.6A	4	4	180	
JAN 16	13	9	21.9	60	14.7	140 59.2	7.6	0.6A	5	4	185	
JAN 16	13	45	1.5	60	14.6	140 59.0	8.4	0.8	15	8	125	
JAN 16	14	8	24.5	60	14.9	140 59.2	5.7	0.6A	6	4	186	
JAN 16	16	29	54.3	60	28.2	143 4.2	2.1	0.9	6	5	134	
JAN 16	17	9	51.5	60	28.2	143 5.6	1.4	1.1	10	5	104	
JAN 16	18	10	29.7	60	58.9	152 10.7	1.4	0.4A	4	3	178	
JAN 16	19	54	26.7	60	12.5	141 2.1	8.2	0.4A	4	4	172	
JAN 16	20	20	35.8	60	19.7	141 13.4	15.2	1.0A	10	4	120	
JAN 17	5	10	14.6	60	18.1	140 58.3	11.4	1.2	17	11	132	
JAN 17	5	49	17.0	59	45.8	153 29.2	110.8	3.1	19	6	158	
JAN 17	6	34	35.2	60	18.8	140 52.5	8.7	0.5A	5	3	203	
JAN 17	6	45	47.0	60	7.0	141 16.4	10.5	0.6	8	4	162	
JAN 17	8	11	19.3	60	18.4	141 8.6	6.9	0.9	16	6	123	
JAN 17	8	12	49.8	60	17.4	141 8.8	11.3	0.5A	5	3	190	
JAN 17	10	6	48.6	61	37.1	149 35.8	36.4	1.8	25	14	139	
JAN 17	11	13	44.0	60	8.8	139 47.4	17.9	1.0A	5	4	223	
JAN 17	12	53	57.8	60	29.9	144 44.7	21.3	0.7A	9	4	155	
JAN 17	18	3	36.5	59	53.0	140 41.8	4.2	0.9	10	4	184	
JAN 17	21	40	30.5	59	58.0	141 35.1	0.3	0.9A	10	4	208	
JAN 17	22	27	27.5	60	24.2	144 55.0	19.4	0.8A	11	5	194	
JAN 17	22	37	17.5	60	25.6	144 55.5	24.2	1.1A	11	3	186	
JAN 17	23	7	21.3	61	29.0	141 6.0	0.1	1.4	10	4	254	
JAN 17	23	11	37.1	60	10.7	140 56.0	10.4	0.7A	9	3	117	
JAN 18	0	17	16.3	60	27.6	143 16.8	18.0	1.0A	6	4	118	
JAN 18	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48	
JAN 18	2	5	30.0	59	51.4	141 20.0	4.3	0.9	6	3	272	
JAN 18	5	25	46.4	59	53.8	141 22.4	4.7	1.4	16	7	180	
JAN 18	5	27	33.4	59	52.3	141 22.5	2.6	0.8	12	3	190	
JAN 18	6	11	44.4	59	53.5	141 24.0	0.4	1.3	11	2	187	
JAN 18	7	23	44.7	62	5.9	147 56.8	39.3	2.1	25	10	181	
JAN 18	8	1	18	13.1	61	3.2	ML ATWC	3.5	ML ATWC	2.1	25	
JAN 18	1	25	41.0	60	12.3	141 10.6	12.7	0.5A	5	3	164	
JAN 18	5	23	30.0	59	51.4	141 20.0	4.3	0.9	6	3	272	
JAN 18	7	27	17.5	60	25.6	144 55.5	24.2	1.1A	11	3	186	
JAN 18	7	23	7	21.3	61	29.0	141 6.0	0.1	1.4	10	4	254
JAN 18	7	23	11	37.1	60	10.7	140 56.0	10.4	0.7A	9	3	117
JAN 18	8	0	17	16.3	60	27.6	143 16.8	18.0	1.0A	6	4	118
JAN 18	8	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48
JAN 18	9	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48
JAN 18	10	25	41.0	60	12.3	141 10.6	12.7	0.5A	5	3	164	
JAN 18	10	23	30.0	59	51.4	141 20.0	4.3	0.9	6	3	272	
JAN 18	10	25	46.4	59	53.8	141 22.4	4.7	1.4	16	7	180	
JAN 18	10	27	33.4	59	52.3	141 22.5	2.6	0.8	12	3	190	
JAN 18	11	11	44.4	59	53.5	141 24.0	0.4	1.3	11	2	187	
JAN 18	11	23	44.7	62	5.9	147 56.8	39.3	2.1	25	10	181	
JAN 18	12	27	17.5	60	25.6	144 55.5	24.2	1.1A	11	3	186	
JAN 18	12	23	7	21.3	61	29.0	141 6.0	0.1	1.4	10	4	254
JAN 18	12	23	11	37.1	60	10.7	140 56.0	10.4	0.7A	9	3	117
JAN 18	13	0	17	16.3	60	27.6	143 16.8	18.0	1.0A	6	4	118
JAN 18	13	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48
JAN 18	14	25	41.0	60	12.3	141 10.6	12.7	0.5A	5	3	164	
JAN 18	14	23	30.0	59	51.4	141 20.0	4.3	0.9	6	3	272	
JAN 18	14	25	46.4	59	53.8	141 22.4	4.7	1.4	16	7	180	
JAN 18	14	27	33.4	59	52.3	141 22.5	2.6	0.8	12	3	190	
JAN 18	15	11	44.4	59	53.5	141 24.0	0.4	1.3	11	2	187	
JAN 18	15	23	44.7	62	5.9	147 56.8	39.3	2.1	25	10	181	
JAN 18	16	27	17.5	60	25.6	144 55.5	24.2	1.1A	11	3	186	
JAN 18	16	23	7	21.3	61	29.0	141 6.0	0.1	1.4	10	4	254
JAN 18	16	23	11	37.1	60	10.7	140 56.0	10.4	0.7A	9	3	117
JAN 18	17	0	17	16.3	60	27.6	143 16.8	18.0	1.0A	6	4	118
JAN 18	17	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48
JAN 18	18	25	41.0	60	12.3	141 10.6	12.7	0.5A	5	3	164	
JAN 18	18	23	30.0	59	51.4	141 20.0	4.3	0.9	6	3	272	
JAN 18	18	25	46.4	59	53.8	141 22.4	4.7	1.4	16	7	180	
JAN 18	18	27	33.4	59	52.3	141 22.5	2.6	0.8	12	3	190	
JAN 18	19	11	44.4	59	53.5	141 24.0	0.4	1.3	11	2	187	
JAN 18	19	23	44.7	62	5.9	147 56.8	39.3	2.1	25	10	181	
JAN 18	20	27	17.5	60	25.6	144 55.5	24.2	1.1A	11	3	186	
JAN 18	20	23	7	21.3	61	29.0	141 6.0	0.1	1.4	10	4	254
JAN 18	20	23	11	37.1	60	10.7	140 56.0	10.4	0.7A	9	3	117
JAN 18	21	0	17	16.3	60	27.6	143 16.8	18.0	1.0A	6	4	118
JAN 18	21	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48
JAN 18	22	25	41.0	60	12.3	141 10.6	12.7	0.5A	5	3	164	
JAN 18	22	23	30.0	59	51.4	141 20.0	4.3	0.9	6	3	272	
JAN 18	22	25	46.4	59	53.8	141 22.4	4.7	1.4	16	7	180	
JAN 18	22	27	33.4	59	52.3	141 22.5	2.6	0.8	12	3	190	
JAN 18	23	11	44.4	59	53.5	141 24.0	0.4	1.3	11	2	187	
JAN 18	23	23	44.7	62	5.9	147 56.8	39.3	2.1	25	10	181	
JAN 18	24	27	17.5	60	25.6	144 55.5	24.2	1.1A	11	3	186	
JAN 18	24	23	7	21.3	61	29.0	141 6.0	0.1	1.4	10	4	254
JAN 18	24	23	11	37.1	60	10.7	140 56.0	10.4	0.7A	9	3	117
JAN 18	25	0	17	16.3	60	27.6	143 16.8	18.0	1.0A	6	4	118
JAN 18	25	1	18	13.1	61	2.3	147 4.3	14.5	3.0	31	5	48
JAN 18	26	25	41.0	60	12.3	141 10.6	12.7	0.5A	5	3	164	
JAN 18	26	23	30.0	59	51.4	141 20.0	4.3	0.9</th				

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ Q
1984	HR MN	SEC	DEG MIN	DEG MIN	DEG	MIN	DEG	KM	SEC	KM	DEG
JAN 18 7 31 17.0	60 49.3	164 36.7	8.4	1.5	16	2	65	16	0.60	0.7	1.4 A
18 7 59 55.7	60 12.3	139 41.7	17.2	0.8	5	3	207	28	0.37	2.1 B	108 17
18 8 16 40 3.4	60 6.9	141 30.1	10.7	0.3	6	1	192	4	0.10	3.3	1.0 C
18 17 29 6.6	60 5.4	141 16.8	9.6	0.8	8	4	154	10	0.17	1.1	0.7 A
18 20 29 41.2	60 37.3	143 16.4	7.1	1.1	12	4	88	30	0.69	0.6	3.5 C
18 22 5 45.9	60 13.7	141 1.5	9.0	0.7	8	4	120	8	0.30	1.1	1.2 A
19 2 16 30.1	60 35.9	147 21.0	20.8	2.1	27	10	71	36	0.55	0.5	1.0 A
19 6 6 49.8	60 8.5	141 13.6	3.2	1.1	12	3	110	11	0.47	0.6	0.8 A
19 6 45 52.2	63 4.7	149 34.3	53.2	2.5	14	3	162	155	0.58	4.1	25.0 D
19 14 45 31.0	60 25.1	141 37.4	4.8	1.1A	6	4	109	32	0.49	1.2	2.1 B
19 20 12 20.1	60 56.4	151 13.6	70.4	3.0	28	5	46	22	0.52	0.6	1.4 B
20 1 10 41.6	60 16.9	140 35.1	0.1	1.3	13	6	152	27	0.53	0.6	1.4 B
20 1 51 43.3	60 23.0	140 58.1	4.7	0.8A	10	3	139	26	0.55	0.9	2.4 B
20 3 0 38.0	60 11.9	141 0.1	12.4	1.1	14	5	117	5	0.36	0.8	0.6 A
20 4 36 53.6	60 55.8	152 26.6	113.7	3.1	23	6	104	35	0.43	1.0	1.7 B
19 20 8 3 57.7	60 20.7	141 20.5	16.4	1.1	10	4	114	22	0.67	0.7	0.9 A
20 13 32 44.2	60 13.2	142 54.2	27.1	0.4A	6	3	168	4	0.18	1.4	2.87
20 14 46 59.5	60 13.8	141 1.8	8.6	0.5A	7	2	120	9	0.20	2.8	2.97
20 15 55 14.0	60 8.5	141 16.4	9.1	1.2	13	5	136	13	0.43	0.5	0.6 A
20 16 11 22.4	60 4.9	141 17.7	7.7	0.5A	3	2	233	17	0.05	3.0	3.3 C
20 17 29 34.8	61 4.3	148 6.9	28.5	1.7	25	8	94	42	0.26	0.5	0.7 A
20 18 23 31.1	60 0.0	153 24.9	121.9	3.7	19	5	198	39	0.29	2.0	1.7 B
4.1 MB	3.7 ML	ATWC									
20 18 44 6.2	62 55.3	148 2.2	44.4	2.5	15	5	130	127	0.66	2.2	6.8 D
20 20 55 51.7	59 49.0	152 45.7	88.3	2.8	21	7	138	41	0.24	1.5	1.8 B
20 22 51 59.2	61 8.1	152 12.3	5.5	1.0	3	3	313	10	0.38	1.4	1.2 A
20 23 8 29.6	60 5.5	141 12.8	3.7A	6	2	180	12	0.30	3.2	5.7 D	
21 2 5 45.0	59 55.9	141 22.3	8.8	1.8	15	3	177	31	0.57	1.0	1.1 A
21 6 18 41.3	60 1.8	140 46.3	0.0	0.8A	5	2	187	20	0.10	2.2	10.3 D
21 14 5 21.4	60 26.3	143 37.5	9.2	1.3A	10	2	132	37	0.58	0.9	2.8 C
21 18 39 28.8	60 13.4	141 0.2	7.3	0.7	8	3	147	8	0.44	1.1	0.9 A
21 18 49 11.7	61 38.9	149 54.7	34.9	1.8	13	7	146	2	0.38	0.8	1.2 A
21 21 14 57.2	60 15.0	141 50.8	6.4	1.1	11	4	85	13	0.71	0.5	0.8 A
22 2 41 30.8	60 59.2	147 16.2	17.1	2.0	25	11	87	15	0.66	0.5	0.7 A
22 2 44 51.4	60 25.8	145 4.9	19.5	0.8A	9	8	165	13	0.93	0.7	1.0 A
22 4 18 20.9	60 11.9	140 13.6	6.6	0.9	9	6	164	11	0.32	1.9	2.0 B
22 7 31 33.2	59 58.6	138 36.5	5.0	1.0	7	4	253	56	0.24	4.1	25.0 D
22 7 41 49.6	61 45.7	149 50.7	46.6	1.9	16	7	151	13	0.38	0.8	0.9 A
22 7 42 30.4	60 36.5	144 44.7	19.6	1.1	10	9	114	27	0.42	0.6	1.0 A
22 9 8 10.0	59 48.8	140 56.5	0.1	0.9	8	6	213	29	0.42	1.5	2.3 B
22 9 40 36.9	60 18.0	141 5.3	7.1	0.4A	6	4	155	17	0.11	0.9	2.4 B
22 11 47 32.2	60 13.3	152 10.8	69.6	2.7	25	10	105	36	0.45	0.8	0.9 A
22 12 23.3	61 15.5	143 14.9	11.9	1.1	11	6	162	36	0.49	1.0	2.9 C
22 12 20 48.3	60 43.3	145 54.1	24.8	1.9	22	10	66	21	0.60	0.5	0.6 A
22 13 43 15.5	60 17.8	140 40.4	10.5	0.8	13	6	149	26	0.27	0.7	1.6 B
22 15 51 36.2	60 8.0	141 5.6	8.6	0.8	5	5	110	4	0.36	0.7	1.0 A
22 16 0 26.8	61 46.2	150 54.2	58.1	2.8	23	8	77	35	0.36	0.8	1.1 A
22 19 27 21.8	60 20.8	141 16.8	13.4	1.3	13	8	117	25	0.55	0.5	0.9 A
22 20 9 25.5	60 26.9	145 1.8	9.9	2.2	23	12	64	14	0.51	0.4	0.6 A
23 2 47 37.3	60 10.7	140 57.2	11.0	0.7	9	6	116	5	0.25	0.8	0.7 A
23 4 32 16.6	60 9.2	141 18.2	11.0	0.7	6	4	131	9	0.21	0.9	1.0 A

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984																									
1984	ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS													
												SEZ													
HR	MIN	SEC	DEG	MIN	DEG	MIN	KM	DEG	MIN	DEG	DEG	DEG													
JAN	23	4	42	9.2	60	21.9	147	35.0	26.1	2.3	32	10													
23	7	46	19.5	60	13.1	140	54.5	3.5	0.6A	6	4	181	10	0.45	0.5	0.9A	273	5	0.6	5	20	0.9	170	69	
23	7	48	9.0	60	10.8	140	57.3	9.4	0.5A	5	4	168	5	0.19	0.8	0.8A	81	26	0.8	330	34	1.0	199	44	
23	8	41	23.5	60	4.8	141	18.8	10.6	2.2	18	5	148	11	0.47	0.7	0.5A	276	12	0.5	13	28	1.3	165	59	
23	8	51	59.5	60	15.1	141	15.8	10.9	1.5	18	7	109	16	0.51	0.5	0.7A	318	18	0.5	55	23	0.7	193	60	
23	9	8	1.9	60	10.3	141	8.0	8.3	0.9	11	5	106	6	0.42	0.7	0.6A	299	15	0.6	197	40	1.5	45	46	
23	9	35	18.9	60	27.5	142	15.1	3.8	1.0	7	5	135	30	0.65	0.7	8.2D	276	1	0.7	6	3	1.0	168	87	
23	9	47	19.5	60	10.5	141	7.9	10.6	1.2	12	7	107	6	0.45	0.6	0.5A	322	31	0.6	77	36	0.8	203	39	
23	10	10	49.4	60	3.8	141	18.3	10.5	0.9	7	3	225	10	0.27	1.5	0.9B	202	3	2.7	295	34	0.7	108	56	
23	11	6	43.1	60	16.4	140	47.8	7.2	0.8A	5	3	167	19	0.18	2.0	2.9C	286	0	0.7	16	32	1.7	196	58	
23	11	58	19.5	60	19.1	141	14.2	16.3	1.6	10	6	118	22	0.51	0.6	0.8A	81	8	0.9	330	18	0.6	190	62	
23	12	26	40.6	60	4.8	141	10.2	7.8	0.3A	3	3	227	11	0.20	2.4	2.0B	280	12	0.9	20	39	5.6	176	48	
23	13	22	48.5	60	6.6	141	11.7	11.6	0.2A	3	3	221	10	0.07	3.6	1.5C	285	15	0.9	21	20	7.1	161	65	
23	15	25	59.2	61	20.5	150	55.6	59.0	2.2	23	9	73	17	0.41	0.6	1.2A	261	5	0.8	154	9	0.9	15	70	
23	17	47	29.2	60	13.3	141	13.0	12.4	0.9	10	5	109	13	0.18	0.8	1.0A	318	23	0.7	58	23	1.0	188	57	
23	17	58	31.0	60	10.7	141	6.8	9.9	0.3A	7	5	108	5	0.39	0.7	0.8A	296	20	0.6	38	31	0.9	178	52	
23	18	40	58.6	58	16.2	138	5.9	0.4	1.8	6	4	324	139	0.56	9.1	2.3D	81	9	17.0	166	19	2.7	325	68	
23	21	44	59.6	60	16.6	140	58.2	1.3	0.9	9	6	131	14	0.47	0.7	1.9B	81	8	0.7	333	12	0.6	199	67	
23	23	23	4	2.5	61	26.9	150	44.2	6.9	2.3	27	10	76	2	0.41	0.5	1.2A	97	7	0.7	188	9	1.0	330	79
24	0	59	23.3	62	19.4	151	44.6	95.8	2.7	14	6	272	40	0.54	1.9	1.3A	151	4	3.3	81	32	2.0	247	53	
24	3	6	26.9	60	17.8	141	5.2	1.3	0.7	11	7	126	16	0.64	0.5	1.4B	313	6	0.4	44	15	0.7	202	74	
24	7	24	39.0	62	0.8	149	5.8	30.6	2.6	19	7	175	43	0.46	0.7	0.9A	280	15	0.8	15	17	1.2	151	67	
24	8	23	39.6	58	56.8	137	11.7	5.0	1.9	9	4	201	111	0.30	9.9	2.6D	212	6	18.7	120	18	3.4	320	71	
24	9	18	17.7	60	16.9	141	14.9	0.4	0.8	11	7	114	19	0.62	0.5	1.4A	325	7	0.5	81	9	0.6	208	62	
24	11	24	59.5	62	15.8	151	11.8	77.9	2.6	14	6	253	36	0.42	1.7	1.3B	347	10	3.2	82	27	1.5	238	61	
24	16	2	46.2	60	58.1	150	39.4	14.8	1.5	1	5	58	40	0.64	0.4	1.1A	261	2	0.6	150	3	0.7	18	69	
24	18	52	58.9	60	13.3	141	19.6	3.2	0.9	5	124	18	0.61	0.7	1.1A	296	8	0.6	33	15	1.1	179	73		
24	21	41	29.2	60	18.2	140	58.2	0.4	0.4A	6	2	135	17	0.36	0.6	2.6B	268	0	1.2	358	6	0.7	178	84	
25	1	44	13.0	59	6.4	137	28.9	10.5	2.0	9	4	341	88	0.36	9.6	2.1D	114	6	5.9	205	8	18.2	348	80	
25	2	7	40.1	60	20.6	152	43.1	0.0	0.5A	6	3	197	19	0.54	7.1	5.5D	33	10	0.7	295	38	16.7	135	50	
25	4	18	55.2	60	16.8	141	20.7	13.5	0.6A	6	5	152	16	0.17	1.8	1.9B	330	12	0.7	81	37	1.2	227	47	
25	4	41	54.0	61	42.2	149	35.4	7.3	1.8	22	12	86	16	0.92	0.5	0.7A	174	16	0.9	271	24	0.4	53	61	
25	14	47	48.3	60	5.8	141	8.1	4.0	0.5A	6	5	119	4	0.57	0.5	0.6A	280	4	0.5	11	21	0.8	180	69	
25	14	52	11.5	60	13.1	141	13.9	8.4	0.7	12	5	107	13	0.29	0.7	0.8A	291	5	0.5	25	35	0.8	194	54	
25	18	20	0.9	60	14.0	141	16.3	9.9	0.8	12	5	107	15	0.38	0.6	0.8A	293	6	0.6	28	35	0.8	195	54	
25	21	19	55.5	61	26.3	146	51.2	19.1	2.9	22	9	57	44	0.57	0.4	0.9A	193	1	0.8	283	9	0.5	97	81	
25	21	45	50.0	60	10.7	141	3.9	8.7	0.8	7	5	137	3	0.36	0.6	0.6A	290	9	0.6	192	41	1.4	30	48	
25	23	9	11.6	61	12.4	148	57.2	31.6	2.0	28	15	74	33	0.58	0.5	0.5A	261	4	0.6	146	24	0.8	359	56	
26	0	1	6.2	60	45.2	140	29.8	16.6	1.0A	5	1	214	51	0.02	3.0	6.0D	42	0	5.7	132	13	1.0	312	77	
26	1	2	30.8	60	3.5	141	19.4	11.5	1.2A	12	9	183	11	0.44	0.7	0.4A	296	0	0.5	26	6	1.2	206	84	
26	1	22	30.5	60	30.2	145	8.4	16.4	1.4	12	9	168	5	0.52	0.5	0.5A	10	13	0.9	106	26	0.6	256	61	
26	2	5	36.1	60	3.3	139	10.1	12.9	1.4A	9	4	215	28	0.69	1.9	1.6B	134	8	0.9	230	37	4.1	34	52	
26	2	10	35.6	60	18.8	140	45.4	8.7	1.1	10	7	154	23	0.30	0.6	1.2A	298	10	0.6	31	19	0.7	182	68	
26	2	41	24.8	60	17.3	140	48.3	9.7	0.8A	10	4	140	20	0.36	1.2	1.8B	288	3	0.8	20	33	0.9	193	57	
26	6	40	36.7	61	18.5	146	46.3	19.0	2.0	21	13	66	31	0.56	0.4	0.7A	192	4	0.6	283	12	0.5	84	77	
26	7	33	43.7	60	16.0	141	6.6	9.5	2.4	16	3	120	13	0.26	0.6	0.9A	302	9	0.7	36	27	0.8	195	61	
26	10	55	47.3	60	14.1	141	4.4	10.2	1.6	13	9	118	9	0.38	0.6	0.7A	321	24	0.4	67	32	0.7	201	48	
26	12	34	53.5	59	36.8	153	1.3	93.2	2.7	17	13	149	65	0.30	1.6	1.5B	320	1	1.2	81	32	3.0	229	47	
26	12	56	37.6	61	15.7	148	34.3	35.7	1.8	21	10	91	18	0.44	0.5	0.5A	204	29	0.7	94	31	0.6	327	45	
26	14	43	54.0	60	51.8	152	32.3	10.0	1.1	11	11	102	33	1.06	0.9	1.2A	194	4	0.5	102	29	1.3	291	61	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JANUARY 1984																									
1984	ORIGIN TIME	LAT N			LONG W			DEPTH			MAG			NP NS			GAP								
		HR	MN	SEC	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	SEZ	Q	AZ1	DIP1	SEI	AZ2	DIP2	SE2	AZ3	DIP3	SE3
JAN 26 14 56 22.1	61 11.2	152	7.7	1.5	-0.6A	3	2	0.01	1.5	6.1	D	261	4	1.8	322	12	0.8	152	59	10.3					
26 15 25 38.0	59 29.6	152	39.1	64.0	2.6	18	12	142	61	0.45	1.5	2.3	B	322	3	1.1	261	42	2.2	62	57	3.8			
26 15 36 41.3	59 48.9	152	55.5	86.3	2.9	20	8	142	41	0.33	1.4	1.4	B	147	2	1.1	261	42	2.2	55	43	2.8			
26 21 9 32.7	61 42.7	149	56.1	45.7	1.8	16	9	152	7	0.46	0.7	0.9	A	275	2	0.7	5	17	1.3	178	73	1.7			
26 22 14 42.2	60 20.7	140	22.5	1.1	2.6	18	9	173	28	0.56	0.6	1.0	A	81	8	0.7	317	12	0.5	193	53	1.6			
27 1 43 23.4	60 9.0	148	33.0	2.7	1.9	27	11	179	59	0.55	0.5	0.7	A	337	1	0.9	261	30	0.5	69	57	1.5			
27 5 42 6.8	60 12.0	140	58.1	9.6	1.2	15	7	119	6	0.40	0.9	0.7	A	311	30	0.6	81	34	0.7	198	33	2.0			
27 8 57 36.3	60 12.5	141	32.6	11.1	1.0	11	5	121	8	0.57	0.7	0.7	A	311	18	0.7	47	19	1.4	180	63	1.3			
27 10 10 19.1	61 16.7	152	11.1	4.1	0.3	3	3	284	2	0.02	1.2	1.1	A	199	5	0.9	293	39	2.6	103	51	1.6			
27 10 17 53.1	61 8.6	152	14.8	8.3	-0.3A	3	3	312	11	0.04	1.5	2.2	B	333	9	1.5	261	30	1.9	79	54	4.3			
27 15 46 17.6	60 10.6	141	5.6	11.1	1.4	15	10	109	4	0.39	0.5	0.4	A	303	16	0.4	204	28	1.1	59	57	0.6			
27 16 16 38.6	60 59.5	146	59.1	18.1	2.1	19	13	59	12	0.67	0.3	0.6	A	196	1	0.6	287	11	0.5	101	79	1.1			
27 16 59 17.5	60 37.9	137	49.8	14.6	1.7A	6	5	282	125	0.33	2.4	2.2	B	48	0	3.4	138	42	5.9	318	48	1.8			
27 17 12 23.4	59 47.2	150	46.0	15.1	1.1	11	5	124	7	0.32	0.8	0.6	A	210	3	0.6	119	19	1.5	309	71	1.1			
27 17 26 20.5	60 28.5	152	18.0	23.1	0.4A	5	3	114	0	0.15	1.2	1.1	A	47	25	1.3	156	36	1.0	290	44	2.8			
28 1 22 43.4	61 50.5	149	35.7	10.0	1.7	16	6	173	26	0.55	0.6	0.9	A	177	2	1.1	268	17	0.6	80	73	1.9			
28 4 38 11.4	60 10.7	141	8.9	10.4	0.7A	6	3	107	7	0.23	1.2	0.8	A	179	26	2.5	284	28	1.0	53	50	1.3			
28 5 52 36.5	60 19.6	140	44.1	11.9	1.0A	7	4	157	25	0.18	1.6	2.0	B	321	11	1.0	81	28	1.5	216	49	4.3			
28 6 53 41.3	61 15.8	150	38.6	45.8	1.7	15	6	66	23	0.30	0.5	1.7	B	28	3	0.9	118	5	0.7	267	84	3.2			
28 6 58 18.6	61 4.4	152	23.1	1.8	1.0	8	5	196	22	0.86	1.1	1.1	A	207	20	0.6	100	38	1.5	318	45	2.6			
28 9 12 58.2	60 58.8	149	55.1	39.0	1.8	23	6	92	35	0.48	0.6	0.6	A	45	16	0.6	144	31	1.0	291	54	1.2			
28 13 32 45.6	60 14.6	140	45.9	14.1	0.9A	8	2	141	18	0.26	1.4	1.4	B	311	11	1.1	51	42	1.4	209	46	3.4			
28 14 49 13.9	60 24.0	141	21.6	16.0	1.6	16	4	115	22	0.60	0.6	0.9	A	312	3	0.7	44	25	0.9	216	65	1.8			
28 15 7 12.6	59 34.5	151	18.0	9.5	1.1	10	4	126	7	0.30	1.0	0.7	A	81	22	0.5	153	34	1.8	316	47	0.9			
28 19 27 49.1	60 16.5	140	43.8	14.9	1.0	8	4	150	22	0.18	1.2	1.6	B	302	12	0.7	40	33	1.2	195	54	3.6			
28 21 4 0.6	60 12.0	141	16.0	14.6	0.9A	6	2	177	14	0.16	2.7	1.4	C	200	19	5.3	299	23	1.0	75	59	2.4			
29 0 50 18.6	61 48.4	151	11.1	7.0	2.4	20	13	96	27	0.54	0.8	1.0	A	81	6	0.8	168	28	1.2	340	61	2.0			
29 2 36 3.9	60 36.6	142	45.0	0.9	1.1A	10	7	81	19	0.76	0.4	4.5	C	30	1	0.6	300	1	0.8	165	89	8.4			
29 5 43 32.1	60 20.2	140	22.0	6.8	1.3	11	9	173	27	0.56	0.9	1.1	A	325	13	0.5	81	24	1.2	214	53	2.2			
29 11 23 22.9	59 55.7	141	28.9	25.2	1.3	10	5	183	33	0.72	1.0	1.5	B	28	4	1.9	119	20	1.3	287	70	3.0			
29 14 21 57.7	61 8.5	152	13.0	7.8	0.0A	3	3	311	10	0.03	1.5	2.2	B	327	13	1.5	261	29	1.9	82	51	4.0			
30 3 13 38.9	59 46.3	151	8.0	46.1	1.3	10	5	79	8	0.17	1.2	1.4	B	28	4	1.2	295	37	1.4	123	53	3.1			
30 4 38 37.6	61 29.3	141	23.1	5.0	1.2	6	3	246	58	0.19	3.5	25.0	D	311	2	1.5	41	4	3.1	194	86	75.5			
30 5 24 8.5	62 40.2	148	13.6	42.5	3.0	13	6	232	96	0.56	2.3	16.6	D	353	0	4.2	83	2	1.7	263	88	31.2			
30 7 51 14.0	60 16.7	140	54.9	10.6	1.5	12	5	133	42	0.48	0.6	1.0	A	42	7	1.0	311	12	0.6	162	76	2.0			
30 18 39 8.8	62 58.9	149	5.9	95.1	3.0	12	6	147	137	0.60	3.2	7.3	D	280	7	2.5	13	18	3.7	170	71	14.5			
30 21 5 16.2	59 15.1	137	19.8	11.3	2.4	8	2	201	91	0.18	4.3	2.7	C	198	20	8.4	100	22	2.0	326	60	4.7			
30 21 22 40.2	59 19.5	137	20.6	4.4	1.3	4	4	340	88	0.14	3.5	3.7	C	94	5	2.7	0	40	5.4	190	50	7.9			
31 8 46 30.9	60 20.6	141	24.9	16.7	1.9	15	4	109	18	0.67	0.6	0.9	A	305	8	0.8	37	15	1.0	188	73	1.8			
31 10 19 53.0	59 28.9	151	12.6	55.4	1.2A	10	5	174	5	0.20	2.1	1.1	B	140	9	3.4	81	38	1.2	241	42	2.0			
31 16 51 12.9	62 22.2	149	34.2	45.7	2.3	18	5	210	82	0.44	1.2	2.8	C	95	6	1.0	4	6	2.1	230	81	5.3			
31 19 32 25.7	60 8.2	141	7.3	14.6	2.2	13	5	138	43	0.56	0.8	1.1	A	107	1	0.6	197	19	1.4	71	2.1				

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - FEBRUARY 1984

ORIGIN TIME 1984	LAT N HR MN SEC	LONG W DEG MIN SEC	DEPTH KM	MAG DEG MIN	NP NS KM	GAP DEG	DI KM	RMS SEC	SEH			SEZ Q			AZI DIP1			SE1			AZ2 DIP2			SE2			AZ3 DIP3		
									DEG	SEC	DEG	DEG	SEC	DEG	SEC	DEG	SEC	DEG	SEC	DEG	SEC	DEG	SEC	DEG	SEC	DEG	SEC		
FEB 1 4 30 22.9	60 23.2	140 48.6	6.5	1.4	12	6	150	40	0.76	0.5	0.9	A	81	8	0.8	322	10	0.4	198	59	1.6								
1 10 11 2.4	60 20.8	141 15.8	13.5	1.5	11	5	1.8	27	0.54	0.7	1.0	A	104	9	0.7	1.1	22	1.1	215	66	2.1								
1 15 41 38.8	61 50.9	148 41.7	20.2	2.3	29	7	90	20	0.58	0.5	0.9	A	266	13	0.6	359	13	1.0	133	71	1.8								
1 20 13 19.2	59 44.8	152 56.5	88.2	2.5	17	6	206	49	0.18	1.6	1.6	B	314	7	1.5	49	34	3.2	214	55	2.8								
1 20 29 9.5	60 14.7	141 4.6	8.5	0.7A	7	1	119	25	0.11	4.1	5.8	D	92	7	1.2	358	34	2.5	192	55	13.0								
1 21 21 3.8	61 43.9	148 43.5	20.6	1.3	12	5	172	21	0.58	0.7	1.4	B	265	14	0.8	359	14	1.1	132	70	2.8								
2 4 17 30.2	61 12.4	149 28.4	32.7	1.9	25	13	50	6	0.65	0.4	0.6	A	302	10	0.6	209	12	0.6	70	74	1.2								
2 6 31 36.3	60 16.6	143 7.2	15.9	1.7	17	9	156	18	0.86	0.5	1.1	A	283	3	0.8	148	86	2.1											
2 7 36 25.5	62 16.8	151 15.5	82.9	2.6	19	9	100	36	0.35	1.1	1.7	B	285	2	1.4	16	25	1.6	191	65	3.3								
2 20 40 40.9	61 37.5	136 20.2	30.4	2.9A	9	4	306	273	0.32	4.3	25.0	D	352	0	6.9	262	0	8.0	0	90	99.0								
3 1 41 55.7	60 39.1	143 10.7	10.1	1.1	10	5	99	29	0.60	0.5	25.0	D	261	0	0.6	329	0	0.8	0	90	70.7								
3 3 13 25.5	60 57.1	149 30.8	31.9	1.7	27	12	61	28	0.60	0.3	0.6	A	307	3	0.6	216	15	0.5	48	75	1.2								
3 7 13 58.2	59 0.8	137 3.5	3.3	2.5	9	6	169	115	0.49	3.8	1.9	C	35	0	7.0	125	17	1.9	305	73	3.7								
3 7 30 25.7	60 11.1	141 4.4	7.9	1.1	11	7	111	14	0.47	0.8	1.3	A	289	0	0.5	19	31	0.6	199	59	2.7								
3 16 59 40.6	61 7.7	150 40.6	13.9	1.5	15	8	57	38	0.57	0.3	0.9	A	129	2	0.6	220	9	0.5	27	81	1.7								
3 18 25 42.2	61 15.9	152 13.5	9.5	0.7	5	2	189	4	0.31	1.6	0.8	B	358	10	1.0	92	24	3.3	247	64	0.8								
3 23 17 17.4	62 4.7	150 50.8	60.5	3.9	16	1	131	37	0.29	1.3	2.1	B	323	10	1.7	81	16	1.3	210	57	3.9								
4.1 MB	4.3 ML	ATWC	100.7	2.9	19	5	183	23	0.22	1.4	2.1	B	328	9	1.3	261	17	2.2	89	60	3.6								
4 0 29 14.6	59 58.6	152 49.8	100.7	2.9	19	5	183	23	0.22	1.4	2.1	B	328	9	1.3	261	17	2.2	89	60	3.6								
4 7 2 33.1	59 57.4	147 21.8	31.4	2.4	24	5	101	9	0.56	0.8	0.7	A	229	16	1.0	128	33	1.5	341	52	1.1								
4 10 50 6.2	61 12.8	150 44.8	52.2	1.9	21	11	51	28	0.46	0.4	1.0	A	92	3	0.6	183	8	0.7	342	81	1.8								
4 16 25 21.3	60 18.2	141 11.5	7.1	0.9	5	4	192	19	0.16	0.8	3.8	C	300	3	0.9	30	4	1.5	173	85	7.2								
4 20 31 44.2	61 29.1	140 40.8	3.8	1.9	10	5	262	68	0.49	1.6	20.8	D	109	1	1.6	19	3	2.1	217	87	39.1								
5 3 27 4.6	59 36.2	151 4.1	41.5	1.3	12	8	152	4	0.24	1.3	1.5	B	81	7	0.9	315	31	1.2	179	43	3.1								
5 4 54 7.3	60 16.4	140 44.2	11.7	1.1	11	7	142	21	0.31	0.8	1.1	A	298	4	0.6	31	32	0.9	202	58	2.4								
5 9 48 34.9	61 31.3	149 53.0	41.7	1.7	19	8	67	14	0.41	0.5	0.9	A	107	1	0.6	16	6	1.0	206	84	1.7								
5 17 8 29.7	61 52.7	149 27.8	58.1	2.2	23	10	163	34	0.37	0.9	1.5	B	267	1	0.7	357	9	1.6	171	81	2.7								
5 17 27 16.9	59 56.0	141 25.5	0.9	0.6A	7	5	264	22	0.49	0.9	2.0	B	12	0	1.6	282	6	0.9	102	84	3.0								
5 17 57 27.9	60 5.6	141 8.8	16.3	0.4A	4	4	223	9	0.29	3.4	1.0	C	23	13	6.5	283	37	0.9	129	50	1.4								
5 18 54 53.5	60 13.1	141 36.9	7.4	1.1	15	8	94	11	0.68	0.4	0.6	A	216	6	0.8	307	11	0.7	98	77	1.1								
5 20 37 57.6	60 12.8	141 37.1	9.9	0.9	6	137	11	0.13	0.6	0.6	A	309	15	0.5	207	38	1.1	56	48	1.2									
5 21 22 8.5	60 16.2	140 59.8	10.0	1.1A	9	4	128	13	0.26	0.9	1.4	B	85	4	0.9	352	31	0.6	182	59	3.0								
5 22 2 17.3	60 22.0	140 44.6	6.3	1.0A	9	6	161	29	0.68	0.9	1.7	B	81	12	1.0	322	14	0.7	199	56	3.1								
5 23 2 28.7	60 18.2	141 6.0	14.0	0.9	8	7	126	17	0.27	0.8	1.3	A	332	18	0.6	81	19	0.7	208	58	2.8								
5 23 3 0.6	60 16.8	140 56.3	4.2	0.7A	7	7	134	15	0.21	0.8	2.2	B	320	13	0.6	53	14	0.8	189	71	4.3								
5 23 26 53.3	60 58.0	148 35.3	31.3	1.5	18	9	88	18	0.60	0.4	0.6	A	157	1	0.7	261	14	0.7	63	70	1.1								
6 1 10 40.1	61 45.4	149 12.1	18.7	2.5	8	152	17	0.53	0.6	0.8	A	169	9	1.0	264	27	0.6	62	61	1.6									
6 3 12 30.3	60 17.9	141 0.3	6.3	0.7A	6	4	159	16	0.15	0.8	2.4	B	44	7	1.3	313	13	0.9	162	75	4.6								
6 5 29 44.2	60 19.0	140 48.1	3.6	0.4A	5	2	174	22	0.04	1.2	3.1	C	296	9	1.1	28	16	1.5	178	72	6.1								
6 7 2 31.6	59 53.8	140 41.8	3.6	0.9	11	4	183	30	0.38	0.6	1.4	B	287	0	0.5	197	14	1.0	17	76	2.7								
6 7 16 31.8	61 57.9	148 51.5	14.8	1.8	24	9	171	0	0.64	0.7	1.2	A	1	11	1.1	266	26	0.5	112	62	2.5								
6 7 48 18.6	62 58.2	150 42.2	132.5	4.2	13	2	121	118	0.26	1.8	7.8	D	291	7	2.2	22	8	1.8	160	79	14.9								
6 8 13 15.8	60 14.9	141 1.7	11.1	0.7	9	7	123	11	0.20	0.8	1.0	A	81	21	0.8	327	25	0.6	200	51	2.3								
6 8 31 46.6	60 8.6	140 54.1	13.8	0.9	10	5	112	7	0.38	0.8	0.5	A	194	30	1.6	310	37	0.8	77	38	0.7								
6 10 10 32.4	59 38.6	150 41.1	10.1	1.1	10	4	222	7	0.31	1.0	1.0	A	220	10	0.7	125	27	1.9	329	61	1.8								

FELT (II-III) IN THE ANCHORAGE-TALKEETNA AREA.

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - FEBRUARY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
1984 FEB 6 12 6 28.7	59 45.5		150 51.5	45.4	1.5	13	6	96	2	0.23	1.0	1.0 A	18	19	1.0	272	39	1.4	128	45	2.4	
6 14 42 28.9	60 23.1		140 49.0	4.5	1.0	12	6	149	28	0.68	0.5	1.6 B	81	5	0.8	340	11	0.6	193	74	3.1	
6 14 42 28.9	60 23.1		140 49.0	4.5	1.0	12	6	149	28	0.68	0.5	1.6 B	81	5	0.8	340	11	0.6	193	74	3.1	
6 15 29 38.0	60 15.8		140 55.5	9.0	1.0	13	4	131	14	0.21	0.6	1.0 A	93	5	0.7	1	27	0.6	193	63	2.1	
6 16 9 52.5	59 34.6		151 17.9	8.0	1.0	10	4	126	7	0.28	0.8	0.9 A	32	16	0.5	289	39	0.8	140	47	2.1	
6 16 43 52.0	60 11.9		141 22.3	0.3	1.0 A	7	2	103	8	0.31	0.7	1.8 B	304	3	0.6	35	11	1.2	199	79	3.4	
6 16 54 48.8	60 12.9		140 47.3	12.7	1.3A	12	6	133	15	0.37	0.8	0.9 A	290	5	0.5	25	43	1.0	195	47	2.0	
6 22 23 33.9	59 44.5		140 34.0	7.8	1.8	13	4	184	43	0.45	1.1	1.3 A	289	8	0.7	193	35	1.4	30	54	2.8	
7 1 42 27.0	60 14.6		143 7.6	11.2	0.9	7	3	175	17	0.68	0.9	1.1 A	281	12	0.9	14	13	1.7	150	72	2.2	
7 9 28 37.2	60 58.1		147 15.9	18.8	1.9	25	9	51	36	0.37	0.4	0.8 A	288	11	0.4	195	12	0.7	59	74	1.6	
7 10 59 57.6	60 18.0		143 11.0	4.3	1.9	16	5	154	22	0.61	0.6	2.9 C	25	2	1.0	295	4	0.6	142	86	5.4	
7 12 42 21.3	63 12.1		150 34.0	102.5	3.0	10	1	193	145	0.23	14.0	16.6 D	318	19	9.9	81	24	3.9	203	46	37.4	
7 2 55 33.6	60 10.3		141 9.3	9.5	1.4	14	4	105	7	0.26	0.7	0.6 A	289	10	0.6	192	37	1.5	32	51	0.8	
7 7 5 35 2.2	59 35.6		139 23.3	26.6	1.0	5	3	187	8	0.29	5.0	1.3 C	45	5	9.4	314	10	1.3	161	79	2.4	
7 7 18 47 24.5	60 8.4		141 5.9	9.6	0.5	5	2	122	4	0.25	1.0	0.9 A	4	24	1.6	114	37	2.2	249	43	1.2	
7 7 20 8 38.2	60 15.2		143 6.2	16.0	1.4	10	5	170	16	0.71	0.8	1.2 A	280	12	0.7	15	24	1.1	165	63	2.4	
7 7 22 47 52.3	59 44.4		139 7.3	26.0	1.0	4	3	207	18	0.20	5.9	4.7 C	317	5	1.4	261	35	11.8	53	43	2.6	
8 0 42 5.2	60 50.6		140 26.6	0.1	1.4A	8	2	224	50	0.52	2.7	3.1 C	137	9	1.0	261	24	4.1	33	48	5.6	
8 1 9 55.5	59 58.7		141 42.6	7.4	1.2A	9	5	207	19	0.47	0.7	1.2 A	86	2	0.6	356	6	1.3	194	84	2.3	
8 1 19 19.2	62 5.2		150 52.0	58.5	3.1	21	4	93	37	0.31	1.4	2.0 B	310	6	1.5	81	17	1.2	208	46	3.3	
			3.5 ML ATWC																			
8 5 57 16.2	61 8.7		152 15.0	111.2	2.7	23	5	184	11	0.31	1.3	1.8 B	21	0	1.3	111	30	2.0	291	60	3.6	
8 6 5 35.8	60 16.3		141 6.4	6.3	1.0A	7	3	150	14	0.17	1.1	1.8 B	81	13	1.3	326	15	0.8	201	59	3.4	
8 9 30 32.8	60 13.7		141 4.3	14.1	0.6A	4	2	176	9	0.98	1.4	1.2 B	80	31	1.4	324	36	1.1	199	39	3.1	
8 16 20 3.9	60 13.3		141 41.0	7.8	1.0	13	3	99	14	0.50	0.6	0.7 A	303	9	0.6	211	11	1.0	71	76	1.4	
8 18 17 1.5	60 10.4		141 17.3	12.1	1.6	15	3	108	11	0.25	0.5	0.6 A	297	23	0.6	42	32	0.8	178	49	1.2	
8 18 17 31.3	60 9.6		141 16.5	10.6	1.1	4	2	142	11	0.07	1.7	2.7 B	302	8	0.8	36	28	1.8	197	61	5.7	
8 19 2 40.4	60 7.6		141 15.3	7.9	0.9	10	3	146	11	0.16	1.0	0.8 A	97	1	0.6	188	22	1.8	5	68	1.5	
9 0 49 11.4	60 46.6		150 7.0	41.0	1.5	22	9	58	30	0.35	0.4	0.9 A	261	7	0.6	347	7	0.7	124	79	1.8	
9 0 56 24.3	60 14.3		141 18.2	15.6	0.9A	7	3	106	14	0.17	1.4	1.8 B	311	12	1.0	49	33	1.8	204	54	4.0	
9 8 59 43.0	60 18.7		140 47.5	4.6	1.0A	7	2	151	22	0.23	1.2	2.4 B	101	2	1.1	10	10	1.0	346	39	1.0	
9 9 8 6.4	60 39.8		140 32.8	10.2	0.9A	7	3	196	54	0.77	2.3	3.1 C	132	4	1.4	41	24	4.2	238	75	5.9	
9 9 44 39.4	59 59.7		140 52.3	5.9	0.8A	6	2	182	16	0.32	1.4	1.5 B	117	17	1.1	218	30	2.3	36	1.3	194	
9 5 43 24.3	60 11.3		140 58.5	11.0	0.7A	5	3	170	5	0.20	1.0	0.8 A	81	31	0.8	187	36	1.9	318	42	3.6	
9 7 53 54.3	62 2.2		149 4.3	30.7	2.1	10	177	46	0.53	0.7	0.7 A	81	6	0.7	346	39	1.0	178	50	1.5		
9 9 11 41 6.6	61 37.7		149 54.8	41.5	2.1	24	9	99	3	0.37	0.7	1.0 A	91	2	0.9	181	6	1.2	343	84	1.8	
9 9 12 43 20.0	59 18.7		139 1.9	27.0	1.2	10	2	277	18	0.27	2.9	1.7 C	168	10	3.7	81	31	6.1	275	57	1.0	
9 9 16 47 3.8	60 9.5		141 13.2	10.8	0.6A	6	3	124	27	0.42	0.9	1.5 B	334	1	0.7	81	2	0.6	221	73	2.6	
9 9 16 50 15.5	60 16.6		140 47.4	9.8	1.2	10	5	140	19	0.24	0.7	1.4 B	298	5	0.7	30	23	0.8	196	66	2.9	
9 9 22 6 36.0	63 8.9		150 26.5	116.5	2.9	10	4	125	142	0.41	2.0	5.1 C	303	10	2.7	35	12	2.8	174	74	10.0	
9 9 22 13 43.9	59 18.7		151 30.3	10.8	0.9A	9	5	300	18	0.16	1.5	0.8 A	336	29	2.5	261	31	1.6	115	46	1.4	
9 9 22 42 29.7	62 12.1		149 19.4	39.3	2.8	27	6	115	66	0.48	1.0	3.6 C	81	7	1.1	344	8	1.2	209	77	6.8	
10 0 5 58.1	59 53.7		141 26.3	0.1	0.8A	9	2	218	26	0.40	0.7	1.9 B	346	0	1.4	261	3	0.8	76	84	3.5	
10 0 56 37.8	60 9.8		141 7.6	14.9	0.6A	4	2	156	5	0.28	0.9	0.8 A	81	23	1.4	324	35	1.9	324	46	1.0	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - FEBRUARY 1984											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ Q	AZ1 DIP1 SE1
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	KM	DEG	SEC	KM
FEB 13	23	32	37.4	60	9.7	153	26.5	147.2	3.2	21	3
14 5 39 50.9	62 17.4	149	43.6	43.5	2.2	17	9	127	72	0.84	1.3
14 7 43 48.8	61 26.6	150	15.7	46.2	1.8	16	9	89	26	0.31	0.6
14 9 46 26.5	60 4.6	139	30.3	17.7	0.9A	4	2	239	16	0.42	4.3
14 14 59 14.5	61 43.9	149	53.2	47.1	1.6	12	6	196	9	0.54	1.1
14 18 17 25.8	59 46.6	150	22.1	35.5	2.8	25	6	151	19	0.28	1.2
14 20 14 58.3	61	0.1	149	34.8	31.5	1.6A	18	6	52	27	0.39
14 20 38 14.1	60	23.4	140	57.6	16.1	1.3A	7	6	147	7	0.48
14 21 14 54.8	59	48.4	150	30.7	36.2	1.7	14	9	158	14	0.63
14 23 40 39.8	61	9.2	149	55.1	39.0	1.9	27	10	84	22	0.51
15 0 24 0.4	60	12.6	140	58.8	9.2	0.8A	6	4	120	7	0.22
15 2 12 6.7	60	13.0	141	9.8	9.4	0.6A	7	4	111	10	0.10
15 2 48 15.0	59	55.7	141	33.2	1.9	0.8A	5	2	283	25	1.01
15 4 35 57.7	60	10.5	143	19.2	5.1	1.0A	4	3	267	27	0.23
15 9 4 24.2	60	17.3	141	10.6	11.0	0.6A	9	2	119	17	1.15
15 9 58 59.1	61	43.1	142	26.1	0.7	1.8	10	5	239	76	0.40
15 10 31 8.5	60	11.6	140	59.8	10.0	0.7A	7	4	116	5	0.15
15 10 50 10.1	60	13.1	141	8.3	13.2	1.0	11	7	112	9	0.26
15 11 56 13.5	60	16.9	151	1.7	46.6	2.2	27	8	55	31	0.34
15 12 6 39.3	60	16.5	140	58.9	10.5	0.5A	6	3	157	14	0.12
15 12 7 8.6	60	17.2	141	0.0	8.1	0.8A	8	2	130	15	0.35
15 12 38 10.6	61	14.6	149	29.3	38.6	2.0	27	5	54	4	0.64
15 14 23 43.3	60	16.3	140	41.9	11.5	0.7A	8	3	145	23	0.23
15 16 18 5.0	61	36.1	142	31.1	0.2	1.4	9	6	230	64	0.44
15 17 36 6.1	61	36.1	142	30.9	22.3	1.6	10	5	230	64	0.64
15 17 36 17.2	60	18.8	152	43.2	16.0	0.7A	3	3	180	16	0.32
15 20 56 9.8	59	33.7	151	17.1	8.9	0.3A	7	5	133	5	0.23
16 2 29 30.3	60	34.9	145	6.4	11.9	1.7	24	11	106	8	1.07
16 2 34 41.7	59	56.7	151	24.9	20.7	1.3	12	4	99	13	0.28
16 4 32 42.6	60	22.7	140	43.8	14.8	0.3A	7	3	166	30	0.57
16 5 11 38.7	60	5.5	140	51.1	9.5	0.9A	10	3	136	12	0.36
16 5 36 54.8	60	26.6	143	47.1	20.1	1.6	14	7	129	29	0.82
16 5 46 33.9	60	13.1	141	5.4	13.1	0.8	12	6	115	8	0.25
16 5 48 10.2	60	12.0	141	6.2	12.0	0.1A	7	5	112	6	0.28
16 6 10 0.8	63	4.3	149	58.7	89.8	2.7	14	5	117	146	0.31
16 6 31 0.3	58	59.2	154	16.3	114.1	3.1	12	6	201	157	0.22
16 6 7 24 14.4	60	7.1	141	9.7	0.2	0.8	7	6	121	7	0.33
16 6 14 55 53.5	60	8.4	152	22.6	82.7	2.7	23	11	132	25	0.35
16 6 16 9 29.9	60	14.0	141	4.8	11.9	0.8	7	5	120	11	0.32
16 6 16 12 21.3	60	9.7	140	54.0	15.6	1.2	11	8	116	20	0.49
16 6 16 13 52 35.1	60	17.8	141	12.7	8.5	1.1	10	6	117	19	0.17
16 6 17 27 36.5	60	16.2	140	44.0	9.7	0.4A	6	4	149	21	0.16
16 6 18 2 11.9	61	39.3	148	33.3	9.5	1.5	16	7	110	21	0.56
16 6 19 31 7.6	60	34.6	152	36.7	14.2	1.0	13	4	189	11	0.63
16 6 20 31 11.5	60	11.2	140	56.7	11.4	0.6	7	6	118	6	0.15
16 6 20 53 4.9	59	5.9	153	3.3	81.4	3.0	16	19	94	3.0	0.68

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - FEBRUARY 1984

ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
1984	HR MN	SEC	DEG	MIN	DEG	MIN	DEG	KM	SEC	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	
FEB 16 21 31	13.0	60	7.7	140	55.1	6.6	1.2	10	3	114	7	0.26	1.0	0.7 A	97	13	0.6	4	14	1.9
16 22 20	39.6	60	28.2	152	17.1	21.2	0.7 A	9	4	115	13	0.56	1.1	1.6 B	81	21	1.2	172	27	0.9
16 23 14	40.9	60	6.1	139	23.4	11.6	1.1	7	3	205	21	0.40	1.6	1.6 B	124	2	0.9	32	43	1.5
17 4 25	22.4	60	5.2	141	19.9	9.2	1.1	7	5	207	10	0.22	1.1	0.8 A	290	20	0.8	189	29	2.2
17 7 59	3.3	60	41.3	142	43.7	22.8	1.9	18	10	78	44	0.46	0.5	0.6 A	340	7	0.6	261	23	0.7
17 10 40	44.5	60	13.2	141	16.4	15.2	1.1 A	7	5	121	14	0.19	1.0	1.3 A	321	25	0.6	65	26	0.9
17 11 22	6.8	61	1.4	147	6.3	12.7	2.0	20	13	91	43	0.43	0.4	0.7 A	206	13	0.6	300	14	0.5
17 11 50	51.2	60	38.3	149	54.5	36.6	1.9	28	13	46	22	0.46	0.4	0.6 A	117	1	0.8	27	12	0.6
17 14 48	53.2	61	9.3	152	17.3	4.7	0.3 A	3	3	313	13	0.07	1.2	4.6 C	333	5	1.4	261	9	1.9
17 15 16	0.5	60	10.8	141	6.4	3.7	1.9	13	8	109	5	0.64	0.5	0.6 A	303	15	0.5	40	27	0.7
17 16 21	16.8	60	16.5	140	55.6	7.6	0.9	10	6	134	15	0.19	0.7	1.3 A	93	3	0.9	2	25	0.5
17 16 47	57.2	63	13.9	150	44.5	88.1	3.3	12	4	131	145	0.89	4.1	10.5 D	296	3	1.7	26	18	4.2
17 19 23	27.9	60	10.1	141	9.9	8.5	1.4	12	7	105	8	0.13	0.6	0.5 A	81	27	0.7	312	31	0.5
17 19 30	47.6	60	10.2	141	9.8	8.5	0.8	7	3	105	7	0.12	0.7	0.8 A	287	14	0.6	26	33	1.0
17 22 48	46.3	60	11.6	140	58.5	10.4	0.7	9	5	118	6	0.31	0.8	0.9 A	296	11	0.9	34	37	0.7
18 4 26	54.7	59	18.0	152	48.8	46.8	2.9	22	12	53	338	1.2 A	325	5	1.0	81	43	1.7	20.8	
18 5 39	50.5	61	23.4	150	47.6	50.6	2.2	25	8	70	9	0.42	0.5	1.2 A	202	10	0.9	110	11	0.8
18 22 46	23.9	60	12.2	141	5.6	13.5	0.5	9	5	113	7	0.21	1.0	0.9 A	294	16	0.8	191	38	2.3
19 0 8	15.1	60	12.8	140	59.8	10.0	0.7 A	11	4	119	7	0.21	1.0	0.9 A	89	19	0.6	196	40	2.4
19 2 55	8.2	60	2.5	141	25.0	3.9	1.2	11	5	174	12	0.22	0.8	1.0 A	273	14	0.6	176	27	1.5
19 3 37	55.1	60	5.6	141	7.8	7.5	1.8	15	9	109	4	0.77	0.5	0.3 A	199	2	0.9	290	11	0.5
19 5 7	47.2	60	4.1	141	10.8	5.7	1.3	11	6	167	13	0.33	0.8	0.8 A	283	19	0.6	176	39	0.9
19 8 37	37.9	60	58.6	147	15.9	18.1	2.3	22	9	59	14	0.45	0.4	0.8 A	306	5	0.4	215	9	0.6
19 9 7	43.3	59	31.0	145	19.5	16.9	2.3	18	7	224	58	0.73	1.3	1.0 A	261	27	1.8	110	37	1.1
19 12 41	23.2	60	10.0	141	7.0	7.2	1.1	12	7	117	11	0.61	0.7	0.6 A	284	4	0.5	190	40	1.6
19 13 9	33.9	61	10.2	152	9.3	4.1	-0.6 A	3	3	283	6	0.05	1.3	1.9 B	261	5	2.0	320	21	0.9
19 14 59	49.4	59	55.3	153	17.3	115.4	2.9	18	13	148	39	0.49	1.6	1.7 B	332	5	1.4	261	33	2.5
19 19 23	47	12.4	63	1.0	147	53.8	103.1	3.1	12	5	136	0.59	2.4	5.9 D	15	9	3.6	283	16	2.3
20 1 27	2.8	60	10.2	141	9.8	10.7	0.5	4	3	198	8	0.16	0.9	0.8 A	272	8	0.9	174	43	1.9
20 14 39	1.2	61	16.5	151	31.4	72.2	2.3	26	14	146	26	0.56	0.9	1.1 A	183	23	1.1	82	24	0.8
21 1 3	58.0	61	47.3	150	38.0	56.0	2.2	20	9	145	37	0.53	0.7	1.1 A	182	1	1.2	92	6	0.7
21 2 23	11.5	60	6.8	141	13.9	9.3	0.9	10	3	148	8	0.29	0.8	0.6 A	284	11	0.6	190	23	1.5
21 2 38	26.9	60	8.8	141	37.7	4.4	1.1	6	3	203	9	0.13	1.7	1.3 B	309	16	0.7	49	31	3.5
21 3 46	50.1	60	22.9	140	9.4	1.1	11	6	176	33	0.60	0.8	1.9 A	304	10	0.7	36	11	1.4	
21 5 39	18.2	61	38.7	149	46.6	35.5	2.0	20	10	140	5	0.60	0.6	0.9 A	10	2	1.0	280	7	0.6
21 6 37	3.7	60	4.4	141	10.1	2.8	0.3 A	6	3	208	12	0.47	1.4	1.9 B	261	13	1.4	163	30	1.7
21 10 16	13.5	61	11.3	152	12.2	7.5	-0.3 A	3	3	281	8	0.04	1.2	1.4 B	337	7	1.1	261	32	2.0
21 10 18	52.7	58	59.3	136	36.2	6.1	2.1	9	5	168	132	0.41	5.9	2.8 D	218	14	11.4	121	27	2.9
21 13 11	25.3	61	16.6	152	11.7	4.4	-0.3 A	3	3	283	4	0.03	1.1	1.1 A	217	6	1.2	310	33	2.2
21 13 14	25.5	61	16.5	152	11.6	3.8	-0.3 A	3	3	285	2	0.04	1.1	0.8 A	198	3	1.0	289	18	2.2
21 16 24	3.5	61	3.9	148	12.7	26.1	1.5	18	8	114	41	0.30	0.5	1.1 A	286	0	0.6	196	14	0.8
21 16 31	48.8	62	59.1	149	35.4	114.0	3.4	14	5	159	146	0.67	3.9	5.3 C	92	2	2.2	1	33	4.3
						3.4	ML ATWC												185	
21 16 36	48.4	63	6.8	149	9.7	64.9	2.4	10	9	153	152	0.71	3.6	11.5 D	281	3	3.1	11	13	4.5
21 16 38	59.4	60	13.7	141	2.5	11.3	1.2	11	7	119	8	0.25	0.8	0.6 A	299	4	0.5	206	34	1.9
21 20 13	53.9	60	7.5	141	7.2	10.9	0.3 A	7	4	172	6	0.33	2.6	0.8 B	21	7	5.0	287	31	1.0
22 1 8	24.5	59	6.5	135	13.3	36.0	2.3	8	4	224	88	0.59	6.2	25.0 D	43	2	11.4	313	3	2.6

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - FEBRUARY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3			
1984	HR	MN	SEC	DEG	MIN	DEG	MIN	DEG	MIN	DEG	KM	DEG	KM	DEG	SEC	DEG	KM	DEG	KM	DEG	SEC	DEG	KM			
FEB 22	2	32	19.4	60	19.5	140	14.7	7.8	1.0	5	2	195	25	0.15	2.0	3.9	C	81	13	2.0	341	21	1.1	199		
	22	7	58	48.2	60	11.1	141	7.8	12.2	0.6	9	3	165	6	0.16	1.4	0.5	B	208	10	2.7	301	17	0.6	89	
	22	8	40	45.5	60	8.2	139	43.5	14.0	1.0	6	3	202	21	0.49	2.5	1.7	B	304	7	0.8	209	33	5.4	44	
	22	11	54	31.2	61	32.4	149	54.1	42.2	1.8	8	65	12	0.33	0.6	0.9	A	91	4	0.6	0	12	1.1	199		
	22	15	32	46.8	58	54.0	138	24.0	0.1	1.5	6	3	336	67	0.34	5.0	9.2	D	161	1	2.6	261	9	8.9	65	
	22	15	51	12.6	58	43.2	139	54.0	7.4	1.4A	5	3	296	100	0.17	2.6	12.2	D	311	2	4.7	220	6	3.4	59	
	22	18	24	18.9	60	13.4	141	7.1	15.7	0.7A	3	3	172	9	0.09	18.0	8.8	D	301	16	1.0	203	26	37.5	59	
	23	0	35	8.0	59	27.2	151	14.9	10.1	0.8	10	5	191	2	0.36	1.3	0.7	A	154	20	2.5	262	41	1.3	45	
	23	0	51	41.5	62	59.5	150	37.0	129.3	3.0	10	3	121	122	0.55	4.1	4.6	C	321	10	4.1	81	33	2.9	219	
	23	2	14	38.3	60	19.8	140	22.5	12.2	1.0A	6	3	222	0	0.27	2.6	3.3	C	312	18	1.5	53	30	3.0	195	
	23	3	48	52.4	60	8.4	140	53.5	6.1	0.4A	4	3	160	8	0.20	0.9	1.1	A	359	15	1.7	95	21	0.8	236	
	23	4	18	53.0	60	18.1	140	46.8	15.3	1.0A	7	4	150	22	1.1	1.4	B	119	3	0.9	27	35	1.2	213		
	23	8	58	47.0	60	3.2	141	3.0	1.8	0.9A	5	2	210	11	0.04	1.8	4.8	C	81	4	2.9	145	16	1.0	337	
	23	9	57	57.0	60	14.8	141	18.0	11.2	0.2A	5	2	172	18	0.29	13.3	5.9	D	302	9	1.4	208	23	27.0	52	
	23	10	6	48.5	62	35.5	149	55.8	38.4	2.5	19	4	105	105	0.64	1.3	1.5	B	188	13	2.4	90	31	1.0	298	
	23	10	45	36.0	61	15.2	152	16.5	20.8	0.3A	3	2	303	7	0.28	3.1	5.6	C	332	21	2.7	261	21	4.3	117	
	23	12	56	9.1	60	28.3	140	39.7	16.7	0.9A	7	2	171	41	0.18	0.8	2.2	B	309	6	0.7	40	7	1.5	179	
	23	12	57	22.7	60	28.5	140	39.0	13.9	0.7A	4	1	172	47	0.04	6.8	4.3	D	323	13	1.3	81	15	12.5	205	
	23	13	43	16.4	60	7.1	141	8.2	8.8	0.6A	8	2	189	7	0.20	3.3	1.4	C	285	5	1.5	17	21	6.6	182	
	23	15	35	44.6	61	25.1	140	10.7	5.0	1.4A	6	2	276	80	0.26	5.0	20.6	D	113	2	3.2	23	5	8.8	225	
	23	19	11	24.2	60	11.2	140	31.8	17.2	0.7A	6	2	191	18	0.20	7.4	1.1	B	294	27	3.8	294	21	4.3	117	
	23	19	38	39.0	60	22.9	142	23.1	1.9	1.0	8	3	127	27	0.45	0.6	16.8	D	263	0	0.7	353	1	0.9	173	
	23	20	23	56.0	60	8.8	141	9.8	8.8	0.2A	5	3	136	7	0.28	0.7	0.8	A	279	9	0.7	15	33	1.1	176	
	23	23	10	4.0	60	9.6	141	1.0	11.3	1.5	1.5	13	4	110	12	0.36	0.7	0.8	A	299	2	0.6	30	35	0.9	206
	24	0	18	55.2	60	10.8	141	8.4	12.8	0.4A	6	4	143	7	0.10	1.4	0.8	B	280	5	0.7	188	24	2.8	21	
	24	0	52	51.9	60	12.0	141	8.2	9.0	0.6	11	4	110	15	0.31	1.2	1.7	B	296	0	0.6	26	33	0.8	206	
	24	2	28	15.2	59	49.3	151	15.0	42.2	1.6	1.6	11	5	90	5	0.32	0.6	1.0	A	16	0	0.9	286	17	1.1	106
	24	4	57	50.5	60	17.2	140	54.2	0.2	0.4A	6	2	137	28	0.35	2.3	4.1	C	294	0	0.9	24	21	3.3	204	
	24	6	47	6.3	60	19.4	152	58.1	132.2	4.0	22	6	150	18	0.39	1.5	2.2	B	338	3	1.4	261	8	2.6	90	
	4.3	NB																								
	24	10	29	56.2	59	54.6	140	57.8	8.1	0.7	9	4	188	19	0.34	0.8	1.0	A	112	7	0.6	207	34	1.2	12	
	24	15	35	29.1	59	17.4	150	53.8	4.1	1.0A	10	4	282	28	0.29	1.0	1.3	A	96	17	1.2	194	23	1.5	333	
	24	18	28	44.5	60	10.8	141	8.3	10.8	0.7	14	11	107	7	0.55	0.7	0.5	A	300	24	0.5	199	24	1.4	70	
	24	20	5	6.8	60	23.5	151	46.5	84.5	2.6	24	12	174	47	0.27	0.8	1.5	B	2	4	0.7	271	7	1.4	121	
	24	20	38	58.3	60	12.2	141	7.7	9.9	0.6	11	3	111	8	0.18	0.8	0.7	A	294	16	0.6	191	37	1.8	43	
	24	22	0	0.3	60	15.5	140	44.6	14.1	0.8A	8	5	151	33	0.40	1.1	1.2	A	301	10	0.6	40	40	1.9	200	
	25	6	2	22.1	60	11.1	141	7.7	10.4	0.2A	6	1	162	6	0.04	1.3	1.4	B	96	4	0.8	2	41	1.5	191	
	25	7	55	22.5	58	12.8	151	54.0	58.0	2.9	11	7	192	63	0.89	9.0	5.0	D	23	12	1.1	288	22	18.0	140	
	3.9	NB																								
	25	8	10	7.0	60	3.0	140	59.8	4.0	0.6A	8	2	163	12	0.43	2.4	2.6	C	138	21	0.8	261	26	1.5	23	
	26	1	11	21.1	61	20.7	150	42.4	61.3	1.0A	4	5	157	13	0.29	1.4	2.5	B	280	6	1.2	189	8	2.6	46	
	26	2	7	30.0	61	10.1	151	19.1	65.5	1.9	9	4	81	40	0.42	0.8	1.8	B	198	3	1.5	107	8	1.4	308	
	26	7	32	45.2	61	22.3	151	43.4	81.1	3.1	28	5	105	17	0.35	0.9	1.3	A	40	1	0.9	131	32	1.0	308	
	26	9	23	33.2	60	13.4	141	4.5	9.9	0.3A	6	2	116	8	0.31	1.1	1.3	A	261	18	1.9	347	36	1.2	28	
	26	10	35	25.9	59	49.7	141	24.9	2.2	1.0A	9	4	226	31	0.57	0.9	2.7	B	203	3	1.6	293	10	1.4	146	
	26	11	23	27.8	61	26.5	149	39.5	31.8	3.5	32	5	84	23	0.46	0.5	0.7	A	181	8	0.9	272	10	0.7	53	
	26	11	29	53.9	61	27.4	149	39.6	33.9	2.0	21	7	88	24	0.70	0.5	0.8	A	269	10	0.6	176	18	0.8	27	
	26	14	55	48.5	60	16.4	141	6.2	9.9	0.9	7	6	121	14	0.10	0.9	1.4	B	315	13	0.6	51	25	1.0	200	
	26	16	25	39.8	60	9.3	140	56.7	10.2	1.3	12	4	113	5	0.48	0.7	0.8	A	114	1	0.8	23	42	0.7	205	
	26	20	13	3.1	61	26.8	149	40.2	35.7	1.7	17	8	84	23	0.54	0.5	0.9	A	175	3	1.0	265	10	0.6	68	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - FEBRUARY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	CAP	D1	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
1984 FEB 26 20 14 26.5	58.0	60	16.1	141	12.6	12.1	1.0	10	5	114	16	0.25	1.0	1.0 A	325	20	0.6	81	29	1.1	210	48	2.4	
26 21 54 47.2	59	58.7	60	18.3	140	55.2	9.3	1.0	9	6	139	18	0.38	0.8	1.3 A	327	16	0.6	81	17	0.7	205	57	2.7
26 23 19 58.0	59	58.7	60	28.3	143	11.2	19.8	1.9	17	12	110	19	0.40	0.4	0.6 A	272	8	0.5	180	16	0.9	28	72	1.5
27 0 14 21.3	59	58.7	60	28.3	152	32.5	76.5	3.1	22	10	133	46	0.25	1.1	1.1 A	320	2	0.8	81	25	1.8	226	51	2.8
27 3 12 24.3	59	47.3	152	32.5	3.5	ATWC																		
27 3 21 39.8	61	22.6	146	48.8	18.6	2.1	23	11	55	38	0.50	0.3	0.7 A	190	5	0.6	281	13	0.4	79	76	1.3		
27 8 2 0.6	60	24.0	141	23.0	16.1	1.1	8	4	115	21	0.41	0.9	1.7 B	342	9	0.7	81	25	0.8	234	62	3.5		
27 8 28 15.3	60	18.3	140	55.2	4.1	0.1A	3	3	309	12	0.01	1.3	13.0 D	261	3	1.9	329	5	1.3	135	67	22.7		
27 9 42 0.7	61	9.6	152	16.2	4.2	3	2.8	29	10	85	15	0.46	0.5	1.0 A	92	2	0.5	182	3	1.0	328	86	1.9	
27 12 20 47.1	61	43.4	150	7.4	41.2	2.0	24	11	144	14	0.45	0.6	0.7 A	271	0	0.5	1	1	1	1.2	181	89	1.4	
27 12 42 41.3	61	42.9	150	6.8	17.1	0.8	9	4	118	13	0.40	1.1	1.0 A	314	18	0.7	60	42	1.2	206	43	2.6		
27 18 10 19.8	60	15.6	141	8.4	10.0	0.8	7	3	199	23	0.36	2.9	4.2 C	81	9	4.2	329	25	1.4	187	56	8.6		
27 18 56 39.5	60	18.1	140	15.4	20.6	1.0	6	257	146	0.68	4.4	25.0 D	288	2	3.1	19	7	5.3	182	83	50.2			
27 22 49 39.6	63	3.2	149	14.1	57.1	2.4	10	6	257	146	0.68	4.4	25.0 D	288	2	3.1	307	6	1.3	145	84	5.6		
27 23 13 23.6	59	23.6	140	7.3	15.0	0.8A	5	5	236	51	0.71	1.3	3.0 C	37	2	2.5	278	29	1.7	142	52	3.8		
28 1 0 41.4	60	0.6	152	3.8	63.3	2.6	21	9	140	43	0.36	0.9	1.2 A	328	5	0.7	81	27	1.2	230	55	2.3		
28 1 49 27.3	60	7.6	141	11.8	3.6	1.4	11	7	130	8	0.81	0.4	0.7 A	44	2	0.8	312	28	0.5	138	62	1.4		
28 7 16 9.0	60	17.7	141	5.9	1.8	0.8	8	5	125	16	0.43	0.8	1.7 B	328	9	0.6	81	12	1.0	210	63	3.2		
28 7 57 39.1	61	13.3	149	20.6	36.0	1.8	21	10	51	12	0.43	0.4	0.7 A	313	5	0.8	222	17	0.7	59	72	1.3		
28 13 7 19.6	59	40.5	151	11.7	46.5	1.4	11	4	79	9	0.20	1.4	1.7 B	21	22	1.4	333	20	0.6	206	58	2.8		
28 13 42 41.4	60	16.7	141	4.9	9.4	0.9	8	6	124	14	0.18	0.9	1.3 B	81	19	1.0	333	20	0.6	139	87	1.7		
28 14 50 35.6	60	34.1	141	37.6	10.1	0.8	14	8	101	24	0.83	0.4	0.9 A	31	1	0.7	301	3	0.6	181	22	1.8		
28 15 4 17.9	59	31.0	151	20.4	11.1	0.7	10	6	92	6	0.25	1.0	0.6 A	81	22	0.5	293	40	0.7	181	22	1.8		
28 17 59 22.9	61	7.1	152	29.2	2.8	1.0	5	5	231	24	0.62	1.4	1.3 B	210	16	0.7	113	22	2.7	333	62	2.5		
29 4 6 59.2	59	55.8	153	5.7	114.5	3.0	23	9	143	32	0.48	1.5	1.4 B	155	1	1.3	261	44	2.0	64	44	3.2		
29 7 29 3.3	60	57.6	147	16.5	15.2	2.1	23	9	87	45	0.38	0.5	1.1 A	183	11	0.8	277	15	0.5	58	71	2.3		
29 9 12 27.8	60	10.0	141	6.9	8.6	0.9	7	5	121	5	0.33	0.8	0.7 A	81	26	1.1	327	35	0.7	197	42	1.8		
29 9 18 45.4	60	16.8	140	44.5	13.6	0.6A	9	5	143	21	0.38	0.8	1.2 A	316	12	0.7	53	28	0.9	205	59	2.6		
29 9 19 23.9	60	21.3	141	13.9	16.1	0.6A	6	4	122	25	0.34	1.3	1.9 B	323	9	0.7	81	26	1.0	219	52	3.9		
29 9 33 33.5	60	39.2	149	44.9	36.2	1.2	13	6	74	28	0.58	0.6	0.9 A	289	2	1.0	20	26	0.8	195	64	1.8		
29 12 50 43.0	61	17.6	152	12.9	7.3	1.9	17	8	120	11	1.24	0.7	0.5 A	114	31	1.5	228	33	0.6	352	41	0.8		
29 13 47 32.2	59	55.6	140	6.4	14.1	1.3	10	4	159	21	0.84	1.5	1.3 B	298	5	0.7	32	38	3.4	202	52	1.4		
29 14 3 59.2	61	1.4	147	15.0	21.0	2.3	23	8	81	48	0.41	0.4	1.0 A	192	6	0.7	284	14	0.5	79	75	2.0		
29 15 8 45.3	59	56.8	140	12.5	13.0	1.3	10	4	159	17	0.70	1.7	1.2 B	133	16	0.7	261	43	1.1	31	34	3.6		
29 16 51 36.6	62	33.6	149	38.4	79.1	2.8	15	6	141	102	0.46	0.9	3.4 C	297	1	1.4	27	11	1.1	202	79	6.5		

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984																						
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG				CAP	DI	RMS	SEH	SEZ Q	AZI	DIP1	SE1	AZZ	DIP2	SE2				
				DEG	MIN	SEC	KM															
1984 MAR 1 1 58 28.0 61 10.1 152 12.3 7.9 0.9A 3 3 184 8 0.31 25.0 25.0 D 311 19 1.5 261 40 0.7 64 34 60.1	1 4 37 27.5 59 53.0 141 23.9 0.8 1.8 13 4 188 25 0.58 0.9 1.3 A 282 4 0.7 190 26 1.3 20 64 2.7	1 4 41 11.5 59 50.9 141 20.0 0.6 0.9 4 2 273 27 0.22 1.6 3.4 C 204 2 3.0 294 16 1.9 107 74 6.7	1 4 57 41.7 60 9.8 141 3.9 6.3 0.8 7 3 108 2 0.64 0.5 0.5 A 265 4 0.9 171 39 1.2 0 51 0.7	1 6 3 1.1 60 13.3 140 49.2 9.9 0.8A 6 2 156 14 0.12 4.3 4.2 C 91 14 0.7 348 42 1.7 195 45 11.2	1 7 58 54.1 60 1.2 141 44.4 8.9 1.7A 9 6 180 38 0.55 0.8 1.0 A 132 12 0.7 228 29 1.3 22 58 2.2	1 8 15 21.3 60 25.9 141 18.7 22.0 0.6A 4 4 129 25 0.13 1.2 2.3 B 115 5 1.9 23 24 1.2 216 65 4.6	1 10 3 55.0 61 11.5 152 28.2 18.4 0.8A 4 4 245 19 0.07 1.8 2.4 B 317 17 2.5 217 30 0.9 73 55 5.4	1 10 10 1.2 60 11.4 141 8.2 11.8 1.1A 5 2 174 7 0.26 5.6 1.7 D 203 15 10.8 106 24 1.8 322 61 1.3	1 11 52 6.8 60 13.5 140 50.8 15.3 1.5 8 6 131 13 0.33 1.0 1.0 A 115 7 0.7 212 43 2.5 18 46 1.1	1 14 3 39.0 60 31.0 141 23.0 17.3 1.4 10 6 119 27 0.54 0.7 1.2 A 163 3 0.6 81 26 1.0 259 63 2.4	1 14 6 17.5 59 34.6 138 54.6 16.1 0.7 4 2 216 14 0.28 7.7 3.8 D 328 27 0.8 261 37 13.3 98 41 2.8	1 14 10 55.8 60 10.1 140 55.8 9.8 0.8A 6 5 116 6 0.21 1.0 0.8 A 83 33 0.8 325 35 1.2 203 37 2.2	1 15 28 16.9 60 5.2 141 15.9 7.0 0.9 7 2 211 9 0.12 1.6 1.5 B 51 25 3.0 303 34 1.3 169 46 3.3	1 15 57 20.1 60 18.1 140 59.8 11.9 1.1A 7 5 130 17 0.25 1.0 1.6 B 81 16 1.2 345 22 0.7 204 62 3.4	1 16 1 7.4 61 41.8 149 29.8 42.8 1.7 16 8 151 21 0.54 0.7 1.1 A 114 4 0.9 204 4 1.3 339 84 2.1	1 19 6 48.9 60 16.3 140 51.8 14.0 1.2A 6 4 138 16 0.67 1.4 2.2 B 89 8 1.6 354 31 1.0 192 58 4.7	1 19 17 30.4 60 11.3 141 17.0 17.2 1.1A 5 3 160 14 0.29 1.5 1.7 B 81 23 2.0 327 27 0.8 201 49 3.9	1 20 39 55.8 60 43.4 143 26.8 11.6 1.2A 9 5 146 69 0.60 1.2 2.5 B 274 0 0.9 184 11 2.2 4 79 4.7	2 10 43 49.9 60 12.9 141 17.2 0.7 0.9 10 2 119 16 0.53 1.1 2.3 B 81 2 1.4 315 12 0.8 178 52 3.7	2 13 1 53.5 62 30.4 150 54.5 74.0 3.0 18 3 82 67 0.83 0.9 1.8 B 97 6 1.4 5 19 1.0 204 70 3.7	2 13 18 36.2 61 29.1 149 41.8 36.3 1.8 21 9 90 21 0.56 0.5 0.6 A 273 7 0.5 180 20 0.9 21 69 1.2	2 13 20 20.1 61 30.5 146 24.2 22.0 2.9 28 5 79 42 0.60 0.4 0.9 A 304 2 0.6 34 4 0.8 187 86 1.7
2 14 57 32.5 62 22.6 148 28.6 45.0 2.9 24 6 97 64 0.53 0.9 3.5 C 85 3 1.2 354 12 0.9 189 78 6.8	2 15 19 7.4 60 16.6 141 14.7 10.5 0.4A 4 3 181 18 0.18 4.7 9.0 D 113 9 3.3 19 25 2.2 221 63 18.9	2 15 53 57.6 60 13.9 152 58.6 112.3 2.6 17 4 244 11 0.25 2.0 1.7 B 157 16 1.8 261 30 4.1 44 54 2.7	2 17 5 33.1 59 1.1 137 55.2 19.3 1.8 5 4 349 73 0.25 25.0 3.7 D 315 0 6.0 225 6 60.3 45 84 2.9	2 18 28 39.6 60 20.7 141 21.6 12.1 1.1 8 5 114 21 0.39 1.0 1.5 B 331 10 0.6 81 26 0.9 224 56 3.2	2 18 55 20.4 61 5.6 152 11.0 6.8 0.8 4 165 12 0.40 2.2 2.4 B 306 27 2.4 200 28 0.5 72 49 5.9	2 19 2 0.5 61 36.0 149 24.0 35.3 1.3 14 10 136 20 0.67 0.5 0.8 A 182 9 1.0 274 14 0.7 60 73 1.5	2 23 11 9.2 62 20.2 149 3.5 19.6 2.1 6 204 70 0.55 1.0 1.5 B 174 5 1.7 267 27 1.1 74 62 3.2	3 1 23 47.6 62 59.8 150 48.5 128.1 3.1 12 6 193 119 0.32 4.2 4.0 C 319 24 4.6 81 30 2.9 204 42 9.7	3 4 30 23.7 59 56.0 141 18.6 2.7 1.0 11 2 176 18 0.33 1.8 2.6 B 158 21 1.5 261 23 1.7 32 57 5.7	3 5 15 47.3 60 42.3 139 55.7 1.9 0.9A 5 2 225 70 0.32 5.8 7.0 D 172 3 1.4 264 33 8.8 77 57 14.7	3 5 52 5.8 60 2.2 139 53.8 15.7 1.2 7 4 159 17 0.64 2.3 0.6 B 302 0 0.7 32 1 4.4 212 89 1.1	3 5 53 11.7 60 14.2 140 60.0 12.2 0.7A 5 3 271 9 0.18 2.6 1.3 B 172 18 5.2 279 42 2.4 65 43 0.9	3 6 16 46.3 59 50.8 141 11.3 20.0 0.7 4 3 262 24 1.05 2.7 3.3 C 81 6 2.9 154 38 1.3 343 49 7.5	3 12 0 0.6 59 30.7 151 18.2 12.3 0.6 10 3 106 4 0.39 1.0 0.9 A 27 32 0.6 272 34 1.3 148 40 2.4	4 10 51 52.0 59 53.2 150 25.4 31.1 2.5 24 9 127 13 0.61 0.6 1.0 A 308 3 1.1 329 16 0.8 183 63 2.5	4 17 26 35.4 60 17.5 140 42.9 13.6 0.6A 7 5 154 23 0.34 0.9 1.5 B 291 4 0.6 24 29 0.9 194 61 3.1	4 17 38 50.1 60 11.9 141 2.8 1.7 0.2A 4 4 169 5 0.17 1.2 2.0 B 290 4 0.5 22 30 0.8 193 60 4.3	4 19 14 3.5 61 20.3 146 40.6 23.5 2.2 19 9 62 30 0.65 0.4 0.6 A 195 6 0.7 286 8 0.5 69 80 1.2	4 23 38 56.3 60 11.2 139 44.0 15.0 1.0A 7 4 194 27 0.49 2.0 1.3 B 110 11 0.9 205 27 4.2 60 61 1.6	5 1 52 16.1 60 13.6 152 7.3 82.7 2.7 21 9 103 39 0.33 0.7 1.7 B 81 3 1.4 351 5 0.9 202 84 3.2		

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984

1984	ORIGIN TIME	LAT	N	LONG	W	DEPTH	KM	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1			DIP1			SE1			AZ2			DIP2			SE2			AZ3			DIP3			SE3		
																	DEG	MIN	SEC	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM											
MAR	5 7 50	26.9	60	15.1	141	2.2	9.2	0.6A	8	3	123	11	0.08	0.9	1.3	A	83	14	1.0	345	28	0.8	197	58	2.8																		
	5 9 45	8.6	60	15.9	141	8.8	8.0	0.5A	6	4	118	14	0.17	1.4	2.1	B	301	4	0.7	33	30	1.4	204	60	4.4																		
	5 16 23	7.1	62	17.8	151	26.3	87.5	2.9	18	5	102	36	0.48	1.3	1.8	B	115	9	2.3	22	21	1.4	227	67	3.6																		
	5 20 25	4.6	60	40.2	137	49.5	18.5	1.6A	6	4	283	128	0.15	2.2	1.5	B	127	5	3.0	219	19	4.3	23	70	2.7																		
	5 21 58	50.3	60	2.0	140	34.8	8.1	0.8A	8	4	175	19	0.58	2.1	1.8	B	280	3	0.6	13	41	5.0	187	49	1.3																		
	6 1 48	41.7	60	2.6	141	34.8	3.8	0.6	7	6	183	13	0.27	0.7	1.5	B	261	5	0.8	170	8	1.3	23	81	2.8																		
	6 6 149	7.8	60	2.2	141	35.8	0.1	0.4	6	5	187	14	0.23	0.6	2.6	B	91	1	0.7	181	2	1.1	334	88	4.9																		
	6 4 20	5.6	60	13.9	141	6	10.1	0.5A	6	4	147	9	0.29	1.1	1.1	A	319	24	1.1	81	27	1.2	202	44	2.5																		
	6 6 29	51.6	59	52.4	141	29.3	7.9	1.2	14	6	183	36	0.56	0.7	1.2	A	103	7	0.7	195	19	1.2	354	70	2.4																		
	6 10 37	47.5	60	43.8	150	17.8	43.9	1.6	21	10	37	24	0.31	0.5	1.0	A	81	2	0.6	345	11	0.8	181	77	1.9																		
	6 11 13	36.2	61	24.9	151	41.6	20.6	0.4A	3	3	209	30	0.16	16.5	25.0	D	27	6	0.7	119	17	3.9	278	72	99.0																		
	6 12 17	10.0	63	11.7	150	43.0	120.4	2.9	9	7	292	142	0.31	8.9	13.4	D	286	3	4.6	18	32	6.4	191	58	29.4																		
	6 12 17	23.0	60	10.4	152	33.6	87.5	2.5	22	10	129	14	0.23	1.1	1.1	A	148	9	0.9	261	38	2.3	48	46	1.6																		
	6 12 35	3.7	60	17.6	141	11.0	9.5	0.9	7	4	150	18	0.36	1.0	1.5	B	309	7	0.6	43	26	1.4	205	63	3.2																		
	6 13 1	20.3	60	15.0	161	13.3	12.1	0.2A	5	4	142	15	0.24	1.8	2.0	B	302	4	0.7	36	41	2.1	207	49	4.6																		
	6 15 30	4.0	61	54.5	148	58.7	14.6	1.2	16	7	166	31	0.81	0.7	0.9	A	15	3	1.0	283	34	0.6	109	56	2.0																		
	6 17 57	57.6	60	27.6	143	13.2	19.4	1.9	15	11	114	20	0.37	0.4	0.7	A	22	8	0.8	291	12	0.4	145	76	1.3																		
	6 18 22	35.7	60	27.3	140	42.9	18.0	0.7A	5	3	201	38	0.62	1.9	6.8	D	288	5	1.0	18	8	3.0	166	81	12.9																		
	6 18 35	18.9	60	17.9	140	21.2	3.7	0.8A	9	5	169	23	0.73	1.1	1.9	B	295	5	0.9	27	16	1.9	188	73	3.7																		
	6 19 4	41.8	60	53.8	149	6.6	28.9	2.3	29	11	87	6	0.48	0.4	0.7	A	335	11	0.7	261	19	0.6	98	63	1.3																		
	6 20 22	6.9	60	7.7	141	15.2	7.9	1.0	7	3	139	13	0.25	1.5	1.1	B	281	15	0.7	19	29	3.1	167	57	1.8																		
	6 20 58	30.2	60	34.2	149	34.9	40.3	1.8	24	13	46	15	0.35	0.4	0.7	A	37	2	0.5	306	12	0.8	136	78	1.3																		
	7 0 40	56.5	60	39.4	140	39.2	10.7	1.1A	11	5	190	51	0.52	0.8	1.9	B	132	1	0.7	222	5	1.4	31	85	3.5																		
	7 0 41	10.0	60	41.7	140	34.6	6.0	1.7	11	6	198	51	0.83	1.5	1.4	B	318	1	0.6	261	42	1.6	49	39	3.1																		
	7 1 23	17.9	60	5.7	141	1.0	7.6	0.4A	5	2	217	7	0.17	3.3	1.8	A	16	27	7.0	126	35	0.9	257	43	1.9																		
	7 2 35	57.0	61	7.4	148	22.4	29.3	3.1	37	10	48	32	0.46	0.4	0.6	A	81	6	0.5	173	25	0.7	338	64	1.2																		
	7 3 56	36.7	60	12.2	141	7.8	10.3	0.8	11	8	111	8	0.23	0.6	0.6	A	308	24	0.6	56	35	0.7	191	45	1.5																		
	7 5 37	10.9	60	8.7	141	6.9	8.7	0.8	7	4	111	5	0.31	0.6	0.7	A	39	14	1.0	301	32	0.9	150	55	1.4																		
	7 6 10	29.0	60	9.7	141	4.5	5.9	1.5	13	9	134	3	0.61	0.5	0.4	A	297	22	0.4	195	28	0.9	60	53	0.6																		
	7 6 52	44.2	61	4.5	140	22.3	23.5	0.7A	3	3	268	107	0.20	9.0	11.5	D	308	5	2.5	215	37	5.1	45	53	26.9																		
	7 7 2	50.1	61	5.2	152	19.8	4.1	0.8A	3	3	201	18	0.26	1.5	25.0	D	23	0	0.7	293	1	2.3	113	89	9.0																		
	7 7 9	42.0	60	26.3	140	23.9	4.3	0.2	16	6	182	39	0.61	0.7	1.2	A	81	3	1.0	321	9	0.5	185	59	1.9																		
	7 7 9 49	33.7	60	25.3	140	28.3	7.3	1.3	12	8	175	38	0.88	0.6	1.1	A	311	7	0.5	42	14	1.1	195	74	2.2																		
	7 10 14	51.5	60	23.0	140	28.8	13.9	0.9A	8	6	189	34	0.81	1.9	2.9	C	307	14	1.0	44	25	1.9	191	61	6.0																		
	7 12 25	10.6	60	18.1	140	32.3	9.3	0.7A	8	5	184	28	0.30	1.4	2.4	B	289	10	0.7	23	22	2.0	176	66	4.9																		
	7 12 48	35.6	60	14.4	140	33.1	15.1	0.8	9	5	169	23	0.32	1.7	1.6	B	288	11	0.7	187	42	3.9	30	46	1.8																		
	7 14 55	27.2	61	53.7	148	58.2	8.9	1.9	20	11	165	30	0.84	0.5	0.6	A	5	10	0.8	269	32	0.4	110	56	1.3																		
	7 15 11	25.2	61	11.6	150	41.1	47.5	1.7	22	8	57	30	0.50	0.5	1.3	A	273	2	0.6	182	12	0.8	206	40	1.3																		
	7 15 50	44.5	61	19.1	151	16.2	63.0	2.1	26	9	83	32	0.41	0.7	1.2	A	312	4	0.5	43	22	0.7	212	68	2.2																		
	8 0 49	41.1	60	15.9	141	22.6	71.7	3.0	26	10	103	23	0.26	0.6	1.1	A	81	9	1.0	345	19	0.8	19																				

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984

ORIGIN TIME	LAT N			LONG W			DEPTH	MAG	NP	NS	GAP	D1	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
	HR	MIN	SEC	DEG	MIN	KM	DEG	KM	SEC	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM		
1984 MAR 9 7 11 32.8	61	39.5	149	37.0	31.7	1.6	15	7	143	14	0.59	0.6	1.1 A	197	8	1.0	289	10	0.6	69	77	2.2		
9 9 0 28.5	60	6.9	140	57.3	13.8	1.0	9	6	169	6	0.31	1.5	0.5 B	21	1	2.7	112	41	0.8	290	49	0.9		
9 9 48 31.8	60	15.3	141	16.9	11.2	0.5A	8	4	111	18	0.35	0.7	0.9 A	307	19	0.6	46	24	1.2	183	59	2.0		
9 10 56 12.3	61	42.2	150	57.5	60.5	2.9	22	11	83	29	0.53	0.6	1.1 A	81	11	0.7	171	17	1.1	319	70	2.1		
9 12 38 50.6	60	8.2	140	58.3	7.2	-0.1A	4	4	155	4	0.29	0.7	0.6 A	198	16	1.4	100	26	0.8	316	59	1.2		
9 13 47 31.4	60	20.3	141	11.3	9.4	0.6A	7	5	124	22	0.34	1.0	2.1 B	310	3	0.6	42	23	0.9	213	67	4.3		
9 13 47 58.5	60	1.7	139	53.8	12.6	1.1	8	5	156	17	0.48	2.0	0.8 A	34	8	3.7	301	19	0.6	146	69	1.4		
9 15 11 18.8	61	18.5	150	49.4	46.3	1.7	12	9	75	18	0.52	0.5	1.0 A	117	8	0.7	209	12	0.8	354	75	1.9		
9 16 42 50.6	60	17.9	140	54.1	8.2	0.6A	5	4	165	18	0.14	1.6	2.0 B	302	10	0.8	40	36	1.1	199	52	4.8		
9 22 8 53.6	60	15.5	140	59.8	1.6	0.7A	6	4	126	12	0.46	0.7	1.5 B	124	1	0.7	33	22	0.9	216	68	2.9		
10 0 56 26.3	61	54.6	149	21.9	36.7	3.0	19	6	166	36	0.44	1.0	0.9 A	90	2	0.9	181	41	2.2	358	49	1.4		
					3.0	ML ATWC																		
10 4 28 1.9	61	8.3	150	36.5	49.2	1.7	22	13	67	37	0.49	0.4	1.2 A	223	8	0.7	132	9	0.6	354	78	2.2		
10 5 1 34.3	60	22.4	141	23.7	10.4	1.0	14	9	112	19	0.61	0.4	0.7 A	353	10	0.5	86	21	0.6	239	67	1.4		
10 5 14 31.5	60	10.5	141	8.7	7.3	1.1	12	5	106	7	0.37	0.7	0.8 A	299	7	0.7	35	41	0.9	201	48	1.8		
10 7 51 33.8	60	10.1	141	9.3	8.8	1.3	14	10	105	7	0.35	0.5	0.5 A	288	17	0.5	184	38	1.1	37	47	0.7		
10 11 1 51.7	60	21.0	140	45.9	6.9	1.2A	9	4	149	27	0.40	0.7	1.7 B	307	10	0.8	40	14	1.1	183	73	3.3		
10 11 28 0.4	60	10.4	141	6.0	10.8	1.1A	8	4	108	4	0.13	1.0	0.6 A	184	25	2.0	296	38	0.8	70	41	1.0		
10 14 46 8.6	60	6.2	141	16.0	15.0	0.8A	7	3	161	14	0.62	1.2	1.0 A	280	8	0.8	15	32	2.4	178	57	1.5		
10 15 4 49.7	61	12.0	148	32.3	34.2	2.2	33	13	75	24	0.51	0.5	0.6 A	196	18	0.6	94	32	0.7	311	52	1.2		
10 18 5 59.1	60	28.8	140	39.3	14.4	1.4A	8	5	170	42	0.37	0.8	1.6 B	305	4	0.8	36	7	1.4	186	82	3.0		
10 20 7 22.9	60	2.8	141	20.8	0.1	1.4	12	4	155	21	0.75	0.7	1.3 A	270	1	0.5	180	13	1.2	4	77	2.5		
11 2 18 29.0	60	15.5	144	54.8	34.2	1.3A	9	6	202	35	0.90	1.0	0.9 A	279	10	0.9	184	28	1.9	27	60	1.6		
11 2 53 11.4	60	14.1	141	0.3	5.1	2.7	17	9	122	9	0.83	0.4	0.5 A	288	1	0.4	18	26	0.6	196	64	1.1		
					3.4	ML ATWC																		
11 4 21 5.2	60	12.5	141	4.2	8.6	0.9	8	5	115	6	0.37	0.7	0.7 A	81	19	0.8	335	34	0.6	194	49	1.7		
11 4 23 25.3	61	22.1	139	59.5	4.4	1.4A	4	3	291	85	0.47	4.3	25.0 D	359	2	6.3	89	3	3.6	235	86	99.0		
11 4 23 46.7	61	22.9	140	2.4	0.6	2.0A	4	3	306	0	0.21	3.4	7.4 D	81	6	3.3	316	7	4.1	196	54	11.8		
11 4 49 45.1	60	12.0	141	3.5	10.1	1.2	15	10	114	5	0.31	0.5	0.6 A	329	28	0.6	76	29	0.7	203	48	1.3		
11 5 4 26.5	60	26.1	152	15.1	77.7	2.3	24	11	68	18	0.45	0.8	1.1 A	167	5	0.8	81	26	1.3	267	63	2.1		
11 6 34 4.2	60	36.4	145	8.7	13.4	1.6	12	8	82	9	0.64	0.6	0.7 A	342	7	0.8	81	38	0.6	243	51	1.6		
11 10 25 37.4	60	15.7	141	4.9	9.2	0.8	14	9	121	12	0.42	0.6	0.8 A	317	20	0.6	56	22	0.8	189	59	1.6		
11 10 44 32.6	60	13.3	141	4.2	7.2	0.8A	5	3	174	8	0.15	0.9	1.1 A	279	9	1.0	16	34	1.1	176	54	2.5		
11 10 50 16.8	60	15.6	141	39.6	8.3	0.7	11	4	90	12	0.40	1.0	0.9 A	321	7	0.7	261	15	1.6	66	51	1.4		
11 13 39 59.2	60	17.6	141	26.1	10.9	1.3	15	10	104	17	0.41	0.5	0.6 A	324	13	0.5	81	17	0.6	207	56	1.2		
11 18 5 31.7	60	11.7	141	1.0	11.2	1.4	15	10	116	5	0.28	0.6	0.5 A	99	2	0.6	191	38	1.3	6	52	0.8		
11 23 5 56.4	60	11.8	141	21.9	3.0	1.2A	11	5	125	19	0.56	0.6	1.2 A	102	2	0.8	12	4	1.1	219	86	2.3		
11 23 10 33.7	59	37.5	152	52.7	98.0	3.1	20	13	145	0	0.33	1.5	1.4 A	140	2	1.1	81	39	2.9	232	42	1.9		
					3.6	ML ATWC																		
12 1 10 49.0	60	10.9	140	57.8	20.9	0.6A	5	2	128	5	0.17	6.7	3.9 C	292	0	1.0	22	3	1.3	202	87	7.4		
12 1 14 26.3	60	35.9	143	38.5	7.1	0.9A	9	3	96	45	0.37	0.7	1.0 A	168	7	1.3	81	20	1.0	277	69	2.1		
12 5 50 18.7	60	4.8	141	17.5	0.5	0.8A	6	2	205	17	0.10	1.9	4.0 C	198	2	3.5	288	9	0.9	96	81	7.6		
12 7 31 2.9	60	26.4	145	25.4	13.1	0.9	10	4	216	16	0.25	1.5	0.8 B	39	17	2.9	141	35	1.0	288	50	1.3		
12 8 3 12.6	61	59.8	150	58.9	67.3	2.4	21	8	118	29	0.34	0.7	1.0 A	168	7	1.3	81	20	1.0	277	69	2.1		
12 11 23 58.8	60	4.6	139	33.4	17.4	1.0	6	2	205	15	0.38	4.3	2.1 C	322	23	1.3	221	25	8.9	89	55	1.3		
12 13 2 30.9	60	7.5	141	6.3	8.8	0.9	10	5	84	5	0.28	0.7	0.4 A	99	4	0.6	8	10	1.3	210	79	0.8		
12 14 48 54.3	63	8.9	150	6.5	75.0	2.5	11	4	268	149	0.42	5.4	21.3 D	93	3	4.9	3	5	9.6	214	84	40.2		
12 17 38 12.8	62	14.1	151	14.2	80.2	2.4	12	6	252	32	0.41	1.3	1.7 B	81	12	1.4	343	17	2.2	203	68	3.3		
12 19 49 39.3	60	59.2	147	13.8	29.7	2.4	26	12	83	51	0.58	0.3	0.6 A	0	0	0.6	270	5	0.4	90	85	1.0		
12 20 36 0.1	59	41.2	140	53.7	5.6	1.7	12	4	191	53	0.55	0.8	1.4 B	299	0	0.8	209	16	1.3	29	74	2.8		
12 20 52 44.7	60	13.1	141	9.2	10.1	1.4	13	5	111	10	0.44	0.5	0.6 A	55	26	0.8	311	27	0.5	182	51	1.3		

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984											
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS
1984	HR	MIN	SEC	DEG	MIN	KM	DEG	SEC	KM	DEG	DEG
MAR 12 23 25	0.8	61	24.5	151	41.3	22.4	0.7A	3	4	211	30
	13 0 41	56.9	60	25.4	141	16.7	10.4	1.5	13	4	0.23
	13 2 37	13.4	60	32.9	137	44.1	15.9	1.6	7	3	27
	13 3 54	49.2	60	1.7	141	34.2	1.1	0.9A	8	4	299
	13 5 35	8.9	61	37.3	151	50.4	108.5	2.6	25	8	0.05
	13 6 48	2.0	60	12.4	141	17.1	14.6	1.0	10	5	122
	13 7 23	6.7	60	12.8	141	55.8	0.5	0.9	6	4	299
	13 14 24	45.0	60	8.2	141	26.0	8.6	1.0	12	4	0.54
	14 5 9	40.5	60	6.0	139	45.1	23.9	1.0A	7	3	0.56
	14 6 44	39.8	60	12.7	140	59.2	9.3	0.3A	7	3	0.54
	14 7 1 28.0	52.3	150	10.9	62.5	2.4	13	7	120	7	0.37
	14 8 24	8.9	60	20.7	139	40.7	22.0	1.2A	7	3	1.0
	14 9 13	52.3	60	14.0	140	59.5	12.7	0.5A	9	6	190
	14 11 53	47.9	60	23.1	147	35.6	29.7	2.4	349	68	0.01
	14 15 14	11.0	59	30.8	151	21.0	12.0	0.7A	8	7	12.6
	14 15 32	53.0	61	32.9	151	17.5	66.6	3.2	27	6	0.14
	14 20 32	53.8	61	41.5	149	44.9	47.3	3.9	28	4	0.14
4.8 MB	4.5 ML ATWC										
	FELT (IV) AT EAGLE RIVER, PALMER, SUTTON AND WASILLA. FELT (III) AT ANCHORAGE, CHUGLAK AND WILLOW.										
14 20 39 11.6	61	40.9	149	42.0	47.5	2.3	22	12	144	10	0.43
	14 20 56 57.5	60	8.8	140	59.5	13.1	0.5A	8	5	168	2
	14 21 33 16.1	60	37.3	142	39.2	17.5	2.1	20	15	54	2.47
	14 21 48 22.3	60	3.7	141	5.3	12.8	0.6A	3	3	228	0.66
	14 22 5 20.6	61	35.6	149	39.7	36.0	2.4	26	7	131	0.20
	14 22 21 44.5	60	8.9	141	6.2	9.8	0.7A	10	5	136	0.42
	14 23 24 38.7	61	29.9	149	59.2	45.4	1.7	17	6	75	0.47
	15 7 33	5.4	60	16.8	141	15.1	13.0	0.4A	10	6	113
	15 8 16	12.4	59	30.0	152	53.3	72.3	2.9	19	8	148
	15 9 20	47.2	60	4.2	140	51.6	6.0	0.7	9	4	146
	15 10 56 49.9	59	40.8	140	54.3	7.1	1.3	11	9	198	0.59
	15 11 24 46.1	61	5.8	152	15.7	9.7	0.5A	4	4	189	1.0
	15 13 53 15.0	60	44.8	151	52.1	76.9	2.4	24	9	108	0.26
	15 17 13 17.2	59	23.4	60	22.0	141	19.0	13.5	9	152	0.34
	15 14 2 0.3	61	54.8	143	39.4	5.5	1.5	12	5	209	0.25
	15 14 49 8.4	61	20.1	148	26.0	20.9	1.5	15	5	93	0.36
	15 14 59 22.7	60	21.4	141	22.6	13.1	0.9	12	8	113	0.37
	15 19 16 43.4	59	58.0	152	13.0	69.0	1.9	12	6	159	0.25
	15 22 26 54.1	60	12.2	141	12.3	7.8	0.8	10	5	136	0.47
	16 1 4 45.2	60	12.0	141	11.8	11.0	0.8	10	6	107	0.22
	16 1 36 2.3	60	37.0	142	41.1	18.0	1.6	16	8	54	0.46
	16 3 10 18.8	60	55.2	147	14.0	20.7	2.5	28	12	47	0.43
	16 3 46 44.7	60	18.0	141	14.4	17.3	0.7A	12	5	116	0.38
	16 3 58 2.2	59	57.3	141	33.6	10.2	0.8A	8	6	212	0.67
	16 5 23 33.3	60	18.2	141	15.3	18.0	0.6A	9	4	115	0.20

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984

1984	ORIGIN TIME	LAT N			LONG W			DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZI	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3				
		HR	MN	SEC	DEG	MIN	KM																						
MAR 16	8 29	30.6	60	14.6	141	9.7	15.4	1.0	12	7	114	12	0.24	0.7	0.7 A	321	21	0.6	81	31	0.7	208	44	1.8					
16	8 33	17.2	62	50.8	149	32.0	44.2	2.4	11	6	152	132	0.49	2.2	12.2 D	85	5	1.7	354	6	3.1	214	82	23.1					
16	10 11	51.9	61	8.8	152	19.0	0.1	1.2	14	5	189	15	1.04	0.7	0.9 A	213	17	0.5	309	19	1.3	84	64	1.8					
16	11 4	48.8	62	9.2	149	30.0	55.0	2.4	18	8	114	59	0.45	0.8	2.1 B	278	0	0.8	8	13	1.3	188	77	4.1					
16	15 50	7.8	61	17.0	152	23.7	108.9	2.9	26	6	125	13	0.54	0.9	1.2 A	181	7	1.1	272	13	1.7	63	75	2.2					
16	16 18	24.3	60	17.5	140	51.3	7.1	0.3A	5	167	18	0.14	1.1	2.0 B	298	9	0.8	32	26	0.9	190	62	4.1						
16	16 18	38.8	60	0.8	140	41.5	4.2	1.2	11	7	164	24	0.55	0.8	0.8 A	276	3	0.5	7	22	1.4	179	68	1.5					
16	16 22	50	28.6	60	12.1	141	54.7	2.7	0.8	9	5	85	19	0.49	0.4	1.0 A	297	6	0.6	28	8	0.6	171	80	2.0				
16	16 23	2	57.0	61	19.0	146	43.1	22.2	2.1	23	8	56	29	0.61	0.4	0.6 A	290	4	0.4	199	7	0.7	49	82	1.2				
17	1 1	2.3	60	13.1	140	58.4	9.0	0.8A	7	2	122	8	0.16	2.2	1.5 B	313	24	1.0	81	40	0.7	206	33	4.8					
17	2 5	38.8	60	3.8	139	13.0	9.2	1.7	10	4	213	26	0.76	2.5	1.4 B	317	11	0.9	261	24	4.0	73	48	1.8					
17	2 16	48.8	60	13.4	140	57.6	10.6	1.0A	9	123	9	0.14	0.9	1.9 A	102	5	0.8	261	44	3.0	10	15	0.9						
17	2 16	53.6	60	18.6	141	16.8	14.4	1.8	18	5	115	21	0.49	0.5	0.8 A	329	14	0.6	81	15	0.7	206	60	1.6					
17	2 16	56	57.1	60	58.6	152	12.2	2.7	1.3	8	3	171	24	0.68	1.8	0.8 B	285	9	3.3	193	13	0.5	49	74	1.5				
17	1 11	59	32.9	61	11.2	152	12.3	5.5	0.0A	3	3	283	8	0.01	1.7	2.5 B	333	7	1.4	261	17	2.9	87	65	4.6				
17	12 34	42.7	60	8.8	139	31.5	11.2	1.3	6	1	211	22	0.51	3.0	3.1 C	331	16	1.3	81	38	1.5	224	45	7.8					
17	15 40	57.4	63	16.7	150	32.2	144.9	3.1	11	6	131	153	0.33	5.4	9.5 D	312	15	3	0.6	284	11	0.6	120	79	1.6				
17	15 43	5.3	59	4.4	137	9.1	0.4	1.9	9	4	168	107	0.47	7.9	5.1 D	222	3	1.0	301	3	1.0	211	4	3.3	68	85	2.3		
17	16 14	48.1	60	9.5	141	11.0	9.1	1.2	12	5	104	8	0.46	0.7	0.4 A	292	12	0.6	198	19	0.7	208	59	2.1					
17	17 18	35.4	61	35.7	146	20.5	32.0	2.2	21	7	87	25	0.64	0.6	0.6 A	116	6	0.6	211	34	0.9	17	55	1.3					
17	17 21	13	53.6	60	15.9	141	18.7	6.9	1.0	12	3	108	16	0.23	0.6	1.1 A	115	1	0.6	24	27	0.7	207	63	2.2				
17	17 23	10	19.7	60	7.4	141	23.6	5.3	1.1	10	3	141	17	0.18	0.8	1.3 A	199	1	1.5	289	4	0.7	95	86	2.4				
18	18 4	50	39.0	60	15.6	141	18.0	8.3	1.5	16	6	108	16	0.31	0.6	1.0 A	335	19	0.5	81	19	0.7	208	59	2.1				
18	18 4	53	33.8	60	40.9	143	5.3	0.1	1.1	10	4	75	29	0.71	0.6	25.0 D	336	0	0.9	261	0	1.0	0	90	99.0				
18	18 5 19	58.4	60	15.0	141	19.9	10.8	0.6A	6	3	167	14	0.14	1.2	1.7 B	116	1	0.8	32	1	0	208	58	3.8					
18	18 6 40	48.5	60	9.0	141	9.2	3.5	1.4	5	9	4	168	107	0.46	0.5	0.7 A	278	9	0.5	12	27	0.8	171	61	1.5				
18	18 7 16	51.4	60	16.1	141	7.5	7.6	1.0	10	3	119	14	0.27	1.0	1.6 B	316	16	0.6	54	24	1.0	196	60	3.5					
18	18 9	58	22.6	60	8.4	141	11.0	2.3	1.1	13	5	99	9	0.47	0.6	0.9 A	285	6	0.5	17	18	1.0	177	71	1.7				
18	18 11 14	21.3	61	35.0	149	54.2	44.2	1.9	18	8	72	8	0.37	0.5	1.0 A	275	4	0.6	5	4	1.0	140	84	1.9					
18	18 11 37	23.2	60	13.7	141	2.8	7.2	0.4A	5	5	177	8	0.13	0.9	1.5 B	92	3	1.0	0	0	0	25	1.1	188	65	3.0			
18	18 17 53	42.8	60	6.7	140	43.7	8.1	1.1	10	4	133	18	0.36	0.9	1.0 A	95	6	0.5	0	37	1.6	193	52	2.0					
18	18 21 59	34.7	60	8.0	141	11.0	14.8	1.7	4	102	9	0.45	0.7	0.5 A	290	9	0.7	195	27	1.4	37	61	0.8						
19	19 1 18	27.2	59	52.7	145	30.1	28.8	1.9A	11	4	61	0.46	1.3	1.0 A	26	6	2.5	117	14	1.4	273	75	1.9						
19	19 3 15	56.3	62	10.9	149	18.8	47.0	2.8	20	11	113	63	0.61	0.9	2.3 B	275	2	0.9	5	13	1.4	176	77	4.5					
19	19 3 17	19.3	60	12.1	141	16.0	12.4	1.0	8	4	104	13	0.21	0.9	0.8 A	322	24	0.6	81	30	0.9	206	44	2.0					
19	19 6 2	9.5	60	17.3	141	0.3	5.8	0.9A	7	4	129	15	0.62	0.7	1.7 B	91	11	0.8	357	18	0.7	211	69	3.3					
19	19 12 6	10.0	60	1.9	139	40.9	20.2	1.1	8	4	185	9	0.67	3.4	0.7 C	222	4	6.3	314	30	1.0	125	60	1.3					
19	19 15 27	39.0	60	8.1	141	14.3	5.3	0.7	7	3	135	11	0.14	0.8	1.0 A	279	5	0.5	12	28	1.2	180	61	2.1					
19	19 16 31	7.1	60	8.1	141	14.1	4.8	0.4	4	3	134	10	0.66	0.8	1.9 B	278	5	12	1.3	166	77	3.6							
19	19 17 27	26.0	60	14.2	141	17.3	11.7	1.4	17	9	106	14	0.56	0.4	0.6 A	317	14	0.5	54	27	0.6	201	61	1.2					
19	19 17 31	7.6	60	14.3	141	18.4	13.2	0.7	10	7	106	14	0.47	0.7	0.9 A	81	16	0.9	327	27	1.4	194	51	1.9					
19	19 20 27	23.5	60	8.0	141	9.7	12.9	2.5	18	6	95	8	0.54	0.6	0.5 A	275	1	0.6	184	36	1.1	6	54	0.9					
19	19 20 31	7.5	61	19.4	152	5.6	4.0	0.2A	3	2	174	7	0.05	0.8	11.0 D	20	24	1.2	124	28	1.6	256	52	26.3					
19	19 21 48	55.1	60	7.8	141	8.2	16.0	1.2A	5	3	117	6	0.36	1.0	0.8 A	287	25	0.9	177	37	2.0	43	43	1.4					

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984

ORIGIN TIME	LAT	N	LONG			W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3			
			DEG	MIN	SEC												DEG	MIN	SEC	KM	DEG	MIN	SEC	KM	DEG	MIN	SEC	
1984 MAR 19 23 5 51.0	61	6.5	152	12.0	0.8A	3	3	177	11	0.29	25.0	25.0	D	308	26	2.6	200	33	0.6	68	46	99.0						
20 0 22 14.7	60	30.0	145	30.0	14.1	0.4A	8	4	244	17	0.22	1.6	1.0	B	45	12	3.1	310	22	1.5	162	65	1.9					
20 0 48 51.3	60	16.2	140	42.9	11.6	0.4A	5	5	150	22	0.19	2.2	4.3	C	291	6	0.8	24	25	1.6	188	64	8.9					
20 1 21 7.1	60	4.8	140	58.2	14.2	0.4A	4	3	170	9	0.21	1.3	1.7	B	188	16	1.8	89	31	1.0	302	54	3.8					
20 2 53 22.9	60	17.8	140	42.7	12.6	0.8A	10	7	155	24	0.32	1.1	2.6	B	309	13	0.7	43	17	1.0	183	68	5.2					
20 2 54 56.4	60	18.1	140	42.6	12.1	0.5A	7	6	147	24	0.24	1.7	2.8	C	294	6	0.9	27	28	1.6	193	61	5.8					
20 3 35 21.0	61	40.3	150	17.9	44.8	2.2	23	9	137	22	0.50	0.6	1.0	A	90	4	0.6	180	4	1.1	315	84	1.8					
20 3 37 13.6	59	59.1	141	39.4	10.1	1.1	15	6	176	21	0.64	0.7	1.0	A	275	5	0.7	183	18	1.3	20	71	1.9					
20 4 12 50.2	61	56.3	149	59.0	41.5	2.0	16	7	169	33	0.46	1.0	1.3	A	103	4	0.7	10	34	1.5	199	56	2.7					
20 5 14 37.8	60	18.7	153	12.6	144	38.8	3.6	22	3	170	26	0.31	1.9	3.1	B	138	3	1.4	81	13	2.8	240	55	5.0				
20 7 28 35.7	59	24.8	138	54.5	27.8	1.1	6	4	282	5	0.19	3.7	0.9	C	44	3	7.0	137	41	2.4	311	49	1.0					
20 8 49 28.9	60	11.9	141	15.5	13.3	0.5	9	5	104	13	0.22	1.0	1.1	A	291	11	0.7	31	41	1.0	189	47	2.6					
20 9 36 9.0	60	5.7	140	53.5	8.1	1.0	11	9	133	10	0.45	0.7	0.6	A	98	15	0.4	201	41	1.3	352	45	1.2					
20 12 31 37.3	62	1.5	150	24.3	47.0	2.0	18	4	180	50	0.53	1.0	1.0	A	101	14	0.6	358	41	2.3	206	46	1.3					
20 15 20 57.7	60	46.6	144	38.8	27.7	1.7	23	11	57	21	0.56	0.4	0.5	A	39	22	0.6	23	23	0.5	270	57	1.2					
20 16 55 9.9	61	16.2	140	31.1	3.3	0.5A	4	4	278	56	0.38	3.2	25.0	D	115	1	2.4	25	3	3.7	223	87	85.6					
20 17 38 52.7	60	13.3	141	53.6	5.8	0.1A	6	4	184	17	0.53	1.7	1.8	B	320	8	0.8	261	41	1.9	59	40	3.7					
20 17 46 36.8	61	11.9	149	33.7	38.5	1.8	15	8	74	5	0.39	0.5	0.8	A	191	9	0.7	284	15	0.8	71	72	1.5					
20 18 17 25.6	60	4.3	141	16.9	11.4	1.4	17	6	149	9	0.32	0.7	0.4	A	14	12	1.4	280	18	0.5	136	68	0.8					
20 18 26 28.4	61	11.9	149	37.8	30.8	2.2	28	8	48	6	0.60	0.4	1.1	A	316	9	0.7	224	11	0.6	84	76	2.0					
20 20 14 39.2	60	16.4	140	43.9	9.9	0.6A	9	5	150	21	0.26	1.2	2.1	B	91	5	0.8	359	26	1.2	191	63	4.4					
20 20 36 33.8	60	6.2	141	15.6	8.8	0.9	12	5	141	9	0.29	0.8	0.7	A	287	6	0.5	193	36	1.6	25	53	1.1					
20 21 8 51.8	60	16.0	141	25.4	7.8	0.7	9	6	116	14	0.39	0.7	1.2	A	311	1	0.6	41	8	1.4	214	82	2.2					
20 23 15 48.1	61	25.9	149	55.5	39.9	1.8	18	11	59	25	0.49	0.4	0.8	A	289	1	0.6	199	2	0.8	46	88	1.5					
21 1 17 32.3	59	57.4	140	12.6	6.3	0.7	8	4	170	16	0.87	1.8	1.7	B	140	11	0.6	261	39	1.2	40	41	4.4					
21 1 36 56.2	60	6.2	140	41.8	4.3	1.2	12	7	136	20	0.58	0.7	0.8	A	99	5	0.5	6	37	1.0	196	53	1.8					
21 2 28 42.8	60	21.4	143	15.9	12.6	1.3	12	6	143	25	0.66	0.6	1.4	B	10	4	1.2	280	7	0.7	130	82	2.7					
21 7 19 38.9	60	6.6	141	3.8	4.9	0.9	7	4	93	5	0.56	0.5	0.5	A	98	10	0.8	197	42	0.8	357	46	1.0					
21 9 17 25.7	59	54.2	136	37.4	1.0	2.5	9	6	209	137	0.34	3.4	3.0	C	309	25	4.7	81	31	3.3	198	35	6.6					
21 13 53 51.5	60	15.0	141	6.4	10.4	1.3	11	7	118	11	0.29	0.7	0.7	A	325	24	0.5	81	32	0.8	209	44	1.7					
21 14 16 34.8	60	2.8	141	4.6	19.8	0.4	5	3	225	3	0.34	1.8	0.8	B	199	10	3.3	104	26	1.9	308	62	1.2					
21 15 55 18.8	60	12.9	141	8.8	10.7	0.6	10	5	112	9	0.27	0.7	0.7	A	288	0	0.6	198	40	1.7	18	50	1.0					
21 16 36 13.2	60	11.5	141	20.5	24.3	0.9A	12	6	93	44	0.31	1.2	9.0	D	120	1	1.5	30	4	2.0	224	86	16.9					
21 17 48 2.5	60	5.6	152	19.9	12.0	0.5A	3	3	283	29	0.03	5.7	7.3	D	326	9	2.6	81	32	1.0	224	49	16.7					
21 18 38 23.8	59	35.9	150	29.7	26.2	0.7A	7	4	263	16	0.19	1.4	1.3	B	208	21	1.2	316	39	3.1	97	44	2.0					
21 22 27 27.3	61	36.8	150	33.3	12.6	2.2	20	9	126	19	0.53	0.4	0.5	A	4	7	0.7	273	8	0.6	135	79	1.0					
22 0 8 4.3	61	17.6	140	53.7	2.3	1.4	10	5	233	44	0.31	1.2	9.0	D	120	1	1.5	30	4	2.0	224	86	16.9					
22 1 31 46.7	61	7.8	150	22.9	57.0	2.9	23	9	52	42	0.48	0.4	1.3	A	94	1	0.6	4	3	0.7	202	87	2.4					
22 3 26 59.5	60	23.4	140	29.6	12.3	1.2	11	8	170	35	0.77	0.6	1.0	A	308	5	0.5	40	23	1.0	206	66	2.0					
22 4 51 35.7	60	10.9	141	6.9	10.6	0.4A	5	4	161	5	0.09	1.1	0.7	A	279	6	0.7	186	25	2.3	22	64	1.1					
22 9 37 29.2	59	51.5	141	32.4	6.1	1.3	8	191	32	0.65	0.5	0.8	A	106	7	0.6	198	18	0.9	356	71	1.5						
22 17 53 52.9	60	14.4	141	13.5	13.1	0.9A	9	5	110	14	0.26	0.8	0.9	A	303	20	0.6	45	30	0.9	184	53	2.1					
22 20 17 48.5	60	36.4	143	32.4	10.4	1.7	18	9	101	40	0.82	0.4	1.6	B	293	0	0.4	23	1	0.7	203	89	3.0					
22 20 49 41.5	60	52.8	149	33.2	36.5	1.7	18	9	73	29	0.36	0.5	0.8	A	217	9	0.6	310	18	0.7	102	70	1.6					
22 24 25 41.2	60	23.4	141	16.0	11.5	0.8	11	6	123	27	0.46	0.6	1.1	A	311	2	0.6	42	21	0.8	216	69	2.3					
22 25 49.5	60	22.5	141	17.8	18.7	1.2A	8	6	120	25	0.38	1.0	1.6	B	113	12	0.7	17	26	1.0	226	61	3.4					
22 29 50.9	60	30.6	149	32.4	2.0	2.0	20	10	88	26	0.55	0.6	0.6	A	217	4	0.5	310	37	0.8	122	53	1.4					
22 30 59.1	60	24.4	145	4.5	18.4	1.5	13	8	148	16	0.63	0.7	0.7	A	21	20	1.3	125	33	0.7	265	50	1.6					
22 30 59.9	60	9.9	141	6.4	14.1	0.3A	3	1	196	4	0.00	19.7	2.5	D	203	4	2.0	297										

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984																								
ORIGIN	TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DJ	RMS	SEH	SEZ Q	AZI	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3			
		DEG	MIN	SEC	DEG	MIN																		
1984	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC	HR MN SEC			
MAR 23	0 27 20.1	60	23.2	145	6.3	21.1	1.1A	9	4	244	17	0.43	1.1	1.0 A	25	20	1.8	133	39	1.1	274	44		
	0 54 18.2	60	3.3	141	11.6	11.2	0.4A	3	1	234	14	0.00	8.6	8.3 D	149	29	5.3	261	31	2.2	27	44		
	2 51 27.9	62	33.8	151	15.2	86.0	2.5	11	4	271	67	0.29	3.8	2.3 C	167	18	6.9	81	38	2.3	280	48		
	5 16 33.9	61	34.2	150	3.0	49.5	2.0	19	4	104	13	0.52	0.8	1.2 A	91	2	0.9	181	9	1.5	349	81		
	5 40 51.2	60	17.5	141	17.4	18.0	0.8A	5	2	150	21	0.12	2.3	3.6 C	83	21	1.7	344	22	1.0	212	59		
	5 43 25.8	60	19.9	141	16.4	10.1	1.1	7	4	126	24	0.44	1.0	1.7 B	313	8	0.8	47	27	1.2	208	62		
	6 10 10.0	61	60.0	151	20.4	86.6	2.4	15	8	195	10	0.30	1.1	1.0 A	83	13	1.1	343	38	2.3	188	49		
	8 38 8.0	58	47.8	154	3.5	84.6	4.3	12	1	156	149	0.27	4.1	17.4 D	11	1	3.0	280	8	6.1	108	82		
23	9 41 17.8	60	7.4	141	14.9	8.4	0.5A	4	3	221	12	0.12	4.2	1.7 C	287	5	1.0	19	18	8.2	182	71		
	13 0 8.5	60	15.1	140	56.4	8.9	1.1	14	5	129	12	0.32	0.9	0.9 A	294	3	0.5	26	40	1.1	200	50		
	13 54 1.6	62	53.5	149	23.8	91.5	3.2	13	3	150	133	0.77	4.0	8.2 D	268	0	2.2	358	16	6.2	178	74		
23	9 41 17.8	60	7.4	140	47.8	12.4	1.2	9	5	141	20	0.46	1.0	1.4 B	304	8	0.7	39	31	1.0	201	58		
	21 55 14.5	60	12.9	141	54.4	7.8	1.0	5	3	102	18	0.39	1.0	1.4 B	1	22	0.9	261	24	1.3	129	57		
	22 17 56.0	60	18.7	141	19.0	12.6	0.7A	9	2	113	24	0.35	1.1	1.5 B	308	6	1.0	42	33	1.4	209	56		
	4 14.4	60	3.1	141	48.9	8.1	1.2	10	5	168	12	0.51	0.5	0.7 A	181	2	0.9	90	28	0.7	275	62		
	6 8 35.8	59	18.9	152	51.9	75.3	3.2	19	6	132	75	0.42	1.1	2.5 B	175	3	1.6	266	19	1.4	76	71		
23	19 41 8.1	60	17.5	140	47.8	3.4	ML	ATWC																
24	7 43 57.8	62	17.8	148	47.5	40.6	2.2	19	6	112	60	0.44	1.5	3.9 C	81	7	1.1	335	12	1.8	197	69		
	13 31.6	61	38.5	149	27.1	30.3	1.6	19	8	142	23	0.51	0.6	0.8 A	15	3	1.1	284	10	0.6	121	80		
	16 12.7	60	7.1	140	56.7	6.6	0.8	8	2	168	6	0.28	1.3	0.6 A	18	7	2.4	111	20	0.6	270	69		
	16 43 35.9	61	45.3	150	29.3	52.7	3.5	25	3	85	34	0.25	0.8	1.6 B	150	2	1.3	81	3	1.1	279	69		
24	7 43 57.8	62	17.8	148	47.5	40.6	2.2	19	6	112	60	0.44	1.5	3.9 C	81	7	1.1	335	12	1.8	197	69		
	22 56 46.6	60	22.3	141	48.8	17.9	1.0	6	4	123	27	0.19	0.8	1.3 B	336	13	0.8	81	19	0.9	217	63		
	0 59 24.5	59	18.1	151	27.2	13.7	1.1	10	4	295	19	0.19	1.1	0.8 A	358	4	1.9	265	36	2.3	93	54		
	34 44.8	62	54.9	149	0.9	65.1	2.3	10	7	142	128	0.27	4.2	12.9 D	31	9	4.1	299	14	2.5	153	73		
	58 25.1	60	3.7	151	49.8	62.0	2.7	22	10	116	30	0.34	0.7	1.3 A	323	2	0.6	81	13	1.0	226	59		
	8 20.5	59	6.8	153	46.6	80.9	2.8	14	6	183	131	0.30	2.1	4.5 C	269	4	3.8	178	5	1.5	37	84		
	10 20 3.9	60	12.3	140	59.6	8.1	0.9A	7	5	118	6	0.23	3.4	3.6 C	301	10	1.1	261	40	6.6	40	29		
	32 43.1	60	12.7	141	16.1	16.4	0.5A	7	4	126	15	0.54	1.0	1.0 A	290	21	0.9	35	33	1.7	174	49		
	45 36.0	61	35.4	149	58.1	41.2	1.8	17	11	96	8	0.48	0.5	0.7 A	90	1	0.5	180	3	1.0	342	87		
	50 30.3	60	56.1	152	12.7	10.0	0.7A	4	4	178	29	0.32	3.9	25.0 D	14	0	0.5	284	0	7.3	0	90		
	53 17.1	61	21.6	148	49.3	32.0	1.9	23	15	73	21	0.69	0.4	0.5 A	261	12	0.6	149	18	0.7	17	60		
	19 60 43.2	60	10.1	140	56.6	10.1	1.4	20	13	45	32	0.84	0.4	0.8 A	300	6	0.5	31	7	0.6	170	81		
	32 21.5	60	21.5	141	48.5	7.4	1.1	6	5	82	4	0.19	1.0	0.6 A	206	23	1.0	104	27	2.1	331	53		
	48 21.4	61	46.1	7.7	1.4	10	6	83	1	0.39	0.5	0.6 A	273	1	0.9	4	15	0.6	179	75				
	50 30.3	60	11.0	149	42.9	11.6	1.0	16	12	60	26	0.75	0.5	0.8 A	206	17	0.5	302	19	0.7	77	64		
	35.2	61	26.2	143	42.4	16.4	2.2	20	6	97	33	0.48	0.6	0.9 A	284	4	0.5	17	30	0.8	187	60		
	12 57.3	60	21.2	141	45.9	6.6	1.5	11	5	84	1	0.59	0.5	0.7 A	12	8	0.7	280	15	0.9	129	73		
	36.3	61	32.5	148	50.6	32.5	1.8	28	13	112	31	0.44	0.5	0.6 A	209	3	0.6	117	23	0.9	306	67		
	59.0	60	32.7	141	35.4	15.6	0.8	6	4	107	22	0.26	0.6	1.2 A	283	4	1.1	14	17	0.8	180	73		
	11.0	61	1.4	149	42.9	11.6	1.0	16	12	60	23	0.67	0.6	1.0 A	210	4	1.1	120	12	0.7	318	77		
	22.6	62	26.9	151	59.0	0.1	2.2	13	10	183	57	0.66	1.5	1.2 B	36	19	2.8	140	35	1.8	283	49		
	29.6	63	57.3	140	46.7	0.6	0.8	7	3	194	26	0.29	1.2	2.0 B	290	0	0.9	201	20	2.0	20	3.9		
	33.2	64	33.1	141	36.1	23.1	1.6	15	9	103	23	0.67	0.5	0.8 A	33	11	0.9	126	13	0.8	264	73		
	37.1	64	1.4	149	42.9	11.6	1.0	16	12	60	23	0.67	0.6	1.2 A	283	4	1.1	14	17	0.8	180	73		
	31.4	64	7.3	141	31.4	7.3	1.2	9	6	125	23	0.67	0.6	1.0 A	210	4	1.1	120	12	0.7	318	77		
	29.4	65	59.0	140	46.7	0.6	0.8	7	3	194	26	0.29	1.2	2.0 B	290	0	0.9	201	20	2.0	20	3.9		
	34.9	66	33.2	141	36.1	23.1	1.6	15	9	103	23	0.67	0.5	0.8 A	33	11	0.9	126	13	0.8	264	73		
	34.9	67	10.9	141	9.9	15.4	0.8	8	4	134	8	0.24	1.2	0.7 A	287	13	0.7	192	20	2.3	48	66		
	49 24.5	60	10.9	141	51.0	141	27.1	3.6	1.7	16	7	184	30	0.52	0.9	1.2 A	121	8	0.9	216	30	1.2	18	59
	49 24.5	60	10.9	141	51.0	142	58.3	2.3	1.2	12	6	93	7	0.41	0.5	2.1 B	341	4	0.6	261	4	0.9	108	78

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984											
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS
1984	HR	MN	SEC	DEG	MIN	KM	DEG	SEC	KM	DEG	SEC
MAR	28	1	30	13.6	60	14.0	153	35.8	173.0	3.5	22
28	11	23	16.5	61	37.5	149	56.2	44.5	2.0	21	10
28	14	0	38.0	61	30.7	150	3.9	45.5	1.6	15	9
28	15	28	28.4	60	8.4	141	8.2	0.9	0.4A	3	3
28	16	8	20.0	61	14.9	152	18.5	4.5	0.8	3	3
28	21	21	56.7	60	43.4	141	15.6	24.4	1.1	5	2
29	0	48	22.5	60	13.6	141	8.1	0.4	0.5A	8	5
29	5	6	49.5	61	18.2	151	56.4	10.7	0.0A	3	3
29	5	23	26.7	61	55.3	150	52.1	63.8	2.3	20	10
29	5	25	45.3	63	6.6	150	25.8	80.3	2.6	13	7
29	6	8	34.4	61	18.3	146	49.9	26.9	2.1	24	9
29	11	2	56.2	61	56.8	149	47.0	44.3	2.3	19	10
29	11	37	53.7	61	57.1	150	0.6	42.8	2.2	17	9
29	12	5	16.1	61	43.6	151	17.1	77.1	3.0	21	11
29	12	57	17.7	60	33.4	141	37.1	14.0	1.2	13	6
29	13	40	22.9	61	6.3	151	46.5	22.2	0.3A	3	3
29	16	52	30.1	62	14.1	149	31.4	45.1	2.4	16	9
29	18	52	4.3	60	6.8	148	32.9	4.3	3.0A	30	6
29	18	52	24.3	60	6.6	148	31.3	9.9	2.9	20	3
					3.7	ML	ATWC				
29	23	37	5.4	60	2.3	141	48.7	9.7	1.0	10	6
30	0	36	40.1	59	53.8	140	43.7	0.4	1.0A	4	2
30	0	40	0.4	60	13.7	141	39.4	11.3	0.7	4	1
30	2	50	9.7	62	4.7	150	17.6	0.3	1.8	11	5
30	3	49	48.6	60	7.3	141	16.8	9.3	0.6A	3	2
30	10	0	36.5	60	45.4	152	2.9	20.4	0.9A	7	6
30	12	42	59.7	61	5.9	152	11.8	10.4	0.7	4	4
30	13	8	42.8	58	55.8	152	23.3	58.8	2.9	16	5
30	13	59	41.5	60	13.3	140	57.4	8.3	1.5	11	23
30	15	4	13.6	61	39.8	149	47.1	39.3	2.0	15	7
30	16	29	49.0	60	11.9	140	56.8	10.7	1.0A	7	3
30	17	36	48.4	61	48.3	148	40.8	2.6	1.4	8	4
30	17	50	58.5	61	3.8	146	10.7	13.7	2.1	24	7
30	22	31	34.1	60	56.3	147	18.6	12.1	2.1	30	10
30	23	3	11.7	60	13.7	141	3.5	8.8	0.7	6	2
31	3	29	45.0	62	10.2	151	3.5	75.0	2.4	19	8
31	4	36	57.1	61	21.6	150	7.0	44.9	2.2	26	8
31	14	28	42.0	60	13.4	141	7.1	8.4	1.1A	10	2
31	14	32	8.0	60	39.3	140	39.8	6.9	1.3	10	5
31	23	33	43.7	59	6.3	136	51.7	4.7	1.7	5	3

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MARCH 1984											
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS
1984	HR	MN	SEC	DEG	MIN	KM	DEG	SEC	KM	DEG	SEC
MAR	28	1	30	13.6	60	14.0	153	35.8	173.0	3.5	22
28	11	23	16.5	61	37.5	149	56.2	44.5	2.0	21	10
28	14	0	38.0	61	30.7	150	3.9	45.5	1.6	15	9
28	15	28	28.4	60	8.4	141	8.2	0.9	0.4A	3	3
28	16	8	20.0	61	14.9	152	18.5	4.5	0.8	3	3
28	21	21	56.7	60	43.4	141	15.6	24.4	1.1	5	2
29	0	48	22.5	60	13.6	141	8.1	0.4	0.5A	8	5
29	5	6	49.5	61	18.2	151	56.4	10.7	0.0A	3	3
29	5	23	26.7	61	55.3	150	52.1	63.8	2.3	20	10
29	5	25	45.3	63	6.6	150	25.8	80.3	2.6	13	7
29	6	8	34.4	61	18.3	146	49.9	26.9	2.1	24	9
29	11	2	56.2	61	56.8	149	47.0	44.3	2.3	19	10
29	11	37	53.7	61	57.1	150	0.6	42.8	2.2	17	9
29	12	5	16.1	61	43.6	151	17.1	77.1	3.0	21	11
29	12	57	17.7	60	33.4	141	37.1	14.0	1.2	13	6
29	13	40	22.9	61	6.3	151	46.5	22.2	0.3A	3	3
29	16	52	30.1	62	14.1	149	31.4	45.1	2.4	16	9
29	18	52	4.3	60	6.8	148	32.9	4.3	3.0A	30	6
29	18	52	24.3	60	6.6	148	31.3	9.9	2.9	20	3
					3.7	ML	ATWC				
29	23	37	5.4	60	2.3	141	48.7	9.7	1.0	10	6
30	0	36	40.1	59	53.8	140	43.7	0.4	1.0A	4	2
30	0	40	0.4	60	13.7	141	39.4	11.3	0.7	4	1
30	2	50	9.7	62	4.7	150	17.6	0.3	1.8	11	5
30	3	49	48.6	60	7.3	141	16.8	9.3	0.6A	3	2
30	10	0	36.5	60	45.4	152	2.9	20.4	0.9A	7	6
30	12	42	59.7	61	5.9	152	11.8	10.4	0.7	4	4
30	13	8	42.8	58	55.8	152	23.3	58.8	2.9	16	5
30	13	59	41.5	60	13.3	140	57.4	8.3	1.5	11	23
30	15	4	13.6	61	39.8	149	47.1	39.3	2.0	15	7
30	16	29	49.0	60	11.9	140	56.8	10.7	1.0A	7	3
30	17	36	48.4	61	48.3	148	40.8	2.6	1.4	8	4
30	17	50	58.5	61	3.8	146	10.7	13.7	2.1	24	7
30	22	31	34.1	60	56.3	147	18.6	12.1	2.1	30	10
30	23	3	11.7	60	13.7	141	3.5	8.8	0.7	6	2
31	3	29	45.0	62	10.2	151	3.5	75.0	2.4	19	8
31	4	36	57.1	61	21.6	150	7.0	44.9	2.2	26	8
31	14	28	42.0	60	13.4	141	7.1	8.4	1.1A	10	2
31	14	32	8.0	60	39.3	140	39.8	6.9	1.3	10	5
31	23	33	43.7	59	6.3	136	51.7	4.7	1.7	5	3

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984											
1984	ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI
HR	MIN	SEC	DEG	MIN	KM	DEG	KM	SEC	KM	SEH	SEZ
APR 1	5 59 41.4	60	14.2	141	28.1	9.0	1.0	9	6	11.7	20
	6 29 23.0	61	1.1	147	32.8	8.9	1.9	28	16	86	46
	1 9 10 50.7	59	35.3	138	5.8	17.5	1.2	6	4	315	47
	1 9 56 3.6	60	28.5	140	22.6	12.9	1.4	13	8	186	43
	1 10 5 39.3	60	35.2	147	23.2	28.0	2.1	26	14	130	53
	1 12 44 57.0	59	39.4	151	2.7	48.0	1.7	14	7	104	2
	1 15 29 28.4	60	16.8	140	40.7	11.6	0.6A	9	4	147	24
	1 22 35 51.4	60	13.0	141	6.4	9.4	1.1	10	6	114	8
	2 9 0 21.4	60	13.0	152	51.0	91.0	2.7	24	6	151	4
	2 10 19 16.0	60	15.1	140	47.9	10.3	1.4	14	8	137	17
	2 12 51 40.1	61	35.3	149	45.7	44.7	2.0	19	11	113	9
	2 20 19 39.1	60	30.1	141	45.3	10.6	1.6	14	8	93	16
	2 22 38 12.2	62	4.1	151	0.2	66.5	2.5	18	6	205	29
	2 23 50 22.5	60	3.4	140	42.3	7.8	1.7	13	8	146	21
	3 2 57 23.8	59	18.0	151	30.2	10.2	0.9	10	5	301	20
	3 10 4 12.1	59	21.1	151	42.2	46.7	1.4	11	5	260	15
	4 1 53 16.6	60	38.4	139	55.2	1.0	1.5A	8	4	220	63
	4 1 59 29.5	60	11.3	141	1.8	10.4	0.9	9	4	114	4
	4 9 32 26.2	60	41.6	144	59.6	28.3	1.1	13	6	79	21
	4 10 24 45.0	60	20.8	152	11.0	79.0	2.5	26	9	82	28
	4 12 13 47.7	61	37.6	146	23.6	21.1	2.9	24	8	85	55
	4 15 7 46.5	60	4.6	140	51.0	8.4	1.8	14	7	146	13
	4 19 56 15.8	60	38.2	144	49.9	17.1	0.8	10	4	104	24
	4 23 14 26.0	60	3.4	140	52.5	5.7	0.7	9	6	172	14
	5 0 3 9.0	60	57.6	149	39.7	37.1	2.1	21	7	56	32
	5 0 53 24.1	60	14.6	141	8.4	9.3	1.3	13	10	115	32
	5 0 58 47.8	60	13.9	141	13.2	5.6	0.6A	4	3	169	13
	5 4 22 30.3	59	52.0	151	0.9	44.5	1.4	12	6	70	9
	5 7 13 2.6	61	8.3	151	23.8	11.4	1.6	24	9	57	36
	5 7 27 35.8	60	9.3	141	1.7	8.6	0.9	13	5	109	0
	5 12 32 25.9	61	17.3	149	17.3	35.3	1.4	21	12	58	15
	5 16 39 39.8	60	21.0	141	17.5	15.2	1.1	13	6	117	25
	5 17 48 54.5	60	17.0	141	13.5	15.6	2.1	17	10	115	18
	5 20 11 12.4	59	43.7	152	21.0	63.3	2.7	23	10	130	52
	5 21 12 4.9	60	24.3	141	38.5	12.1	1.6	14	5	99	8
	5 21 27 5.8	60	24.5	141	36.6	8.8	0.3	4	3	220	9
	5 22 45 13.0	60	24.3	141	37.7	9.6	0.1	5	2	116	8
	5 23 33 59.2	60	24.8	141	38.8	9.6	0.3	4	3	127	8
	6 0 7 56.8	60	28.5	142	53.3	0.7	1.1	8	4	111	4
	6 2 34 55.0	60	24.3	141	38.1	11.4	1.1	10	2	99	8
	6 4 19 43.0	60	23.6	141	15.5	13.4	1.6	15	6	121	27
	6 5 14 39.7	60	7.3	139	46.9	17.5	1.4	9	4	187	20
	6 6 43 23.9	60	44.3	150	40.0	35.6	1.8	27	10	44	31
	6 6 18 49 16.3	60	7.8	141	7.0	8.3	0.7	11	3	94	5
	6 6 23 47 11.7	60	59.7	149	44.4	39.6	1.8	27	10	50	29
	7 0 53 47.0	59	51.0	152	43.5	81.3	2.9	24	11	136	37

3.4 ML ATWC

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DJ	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3				
1984	HR	MN	SEC																								
APR	7	29	28.0	59	48.8	139	18.5	16.2	2.0	10	5	189	2.3	1.0	B	261	3	3.8	320	12	0.7	157	57	1.6			
	7	35	25.0	60	16.2	140	59.7	11.0	1.1	11	5	128	1.3	0.27	1.0	1.1	A	83	24	1.0	337	31	0.7	204	49	2.7	
	7	8	46.4	61	0.6	149	43.7	10.3	0.9	15	7	48	2.67	0.7	1.5	B	160	2	0.5	261	23	0.6	65	65	3.0		
	7	10	35	20.5	59	53.1	151	17.1	53.3	0.6	14	5	92	0.25	0.9	1.3	A	261	1	1.4	328	21	0.6	69	59	2.5	
	7	12	31	24.9	60	5.1	141	5.4	13.3	0.7A	3	2	222	8	0.08	4.6	1.7	C	107	11	0.9	14	18	9.0	227	69	1.7
	7	12	40	42.0	61	32.6	150	54.4	54.3	2.5	25	10	80	1.2	0.50	0.5	0.8	A	90	7	0.7	181	10	0.9	325	78	1.6
	7	16	32	6.3	61	11.9	152	0.9	98.9	2.7	28	8	49	3	0.42	0.8	0.9	A	169	20	1.0	81	33	1.2	289	52	1.9
	7	22	8	46.9	60	28.2	140	56.8	11.0	1.1	10	5	149	3.6	0.45	0.8	1.4	B	126	1	0.7	36	5	1.4	227	85	2.7
	8	5	19	10.6	60	42.8	143	4.5	3.8	1.6	15	10	122	58	0.59	0.6	9.3	D	294	0	0.6	24	1	1.1	204	89	17.5
	8	12	8	35.5	59	49.6	152	46.2	83.6	2.6	22	8	138	40	0.27	1.5	1.2	A	144	3	0.9	81	8	2.4	256	62	1.9
	8	20	24	34.6	59	38.9	152	37.7	82.9	3.0	23	12	138	60	0.30	1.1	1.2	A	315	7	0.8	261	31	1.5	56	43	2.1
					3.3	ML	ATWG																				
	8	21	22	30.3	61	5.7	151	1.1	15.4	1.7	23	13	50	41	0.59	0.3	1.0	A	190	5	0.6	99	7	0.5	315	81	2.0
	8	21	48	55.3	59	45.4	150	50.1	37.4	0.9	10	5	94	3	0.20	1.2	0.9	A	36	7	0.9	130	29	2.5	294	60	1.4
	8	22	4	21.4	59	55.9	152	38.2	68.4	2.4	21	11	210	30	0.55	1.1	1.3	A	326	2	0.9	261	12	1.8	65	62	2.3
	9	0	2	53.8	60	8.9	141	15.8	6.6	1.5	11	7	138	13	0.48	0.6	0.8	A	94	6	0.5	186	19	1.2	347	70	1.4
	9	1	34	20.5	60	28.6	153	20.8	175.5	3.7	23	7	162	44	0.39	2.0	2.7	B	335	8	1.7	261	18	3.3	90	65	5.0
	9	7	0	25.8	60	10.0	141	12.3	3.3	1.0	11	6	133	10	0.28	0.9	0.9	A	288	9	0.5	194	21	1.6	40	67	1.8
	9	7	27	44.8	60	5.7	141	6.4	7.2	1.3	11	5	145	8	0.57	1.0	0.7	A	108	5	1.4	35	14	205	54	205	1.8
	9	9	30	31.4	60	23.9	144	57.6	23.7	0.8	12	6	171	20	0.55	0.9	0.9	A	116	17	0.7	14	36	1.6	227	49	1.8
	9	10	27	29.9	61	18.1	152	11.1	5.8	0.7	3	3	288	4	0.03	1.1	1.0	A	31	3	1.0	300	21	2.1	129	69	1.8
	9	11	29	15.8	61	16.1	152	17.7	6.6	-0.4A	3	3	307	8	0.06	1.3	2.1	B	189	3	1.4	280	19	2.1	90	71	4.1
	9	13	46	34.7	61	10.4	149	32.2	37.9	1.0A	13	7	53	8	0.29	0.7	0.9	A	276	2	1.2	186	15	1.1	13	75	1.6
	9	20	21	25.3	60	18.3	141	12.8	9.5	1.2	9	3	118	20	0.32	0.7	1.5	B	81	6	1.0	334	18	0.6	187	65	2.9
	10	2	23	50.4	62	12.6	151	14.4	77.0	2.4	14	6	254	30	0.66	1.6	1.7	B	81	14	1.8	175	33	2.9	331	54	3.3
	10	3	20	50.8	62	45.4	150	45.3	94.2	2.8	15	3	114	95	0.25	1.5	1.5	D	278	5	1.8	9	12	1.6	166	77	10.4
	10	5	41	1.5	63	14.9	150	14.1	91.5	2.6	7	3	302	156	0.15	17.8	25.0	D	81	14	6.3	332	18	16.0	201	61	66.9
	10	8	25	57.2	61	2.7	150	22.6	48.2	2.1	22	8	44	49	0.46	0.5	1.9	B	294	4	0.8	203	5	0.9	62	84	3.7
	10	8	44	27.7	60	9.3	150	16.3	34.1	1.2	13	5	108	34	0.27	0.7	1.4	A	319	6	0.9	261	10	0.7	85	56	2.2
	10	9	23	30.7	61	17.0	152	12.1	4.6	0.4	3	2	290	3	0.00	2.0	1.2	B	175	7	1.4	267	13	3.9	57	75	2.2
	10	10	28	51.8	60	20.1	141	15.7	8.8	0.8	5	2	124	24	0.08	10.3	24.2	D	295	0	1.7	25	23	1.4	205	67	49.3
	10	12	48	24.1	60	1.4	148	24.0	31.0	2.1	23	8	146	52	0.65	0.8	1.0	A	278	5	0.9	11	28	1.4	179	61	2.1
	10	14	36	5.3	62	16.0	151	19.7	86.9	2.6	17	5	172	34	0.30	1.2	1.2	A	287	1	1.5	196	42	2.5	18	48	1.8
	10	17	29	58.5	61	37.9	149	47.4	33.8	2.2	22	8	79	5	0.42	0.7	0.9	A	268	4	0.7	177	7	1.4	27	82	1.6
	10	19	15	44.1	61	59.0	147	31.8	38.4	2.0	21	8	167	20	0.73	1.1	0.7	A	342	19	2.2	86	35	0.7	229	49	1.2
	11	9	0	56.7	58	38.0	136	51.5	27.1	1.8	6	3	205	132	0.74	25.0	11.8	D	205	22	53.8	308	30	5.0	84	51	11.6
	11	12	47	10.7	61	11.5	149	53.6	15.4	1.0A	5	5	157	19	0.24	2.3	3.8	C	302	17	1.5	204	24	1.4	64	60	8.1
	11	15	11	36.8	60	14.5	141	9.8	0.9	1.2	11	8	114	12	0.75	0.6	1.0	A	305	7	0.6	37	14	1.0	189	74	1.8
	11	18	27	10.2	59	59.2	152	48.0	97.5	2.7	24	9	181	22	0.34	1.5	2.1	B	81	1	2.5	327	5	1.4	181	65	3.7
	11	19	3	24.3	60	6.0	141	8.9	5.0	0.3	4	2	221	9	0.22	2.8	2.1	C	276	29	1.2	26	32	5.7	153	44	3.7
	11	19	11	48.5	60	14.6	140	45.9	13.1	1.7	12	7	138	18	0.36	0.8	0.9	A	115	2	0.7	24	39	1.1	207	51	2.0
	11	20	21	40.6	60	16.5	140	17.0	10.1	1.2	8	7	171	20	0.75	1.9	1.2	B	324	18	0.9	261	30	3.2	88	47	1.6
	11	20	39	49.9	61	54.6	148	22.6	36.7	2.4	12	164	12	0.54	1.0	0.6	A	169	9	1.8	81	34	0.8	272	55	1.2	
	12	9	6	6.9	60	16.0	140	45.1	8.6	2.1	14	7	141	20	0.45	0.8	0.9	A	290	4	0.7	23	37	1.1	195	53	1.9
	12	10	58	11.9	61	15.1	152	18.4	8.2	0.3A	3	3	309	8	0.04	2.4	2.8	C	187	8	2.5	283	35	3.4	86	54	6.0
	12	14	23	59.7	60	21.9	141	25.7	14.7	3.0	16	6	109	18	0.58	0.7	0.9	A	103	2	0.7	13	13	1.2	202	77	1.7
	12	15	25	46.3	60	22.0	141	26.7	16.3	1.3	11	7	109	17	0.44	0.7	0.9	A	102	4	0.9	11	20	1.2	203	70	1.7
	12	16	3	24.7	60	21.5	141	22.9	13.0	0.7	7	3	112	20	0.38	1.0	1.3	A	173	17	1.9	81	18	1.4	305	65	2.5

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984																					
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG		
												DEG	MIN	KM	DEG	DEG	KM	DEG	DEG	KM	
1984	HR	MN	SEC	DEG	MIN	KM	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3			
APR 12 18 42	33.6	62	34.4	149	31.5	15.0	2.1	18	14	139	104	0.85	1.6	2.0	B	168	14	2.3	268	34	
APR 12 22 36.9	9.6	62	9.6	149	53.0	40.6	2.3	22	15	187	66	0.63	1.2	4.4	B	81	3	0.9	347	6	
APR 13 10 47 54.2	61	5.7	5.7	149	30.3	36.6	1.0A	4	5	216	117	0.10	1.3	2.2	B	261	1	2.3	154	7	
APR 13 11 36 43.6	60	16.3	141	6.6	6.5	0.9	9	6	121	14	0.41	0.9	1.4	B	307	7	0.8	40	25		
APR 13 13 8 15.5	60	9.6	141	13.2	1.9	0.7	8	4	136	10	0.31	0.7	1.3	A	15	1	1.3	285	5		
APR 13 15 35 3.4	59	51.5	146	39.7	27.6	2.3	20	5	119	47	0.73	0.8	0.9	A	48	21	1.0	305	31		
APR 13 20 31 43.0	59	12.5	152	28.4	61.6	2.3	14	7	170	59	0.48	1.4	2.7	B	320	11	1.4	261	20		
APR 14 1 5 12.6	58	32.5	136	31.1	16.4	1.8	4	1	209	111	0.10	25.0	0	D	296	26	6.4	48	37		
APR 14 2 18 52.0	60	4.5	152	27.0	3.4	0.7A	4	4	291	24	0.21	1.1	1.8	B	81	6	1.0	339	6		
APR 14 3 2 8.5	59	29.6	151	27.7	2.4	0.0A	4	3	171	7	0.10	1.3	1.6	B	81	7	0.5	340	26		
APR 14 4 26 28.9	60	9.7	141	8.5	7.1	1.2	9	5	136	6	0.26	0.7	0.6	A	294	10	0.6	201	14		
APR 14 11 14 27.9	58	57.2	151	9.0	43.6	3.1	16	4	150	55	0.30	1.8	3.2	C	201	6	1.8	109	22		
APR 14 11 3.9	MB	3.9	ML	ATWC	16.0	1.6	8	3	103	27	0.53	1.4	5.1	C	188	7	0.7	280	10		
APR 14 17 57 56.0	61	1.4	149	44.9	85.8	2.6	17	7	108	86	0.45	1.2	3.9	C	84	1	1.6	354	15		
APR 14 19 15 48.2	62	37.9	150	37.9	143	5.3	2.2	14	6	161	33	0.65	0.9	25.0	D	303	0	0.6	33	1	
APR 14 20 27.0	60	43.0	141	38.0	12.1	1.2A	5	5	232	38	0.27	1.3	1.6	B	93	5	1.3	185	19		
APR 15 1 20 55.7	59	45.5	141	21.7	141	25.6	15.7	0.8A	8	4	110	18	0.32	0.8	1.2	A	132	12	1.3	38	19
APR 15 2 56 31.5	60	21.7	16.1	144	51.9	28.7	1.2	13	6	144	34	0.53	1.2	0.8	A	27	8	2.3	121	20	
APR 15 7 15 20.1	60	16.5	141	13.6	17.3	1.6	12	7	114	17	0.33	0.5	0.7	A	300	14	0.5	36	22		
APR 15 7 46 49.8	60	16.5	141	13.6	11.3	2.2	14	7	120	9	0.18	0.6	0.6	A	81	24	0.7	309	25		
APR 15 10 21 19.0	60	14.1	141	3.0	37.3	1.0A	10	5	107	11	0.17	1.4	1.2	B	39	10	0.8	307	12		
APR 15 11 3 28.0	59	48.3	150	42.0	8.5	0.1A	4	4	172	7	0.39	1.4	1.3	B	193	30	0.9	303	31		
APR 15 13 48 59.7	61	8.8	152	10.3	32.2	3.2	40	10	72	19	0.32	0.4	0.6	A	296	6	0.6	28	20		
APR 15 16 59 35.2	60	41.6	148	21.5	3.8	MB	3.9	ML	ATWC	77.9	2.4	16	9	180	52	0.37	1.6	105	5		
APR 15 19 41 5.5	62	21.8	150	58.0	84.8	3.6	19	8	143	62	0.33	1.6	1.9	B	322	9	1.2	261	31		
APR 15 20 5 1.7	59	37.7	152	49.3	4.0	MB	4.3	ML	ATWC	68.0	2.2	19	10	90	15	0.46	0.6	1.0	A	88	
APR 15 22 54 40.7	61	24.9	150	59.7	72.9	2.5	25	14	44	44	0.51	1.0	1.3	A	332	5	0.8	81	17		
APR 16 4 50 22.8	60	0.4	152	7.0	4.0	1.7	13	7	192	59	0.40	0.9	1.1	A	172	11	1.7	269	31		
APR 16 10 34 56.6	62	10.0	149	38.6	57.7	2.2	20	8	122	23	0.49	1.2	1.9	B	81	7	0.9	172	20		
APR 16 14 52 2.9	61	39.2	150	55.9	78.5	2.5	22	13	136	44	0.45	1.0	1.3	A	328	4	0.9	81	11		
APR 16 14 58 39.0	60	2.2	152	4.7	1.9	1.8	18	12	197	61	0.94	1.1	1.1	A	267	28	0.9	159	30		
APR 16 17 7 47.4	62	11.0	150	8.7	12.4	1.0	8	4	110	17	0.28	0.8	1.2	A	300	11	0.8	35	21		
APR 16 18 52 33.2	60	15.3	141	15.4	0.1	2.4	11	6	239	81	0.97	1.8	1.5	B	146	5	1.2	81	34		
APR 17 1 4 36.5	60	45.1	139	36.2	13.4	0.8	9	7	109	19	0.39	0.7	0.9	A	285	6	0.9	16	9		
APR 17 3 48 4.6	60	16.9	141	25.9	40.1	1.2A	12	6	184	11	0.25	1.3	0.9	A	319	3	2.1	81	11		
APR 17 11 45 15.4	59	34.2	150	54.0	15.0	0.6	5	3	153	23	0.25	3.3	6.0	D	295	3	1.3	26	28		
APR 17 16 40 17.4	60	17.4	140	43.5	15.6	0.6	5	3	153	23	0.25	3.3	6.0	D	295	3	1.3	199	62		
APR 17 22 33 43.3	60	16.9	152	43.9	7.6	0.9A	4	4	177	12	0.38	1.9	1.0	B	22	17	0.8	285	22		
APR 18 2 11 13.3	60	22.8	145	2.8	7.3	0.6A	6	2	237	19	0.47	1.9	4.8	C	204	3	2.0	113	20		
APR 18 2 58 38.8	59	29.4	151	28.3	5.4	0.3A	5	3	156	7	0.20	1.1	1.7	B	81	14	0.6	338	19		
APR 18 10 57 13.1	59	52.8	146	37.7	13.5	2.8	25	8	107	49	0.74	0.5	0.7	A	261	1	0.8	346	7		
APR 18 13 33 12.6	62	13.2	154	17.2	4.9	2.8	10	3	147	119	0.27	1.6	3.2	C	217	4	2.9	126	9		
APR 18 13 33 27.0	59	48.7	146	42.5	31.4	2.0	17	9	117	46	0.77	0.9	0.8	A	185	13	1.6	86	37		
APR 18 14 13 33.7	61	48.3	148	31.2	10.3	1.8	22	8	155	10	0.80	0.5	0.7	A	343	14	0.9	261	27		
APR 18 16 23 3.6	62	17.2	150	3.8	65.3	2.4	19	7	132	71	0.57	1.0	2.0	B	98	5	1.0	5	21		
APR 18 19 31 30.7	60	42.4	151	50.4	81.5	4.3	28	1	61	33	0.32	0.9	2.1	B	176	3	0.9	85	15		
5.1 MB	4.8	ML	ATWC	3.9	ML	ATWC	3.5	ML	ATWC	17	4	2.7	1.6	3.2	C	217	4	2.9	126	9	
18 13 33 27.0	59	48.7	146	42.5	31.4	2.0	17	9	117	46	0.77	0.9	0.8	A	185	13	1.6	86	37		
18 14 13 33.7	61	48.3	148	31.2	10.3	1.8	22	8	155	10	0.80	0.5	0.7	A	343	14	0.9	261	27		
18 16 23 3.6	62	17.2	150	3.8	65.3	2.4	19	7	132	71	0.57	1.0	2.0	B	98	5	1.0	5	21		
18 19 31 30.7	60	42.4	151	50.4	81.5	4.3	28	1	61	33	0.32	0.9	2.1	B	176	3	0.9	85	15		
5.1 MB	4.8	ML	ATWC	3.9	ML	ATWC	3.5	ML	ATWC	17	4	2.7	1.6	3.2	C	217	4	2.9	126	9	

HOMER, MOOSE PASS, NILCHIK, SEWARD, TYONEK, WASILLA AND WHITTIER. ALSO FELT AT ANCHORAGE KENAI VALDEZ AND WILLOW.

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984

ORIGIN	TIME	LAT N			LONG W			DEPTH			MAG			NP NS			GAP			DI			RMS			SEH			SEZ Q			AZI			DIP1			SEJ			AZ2			DIP2			SE2			AZ3			DIP3			SE3															
		1984	HR	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC																					
APR 18 20 20	25.3	63	5.2	150	58.3	98.8	3.6	13	3	128	0.36	1.1	5.8	0	43	0	1.1	313	3	1.9	133	87	10.8	18 20 44	35.3	57	29.3	137	8.5	18.0	2.5	10	3	202	0.35	25.0	25.0	D	309	21	1.5	53	34	9.1	193	49	99.0	18 22 47	26.9	60	49.3	152	2.8	4.0	0.8	9	4	138	0.51	0.9	1.1	A	189	2	0.5	98	40	1.0	281	50	2.5
19 10 33	23.2	61	10.1	152	9.5	4.3	-0.2	3	3	285	6	0.03	1.3	1.9	B	261	9	2.0	320	19	1.0	144	53	3.2	19 10 45	17.5	60	43.0	139	44.7	3.8	1.5A	7	4	232	75	0.64	2.4	2.7	B	335	4	1.4	261	37	3.0	70	50	5.8																						
19 14 35	23.4	60	56.4	147	25.2	12.0	2.1	26	11	52	50	0.43	0.4	0.7	A	189	3	0.8	280	19	0.5	90	71	1.3	19 15 56	15.6	60	10.0	140	58.3	8.7	0.3	6	3	127	4	0.22	1.6	1.1	B	104	25	1.0	212	34	3.6	346	46	0.8																						
19 19 59	7.1	59	52.3	140	18.2	32.3	1.0A	6	3	185	25	0.50	4.8	5.6	D	124	4	1.0	217	40	2.1	29	50	13.7	19 20 14	37.9	61	34.6	149	50.2	55.8	3.3A	29	7	86	9	0.39	0.7	1.4	B	269	4	0.7	179	12	1.2	17	77	2.7																						
19 20 14	51.0	61	34.5	149	48.8	52.7	3.3	13	7	134	51	0.37	1.0	2.2	B	107	2	0.9	198	5	1.8	355	85	4.2	20 0 40	16.4	60	6.1	151	27.2	54.8	2.1	19	10	92	11	0.39	0.6	1.2	A	338	8	0.6	81	12	0.9	219	71	2.3																						
20 2 12	25.6	59	29.9	151	28.2	6.6	0.2A	7	4	139	7	0.13	0.9	1.2	A	81	12	0.6	340	26	1.2	193	60	2.5	20 2 34	47.2	60	21.4	140	44.9	9.9	0.3A	8	4	151	28	0.56	1.5	4.0	C	309	10	0.9	41	16	1.4	188	71	7.9																						
20 4 24	49.3	61	39.7	152	5.4	118.2	4.0	25	9	146	40	0.42	1.2	1.3	A	101	19	2.1	198	21	1.4	332	61	2.7	4.5 MB	3.0	ML	ATWC	3.0	ML	ATWC	3.8	ML	ATWC	6.7	150	48.2	61.0	2.3	18	8	199	41	0.43	1.2	1.3	A	92	14	1.1	187	19	2.2	328	66	2.6															
20 4 31	13.5	62	6.7	150	48.2	61.0	2.3	18	8	199	41	0.43	1.2	1.3	A	92	14	1.1	187	19	2.2	328	66	2.6	20 6 8	2.9	59	47.2	151	55.5	59.4	2.6	22	11	123	40	0.45	0.7	1.0	A	47	9	1.2	315	12	0.6	173	75	2.0																						
20 6 37	19.6	60	12.3	139	43.2	16.3	1.0	7	4	196	28	0.51	1.6	1.4	B	115	11	0.9	214	40	3.6	13 48	15.9	60	7.0	141	7.5	0.2	8	3	144	7	0.31	1.2	2.3	B	270	7	0.9	178	19	1.7	19	70	4.6																										
20 7 40	38.1	60	55.8	147	14.5	23.5	2.5	27	14	49	42	0.51	0.3	0.8	A	198	7	0.5	289	10	0.4	73	78	1.5	20 17 55	6.6	61	37.7	142	40.6	17.3	1.4	10	4	229	64	0.34	2.7	4.4	C	302	2	1.3	33	27	3.5	208	63	9.0																						
20 18 28	50.4	61	48.4	148	23.4	35.1	2.1	22	12	155	3	0.50	0.7	0.4	A	334	14	1.4	81	25	0.6	220	57	0.7	20 21 36	2.7	58	54.4	141	11.4	31.0	1.5A	10	7	268	133	0.39	4.4	25.0	D	299	0	4.6	209	1	8.1	29	89	99.0																						
20 22 10	35.2	58	26.4	153	38.6	63.1	2.5	11	6	235	103	0.39	6.2	13.2	D	358	11	1.4	216	21	4.8	114	66	27.0	20 23 52	33.3	59	58.0	140	44.0	0.8	1.3	4	190	27	0.22	1.1	1.2	A	284	2	0.6	193	36	1.5	17	54	2.7																							
21 0 29	38.5	59	30.0	151	28.9	6.3	0.2A	3	3	198	7	0.01	1.0	1.8	B	347	10	1.8	81	11	0.6	217	75	3.5	21 3 0	19.8	60	10.5	141	6.3	17.1	0.9	3	232	5	0.10	3.3	1.4	C	114	18	1.2	211	21	6.6	347	62	1.0																							
21 17 22	21.4	61	41.6	150	10.9	0.7	2.1	21	3	141	17	0.32	1.1	1.4	B	148	64	8.4	25.0	D	276	1	5.4	7	4	14.1	191	10	0.9	19	1.7	270	20	0.7	137	62	2.2																																		
21 4 1	4.3	60	42.9	139	43.8	0.5	1.7	10	4	233	75	0.63	2.4	3.2	C	329	4	1.4	261	15	4.0	74	63	5.6	21 9 36	2.1	60	2.8	140	39.3	7.1	1.5	10	5	158	23	0.39	1.3	1.0	A	289	4	0.8	19	9	2.4	175	80	1.8																						
21 12 1	18.9	60	59.8	147	13.6	18.8	2.5	27	6	85	15	0.57	0.5	0.8	A	20	1	0.9	300	3	0.9	209	19	1.5	21 15 23.9	61	18.3	149	15.8	37.6	2.2	30	7	59	17	0.55	0.5	0.7	A	191	10	0.9	99	11	0.8	322	75	1.3																							
21 17 22	21.4	61	41.6	150	10.9	0.7	2.1	21	3	141	17	0.32	1.1	1.4	B	160	3	1.4	1.7	B	160	3	1.4	1.7	B	329	6	6.3	81	7	2.8	208	66	12.6																																					
22 4 34	11.5	60	14.3	152	26.7	77.2	2.2	20	5	103	22	0.31	1.4	1.7	B	160	3	1.4	1.7	B	160	3	1.0	81	7	2.8	22 9 8	42.1	60	26.7	141	28.8	6.4	1.2	12	3	110	18	0.40	0.8	1.6	B	325	1	1.0	81	21	0.7	233	57	2.9																				
22 12 32	23.4	60	4.4	141	13.7	3.4	0.9A	3	3	231	14	0.11	2.5	3.6	C	283	3	1.5	191	33	2.2	18 57	15	21.4	15	0.34	5	0.34	1.4	0.8	B	212	23	2.8	107	33	1.1	330	48	1.3																															
22 13 10	37.1	59	53.2	146	40.4	27.4	2.2	19	3	114	46	0.56	1.2	0.9	A	345	3	2.2	81	16	1.3	235	73	1.8	22 16 42	33.5	61	54.1	151	34.8	83.7	2.4	17	9	173	9	0.32	1.8	1.6	B	81	8	2.2	81	8	2.7	339	54	4.5																						

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
APR 22 19 50 25.7	61	25.2	151	31.9	15.7	0.7A	4	5	144	28	0.40	0.7	8.7	D	1.34	1	1.2	44	2	0.6	251	88	16.3
23 10 13 28.8	61	15.4	152	10.8	2.7	-0.6A	3	3	266	2	0.03	1.4	1.2	B	187	18	1.2	291	37	3.0	76	47	1.6
23 15 32 5.3	62	36.6	149	27.6	39.7	2.0	16	11	139	107	0.59	2.6	14.5	D	335	4	2.0	81	7	1.8	220	72	26.5
23 18 20 59.8	57	47.0	137	33.9	12.7	2.7	7	2	210	157	0.43	20.5	23.5	D	133	7	4.2	37	40	11.8	231	49	57.3
23 21 18 40.5	60	12.5	139	44.3	15.6	0.8	5	3	230	29	0.37	3.0	2.5	C	114	3	1.4	206	38	6.7	20	52	2.8
23 21 20 25.1	60	12.7	139	39.5	9.1	2.4	10	4	199	29	0.64	2.1	1.3	B	309	9	0.9	215	25	4.2	57	63	1.8
23 21 25 8.7	60	6.8	139	49.3	16.9	1.1A	5	4	219	21	0.42	3.4	1.1	C	119	6	1.0	210	9	6.4	356	79	1.9
23 22 23 24.9	60	15.6	139	34.4	10.6	2.4	11	6	206	34	0.72	1.7	1.5	B	319	9	0.9	261	35	3.1	61	43	1.9
23 22 49 37.7	60	11.2	139	43.4	16.3	1.8	10	4	194	27	0.49	2.2	1.5	B	301	4	1.0	209	30	4.6	38	60	1.7
24 0 12 3.5	62	20.7	148	4.0	29.1	2.1	16	8	205	61	0.56	1.9	1.3	B	173	22	3.7	81	28	1.6	299	55	2.4
24 0 54 48.7	60	5.6	139	51.9	26.0	0.8A	4	2	214	20	0.11	10.5	2.8	D	297	13	1.6	204	13	20.2	71	71	2.8
24 2 10 19.6	59	30.2	151	28.4	5.4	0.2	8	6	145	7	0.17	1.0	1.8	B	328	14	1.0	81	16	0.6	207	59	3.5
24 2 51 8.5	61	27.0	151	55.4	89.7	2.5	9	168	17	0.36	1.2	1.8	B	197	3	1.6	106	24	1.9	294	66	3.7	
24 4 11 38.2	61	22.8	150	13.2	7.9	1.0A	9	5	109	30	0.54	1.7	1.5	B	285	2	0.7	16	22	3.2	190	68	2.7
24 8 17 23.5	60	9.1	139	39.5	12.2	0.8	6	2	205	22	0.24	2.9	2.6	C	303	2	1.2	211	41	6.8	35	49	2.8
24 8 48 5.5	62	31.8	151	14.8	86.4	2.4	14	8	192	63	0.38	1.7	3.0	C	107	6	3.0	14	21	2.1	212	68	5.9
24 9 24 14.0	61	18.1	149	14.3	45.0	2.1	33	14	58	18	0.68	0.5	1.2	A	287	0	0.9	197	6	0.9	17	84	2.2
24 10 29 47.1	61	6.7	149	21.3	20.0	1.2A	7	5	108	19	0.30	1.3	3.8	C	86	1	1.5	176	17	1.1	353	73	7.4
24 16 24 35.6	59	44.5	136	41.6	2.3	1.6	5	3	330	128	0.46	6.2	7.2	D	89	18	4.8	348	29	9.7	206	55	15.4
24 23 25 48.8	60	23.0	141	17.4	11.5	0.9A	5	4	121	25	0.31	1.6	3.6	C	89	15	1.3	355	15	1.3	222	69	7.3
25 1 5 8.1	60	26.0	150	48.6	41.8	2.8	29	11	56	34	0.40	0.3	1.1	A	350	3	0.5	261	6	1.0	107	83	2.0
25 1 36 20.0	60	15.7	141	8.6	11.7	1.6	12	5	118	14	0.22	0.6	0.9	A	81	3	0.8	331	24	0.7	177	59	1.8
25 3 22 49.1	60	15.0	140	13.4	13.2	1.5	10	4	172	17	0.44	1.5	1.5	B	318	20	0.7	66	40	1.1	208	43	3.8
25 7 8 38.4	58	10.5	154	29.3	138.3	3.6	11	7	121	127	0.84	3.2	6.2	D	328	12	2.0	261	20	4.3	93	58	11.2
25 7 8 3.8 MB					4.1	ML	ATWC																
25 16 46 44.7	60	19.5	141	41.3	17.4	1.3	9	6	92	5	0.26	0.7	0.6	A	268	22	1.4	31	9	149	50	1.0	
25 17 13 42.5	60	19.5	141	41.3	17.7	1.1	11	5	92	5	0.28	0.7	0.6	A	264	29	1.4	36	9	146	40	1.0	
26 2 11 40.1	59	30.6	151	28.6	4.5	0.4A	9	6	110	7	0.17	0.8	2.1	B	326	6	0.9	81	11	0.5	214	62	3.8
26 3 43 33.6	59	58.3	149	53.8	15.2	1.2	10	4	174	29	0.37	1.3	2.1	B	261	7	1.0	151	16	2.1	10	64	3.9
26 3 57 59.7	60	54.0	152	28.1	10.0	1.1A	9	8	189	36	0.64	1.8	2.0	B	192	1	0.5	101	38	2.8	283	52	4.2
26 6 7 38.2	61	16.2	152	17.4	6.7	0.1A	3	3	307	7	0.04	1.3	1.5	B	306	9	1.1	287	35	1.9	92	54	3.1
26 9 12 41.5	60	17.3	140	10.4	9.3	1.1	9	5	181	22	0.50	1.4	1.5	B	146	15	1.7	81	44	4.0	206	49	3.7
26 16 34 18.6	59	48.5	153	23.8	125.2	2.9	19	12	215	53	0.38	2.4	1.5	B	146	15	1.7	81	25	4.0	271	53	2.3
26 17 46 38.5	60	13.4	141	15.9	13.0	1.0	10	5	123	15	0.17	0.7	0.7	A	299	8	0.6	36	43	1.1	201	46	1.6
26 17 48 34.0	62	31.5	149	18.0	40.3	2.2	17	10	132	94	0.88	2.1	8.6	D	86	6	1.4	355	10	2.1	207	78	16.4
26 18 10 46.0	61	33.2	151	17.0	4.0	1.6	17	8	109	30	0.84	0.3	0.7	A	81	8	0.5	164	10	0.6	310	75	1.3
26 18 10 58.7	61	20.0	146	43.7	15.1	2.7	26	5	49	31	0.74	0.4	0.7	A	196	1	0.8	286	4	0.6	92	86	1.3
27 13 7 48.6	60	16.0	141	42.0	9.8	1.0	7	4	116	11	0.36	1.1	0.7	A	81	24	1.6	144	26	0.8	297	47	1.1
27 16 55 25.1	60	10.2	141	4.4	8.5	1.4	13	7	125	3	0.41	0.8	0.4	A	203	11	1.5	295	13	0.5	74	73	0.7
27 19 36 41.4	61	39.3	149	43.3	39.0	2.5	24	9	145	8	0.52	0.5	0.6	A	357	15	1.0	94	27	0.5	241	59	1.3
27 23 28 14.9	60	16.7	141	2.8	10.2	2.0	14	6	126	14	0.26	0.5	0.7	A	81	14	0.7	328	24	0.5	194	55	1.4
27 23 33 40.4	61	32.2	152	5.0	8.1	1.4	18	10	195	26	0.86	0.8	0.6	A	287	10	1.6	21	21	0.5	173	67	1.1
28 2 5 28.6	61	0.9	147	16.2	16.4	1.9	22	12	82	49	0.60	0.4	0.8	A	5	3	0.8	274	15	0.4	106	75	1.5
28 3 19 53.5	60	17.1	140	54.9	2.4	1.1	7	5	136	16	0.16	0.8	2.3	B	83	4	0.9	352	17	0.6	186	73	4.6
28 9 16 44.6	61	16.7	152	12.0	4.3	-0.2	3	3	289	3	0.02	1.1	0.8	A	198	3	1.0	289	14	2.2	96	76	1.4
28 11 13 30.1	60	13.9	141	59.4	2.6	1.0	6	4	162	20	0.25	0.6	1.4	B	9	8	0.7	278	9	1.1	140	78	2.6
28 13 33 6.7	58	56.2	137	31.4	23.0	2.2	8	6	158	96	0.43	7.0	1.3	D	225	6	13.2	31	1.3	325	58	2.2	
28 13 34 51.9	62	10.9	150	2.4	3.8	2.2	17	8	125	60	0.83	0.8	1.2	A	176	12	1.3	272	25	0.7	63	62	2.5
28 16 48 48.6	60	18.4	152	16.9	83.6	2.6	24	9	141	31	0.29	1.1	1.5	B	344	1	0.9	81	19	1.9	251	70	2.8
28 18 43 17.0	59	15.0	138	42.7	14.4	1.0	3	2	343	24	0.27	10.9	4.0	D	81	32	18.4	155	34	3.3	301	43	4.3

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - APRIL 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEZ	Q	AZ1	DIP1	SEJ	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
APR 28 21 34 20.6	59	57.9	141	13.9	3.2	1.0	8	4	173	24	0.28	1.3	2.0	B	126	2	1.0	217	27	1.5	32	63	4.2
28 21 48 27.3	60	1.0	141	29.1	7.8	1.0	12	6	162	29	0.54	0.7	0.9	A	89	6	0.6	182	22	1.2	345	67	1.7
28 23 7 12.1	59	55.0	151	13.2	44.2	1.6	13	8	87	9	0.33	0.6	0.8	A	266	9	1.0	358	14	0.7	144	73	1.5
29 0 29 38.6	60	20.4	153	5.7	129.3	3.1	18	6	164	24	0.27	1.9	2.8	C	155	3	1.8	81	11	3.2	261	70	5.1
29 2 12 41.2	62	43.9	150	50.8	97.4	2.8	11	4	295	91	0.51	4.9	6.2	D	187	7	9.2	96	14	4.0	303	74	11.9
29 2 27 17.2	60	5.9	140	27.1	21.6	0.6	3	2	190	11	0.13	16.1	4.9	D	18	6	30.3	283	38	1.6	116	51	11.0
29 3 3 48.1	60	28.4	143	14.8	19.4	1.2A	6	2	132	38	0.18	3.1	5.7	D	215	8	1.9	309	25	3.0	109	64	11.8
29 4 54 21.1	60	23.5	141	7.4	1.5	0.8	6	2	134	27	0.30	2.5	3.7	C	103	4	0.8	194	17	4.5	0	73	7.1
29 5 0 4.5	60	12.0	141	11.6	1.9	0.3A	3	1	181	10	0.01	25.0	25.0	D	300	9	0.8	205	31	99.0	44	58	11.9
29 8 58 4.4	60	8.6	139	48.4	23.9	0.4	3	2	247	23	0.04	8.4	4.7	D	300	6	1.8	208	26	17.2	42	63	5.1
29 10 57 57.5	63	10.0	150	43.9	127.1	3.1	9	4	313	138	0.31	8.1	8.3	D	82	27	10.0	335	30	12.6	206	48	18.2
29 11 22 11.4	60	11.2	141	8.2	14.7	0.9	9	6	130	7	0.72	0.8	0.7	A	298	18	0.8	198	27	1.7	57	57	1.1
29 12 41 40.1	60	14.8	151	15.6	19.9	1.4A	12	5	81	23	0.44	0.6	1.2	A	37	2	1.1	306	6	0.7	145	84	2.3
29 12 42 31.1	60	28.5	143	16.5	9.3	1.1A	6	2	134	39	0.27	1.0	4.0	C	339	2	1.3	261	9	1.5	82	75	7.4
29 12 57 0.6	59	58.5	151	15.9	52.0	2.1	20	5	88	8	0.30	0.7	1.7	B	264	1	1.2	355	16	0.9	171	74	3.2
29 17 24 40.0	60	16.5	141	4.9	7.6	0.9	9	2	123	14	0.09	2.1	1.8	B	347	27	0.8	101	39	2.7	232	39	4.6
29 19 31 36.7	61	17.4	152	12.8	8.9	1.0	4	3	197	4	0.15	2.1	0.9	B	96	11	4.0	197	43	1.9	355	45	0.9
30 0 34 40.8	60	38.1	142	42.0	18.1	1.6	12	9	78	48	0.65	0.6	1.1	A	359	4	0.8	268	16	1.1	103	73	2.1
30 1 35 59.3	60	13.9	141	5.6	3.8	0.9	8	5	117	9	0.65	0.8	1.2	A	313	15	0.8	50	25	1.0	195	60	2.5
30 2 9 18.3	60	14.1	141	5.8	2.4	1.6	11	8	117	10	0.32	0.7	1.2	A	300	9	0.7	32	14	1.3	178	73	2.3
30 5 1 59.2	60	7.4	140	28.9	32.0	1.0A	5	4	173	13	0.72	6.7	2.1	D	29	13	12.9	126	28	2.3	277	59	3.0
30 6 14 39.9	59	46.0	150	35.1	11.0	0.3A	5	3	228	8	0.15	0.9	1.1	A	12	11	0.8	277	26	1.6	123	62	2.2
30 9 14 26.4	59	15.0	139	19.8	33.3	2.2	10	4	251	34	0.44	3.3	6.7	D	202	13	4.1	297	19	1.9	80	67	13.7
30 11 10 46.7	61	24.0	140	39.8	18.5	1.6A	5	3	258	60	0.61	3.0	2.9	C	334	24	4.0	82	36	2.5	218	45	7.2
30 12 4 26.5	60	22.2	152	41.1	13.5	0.8	13	9	181	22	0.51	1.4	1.1	B	17	1	0.9	286	37	3.1	108	53	1.0
30 12 12 28.9	61	11.1	152	15.7	2.9	1.7	21	12	115	11	1.02	0.7	0.6	A	204	30	0.6	93	32	1.5	327	43	1.1
30 12 13 39.9	60	17.7	141	17.4	13.9	1.2	9	6	112	21	0.40	0.9	1.3	A	81	13	1.3	325	16	0.9	199	57	2.5
30 14 22 8.9	60	12.5	141	23.0	9.1	0.6	9	6	136	20	0.30	0.7	1.3	A	292	10	0.8	24	13	1.3	165	74	2.6
30 16 14 16.1	59	36.4	152	41.0	75.0	2.8	19	11	140	64	0.37	1.9	2.4	B	317	8	1.3	261	17	2.8	74	52	3.8
30 18 0 43.3	61	41.6	146	47.2	21.1	2.0	18	10	96	33	0.74	0.6	1.3	A	121	4	0.8	212	7	1.2	2	82	2.5
30 18 18 54.7	59	37.2	151	7.1	0.4A	7	5	136	12	0.26	0.9	2.0	B	81	2	0.4	315	10	1.2	179	53	3.1	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MAY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZI	DIP1	SEI	AZ2	DIP2	SE2	AZ3	DIP3	SE3	KM	DEG	KM	DEG	KM	DEG	KM	DEG	KM
1984	HR	MN	SEC	DEG	MIN	DEG	MIN	DEG	MIN	DEG	KM	SEC	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN	DEG	MIN		
MAY	1	3	41	25.8	60	13.4	14.1	3.2	9.0	1.3	11	7	118	8	0.16	0.8	0.9	A	309	22	0.8	55	34	1.0	193	48	2.1					
	1	4	23	44.2	60	29.2	14.1	21.3	22.2	0.9	8	4	120	26	0.36	1.1	2.1	B	105	12	1.7	12	17	1.1	229	69	4.2					
	1	21	31	0.6	60	16.3	14.1	2.9	10.5	2.1	13	9	125	13	0.22	0.6	0.9	A	295	4	0.7	26	22	0.9	195	68	4.2					
	1	23	28	17.0	60	28.4	15.2	7.8	14.2	1.6	18	11	135	19	0.51	1.4	1.4	B	145	18	0.7	39	42	1.1	253	4.3	3.5					
	2	0	14	53.5	61	27.4	15.1	10.3	8.7	2.0	23	9	92	23	0.88	0.4	0.5	A	162	1	0.7	261	11	0.4	67	76	1.0					
	2	0	22	53.6	61	20.0	14.6	50.1	30.3	2.9	26	7	48	35	0.57	0.4	0.5	A	120	5	0.6	29	7	0.7	245	81	1.0					
						3.5	ML	ATWC																								
2	1	14	49.7	60	9.0	14.1	11.4	0.0	1.2	11	5	135	9	0.46	0.7	1.1	A	267	2	0.6	357	10	1.3	166	80	2.1						
	2	2	38	9.6	60	10.4	14.1	11.5	1.6	1.3	11	3	132	9	0.46	0.7	1.0	A	275	25	1.3	185	5	1.3	5	85	1.9					
	2	7	41	13.7	59	40.4	15.1	12.1	48.4	1.2	13	8	79	10	0.38	0.8	0.8	A	277	25	1.3	21	28	0.9	152	51	1.8					
	2	9	15	48.5	59	59.4	14.1	37.0	14.6	0.84	6	5	203	24	0.27	1.1	1.9	B	189	2	2.1	99	14	0.9	287	76	3.8					
	2	9	56	30.4	58	57.4	15.2	31.1	64.5	2.2	13	8	174	79	0.28	1.7	2.8	B	324	6	2.3	261	23	1.7	68	55	5.1					
	2	10	42	14.3	60	29.2	15.2	17.4	23.4	0.64	7	3	106	12	0.24	1.4	1.1	B	172	32	1.1	53	37	1.4	289	36	3.1					
	2	11	41	18.3	60	7.7	139	50.0	21.6	0.9	7	4	185	23	0.45	3.1	1.2	C	115	9	0.9	208	18	6.1	0	70	1.4					
	2	12	0	48.5	60	37.8	14.2	43.4	21.2	1.8	15	8	79	48	0.59	0.6	1.1	A	323	9	0.6	261	15	0.8	89	57	1.9					
	2	14	7	29.9	61	16.6	15.2	13.0	7.5	0.6	4	4	245	4	0.19	1.1	0.7	A	105	18	2.1	209	37	0.9	354	47	1.4					
	2	15	26	44.8	61	15.2	15.0	45.7	57.0	2.1	26	12	58	24	0.43	0.4	1.0	A	96	5	0.6	187	12	0.7	344	77	1.8					
	2	16	48	14.0	60	23.8	14.3	2.8	20.7	0.84	4	4	186	72	0.09	3.8	7.0	D	178	12	2.2	274	25	1.5	65	62	14.8					
	2	19	6	25.1	61	8.8	15.0	42.2	46.5	2.3	29	15	50	35	0.56	0.3	0.9	A	208	6	0.6	117	7	0.5	338	81	1.7					
	3	0	40	35.1	61	26.5	14.0	46.3	0.3	2.0	11	6	245	61	0.43	1.6	8.6	D	315	0	1.4	45	2	3.0	225	88	16.2					
	3	5	4	52.1	61	7.7	15.0	14.0	19.0	1.7	A	7	6	105	38	0.64	1.4	3.5	C	176	11	1.4	270	17	0.7	55	69	6.9				
	3	5	36	27.0	59	14.2	14.4	47.3	21.9	2.1	11	3	272	91	0.31	6.8	3.8	D	8	26	14.2	119	35	2.8	251	43	3.9					
	3	6	25	5.0	62	18.7	14.9	33.6	59.4	2.4	20	8	125	76	0.70	1.5	2.4	B	94	1	0.9	4	29	1.7	186	61	5.1					
	3	7	48	49.5	60	17.1	14.0	47.5	14.5	1.4	9	7	141	20	0.29	0.9	1.1	A	303	4	0.6	36	38	1.0	208	52	2.5					
	3	9	14	58.4	60	13.2	15.1	6.2	40.4	2.0	27	14	60	23	0.42	0.4	1.3	A	94	2	0.7	4	7	0.6	200	83	2.5					
	3	12	27	53.4	63	21.0	14.7	29.3	62.6	2.8	13	4	152	154	0.48	4.4	17.9	D	173	1	1.9	263	2	8.1	56	88	33.6					
	3	17	18	14.9	59	43.2	13.9	12.9	1.1	3	2	283	12	0.05	3.2	1.5	C	261	3	5.9	339	1	4.4	165	62	2.9						
	3	23	43	46.0	60	56.9	14.9	34.4	14.7	1.5	20	10	60	31	0.62	1.0	1.7	B	206	15	0.8	303	23	0.8	86	62	3.5					
	4	4	53	26.8	60	7.1	14.1	9.3	6.0	0.4A	3	2	217	8	0.03	3.1	2.2	C	282	20	0.7	27	34	7.0	167	49	1.6					
	4	5	17	49.0	60	38.6	14.0	40.2	6.5	0.9A	4	3	204	51	0.21	1.9	5.4	C	146	3	0.9	261	13	2.0	45	62	9.6					
	4	21	21	28.3	60	6.3	14.1	6.8	0.4	0.5A	3	2	218	7	0.23	2.2	5.3	C	138	3	2.4	261	13	1.8	38	55	8.9					
	4	23	2	43.4	61	2.9	14.7	2.5	11.6	2.4	22	6	60	40	0.37	0.4	0.9	A	7	0	0.8	277	10	0.6	97	80	1.7					
	4	23	3	20.1	59	13.5	15.3	9.9	78.7	4.2	15	0	204	94	0.28	2.2	6.1	D	340	0	2.5	261	5	4.0	70	78	11.3					
	4.8	MB				5.3	ML	ATWC																								
	5	0	54	23.5	59	23.8	14.6	25.3	16.9	2.4	15	6	243	6	0.55	1.2	1.2	A	85	28	2.0	334	34	1.5	205	43	2.6					
	5	1	0	40.8	63	29.0	14.9	46.6	40.6	2.4	11	5	255	190	0.97	4.4	15.1	D	280	2	5.2	10	6.7	179	80	28.7						
	5	1	18	24.3	59	58.0	14.0	40.5	2.0	1.1	10	9	165	28	0.62	0.9	1.2	A	115	5	0.5	208	25	1.4	14	64	2.5					
	5	5	30	48.6	61	16.4	15.2	10.7	2.9	-0.3A	3	3	281	1	0.03	1.1	0.8	A	18	1	0.9	287	19	2.2	111	71	1.3					
	5	13	23	26.6	60	11.1	139	44.3	13.4	1.2	8	6	194	26	0.50	1.7	1.1	B	313	13	0.8	216	30	3.5	64	57	1.4					
	5	20	39	52.1	60	13.6	14.1	1.7	12.7	1.3	11	7	120	8	0.29	0.7	0.6	A	114	2	0.5	205	37	1.5	21	53	0.9					
	6	2	43	21.7	60	3.2	14.0	39.4	6.3	1.2	9	7	156	23	0.65	0.8	0.7	A	287	3	0.5	19	37	1.6	193	53	1.2					
	6	2	45	57.0	61	16.0	15.2	16.9	7.8	-0.4A	3	3	305	7	0.05	1.3	1.3	A	191	8	1.3	288	41	1.9	92	48	2.9					
	6	3	44	4.4	59	57.7	15.1	4.6	59.1	2.4	8	98	15	0.31	0.6	1.1	A	277	1	1.0	8	20	0.6	184	70	2.3						
	6	3	52	27.5	61	14.6	17.4	34.8	2.8	26	9	90	23	0.72	0.5	0.4	A	296	11	0.7	32	32	1.0	189	56	0.8						
	7	6	26	39.2	61	20.7	14.6	44.6	21.6	2.0	21	64	32	0.59	0.5	0.9	A	21	5	0.9	290	12	0.7	133	77	1.7						

ALSO FELT AT HOMER AND Seward.

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MAY 1984											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG			NP	NS	GAP	DI	RMS
				HR	MIN	SEC	DEG	MIN	KM	DEG	DEG
1984 MAY 7 10 4 20.6 60	43.6	152	9.3	10.5	1.2	14	4	141	22	0.53	1.4
7 11 13 40.7 60	15.2	141	2.0	9.9	1.0	10	7	123	11	0.33	1.2
7 11 50 37.5 61	32.8	141	10.0	1.5	1.2A	5	5	256	66	0.29	2.1
7 12 32 29.8 62	22.6	150	110.5	3.3	11	1	117	163	0.29	5.9	25.0
7 16 49 57.3 61	7.4	149	27.3	32.1	1.1A	9	7	99	15	0.29	1.6
7 19 0 0.7 60	48.9	152	24.3	0.1	0.2	4	4	201	27	0.48	3.7
7 20 54 49.3 61	8.6	148	45.1	21.5	2.0	37	18	46	34	0.75	0.4
7 21 56 17.7 59	58.7	138	56.0	1.4	0.9	4	274	39	0.35	2.0	3.7
7 22 46 24.2 60	9.5	140	48.1	8.4	0.8	6	3	163	13	0.18	2.7
8 0 30 23.9 60	45.2	152	46.9	1.4	0.5	8	3	148	29	0.28	1.9
8 1 50 57.9 60	35.0	145	6.8	16.0	1.1	8	7	153	8	0.42	1.0
8 4 39 26.3 60	30.0	143	0.3	2.5	0.9A	6	5	109	34	0.61	1.4
8 7 43 46.2 60	10.4	141	1.0	6.1	1.2	8	6	112	2	0.27	1.1
8 10 41 23.3 59	43.0	140	0.8	33.8	1.4	7	5	209	34	0.43	4.9
9 0 7 22.8 60	26.3	143	6.3	26.4	0.6A	5	5	170	30	0.19	1.4
9 1 33 29.6 61	35.6	140	57.0	12.9	1.2A	9	5	73	0.38	2.1	2.6
9 2 38 25.3 60	6.6	141	22.1	5.2	1.0	9	8	165	19	0.37	0.9
9 4 18 32.3 60	26.6	145	6.3	27.0	0.5A	6	5	266	12	0.12	4.6
9 8 6 46.5 60	11.2	141	6.9	13.5	1.0	9	6	144	6	0.20	1.4
9 9 9 6 9.2 61	18.6	146	47.2	23.6	2.4	26	11	46	31	0.54	0.3
9 14 35 36.3 59	44.9	152	45.0	78.0	2.8	21	6	139	48	0.25	1.8
9 15 25 32.4 61	17.5	152	14.9	7.8	1.9	25	6	121	6	0.95	0.8
9 16 10 44.1 60	27.8	152	34.3	13.2	1.0A	11	7	142	15	0.51	2.0
9 17 37 44.2 60	12.5	141	6.1	13.5	1.1	10	6	113	7	0.22	0.9
9 18 41 58.0 60	0.0	142	44.7	26.5	1.9	17	162	23	0.26	1.3	0.5A
9 18 50 38.2 60	30.1	143	34.9	26.2	0.9A	10	5	165	53	0.60	2.5
9 20 8 7.9 59	30.2	151	28.5	5.4	0.1A	6	3	166	7	0.05	1.2
9 22 29 20.2 60	9.6	152	47.9	101.3	2.5	20	10	168	3	0.44	1.2
9 23 12 55.4 60	10.7	141	11.0	13.9	1.2	11	8	131	9	0.30	0.8
10 0 44 9.0 58	54.8	138	18.5	26.7	1.4	3	3	352	68	0.09	25.0
10 13 38 51.9 59	57.9	152	53.8	88.6	2.9	22	9	186	25	0.32	1.3
10 15 0 43.3 61	23.9	146	46.3	15.9	2.0	24	9	55	38	0.69	0.3
10 17 29 24.6 59	24.6	137	4.7	6.9	1.7	4	2	339	102	0.18	5.7
10 19 28 36.9 61	17.8	152	13.8	7.0	0.9	6	5	199	5	0.27	1.0
10 20 32 50.9 61	15.0	152	10.4	3.1	-0.4A	3	3	46	2	0.02	1.0
11 19 28 35.7 60	8.7	141	19.4	2.2	0.6	4	3	221	16	0.61	4.4
11 19 38 4.2 59	53.5	140	59.5	20.5	1.0	3	3	261	29	0.73	2.1
11 8 9 10.3 60	12.3	141	41.4	9.3	0.8	4	4	241	18	0.28	2.3
11 18 29 45.5 60	13.6	140	48.5	8.4	1.0	9	7	133	15	0.27	1.2
11 19 0 27 10.8 60	12.6	140	53.3	7.0	0.7	9	5	125	10	0.40	1.1
11 18 29 33.3 59	59	147	52.1	31.1	2.7	28	10	158	35	0.76	0.9
13 1 59 10.6 60	8.6	141	0.5	7.5	1.5	14	7	137	2	0.51	0.7
13 2 6 48.1 59	52.0	141	36.5	6.4	1.6	14	4	185	30	0.48	1.0
13 2 32 44.2 59	30.9	151	17.1	5.7	0.9	10	3	113	3	0.27	0.6

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MAY 1984											
1984	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS
	HR	MM	SEC	DEG	MIN	KM	DEG	SEC	KM	SEH	SEZ
MAY 13	9 52	8.4	60	20.8	141	56.6	4.5	1.0	8 4	75	11
13 12 2	52.2	59 59.4	140	14.9	13.7	1.1	8 2	166	0.59	0.6	1.1 A
13 14 49	14.8	61 10.3	152	9.3	4.3	-0.2	3 3	281	0.07	0.6	1.2 B
13 18 20	0.5	61 4.3	150	55.7	11.3	1.8	25 12	48	40	0.70	0.4
14 2 47	23.9	59 41.8	141	17.8	0.4	1.5	12 4	194	53	0.60	1.1
14 18 10	50.6	60 8.9	141	14.7	14.0	0.9	9 4	138	12	0.85	0.7 A
14 20 40	7.0	60 19.2	141	12.6	15.9	0.9	10 5	120	21	0.39	0.7
14 21 41	57.3	61 42.6	149	47.3	41.2	2.2	22 10	152	41	0.54	0.6
15 18 22	9.5	59 27.0	151	21.1	14.5	0.3	7 6	181	4	0.59	0.9
14 22 43	31.7	61 31.4	149	33.3	31.2	1.8	17 8	114	22	0.69	0.5
15 1 11	38.7	59 46.9	150	54.4	18.4	0.7A	7 4	84	16	0.38	0.8
15 13 22	53.3	60 16.7	141	37.8	1.0	1.1	10 8	102	11	0.91	0.7
15 14 12	15.2	61 15.9	149	50.0	38.6	1.5	17 9	85	15	0.56	1.0
15 15 23	37	43.9	150	42.4	8.1	3.0	12 4	162	30	0.52	1.0
16 0 11	30.9	59 55.7	140	43.9	7.8	0.7	7 3	195	30	0.34	2.0
16 1 35	44.0	61 14.8	146	55.3	8.1	2.1	25 10	40	29	0.50	0.6
16 6 11	48.8	62 14.1	148	41.9	13.5	2.1	22 12	195	51	0.87	1.2
16 10 24	14.3	60 16.4	141	9.6	14.4	1.6	13 8	118	15	0.36	0.5
16 15 30	43.6	59 30.3	151	22.3	13.9	1.3	9 8	111	8	0.27	0.9
16 18 20	34.4	60 0.9	153	32.7	134.2	2.9	16 6	202	89	0.27	2.9
16 20 20	46.7	59 54.1	140	43.8	17.7	0.9A	3 2	262	33	0.08	4.0
16 21 33	16.4	60 8.3	139	46.0	16.5	0.8	6 2	200	22	0.43	4.1
17 0 14	33.8	61 26.3	151	14.1	61.6	2.1	13 6	182	27	0.35	1.6
17 1 16	18.5	60 17.1	141	9.1	12.5	1.0	10 5	120	16	0.30	0.8
17 5 48	28.3	60 15.1	141	3.2	9.1	2.9	15 6	122	11	0.45	0.4
17 9 46	26.1	60 7.1	152	26.9	94.7	3.2	23 10	158	51	0.36	0.9
17 14 0	39.7	60 2.3	140	43.0	3.6	1.4	12 10	149	22	0.43	0.9
17 14 45	38.4	61 14.9	149	13.5	35.8	1.8	24 12	51	18	0.49	0.5
17 15 14	5.0	60 19.1	141	16.0	16.0	0.5A	9 6	116	22	0.31	0.8
17 18 57	51.9	61 16.1	150	7.0	39.5	2.3	27 9	97	30	0.73	0.4
17 21 2	18.0	62 58.1	150	22.2	84.5	2.8	11 11	216	125	0.40	4.3
17 21 50	10.0	60 5.1	141	30.1	17.6	1.2A	8 7	172	27	0.26	0.8
17 21 52	6.8	60 38.8	143	4.6	28.5	1.0A	8 5	78	51	0.26	0.9
18 11 0	25.1	62 45.6	150	38.7	80.4	2.7	12 3	113	98	0.35	2.0
18 19 28	4.8	61 7.5	152	9.7	6.7	0.6	5 2	169	9	0.28	1.7
18 19 42	58.6	63 8.3	150	17.3	114.4	3.0	11 2	123	144	0.40	3.0
18 22 30	47.5	60 36.4	147	31.4	30.0	2.2	26 8	67	40	0.72	0.6
19 3 7	26.3	59 24.7	153	35.8	110.3	3.1	16 4	170	96	0.37	2.9
19 3 44	54.8	60 9.7	141	9.0	9.1	3.1	15 2	136	7	0.43	0.8
19 4.2	MB	4.2	ML	ATWC							
19 3 47	29.2	60 7.9	141	13.1	9.2	1.2	9 2	141	11	0.44	1.2
19 3 50	30.3	60 9.8	141	8.6	9.4	1.0	10 6	136	6	0.34	0.7
19 3 59	19.1	60 10.1	141	7.5	10.1	1.9	14 9	135	5	0.57	0.6
19 4 7	18.5	60 9.4	141	8.5	10.9	1.8	13 8	137	6	0.46	0.5
19 4 51	0.2	61 48.9	150	34.5	51.3	2.2	22 10	157	40	0.39	0.7
19 5 8	53.7	60 11.7	141	7.0	7.7	1.3	11 7	117	6	0.46	0.8
19 8 24	4.1	60 15.1	141	11.8	8.2	1.0	11 8	113	14	0.51	0.6
19 10 1	3.2	60 9.7	141	8.1	8.9	1.2	10 8	136	6	0.69	0.6
19 13 24	17.2	60 15.6	141	12.4	6.2	0.8	10 6	114	15	0.45	0.7

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MAY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SE1	SEH	DIP2	SE2	AZ2	DIP2	SE3			
1984-05-19 09:51:07	60	10.2	141	8.7	8.9	1.1	11	7	135	6	0.55	0.6	0.5 A	283	27	0.5	172	35	1.2	41	4.3	0.9			
1984-05-19 15:37:25.2	60	17.6	140	57.2	6.2	0.8	10	6	132	16	0.50	0.8	1.4 B	305	6	0.5	38	26	0.7	203	63	2.8			
1984-05-19 15:55:24.6	60	13.9	140	53.0	6.2	1.1	10	5	126	10	0.44	1.0	1.0 A	296	6	0.7	31	44	0.9	200	45	2.4			
1984-05-19 17:33:41.6	60	42.7	142	48.0	17.1	1.7	17	9	68	44	0.89	0.4	1.0 A	170	2	0.6	261	6	0.7	62	84	1.8			
1984-05-19 18:10:44.1	59	53.7	153	25.9	127.4	2.9	19	10	217	47	0.33	1.8	1.2 B	81	20	3.3	166	26	1.4	313	57	2.3			
1984-05-19 21:44:50.5	60	13.3	141	5.7	4.8	1.0	11	6	115	8	0.62	0.9	0.8 A	312	18	0.6	206	42	2.0	60	43	0.9			
1984-05-20 02:33:58.0	59	58.6	140	7.5	10.5	1.3	8	4	152	15	0.66	2.0	1.5 B	295	6	0.6	29	35	4.4	197	54	1.5			
1984-05-20 04:27:18.7	60	12.6	141	5.5	0.2	1.4	9	4	271	0	0.65	1.2	1.3 A	39	16	1.4	299	32	2.2	152	53	2.5			
1984-05-20 06:27:37.5	60	16.8	141	11.6	0.1	0.9	4	3	279	32	0.42	2.3	1.7 B	81	10	1.6	161	31	4.6	334	56	2.6			
1984-05-20 06:53:42.2	60	38.5	141	46.3	9.0	1.7	11	7	95	32	0.87	0.5	1.1 A	359	2	0.6	268	15	0.9	96	75	2.0			
1984-05-20 07:55:57.9	61	58.5	149	28.0	36.4	2.2	16	11	186	42	0.55	0.9	0.8 A	85	6	0.7	180	37	2.0	347	52	1.1			
1984-05-20 09:40:10.5	60	24.6	147	36.7	26.7	2.2	22	11	102	0	0.49	0.5	0.7 A	261	6	0.7	340.	26	0.9	159	61	1.4			
1984-05-20 13:13:06	60	17.3	141	48.9	12.6	1.0	7	4	100	9	0.63	1.2	0.7 A	19	8	0.9	112	20	2.3	268	68	1.2			
1984-05-20 14:14:38.4	60	35.5	141	17.5	14.3	1.0	10	4	130	36	0.95	0.7	1.5 B	81	4	1.2	161	6	0.7	314	78	2.7			
1984-05-20 15:52:31.6	60	23.2	151	57.3	77.1	2.5	17	8	109	53	0.87	0.8	1.8 B	81	7	1.5	349	9	0.9	208	78	3.5			
1984-05-20 16:16:04	60	10.1	141	8.8	9.9	0.7	7	3	149	7	0.38	1.1	0.6 A	192	12	2.1	287	21	0.6	74	65	1.0			
1984-05-20 21:11:45.0	60	37.1	148	48.3	31.9	2.0	31	12	75	30	0.51	0.5	0.6 A	161	7	0.9	81	17	0.6	274	69	1.2			
1984-05-21 00:49:22.5	61	5.9	152	19.7	9.8	0.3	3	3	329	18	0.04	1.7	0.7 B	287	0	3.2	197	6	2.0	2.0	17	84	1.3		
1984-05-21 13:29:28.4	60	13.1	141	4.7	7.6	1.0	10	5	116	8	0.63	0.7	1.0 A	299	17	0.8	38	26	1.1	180	58	2.0			
1984-05-21 18:47:06.7	58	20.7	155	48.5	168.7	3.6	11	2	299	266	0.26	25.0	25.0 D	301	1	10.9	210	33	28.9	33	57	99.0			
1984-05-21 19:23:41.6	62	32.6	151	18.4	4.0	ML	ATWC	95.3	3.4	15	4	110	64	0.30	1.8	3.2 C	303	3	3.4	33	15	2.2	202	75	6.2
1984-05-21 21:21:41:7	60	11.7	140	43.0	3.3	1.3	9	6	161	23	0.42	1.2	1.1 A	113	1	0.6	22	38	2.6	204	52	1.6			
1984-05-21 22:22:39:4.1	61	19.4	150	10.9	16.1	0.7A	4	3	167	34	0.21	16.5	20.8 D	286	4	0.7	193	38	2.4	21	52	49.7			
1984-05-21 22:22:59:6.5	60	20.9	140	42.9	7.1	2.4	14	5	152	28	0.54	0.8	1.1 A	319	12	0.6	81	12	1.0	200	54	2.0			
1984-05-21 23:23:54:20.1	60	23.1	140	43.5	10.9	0.9A	5	3	227	31	0.16	1.5	3.6 C	81	4	1.4	349	12	2.5	189	77	6.9			
1984-05-22 00:26:17.6	60	18.6	140	47.2	16.5	1.1	8	5	143	22	0.32	0.8	1.1 A	311	7	0.6	45	29	0.9	209	60	2.4			
1984-05-22 01:36:21.0	61	16.0	149	39.1	43.3	1.5	10	7	118	6	0.23	0.6	1.1 A	81	3	1.0	335	6	0.9	194	73	2.0			
1984-05-22 04:22:35:9.2	62	25.0	150	34.7	59.0	2.5	15	10	101	69	0.68	1.0	2.2 B	309	5	1.1	41	20	1.0	206	69	4.3			
1984-05-22 04:22:31:19.8	60	19.0	140	45.4	16.1	0.7A	8	6	146	24	0.37	0.9	1.3 A	316	7	0.6	50	29	1.0	214	60	2.8			
1984-05-22 05:54:51.7	61	6.5	152	3.2	11.5	0.1	3	3	336	8	0.05	1.7	1.1 B	265	2	3.3	355	12	2.0	166	78	2.1			
1984-05-22 12:35:47.3	61	37.5	150	28.8	10.2	1.1	11	7	133	23	0.69	0.5	0.8 A	176	1	0.9	266	6	0.5	77	84	1.5			
1984-05-22 13:21:21:59.6	61	27.6	151	50.6	17.8	0.7	4	4	184	19	0.62	2.8	4.4 C	292	3	5.2	23	23	0.6	195	67	4.8			
1984-05-22 14:22:25:1.9	60	31.4	142	52.0	16.5	2.0	25	12	62	36	0.77	0.3	0.8 A	41	6	0.6	310	7	0.4	171	81	1.5			
1984-05-22 14:22:39:17.7	59	51.4	151	0.6	45.3	1.1	13	8	58	9	0.30	0.8	0.8 A	28	18	0.8	281	42	1.2	135	43	1.7			
1984-05-23:17:41:8	60	29.6	142	58.0	13.9	1.2	12	6	90	33	0.61	0.4	1.6 B	261	4	0.7	351	7	0.7	141	82	3.0			
1984-05-22:18:21:25.6	60	15.4	140	56.7	5.5	0.8	12	6	129	13	0.60	0.7	1.1 A	292	0	0.6	22	30	0.9	202	60	2.3			
1984-05-22:19:14:17.1	60	27.9	142	53.7	18.3	0.9A	10	5	87	29	0.59	0.7	1.6 B	261	4	0.9	352	14	1.0	155	75	3.2			
1984-05-23:2:25:1.9	59	30.1	151	28.6	6.7	0.4A	5	4	177	7	0.04	1.0	1.8 B	81	14	0.7	342	17	1.4	207	66	3.7			
1984-05-23:2:25:3.9	60	15.4	141	3.1	8.2	1.1	11	7	123	12	0.38	0.9	1.0 A	294	9	0.7	32	41	1.0	194	48	2.4			
1984-05-24:6:19:42.1	59	53.0	140	42.9	5.6	0.6	4	2	231	35	0.24	2.8	8.8 D	291	1	1.9	201	4	5.2	35	86	16.6			
1984-05-24:17:33:33.9	60	15.0	140	58.6	13.3	1.3	10	5	126	43	0.58	1.0	1.2 A	298	7	0.8	29	13	1.8	180	75	2.3			
1984-05-24:22:2:49.0	62	21.2	149	22.2	46.1	2.3	22	8	124	81	0.07	2.3	3.6 C	92	1	1.2	2	17	2.4	185	73	7.0			
1984-05-25:1:57:12.5	59	30.1	151	28.4	5.1	-0.2A	6	3	164	7	0.07	0.9	1.9 B	81	12	0.6	339	16	1.2	203	67	3.7			
1984-05-25:3:9:49.1	60	16.7	140	59.4	10.7	0.9	12	6	123	12	0.38	0.9	1.0 A	294	9	0.7	32	41	1.0	194	48	2.4			
1984-05-25:3:42:43.1	59	59.9	140	13.1	9.5	1.4	9	4	153	11	0.57	1.5	1.2 B	118	2	0.6	26	38	0.7	201	52	1.2			
1984-05-25:4:29:1.8	60	14.1	141	6.7	0.3	2.1	14	6	116	11	0.38	0.9	0.8 A	313	10	0.6	49	31	0.7	201	52	1.2			

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MAY 1984																							
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	RMS	DEG	MIN	SEC	SEH	SEZ	Q	AZ1	DIP1	SE1			
												DEG	MIN	SEC	KM	DEG	MIN	SEC	DEG	MIN	SEC		
1984 MAY 25 4 40 40.0	61	1.4	152	1.2	8.9	0.1	6	4	140	18	0.29	2.7	4.3	C	81	1	3.7	168	32	0.8	349	58	9.6
25 4 49 58.6	60	13.3	141	7.1	0.5	1.4	10	4	114	9	0.58	0.6	1.4	B	46	11	1.0	313	14	0.6	173	72	2.7
25 5 29 34.2	60	12.7	141	7.3	0.6	1.3	10	6	112	8	0.56	0.7	1.3	A	307	9	0.5	40	19	1.1	193	69	2.6
25 5 33 19.1	60	12.7	141	7.3	0.0	0.9	9	2	112	8	0.61	1.1	1.7	B	297	5	0.6	30	26	1.6	197	63	3.4
25 5 57 26.5	62	13.0	148	5.2	35.0	2.2	22	9	193	47	0.53	1.2	0.7	A	170	9	2.3	81	34	0.9	273	55	1.6
25 6 39 22.9	62	27.4	151	55.9	0.2	2.1	13	4	183	57	0.37	1.9	1.6	B	138	7	2.3	261	16	2.8	322	53	2.5
25 9 30 9.3	63	19.0	151	35.4	85.7	2.8	10	3	144	149	0.23	9.1	13.7	D	280	12	16.4	13	16	3.9	155	70	27.0
25 9 33 29.5	60	43.2	143	26.1	5.5	0.9A	5	2	114	62	0.24	2.0	25.0	D	280	1	1.0	190	3	1.7	28	87	58.8
25 10 58 42.5	60	8.3	139	47.3	18.2	0.9	6	3	199	22	0.50	2.0	0.9	B	119	12	0.7	213	19	4.0	358	67	1.2
25 14 52 17.1	59	32.1	153	9.0	96.7	2.8	18	7	154	75	0.40	1.9	3.1	C	304	10	2.2	211	15	3.2	66	72	6.1
3.4 MB			3.3	ML	ATWC																		
25 22 6 21.6	60	16.4	141	28.0	6.2	0.7	8	2	112	18	0.61	1.0	1.3	B	222	4	1.9	131	25	1.2	321	65	2.7
25 23 27 29.6	60	6.5	141	8.3	8.1	0.9	9	3	142	8	0.33	1.2	0.9	A	261	28	0.8	9	31	2.5	138	46	1.2
26 0 41 38.0	60	15.3	141	0.6	3.9	1.4A	3	2	187	11	0.16	2.5	3.7	C	104	16	1.0	5	29	1.0	219	56	8.3
26 5 10 56.3	60	4.8	141	11.0	4.9	0.9	8	8	198	12	0.53	1.0	0.8	A	295	8	0.8	30	33	2.1	193	56	1.3
26 14 45 55.7	59	44.2	150	46.6	39.1	2.4	21	9	101	7	0.48	0.6	1.0	A	304	17	1.0	40	18	0.7	174	65	2.1
26 20 54 22.1	60	17.7	140	57.3	7.8	1.1	9	7	132	16	0.48	0.8	1.0	A	317	7	0.7	51	35	0.9	217	54	2.3
27 1 59 52.1	59	30.0	151	29.0	6.4	0.5A	6	3	145	6	0.06	1.0	1.2	A	81	13	0.6	340	29	1.5	192	57	2.6
27 5 43 4.0	60	29.8	145	1.6	11.6	0.8A	6	4	150	46	0.70	1.3	2.5	B	121	8	1.1	30	9	2.2	252	78	4.8
27 8 30 2.4	62	3.7	148	22.3	37.8	2.3	25	8	97	28	0.45	1.1	0.9	A	179	23	2.2	81	31	0.9	301	51	1.8
27 20 27 14.2	60	1.5	141	26.7	4.9	1.3	10	7	164	27	0.56	0.9	0.9	A	90	4	0.7	184	44	1.4	356	46	1.9
27 21 46 3.1	59	34.9	151	24.1	45.4	1.1	10	5	91	11	0.23	1.3	1.4	B	261	8	1.5	342	43	1.1	162	46	3.4
28 2 11 49.3	62	6.8	149	34.0	13.5	2.0	15	9	201	54	0.70	1.1	1.6	B	272	21	0.6	173	24	1.0	39	57	3.5
28 5 17 57.5	59	12.7	153	32.2	95.9	3.9	16	3	173	115	0.39	2.4	4.9	C	179	6	3.1	271	16	3.8	69	73	9.4
4.8 MB																							
28 5 36 53.4	62	30.0	151	9.2	89.1	2.7	16	7	107	61	0.28	1.3	1.7	B	81	21	1.8	338	24	1.6	206	56	3.7
28 7 49 24.4	60	1.8	152	50.8	93.7	3.0	21	13	179	17	0.52	0.9	1.0	A	329	6	0.8	81	12	1.6	218	64	1.8
28 8 30 52.7	60	32.8	144	54.7	17.2	1.5	12	10	142	16	0.59	0.7	0.9	A	124	13	0.6	26	31	0.8	234	56	2.0
28 13 8 26.3	59	7.1	137	28.5	14.4	1.8	5	3	347	88	0.40	11.7	3.5	D	211	15	22.7	115	23	2.6	331	62	3.5
28 14 38 37.3	63	16.0	150	48.9	77.9	3.3	12	5	133	148	0.45	5.0	16.3	D	293	3	1.6	24	13	6.0	190	77	31.4
28 16 7 30.0	60	14.9	141	6.6	1.0	0.4A	6	3	146	11	0.28	1.6	3.2	C	308	6	0.6	40	23	1.6	204	66	6.4
28 16 30 55.8	59	14.1	152	18.3	73.8	2.4	16	8	178	49	0.21	2.5	1.6	B	125	26	5.2	18	31	2.8	247	47	1.6
28 17 29 3.5	60	40.3	142	56.6	28.9	1.2	8	6	74	50	0.50	0.6	0.6	A	301	7	1.0	206	39	0.8	39	50	1.4
28 22 55 47.8	59	46.7	145	38.8	35.4	2.6	23	17	145	55	0.95	0.7	0.6	A	276	32	0.6	159	36	1.6	35	38	0.9
29 0 4 11.2	60	2.5	141	26.5	2.2	1.0	10	9	156	26	0.58	0.8	0.9	A	96	10	0.6	194	36	1.2	353	52	2.1
29 0 7 50.5	60	2.2	141	29.0	5.9	1.5	12	4	157	28	0.43	0.6	0.8	A	104	13	0.6	10	17	1.0	230	68	1.6
29 0 13 17.3	60	1.9	141	28.1	3.6	1.0	11	6	154	28	0.53	0.7	1.1	A	93	5	0.7	184	17	1.3	347	72	2.0
29 0 48 18.5	60	2.6	141	28.1	3.2	1.4	12	8	156	27	0.62	0.6	0.7	A	198	3	1.1	108	12	0.5	302	78	1.4
29 1 27 34.4	61	13.8	149	53.1	42.7	1.9	11	8	111	18	0.42	0.6	1.2	A	18	0	1.1	108	3	0.8	288	87	2.2
29 1 27 54.1	61	36.9	149	43.3	43.3	2.2	18	9	138	9	0.91	0.6	0.9	A	275	6	0.7	183	15	1.0	26	74	1.8
29 1 31 32.8	59	28.1	138	52.4	18.8	0.8	6	4	225	2	0.40	3.7	0.8	C	229	3	7.0	136	37	2.3	323	53	0.8
29 3 49 12.9	59	44.4	136	45.9	18.3	2.0	8	4	315	124	0.37	6.5	3.1	D	81	5	3.5	172	24	13.3	340	65	2.1
29 4 14 8.6	60	44.0	147	0.8	22.4	2.6	31	12	46	18	0.61	0.3	0.5	A	352	3	0.6	261	13	0.4	95	77	1.0
29 7 46 43.8	60	30.8	152	26.1	99.3	2.6	25	9	82	43	0.39	0.9	1.3	B	261	0	1.8	171	5	0.8	351	85	2.5
29 8 12 37.1	58	18.8	154	35.3	0.7	2.9	11	2	155	139	0.49	3.1	10.7	D	273	0	5.7	3	4.1	3	183	87	20.1
4.3 MB			4.3	ML	ATWC																		
29 9 6 48.0	63	11.8	149	39.8	63.8	2.8	10	6	117	166	0.66	3.6	8.2	D	81	2	3.2	316	16	2.0	176	52	13.8
29 9 38 44.4	60	42.1	148	9.7	29.5	2.7	40	11	70	20	0.34	0.4	0.6	A	347	1	0.8	261	3	0.4	96	85	1.1
29 10 52 44.6	60	31.5	141	44.4	2.2	0.8	10	6	95	19	0.76	0.6	1.0	A	275	5	1.1	6	8	0.5	153	81	2.0
29 12 18 13.2	61	19.3	141	54.0	3.5	1.4	8	5	224	40	0.50	1.2	7.6	D	301	1	0.9	31	3	2.1	193	87	14.3

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - MAY 1984											
1984	HR	MN	SEC	LAT	N	LONG	W	DEPTH	MAG	NP	NS
				DEG	MIN	DEG	MIN	KM	KM	DEG	SEC
MAY 29	14	32	33.7	60	9.5	140	58.8	9.2	1.5	11	7
				150	54.8	75.3	2.7	18	7	135	3
29	16	0	1.4	59	21.1	152	54.8				
				150	38.6	44.4	2.7	27	11	52	0.47
29	16	59	9.7	61	0.0	150	38.6				
				150	30.1	15.0	1.4	19	9	49	0.6
29	18	14	54.4	61	8.3	141	39.5				
				141	30.6	5.4	0.9	6	4	99	0.77
29	19	12	50.9	60	30.6	141	30.6				
				141	0.5	0.8	0.5	7	5	123	0.6
29	22	20	32.9	60	14.3	141	10.4				
				141	10.4	31.7	2.1A	10	4	262	0.7
30	6	17	10.7	58	44.1	143	10.4				
				141	11.7	5.6	0.6	9	7	121	0.77
30	12	17	53.8	60	19.4	141	11.7				
				141	7.8	0.2	1.0	7	4	279	0.5
30	13	47	21.6	61	15.6	150	30.1				
				151	40.7	92.5	2.5	15	6	241	0.41
30	15	8	20.0	61	58.0	140	46.5				
				140	55.5	6.7	0.8	8	6	127	1.5
30	16	23	16.1	60	14.1	140	46.5				
				143	46.5	24.0	1.5	18	7	83	0.43
30	19	53	37.4	60	32.4	151	28.5				
				151	30.0	15.0	0.4A	6	3	160	0.43
31	1	1	23.0	59	29.8	151	30.0				
				151	30.0	15.0	1.9	21	10	72	0.5
31	2	59	33.9	60	26.1	152	10.4				
				152	10.4	5.2	-0.4A	3	3	269	0.04
31	5	28	46.8	61	11.3	152	10.4				
				152	48.0	21.7	1.6	14	4	6	0.35
31	5	45	36.3	60	37.1	142	48.0				
				142	48.0	21.7	1.6	14	4	67	0.6
31	8	35	19.9	61	0.0	146	55.1				
				146	55.1	16.1	2.0	26	16	34	0.49
31	9	14	1.4	60	16.5	141	2.5				
				146	14.5	14.4	0.3	3	3	182	0.22
31	10	47	27.9	61	7.2	150	58.9				
				150	58.9	71.8	2.5	13	5	98	0.16
31	11	57	34.7	62	15.2	152	21.4				
				152	21.4	8.1	1.1	10	6	177	0.26
31	15	43	24.4	60	53.6	150	20.5				
				150	20.5	59.5	2.3	29	10	47	0.60
31	16	3	54.1	60	58.7						

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JUNE 1984

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JUNE 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
1984	HR	MN	SEC	DEG	MIN	KM	DEG	MIN	KM	DEG	0.52	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
JUN 8	3	8	27.4	60	37.0	143	41.5	5.0	1.8	11	8	101	4.4	4.1	C	351	0	1.0	81	2	0.8	261	88	7.7	
8 22	10	17.8	61	30.9	147	24.1	18.4	2.1	23	15	62	36	0.51	0.4	1.1	A	205	6	0.8	296	11	0.6	87	77	2.1
9 9	59	15.4	61	29.8	151	11.3	8.3	1.1	8	7	97	24	0.61	0.6	0.9	A	354	13	1.1	261	17	0.5	120	11	1.8
9 12	2	44.8	60	13.4	141	40.0	7.7	0.8	5	2	123	16	0.26	0.2	2.1	B	197	8	1.1	293	40	4.8	98	49	3.0
9 18	20	46.2	60	9.3	141	9.0	9.5	1.0	7	6	137	7	0.30	0.3	0.6	A	12	8	2.4	279	20	0.7	123	68	1.1
9 21	37	1.8	60	23.2	141	29.6	13.0	1.4	8	3	107	14	0.71	0.9	1.4	B	103	15	1.2	6	26	0.9	220	60	2.9
10 4	14	16.6	62	14.4	149	20.1	36.1	3.0	21	6	117	70	0.48	0.9	1.0	A	184	6	1.7	92	19	1.1	291	70	1.9
10 8	32	58.4	61	1.6	147	6.9	14.3	2.2	27	15	61	15	0.53	0.3	0.5	A	2	1	0.5	271	17	0.4	95	73	1.0
10 13	45	22.2	60	26.8	140	31.9	6.5	1.6	13	7	174	42	0.49	0.6	1.1	A	81	6	0.9	327	10	0.5	195	63	1.9
10 14	15	21.1	61	17.1	152	12.7	5.0	0.4	3	3	293	4	0.03	1.1	0.9	A	20	0	1.1	290	2	2.1	110	88	1.7
10 16	8	57.5	59	50.7	153	40.7	142.8	3.8	18	10	161	62	0.42	2.2	1.5	B	309	6	1.9	42	24	4.3	206	65	2.4
10 18	27	7.4	60	20.6	141	20.7	15.3	1.4	11	6	113	22	0.50	0.7	1.0	A	4	17	1.0	101	21	0.8	238	62	2.1
10 21	56	44.9	60	31.8	143	0.8	25.4	0.6A	5	5	118	67	0.44	0.8	2.3	B	267	3	1.0	357	5	1.4	146	84	4.3
11 1	28	17.1	62	28.3	149	55.4	1.6	3.1	22	5	143	92	0.49	0.8	1.2	A	343	12	1.2	261	32	0.8	92	55	2.5
11 10	35	4.3	60	27.9	141	20.5	25.6	0.6A	5	4	124	25	0.31	2.0	1.9	B	312	5	1.3	81	38	1.2	217	38	4.4
11 14	15	52.1	60	1.1	153	24.9	138.1	3.1	19	9	196	38	0.45	1.6	1.2	B	308	10	1.6	41	16	3.1	187	71	2.2
11 15	8	37.5	61	2.2	152	14.4	6.6	1.3	8	4	172	19	0.28	1.3	1.7	B	81	8	2.3	170	35	1.0	340	54	3.9
11 17	51	37.0	59	27.5	151	10.0	10.0	0.5	7	3	211	7	0.84	1.6	1.2	B	174	28	2.4	284	33	3.3	53	44	0.5
11 20	44	56.3	60	11.5	141	7.0	9.8	1.2A	11	8	120	6	0.39	0.7	0.5	A	297	11	0.5	203	22	1.4	52	65	0.8
11 20	45	11.1	60	12.0	141	7.9	2.5	2.4	15	12	118	8	0.75	0.4	0.6	A	287	0	0.4	17	17	0.7	197	73	1.2
11 22	42	56.0	59	55.8	150	50.8	49.5	1.3	8	4	139	11	0.24	1.5	1.4	B	81	14	1.6	327	42	1.5	184	41	3.4
12 6	22	56.7	59	27.2	145	5.8	25.4	2.2	17	9	199	65	0.60	1.2	1.0	A	157	4	2.2	81	20	1.3	258	65	1.9
12 8	48	26.5	61	2.7	143	34.1	4.5	1.3	9	3	107	46	0.54	0.7	1.1	A	103	1	0.8	193	2	1.0	346	88	22.3
12 11	38	6.7	59	58.4	139	28.3	13.2	1.8	9	6	192	9	0.86	1.8	0.8	B	311	5	0.7	219	15	3.4	59	74	1.1
12 21	42	0.3	60	4.4	141	40.4	8.7	0.2A	4	4	184	20	0.36	0.9	1.1	A	81	13	0.7	332	25	1.3	193	74	2.3
13 2	16	47.4	60	58.8	150	10.3	56.0	3.4	30	6	41	44	0.71	0.5	1.2	A	164	6	0.8	261	8	0.8	40	78	2.3
13.3	MB																								
13 4	52	16.9	60	59.3	150	13.9	47.2	2.3	29	13	41	46	0.53	0.3	0.9	A	190	4	0.6	280	5	0.5	61	84	1.7
13 6	41	7.4	61	11.0	152	11.1	5.5	-0.5A	3	3	277	7	0.02	1.2	1.6	B	331	10	1.0	261	16	2.0	97	63	2.9
13 7	47	55.0	61	21.7	152	27.9	4.3	0.3A	3	2	332	20	0.31	2.5	25.0	D	279	2	1.9	9	2	3.2	144	87	77.5
13 10	40	43.3	61	3.9	152	16.0	9.7	0.5	4	4	178	17	0.33	1.8	0.7	B	113	7	3.4	206	28	0.7	10	61	1.3
13 11	16	10.7	60	18.2	142	0.9	0.7	6	5	94	18	0.69	0.4	1.1	A	12	4	0.6	282	7	0.8	132	82	2.1	
13 13	5	1.0	61	57.3	147	46.2	29.0	2.4	27	7	106	27	0.69	0.6	0.8	A	261	0	0.9	351	0	1.1	90	1	0.5
13 16	17	2.6	61	16.0	146	57.7	21.8	2.2	23	12	41	37	0.60	0.3	0.8	B	303	8	0.5	212	9	0.6	74	78	1.5
13 20	26	13.6	60	7.0	141	35.0	12.1	1.0	6	4	140	26	0.16	0.5	0.9	A	81	2	0.6	350	12	0.9	180	78	1.8
13 22	10	3.6	61	31.3	151	41.9	88.8	2.5	19	6	179	29	0.75	1.3	1.4	B	81	11	1.2	162	30	2.2	332	57	2.8
14 1	11	11.4	60	55.5	149	28.5	32.7	1.4	14	5	67	26	0.55	0.5	0.8	A	356	3	0.7	265	10	1.0	102	80	1.6
14 3	37	13.0	61	6.4	141	17.4	12.9	2.2	13	5	216	16	0.69	1.0	1.2	A	134	2	0.9	43	32	1.6	227	58	2.4
14 6	26	30.1	62	25.5	149	21.0	40.2	3.1	16	6	128	87	0.34	4.1	17.2	D	317	3	1.5	81	9	1.3	214	55	27.8
14.3	MB																								
14 7	17	1.2	60	7.8	141	9.3	3.5	0.1	6	3	188	7	0.01	3.4	2.6	C	268	27	1.1	20	37	7.8	151	41	2.1
14 16	35	45.6	59	48.2	150	52.1	18.1	0.7	9	5	101	5	0.31	0.7	0.6	A	35	3	0.8	304	25	1.2	131	65	1.2
14 20	17	35.4	59	58.9	141	58.8	5.7	0.6	6	2	245	7	0.34	2.1	2.0	B	18	22	2.1	127	38	1.0	265	44	5.3
14 23	26	33.5	59	59.6	141	50.8	5.4	1.0	9	4	187	12	1.04	0.7	1.1	A	22	11	1.2	117	23	0.7	268	64	2.3
15 0	6	59.0	60	10.3	152	42.4	94.4	2.8	20	10	141	6	0.60	0.9	0.9	A	160	6	0.9	157	49	1.8	257	49	1.8
15 3	47	30.4	60	1.0	142	7.8	3.3	0.8	7	4	187	6	0.32	1.2	0.7	A	1	3	2.3	270	15	0.7	102	75	1.3
15 7	19	12.0	61	39.3	146	52.8	21.4	2.7	24	6	86	31	0.59	0.5	1.0	A	309	3	0.7	219	6	1.0	55	83	0.7

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JUNE 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
1984 JUN 15 7 31 18.3	59	18.5	151	31.7	10.4	1.0	10	5	277	19	0.58	1.1	0.8 A	81	5	1.3	342	17	2.2	186	70	1.3
15 13 35 39.8	59	18.4	144	53.2	21.8	2.0	10	5	269	74	0.39	2.1	1.3 B	11	0	4.0	280	34	2.7	101	56	2.4
15 18 17 10.2	61	3.2	149	42.1	13.3	0.8A	6	5	112	23	0.17	1.8	2.6 B	175	20	0.6	276	28	1.0	54	55	5.8
15 22 39 12.3	61	16.6	152	17.1	7.8	0.6	3	2	306	7	0.02	1.4	4.2 C	190	2	1.5	281	7	2.4	84	83	7.9
15 22 40 11.6	61	12.1	151	20.0	66.8	2.2	23	7	65	38	0.45	0.9	2.2 B	81	4	0.8	145	13	1.2	334	61	3.8
16 0 57 41.1	60	45.1	152	28.4	10.0	0.9A	6	4	185	20	0.66	2.5	1.1 A	107	17	4.9	9	2.5	0.5	228	59	1.8
16 1 7 56.6	60	16.4	141	5.4	8.2	1.1	11	8	122	14	0.44	0.5	0.7 A	299	6	0.4	32	28	0.7	198	61	1.5
16 2 0 48.6	60	41.0	148	20.9	31.1	2.2	38	13	73	20	0.46	0.4	0.4 A	81	6	0.5	170	10	0.8	320	78	0.8
16 2 46 16.8	61	39.3	151	19.7	3.8	1.7	21	12	118	38	1.10	0.4	0.8 A	261	1	0.5	152	8	0.6	357	69	1.4
16 2 58 57.9	59	58.7	141	11.5	1.1	0.9A	9	6	165	22	0.60	0.9	2.0 B	261	3	0.9	162	18	1.3	0	70	4.0
16 5 57 8.4	60	12.5	141	32.5	10.0	0.8	9	2	119	20	0.34	1.0	2.2 B	81	5	1.3	142	18	1.0	336	56	3.8
16 8 0 23.1	62	58.8	149	24.4	64.0	2.8	15	7	154	142	0.46	4.6	15.5 D	83	4	2.2	352	14	4.3	189	75	30.0
16 11 14 59.9	59	51.0	145	43.3	20.7	2.8	25	12	134	58	0.56	0.5	1.0 A	359	1	0.9	89	9	0.7	263	81	1.8
16 14 58 3.2	60	13.7	141	3.6	0.1	0.3A	5	4	118	8	0.14	1.0	2.7 C	312	7	0.6	44	13	1.3	194	75	5.3
16 15 37 52.8	60	57.9	151	33.1	5.9	0.6A	3	3	344	36	0.14	3.5	25.0 D	142	3	1.9	81	4	4.4	278	61	59.4
16 21 20 36.8	60	19.6	140	42.4	13.3	1.2	8	4	150	26	0.31	1.1	1.5 B	327	15	0.8	81	23	0.9	212	54	3.2
16 22 10 49.7	60	13.0	152	34.5	94.5	3.3	24	11	108	14	0.45	0.9	1.6 B	81	1	1.6	341	3	0.9	188	80	2.9
3.7 MB			3.8	ML ATWC																		
16 23 7 57.0	60	2.9	152	39.8	77.6	2.8	23	7	171	17	0.31	1.1	1.3 A	332	7	0.9	81	25	1.9	229	58	2.5
16 23 20 22.4	60	12.3	141	3.9	5.7	0.5A	8	4	132	6	0.20	4.1	3.1 C	310	23	0.6	202	37	9.5	65	44	1.2
16 23 33 55.5	60	13.5	141	12.4	12.8	1.4	11	4	117	12	0.30	1.5	0.8 B	211	21	3.0	310	22	0.7	82	59	1.1
17 8 15 56.2	60	41.4	142	59.5	31.0	1.5	9	6	86	52	0.60	0.9	12.3 D	159	1	1.0	261	3	0.9	52	78	22.6
17 8 18 55.6	60	14.1	140	38.7	12.5	0.7A	8	4	143	23	0.25	1.2	1.8 B	300	13	0.6	37	28	1.3	188	59	3.9
17 8 38 51.9	60	10.7	139	40.3	15.6	1.1	8	6	196	25	0.64	1.5	1.2 B	305	4	0.8	212	35	3.3	41	55	1.2
17 9 30 49.9	59	55.5	151	14.1	37.8	1.4	13	6	87	10	0.39	0.6	0.8 A	108	4	1.2	17	7	0.6	227	82	1.5
17 9 53 11.7	61	9.0	149	30.3	42.0	1.7	22	10	41	11	0.42	0.6	0.9 A	322	3	0.7	261	10	0.9	69	59	1.4
17 15 11 4.5	60	19.9	141	12.7	17.1	1.7	11	7	120	22	0.36	0.5	0.8 A	302	1	0.5	33	23	0.7	210	67	1.5
17 15 12 30.9	60	18.2	141	16.4	21.5	0.3A	5	4	142	21	0.28	3.0	3.1 C	118	4	1.1	24	44	2.0	212	46	7.8
17 15 18 19.9	59	10.1	135	48.0	1.0	2.2	8	6	208	110	0.60	4.4	2.0 C	215	5	8.3	306	8	1.1	93	81	3.7
17 19 3 38.8	60	15.7	140	38.1	9.9	0.8A	7	7	147	25	0.22	1.4	1.9 B	296	8	0.7	31	32	1.6	194	57	4.1
18 0 17 36.5	60	15.2	141	2.1	6.5	1.0	8	8	151	11	0.43	1.1	1.1 A	304	8	0.6	207	43	2.8	42	46	0.8
18 1 37 17.2	60	20.0	141	20.5	13.9	1.6	12	9	113	22	0.68	0.5	0.7 A	112	2	0.6	21	24	0.8	206	66	1.3
18 1 38 54.7	60	48.4	151	43.5	78.2	2.4	27	11	55	27	0.44	0.6	1.1 A	169	11	0.6	81	11	1.1	305	74	1.8
18 3 6 26.4	60	6.5	153	8.8	116.3	2.7	23	6	182	20	0.29	1.8	1.3 B	150	6	1.4	81	17	0.6	312	41	1.5
18 3 24 46.0	60	12.9	140	26.9	20.2	0.9	7	3	170	17	0.23	2.9	0.9 C	207	12	5.5	302	23	0.8	91	64	1.5
18 3 51 2.2	63	8.5	150	42.8	121.6	3.6	12	2	127	136	0.25	6.8	9.8 D	309	12	2.5	46	31	5.4	200	56	21.8
18 4 51 9.2	61	18.9	152	19.5	0.3	1.0	4	4	254	11	0.44	1.2	1.1 A	105	30	2.0	350	37	1.4	223	39	2.5
18 5 31 58.3	59	55.6	150	20.7	14.3	1.0	10	3	148	17	0.40	0.9	0.9 A	81	17	0.6	312	41	1.5	184	34	1.8
18 8 54 2.7	60	13.7	152	22.4	79.5	2.3	21	114	25	0.53	0.8	1.3 A	169	2	0.8	81	9	1.4	272	81	2.4	
18 12 47 42.9	57	23.4	154	35.3	96.0	3.1	10	3	306	132	0.21	25.0	2.0 D	345	23	8.7	261	28	2.5	254	116	54
18 13 16 4.2	59	49.0	141	31.3	2.8	1.7	12	7	188	38	0.58	1.0	1.3 A	101	10	0.7	194	15	1.2	304	70	3.2
19 6 6 15.2	60	0.6	139	55.8	12.1	0.6	6	5	159	18	0.54	3.4	1.1 C	301	0	0.9	31	12	6.5	211	78	1.5
18 14 50 26.5	60	25.7	147	43.2	19.0	1.9	25	9	75	59	0.41	0.6	1.0 A	156	6	0.8	261	17	6.9	81	33	4.0
18 16 45 22.9	59	54.7	150	55.5	16.4	1.3	15	6	58	15	0.43	0.5	0.8 A	261	18	0.7	357	19	0.6	130	63	1.6
18 17 21 30.7	60	12.9	141	0.2	2.3	1.2	8	6	119	7	0.57	0.7	1.0 A	89	20	0.8	349	25	0.6	213	57	2.2
19 0 23 9.4	60	50.2	151	40.4	81.6	2.6	27	9	52	26	0.40	0.8	1.6 B	172	14	0.9	81	15	1.2	304	70	3.2
19 10 51 25.9	60	14.9	140	37.7	11.5	1.4	11	5	146	25	0.35	1.0	1.3 A	302	8	0.8	38	34	1.4	201	55	2.7
19 14 26 2.5	61	24.0	146	51.8	38.4	2.1	23	8	53	41	0.56	0.6	0.5 A	261	8	0.9	140	33	4.0	208	40	7.5
19 16 27 10.6	60	55.3	150	31.3	62.3	2.6	32	11	50	48	0.47	0.5	1.2 A	261	4	0.8	162	6	0.7	22	78	2.3

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JUNE 1984

ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DJ	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
1984 JUN 19 22 53 31.3	59	32.8	152 9.1	54.6	2.3	17	5	98	0.29	1.4	2.2	B	285	14	1.1	19	17	2.3	157	68	
20 3 31 26.5	62	24.1	149	53.8	56.0	2.3	16	3	138	84	0.37	1.4	5.2	C	81	7	1.5	346	7	2.2	214
20 5 50 58.0	60	12.9	141	0.9	1.6	1.1	10	6	119	7	0.53	0.8	1.4	B	81	15	0.8	328	18	0.6	201
20 7 15 42.4	59	51.4	153	15.3	112.9	3.1	21	3	93	44	0.31	1.3	1.8	B	123	5	1.7	32	12	2.3	235
20 11 34 4.8	61	2.2	146	33.9	23.5	2.6	25	5	37	3	0.52	0.4	0.7	A	210	4	0.7	301	7	0.8	91
20 14 6 24.4	59	55.5	141	28.0	7.2	1.3A	6	4	189	34	0.37	1.3	2.8	C	89	2	1.1	359	2	2.4	224
20 23 15 34.9	60	26.0	141	15.3	3.2	1.7	15	7	24	28	0.34	0.5	1.2	A	336	5	0.7	81	9	0.9	221
20 23 42 21.2	61	4.0	150	21.4	5.1	1.8	24	6	54	47	0.55	0.8	1.2	A	311	9	0.8	216	27	0.8	58
21 11 47 1.4	59	27.3	151	19.2	9.9	0.3	9	4	157	3	0.25	1.3	0.7	A	177	26	2.7	284	30	1.0	54
21 17 35 51.1	60	33.7	141	40.7	0.2	1.1	12	4	97	23	0.58	0.7	1.0	A	355	3	0.6	86	25	1.0	259
21 21 5 3.4	61	31.8	150	44.5	62.5	2.3	23	11	113	7	0.32	0.6	1.0	A	84	1	0.7	175	20	1.1	351
22 7 35 4.4	60	56.2	149	23.0	35.4	1.1A	9	3	107	21	0.24	0.6	0.8	A	300	0	0.9	210	24	1.1	30
22 13 8 52.7	61	6.0	152	10.6	2.7	0.9	3	3	328	11	0.36	1.6	5.4	D	202	9	1.7	293	9	0.7	204
22 13 10 12.9	60	53.1	152	8.7	9.8	0.7A	4	3	194	34	0.50	0.5	3.8	D	14	0	0.8	104	26	1.5	185
22 5 37 18.8	59	5.7	136	12.9	1.8	1.9	5	5	193	121	0.18	11.9	5.1	D	301	1	3.7	211	5	2.2	224
22 5 40 19.8	60	56.1	149	22.4	28.1	1.5	19	10	68	21	0.59	0.5	0.8	A	196	16	0.7	291	17	0.6	65
23 11 36 38.5	59	58.6	152	54.9	100.9	2.7	22	12	128	24	0.35	1.0	1.1	A	140	7	1.0	261	11	1.5	28
23 11 50 17.1	58	50.4	139	35.6	17.8	1.6	7	5	284	80	0.34	2.1	1.9	B	345	5	2.8	81	42	5.0	250
23 14 13 42.8	62	12.6	149	37.0	37.5	2.2	20	14	212	64	0.70	0.9	1.0	A	88	28	0.6	341	29	1.3	214
23 15 27 52.7	61	29.4	151	49.6	103.7	3.4	27	14	170	8	0.62	2.5	1.2	B	49	17	4.8	309	31	1.0	164
23 17 21 30.8	61	51.4	149	59.5	47.0	2.3	24	10	169	24	0.52	0.7	1.1	A	180	1	1.3	90	6	0.6	279
23 23 7 48.8	61	42.9	147	21.0	26.0	2.7	28	9	83	13	0.72	0.4	0.7	A	281	3	0.6	191	7	0.8	34
24 11 10 32.9	60	21.5	141	17.7	3.8	1.5A	8	6	117	25	0.67	0.9	1.3	A	324	7	0.6	81	21	1.1	220
24 12 19 26.6	60	20.5	141	17.3	8.4	0.8	7	3	151	34	0.38	3.4	4.3	C	304	4	0.9	37	37	2.4	209
24 22 17 53.5	60	15.7	141	8.0	9.7	1.0	7	4	147	13	0.26	2.2	1.5	B	309	12	0.8	211	32	4.9	57
24 22 46 1.3	62	11.6	150	47.3	57.9	2.2	17	9	146	45	0.69	1.3	2.4	B	81	4	1.2	344	16	2.0	184
25 1 39 50.8	60	42.8	150	57.5	44.2	2.6	30	6	46	16	0.68	0.5	1.5	A	81	1	0.6	141	2	0.6	321
25 3 53 28.9	60	26.5	143	41.2	18.8	1.2	9	9	131	34	0.16	0.8	0.9	A	81	5	0.7	330	40	1.0	176
25 11 28 54.9	61	15.9	152	17.4	6.5	-0.2A	3	3	306	7	0.01	1.2	1.5	B	191	8	1.3	286	33	1.9	89
25 13 3 2.0	61	31.2	141	5.1	0.5	1.2A	6	4	256	63	0.31	1.6	2.5	D	305	0	1.6	35	0	3.0	0
25 14 7 51.5	59	54.2	140	54.2	0.2	7	4	204	28	0.32	0.7	1.7	B	122	3	0.6	212	9	1.1	148	
25 14 20 30.5	60	7.0	141	7.0	1.4	0.7	8	5	159	6	0.34	1.8	1.6	B	110	3	0.7	17	41	4.4	203
26 1 30 56.4	60	7.6	141	25.0	8.5	1.1A	5	5	162	22	0.56	0.9	1.2	A	99	4	0.6	191	19	1.6	358
26 8 6 19.2	61	7.5	149	10.4	33.3	0.4A	7	6	88	25	0.44	0.6	1.3	A	113	1	1.1	203	17	0.9	20
26 11 21 50.0	60	1.9	152	41.7	93.5	2.5	22	13	118	18	0.49	0.7	0.9	A	328	1	0.8	261	2	1.2	88
26 15 53 8.4	60	9.0	151	15.1	52.4	3.0	28	11	66	12	0.44	0.6	0.8	A	16	13	0.6	282	14	1.0	147
26 16 26 45.5	60	2.9	141	27.2	9.2	1.0	6	4	155	26	0.29	1.5	1.7	B	290	2	0.9	198	40	1.6	22
26 17 10 57.7	60	16.2	141	11.7	9.0	1.1	8	4	146	16	0.33	1.0	1.0	A	104	3	0.6	11	45	1.6	197
26 22 2 56.9	60	24.8	152	19.3	15.6	1.1	16	9	119	19	0.64	0.6	1.0	A	171	8	0.5	81	25	0.8	278
27 1 32 42.1	60	1.6	141	18.6	4.8	1.4	10	6	158	21	0.34	1.1	1.4	B	88	4	0.8	180	26	1.2	64
27 9 39 18.0	61	0.5	150	12.8	43.7	2.5	34	12	43	44	0.46	0.4	1.6	B	261	0	0.7	345	1	0.8	171
27 11 36 31.8	61	9.1	149	13.2	40.8	0.9A	6	4	114	21	0.20	1.4	2.3	B	27	15	1.9	123	21	1.4	264
27 12 18 49.7	60	40.8	144	23.1	25.1	1.1A	7	7	81	39	0.31	0.7	0.9	A	104	2	1.3	13	31	0.9	197
27 14 20 18.0	60	12.3	152	49.8	110.1	3.4	21	4	76	3	0.37	1.3	2.9	B	326	0	1.5	81	7	1.9	236
27 18 59 31.8	60	49.1	147	39.9	26.9	2.0	32	11	57	33	0.33	0.6	0.9	A	272	2	0.6	182	15	1.0	9
28 2 13 43.4	61	18.4	149	7.9	34.2	1.7	26	12	54	24	0.52	0.7	0.7	A	261	7	0.9	133	25	0.9	1

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JUNE 1984

ORIGIN	TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
																DEG	MIN	SEC	KM	DEG	SEC	KM	DEG	SEC	KM
1984	HR MN SEC																								
JUN 28	6 49 27.0	61	45.3	151	2.5	69.2	2.1	18	11	132	36	0.32	1.0	1.1	A	350	2	1.8	81	7	1.0	244	83	2.2	
28	8 18 17.5	61	13.5	150	32.2	5.2	0.9A	8	3	101	29	0.51	2.6	1.7	B	305	15	1.5	42	25	5.2	187	60	2.5	
28	18 59 42.2	61	14.1	149	11.5	31.6	1.0	12	7	104	20	0.42	0.8	1.1	A	261	4	1.3	166	16	1.4	4	73	2.0	
28	19 17 42.5	61	19.5	149	8.9	34.2	1.4A	15	9	69	24	0.33	0.9	0.9	A	81	13	1.0	327	37	1.9	185	45	1.4	
29	0 39 10.9	60	1.1	141	32.0	3.3	1.1	10	5	163	28	0.43	0.8	1.0	A	189	11	1.6	96	12	0.5	320	74	1.9	
29	7 28 33.0	61	23.4	147	29.1	18.6	2.0	28	13	59	28	0.51	0.4	0.7	A	192	5	0.7	283	12	0.5	80	77	1.3	
29	11 54 9.4	59	57.2	139	57.5	7.9	1.6	10	4	140	18	0.62	1.4	0.8	B	303	7	0.6	36	25	2.8	198	64	1.1	
29	17 52 48.7	61	28.3	140	31.6	2.6	1.3	8	5	250	71	0.41	1.9	25.0	D	307	0	1.9	37	2	2.6	217	88	70.9	
29	22 58 41.8	59	54.7	139	16.6	35.3	1.0	4	3	225	21	0.48	4.4	2.3	C	135	2	1.4	225	8	8.3	31	82	4.3	
30	1 19 24.2	60	29.2	142	22.9	17.3	1.3	6	4	157	40	0.70	1.0	2.6	B	17	1	0.8	286	5	1.8	118	85	4.8	
30	5 54 5.7	60	32.0	152	34.3	19.6	0.4A	3	3	182	10	0.11	25.0	15.0	D	116	18	90.5	14	32	1.0	231	52	1.4	
30	7 55 34.1	60	9.1	141	6.8	8.9	1.0	7	5	135	4	0.16	1.3	0.4	A	19	4	2.5	111	22	0.9	279	68	0.7	
30	9 9 54.7	61	26.9	151	6.6	15.1	0.5A	4	4	155	20	0.58	1.7	8.9	D	261	7	0.8	336	9	1.4	128	71	16.3	
30	21 2 55.6	61	16.5	152	10.3	3.4	0.4	3	1	279	1	0.00	2.1	2.1	B	176	3	1.2	83	44	2.3	269	46	5.1	
30	21 22 51.4	62	37.5	149	42.9	8.8	2.0	18	7	146	109	0.49	1.1	1.3	A	353	14	1.2	261	37	1.0	101	51	3.0	
30	23 4 13.6	60	59.2	150	8.1	43.2	2.5	26	10	42	42	0.51	0.4	1.5	B	90	1	0.6	0	2	0.8	207	88	2.9	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JUNE 1984

1984	ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH			SEZ Q			AZ1			DIP1			SE1			AZ2			DIP2			SE2			AZ3			DIP3			SE3			
											DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC							
JUL 1	10 20 52.5	58 38.9	142 30.0	30.0	2.3	11	7	258	157	0.60	5.1	25.0	D	297	0	4.6	27	0	9.5	0	90	99.0																						
	1 12 27	20.7	60 10.1	141 4.4	6.0	0.9	9	4	131	3	0.77	1.9	0.7	B	182	1	3.6	92	7	0.8	280	83																						
	1 14 51	4.3	60 2.7	141 39.6	7.0	0.8	11	7	156	21	0.63	1.1	0.8	A	88	18	0.5	185	21	2.2	321	62	1.5																					
	1 14 55	13.0	60 29.8	145 5.1	14.6	1.5	19	11	113	8	0.75	0.5	0.6	A	12	4	0.9	104	16	0.5	268	73	1.1																					
	2 10 24	59.7	60 15.0	141 9.9	11.0	1.0	10	5	115	13	0.39	0.7	0.7	A	290	4	0.7	24	43	1.0	196	47	1.7																					
	2 12 13	19.5	61 12.4	151 27.6	73.9	2.1	17	11	75	31	0.36	0.6	1.0	A	81	12	0.7	165	22	0.9	322	64	1.9																					
	2 13 19	26.7	60 8.9	141 1.1	12.6	1.6	13	136	1	0.42	0.6	0.4	A	184	9	1.2	280	31	0.7	80	57	0.8																						
	2 16 41	39.6	62 3.7	149 50.0	44.6	2.2	20	14	182	46	0.78	1.0	1.6	B	97	2	0.8	6	22	1.6	192	68	3.1																					
	3 0 0	50.0	60 3.1	139 8.7	20.0	1.8	8	4	224	30	0.63	3.0	2.1	A	320	10	1.3	261	34	5.5	65	44	1.9																					
	3 6 29	50.3	60 23.1	147 37.0	18.6	2.2	29	8	81	53	0.44	0.5	0.7	A	286	8	0.6	193	19	0.8	38	69	1.3																					
	3 9 36	18.2	60 15.7	140 57.7	7.3	0.5	8	7	129	13	0.44	0.8	1.0	A	342	25	0.6	86	27	0.7	216	52	2.4																					
	3 16 17	45.0	61 25.5	149 55.0	40.1	0.9A	10	7	116	25	0.57	1.1	1.0	A	119	2	0.8	210	38	2.2	26	52	1.6																					
	3 16 55	50.0	60 30.4	143 0.8	16.7	1.3	5	132	35	0.55	0.9	2.6	B	34	0	0.9	304	13	1.2	124	77	5.1																						
	4 31 0	0.7	61 21.3	150 9.0	12.2	1.3	13	8	78	34	0.48	0.6	0.7	A	290	12	0.5	196	17	1.1	53	69	1.5																					
	4 5 34	37.3	60 7.5	137 34.0	1.7	1.6	8	6	289	105	0.32	1.5	4.1	C	307	3	2.7	37	8	2.3	197	81	7.7																					
	4 6 4	40.3	61 21.9	146 40.8	27.2	2.9	28	8	53	32	0.59	0.4	0.9	A	23	1	0.7	293	4	0.5	127	86	1.6																					
	4 9 2	35.1	60 28.7	147 18.8	29.5	2.4	29	11	80	46	0.72	0.4	0.4	A	81	8	0.5	346	15	0.7	198	72	0.8																					
	4 10 25	32.2	60 44.5	140 29.2	13.1	0.9	9	5	209	52	0.68	2.8	1.8	B	261	0	4.3	137	5	0.8	351	56	2.8																					
	4 11 10	57.7	60 6.2	140 30.5	6.2	0.6	7	3	151	14	0.65	4.1	2.1	C	281	3	1.1	12	26	8.5	185	64	1.7																					
	4 11 37	39.0	61 31.3	151 18.7	70.7	2.7	21	10	90	31	0.42	0.8	1.1	A	175	17	1.3	81	18	0.8	306	65	2.3																					
	4 16 53	50.9	58 45.6	153 0.9	84.6	2.8	11	6	166	114	0.44	1.5	4.2	C	7	1	1.3	277	14	2.2	101	76	8.1																					
	4 22 37	24.6	60 37.1	142 59.1	20.4	1.1	6	3	77	47	0.41	0.8	1.6	B	131	6	1.4	222	8	0.9	5	80	3.1																					
	4 23 51	29.3	60 18.8	140 42.1	8.7	0.8A	5	2	171	26	0.28	1.5	2.3	B	95	6	0.8	1	30	1.2	195	59	4.9																					
	5 9 19	29.6	60 7.2	141 7.3	7.2	1.2	10	8	140	6	0.55	0.7	0.5	A	280	10	0.5	15	15	26	1.4	171	62	0.7																				
	5 14 19	28.7	60 17.2	141 11.3	5.6	0.9	9	3	149	17	0.34	1.8	1.9	B	292	0	0.8	22	43	1.9	202	47	4.5																					
	5 14 30	21.6	60 5.0	152 10.7	63.0	2.6	16	6	101	37	0.53	0.8	1.3	A	165	1	0.9	81	24	1.1	257	65	2.7																					
	6 1 22	5.6	60 12.0	140 45.6	15.9	1.0	7	5	154	16	0.28	1.7	0.8	B	291	2	0.7	200	12	3.3	30	78	1.4																					
	6 8 24	13.1	60 11.9	141 40.7	6.7	1.0	8	1	114	18	0.41	1.6	1.5	B	24	7	1.0	288	41	3.4	122	48	2.2																					
	6 8 49	30.6	60 11.3	141 26.9	4.1	1.1	9	3	124	23	0.37	0.6	1.3	A	342	0	1.0	81	6	0.7	252	79	2.5																					
	7 3 36	48.9	60 17.0	141 25.4	6.2	1.2	13	7	108	20	0.60	0.6	0.8	A	114	8	1.1	21	21	0.8	224	67	1.6																					
	7 7 4	0 53.0	60 34.0	141 29.5	12.1	0.9	10	4	116	27	0.55	1.0	1.7	B	18	5	0.6	110	23	1.4	276	66	3.4																					
	7 6 56	3.1	61 21.6	148 58.3	36.4	2.5	28	7	50	28	0.51	0.5	0.5	A	191	11	0.8	95	27	0.7	301	60	1.0																					
	7 7 13	59.4	60 7.1	141 31.2	8.9	1.4	14	8	137	27	0.41	0.4	0.7	A	90	6	0.5	359	9	0.8	213	79	1.4																					
	7 9 58	49.9	58 54.2	152 43.6	62.8	2.2	10	5	147	91	0.34	1.6	4.7	C	178	7	2.3	269	14	1.7	62	74	9.1																					
	7 13 28	29.7	62 23.7	148 19.8	33.8	2.2	20	6	126	65	0.67	1.3	1.0	A	294	26	1.7	183	36	2.8	51	43	1.0																					
	7 13 39	19.9	60 18.9	141 16.4	17.2	1.1	10	7	116	22	0.53	0.9	1.2	A	11	4	0.5	104	32	1.0	275	58	2.5																					
	7 15 26	52.7	61 29.2	141 40.6	11.1	1.8	9	4	240	61	0.24	0.7	4.9	C	299	4	1.8	280	7	0.4	11	12	0.7	160	76	1.3																		
	7 16 39	48.9	61 31.5	140 39.3	1.8	2.0																																						

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JULY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH			SEZ			Q			AZI			DIP1			SE1			AZ2			DIP2			SE2			AZ3			DIP3			SE3		
												DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC						
1984 JUL 8 2 37 19.4	58	58.2	153	9.1	34.8	2.9	9	4	164	106	0.29	1.5	25.0	0	357	0	1.2	1.4	104	35	2.4	87	89	75.3	5.8	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3										
8 4 48 19.4	60	22.6	153	2.9	122.3	3.0	16	6	83	20	0.29	1.1	1.1	4	4	14	1.4	104	35	2.4	87	89	75.3	5.8	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 5 13 1.4	59	55.5	140	39.2	14.1	1.2	9	3	163	29	0.54	1.6	2.4	B	112	8	0.6	207	30	1.3	9	59	5.3	5.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 10 16 11.0	61	15.0	146	46.3	21.2	2.5	27	12	42	24	0.51	0.3	0.7	A	17	4	0.6	286	10	0.4	128	79	1.3	1.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 11 46 51.7	60	34.5	150	45.1	13.3	2.1	24	8	68	30	0.69	0.4	0.8	A	197	2	0.6	288	20	0.5	102	70	1.6	1.6	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 19 55 31.7	60	6.4	136	59.8	7.0	1.7	5	3	323	128	0.06	3.6	5.8	D	81	10	4.7	335	16	5.4	198	66	11.3	11.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 20 0 48.5	60	13.1	141	16.1	13.6	0.9	7	5	126	15	0.15	1.1	1.0	A	303	16	0.6	48	41	1.4	197	44	2.5	2.5	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 20 7 4.2	59	59.9	141	39.6	14.1	1.1	9	6	172	21	0.33	0.7	1.1	A	193	7	1.3	101	19	0.6	302	70	2.3	2.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 23 33 32.6	60	21.7	140	57.0	12.2	1.1	5	5	166	24	0.38	2.2	2.7	C	295	2	0.7	27	38	1.1	205	52	6.3	6.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
8 23 50 7.8	60	21.8	140	56.3	6.6	1.1	7	4	167	45	0.47	2.1	2.9	C	113	1	0.7	22	28	3.1	205	62	5.9	5.9	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
9 1 59 55.7	60	1.7	141	0.4	0.0	1.0	7	3	165	14	0.43	1.0	2.3	B	129	11	0.7	221	13	1.4	0	73	4.5	4.5	4.5	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3										
9 10 15 30.5	61	32.9	152	5.6	109.5	2.6	18	12	197	27	0.34	1.3	1.6	B	261	1	1.1	135	24	1.8	353	48	2.7	2.7	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
9 10 47 32.8	60	14.6	141	2.1	9.4	1.9	15	9	122	10	0.43	0.5	0.7	A	284	3	0.6	15	24	0.9	187	66	1.4	1.4	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
9 22 56 46.1	60	3.7	140	58.6	5.3	1.0	5	4	189	11	0.25	1.7	1.2	B	121	10	0.8	25	29	3.6	228	59	1.5	1.5	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 2 33 49.7	61	15.3	149	25.3	41.8	1.9	25	12	80	8	0.42	0.6	1.0	A	102	6	0.8	11	7	1.2	232	81	2.0	2.0	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 19 5 11.6	60	59.9	147	18.9	23.4	2.2	25	7	84	18	0.47	0.5	0.9	A	194	10	0.9	286	12	0.5	65	74	1.7	1.7	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 7 20 5.3	60	8.2	141	17.5	2.8	1.2	11	8	137	15	0.40	0.9	1.0	A	287	5	0.8	19	17	1.7	181	72	1.9	1.9	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 7 49 51.0	60	42.3	150	15.6	49.9	2.4	25	15	48	21	0.51	0.5	1.2	B	277	4	0.8	7	6	0.9	153	83	2.3	2.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 12 17 0.1	60	16.1	140	46.5	17.1	1.2	7	5	145	19	0.34	1.2	1.6	B	315	12	1.0	53	32	1.3	207	55	3.5	3.5	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 14 56 57.6	60	59.2	147	14.1	21.4	2.1	25	7	46	14	0.51	0.5	0.9	A	5	2	0.9	274	9	0.6	107	81	1.7	1.7	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 19 16 7.9	61	6.0	149	14.6	35.7	1.4	15	7	78	23	0.42	0.6	0.8	A	94	2	1.0	184	5	1.2	342	85	1.4	1.4	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
10 23 10 32.5	61	40.3	150	19.0	7.6	0.8A	4	4	157	23	0.49	1.5	1.7	B	267	23	0.9	13	33	1.7	149	48	4.0	4.0	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
11 11 49 43.5	59	58.0	140	50.4	4.5	0.8A	6	1	195	23	0.22	2.9	4.0	C	120	6	1.0	214	34	2.3	21	55	9.0	9.0	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
11 15 45 49.7	60	8.1	140	58.2	3.4	0.3	3	2	284	4	0.01	2.0	1.1	B	10	0	1.0	280	10	3.8	100	80	1.9	1.9	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
11 15 47 2.9	57	50.1	137	30.1	28.0	2.9	9	4	193	157	0.67	9.1	9.8	D	310	5	4.1	43	24	16.6	209	65	18.7	18.7	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
11 20 3 42.9	60	27.9	152	27.2	19.8	0.4	3	3	198	12	0.39	16.0	1.1	D	112	2	30.0	22	18	1.0	208	72	1.8	1.8	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
12 1 20 29.0	61	9.6	149	56.5	18.6	1.0A	5	2	233	23	0.55	2.4	3.2	C	123	4	4.5	215	28	1.8	26	62	6.8	6.8	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
12 5 58 1.2	64	11.2	150	14.3	57.9	3.1	9	2	168	142	0.33	9.9	25.0	D	118	2	18.1	208	5	3.2	6	85	99.0	99.0	99.0	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3										
12 7 56 36.4	60	46.0	143	8.1	16.9	1.3	10	4	80	52	0.61	0.7	4.9	C	145	1	0.7	261	2	1.0	35	64	8.3	8.3	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
12 9 53 32.3	60	4.6	139	46.0	9.5	1.0	6	4	196	16	0.71	3.2	1.4	C	211	20	6.3	310	3	0.8	84	59	1.6	1.6	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
12 16 6 35.3	61	15.7	152	25.9	4.0	1.8	14	5	125	15	1.08	0.9	1.2	A	317	20	1.4	217	24	0.8	82	58	2.5	2.5	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
12 19 41 51.4	60	3.9	139	47.9	18.8	1.8	10	4	194	16	0.62	3.2	0.9	C	212	7	6.1	304	14	0.8	96	74	1.5	1.5	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3											
12 22 29 29.5	60	15.6	141	3.3	8.8	1.7	12	6	123	12	0.46	0.7	0.8	A	298	3	0.7	308	10	0.4	116	80	1.0	1.0	204	56	56	56	2.0	2.56	52	2.0	2.4	1.4	104	35	2.4	87	89	75.3							
13 1 26 12.7	60	28.0	143	0.1	7.1	1.2	8	7																																							

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JULY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3				
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC			
JUL 16	18	33	26.2	60	41.0	140	35.7	0.2	1.7	12	8	196	51	0.78	0.8	1.4	B	130	4	0.8	221	12	1.5	22	77	2.7	
16	21	44	12.1	61	24.9	140	33.2	12.6	1.3A	4	3	286	65	0.34	4.2	16.6	D	94	7	2.8	2	10	4.5	218	78	31.9	
16	21	44	54.0	61	26.3	140	32.3	5.0	1.3	4	3	288	68	0.15	4.2	25.0	D	129	1	5.5	39	5	4.1	230	85	75.2	
17	5	51	27.7	60	26.9	144	54.8	20.0	0.8	11	7	181	19	0.44	1.0	1.1	A	114	16	0.9	12	35	1.4	224	50	2.5	
17	6	44	2.6	60	7.8	141	4.3	0.0	0.4	4	2	105	3	0.19	2.0	5.0	C	210	1	0.8	120	12	3.2	305	78	9.5	
17	11	59	34.1	61	50.1	147	3.8	2.7	2.1	28	17	141	14	0.80	0.6	0.8	A	94	1	0.6	184	24	1.1	2	66	1.6	
18	5	0	20.2	60	5.2	140	56.5	8.3	1.5	10	9	145	9	0.54	0.9	0.6	A	111	9	0.5	16	29	1.8	217	59	0.9	
18	6	59	8.1	60	20.2	141	21.1	13.8	0.8	6	4	148	22	0.35	1.1	1.2	A	111	11	0.6	12	39	1.4	214	49	2.8	
18	9	0	52.1	61	18.4	141	10.2	3.8	0.9A	4	3	274	39	0.26	2.9	18.5	D	321	1	1.9	81	4	3.6	220	60	30.2	
18	14	14	47.0	60	32.4	142	59.5	13.6	0.8A	4	4	140	38	0.27	0.8	4.9	C	261	0	0.9	337	4	1.3	171	75	8.9	
18	15	58	56.6	59	55.3	141	30.5	3.0	1.4	12	7	180	32	0.64	0.7	1.1	A	265	1	0.6	175	16	1.2	358	74	2.2	
18	19	21	5.1	60	1.3	141	34.0	8.7	2.0	16	10	156	26	0.54	0.5	0.6	A	3	3	0.9	93	10	0.4	256	80	1.2	
19	3	37	45.5	59	57.2	148	53.2	32.2	3.2	25	4	141	0	0.61	1.1	0.9	A	92	18	1.1	193	32	2.2	337	52	1.6	
19	7	12	27.4	59	59.4	139	17.6	18.7	1.2	6	5	212	20	0.65	1.9	1.2	B	130	11	0.9	225	27	4.0	20	61	1.5	
19	9	53	13.5	60	21.4	141	13.5	2.8	1.8	15	8	121	25	0.77	0.5	0.8	A	111	5	0.5	20	17	0.9	217	72	1.6	
19	10	40	48.0	59	58.5	143	8.6	15.8	1.1A	4	3	243	31	0.12	4.8	5.8	D	262	5	0.9	168	39	51	358	51	13.8	
19	13	24	49.1	60	10.8	141	6.8	7.0	1.2	9	6	135	5	0.34	1.0	0.5	A	193	11	1.9	288	25	0.6	81	62	0.9	
19	16	42	11.5	61	15.5	149	15.9	35.7	1.1A	6	4	163	16	0.09	0.7	1.2	A	87	3	1.0	178	18	1.2	348	72	2.3	
19	17	7	21.4	61	0.7	150	12.6	22.1	1.4A	8	4	83	44	0.59	1.9	6.0	D	354	7	1.1	262	15	0.9	108	73	11.7	
19	23	25	26.2	59	58.7	140	44.8	7.2	0.9A	6	2	190	25	0.53	2.2	3.6	C	117	10	0.8	213	27	1.8	9	61	7.7	
20	4	9	0.4	61	16.3	149	28.4	44.7	1.3	9	4	123	6	0.68	0.7	0.9	A	356	7	1.4	88	12	1.0	236	76	1.7	
20	7	33	4.6	59	37.5	138	51.6	1.3	7	2	232	19	0.43	3.2	2.9	C	335	21	0.7	85	41	3.5	225	41	7.6		
20	9	23	17.1	59	59.3	141	23.9	15.3	0.7A	7	4	200	27	0.52	0.8	1.3	A	93	2	0.7	183	2	1.5	318	87	2.4	
20	9	45	54.0	59	56.1	152	48.9	89.3	2.5	11	101	28	0.73	0.9	1.5	A	139	3	1.2	81	7	1.0	254	57	2.3		
20	11	22	10.5	58	47.0	136	44.1	0.1	2	6	4	193	130	1.01	17.4	3.5	D	298	2	2.0	207	8	33.0	42	82	4.7	
20	15	34	39.3	60	35.7	140	43.9	4.7	1.1A	4	3	200	61	0.21	1.0	2.7	C	313	6	0.7	44	11	1.7	195	77	5.2	
20	16	5	32.3	60	20.1	141	18.2	13.2	0.7	8	5	133	25	0.47	0.7	1.0	A	311	6	0.5	45	32	0.8	212	57	2.2	
20	17	9	6.8	60	17.2	141	40.1	7.6	1.4	15	11	97	9	0.89	0.5	0.5	A	223	14	0.8	125	27	0.6	337	59	1.0	
20	17	35	5.2	60	17.0	140	36.4	14.7	0.6A	4	3	245	28	0.31	2.4	1.7	B	95	10	0.8	191	32	5.2	350	56	2.1	
21	1	2	30.0	61	6.8	152	11.3	12.2	1.4	7	3	167	10	0.85	1.1	0.7	A	106	1	2.0	196	32	0.5	14	58	1.4	
21	7	15	36.4	61	6.3	151	12.2	63.5	2.2	15	12	52	47	0.55	0.5	1.0	A	193	6	0.9	102	9	0.7	316	79	2.0	
21	10	36	45.8	59	57.1	141	45.6	12.7	1.7	16	13	162	18	1.08	0.5	0.5	A	98	6	0.5	192	35	0.8	0	54	1.1	
21	12	7	39.4	60	4.7	141	9.1	2.2	0.6A	4	2	196	11	0.11	1.7	3.0	C	269	5	1.0	177	28	1.3	82	62	6.3	
21	13	7	30.3	60	32.9	143	10.5	2.6	0.6	5	4	127	21	0.99	0.6	9.7	D	261	0	0.6	348	2	1.0	171	86	18.2	
21	14	40	26.9	60	1.0	152	48.4	108.8	2.6	15	6	106	18	1.02	0.8	1.0	A	31	5	1.1	123	21	1.4	288	68	2.0	
21	16	14	40.8	59	59.0	141	33.2	2.5	1.3A	9	6	173	27	0.59	1.1	1.1	A	95	13	0.5	195	36	1.0	348	51	2.4	
21	16	25	28.0	61	0.8	147	17.7	30.1	5.3	0.1A	3	314	10	0.09	1.8	4.2	C	177	4	1.9	268	16	2.6	73	73	8.2	
21	16	33	37.1	61	15.3	152	20.7	1.9	21	16	67	18	0.64	0.3	0.4	A	105	1	0.4	15	14	0.6	199	76	0.7		
22	1	2	30	22.4	62	4.6	144	49.8	7.2	1.9	12	4	217	70	1.23	1.7	3.0	C	5	1	2.3	96	29	1.1	273	61	6.3
22	16	33	52.8	61	0.2	147	17.7	28.3	1.9	21	16	67	17	0.70	0.3	0.4	A	96	2	0.4	6	3	0.6	220	86	0.8	
22	16	55	42.1	61	33.3	141	20.5	0.8	1.4	6	4	254	66	0.18	1.6	25.0	D	306	0	1.3	36	1	2.5	216	89	99.0	
22	10	58	27.9	60	16.5	141	5.8	7.2	1.2	15	3	122	14	0.40	0.6	1.0	A	297	1	0.8	28	26	0.9	205	64	2.1	
22	11	15	22.7	60	10.4	140	57.9	9.9	1.2	13	4	115	4	0.45	0.8	0.8	A	102	11	0.7	1	44	1.0	203	44	2.0	
22	13	34	20.7	60	141	16.3	6.9	1.5	19	7	118	25	0.47	0.5	0.5	A	304	0	0.5	34	23	0.8	214	67	1.7		
22	16	21	21.5	61	31.4	151	15.4	10.0	1.0	8	5	109	28	0.62	0.4	1.7	B	261	1	0.6	348	1	0.8	125	87	3.2	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JULY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
JUL 22	18	2	31.2	60	45.4	143 58.0	8.5	1.1A	7	3	76	50	0.30	0.9	10.4	D	7	0	0.8	97	1	1.7	277	89 19.5
22	19	17	14.9	60	1.3	140 46.2	9.0	1.1	9	4	164	20	0.30	1.1	1.2 A	101	8	0.6	198	42	1.3	2	47 2.7	
22	22	56	54.3	60	20.4	141 12.8	3.7	0.8	8	3	155	23	0.61	1.1	1.9 B	116	2	0.6	25	1.3	210	65	65 3.8	
23	8	0	23.8	61	4.8	152 19.6	14.9	0.6	5	189	19	0.23	2.3	0.9 B	109	6	4.3	202	26	0.8	7	63 1.8		
23	8	3	47.0	61	4.1	152 21.1	10.4	0.3	5	4	191	20	0.24	2.5	3.9 C	201	5	0.9	294	26	3.4	101	63 8.0	
23	12	16	17.3	61	26.3	150 24.3	15.4	0.8	11	8	102	19	0.48	0.7	1.1 A	284	1	0.7	194	13	1.3	18	77 2.1	
23	13	59	37.5	61	27.7	150 20.8	3.9	1.0A	6	5	166	21	0.35	1.4	1.6 B	114	8	0.8	210	33	2.2	12	56 3.4	
23	14	22	40.0	60	8.8	141 9.2	8.1	1.2	12	6	89	7	0.37	0.8	0.7 A	277	5	0.6	185	23	1.5	19	66 1.2	
23	16	13	41.8	60	1.9	141 42.0	6.7	1.4	15	10	162	18	0.65	0.7	0.7 A	267	6	0.6	172	43	1.2	3	46 1.3	
23	17	0	33.9	59	27.2	152 30.6	67.3	2.9	11	7	112	0	0.14	1.1	2.1 B	195	2	2.0	285	5	1.2	83	85 3.9	
23	17	17	29.3	60	17.0	140 46.5	10.9	1.0	6	141	20	0.32	1.0	1.8 B	101	3	0.7	10	24	1.3	198	66 3.7		
23	22	40	19.4	61	4.6	145 53.9	2.2	0.8A	7	6	164	24	0.33	1.0	16.5 D	261	0	0.8	146	1	1.6	351	65 28.1	
23	23	24	48.5	61	12.9	149 11.7	33.4	1.0A	6	4	115	20	0.11	1.2	1.7 B	261	4	1.1	146	25	1.5	358	55 3.2	
24	1	35	57.9	60	13.3	143 10.9	24.4	1.3	8	7	188	20	1.19	2.1	1.3 B	81	20	1.0	177	32	4.5	322	52 1.0	
24	4	49	18.9	59	51.3	141 30.0	6.3	0.9	9	4	205	31	0.39	1.1	2.0 B	136	6	1.4	227	13	1.9	22	76 3.8	
24	5	18	50.5	60	14.1	151 58.7	80.8	3.0	19	6	84	0	0.38	0.9	1.6 B	352	4	1.1	83	18	1.4	250	72 3.2	
24	10	5	40.1	59	46.1	152 46.1	91.6	2.7	16	7	60	46	0.44	0.9	1.7 B	128	4	1.7	38	9	1.5	242	80 3.2	
24	12	25	12.3	60	28.1	141 24.2	7.6	0.7A	3	3	161	23	0.51	2.2	3.8 C	124	4	1.1	31	29	1.2	221	61 8.1	
24	15	50	11.1	57	14.1	152 58.9	38.5	2.9	11	1	311	0	0.35	17.6	6.2 D	171	17	33.7	81	20	13.7	301	64 7.0	
24	18	47	50.0	61	27.8	151 19.1	5.7	1.0	5	104	31	0.60	2.0	4.2 C	81	3	0.8	333	23	1.0	177	61 8.4		
25	2	36	49.5	60	6.6	140 59.7	7.6	1.2	6	4	159	5	0.31	2.5	0.7 B	28	9	4.8	126	41	1.0	288	48 1.3	
25	4	39	15.3	60	17.1	141 12.4	12.8	1.0	5	2	147	17	0.16	5.2	4.1 C	114	4	0.9	207	38	12.2	19	52 2.2	
25	4	59	52.2	62	39.8	149 41.7	63.8	3.9	22	2	103	113	0.37	2.1	6.9 D	85	4	1.8	353	16	1.1	189	73 13.6	
25	9	39	33.5	60	13.1	153 8.7	136.6	3.0	16	9	76	19	0.29	1.1	1.5 B	295	4	2.0	26	11	1.5	185	78 2.8	
25	11	48	7.6	61	39.6	150 51.6	62.4	1.4	11	5	126	23	0.33	0.8	1.4 B	88	7	1.1	181	16	1.4	335	72 2.7	
25	13	58	43.0	61	1.2	147 14.1	21.4	2.1	23	4	44	17	0.40	0.5	1.1 A	15	15	0.9	285	12	0.6	105	78 2.0	
25	16	22	17.3	59	47.6	152 30.3	69.4	2.5	16	7	56	47	0.34	0.8	1.7 B	290	2	1.3	23	1.5	184	83 3.2		
25	19	40	56.2	59	59.3	148 54.0	17.3	2.4	27	6	155	33	0.72	0.6	1.2 A	340	3	1.2	261	1	0.8	81	71 2.3	
25	20	21	38.3	60	23.9	140 59.3	0.9	1.0	9	2	168	27	0.26	1.4	2.7 C	301	1	0.8	31	23	1.7	209	67 5.5	
26	14	1	6.6	59	45.3	153 9.9	104.0	2.7	13	7	76	49	0.40	1.2	2.0 B	85	6	1.5	352	23	1.6	189	66 4.1	
26	16	24	46.9	61	30.3	146 38.4	29.2	2.9	32	8	69	38	0.64	0.4	0.5 A	113	4	0.5	23	12	0.8	221	77 1.0	
26	16	48	49.8	59	48.4	152 56.0	89.2	3.1	14	2	95	42	0.20	1.5	3.0 C	102	8	2.0	1	11	1.3	223	75 5.9	
26	17	44	21.3	63	13.0	149 16.9	42.4	2.5	9	2	160	180	0.50	4.3	25.0 D	20	0	3.0	110	3	7.1	290	87 74.8	
27	0	31	15.9	60	8.0	141 2.3	8.7	1.9	15	7	139	2	0.62	1.0	0.4 A	16	13	1.8	111	22	0.5	258	64 0.7	
27	0	31	55.3	60	9.0	140 59.1	2.7	2.0	8	4	138	60	0.76	0.9	1.7 B	297	8	0.9	29	15	1.4	180	73 3.3	
27	5	10	52.4	60	13.4	141 2.5	10.3	0.6	10	3	145	8	0.39	1.0	0.7 A	193	32	2.2	307	33	0.7	71	41 0.9	
27	5	53	11.2	60	7.3	152 47.3	90.2	2.8	16	7	109	7	0.37	0.9	1.2 A	148	6	1.4	81	14	1.0	263	63 2.1	
27	7	39	53.3	60	6.1	152 54.7	91.8	3.4	15	7	112	11	0.38	0.9	1.2 A	326	8	1.3	81	19	1.3	218	58 2.2	
27	13	5	41.0	61	21.8	140 2.7	0.0	2.0	12	5	249	82	0.65	1.3	3.1 C	294	5	1.4	25	10	2.3	178	79 5.8	
27	14	32	28.2	59	55.1	140 13.3	8.1	1.7	9	4	160	20	0.72	1.2	1.7 B	291	3	0.6	199	31	1.4	26	59 3.6	
27	14	49	44.3	61	46.7	150 28.6	10.9	1.3	9	7	155	35	0.44	0.7	1.1 A	359	5	1.2	267	15	0.7	107	74 2.2	
28	8	25	56.8	61	7.2	152 14.9	8.4	0.4A	3	3	321	13	0.03	2.8	4.2 C	177	4	2.6	269	30	3.3	80	60 8.9	
28	20	2	8.1	61	23.1	140 2.4	15.2	1.7	5	3	271	84	0.45	2.8	2.5 C	98	31	1.7	211	33	4.5	336	41 5.9	
28	10	33	24.8	60	30.3	143 18.5	23.0	1.0A	5	147	26	0.62	1.7	3.3 C	261	6	0.9	351	22	2.0	156	67 6.6		
28	4	10	41.1	60	43.6	147 2.6	29.0	2.5	33	16	55	18	0.59	0.4	0.5 A	281	6	0.6	12	12	0.8	165	70 0.9	
28	6	32	2.9	60	11.2	140 56.4	5.7	1.3	10	8	143	6	0.67	1.1	0.7 A	98	18	0.6	195	21	2.3	331	62 1.1	
28	8	25	56.8	61	28.8	149 41.3	31.7	2.0	25	14	90	22	0.65	0.7	0.9 A	267	13	0.7	173	17	1.2	33	68 1.7	
28	10	0	38.0	61	31.4	150 25.9	13.2	0.8A	6	5	144	18	0.35	0.9	0.8 A	105	3	0.9	197	34	1.1	56	1.4	
28	10	20	41.6	60	16.4	140 45.3	11.2	1.0	7	6	164	20	0.26	1.8	1.8 B	106	3	0.8	198	44	4.4	46	1.7	
28	13	32	56.5	60	36.8	140 1.9	2.4	1.1A	5	5	211	55	0.49	1.9	2.4 B	329	6	1.0	261	15	3.2	82	63 4.2	
28	14	33	52.4	61	28.8	149 41.3	31.7	2.0	25	14	90	22	0.65	0.7	0.9 A	267	13	0.7	173	17	1.2	33	68 1.7	
28	19	32	18.4	61	11.6	151 14.6	5.4	1.8	17	6	63	40	0.53	0.7	1.0 A	183	4	1.4	91	15	0.8	287	74 1.9	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - JULY 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SEJ	AZ2	DIP2	SE2	AZ3	DIP3	SE3
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN
JUL 28 22 48 41.9	60	1.3	141	36.1	0.1	0.9	5	4	210	24	0.27	1.1	1.9	B	261	3	1.2	341	5	2.1	138	78	3.4
29 4 32 40.2	59	59.8	140	45.8	5.0	1.6	13	10	155	23	0.46	1.1	1.2	A	288	1	0.6	197	43	1.3	19	47	2.8
29 9 18 34.4	60	24.7	152	51.8	118.8	2.7	14	9	154	26	0.26	1.5	1.6	B	34	4	1.6	303	7	2.7	153	82	3.0
29 10 34 38.5	60	17.3	144	36.2	1.4	0.9	7	3	231	12	0.68	1.8	2.6	B	112	10	1.0	205	18	3.0	354	69	5.1
29 10 37 14.1	61	15.0	146	51.8	26.5	2.8	29	18	46	27	0.60	0.4	0.8	A	293	1	0.5	23	7	0.7	195	83	1.4
29 11 53 37.3	60	11.8	141	6.2	8.0	1.2	11	7	138	6	0.56	1.1	0.6	A	288	3	0.6	197	13	2.1	31	77	1.1
29 13 45 5.7	62	9.8	150	55.4	67.1	2.4	17	5	95	38	0.32	1.1	1.6	B	349	2	2.1	81	29	1.4	255	61	3.4
29 16 36 49.3	60	38.5	152	10.1	103.8	3.0	19	10	74	15	0.37	1.1	1.5	B	17	2	1.2	108	26	1.9	283	64	2.9
29 23 35 52.4	62	24.7	149	22.5	37.7	2.2H	16	10	212	89	0.51	1.9	2.1	B	345	27	2.3	91	29	1.5	220	49	4.9
29 23 59 21.1	60	26.5	152	50.2	126.7	3.0	16	7	84	28	0.28	1.4	2.0	B	32	4	1.7	302	5	2.6	161	84	3.8
30 2 31 41.6	59	49.6	141	34.1	3.0	2.3	18	5	187	35	0.66	1.1	1.5	B	102	4	0.8	194	30	1.7	5	60	3.1
30 9 7 49.4	59	49.5	152	26.6	67.8	3.4	16	3	88	45	0.25	1.3	2.1	B	81	7	1.8	319	12	1.1	192	55	3.6
30 10 20 2.7	59	32.8	149	17.3	38.0	2.2	18	4	200	63	0.53	3.1	3.1	C	81	12	1.5	315	36	7.2	182	40	2.9
30 13 38 32.0	60	53.1	151	30.0	69.6	3.1	23	6	43	45	0.40	0.9	1.9	B	39	3	0.9	130	20	1.1	301	70	3.8
30 15 15 0.9	60	22.5	141	26.4	13.8	1.9	18	11	109	17	0.72	0.4	0.8	A	98	1	0.7	8	10	0.6	194	80	1.6
30 16 32 19.3	57	54.1	156	9.6	124.1	3.5	10	1	272	219	0.26	13.1	25.0	D	329	5	4.7	81	6	21.9	209	67	45.3
30 19 1 36.2	60	11.7	139	43.3	15.7	0.7	5	3	230	27	0.47	2.3	2.0	B	115	2	0.9	207	41	5.6	23	49	1.6
30 20 19 55.5	60	13.6	141	0.4	9.8	1.6	15	5	121	8	0.39	0.6	0.7	A	84	16	0.8	342	36	0.6	194	50	1.5
30 20 44 24.3	61	34.7	149	50.9	53.5	2.2	24	10	83	8	0.40	0.7	1.1	A	187	2	1.3	97	3	0.6	311	86	2.0
31 0 54 26.3	60	30.6	140	45.6	13.6	2.5	18	7	166	42	0.51	0.5	0.8	A	310	2	0.5	219	15	0.8	47	75	1.5
31 0 56 19.2	60	31.6	140	45.6	13.1	1.9	17	9	168	44	0.56	0.6	0.9	A	138	1	0.5	261	1	0.8	20	57	1.5
31 1 1 2.7	60	30.9	140	47.2	17.6	1.7	14	7	164	42	0.44	0.6	1.0	A	261	5	0.9	317	6	0.5	119	55	1.5
31 1 41 35.9	60	30.6	140	47.3	12.5	1.2	11	6	188	42	0.58	0.8	1.4	B	294	3	0.6	25	14	1.3	192	76	2.7
31 2 16 18.5	59	56.9	152	18.1	76.1	2.7	17	7	119	39	0.25	0.8	1.1	A	131	2	0.9	40	11	1.4	231	79	2.1
31 8 42 12.7	61	12.8	149	21.9	36.5	1.5	18	9	116	11	0.53	0.5	0.6	A	307	3	0.6	217	7	0.9	60	82	1.2
31 14 2 28.3	60	31.4	140	46.2	12.4	0.9A	12	7	190	44	0.53	0.8	1.4	B	306	6	0.7	37	13	1.4	192	76	2.7
31 14 3 36.5	61	37.9	141	20.5	5.2	1.3	8	5	253	74	0.38	1.8	8.8	D	311	2	1.6	41	4	3.1	194	86	16.6
31 15 6 13.4	60	57.4	147	8.5	25.2	2.2	31	17	44	8	0.69	0.4	0.5	A	291	4	0.3	21	7	0.7	171	82	0.9
31 15 15 54 16.1	60	10.7	141	42.6	13.6	0.9	9	4	113	20	0.28	1.0	1.3	A	197	5	1.1	104	26	1.7	297	63	2.7
31 18 37 23.6	60	14.8	140	59.0	9.6	0.8	9	5	125	11	0.19	1.7	1.7	B	308	14	0.7	52	43	0.8	204	44	4.4
31 23 13 50.1	59	57.1	141	20.6	0.1	0.8A	7	3	179	28	0.29	1.5	3.8	C	261	5	1.3	353	13	2.3	151	76	7.4
31 23 31 28.9	60	15.3	141	17.3	11.4	1.8	15	7	111	18	0.35	0.4	0.7	A	300	5	0.5	31	16	0.7	193	73	1.3

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SEJ	AZ2			DIP2			SE2			AZ3			DIP3			SE3		
																	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC			
1984	1	3	8	22.7	58	47.8	154	1.7	5.8	2.3	8	2	214	111	0.41	2.7	4.2	C	344	5	1.7	81	23	4.1	243	66	8.3							
AUG	1	3	20	27.4	58	16.1	138	1.1	7.2	1.7	4	1	244	141	0.21	15.5	6.2	D	81	16	27.9	161	33	4.9	326	53	12.3							
	1	12	14	32.8	61	5.2	152	10.3	8.9	0.6A	3	4	332	12	0.41	2.2	2.0	B	198	25	0.9	308	37	2.7	82	43	5.1							
	1	12	15	44.2	61	3.6	152	9.8	4.6	0.1	3	4	338	15	0.40	3.2	7.1	D	196	2	0.6	287	19	4.1	100	71	14.1							
	1	14	23	24.9	59	49.0	152	25.0	63.0	2.5	15	9	88	46	0.52	0.7	1.2	A	301	0	0.9	211	7	1.3	31	83	2.3							
	1	15	24	4.3	60	22.6	139	33.6	5.7	0.8A	6	1	222	47	0.26	4.2	5.5	D	102	11	2.5	6	28	6.4	211	60	11.4							
	1	20	46	11.4	61	8.8	146	28.0	16.0	1.0	11	2	123	8	0.34	0.7	1.4	B	42	5	0.7	311	9	1.3	161	80	2.6							
	2	0	10	57.1	60	4.6	139	27.0	13.1	0.3	4	3	242	17	0.33	2.6	1.8	B	116	20	1.1	218	31	5.4	358	52	2.2							
	2	4	50	34.0	60	45.9	146	53.1	16.5	2.8	34	11	44	16	0.48	0.5	0.7	A	285	4	0.5	195	7	0.8	45	82	1.4							
						3.7	ML	ATWC																										
	2	8	6	42.0	61	13.2	150	9.1	13.1	1.6	23	16	7.8	32	0.64	0.5	0.7	A	279	10	0.6	186	15	0.9	41	72	1.4							
	2	9	1	12.8	61	48.6	148	32.8	6.6	1.9	25	11	156	11	0.62	0.6	0.8	A	261	17	0.6	357	17	1.1	129	65	1.5							
	2	12	44	53.8	60	27.6	143	11.2	19.6	1.2A	9	7	112	19	0.41	1.0	1.6	B	13	16	1.3	277	20	1.0	139	64	3.3							
	2	15	5	44.7	60	16.6	141	37.0	7.6	1.0	8	2	103	12	0.55	1.1	1.3	A	35	8	2.0	131	34	1.1	294	55	2.8							
	2	17	58	51.4	60	35.2	141	32.4	6.6	1.2	11	7	108	28	0.85	0.7	1.3	A	14	2	0.8	284	4	1.3	131	86	2.4							
	2	18	35	12.8	60	0.8	141	41.8	11.7	0.9	5	5	227	20	0.37	2.7	1.5	C	34	20	5.4	136	28	1.0	274	54	2.4							
	2	22	59	45.7	58	52.8	136	49.7	31.2	2.2	6	5	187	133	0.67	19.5	25.0	D	298	0	2.1	28	2	36.3	208	88	99.0							
	3	15	38	17.4	59	15.2	144	56.6	17.0	2.1	19	12	262	81	0.65	2.1	1.1	B	201	3	3.9	294	43	2.5	108	47	1.5							
						3.7	ML	ATWC																										
	3	18	49	30.5	59	38.1	146	16.6	22.9	2.6	25	6	111	23	0.61	1.0	1.0	A	81	12	1.2	323	27	1.5	188	50	1.9							
	4	12	45	28.0	61	39.5	20.1	7.2	0.8A	5	5	152	24	0.55	1.4	1.6	B	264	22	0.8	10	33	1.6	147	48	3.7								
	4	13	29	35.5	59	51.1	151	3.6	45.4	2.5	20	6	80	14	0.43	0.7	1.2	A	297	7	1.3	29	17	1.2	185	72	2.3							
	4	19	15	10.3	60	7.5	141	15.1	3.0	1.2	12	5	139	13	0.49	1.7	1.5	B	281	5	0.8	15	40	3.8	185	50	1.8							
	4	23	5	19.2	61	49.1	149	31.5	37.3	2.1	26	13	158	26	0.75	0.8	0.6	A	102	8	0.8	193	8	1.5	328	79	1.1							
	5	1	11	31.0	59	19.9	144	59.5	19.9	2.2	22	7	259	74	0.63	1.6	1.1	B	216	23	3.2	321	32	2.5	97	49	1.4							
	5	12	7	22.3	61	16.8	152	13.2	8.2	0.8	5	4	197	4	0.33	1.4	0.6	B	103	19	2.8	4	24	1.0	227	59	0.6							
	5	14	11	4.3	61	38.1	149	44.0	39.3	2.9	27	5	81	32	0.45	0.6	1.2	A	100	3	0.6	10	8	1.1	210	81	2.4							
						3.0	ML	ATWC																										
	5	14	12	48.4	61	38.7	149	44.2	40.0	2.1	19	4	147	38	0.45	0.9	1.6	B	103	5	0.7	12	10	1.6	219	79	3.1							
	5	16	43	22.8	60	29.0	143	12.0	10.9	0.6	8	3	153	20	0.42	1.2	2.3	B	262	8	0.6	355	22	1.4	153	66	4.7							
	5	17	34	31.8	62	42.3	149	10.1	72.8	3.1	21	5	97	109	0.37	1.2	6.4	D	262	1	1.8	352	9	1.0	166	81	12.2							
	5	17	43	38.9	60	48.2	151	7.2	59.8	2.4	23	7	60	66	0.55	0.6	2.1	B	175	6	0.9	84	10	0.7	296	78	4.1							
	5	17	54	4.4	59	18.8	144	57.0	21.3	2.0	19	7	269	75	0.39	1.6	1.1	B	261	18	2.4	354	31	3.0	143	54	1.7							
	6	12	20	9.7	61	33.8	146	20.4	30.3	2.3	29	7	86	48	0.60	0.5	0.6	A	116	13	0.7	210	17	0.9	350	68	1.1							
	6	13	14	52.4	59	2.1	152	44.6	61.1	2.2	10	6	137	51	0.31	1.2	1.7	B	358	4	2.3	90	17	1.3	255	72	3.3							
	6	16	1	21.9	60	32.2	152	28.3	14.6	0.0	3	3	172	6	0.65	25.0	7.3	D	112	8	99.0	207	33	0.7	10	56	0.8							
	6	18	46	54.7	58	38.1	136	49.3	7.6	1.8	3	2	355	149	0.05	25.0	3.3	D	218	1	99.0	128	26	4.0	310	64	6.5							
	7	1	37	49.8	61	10.8	145	37.2	26.2	2.3	33	16	56	16	0.79	0.5	0.4	A	6	2	0.5	97	4	0.4	250	85	0.7							
	7	5	32	49.5	60	29.0	145	21.0	18.0	2.4	34	10	66	10	0.61	0.3	0.5	A	194	2	0.6	103	18	0.5	290	72	1.0							
	7	7	5	54	25.6	60	27.0	145	20.1	19.2	1.3	12	4	206	12	0.64	1.4	0.8	B	173	2	2.6	83	15	0.9	270	75	1.5						
	7	6	4	39.4	60	12.6	141	0.8	12.0	1.5	13	7	118	6	0.35	0.7	0.5	A	293	1	0.6	202	30	1.4	25	60	0.7							
	7	6	32	52.6	58	51.7	137	17.3	14.0	1.5	3	3	353	112	0.24	25.0	4.4	D	217	4	82.5	124	42	4.4	311	48	7.6							
	7	8	35	23.5	61	45.9	149	32.2	44.0	3.1	27	8	63	22	0.50	0.6	0.8	A	281	0	0.6	11	10	1.0	191	80	1.5							
						3.4	ML	ATWC																										
	7	9	27	33.9	60	14.8	140	49.7	13.1	1.1	10	6	135	15	0.30	1.2	1.0	A	105	3	0.6	198	38	2.9	11	52	0.9							
	7	11	1	4.6	61	16.3	152	11.5	4.0	0.6	3	3	285	2	0.02	1.2	1.0	A	192	15	0.9	198	19	2.3	66	65	1.2							
	7	11	16	19.2	60	6.6	152	16.1	77.3	2.6	19	12	66	32	0.3																			

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984

1984	ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3			
		DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN			
AUG 7 17 57 23.3	59 51.7	139	6.1	19.8	0.9	5	4	232	27	0.54	1.8	1.8 B	322	0	0.7	81	41	1.6	232	41	4.2			
8 7 28 30.4	60 17.1	152	6.8	87.3	2.4	19	10	55	0	0.36	0.7	1.0 A	23	0	0.9	113	28	1.1	293	62	2.0			
8 8 26 20.5	59 50.2	143	27.3	24.7	1.1A	10	7	216	54	0.35	1.6	0.9 B	265	2	1.1	356	12	3.0	166	78	1.7			
8 8 12 0 8.9	60 14.6	141	41.3	8.4	1.4	12	5	115	13	0.87	0.6	0.9 A	101	1	0.8	191	23	1.0	9	67	1.8			
8 13 37 18.6	61 21.9	151	41.1	84.3	3.2	23	8	103	0	0.41	1.1	1.4 A	81	13	0.9	151	34	1.4	331	49	2.7			
9 14 43 43.9	62 11.8	3.3 ML ATWC			149	44.2	40.0	3.0	23	6	86	43	0.48	1.1	2.4 B	272	1	1.0	2	20	1.5	179	70	4.7
10 0 13 50.1	60 14.5	141	43.0	8.2	1.4	15	8	107	13	0.65	0.6	0.8 A	99	16	0.8	195	22	0.9	336	62	1.6			
10 0 2 37 5.3	61 12.8	149	52.3	40.5	1.3A	7	4	140	17	0.37	1.2	1.3 A	167	3	1.5	81	30	2.1	262	60	2.5			
10 0 11 59 34.8	60 16.1	141	24.2	10.1	1.0	8	5	137	21	0.28	1.3	1.2 A	292	0	0.8	202	27	2.6	22	63	2.2			
10 0 13 4 54.1	60 27.0	145	8.3	17.2	1.0	13	7	183	10	0.66	0.9	0.9 A	113	17	0.9	214	31	1.7	359	54	1.8			
10 0 18 48 31.5	60 16.9	141	23.0	7.8	1.5	15	8	107	22	0.66	0.6	0.8 A	298	0	0.6	28	21	1.0	208	69	1.6			
10 0 21 14 55.5	59 45.1	152	5.7	50.9	1.9	14	6	102	43	0.39	0.9	2.5 B	30	7	1.6	299	10	1.1	155	78	4.7			
11 1 1 57 26.9	59 34.9	152	25.2	60.2	2.9	15	6	77	49	0.46	0.9	2.3 B	266	4	1.1	356	9	1.5	152	80	4.3			
11 1 2 9 56.7	59 45.5	151	51.0	46.0	2.2	14	9	88	35	0.45	0.7	1.9 B	283	8	0.9	15	9	1.2	152	78	3.6			
11 1 7 17 15.0	59 56.6	153	21.1	128.0	3.0	11	6	137	40	0.20	1.3	1.6 B	42	14	1.8	136	17	2.4	274	68	3.1			
11 1 7 30 9.7	59 0.7	136	48.0	5.8	3.1	8	3	174	128	0.37	5.8	2.2 D	299	3	1.2	209	5	11.0	60	84	3.9			
4.1 MB	4.2 ML ATWC			Felt in parts of Glacier Bay National Park and on a tour boat in Glacier Bay.																				

11 13 55 46.2	62 28.0	148	5.4	34.5	2.7	22	7	108	75	0.54	1.4	0.8 A	343	11	2.5	261	42	1.8	85	46	1.3
11 14 38 4.0	61 24.6	149	59.9	39.0	1.9	19	7	65	28	0.36	0.7	1.1 A	12	2	1.4	102	5	0.8	260	85	2.1
11 15 18 25.0	60 15.6	145	12.0	15.9	0.8	6	5	279	31	0.20	2.2	1.4 B	22	21	4.4	123	25	1.4	257	56	2.5
11 15 47 32.6	60 53.6	151	1.4	8.6	2.2	23	8	55	64	0.59	0.7	1.4 A	142	2	1.0	142	2	0.8	44	59	2.3
11 15 50 44.0	61 0.9	147	17.1	28.5	2.3	13	13	83	18	0.65	0.5	0.5 A	103	5	1.0	103	10	0.9	201	57	1.0
11 15 51 32.8	59 55.6	152	40.9	91.9	2.6	10	5	85	29	0.22	1.4	3.4 C	81	8	1.6	144	11	2.1	307	60	5.7
11 18 3 8.1	58 26.7	146	7.4	0.5	2.0A	10	5	316	239	0.60	10.9	8.1 D	166	6	15.8	261	34	24.0	67	55	8.3
11 19 26 17.8	60 15.5	141	3.7	9.4	1.7	15	10	122	12	0.37	0.7	0.8 A	299	3	0.7	32	42	1.0	206	48	1.7
11 19 44 48.2	60 58.2	147	15.1	30.0	2.1	25	12	100	13	0.51	0.5	0.5 A	97	4	0.5	4	34	1.0	193	56	0.9
11 20 33 49.7	60 20.9	140	31.0	6.7	1.7	12	4	164	32	0.77	1.1	1.4 B	313	7	0.8	46	21	2.0	206	68	2.7
12 0 55 40.3	60 8.6	141	9.0	12.2	1.0	9	5	137	7	0.55	1.9	0.6 B	19	12	3.7	284	23	0.7	135	64	1.0
12 6 6 56.8	59 57.0	153	10.6	103.1	2.7	18	4	72	33	0.34	1.1	2.0 B	261	0	1.5	340	13	1.8	171	73	3.8
12 10 14 26.7	60 55.0	143	31.1	24.8	1.1A	7	1	93	59	0.44	0.9	1.2 A	310	8	1.0	218	14	1.6	69	74	2.4
12 13 35 2.3	60 17.4	142	32.0	4.1	1.0	14	6	74	19	0.56	0.4	2.9 C	282	0	0.6	12	2	0.8	192	88	5.5
12 17 49 9.0	60 2.2	140	52.1	5.1	0.7	6	3	205	16	0.19	1.8	3.0 C	121	16	0.6	219	25	1.5	2	60	6.4
12 19 12 53.9	59 53.3	145	44.5	30.5	1.9	25	8	127	61	0.75	0.5	0.5 A	268	11	0.7	4	26	1.0	157	61	4.7
12 20 11 4.7	60 15.3	141	18.3	8.9	1.0	5	1	160	19	0.07	1.5	1.4 B	302	13	1.0	201	39	3.2	47	48	2.3
12 21 18 51.6	62 21.5	148	47.3	43.3	2.6	25	6	115	66	0.37	1.2	4.2 C	87	4	1.3	356	9	1.9	201	80	8.0
12 22 42 35.2	61 4.9	152	28.8	3.9	1.5	12	5	172	26	0.76	0.8	0.8 A	201	1	0.6	291	23	1.6	109	67	1.5
12 22 49 35.5	61 20.6	152	22.9	0.3	0.4	4	4	325	15	0.39	1.0	2.5 B	221	3	1.8	311	6	1.6	104	83	4.7
12 23 7 36.1	60 16.9	141	11.8	13.8	1.3	12	4	117	17	0.48	0.8	0.9 A	305	18	0.7	49	36	1.1	194	48	2.0
13 0 3 7.6	60 7.6	141	18.4	9.3	2.2	18	5	139	15	0.46	0.7	0.7 A	282	1	0.5	13	44	1.4	191	46	1.2
13 0 29 47.8	61 4.9	151	7.2	40.4	1.1	3	268	97	0.33	11.0	11.5 D	81	21	4.3	316	26	10.5	195	43	26.5	
13 2 21 23.2	60 56.8	149	23.0	9.8	1.1	6	79	35	0.46	1.1	2.3 B	323	14	0.8	261	25	0.5	85	51	4.0	
13 3 5 47.7	59 46.4	142	13.0	16.0	1.7A	12	5	198	31	0.53	1.1	1.1 A	108	11	1.1	9	39	2.3	211	49	1.8
13 4 13 13.5	60 52.6	149	59.7	46.9	2.2	28	11	37	42	0.76	0.4	1.0 A	264	2	0.5	354	7	0.7	158	83	1.8

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984

1984	HR	MN	SEC	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DJ	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
	DEG	MIN	SEC	DEG	MIN	DEG	MIN	DEG	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM				
AUG	13	7	10	59.6	63	40.8	149	20.2	118.0	3.3	10	3	113	155	0.24	5.1	18.1	D	340	5	2.5	261	14	4.3	90	72	36.3	
	13	9	37	41.7	60	21.3	152	40.4	99.1	2.4	18	5	141	21	0.43	1.0	1.0	A	22	12	1.3	281	43	2.1	124	45	1.5	
	13	11	20	50.9	60	14.9	140	29.9	2.9	0.7	4	2	204	22	0.19	3.9	4.7	C	291	3	0.9	23	39	3.0	197	51	11.1	
	13	11	25	27.7	60	19.6	150	45.8	42.1	2.4	27	9	78	36	0.47	0.4	1.7	B	270	2	0.7	1	6	0.8	162	84	3.1	
	13	15	9	37.1	62	47.0	151	40.5	0.4	2.1	11	5	204	90	0.76	2.6	2.7	C	88	1	3.4	179	43	2.6	357	47	6.5	
	13	15	10	20.8	59	59.0	141	13.2	1.5	0.9	6	3	209	22	0.48	1.2	1.8	B	276	0	0.8	186	26	1.7	6	64	3.7	
	13	15	10	54.1	60	16.5	140	55.1	4.1	0.9	4	3	194	15	0.33	1.6	3.2	C	94	10	0.9	0	23	1.4	206	65	6.6	
	14	0	56	21.9	61	37.5	151	16.7	0.2	2.5	22	15	100	34	0.82	0.3	0.5	A	223	12	0.6	129	17	0.5	346	69	0.9	
	14	1	2	9.1	61	48.2	148	56.2	18.8	5.7	B	34	1	81	20	0.62	0.7	0.7	A	261	15	0.7	1	39	1.0	154	48	1.6
	14	5.7	MB	5.2	MS	5.7	ML	ATWC																				

Slight damage (VI) at Palmer, Willow and Sutton. Felt (V) at Anchorage, Skwentna, Talkeetna, and Valdez. Felt throughout much of Southern Alaska from Fairbanks to Homer.

14	1	6	50.9	61	47.5	148	56.6	11.4	1.3	12	8	167	19	0.61	0.7	0.9	A	1	9	1.3	267	26	0.7	109	62	1.9		
	14	1	8	46.8	61	48.9	148	58.0	10.1	2.0	25	23	157	21	0.87	0.5	0.7	A	336	4	0.9	261	19	0.6	78	66	1.4	
	14	1	14	11.3	61	48.4	149	1.3	13.3	1.5	21	18	168	20	0.88	0.5	0.6	A	11	19	0.8	270	28	0.5	131	55	1.2	
	14	1	15	25.7	61	49.0	148	56.2	9.5	1.6	22	22	158	21	1.03	0.4	0.4	A	261	26	0.4	6	32	0.6	139	47	1.0	
	14	1	16	31.3	61	46.5	149	0.7	11.3	1.6	19	16	163	16	0.73	0.5	0.5	A	24	5	0.9	291	28	0.6	123	61	1.1	
	14	1	17	57.6	61	48.3	148	59.1	13.4	1.5	21	20	157	19	0.93	0.5	0.6	A	261	24	0.4	2	24	0.7	132	55	1.3	
	14	1	24	53.0	61	48.3	148	59.5	9.9	1.4	20	18	157	19	0.72	0.6	0.7	A	13	5	1.0	280	33	0.6	111	57	1.6	
	14	1	28	48.1	61	48.6	149	0.4	9.4	1.5	21	17	157	20	0.83	0.6	0.7	A	29	19	0.8	285	35	0.6	142	49	1.5	
	14	1	42	46.0	61	48.5	148	57.3	10.3	1.9	24	20	157	20	0.94	0.4	0.6	A	3	6	0.7	270	21	0.5	108	68	1.2	
	14	1	46	1.1	61	39.7	151	10.3	4.1	0.9	4	3	162	32	0.47	1.8	1.9	B	145	4	0.6	261	39	1.5	51	44	4.4	
	14	1	53	6.3	61	48.9	149	0.8	10.0	1.8	24	22	157	20	0.83	0.4	0.6	A	3	3	0.7	272	18	0.4	102	72	1.2	
	14	1	54	37.8	61	48.2	149	0.8	10.0	4.2	B	28	8	90	19	0.68	0.5	0.7	A	17	7	0.8	282	34	0.6	117	55	1.6
	14	1	56	37.8	61	47.3	148	58.0	11.9	1.9	14	15	166	18	0.58	0.4	0.6	A	7	17	0.7	268	27	0.6	125	57	1.2	
	14	1	57	24.9	61	48.3	149	0.6	11.0	1.5	14	14	170	19	0.64	0.4	0.6	A	191	3	0.8	282	26	0.6	95	64	1.2	
	14	2	7	14.4	61	48.6	148	58.4	10.1	1.5	20	19	168	20	0.80	0.4	0.7	A	359	9	0.7	265	22	0.5	110	66	1.4	
	14	2	21	21.7	60	45.4	137	59.9	8.7	1.8	9	7	273	127	0.54	2.0	1.8	B	224	11	3.2	124	41	4.5	326	47	1.9	
	14	2	33	40.5	61	48.1	148	56.9	13.4	1.9	23	20	156	19	0.71	0.5	0.6	A	263	24	0.4	5	26	0.7	136	53	1.2	
	14	2	37	51.8	61	49.7	148	55.2	9.9	1.9	23	20	158	23	0.83	0.4	0.5	A	1	19	0.7	261	31	0.4	118	53	1.1	
	14	2	55	58.4	61	48.5	148	59.0	10.0	1.7	20	19	157	20	0.98	0.4	0.5	A	0	12	0.7	263	32	0.4	108	55	1.0	
	14	3	17	19.6	61	48.3	148	55.8	10.0	1.4	19	15	168	20	0.83	0.5	0.6	A	2	13	0.9	265	30	0.5	113	57	1.2	
	14	3	35	15.4	61	47.7	148	59.5	12.5	2.0	24	17	156	18	0.79	0.5	0.6	A	168	7	0.8	263	34	0.6	68	55	1.4	
	14	4	12	23.5	61	48.3	148	54.1	12.5	2.0	24	17	157	21	0.88	0.5	0.6	A	354	4	0.9	262	27	0.5	92	63	1.3	
	14	4	26	15.3	61	49.6	150	14.3	49.4	2.3	26	15	155	27	0.40	0.8	1.1	A	271	0	0.8	181	5	1.5	1	85	2.0	
	14	5	15	59.3	61	47.0	148	59.2	10.9	1.6	18	14	165	17	0.70	0.5	0.7	A	16	16	0.8	276	31	0.6	129	54	1.5	
	14	5	21	29.2	61	48.8	148	56.5	13.1	1.5	20	16	157	21	0.79	0.6	0.6	A	261	25	0.6	4	35	0.9	142	46	1.4	
	14	6	13	2.5	61	48.0	148	58.3	10.6	1.8	23	22	156	19	0.80	0.4	0.6	A	357	13	0.7	261	22	0.5	115	64	1.2	
	14	7	33	53.7	61	47.8	149	0.3	14.1	1.9	25	22	156	19	0.76	0.4	0.5	A	13	17	0.7	273	31	0.4	128	54	1.0	
	14	7	41	8.8	61	47.0	148	58.9	9.9	3.0	33	22	66	17	0.88	0.3	0.5	A	14	6	0.6	280	30	0.4	114	59	1.0	
	14	7	59	52.9	61	48.1	149	6.1	6.6	1.6	20	17	156	19	0.71	0.5	0.6	A	25	13	0.9	288	26	0.6	139	60	1.3	
	14	8	37	8.6	58	27.6	136	45.8	15.0	1.9A	3	1	356	164	0.11	25.0	D	44	1	99.0	313	34	17.3	135	56	99.0		
	14	9	24	27.8	61	48.5	149	3.8	10.0	1.6	20	16	157	20	0.71	0.5	0.6	A	5	2	0.9	274	38	0.6	98	52	1.3	
	14	10	6	49.6	61	49.8	148	54.8	11.3	1.6	22	18	159	23	0.62	0.6	0.8	A	261	16	0.5	349	28	0.8	142	58	1.8	
	14	15	56	0.3	61	48.4	148	57.0	13.4	1.7	22	14	157	20	0.69	0.7	0.8	A	8	23	1.0	266	27	0.6	133	53	1.8	
	14	16	37	52.0	60	20.7	141	16.3	9.0	1.0	7	5	125	25	0.32	1.2	1.9	B	329	11	0.6	81	23	1.0	219	57	3.8	
	14	17	27	26.8	61	10.2	151	57.6	0.0	-0.2A	3	2	293	5	0.21	1.6	2.0	D	261	0	1.0	317	0	2.4	0	90	99.0	
	14	19	1	55.4	60	31.0	141	43.7	14.5	1.1	9	6	120	18	0.33	0.4	0.8	A	291	5	0.8	22	12	0.6	179	77	1.5	
	14	20	33	28.4	59	59.2	141	12.4	5.5	1.3	13	9	164	10	0.49	1.1	1.0	A	113	8	0.7	42	2.7	2.7				

Felt (IV) at Anchorage and in the Palmer-Wasilla area.

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984																								
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	MIN	SEC	RMS			SEZ	Q	AZ1	DPI1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
									DEG	MIN	KM													
1984	HR	MN	SEC	DEG	MIN	KM																		
AUG 14	21	41	21.1	60	40.9	143	32.9	21.2	1.3A	4	3	133	46	0.38	1.7	2.7	B	328	9	1.0	261	18	2.7	
AUG 14	21	23	3.1	61	48.7	148	59.1	12.8	0.9	19	12	169	20	0.67	0.6	22	A	272	29	0.6	136	52	1.5	
AUG 14	21	44	4.6	61	49.1	149	1.2	7.9	1.5	20	14	158	21	0.77	0.5	15	A	285	32	0.5	136	54	1.4	
AUG 14	21	55	14.1	61	49.2	149	2.0	10.0	1.6	21	16	158	21	0.64	0.5	0.7	A	359	0	0.9	268	34	0.6	
AUG 14	21	55	58.2	61	49.6	148	56.4	12.0	2.0	24	19	158	22	0.61	0.6	0.8	A	264	22	0.6	5	25	0.8	
AUG 14	21	55	34.5	61	49.3	137	42.3	22.9	1.3A	3	2	327	68	0.08	7.0	3.4	D	110	3	3.6	201	25	14.4	
AUG 15	13	9	12.6	60	20.6	140	8.2	6.9	0.7	5	2	257	28	0.25	2.5	3.7	C	81	14	2.0	334	19	3.5	
AUG 15	13	30	37.4	61	12.0	149	29.9	38.0	1.5	18	10	64	6	0.39	0.7	0.5	A	183	5	1.4	277	41	1.1	
AUG 15	17	53.0	58.9	154	43.0	87.6	2.6	9	7	243	139	0.33	3.2	7.4	D	339	2	3.0	261	8	5.7			
AUG 15	28	37.6	61	48.4	148	58.1	10.0	1.6	20	13	157	20	0.59	0.5	0.7	A	358	8	0.9	262	32	0.5		
AUG 15	17	50.8	60	23.9	140	45.3	0.1	1.6	14	11	154	31	0.71	0.6	1.1	A	320	6	1.0	81	7	0.9		
AUG 15	17	50.1	60	4.9	141	11.5	6.1	0.5	5	4	217	12	0.12	1.9	1.6	B	284	10	1.0	22	40	4.4		
AUG 15	21	13	52.0	60	7.5	141	16.4	9.5	0.9	9	7	139	14	0.25	0.9	0.7	A	276	4	0.6	9	33	2.0	
AUG 16	0	13	25.9	60	33.8	144	54.5	16.8	0.6	8	3	112	11	0.36	0.7	0.7	A	141	31	0.9	261	37	1.5	
AUG 16	0	44	36.9	61	23.8	150	51.5	9.0	0.5A	4	3	121	10	0.42	1.7	1.2	B	333	9	0.9	81	33	3.8	
AUG 16	15	17	50.8	61	23.9	140	45.3	0.1	1.6	14	11	154	31	0.71	0.6	1.1	A	320	6	1.0	203	58	1.8	
AUG 16	15	19	55.7	61	29.3	151	11.6	4.0	2.1	24	8	93	24	0.79	0.4	0.5	A	270	2	0.5	179	20	0.6	
AUG 16	16	7	28.8	61	26.8	151	10.4	1.3	0.5A	5	4	103	23	0.51	0.7	1.1	A	261	9	0.5	164	26	2.0	
AUG 16	16	7	33.44.6	61	37.2	150	55.9	70.2	2.7	23	8	118	20	0.34	0.9	1.5	B	81	12	0.7	171	19	1.4	
AUG 16	12	30	11.8	61	47.2	149	1.3	14.6	1.8	25	8	155	17	0.69	0.5	0.6	A	21	11	0.9	284	32	0.5	
AUG 16	12	35	1.4	60	21.0	141	19.8	12.6	0.8	10	3	115	23	0.39	0.7	1.4	B	169	3	1.2	81	18	1.0	
AUG 16	13	29	7.5	60	18.1	141	11.0	12.7	1.5	16	8	120	19	0.63	0.4	0.7	A	294	5	0.6	25	14	0.6	
AUG 17	1	27	42.8	60	17.3	140	52.0	0.1	0.8	7	3	162	18	0.65	0.7	1.7	B	89	7	0.7	357	11	1.0	
AUG 17	17	29	38.2	60	20.9	141	12.8	9.3	1.3	11	4	154	24	0.54	0.8	1.2	A	105	5	0.6	13	25	1.3	
AUG 17	17	30	42.0	60	20.4	141	12.6	12.6	0.8	9	1	121	23	0.33	1.2	1.6	B	118	6	0.8	25	32	1.4	
AUG 17	17	31	38.3	61	22.1	142	37.1	35.3	1.7	6	3	204	40	0.52	0.8	10.2	D	297	2	0.9	28	41	2.1	
AUG 18	1	30	15.4	61	41.2	142	24.0	0.5	1.9	23	7	236	73	0.66	1.8	4.7	C	289	0	0.7	19	3	3.3	
AUG 18	18	27	10.1	59	53.3	141	20.4	1.1	1.4	11	6	180	34	0.94	0.7	1.2	A	107	12	0.6	201	14	1.2	
AUG 18	18	5	17	42.2	61	39.8	142	23.8	0.5	1.5	13	5	238	70	0.40	1.6	25.0	D	296	0	1.1	217	57	3.5
AUG 18	6	17	9.0	59	52.0	152	43.5	82.9	2.4	17	11	53	36	0.29	0.9	1.3	A	81	8	1.0	144	17	1.3	
AUG 18	9	50	4.3	60	14.6	141	12.5	3.5	1.2	14	7	141	14	0.53	0.9	0.9	A	297	8	0.4	200	44	2.0	
AUG 18	12	6	22.4	58	53.4	154	46.0	124.1	3.1	10	6	217	91	0.32	2.4	2.5	B	293	27	4.2	187	28	3.1	
AUG 18	14	6	48.6	59	48.2	153	26.3	116.3	2.8	16	4	89	42	0.18	1.3	1.5	B	106	15	2.2	205	32	1.9	
AUG 18	14	41	18.2	60	14.9	141	30.3	6.9	1.2	12	8	111	18	0.70	0.5	0.7	A	123	9	0.7	218	29	0.9	
AUG 18	14	48	3.9	60	15.1	141	27.6	7.5	0.7	12	5	113	20	0.34	1.1	0.8	A	120	5	0.5	211	9	2.1	
AUG 18	15	18	8.0	61	48.0	149	0.3	9.8	1.3	19	9	156	19	0.88	0.5	0.5	A	15	18	0.8	272	35	0.5	
AUG 18	19	51	43.2	60	39.6	143	2.5	2.1	1.0	7	3	86	26	0.59	0.7	14.4	D	261	1	1.1	339	2	0.6	
AUG 18	20	31	12.1	60	0.4	141	13.3	4.3	1.2	11	6	161	19	0.54	0.9	1.3	B	123	9	0.7	218	29	0.9	
AUG 19	0	4	3.8	61	25.3	142	37.0	9.9	1.2	4	3	222	45	0.36	4.3	7.5	D	305	2	1.0	36	25	5.1	
AUG 19	0	29	1.4	61	23.9	140	20.6	4.3	2.0	13	5	246	72	0.63	1.2	2.7	C	101	1	1.5	10	14	1.4	
AUG 19	1	46	3.9	60	23.9	151	7.9	44.0	2.0	18	8	84	39	0.48	0.5	2.1	B	82	3	0.7	352	4	1.0	
AUG 19	2	23	36.2	60	4.9	153	9.2	119.0	2.6	15	7	114	22	0.20	1.4	1.2	A	81	14	1.6	321	22	2.5	
AUG 19	52	32.1	59	59.2	148	53.9	16.7	2.5	28	10	155	33	0.72	0.5	0.8	A	350	0	0.9	261	8	0.6		
AUG 19	4	31	31.2	60	31.9	150	28.3	43.2	3.6	28	2	78	14	0.41	0.6	0.8	A	269	8	0.8	2	19	1.0	
AUG 19	4	42	22.7	61	48.3	149	0.4	14.4	1.8	25	8	184	19	0.75	0.6	0.6	A	10	23	0.9	266	29	0.6	
AUG 19	6	54	40.4	59	58.3	141	48.9	9.2	1.3	12	6	187	14	0.53	1.3	0.7	A	202	11	2.5	106	26	0.5	
AUG 19	9	55	24.4	59	9.2	137	27.4	16.3	1.6	4	4	346	88	0.15	12.5	3.8	D	206	15	24.3	103	39	2.2	
AUG 19	14	28	2.9	61	5.7	141	14.4	9.6	1.3	7	5	218	15	0.14	1.9	2.4	B	81	18	2.1	321	21	1.1	
AUG 19	20	26	45.7	61	44.4	139	21.7	28.6	1.4	7	4	172	8	0.18	0.2	1.0	B	193	51	2.0	321	21	1.0	
AUG 20	0	12	36.8	61	40.8	142	20.0	1.9	1.5	5	4	241	74	0.47	2.5	25.0	D	291	0	1.2	201	1	4.3	
AUG 20	1	45	24.6	58	47.9	139	43.3	18.8	1.4	3	3	315	87	0.43	7.9	5.6	D	17	12	3.8	35	116	1.9	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	CAP	D1	RMS	SEH			SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
												DEG	MIN	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC
1984 AUG 20 5 43 26.3	59	58.7	140	41.3	0.3	1.5	9	5	164	27	0.54	1.2	1.4	B	291	0	0.6	201	40	1.4	21	50	3.2			
20 8 37 53.7	61	47.4	149	1.6	14.0	1.6	21	10	166	18	0.72	0.5	0.5	A	35	11	0.9	296	37	0.6	139	51	1.2			
20 8 47 42.8	61	38.3	151	22.5	4.0	0.9	5	4	132	39	0.55	0.6	1.3	A	266	0	1.1	176	6	0.6	356	84	2.5			
20 15 48 28.9	60	21.9	141	14.2	9.6	1.0	11	6	121	26	0.75	0.6	1.0	A	331	14	0.7	81	14	0.8	206	62	2.0			
20 17 35 41.1	61	47.5	148	59.5	14.9	1.7	22	9	155	18	0.71	0.5	0.5	A	11	27	0.8	261	35	0.6	130	43	1.1			
21 2 13 18.4	62	20.9	150	56.4	77.8	2.7	18	10	125	52	0.44	1.2	1.5	B	340	19	1.9	81	22	1.5	214	59	3.2			
21 21 3 5 46.4	60	19.0	140	56.6	6.9	1.6	15	11	135	19	0.39	0.5	0.8	A	306	5	0.5	38	24	1.5	205	65	1.6			
21 13 34 6.7	59	56.5	140	50.8	3.4	1.5	12	6	164	26	0.42	0.8	1.2	A	118	4	0.6	210	28	1.1	21	62	2.6			
21 16 21 12.3	60	8.5	140	57.4	8.3	0.9	8	4	165	5	0.19	2.4	0.8	B	199	1	4.4	109	18	0.8	292	72	1.5			
21 18 18 32.7	57	29.3	151	17.1	42.0	2.5	29	8	232	78	0.83	2.8	3.5	C	81	9	1.5	337	33	3.0	184	53	7.7			
21 21 24 11.3	60	39.9	143	1.0	10.8	0.9	7	5	83	26	0.66	0.9	3.9	C	261	7	1.1	350	9	0.8	133	79	7.4			
21 21 36 39.9	59	19.7	145	28.6	21.9	2.3	22	13	217	50	0.69	1.2	1.0	A	357	28	2.3	106	31	1.5	234	46	2.0			
22 0 9 40.0	59	29.9	144	6.5	22.4	1.4A	11	4	246	94	0.20	2.5	1.7	B	261	27	2.7	117	38	1.4	5	24	4.9			
22 3 21 20.4	59	46.3	151	36.3	47.9	2.0	13	9	127	33	0.33	0.9	1.3	A	81	14	1.0	323	19	0.9	197	54	2.6			
22 4 24 9.4	59	17.6	145	38.5	8.7	1.8	16	6	235	42	0.40	1.5	1.8	B	81	7	2.1	163	35	1.9	341	54	3.8			
22 9 6 9.3	60	6.6	137	30.6	13.9	1.7	7	3	294	106	0.28	3.2	2.1	C	212	24	6.3	107	29	4.9	335	51	2.5			
22 11 33 27.1	60	34.7	152	38.4	10.0	0.6	5	4	190	13	0.65	1.4	1.4	B	20	12	0.7	279	43	1.0	122	45	3.7			
22 17 29 15.8	60	14.9	142	1.6	14.8	1.0	4	3	129	20	0.40	1.3	2.0	B	261	23	1.2	351	25	0.8	129	57	4.2			
22 18 30 48.8	61	13.2	149	47.8	43.0	1.0A	11	6	96	13	0.31	0.8	1.4	A	145	4	1.1	81	9	1.0	261	62	2.3			
23 1 3 17.2	60	11.8	140	44.6	12.3	1.0	7	2	155	17	0.24	2.8	1.3	C	192	12	5.4	98	21	0.9	310	66	2.3			
23 1 16 15.4	60	9.6	141	9.0	8.9	0.6	7	3	151	7	0.28	1.3	0.6	A	16	8	2.5	283	24	0.6	123	65	1.1			
23 6 11 52.1	62	57.8	150	47.5	82.5	2.5	1	1	223	116	0.33	5.6	7.7	D	325	17	4.3	81	23	3.0	209	52	16.7			
23 8 31 44.2	58	56.5	136	41.3	3.2	2.0	7	3	179	134	0.34	25.0	6.8	D	299	13	2.1	206	13	54.5	73	71	3.3			
23 9 44 28.0	60	9.8	141	9.9	2.2	2.1	16	4	134	7	0.70	0.6	0.9	A	283	8	0.6	15	15	1.1	166	73	1.8			
23 9 28 33.2	59	30.7	144	6.9	28.5	3.1	26	10	195	49	0.38	1.4	0.9	B	2	1	2.7	92	24	1.2	270	66	1.8			
23 9 MB			4.0	ML ATWC																						
24 20 6 54.2	61	39.1	142	25.8	0.5	1.9	10	4	236	69	0.45	2.7	5.9	D	16	0	5.0	106	1	1.3	286	89	11.0			
24 23 22 54.2	60	13.8	141	10.7	5.5	1.3	7	5	112	12	0.27	1.3	1.1	A	278	6	0.9	184	36	2.7	16	53	1.4			
25 9 4 5.9	61	45.2	151	38.2	88.7	2.7	19	10	165	26	0.49	1.2	1.5	B	81	11	1.3	164	23	2.0	325	64	3.0			
25 9 13 23.4	60	30.5	145	9.8	20.8	1.9	24	8	114	4	0.54	0.5	0.6	A	113	5	0.7	21	29	0.9	212	61	1.2			
25 13 5 55.4	61	14.2	151	59.8	86.7	2.1	16	5	85	7	0.42	1.3	2.0	B	81	12	1.7	148	17	1.8	310	59	3.6			
25 14 37 2.0	58	45.8	152	51.3	12.4	2.0	10	5	158	72	0.37	1.1	2.4	B	166	1	1.3	81	6	3.2	266	82	4.6			
25 19 6 36.2	60	13.2	141	8.0	7.3	1.6	12	8	113	9	0.59	0.9	0.9	A	81	23	0.9	319	28	0.6	196	44	2.2			
25 19 56 17.9	60	16.4	149	47.8	51.1	2.0	13	6	119	27	0.32	0.9	1.3	A	261	6	1.5	354	19	1.6	154	70	2.6			
25 22 29 4.2	60	22.0	141	15.7	1.0	1.3	11	6	121	27	0.70	0.6	1.7	B	261	3	1.1	344	12	0.6	157	76	3.2			
26 2 41 14.3	61	13.9	141	13.4	0.2	1.1	5	3	271	30	0.13	2.8	25.0	D	301	0	1.8	31	0	5.2	0	90	99.0			
26 3 32 48.1	60	44.6	151	29.9	66.8	3.1	23	10	63	14	0.39	0.6	1.3	A	173	1	0.8	83	17	0.8	266	73	2.6			
26 6 13 35.1	60	33.3	145	9.3	28.3	0.7	11	9	114	4	0.47	0.5	0.6	A	109	4	0.7	18	14	0.9	215	75	1.2			
26 8 42 26.5	60	30.1	145	8.8	13.8	0.6	5	4	169	5	0.49	1.2	0.8	A	99	23	0.7	355	28	2.4	222	52	1.3			
26 12 36 6.0	60	37.8	145	1.4	28.8	1.4	13	7	79	10	0.33	0.5	0.7	A	103	19	0.7	5	22	0.8	230	60	1.5			
26 14 3 52.4	60	59.3	147	16.5	27.8	2.1	24	7	97	16	0.92	0.5	0.7	A	6	8	1.0	274	11	0.5	131	76	1.3			

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - AUGUST 1984

1984	HR	MN	SEC	LAT N		LONG W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
				DEG	MIN																						
AUG 26	18	2	45.7	60	32.2	141	35.1	3.8	1.3	8	6	111	22	0.51	0.6	1.3	A	357	2	0.5	87	9	1.0	255	81	2.4	
26	22	51	46.9	60	15.2	140	46.3	9.6	1.4	10	4	165	18	0.43	1.2	1.3	A	100	7	0.8	4	42	1.3	198	47	3.0	
26	23	31	26.6	60	30.7	142	50.7	12.3	1.2	3	3	151	7	0.14	1.0	14.0	D	358	0	1.8	268	2	1.0	88	88	26.2	
27	0	17	28.0	59	58.8	141	40.6	3.5	2.0	16	6	174	21	0.79	0.9	0.8	A	270	5	0.4	3	30	1.9	171	59	1.3	
27	0	27	22.8	61	9.7	142	57.0	18.0	1.7	3	3	177	36	0.16	8.6	11.6	D	296	1	0.9	205	36	5.4	27	54	26.5	
27	6	38	15.7	59	0.2	151	15.5	42.0	2.8	13	5	169	55	0.35	1.2	2.8	C	202	7	1.8	111	8	2.2	333	79	5.4	
4.5 MB				4.0 ML ATWC				12.0				23.5				285				114				0.20			
27	22	58	58.4	59	58.6	137	20.3	12.0	2.0	10	5	298	105	0.58	3.2	2.7	C	81	1	4.5	155	38	7.3	350	49	2.0	
27	23	23	20.3	60	21.2	145	9.6	10.5	0.6A	5	3	261	20	0.41	1.9	1.8	B	140	18	1.2	261	38	3.2	340	40	3.7	
28	6	40	12.3	61	27.7	142	34.1	1.9	1.2	6	4	216	49	0.72	2.0	25.0	D	302	0	0.7	32	2	2.2	212	88	84.8	
28	7	45	9.9	60	54.5	152	12.6	12.1	0.7A	5	5	168	32	0.45	2.5	3.1	C	185	7	0.5	89	38	1.0	284	51	7.4	
28	14	44	47.1	61	28.0	149	47.7	41.3	2.2	28	9	76	21	0.44	0.5	1.0	A	98	3	0.6	189	11	0.9	353	79	1.9	
28	21	13	7.9	61	27.8	146	39.1	30.5	2.1	29	10	66	39	0.74	0.4	0.4	A	99	1	0.4	189	10	0.7	3	80	0.8	
28	21	22	20.5	58	40.0	138	14.6	7.1	1.3	5	4	337	95	0.23	8.0	2.9	D	334	2	3.3	81	13	14.9	236	69	3.8	
29	0	3	1.9	60	2.0	152	9.7	64.2	2.7	10	4	235	62	0.29	1.9	2.6	B	144	1	1.3	81	18	3.0	237	58	4.5	
29	7	20	48.3	60	27.1	152	57.7	142.0	3.7	21	4	86	31	0.36	1.0	1.3	A	11	0	1.4	281	20	1.9	101	70	2.4	
29	7	57	7.8	60	3.9	141	42.0	7.8	0.7	10	8	166	16	0.30	0.6	0.7	A	263	1	0.5	354	28	1.0	171	62	1.3	
29	12	44	53.7	60	30.1	143	2.3	0.6	0.9	8	5	135	12	0.50	0.8	24.3	D	44	0	1.5	314	1	0.8	134	89	45.6	
29	13	21	9.4	60	57.9	147	9.0	15.1	2.2	33	8	44	9	0.79	0.4	0.7	A	189	2	0.7	280	11	0.4	89	79	1.3	
29	14	12	7.4	60	45.1	150	26.6	27.7	2.1	27	12	37	29	0.62	0.4	1.4	A	327	1	0.6	81	2	0.6	216	66	2.4	
29	15	18	38.3	60	57.0	152	17.3	3.1	0.4	5	5	183	29	0.47	1.8	2.4	B	184	4	0.6	91	91	3.3	280	55	5.5	
29	16	30	1.8	60	0.3	141	40.0	10.8	1.5	17	8	170	19	0.37	0.7	0.6	A	98	11	0.6	3	24	1.4	211	63	1.1	
29	23	53	17.9	61	5.7	149	22.4	35.2	1.2	15	7	85	19	0.27	0.6	0.8	A	148	7	0.9	261	15	0.8	38	62	1.4	
29	23	57	36.4	60	15.2	146	57.4	15.3	2.1	29	11	59	30	0.57	0.4	0.7	A	218	2	0.5	308	6	0.7	110	84	1.2	
30	1	8	47.7	61	38.8	147	0.4	27.6	2.1	28	15	80	27	0.65	0.4	0.7	A	104	3	0.6	195	10	0.8	358	80	1.4	
30	1	40	11.7	60	1.9	141	37.9	0.9	6	4	189	16	0.59	1.0	3.0	C	273	0	0.8	3	11	1.7	183	79	5.8		
30	5	31	31.8	60	17.9	152	57.6	125.4	2.9	19	8	79	15	0.46	1.0	1.9	B	31	4	1.4	301	4	1.8	166	84	3.7	
30	5	50	23.3	59	45.1	150	40.7	31.9	2.0	18	6	179	12	0.45	1.5	1.0	A	81	35	1.3	286	36	1.8	183	16	2.8	
30	10	10	50.9	61	1.9	149	0.9	31.0	2.2	30	10	64	19	0.32	0.5	0.7	A	215	6	0.7	306	12	0.8	99	77	1.4	
30	15	46	11.6	59	47.3	152	40.6	76.6	2.3	15	4	101	45	0.28	0.9	2.3	B	85	4	1.3	355	4	1.6	220	84	4.4	
30	18	33	58.5	62	7.7	151	16.2	80.0	2.6	15	9	242	21	0.48	1.8	1.6	B	81	10	1.6	172	20	3.5	325	68	3.0	
30	21	36	50.1	61	50.1	148	57.5	8.3	2.1	27	6	159	23	0.61	0.9	1.1	A	26	18	1.5	285	31	0.8	142	53	2.4	
31	3	25	35.8	60	30.7	145	7.7	15.2	0.6	9	5	168	5	0.39	1.1	0.9	A	231	30	2.3	115	37	1.1	348	38	1.6	
31	9	43	2.5	60	13.6	146	24.4	11.9	2.2	29	9	72	20	0.54	0.6	0.8	A	108	4	0.7	199	19	1.1	71	1.6		
31	14	35	10.2	61	49.1	148	56.5	9.9	1.7	22	9	184	27	0.80	0.9	1.3	A	168	2	1.4	261	31	0.7	75	59	2.9	
31	18	24	3.4	60	50.0	151	2.3	59.8	2.3	23	11	56	57	0.51	0.6	1.8	B	23	1	1.1	113	3	0.9	275	87	3.3	
31	20	2	9.2	62	18.2	148	32.2	32.6	2.2	23	11	201	56	0.61	1.2	0.9	A	91	16	1.5	189	25	2.4	332	60	1.4	
31	22	3	30.7	58	19.2	133	31.4	7.1	3.3A	3	2	284	66	0.05	25.0	261	17	5.9	145	35	2.5	9	45	69.9			
31	22	40	59.6	60	24.7	147	37.6	28.1	2.2	28	11	159	61	0.57	0.7	0.8	A	264	5	0.6	171	27	1.2	4	62	1.7	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ Q			AZ1 DIP1 SE1			AZ2 DIP2 SE2			AZ3 DIP3 SE3			
												DEG	MIN	SEC	DEG	DEG	SEC	DEG	DEG	SEC	DEG	DEG	SEC	
1984 SEP 1 0 48 53.6	60	14.6	140	47.8	10.3	1.2	14	9	136	1.6	0.36	0.7	1.0	A	103	6	0.6	10	31	0.8	203	58	2.2	
1 22 45.8	59	16.8	135	39.5	23.1	2.1	4	1	346	1.6	0.10	25.0	25.0	D	8	2	99.0	276	34	8.8	101	56	99.0	
1 1 46 43.6	60	0.3	141	46.3	8.9	1.3	18	8	174	1.6	0.66	0.8	1.7	A	93	6	0.6	359	34	1.6	192	55	1.2	
1 1 53 49.3	61	24.0	140	12.4	15.0	1.0	0A	3	2	290	122	0.20	6.1	12.2	D	24	11	9.3	118	17	6.5	263	69	24.3
1 5 29 7.3	61	48.1	148	59.7	10.0	2.1	30	11	90	1.9	0.61	0.5	0.8	A	356	2	0.9	265	32	0.6	89	58	1.6	
1 15 29 53.4	59	56.7	141	19.2	3.0	1.1	12	4	174	1.7	0.32	1.0	1.2	A	112	11	0.7	210	36	1.4	8	52	2.7	
1 15 43 46.0	60	11.6	140	20.0	14.0	1.3	10	7	156	1.2	0.95	1.3	0.6	A	298	7	0.6	206	14	2.4	54	74	1.0	
1 16 32 2.4	60	37.9	143	30.5	22.4	0.9	4	3	118	4.1	0.29	1.7	4.6	C	81	3	1.0	319	12	1.6	181	56	7.7	
1 18 21 59.8	60	12.0	141	36.6	15.1	1.2	11	3	105	1.0	0.36	0.7	0.9	A	295	15	0.6	30	17	1.2	166	67	1.8	
1 19 31 39.4	61	42.2	149	39.6	43.1	2.3	28	7	147	1.3	0.54	0.8	1.1	A	99	2	0.8	190	8	1.4	355	82	2.1	
1 20 31 55.3	60	4.6	152	55.1	102.3	2.5	18	6	68	62	0.28	1.0	2.0	B	122	4	1.9	32	7	1.3	242	82	3.8	
1 21 32 31.0	59	54.0	141	36.5	9.2	1.1	1A	6	230	28	0.67	1.3	1.5	B	278	3	1.0	10	34	2.2	184	56	3.0	
1 21 55 42.2	59	55.7	141	40.5	13.6	1.0	0A	5	279	27	0.34	1.4	2.2	B	104	5	1.5	196	26	2.0	4	63	4.4	
1 22 51 20.4	60	11.5	141	49.2	6.4	0.6	6	2	167	19	0.16	0.9	1.9	B	198	6	1.6	289	15	0.6	87	74	3.7	
1 23 33 11.3	58	23.6	133	28.4	5.0	3.2	4	2	282	68	0.23	22.1	23.7	D	261	8	8.1	159	41	3.3	0	47	60.5	
2 2 55 26.3	60	14.6	141	16.4	13.2	1.1	15	8	108	1.5	0.22	0.7	0.9	A	83	15	0.8	344	33	0.6	194	53	2.0	
2 6 41 51.4	58	50.0	137	10.2	13.9	1.6	4	4	353	120	0.11	25.0	3.4	D	216	4	60.7	309	38	6.2	121	52	3.6	
2 7 34 46.3	60	30.3	143	4.4	0.9	0.1	4	3	139	14	0.63	0.9	17.0	D	313	1	1.1	43	1	1.5	178	89	31.8	
2 9 59 3.6	60	57.0	151	3.7	13.3	1.6	24	11	55	25	0.61	0.5	0.9	A	261	1	0.7	328	8	0.6	164	66	1.5	
2 10 24 45.8	59	55.3	153	18.5	119.2	2.8	15	6	129	40	0.24	1.4	1.2	B	215	3	1.5	306	37	2.8	121	53	2.0	
2 10 33 37.7	60	6.5	141	20.0	10.1	0.9	9	7	145	9	0.28	0.6	0.5	A	274	2	0.5	5	17	1.2	177	73	1.0	
2 10 37 25.0	59	42.8	152	17.9	57.2	2.3	17	7	60	49	0.38	0.8	1.8	B	27	11	1.3	295	13	1.0	156	73	3.5	
2 11 8 40.3	60	15.9	141	40.2	7.8	1.2	17	7	90	11	0.53	0.5	0.6	A	44	5	0.9	313	10	0.5	160	79	1.1	
2 13 24 15.0	60	3.4	141	23.2	4.0	1.0	11	4	171	11	0.22	0.7	0.8	A	277	0	0.6	187	29	1.1	7	61	1.6	
3 0 55 36.2	61	3.3	152	12.9	11.2	0.6	5	4	69	17	0.35	2.6	2.5	B	198	19	0.6	306	42	3.8	90	42	5.8	
3 5 54 49.2	60	39.2	143	9.2	0.4	0.9	7	3	80	28	0.34	1.2	25.0	D	350	0	1.1	261	0	2.2	0	90	99.0	
3 7 18 4.1	60	59.1	152	11.4	14.3	0.4A	3	4	345	23	0.48	4.3	0.9	C	284	2	8.1	193	15	1.1	21	75	1.7	
3 10 4 5.0	57	59.1	148	27.6	40.6	3.0	10	6	229	202	0.31	6.5	16.8	D	261	2	4.6	329	9	10.4	158	66	29.5	
3 13 16 52.3	61	25.4	145	58.5	36.3	2.5	32	8	58	8	0.60	0.4	0.4	A	340	3	0.8	261	26	0.6	76	62	0.7	
3 14 48 47.9	61	7.6	151	24.1	7.8	1.2	11	7	79	36	0.79	0.5	0.8	A	216	6	1.0	124	19	0.7	323	70	1.6	
3 17 44 59.8	60	16.1	141	4.3	3.5	0.9	8	5	151	13	0.44	0.7	1.6	B	317	10	0.6	50	15	0.9	195	72	3.2	
3 22 25 35.7	60	12.4	140	58.4	4.3	1.4	18	5	120	7	0.37	0.9	0.8	A	311	19	0.6	81	30	0.7	203	39	1.9	
4 0 15 20.6	61	27.1	149	20.8	38.9	0.7A	3	3	248	26	0.06	2.5	0.9	B	261	17	1.6	334	23	4.6	130	57	0.9	
4 1 3 9.4	60	6.4	140	54.8	11.0	0.6	8	4	128	8	0.34	0.9	0.9	A	96	25	0.6	206	37	1.3	340	43	7.0	
4 2 29 34.0	58	13.5	150	50.3	78.2	7.7	10	2	222	111	0.26	7.0	10.3	D	197	7	4.0	104	27	9.9	300	62	21.3	
4 3 54 52.9	60	2.7	142	8.0	4.3	0.9	12	6	178	6	0.51	0.7	0.7	A	292	19	0.7	187	38	1.5	43	46	1.2	
4 9 13 52.3	60	39.8	145	19.8	29.9	0.7	15	9	85	16	0.41	0.5	0.6	A	135	10	0.6	261	41	1.1	37	37	0.8	
4 13 21 50.7	60	29.6	152	13.1	79.7	2.3	22	7	62	14	0.32	0.6	0.9	A	23	6	1.0	115	15	1.1	272	74	1.8	
4 14 6 53.5	60	13.1	148	29.2	29.7	1.9	30	9	124	55	0.60	0.5	0.6	A	81	2	0.6	339	12	0.9	180	73	1.1	
4 16 6 11.2	63	5.0	150	37.0	109.4	3.0	12	3	124	132	0.14	7.9	9.0	D	320	18	2.2	81	28	3.6	208	46	21.2	
4 22 6 20.2	60	15.6	141	13.6	12.4	0.8	1.8	4	143	16	0.29	3.2	3.6	C	342	10	1.5	81	36	4.8	239	52	7.8	
5 5 13 16.3	59	56.2	140	53.4	8.3	1.2	11	6	170	19	0.62	0.9	1.2	A	298	8	0.6	34	36	0.9	197	53	2.5	
5 6 17 47.0	62	2.1	140	47.5	6.3	1.6	19	5	150	18	0.71	0.7	0.7	A	116	18	0.6	217	31	1.1	0	53	2.6	
5 10 27 33.9	59	56.7	140	51.5	4.9	1.0	9	4	182	20	0.44	0.8	0.7	A	106	12	0.5	42	17	2.0	29	61	2.6	
5 10 26 20.0	61	25.0	140	29.6	14.4	1.1A	8	4	249	68	0.28	2.1	2.6	B	7	12	3.3	105	33	1.8	260	54	5.8	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984

PRELIMINARY DETERMINATION OF INFRACOASTAL SOUTHERN ALASKA - SEPTEMBER 1964											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ Q
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN
SEP 10 5 52 23.7	60 5.2	140 48.4	6.7	1.0	10	4	158	15	0.54	1.6	1.1 B
SEP 10 6 48 31.4	59 18.3	146 30.2	28.4	2.6	23	2	245	17	0.67	3.0	0.9 C
SEP 10 8 53 46.8	59 31.5	138 48.1	25.0	1.3	4	2	252	9	0.13	5.3	2.8 D
SEP 10 14 27 51.4	61 15.6	152 13.1	7.6	0.2	4	3	238	3	0.23	1.7	1.3 B
SEP 10 15 6 55.0	61 30.4	146 21.9	20.4	2.2	33	8	80	24	0.69	0.4	0.8 A
SEP 10 16 42 25.3	60 29.6	145 16.0	14.5	0.6	16	4	152	6	0.40	0.6	0.6 A
SEP 10 19 22 32.5	60 55.7	151 3.1	14.1	2.7	28	7	56	23	0.44	0.4	0.8 A
SEP 10 19 22 32.5	60 55.7	151 3.1	14.1	2.7	28	7	56	23	0.44	0.4	0.8 A
Felt (III) at Anchorage											
10 19 42 31.3	60 19.9	140 44.7	12.5	1.1	10	5	148	25	0.28	0.9	1.5 B
10 20 3 47.7	59 50.6	141 19.3	0.2	0.7	9	3	190	27	0.33	1.0	1.8 B
10 20 9 35.5	60 17.1	140 37.6	6.8	0.8	7	4	171	27	0.23	1.0	2.4 B
11 2 19 17.3	60 11.5	140 59.3	12.0	1.1	15	4	142	5	0.18	1.2	0.7 A
11 3 16 42.6	60 56.5	147 30.3	29.9	2.0	32	12	50	24	0.46	0.4	0.5 A
11 5 22 43.0	60 9.9	141 56.0	6.0	0.8	14	8	88	15	0.45	0.5	0.9 A
11 10 15 29.4	61 46.5	149 7.8	15.1	1.8	26	14	129	11	0.52	0.5	0.7 A
11 15 2 29.7	60 27.3	16.6	1.9	1.1	14	4	67	31	0.77	0.5	16.9 D
11 17 54 37.8	59 13.0	152 10.0	62.6	2.6	15	4	131	44	0.22	1.0	2.7 C
11 20 33 51.4	61 57.0	148 52.5	8.0	0.3A	7	6	237	13	0.22	1.2	0.7 A
11 21 58 41.9	61 46.2	149 11.5	13.5	0.3	5	5	169	14	0.17	1.3	1.7 B
11 22 19 3.5	61 53.0	149 17.8	11.1	0.7	5	5	220	18	0.61	2.0	4.3 C
12 0 57 59.3	61 11.0	149 44.9	40.1	2.3	31	7	38	12	0.42	0.5	1.3 A
12 7 24 58.0	61 56.6	150 4.2	42.8	2.4	28	10	104	34	0.40	0.8	1.4 B
12 8 56 8.4	61 50.3	148 59.7	17.7	0.4A	5	6	253	1	0.29	1.0	1.0 A
12 9 47 9.9	61 52.4	149 15.8	8.1	0.3A	8	8	218	16	0.40	1.0	1.0 A
12 11 36 16.4	60 28.2	142 56.0	0.2	1.0	14	8	90	5	0.75	0.6	24.6 D
12 11 42 34.5	60 27.6	143 0.9	3.8	0.7A	4	3	229	9	0.40	1.5	4.4 C
12 15 7 6.2	59 17.5	136 54.6	16.1	1.6	4	4	343	113	0.17	15.4	4.4 D
12 16 5 46.0	61 50.9	148 56.9	19.4	0.6	4	4	239	2	0.11	1.2	1.2 A
12 16 50 54.5	59 35.5	136 42.5	0.8	1.9	7	3	224	124	0.24	7.6	5.0 D
12 19 27 35.4	61 51.1	148 55.1	17.0	0.4A	4	4	218	3	0.21	1.1	1.4 B
13 4 8 20.5	58 17.3	152 44.0	49.7	3.0	10	3	167	62	0.52	3.3	12.8 D
13 5 11 33.4	61 27.8	149 19.5	17.7	1.0A	12	11	98	18	0.39	0.4	0.8 A
13 5 21 28.5	61 48.3	150 7.7	45.8	2.4	25	15	155	19	0.56	0.6	0.7 A
13 9 29 21.0	60 7.5	141 33.9	6.3	0.4A	9	4	144	6	0.46	0.6	1.1 A
14 11 7 53.5	60 15.5	141 10.6	16.1	1.0	16	10	115	14	0.28	0.4	0.6 A
14 12 21 14.2	61 20.8	140 40.3	4.7	0.6A	7	2	176	27	0.31	1.8	4.6 C
14 12 39 24.8	61 51.8	149 33.8	48.5	2.0	21	10	162	29	0.35	0.6	0.8 A
14 18 19 19.0	60 31.5	143 0.9	2.9	1.5	14	9	90	12	0.69	0.5	3.6 C
14 22 57 21.1	61 52.7	149 55.0	50.0	2.7	26	8	163	25	0.36	0.9	1.1 A
15 12 51 59.7	61 40.8	151 12.3	77.4	3.2	27	6	76	34	0.39	1.0	1.6 B
3.2 ML ATWC											
15 20 31 32.2	59 53.9	139 14.3	14.8	1.2	6	5	210	23	0.54	2.1	1.9 B
16 3 7 20.1	59 56.1	140 37.1	2.7	1.0	8	3	179	27	0.53	1.3	3.5 C
16 10 46.5	59 5.1	153 14.2	81.9	2.2	11	6	162	30	0.27	1.5	1.9 B
16 3 44 11.2	61 11.8	48.8	0.8A	3	7	3	227	8	0.05	1.4	2.3 B
16 4 2 5.0	59 57.7	140 43.2	8.7	0.9	7	3	178	28	0.86	2.6	4.2 C
16 8 59 38.0	61 48.9	148 53.0	14.7	2.2	31	12	147	5	0.66	0.5	0.4 A

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984

1984	ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SEJ	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
		HR	MIN	SEC	DEG	MIN	KM	DEG	MIN	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM		
SEP 21	3 27 20.7	60	2.8	140	4.0	17.2	1.5	9	6	161	0.96	1.9	0.7	B	122	14	0.5	29	14	3.6	256	70	1.0	
21	6 37 38.3	60	14.5	140	18.5	10.5	0.9	8	4	181	0.51	2.4	1.9	B	294	10	0.9	196	37	5.4	37	51	1.7	
21	7 21 46.9	60	17.5	142	45.1	17.7	1.0A	6	5	189	1.1	0.30	1.5	1.2	B	1	1.1	96	25	3.0	249	62	2.0	
21	9 34 57.7	60	9.1	141	8.6	2.0	0.3	4	4	149	6	0.26	0.8	5.0	C	0	0	0.9	270	9	0.6	90	81	9.5
21	17 45 58.6	61	46.8	149	2.0	14.2	1.1	17	11	108	6	0.39	0.4	0.4	A	334	9	0.7	261	43	0.4	74	44	0.9
21	18 33 56.6	60	19.3	153	38.1	181.3	3.7	18	6	102	48	0.30	1.8	2.5	B	261	1	2.5	148	3	2.7	6	67	4.3
21	18 54 58.8	60	1.5	152	5.8	76.3	2.5	20	9	104	44	0.60	1.2	A	8	3	1.1	99	13	0.9	265	77	2.3	
21	20 7 48.5	61	49.7	150	37.6	50.2	2.5	26	11	151	41	0.40	0.6	0.9	A	86	3	0.6	176	7	1.2	333	82	1.6
21	22 48 40.7	59	58.9	141	8.1	4.8	1.8	18	12	161	9	0.56	0.5	0.6	A	109	7	0.4	203	32	0.7	8	57	1.3
22	0 31 40.4	59	58.0	141	46.3	12.9	1.0	16	6	179	16	0.51	1.0	0.8	A	99	1	0.6	8	32	2.0	191	58	1.3
22	1 8 34.8	59	56.7	141	45.5	10.8	1.5	16	8	181	18	0.54	0.9	0.8	A	275	2	0.6	6	3	1.8	182	55	1.2
22	1 57 58.8	61	21.0	149	27.1	45.7	2.0	30	12	59	13	0.51	0.3	0.7	A	295	0	0.6	205	8	0.6	25	82	1.4
22	2 46 38.5	59	53.9	139	10.5	16.4	1.2	10	4	214	26	0.53	2.6	1.5	B	133	5	0.9	225	24	5.3	32	65	1.9
22	14 37.0	61	48.1	148	59.7	15.4	1.8	28	9	101	4	0.85	0.5	0.5	A	166	19	0.9	267	27	0.5	46	56	1.1
22	18 2 26.2	60	9.9	152	20.9	84.4	3.3	20	8	98	26	0.32	0.8	1.1	A	358	12	1.0	94	25	1.3	245	62	2.3
						3.9	ML	ATWC																
22	19 15 53.3	58	35.5	137	39.0	10.8	2.1	10	6	170	119	0.70	5.7	2.3	C	81	3	9.1	137	21	1.9	344	51	3.5
22	21 17 2.2	60	51.2	143	15.4	12.6	1.4	22	8	91	50	0.99	0.3	1.5	B	348	1	0.6	261	2	0.5	105	86	2.8
23	4 1 2.8	61	13.6	145	22.0	25.9	2.8	40	8	53	2	0.67	0.4	0.5	A	31	0	0.7	301	2	0.6	121	88	0.9
23	4 13 45.6	61	47.3	149	5.4	10.3	0.8	2	10	129	8	0.64	0.5	0.7	A	347	5	0.7	261	0.5	0.5	84	54	1.5
23	4 59 57.2	60	11.4	141	8.8	2.1	0.7	13	5	108	7	0.36	0.6	0.9	A	294	5	0.5	26	29	0.8	195	61	1.9
23	12 11 44.3	60	11.7	139	35.7	12.1	1.9	14	5	201	27	0.54	1.4	1.4	B	316	11	0.8	56	42	1.4	214	46	3.5
23	12 42 47.7	60	30.3	144	42.1	15.8	0.8	15	9	101	13	0.44	0.8	0.7	A	108	24	0.6	358	37	0.9	223	43	1.8
23	13 38 14.3	60	17.5	152	54.5	132.6	3.4	19	4	78	13	0.47	1.2	1.6	B	312	4	2.2	221	11	1.6	62	78	3.0
23	19 10 16.2	58	50.6	142	38.6	32.6	1.8A	9	5	266	138	0.78	4.2	25.0	D	310	0	4.1	220	1	7.6	40	89	99.0
23	19 57 22.7	60	12.1	144	54.5	26.0	0.7	10	9	227	24	0.53	1.0	0.7	A	111	19	0.7	12	24	1.9	235	59	1.1
23	22 19 38.8	61	46.3	149	9.6	14.5	0.7	15	11	132	12	0.55	0.5	0.7	A	169	3	0.8	261	37	0.5	75	53	1.6
24	1 55 15.8	61	14.9	152	18.0	10.1	0.1A	3	3	308	8	0.08	2.2	2.2	B	184	6	2.6	279	41	3.8	87	48	4.5
24	3 39 14.8	59	55.5	141	0.6	5.5	1.9	17	6	170	17	0.38	0.9	1.2	A	120	11	0.6	217	31	1.2	13	57	2.6
24	5 53 1.0	61	31.0	152	1.7	8.0	8	7	193	23	0.88	1.6	1.0	B	284	16	3.1	20	22	0.8	161	62	1.9	
24	5 58 18.9	60	44.1	147	31.0	35.2	2.3	32	13	58	28	0.46	0.5	0.4	A	97	10	0.5	195	43	0.9	357	45	0.8
24	8 24 52.7	60	40.2	145	2.7	24.3	0.7A	8	5	135	10	0.43	1.0	1.1	A	8	9	1.2	105	37	1.6	267	52	2.2
24	10 20 32.4	60	5.6	152	59.9	122.6	2.7	14	8	135	14	0.24	1.3	1.7	B	35	3	1.8	125	13	2.3	292	77	3.2
24	12 23 21.7	60	28.7	143	16.5	4.9	0.4	4	3	145	24	0.38	2.5	13.9	D	358	3	1.5	268	8	2.6	108	81	26.3
24	13 48 39.8	61	29.5	149	54.2	40.5	3.0	32	4	61	18	0.32	0.6	1.2	A	83	2	0.7	173	12	1.0	344	78	2.2
						3.3	ML	ATWC																
24	16 59 55.3	61	14.3	149	21.0	29.0	0.6A	6	4	117	11	0.55	1.0	2.1	B	215	3	1.9	125	32	1.6	319	78	4.1
24	17 1 40.2	61	4.9	152	21.7	15.3	0.6	4	4	206	20	0.23	3.1	4.5	C	200	4	1.1	292	30	3.8	103	60	9.6
24	18 53 33.8	61	34.0	140	36.4	4.3	1.4	6	3	267	78	0.17	3.7	25.0	D	110	1	3.0	20	2	5.9	227	88	99.0
24	18 58 13.0	60	22.2	145	7.9	6.7	0.6	7	3	206	19	0.48	1.6	2.9	C	121	1	1.3	211	8	2.9	24	82	5.4
24	21 40 24.0	61	26.1	150	26.4	13.9	1.0A	6	6	102	16	0.42	0.9	0.8	A	107	12	0.9	12	20	1.8	226	66	1.4
24	21 48 11.9	61	49.3	148	59.8	18.8	0.7	10	8	121	2	0.40	1.2	1.0	A	134	1	1.4	81	33	2.1	225	42	1.0
24	21 53 0.8	60	13.3	140	39.3	14.9	1.0	6	2	167	22	0.19	2.9	2.4	C	283	1	1.2	192	37	6.7	14	53	2.2
24	22 21 47.8	61	8.0	152	16.5	20.7	0.5A	3	3	318	13	0.42	3.4	3.2	C	197	2	2.7	105	40	7.1	289	50	5.0
25	1 18 59.4	61	48.5	149	1.3	19.7	0.7	6	6	122	4	0.26	0.9	1.1	A	308	8	1.1	81	40	2.1	212	34	1.0
25	4 31 58.7	61	32.4	151	16.6	68.2	2.2	19	11	108	30	0.44	1.6	B	81	16	0.8	165	18	1.5	307	65	3.1	
25	17 35 18.6	61	23.4	146	30.6	22.0	2.0	27	18	111	30	0.71	0.4	0.6	A	273	8	0.5	5	10	0.7	145	77	1.1
25	17 49 56.6	59	47.0	152	33.3	76.1	2.1	14	8	149	47	0.29	0.8	1.3	A	95	7	1.0	186	7	1.4	321	80	2.5
25	18 54 27.2	60	13.5	141	0.5	9.7	1.6	16	12	121	8	0.30	0.7	0.5	A	307	17	0.6	81	41	0.6	206	31	1.4
25	21 37 55.8	60	21.7	141	18.8	16.0	1.3	11	7	116	24	0.34	0.7	0.9	A	326	12	0.6	81	23	0.8	215	55	1.8
25	23 47 26.5	61	46.5	149	3.9	12.2	1.3	23	15	115	7	0.09	0.4	0.4	A	344	3	0.6	261	39	0.4	78	50	1.0

Felt (II) at Anchorage.

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984

ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
1984	HR MN	SEC	DEG MIN	DEG MIN	DEG	MIN	DEG	KM	DEG	KM	SEC	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	
SEP 26 0 19 52.0	61	47.3	149	2.7	14.9	0.7	8	6	14.4	7	0.46	0.9	116	1	1.5	25	44	2.2	207	0.8	
26 1 41 58.1	60	16.6	141	9.7	15.9	0.9	9	6	11.8	15	0.32	1.0	144	14	0.8	56	29	1.0	205	57	
26 3 21 23.8	61	5.7	152	16.5	10.6	0.7	6	4	18.2	15	0.34	2.4	2.7	C	201	20	0.8	304	32	3.1	
26 3 55 2.2	61	7.3	152	15.1	7.8	0.4A	3	3	320	13	0.04	3.1	4.5	C	342	6	2.5	261	32	2.7	
26 4 18 33.0	62	38.8	151	14.4	75.9	2.6	18	2	19.3	76	0.29	5.2	5.6	D	326	21	6.6	81	29	3.3	
26 6 40 17.5	60	32.0	145	19.2	13.4	1.3	16	6	16.0	6	0.40	0.6	0.6	A	281	10	0.8	182	40	1.3	
26 7 34 37.7	59	35.7	152	51.4	98.5	2.7	16	5	12.8	43	0.33	1.3	2.6	B	81	12	1.7	161	13	2.2	
26 8 29 41.8	60	22.5	140	47.6	12.5	1.0	7	6	16.0	28	0.43	1.2	3.9	C	81	5	1.2	337	12	1.0	
26 16 59 26.8	62	38.0	148	44.3	40.0	2.4	25	7	125	89	0.51	1.3	5.5	D	110	4	2.1	20	9	1.6	
26 19 19 2.0	61	46.8	149	0.4	13.5	1.2	15	10	9.8	5	0.16	0.5	0.5	A	320	28	0.9	208	35	0.6	
26 20 54 59.5	61	34.8	151	8.8	69.3	2.6	2.6	1	7	99	25	0.32	1.1	2.0	B	81	14	1.1	163	23	1.5
26 22 36 50.3	60	19.8	141	23.0	16.9	1.6	16	9	11.0	20	0.33	0.7	0.9	A	326	13	0.7	81	20	0.9	
27 1 53 7.7	61	22.9	151	36.1	10.1	1.6	18	8	11.4	23	1.08	0.5	0.7	A	81	7	0.4	153	8	0.8	
27 4 13 6.4	61	56.6	148	54.5	10.2	0.3	5	3	234	12	0.12	1.2	1.2	A	81	16	1.4	318	32	1.3	
27 6 17 27.7	60	6.2	139	32.2	12.8	0.9	7	4	20.8	18	0.58	1.7	1.1	B	311	0	0.8	221	30	3.7	
27 9 2 56.3	59	52.2	153	2.1	96.1	3.2	18	7	62	37	0.57	0.8	1.1	A	31	0	1.1	120	12	1.4	
					3.5	ML	ATWC													301	
27 11 24 9.3	61	20.6	151	35.3	20.1	0.6A	6	2	102	23	0.45	1.0	4.4	C	129	4	1.8	38	6	0.8	
27 11 26 13.5	60	32.5	143	4.7	4.0	0.8	9	2	16	0.45	0.7	7.6	D	261	1	0.8	329	3	13.2		
27 11 51 58.5	60	57.8	147	15.9	17.2	2.1	32	11	86	13	0.49	0.4	0.5	A	184	3	0.8	275	12	0.4	
27 12 0 5.7	61	30.7	142	16.6	8.0	1.0	5	2	228	53	0.14	2.5	16.0	D	111	1	1.2	20	8	2.1	
27 16 24 25.4	62	2.5	142	2.5	33.8	1.8	9	4	267	113	0.48	4.3	25.0	D	100	1	1.8	10	4	3.7	
27 17 47 31.6	60	24.9	142	58.2	30.2	1.2A	5	5	169	68	0.31	0.7	25.0	D	269	0	0.8	359	0	1.2	
27 21 6 42.2	60	10.1	140	55.8	10.3	1.1	17	5	11.6	6	0.22	0.8	0.5	A	102	15	0.5	200	26	1.5	
27 21 14 49.5	60	18.8	141	9.7	16.3	1.4	16	6	122	19	0.42	0.6	0.7	A	318	17	0.5	59	31	0.8	
28 0 40 45.1	60	17.7	153	25.0	166.2	3.2	13	4	90	36	0.29	1.8	2.5	B	261	9	3.1	341	12	2.5	
28 4 14 42.5	60	32.4	141	40.0	10.6	0.7	8	4	98	21	0.38	0.5	1.0	A	81	3	0.9	433	12	0.5	
28 9 20 18.3	61	17.3	152	12.5	2.3	1.3	4	2	294	4	0.27	2.1	1.7	B	10	26	1.4	121	37	4.7	
28 9 22 19.7	61	16.6	152	11.6	4.0	-0.3A	3	3	286	2	0.02	1.3	0.8	A	185	5	1.1	276	5	2.5	
28 9 49 51.1	60	14.2	141	33.4	9.3	0.5	6	2	139	11	0.13	1.9	1.3	B	324	13	0.6	81	22	2.5	
28 10 24 8.3	62	15.6	151	10.1	74.3	3.2	23	4	99	37	0.41	1.0	1.7	B	324	12	1.3	81	13	1.1	
					2.7	ML	ATWC												204		
28 11 43 7.4	60	9.3	151	54.0	65.5	2.2	21	5	87	36	0.33	0.6	1.2	A	100	9	0.9	9	9	1.0	
28 15 9 42.0	59	55.6	140	44.6	3.0	0.9	8	3	191	26	0.31	0.8	1.8	B	102	7	0.6	194	14	1.4	
28 16 35 16.6	59	31.4	138	51.3	20.9	1.0	4	2	231	8	0.09	6.4	2.9	D	216	23	13.0	108	36	3.1	
28 23 24 39.0	58	4.8	151	26.0	91.1	3.0	10	1	214	73	0.13	5.5	15.5	D	289	5	6.9	21	18	2.7	
29 8 2 24.2	61	48.9	150	50.4	85.1	3.1	30	13	85	39	0.40	0.8	1.0	A	261	1	0.8	169	17	1.5	
					3.0	ML	ATWC												354		
29 8 23 29.5	60	7.6	139	42.5	15.2	1.6	10	5	202	20	0.51	1.9	1.1	B	303	5	0.7	211	26	4.0	
29 10 19 21.7	62	0.3	149	31.7	45.7	2.3	30	11	105	35	0.55	0.6	0.9	A	278	2	0.7	8	19	0.9	
29 14 19 16.1	60	57.2	149	49.4	43.5	3.7	33	4	37	35	0.43	0.5	1.7	B	261	0	0.7	154	1	0.8	
4.6 MB					4.2	ML	ATWC												351		
29 15 12 49.0	62	9.6	150	17.7	50.3	2.5	29	8	128	61	0.50	0.8	1.4	B	90	2	0.7	359	11	1.5	
29 16 13 6.1	60	28.1	141	18.1	9.1	1.4	16	9	123	27	0.40	0.4	1.0	A	355	7	0.5	86	7	0.7	
29 21 11 57.7	60	57.9	149	50.1	41.3	3.2	32	8	63	46	0.41	0.4	1.7	B	166	1	0.7	81	2	0.6	
30 3 41 44.4	58	32.5	154	33.8	19.9	2.5	9	5	224	110	0.56	3.7	7.5	D	347	13	2.3	82	19	4.1	
30 7 38 56.8	60	17.6	140	46.7	10.1	2.5	15	9	142	21	0.47	0.4	0.7	A	93	1	0.6	3	27	0.5	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - SEPTEMBER 1984											
1984	HR	MN	SEC	LAT	N	LONG	W	DEPTH	MAG	NP	NS
				DEG	MIN	DEG	MIN	KM	DEG	KM	SEC
SEP 30	7	55	36.4	60	18.3	140	47.3	8.7	2.2	15	7
				140	49.6	13.9	1.1	11	8	164	19
30	8	16	22.9	60	17.6	140	49.6	13.9	1.1	11	7
				146	39.0	21.3	2.0	29	17	48	27
30	10	10	27.6	61	19.5	146	39.0	21.3	2.0	29	17
				146	39.0	21.8	2.1	32	19	47	27
30	10	51	12.1	61	18.8	146	39.0	21.8	2.1	32	10
				152	28.9	3.9	1.9	22	10	101	32
30	14	23	59.7	60	51.6	152	31.5	3.8	1.9	22	9
				152	31.5	31.5	3.8	33	102	102	33
30	14	53	24.8	60	51.9	152	31.5	2.5	1.5	4	41
				152	31.5	57.2	11.2	57.2	11.2	4	0.38
30	17	56	23.5	59	40.3	152	31.5	2.5	1.5	4	0.38
				148	59.5	14.8	1.2	15	8	93	4
30	21	25	39.1	61	47.3	148	59.5	14.8	1.2	15	8

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - OCTOBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DJ	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC	KM	DEG	SEC		
OCT	1	1	37	13.0	60	19.5	140	50.0	8.6	1.1	5	4	174	22	0.43	2.0	3.4	C	286	0	0.8	16	28	1.6
	1	2	4	25.0	61	47.0	148	59.9	12.4	1.9	15	6	94	4	0.37	0.7	0.6	A	222	29	0.8	108	36	1.3
	1	2	9	7.1	60	2.8	152	41.8	77.4	2.5	12	5	116	16	0.36	1.0	1.7	B	261	0	1.8	169	8	1.8
	1	9	55	59.3	60	11.0	141	8.9	4.6	0.7	6	5	135	7	0.27	0.8	1.1	A	287	6	0.6	20	30	1.1
	1	15	48	39.6	63	1.8	151	9.6	134.9	3.2	11	4	127	119	0.34	3.0	5.8	D	113	3	2.7	22	19	2.7
	2	3	41	52.9	60	42.3	140	31.1	21.8	1.3	5	4	224	53	0.38	3.0	2.9	C	144	1	1.0	81	40	6.5
	2	4	8	20.4	60	1.4	152	45.3	100.1	2.5	18	10	74	18	0.41	0.9	1.5	B	45	3	1.2	135	12	1.7
	2	15	30	25.1	60	54.0	152	28.2	0.3	1.8	18	12	103	36	0.68	1.1	0.8	A	81	3	1.1	328	16	0.9
	2	17	51	24.5	59	44.8	139	26.8	30.0	1.0	6	2	160	9	0.52	4.7	2.3	C	81	1	7.2	317	3	1.2
	2	18	5	34.8	62	16.0	151	4.0	74.9	2.7	19	3	99	40	0.64	1.3	1.9	B	81	13	1.7	337	16	2.2
	2	19	24	37.3	60	39.7	151	48.8	14.0	1.2	9	8	126	33	0.71	0.6	0.9	A	343	8	1.1	81	13	0.8
	3	1	4	33.5	61	32.0	151	52.5	7.8	1.0A	5	4	173	33	0.50	2.6	1.1	B	289	9	5.0	22	15	0.7
	3	1	5	59.1	61	48.5	148	57.2	8.1	-0.1	4	4	190	3	0.20	1.2	0.9	A	145	33	1.0	261	34	2.6
	3	1	39	23.7	62	15.2	151	18.3	96.4	2.9	20	7	172	33	0.57	1.2	1.6	B	276	3	1.2	8	29	2.0
	3	3	51	39.3	61	41.3	151	2.9	63.6	2.5	23	11	118	30	0.52	0.6	0.9	A	81	13	0.7	174	18	1.1
	3	6	53	10.2	59	56.2	153	42.3	143.0	3.0	12	4	126	32	0.14	1.7	1.7	B	122	30	3.2	261	36	2.5
	3	7	14	34.8	61	31.3	146	27.6	25.7	2.5	32	8	77	29	0.85	0.4	0.8	A	18	2	0.8	288	4	0.5
	3	7	16	0.0	61	32.5	146	21.7	35.7	2.1	25	9	83	24	0.59	0.4	0.4	A	261	16	0.6	155	33	0.7
	3	9	46	45.1	60	19.0	140	43.7	13.1	1.1	12	6	148	25	0.44	0.7	1.0	A	313	13	0.5	50	26	0.7
	3	12	9	3.5	60	16.1	141	48.0	8.2	0.9	7	3	85	11	0.21	0.7	1.0	A	309	9	0.7	213	31	0.8
	3	12	58	21.4	59	45.3	139	20.7	16.0	0.8	5	3	178	10	0.32	2.4	1.2	B	321	14	0.6	261	26	3.9
	3	14	56	2.4	60	4.1	152	40.5	93.3	2.6	18	8	71	15	0.49	0.6	1.2	A	35	2	0.9	126	4	1.1
	3	17	39	33.3	60	16.2	141	34.3	8.9	1.4	16	4	95	14	0.45	0.6	0.7	A	144	5	0.6	81	37	0.7
	3	19	17	24.2	62	44.2	143	47.5	15.8	2.6	16	8	93	89	0.45	2.9	3.4	C	261	21	3.0	154	31	1.3
							3.0	ML	ATWC				FELT (III) AT SLANA AND NABESNA.											
	3	20	43	51.9	61	16.7	152	11.9	3.8	0.4	3	3	288	3	0.04	1.4	0.9	B	186	2	1.2	96	3	2.5
	3	21	2	2.2	61	50.9	149	19.3	5.4	2.2	31	7	94	19	0.60	0.4	0.6	A	185	3	0.8	276	27	0.5
	3	21	29	14.5	60	18.0	141	17.1	18.5	1.4	15	5	113	20	0.24	0.6	0.9	A	41	11	0.8	305	27	0.6
	3	23	1	25.9	60	27.5	141	8.8	13.4	0.9A	7	5	168	35	0.40	0.5	1.5	B	84	7	0.9	353	9	0.7
	4	0	33	46.0	60	14.3	140	58.2	12.3	1.3	17	6	125	10	0.18	0.6	0.7	A	297	8	0.6	35	41	0.8
	4	1	32	47.6	61	28.2	151	10.5	14.9	0.9A	4	2	144	23	0.30	7.7	11.6	D	224	15	0.9	323	29	1.1
	4	5	5	21.5	61	50.3	149	13.1	5.0	0.0A	3	2	335	13	0.28	3.6	10.3	D	291	13	1.9	198	13	2.6
	4	5	24	12.1	61	3.1	140	38.3	9.4	0.9A	5	4	246	39	0.17	1.7	5.9	D	121	5	1.0	30	10	2.4
	4	6	41	58.6	58	4.4	139	39.6	13.4	2.5	5	313	160	0.47	25.0	25.0	D	292	16	8.6	31	30	5.6	
	4	9	53	47.0	61	49.5	148	57.4	11.4	0.1A	3	3	175	2	0.07	1.8	1.3	B	351	8	1.9	261	34	3.8
	4	13	13	39.5	60	9.7	153	1.0	121.2	2.8	16	4	105	11	0.21	1.2	2.0	B	151	7	2.1	81	19	1.3
	4	16	3	4.0	61	50.0	148	56.0	15.4	1.9	28	9	150	2	0.83	0.6	0.6	A	173	7	1.0	265	15	0.6
	4	16	30	46.6	61	49.4	148	51.1	13.6	0.1A	4	4	168	6	0.09	1.0	2.1	B	28	8	1.6	121	19	1.1
	4	16	38	13.2	60	50.9	152	36.3	7.4	0.6	5	2	198	32	0.57	1.5	1.5	B	7	16	0.6	264	39	2.1
	4	18	15	9.0	60	9.8	141	45.7	8.7	0.7	5	3	131	16	0.20	2.1	2.1	B	322	9	1.2	261	43	2.6
	4	18	43	31.8	59	36.5	138	48.9	7.6	1.1	6	1	241	18	0.32	3.6	5.2	C	342	18	1.0	81	24	4.6
	4	19	33	50.5	60	14.7	141	36.1	7.7	1.3	20	5	92	13	0.59	0.4	0.6	A	285	3	0.5	16	10	0.7
	4	22	41	4.9	59	8.4	151	48.1	52.2	3.5	16	2	145	39	0.24	1.5	2.7	B	261	4	1.6	328	4	2.4
	4.6	MB					4.3	ML	ATWC				FELT (III) AT HOMER.											
	5	2	53	16.9	60	5.2	141	39.2	12.0	0.8	12	7	167	12	0.48	0.6	0.6	A	261	11	0.6	355	42	1.0
	5	7	53	25.7	61	15.4	152	11.2	2.8	-0.1	3	3	275	2	0.04	1.1	0.9	A	183	14	0.8	281	27	2.2
	5	8	19	59.8	60	2.8	141	47.5	8.8	0.8	10	8	172	13	0.68	0.5	0.6	A	182	3	1.0	91	5	0.6

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - OCTOBER 1984

ORIGIN TIME 1984	LAT N HR MN SEC	LONG W DEG MIN SEC	DEPTH KM	MAG NP	NS SEC	DI KM	RMS KM	SEI KM	SOUTHERN ALASKA - OCTOBER 1984			
									SEZ Q KM	AZ1 DEG	DIP1 DEG	SE2 KM
05 13 33 4.1	60 58.8	150 12.5	45.8	2.1	30 13	4.1	46	0.49	1.2 A	263	0	0.7
05 23 38 37.5	61 55.0	149 6.6	10.3	0.9	13 8	192	12	0.57	1.2 A	12	2	0.7
06 1 35 58.5	62 19.4	149 5.5	45.0	2.7	27 7	118	55	0.48	0.8	1.6 B	81	11
06 12 56 49.6	60 20.4	141 16.2	18.6	1.1	10 7	118	24	0.70	0.6	0.9 A	325	13
07 1 40 14.1	59 58.7	151 14.9	50.2	2.2	22 10	159	8	0.41	1.2	0.9 A	86	7
07 3 23 33.2	59 13.4	153 35.0	98.9	2.8	11 4	173	15	0.19	1.4	1.3 B	15	21
07 6 42 14.3	59 52.1	153 15.2	117.6	3.0	16 5	43	0.27	1.4	1.4 B	81	13	
07 13 38 23.5	61 23.9	140 9.3	0.5	1.0A	6 4	269	80	0.47	1.8	25.0 D	289	0
07 22 3 8.2	60 23.4	141 25.5	16.9	1.8	19 9	111	18	0.50	0.5	0.9 A	81	4
07 22 35 12.0	62 16.8	151 3.7	74.7	2.6	21 6	171	41	0.46	1.3	1.4 B	171	10
07 23 42 46.0	59 57.8	140 5.6	11.6	2.1	14 8	145	17	0.70	1.1	0.7 A	296	5
08 0 51 47.6	60 15.9	140 53.4	10.5	1.2	8 4	158	15	0.15	1.3	1.3 B	305	19
08 3 50 26.9	60 8.8	141 34.6	7.3	1.3	5 3	227	6	0.43	2.9	0.9 C	45	10
08 17 47 22.3	60 1.6	142 42.0	26.6	1.5	17 5	159	48	0.29	0.9	0.7 A	359	9
08 17 55 33.1	59 51.8	153 24.1	124.6	2.7	14 5	92	45	0.14	1.8	1.3 B	326	20
08 21 10 10.6	61 40.7	150 48.5	57.7	2.9	26 7	131	24	0.41	0.6	0.9 A	89	7
		3.5 ML ATWC										
9 1 36 45.3	59 59.6	140 41.3	4.7	1.0	9 3	169	25	0.34	1.0	2.2 B	276	0
9 2 29 9.3	59 46.6	152 38.1	76.3	2.2	17 8	88	46	0.38	0.8	1.5 B	81	7
9 6 0 14.6	60 16.2	140 58.6	7.0	0.9	13 6	129	13	0.33	0.8	1.3 A	106	2
9 11 21 23.0	61 11.7	149 46.4	43.0	0.8A	10 5	120	13	0.29	1.2	1.4 B	208	1
9 12 18 47.3	60 40.4	140 37.2	10.8	1.3	11 5	193	51	0.51	1.3	2.0 B	143	4
9 18 40 37.3	60 11.4	141 34.2	5.6	0.4	7 3	106	7	0.29	0.9	2.0 B	322	15
9 22 55 19.0	60 36.4	143 15.5	15.0	1.0	8 90	28	0.58	0.7	2.8 C	14	8	
10 2 31 52.2	61 57.2	151 29.2	84.2	2.4	14 8	134	4	0.40	1.1	1.1 A	81	8
10 6 32 38.6	61 19.5	139 56.0	0.4	1.9	13 4	249	85	0.59	1.9	4.8 C	282	0
10 9 16 52.2	59 35.0	151 57.4	43.7	2.1	13 8	181	63	0.51	0.8	3.0 C	359	3
10 12 6 49.2	60 24.3	141 15.6	21.0	0.5A	4 3	138	27	0.38	2.4	4.2 C	326	2
10 12 26 55.7	60 25.3	140 34.0	13.2	1.5	16 6	169	39	0.76	1.0	2.1 B	316	9
10 12 35 50.8	61 18.8	139 59.3	9.1	0.9A	5 4	271	82	0.48	3.0	17.6 D	109	4
10 13 59 19.5	59 57.9	140 49.1	5.4	1.1	13 5	167	20	0.39	0.9	1.0 A	114	4
10 14 10 11.9	61 41.1	150 23.8	7.1	2.2	17 6	165	31	0.44	0.5	0.7 A	27	20
10 14 25 13.0	60 39.1	143 6.4	1.5	1.0	9 6	79	27	0.58	0.6	22.5 D	261	0
10 15 35 49.3	60 12.6	140 59.4	10.0	0.8	12 6	119	7	0.20	0.9	0.8 A	290	1
10 17 40 48.8	60 41.2	151 42.7	71.4	2.8	27 8	56	27	0.37	0.7	1.2 A	33	8
10 21 17 18.2	59 46.5	152 44.3	78.7	2.5	16 5	129	46	0.18	1.1	1.6 B	81	10
10 21 46 40.3	60 16.7	141 27.0	13.5	0.5	7 4	114	15	0.10	1.6	1.7 B	327	8
10 22 11 27.8	60 6.9	141 7.5	8.1	1.1	14 12	86	6	0.58	0.5	0.4 A	284	20
10 23 18 25.6	60 5.9	147 10.9	27.6	2.0	32 17	125	27	0.99	0.4	0.5 A	81	5
11 1 38 13.4	60 39.9	143 7.0	1.3	0.8	6 4	91	28	0.38	0.9	25.0 D	261	0
11 4 5 23.2	61 47.9	148 57.8	15.4	0.3	5 150	4	0.24	0.7	1.2 A	95	8	
11 4 17 0.6	61 38.1	150 20.7	16.6	0.5A	4 3	190	28	0.18	10.7	25.0 D	154	14
11 6 31 53.8	59 57.3	141 35.1	11.6	1.3	13 5	183	22	0.40	0.9 A	265	3	
11 11 19 33.8	60 9.7	140 47.9	3.2	0.7	6 2	163	13	0.23	2.2	2.4 B	97	1
11 6 56 53.7	61 22.4	150 23.8	8.1	0.5A	5 3	206	21	0.91	2.0	1.1 B	339	24
11 7 7 46.3	61 34.1	150 11.3	1.8	1.1A	5 3	177	32	0.23	8.3	1.4 D	160	3
11 9 56 55.1	59 58.1	140 7.1	14.8	1.6	13 4	152	16	0.74	1.1	0.8 A	299	3
11 10 8 48.9	61 33.1	146 20.5	26.6	2.1	37 9	85	23	0.60	0.4	0.9 A	292	6
11 11 19 33.8	60 9.7	140 47.9	3.2	0.7	6 2	163	13	0.23	2.2	2.4 B	97	1
11 16 4 2.1	61 48.3	148 52.6	12.0	0.1A	4 3	142	4	0.10	2.1	1.7 B	136	34
11 17 40 2.3	61 27.2	149 40.9	1.5	0.10	10 7	94	23	0.44	0.8	1.2 A	261	0
11 21 18 38.2	61 19.0	150 53.6	58.8	2.8	30 10	66	18	0.50	1.0 A	81	2	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - OCTOBER 1984											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ Q
								DEG MIN SEC	DEG MIN SEC	DEG MIN SEC	DEG MIN SEC
1984	HR MN SEC	DEG MIN SEC	DEG MIN SEC	ATWIC	ML	ML	ML				
OCT 12 6 3	19.8 59	30.7	152 43.3	79.5	2.7	16	6	102 45	0.30	1.3	2.6 B
12 12 39	57.9	60 2.0	141 57.9	7.3	1.5	24	7	157 4	0.72	0.6	0.5 A
12 12 53	9.5	61 35.3	150 42.8	62.5	2.4	29	12	117 14	0.43	0.6	0.8 A
12 17 3	38.2	60 16.2	141 5.1	11.2	1.1	16	6	122 13	0.52	0.6	0.8 A
12 19 41	43.4	60 16.7	141 26.1	11.8	0.3	6	4	118 15	0.15	1.5	1.5 B
12 14 34	25.8	60 17.8	141 25.5	9.9	1.2	19	8	105 17	0.34	0.4	0.7 A
12 15 29	25.0	60 17.9	141 25.1	10.1	1.3	18	7	105 17	0.30	0.5	0.7 A
12 15 34	17.8	60 16.6	141 26.9	13.7	0.3	6	4	114 15	0.12	1.2	1.4 B
12 17 3	38.2	60 16.2	141 5.1	11.2	1.1	16	6	122 13	0.52	0.6	0.8 A
13 0 3	14.6	59 57.8	140 12.4	8.6	1.2	8	5	168 15	0.89	1.0	0.9 A
13 29 30.3	60 35.1	152 49.9	127.1	3.0	21	5	91	23 0.48	1.0	1.5 B	225 8
13 5 34	44.9	60 8.7	141 6.7	0.3	1.4	13	7	84 4	0.37	0.3	0.7 A
13 5 54	53.0	60 14.1	141 33.4	8.9	0.6	5	4	168 11	0.41	2.2	1.8 B
13 8 54	17.8	61 38.3	150 45.5	61.2	2.8	31	9	122 20	0.43	0.8	1.2 A
13 12 9	56.2	61 16.2	140 31.4	6.0	1.8	14	6	242 55	0.62	1.1	4.0 C
13 23 30	5.6	60 25.6	141 19.8	12.7	0.7	8	6	121 24	0.36	0.6	1.4 B
14 0 17	27.8	61 48.7	148 58.0	15.7	0.0A	4	3	207 3	0.04	1.7	1.7 B
14 1 49	6.8	61 6.4	143 33.0	3.3	1.1	9	4	117 40	0.96	1.0	17.9 D
14 4 49	40.3	62 16.5	149 26.0	51.9	3.3	33	6	121 54	0.36	0.8	2.2 B
3.8 MB											
14 10 19	49.4	60 59.1	147 13.7	18.3	2.5	39	10	45 10	0.49	0.4	0.6 A
14 10 43	15.2	61 54.3	149 15.0	8.2	0.3A	4	4	320 17	0.22	1.9	3.0 B
14 18 3	36.7	59 56.2	140 151	53.7	0.4	9	7	192 25	0.30	1.3	2.2 B
14 18 45	55.8	60 29.4	151 58.3	73.5	3.0	25	4	70 26	0.36	0.8	1.2 A
14 19 41	32.8	60 11.2	139 45.4	20.8	1.0	6	3	193 27	0.39	3.2	1.7 C
14 19 46	45.0	61 37.3	151 12.7	15.6	1.1A	5	4	148 31	0.64	0.8	11.3 D
14 20 12	34.3	61 47.0	149 3.6	10.6	1.7	26	8	118 7	0.82	0.5	0.7 A
14 21 15	8.1	60 33.1	143 9.4	27.3	0.6A	3	1	150 65	0.02	8.8	21.4 D
14 21 35	31.6	60 17.1	140 57.5	13.1	1.8	18	7	131 15	0.23	0.5	0.8 A
14 22 58	17.1	60 30.5	141 12.6	10.6	0.9	6	3	177 34	0.41	1.4	2.8 C
14 23 7	2.9	61 48.8	148 54.2	13.2	-0.1A	4	4	142 4	0.14	1.3	1.7 A
15 0 51	53.0	60 59.2	147 13.4	21.3	2.1	35	17	45 9	0.50	0.4	0.6 A
15 4 15	20.8	62 9.9	149 31.3	62.5	2.7	30	7	115 47	0.37	1.1	1.8 B
15 4 35	35.0	61 7.2	149 8.0	27.7	0.7A	5	5	106 27	0.11	0.7	2.0 B
15 7 2	23.6	60 5.7	152 26.2	90.4	2.6	20	11	101 23	0.46	0.9	1.5 B
15 7 44	27.8	61 36.9	150 16.4	8.3	1.2A	7	5	158 21	0.52	1.6	1.2 B
15 7 48	24.5	61 6.6	146 30.5	9.2	0.7	5	3	136 6	0.10	5.8	3.5 C
15 8 57	32.0	60 15.1	140 48.5	9.5	1.0	11	7	136 17	0.36	1.0	1.4 B
15 14 24	16.3	61 6.4	152 13.8	12.1	0.6	4	4	184 13	0.28	2.2	1.9 B
15 14 42	9.0	61 22.5	150 20.7	51.7	2.4	27	9	81 24	0.43	0.6	1.5 B
15 18 40	51.8	60 57.8	146 44.7	1.3	2.4	36	8	39 15	0.63	0.4	0.7 A
15 19 11	41.6	57 53.2	137 59.2	14.4	2.2	6	3	214 182	0.35	12.9	12.2 D
15 20 34	40.2	57 53.0	138 0.2	20.1	2.3	6	3	215 182	0.40	10.1	10.0 D
15 21 34	33.5	60 14.3	140 45.6	13.4	1.5	12	7	137 18	0.45	0.9	1.0 A
15 22 24	32.0	61 46.6	149 2.2	13.8	1.2	16	12	107 6	0.52	0.7	330 18
15 23 51	20.6	61 4.5	152 18.9	13.4	0.4A	4	3	197 18	0.11	3.7	4.3 C
16 0 34	41.7	61 25.3	150 48.0	58.4	2.7	30	9	69 6	0.44	0.5	1.1 A
16 1 36.7	61 9.1	146 33.8	15.4	0.0A	6	5	178 10	0.48	1.2	1.2 A	
16 6 2 35.6	60 25.8	142 47.9	21.6	0.6	10	8	79 4	0.45	0.6	0.5 A	
16 7 11 44.2	59 56.3	152 48.0	88.8	2.7	18	6	76 27	0.34	1.2	1.1 A	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - OCTOBER 1984

ORIGIN TIME	LAT N	LONG W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEI	SEZ Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
1984 OCT 16 7 41 27.8	60 9.9	139 37.3	15.0	0.9	9	4	198	24	0.61	1.3 B	313	12	0.9	215	32	3.9	61	55	1.4	
16 14 22 17.2	62 0.1	148 54.2	42.0	2.5	29	9	99	19	0.46	0.7	0.9 A	90	12	0.8	354	23	1.1	205	64	1.8
16 16 28 46.5	61 46.2	149 2.1	9.9	0.2A	3	3	243	6	0.12	7.6	2.9 D	81	26	14.9	175	32	1.0	315	49	1.9
16 21 27 20.6	59 59.4	153 40.0	154.4	3.0	14	5	157	37	0.21	2.4	2.2 B	40	17	2.1	295	40	5.0	148	45	3.6
17 5 20 4.4	60 29.1	144 56.3	14.4	1.0A	10	7	166	16	0.64	1.2	1.0 A	109	15	0.6	209	35	2.6	0	51	1.5
17 5 36 55.9	60 6.5	141 5.8	7.4	0.9	9	5	101	5	0.45	0.6	0.5 A	178	5	1.1	270	23	0.6	76	66	0.9
17 11 10 19.6	60 15.6	140 36.9	9.6	0.6	7	4	158	26	0.25	1.3	2.5 B	299	13	0.6	35	23	0.9	182	63	5.2
17 12 48 14.5	59 21.7	144 43.0	15.2	1.9	21	8	227	95	0.51	1.2	1.5 B	23	2	2.2	114	38	1.2	290	52	3.3
17 16 10 13.3	61 48.4	148 51.5	14.8	1.3	21	9	133	5	0.55	0.5	0.4 A	342	8	0.9	261	33	0.6	84	55	0.8
17 19 13 11.6	58 34.2	151 4.4	84.9	2.6	9	4	195	124	0.70	4.8	5.6 D	22	3	1.7	114	26	8.4	286	64	11.0
17 19 13 37.8	60 18.8	140 20.0	15.0	0.8	6	5	207	25	0.52	2.1	3.9 C	81	3	1.6	331	25	0.7	177	58	7.9
18 3 18 36.5	59 48.5	153 12.2	104.4	2.6	14	3	111	47	0.17	1.9	1.8 B	261	0	1.7	317	35	3.7	171	43	2.2
18 3 27 3.4	60 1.6	152 48.7	102.0	2.9	19	6	100	17	0.64	1.2	1.1 A	220	5	1.4	315	41	2.4	124	49	1.8
18 6 27 1.4	60 10.7	141 3.2	5.0	0.3A	4	3	200	3	0.12	1.5	0.9 B	180	17	2.9	285	40	1.1	72	45	1.7
18 6 57 43.9	60 24.1	144 54.3	20.5	1.7	25	13	150	13	0.75	0.4	0.5 A	114	14	0.5	209	21	0.8	353	64	0.9
18 7 37 57.8	61 9.4	146 35.0	15.0	0.5A	6	5	181	11	0.36	2.2	1.7 B	37	3	0.8	129	37	5.0	303	53	1.3
18 9 17 50.8	60 6.2	152 31.5	83.9	2.6	20	7	99	18	0.23	0.9	1.1 A	81	14	1.0	156	29	1.4	325	55	2.1
18 13 43 18.3	59 55.6	149 5.7	7.8	2.1	34	12	170	28	0.67	0.6	0.6 A	263	9	0.7	359	34	1.3	160	55	0.9
19 1 0 27.6	61 53.0	148 20.9	41.8	1.2	8	6	180	8	0.37	1.1	0.9 A	97	26	0.8	353	27	2.2	224	51	1.8
19 4 44 46.2	61 34.2	150 56.8	70.0	3.7	22	0	83	16	0.32	0.9	1.9 B	81	4	1.0	156	13	1.5	333	70	3.5
19 9 27 28.3	61 31.8	149 59.1	44.6	2.1	29	17	80	15	0.42	0.6	0.8 A	261	1	0.5	170	19	1.0	354	71	1.5
19 9 44 47.3	61 47.5	148 59.3	14.7	0.6	12	9	92	4	0.30	0.6	0.5 A	140	3	1.0	261	44	0.6	47	38	1.0
19 11 49 10.4	60 8.1	141 14.5	8.7	1.5	16	8	117	11	0.34	0.5	0.4 A	278	0	0.5	188	11	1.0	8	79	0.7
19 19 23 2.1	61 58.8	151 4.8	9.1	2.0	23	8	183	24	0.59	1.1	0.9 A	97	23	0.5	348	37	2.5	211	44	1.1
19 19 56 57.3	60 10.3	140 59.2	8.1	0.9A	3	3	307	3	0.12	1.3	0.9 A	36	17	2.5	139	36	2.0	285	49	1.1
19 20 43 8.9	60 12.2	151 1.5	67.1	3.1	23	11	73	24	0.43	0.9	1.9 B	87	1	0.9	357	18	1.4	180	72	3.7
19 20 5 38 7.6	61 8.8	152 16.0	0.7	0.8	6	6	188	12	0.50	0.7	1.0 A	108	15	1.2	202	16	0.6	337	68	2.0
20 7 45 11.5	62 4.9	148 34.4	40.3	2.3	18	16	205	33	0.75	0.7	0.8 A	278	0	0.9	8	33	1.3	188	57	1.6
20 10 29 30.9	62 15.0	151 28.4	91.5	2.6	19	12	100	30	0.49	1.3	1.2 A	81	13	1.2	172	26	2.4	326	61	2.3
20 12 33 37.6	61 47.6	148 59.3	13.2	1.4	15	14	92	4	0.79	0.4	0.4 A	332	4	0.7	81	40	0.9	238	46	0.4
20 15 49 45.9	60 17.5	140 42.1	11.7	1.3	13	7	147	24	0.37	0.7	1.1 A	297	4	0.5	29	26	0.7	199	64	2.4
20 16 55 56.9	60 31.4	141 43.4	13.1	1.6	17	11	95	18	0.59	0.4	0.7 A	359	8	0.5	91	15	0.7	242	73	1.3
20 19 26 42.2	62 47.6	148 13.8	39.0	2.1	11	11	272	110	0.63	2.1	8.9 D	331	1	2.5	81	9	2.0	235	68	16.0
20 20 39 22.5	61 4.2	152 17.2	15.0	0.6A	4	4	191	18	0.14	1.7	0.6 B	107	3	3.3	199	33	0.9	12	57	1.2
21 10 4 7.7	61 27.5	150 14.4	13.7	0.7A	8	6	112	27	0.56	1.1	1.0 A	96	10	0.7	194	41	2.5	355	47	1.5
21 11 7 22.9	60 23.8	151 45.8	72.9	2.6	18	9	98	40	0.49	0.6	1.5 B	133	2	1.1	43	9	1.1	235	81	2.9
21 18 50 45.4	61 41.5	150 21.3	7.7	1.4	12	8	145	26	0.61	0.7	0.7 A	266	11	0.7	6	43	1.1	165	45	1.6
21 20 18 30.3	61 47.3	148 57.6	11.1	1.4	14	8	137	3	0.42	0.8	0.7 A	321	28	1.1	81	35	1.8	206	39	0.8
21 23 10 20.1	61 21.7	149 52.4	40.0	2.2	29	7	51	21	0.51	0.5	1.3 A	94	1	0.9	184	6	1.0	355	84	2.4
22 4 27 23.1	62 14.0	148 18.7	40.4	2.3	22	8	103	56	0.56	1.0	2.5 B	357	3	2.0	87	7	1.0	244	82	4.7
22 12 42 54.9	61 17.0	149 12.9	34.3	1.2A	14	9	64	19	0.38	0.5	0.8 A	193	5	0.6	285	15	0.9	85	74	1.5
22 17 49 14.0	60 23.5	150 32.8	40.1	2.6	25	7	110	22	0.55	0.7	1.5 B	276	1	0.7	6	8	1.2	179	82	2.8
22 22 43 8.0	63 16.0	148 55.3	42.4	2.4	14	9	152	159	0.77	2.1	10.1 D	6	1	2.5	96	1	0	231	89	19.0
23 2 30 22.9	59 59.7	140 47.4	0.1	1.0	11	7	174	20	0.46	0.8	1.0 A	109	4	0.4	199	10	1.5	357	79	1.9
23 4 43 39.2	60 27.8	142 15.1	0.2	1.0	9	151	30	0.70	0.6	25.0 D	261	0	0.7	351	0	1.1	0	99	0	99.0
23 8 27 41.5	59 56.0	141 5.5	7.4	1.0A	12	5	171	15	0.43	1.0	1.2 A	126	15	0.7	226	35	1.1	17	51	2.8
23 9 54 13.2	61 3.6	146 19.8	14.9	2.3	37	11	37	8	0.67	0.2	0.4 A	305	6	0.4	214	7	0.4	75	81	0.7
23 11 43 37.1	59 56.7	140 48.9	0.3	0.8	11	5	181	21	0.56	0.6	1.1 A	111	4	0.5	202	12	1.1	3	77	2.2

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - OCTOBER 1984											
ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS
1984	HR	MN	SEC	135	25.9	10.0	2.8	10	3	317	186
OCT 23	16	39	58.3	150	4.6	50.1	2.3	33	13	0.34	25.0
23	20	28	47.4	28.7	1.5	50.4	2.3	82	22	0.45	0.4
24	2	27	47.3	60	14.2	141	5.2	21	11	0.38	0.4
24	4	36	36.7	60	12.4	141	5.5	10.2	0.8	0.6	0.6
24	4	38	22.1	60	13.8	141	4.1	8.3	2.2	0.26	0.8
24	7	20	32.3	60	19.2	140	51.5	24.9	0.7A	0.31	0.31
24	10	10	32.3	60	6.7	141	10.0	8.9	0.9	0.25	0.7
24	12	9	35.1	60	58.0	147	17.5	30.8	2.1	0.55	0.3
24	13	13	16.8	61	7.1	152	14.0	10.6	0.5A	6	0.3
24	13	47	4.3	60	13.7	151	56.3	63.6	2.4	23	13
24	14	23.7	60	20.2	145	4.9	24.2	1.0	12	6	0.45
24	14	20	31.4	60	10.6	141	31.2	11.6	1.0	10	6
24	21	17	53.9	60	47.2	150	50.9	45.1	7	28	10
24	22	43	58.0	59	59.9	142	4.5	6.7	1.3	13	10
25	2	35	10.8	60	56.4	146	50.6	35.9	2.2	31	24
25	9	39	11.0	60	16.2	141	23.0	4.7	1.0	13	9
25	10	5	49.3	60	4.1	140	39.9	0.4	1.4	13	6
25	12	44	26.6	60	22.6	141	15.8	16.3	1.7	14	12
25	12	46	51.7	60	22.0	141	16.6	15.4	1.3	14	10
25	13	25	6.3	60	22.2	141	17.1	16.5	1.0A	7	6
25	15	21	16.6	60	22.3	141	17.6	17.9	1.3A	8	6
25	15	31	42.1	60	5.6	140	31.3	0.0	1.3	14	10
25	17	46	9.0	59	19.7	144	56.7	12.2	1.9	19	10
25	18	26	10.1	60	2.1	140	32.2	1.5	0.8	7	3
26	0	18	26.4	61	46.2	149	4.6	10.8	1.5	13	116
26	2	6	23.8	59	54.8	142	51.0	1.2	1.5A	15	10
26	9	34	13.1	61	13.0	143	40.4	0.0	1.2	8	7
26	13	33	24.0	61	47.1	148	59.6	14.2	1.1	12	10
26	15	34	56.2	59	41.6	153	0.7	93.3	2.2	12	9
26	15	55	14.8	59	33.2	140	13.4	0.8	1.0A	6	3
26	16	17	41.8	62	29.3	149	50.6	81.3	2.5	15	11
26	16	30	38.5	60	26.7	143	58.5	19.4	0.7A	5	2
26	19	59	21.8	60	19.0	140	45.2	16.0	0.7A	8	5
26	20	32	53.4	61	47.6	149	58.3	48.1	2.3	23	15
26	22	33	2.7	60	16.6	140	56.8	9.1	1.1	11	9
26	23	14	2.1	60	24.7	142	57.5	1.3	0.9	8	5
27	1	49	38.7	61	16.4	150	0.9	41.1	2.2	30	14
27	2	58	13.7	60	13.8	141	37.0	10.9	0.7	6	1
27	6	40	24.5	60	21.8	141	14.2	9.6	0.8	10	6
27	6	42	49.4	60	21.3	141	16.5	14.8	2.0	17	9
27	16	57	43.5	60	6.9	152	9.5	66.8	2.4	18	13
27	17	32	0.1	61	10.6	152	9.7	6.6	0.4A	3	3
28	10	55	12.6	61	47.5	148	59.8	13.7	1.7	24	18
28	14	44	26.2	60	17.8	141	19.2	6.9	0.8	7	5
28	15	0	42.3	61	32.0	147	22.9	23.2	2.5	28	14
28	15	39	24.3	60	6.4	141	4.8	7.3	0.8	11	6
28	15	50	50.2	60	59.2	152	23.2	5.4	1.3	9	8
28	17	21	15.6	60	40.4	139	53.6	0.0	1.4	8	4

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3				
1984	HR	MN	SEC	135	25.9	10.0	2.8	10	3	317	186	0.34	25.0	25.0	D	261	0	10.4	348	35	52.8	171				
OCT 23	16	39	58.3	150	4.6	50.1	2.3	33	13	0.34	25.0	0.4	0.7	A	261	5	0.5	162	17	0.7	6	70				
23	20	28	47.4	61	28.7	141	14.2	9.6	0.8	10	6	0.38	0.4	0.6	A	289	11	0.4	24	26	0.6	178	62			
24	2	27	47.3	60	14.2	141	5.2	6.9	2.3	21	11	0.38	0.4	0.7	A	298	12	0.5	198	40	1.9	41	48			
24	4	36	36.7	60	12.4	141	5.5	10.2	0.8	14	6	0.26	0.8	0.7	A	323	25	0.4	68	29	0.5	199	50			
24	4	38	22.1	60	13.8	141	4.1	8.3	2.2	19	14	0.31	0.4	0.4	A	351	2	1.1	82	9	0.7	249	81			
24	7	20	32.3	60	19.2	140	51.5	24.9	0.7A	10	5	140	21	0.76	1.5	2.7	B	305	8	0.9	39	26	1.5	199	63	
24	10	10	32.3	60	6.7	141	10.0	8.9	0.9	14	3	107	6	0.25	0.7	0.5	A	185	11	1.4	278	15	0.6	60	71	
24	12	9	35.1	60	58.0	147	17.5	30.8	2.1	35	21	46	14	0.55	0.3	0.3	A	286	6	0.3	190	44	0.5	22	45	
24	13	13	16.8	61	7.1	152	14.0	10.6	0.5A	6	4	1.77	12	0.31	1.5	1.4	B	203	24	0.6	311	36	1.8	87	45	
24	13	47	4.3	60	13.7	151	56.3	63.6	2.4	23	13	63	41	0.48	0.6	1.0	A	351	2	1.1	82	9	0.7	249	81	
24	14	23.7	60	20.2	145	4.9	24.2	1.0	12	6	209	23	0.45	1.2	1.0	A	121	2	1.0	121	2	0.4	214	60		
24	14	20	31.4	60	10.6	141	31.2	11.6	1.0	10	6	100	4	0.42	0.6	0.7	A	19	24	0.9	275	29	0.7	142	51	
24	21	17	53.9	60	47.2	150	50.9	45.1	0.4	1.4	13	6	146	23	0.50	0.7	0.7	A	279	4	0.4	186	40	1.4	50	1.3
24	22	43	58.0	59	59.9	142	4.5	6.7	1.3	13	10	205	5	0.38	0.7	0.4	A	341	4	0.6	184	79	0.6	79	2.1	
25	2	35	10.8	60	56.4	146	50.6	35.9	2.2	31	24	53	15	0.81	0.3	0.2	A	186	9	0.6	279	17	0.4	69	71	
25	9	39	11.0	60	16.2	141	23.0	4.7	1.0	13	9	105	15	0.33	0.3	0.6	A	292	6	0.4	24	20	0.5	186	69	
25	10	5	49.3	60	4.1	140	39.9	0.4	1.4	13	6	146	23	0.50	0.7	0.7	A	279	4	0.4	186	40	1.4	50	1.3	
25	12	44	26.6	60	22.6	141	15.8	16.3	1.7	14	12	20	27	0.44	0.4	0.6	A	301	10	0.5	31	17	0.6	188	66	
25	12	46	51.7	60	22.0	141	16.6	15.4	1.3	14	10	119	26	0.33	0.4	0.7	A	300	4	0.5	31	17	0.6	197	73	
25	13	25	6.3	60	22.2	141	17.1	16.5	1.0A	7	6	120	25	0.32	0.8	0.9	A	344	17	0.6	81	20	0.8	217	63	
25	15	21	16.6	60	22.3	141	17.6	17.9	1.3A	8	6	119	25	0.29	0.8	1.4	A	282	7	0.3	16	36	1.2	183	53	
25	15	31	42.1	60	5.6	140	31.3	0.0	1.3	14	10	138	15	0.55	0.7	0.7	A	325	11	0.6	25	20	0.6	325	44	
25	17	46	9.0	59	19.7	144	56.7	12.2	1.9	1.9	10	220	73	0.72	1.1	1.0	A	83	26	0.6	359	19	3.8	160	70	
25	18	26	10.1	60	2.1	140</																				

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - OCTOBER 1984

ORIGIN TIME	LAT	N	LONG		W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
			DEG	MIN																					
1984	HR	MN	SEC	DEG	MIN	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
OCT 29 17 37	54.5	60	15.1	140	50.1	11.7	1.0	5	4	161	15	0.27	5.8	5.6	D	290	7	0.9	193	44	15.0	27	45	1.3	
30 1 44 28.3	28.3	60	46.0	151	29.8	65.2	2.2	25	12	57	14	0.46	0.4	1.1	A	188	1	0.7	98	10	0.6	284	80	2.0	
30 4 35 28.8	28.8	61	3.1	152	11.3	7.8	0.0A	3	3	338	16	0.02	3.4	3.5	C	197	16	2.1	300	39	4.1	89	47	8.2	
30 4 46 13.4	13.4	60	15.2	140	46.0	11.7	1.3	17	5	138	18	0.27	0.6	0.9	A	116	2	0.6	25	33	0.7	209	57	2.0	
30 5 12 46.4	46.4	60	10.0	141	46.5	1.7	0.4A	4	4	159	3	0.51	0.6	0.9	A	3	16	1.0	267	19	0.8	130	65	1.9	
30 5 15 35.2	35.2	61	37.3	142	19.3	7.5	1.4	11	4	237	65	0.35	1.4	6.9	D	297	0	0.8	27	7	2.0	207	83	13.1	
30 6 33 24.6	24.6	60	7.2	141	2.0	9.3	0.8	12	5	113	4	0.49	0.5	0.4	A	81	26	0.7	185	31	1.1	318	48	0.6	
30 11 42 57.0	57.0	61	9.5	150	6.6	14.8	1.4	17	11	77	31	0.53	0.3	0.9	A	10	5	0.6	279	8	0.5	132	81	1.7	
30 11 56 12.7	12.7	60	17.6	142	44.1	16.2	0.9A	6	5	194	11	0.45	1.2	1.1	A	2	12	1.0	102	38	2.5	258	49	1.8	
30 14 54 49.1	49.1	61	21.3	149	20.2	40.6	1.3A	25	14	78	17	0.49	0.5	0.8	A	198	5	0.7	107	19	0.9	302	70	1.5	
30 15 19 37.0	37.0	60	16.5	148	12.4	16.9	2.2	34	11	120	57	0.46	0.5	0.8	A	153	6	0.9	261	14	0.6	43	67	1.6	
30 16 39 0.8	0.8	60	42.9	140	34.1	8.6	1.0A	12	7	201	50	0.91	1.3	1.4	A	139	1	0.6	261	38	1.7	48	42	2.8	
30 23 0 55.2	55.2	60	44.8	147	24.5	6.8	2.0	34	14	55	23	0.71	0.3	0.6	A	183	9	0.6	276	19	0.4	69	69	1.2	
31 4 0 7.6	7.6	60	19.8	142	59.2	0.1	1.0	15	11	123	15	1.34	0.5	25.0	D	301	0	0.6	31	0	1.0	0	90	99.0	
31 10 17 35.4	35.4	61	7.0	150	16.6	10.6	1.1A	9	8	102	41	0.65	1.1	1.7	B	290	5	0.8	197	29	1.2	29	60	3.7	
31 14 41 29.0	29.0	60	25.0	140	39.5	1.9	1.3	11	4	163	36	0.46	0.8	2.5	B	81	1	1.3	328	7	0.8	178	66	4.4	
31 18 38 36.5	36.5	60	13.9	141	4.3	8.6	1.4	13	7	118	9	0.23	0.9	1.0	A	312	16	0.7	55	38	0.9	204	48	2.3	
31 23 11 32.7	32.7	60	6.6	139	40.6	15.8	1.0	6	4	202	18	0.59	2.7	1.1	C	304	1	0.9	214	17	5.3	37	73	1.5	
31 23 50 59.3	59.3	60	10.1	141	6.8	7.8	1.6	8	4	152	5	0.31	2.8	0.7	C	203	3	5.2	293	12	0.8	99	78	1.2	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - NOVEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	FMS	SEH	SEZ	Q	AZ1	DTP1	SE1	AZ2	DTP2	SE2	AZ3	DTP3	SE3				
1984	HR	MN	SEC	DEG	MIN	KM	DEG	KM	SEC	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG			
NOV	1	0	23	53.5	60	17.6	139	59.0	14.9	0.7	4	2	291	27	0.45	2.2	2.3	B	330	24	2.8	81	31	1.1	211	47	
	1	4	10	20.5	60	15.1	141	2.3	11.9	0.8	8	6	123	11	0.15	0.9	0.9	A	106	19	0.8	0	39	0.7	216	45	
	1	4	52	21.3	60	32.5	146	32.8	20.9	2.1	30	19	72	16	0.71	0.3	0.6	A	355	1	0.6	265	6	0.5	94	84	
	1	5	37	38.7	60	37.0	142	37.3	12.3	1.0	9	8	95	23	0.66	0.5	1.9	B	112	4	0.9	21	6	0.7	235	83	
	1	8	18	1.8	60	37.5	150	34.9	53.3	2.9	28	12	79	23	0.51	0.6	1.7	B	81	3	0.7	349	10	0.9	187	79	
					3.5	ML	ATWC																		3.2		
1	12	17	19.8	60	6.0	141	11.1	9.7	0.7	8	7	151	6	0.38	0.8	0.5	A	190	7	1.4	282	12	0.6	70	76		
	1	13	37	0.1	61	47.3	148	56.4	12.7	0.8	10	9	100	2	0.34	0.5	0.5	A	165	3	0.8	81	42	1.1	258	48	
	1	14	39	42.3	60	6.5	141	13.1	0.2	0.4	8	4	156	8	0.54	0.7	1.2	A	276	3	0.6	6	11	1.2	171	79	
	1	17	16	56.5	60	10.2	140	52.1	6.9	0.4	6	3	126	9	0.29	1.3	1.0	A	90	11	0.6	187	32	2.7	343	56	
	1	17	31	6.5	61	16.5	152	11.6	4.2	-0.2	3	3	286	2	0.02	1.2	0.8	A	197	5	1.0	289	18	2.2	92	71	
	1	22	13	19.1	60	40.3	142	18.5	31.8	1.4	4	3	246	41	0.10	4.1	6.1	D	97	1	1.7	188	32	3.4	5	58	
	1	22	22	41.3	60	42.4	140	23.1	17.9	1.1A	3	2	234	59	0.13	4.8	5.0	C	147	2	1.1	261	38	7.3	55	46	
	2	0	32	15.3	60	16.7	140	59.0	9.1	2.2	18	11	129	14	0.27	0.6	0.8	A	305	17	0.6	44	26	0.8	186	58	
	2	1	44	2.1	59	58.4	140	49.6	2.4	1.2	8	6	217	19	0.42	1.3	1.4	B	279	0	0.8	188	28	2.4	9	62	
	2	1	46	35.9	60	28.7	145	1.6	16.4	2.6	34	11	62	12	0.50	0.5	0.6	A	9	14	0.9	103	17	0.5	241	68	
	2	2	38	57.2	60	18.1	140	58.6	1.7	1.1	10	3	134	17	0.35	0.7	2.3	B	268	2	1.0	359	14	0.7	170	76	
	2	2	43	36.2	60	18.0	140	59.1	3.8	1.0	10	8	133	16	0.45	0.7	1.7	B	81	8	0.8	336	14	0.6	196	68	
	2	11	12	39.7	61	4.5	152	19.7	14.8	0.6	5	4	188	19	0.20	2.4	0.9	B	107	5	4.4	200	26	1.0	7	63	
	2	14	8	34.1	61	17.5	152	11.8	8.8	0.5	6	4	189	3	0.22	1.3	1.3	B	112	21	3.1	261	38	1.0	12	22	
	2	14	9	43.9	61	17.4	152	12.6	5.0	-0.5A	3	3	294	4	0.01	1.9	1.6	B	16	9	1.7	108	11	3.6	248	76	
	2	16	3	28.9	61	54.7	149	7.8	8.6	1.0	13	11	190	12	0.52	0.8	0.9	A	7	1	1.3	277	42	0.7	98	48	
	2	16	33	57.3	60	10.4	141	3.8	4.7	0.3A	5	2	162	3	0.13	1.2	0.9	A	178	24	2.4	287	37	0.9	63	44	
	2	16	33	58.8	60	13.2	149	15.8	31.7	0.8A	8	8	90	16	0.31	0.8	1.6	B	1	2	1.0	270	4	1.5	117	85	
	2	16	35	48.3	61	26.4	151	4.2	2.5	1.2	12	7	89	18	0.72	0.4	1.0	A	355	2	0.8	265	10	0.6	96	80	
	2	17	45	46.0	58	58.9	152	48.1	71.7	3.5	10	3	146	53	0.12	1.7	4.3	C	4	6	2.9	95	14	2.2	251	75	
					4.0	MB		4.2	ML	ATWC															8.3		
	2	22	13	22.5	61	7.2	149	44.4	18.7	1.0A	12	7	105	17	0.42	1.0	1.2	A	203	15	0.8	301	28	1.5	88	58	
	2	22	16	19.5	60	11.1	139	46.0	11.4	1.2	8	4	203	27	0.54	2.3	1.6	B	303	12	1.0	206	31	4.9	52	56	
	3	1	6	13.6	60	10.8	141	4.5	13.6	0.8	13	7	110	4	0.55	0.9	0.6	A	287	2	0.5	196	27	1.8	21	63	
	3	3	27	9.8	60	18.5	141	23.2	11.1	1.3	19	10	108	19	0.53	0.5	0.7	A	81	9	0.6	321	20	0.4	188	53	
	3	4	29	2.5	61	0.7	151	17.3	65.0	2.4	26	14	63	30	0.58	0.4	0.8	A	42	4	0.6	133	7	1.1	283	82	
	3	4	53	14.3	60	28.7	143	16.7	3.3	1.1	14	7	113	24	0.68	0.6	0.6	D	271	2	0.5	1	2	0.9	136	87	
	3	10	58	43.3	61	8.3	151	12.3	64.6	2.3	28	17	56	44	0.62	0.4	0.8	A	81	11	0.5	164	11	0.7	303	73	
	3	14	31	16.0	61	47.9	148	57.8	15.2	0.4A	10	7	105	4	0.26	0.6	0.8	A	112	20	1.0	213	27	0.7	350	55	
	3	15	40	18.0	60	15.0	140	56.2	13.4	1.1	12	7	129	12	0.17	0.8	0.9	A	309	5	0.6	43	42	0.9	214	48	
	3	17	50	51.3	60	14.7	141	0.5	9.0	1.3	13	7	124	10	0.36	0.8	0.8	A	301	2	0.5	209	44	2.0	33	46	
	3	23	49	22.5	60	19.3	141	12.8	14.3	1.1	8	120	21	0.33	0.6	0.8	A	304	8	0.6	38	28	0.9	199	61		
	4	6	55	44.8	60	36.0	142	38.3	16.5	0.9	10	9	59	21	0.65	1.2	3.2	C	277	8	1.1	186	12	1.9	40	76	
	4	1	10	19.0	61	47.9	149	1.5	15.2	1.0	14	114	5	0.46	0.5	0.6	A	152	9	0.8	261	32	0.5	50	52		
	4	4	19	27.8	61	50.4	149	0.7	7.3	-0.3A	3	2	305	2	0.03	2.8	1.0	C	81	4	5.3	349	3	0.7	261	8	
	4	4	9	27	4.3	60	23.1	147	52.6	23.8	2.9	39	10	91	57	0.55	0.4	0.7	A	349	3	0.7	262	0	0.4	352	74
	4	10	55	58.0	61	34.6	150	23.1	51.3	3.0	32	16	121	23	0.49	0.5	0.8	A	262	1	0.4	175	6	1.9	41	81	
	4	11	20	10.9	60	1.3	141	41.3	9.7	0.7	14	11	170	18	0.40	0.9	0.9	A	266	16	0.7	164	37	1.2	154	49	
	4	11	32	7.3	59	56.7	140	52.4	4.1	0.5A	6	4	225	19	0.42	1.1	2.9	C	13	4	2.0	103	8	0.8	257	81	
	4	11	32	31.9	60	1.1	141	38.6	10.6	0.7	11	8	193	17	0.51	0.7	0.8	A	261	2	0.6	343	12	1.3	162	75	
	4	12	34	21.5	59	29.2	136	0.7	2.7	1.8	5	3	219	146	0.86	6.5	3.6	D	296	9	2.0	203	20	12.8	49	68	
	4	16	41	39.5	59	58.3	141	45.9	0.3	0.5A	6	3	271	25	0.38	1.0	2.6	B	15	2	1.9	285	6	1.5	123	84	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - NOVEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
1984 NOV 4 16 49	60	9.2	141	1.5	9.2	0.7	12	5	108	1	0.25	0.7	0.4	A	95	17	0.6	190	18	1.4	324	65	0.7		
4 17 59	60	3.0	141	13.8	6.0	0.9	14	7	153	6	0.50	0.8	0.8	A	268	25	0.6	10	25	1.4	139	53	1.6		
4 18 16	60	52.3	138	49.6	0.1	1.0A	8	5	264	112	0.65	5.7	4.8	D	306	26	4.6	57	36	12.3	189	43	7.0		
4 19 15	60	32.7	144	47.2	16.5	0.5	10	8	138	13	0.34	0.7	1.0	A	31	6	1.3	123	23	0.8	287	66	2.0		
4 19 50	60	19.1	153	25.2	170.6	3.5	16	6	102	37	0.31	1.8	1.8	B	270	17	2.7	12	33	3.0	157	52	3.7		
4 21 56	60	24.4	140	42.6	8.2	0.8	11	5	158	33	0.78	0.9	2.2	B	325	7	0.6	81	10	1.1	209	61	3.8		
4 23 11	60	10.1	141	38.6	9.9	0.5A	10	5	185	16	0.59	0.8	1.0	A	261	1	0.6	165	17	1.5	354	72	1.9		
4 23 26	59	38.6	152	50.4	75.4	2.4	14	8	92	48	0.33	1.0	1.7	B	81	9	1.0	145	14	1.5	313	59	3.0		
5 1 9	61	10.9	149	30.2	32.8	1.7	24	13	42	8	0.59	0.4	0.6	A	261	3	0.8	171	6	0.7	18	83	1.1		
5 5 3	60	9.5	151	52.8	64.0	2.9	21	9	96	35	0.41	0.6	1.3	A	127	6	0.9	36	10	1.1	248	78	2.4		
5 4 46	61	17.2	152	12.8	5.7	-0.2A	3	3	294	4	0.07	1.1	0.9	A	21	0	1.1	291	0	2.1	0	90	1.8		
5 13 28	62	9.9	153	4.9	7.5	2.2	12	5	157	84	0.51	1.1	1.7	B	4	2.0	274	3	1.0	94	87	3.3			
5 14 3	61	17.7	152	15.1	6.4	2.0	19	11	121	6	1.16	0.6	0.4	A	211	13	0.6	114	29	1.3	322	58	0.5		
5 19 29	61	9.8	152	11.6	8.1	0.0A	3	3	296	8	0.06	1.4	1.6	B	330	14	1.3	261	35	1.9	81	48	3.2		
6 0 18	60	29.6	59	52.5	153	6.7	106.1	2.6	14	5	117	38	0.19	2.0	2.1	B	81	13	1.8	160	41	3.0	336	46	4.3
6 2 23	61	7.4	150	29.1	15.0	1.5	17	9	72	40	0.68	0.5	1.2	A	195	3	0.9	285	4	0.7	68	85	2.3		
6 4 45	59	2.0	152	36.0	71.9	2.4	10	5	251	58	0.20	3.1	6.9	D	356	7	5.6	87	9	2.5	229	79	13.2		
6 6 17	59	57.4	140	42.8	2.0	1.2	9	5	178	28	0.44	1.2	1.3	A	287	4	1.0	194	38	2.0	22	52	2.7		
6 10 30	60	45.2	61	51.7	149	17.2	6.1	1.0	111	17	0.74	0.8	1.1	A	174	7	1.3	268	31	0.6	73	58	2.5		
6 11 43	60	11.4	60	29.2	143	2.4	1.9	0.8	5	144	11	0.63	1.1	8.8	D	31	2	1.7	300	4	1.4	147	85	16.5	
6 16 51	60	38.7	152	23.6	14.6	0.5	6	5	169	7	14.6	14.6	2.3	D	111	8	27.6	14	37	0.8	211	52	1.6		
6 22 27	60	38.3	151	18.1	4.0	1.6	14	9	117	36	0.67	0.8	1.2	A	81	9	1.0	133	16	0.8	318	48	1.8		
7 7 0	60	3.7	60	50.9	152	15.1	6.9	0.4A	3	180	32	0.29	25.0	3.4	D	106	3	99.0	15	7	0.8	219	82	3.5	
7 7 4	61	22.0	61	29.8	151	11.4	6.7	0.6A	5	4	135	24	0.57	0.8	1.2	A	261	9	0.8	352	25	1.2	152	64	2.3
7 7 7	60	34.3	60	18.4	143	7.6	11.0	1.4	11	8	149	20	0.79	0.6	1.4	B	6	8	1.1	275	9	0.7	137	78	2.8
7 7 8	61	8.6	61	59.5	150	3.4	40.8	2.4	30	15	108	39	0.67	1.0	1.5	B	271	0	0.8	1	18	1.6	181	72	2.8
7 7 12	61	15.0	61	18.0	152	11.5	3.8	0.3	3	293	4	0.10	1.6	1.9	B	28	11	1.4	295	15	2.9	153	71	3.7	
7 7 20	60	33.2	60	30.9	142	29.0	2.3	1.1	4	89	10	0.43	1.2	5.6	D	355	4	0.9	264	4	2.1	130	84	10.5	
7 7 22	60	16.8	59	41.6	150	57.5	35.1	2.3	18	6	194	9	0.49	1.3	1.4	B	261	1	1.2	348	40	2.1	170	50	2.9
7 8 0	60	27.0	61	17.6	152	11.5	8.2	0.6	4	235	4	1.6	1.3	0.7	A	98	12	2.4	347	42	0.6	201	46	1.7	
7 8 1	61	21.9	59	37.6	152	20.6	81.5	2.8	18	6	104	67	0.32	0.9	1.4	B	81	12	2.4	328	17	0.9	261	29	4.8
7 8 15	58	48.7	58	42.8	137	26.5	27.5	1.6	4	356	116	0.32	25.0	25.0	D	261	0	99.0	315	34	9.0	171	42	99.0	
7 9 0	59	36.1	59	7.3	144	25.5	24.3	2.0	18	8	264	90	0.34	1.8	1.1	B	106	4	2.0	197	18	3.5	4	72	2.0
7 9 4	60	10.2	60	15.2	140	44.7	13.8	1.1	9	7	140	19	0.26	0.7	0.9	A	299	3	0.5	31	37	0.7	205	53	2.1
7 9 8	61	45.2	59	49.0	138	57.1	29.5	0.9	8	4	219	30	0.59	2.7	1.7	B	328	17	0.9	261	29	4.8	91	50	2.3
7 9 10	61	10.3	152	9.1	4.7	0.0A	3	3	281	5	0.04	1.3	1.7	B	261	11	2.0	322	20	1.0	139	54	2.9		
7 9 12	61	12.2	61	8.4	152	16.7	6.9	0.1	3	316	13	0.02	1.5	2.9	C	335	6	1.6	261	22	1.9	80	62	5.6	
7 9 16	61	20.5	59	58.0	140	7.9	14.3	0.6	8	4	295	8	0.37	1.3	1.2	A	194	30	0.9	306	33	1.4	72	42	3.0
7 9 21	60	17.5	140	40.3	14.6	1.0	10	6	148	25	0.33	0.9	1.2	A	304	6	0.6	38	37	1.1	206	52	2.3		
7 9 18	61	23.6	61	9.9	152	11.7	8.0	-0.1	3	4	294	8	0.32	1.3	1.2	A	193	29	0.9	305	33	1.3	72	43	3.0
7 9 19	60	15.3	141	35.8	9.4	1.0	12	8	113	23	0.97	0.8	0.8	A	204	15	0.5	303	28	1.5	89	57	1.5		
7 9 20	60	46.9	60	30.5	143	1.7	3.2	0.4	8	93	14	0.29	0.6	0.7	A	221	12	0.9	322	25	0.8	335	62	1.3	
7 9 21	60	19.0	59	56.7	141	46.9	8.4	1.1A	15	7	181	12	0.37	0.9	3.6	C	279	5	0.8	10	8	1.3	157	81	6.9
7 9 22	60	10.4	60	16.4	140	39.1	13.4	1.3	14	9	147	25	0.48	0.7	0.8	A	295	4	0.5	29	38	0.7	200	52	2.3
7 9 23	60	22.2	61	11.4	152	12.1	7.1	-0.1A	3	3	280	8	0.01	1.2	1.4	B	337	7	1.1	261	29	2.0	80	57	2.8
7 9 24	60	22.6	60	40.8	152	48.6	132.0	3.3	24	8	96	25	0.31	1.1	1.3	A	114	4	2.0	205	13	1.4	7	76	2.5
7 9 25	60	15.3	140	47.6	9.3	0.9A	7	5	137	28	0.30	0.9	1.4	B	305	8	0.6	39	25	1.2	199	64	2.9		

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - NOVEMBER 1984

ORIGIN TIME	LAT N			LONG W			MAG	NP	NS	GAP	DI	RMS	SEH	SEZ Q	AZI	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
	HR	MN	SEC	DEG	MIN	DEG																	
1984 NOV 11 2 56 20.6	60	28.3	140	2.8	6.5	1.3A	7	5	201	43	0.50	0.9	1.5	B	334	7	0.7	81	15	1.5	223	66	2.8
11 5 45 42.9	61	20.5	147	19.4	25.8	3.3	29	13	77	30	0.48	0.4	0.6	A	294	0	0.5	204	7	0.8	24	83	1.2
11 11 11 16.6	60	1.1	141	41.9	6.7	0.7	9	7	171	19	0.38	0.7	0.6	A	82	7	0.7	347	34	1.4	182	55	1.1
11 13 27 45.6	60	14.9	141	2.0	10.6	0.8	9	5	122	10	0.18	0.8	0.9	A	94	14	0.8	353	37	0.6	201	50	2.2
11 21 3 31.8	59	43.1	138	59.4	12.5	2.1	9	2	210	24	0.85	2.4	1.3	B	323	16	0.8	261	23	4.0	94	51	1.9
12 0 41 8.1	60	25.3	141	12.3	16.7	0.7	11	7	127	31	0.42	0.8	1.0	B	336	10	0.8	81	15	1.0	217	67	3.0
12 2 30 6.0	61	18.7	152	18.7	4.1	0.9	6	7	205	10	0.83	0.8	1.0	A	261	26	0.9	345	27	0.7	124	53	2.2
12 5 4 16.7	58	10.0	137	23.0	1.5	1.9	6	3	182	167	0.47	25.0	2.7	D	81	5	66.7	152	21	6.9	338	62	3.8
12 8 16 42.6	57	56.9	140	39.7	16.6	2.3	11	4	287	200	0.34	25.0	25.0	D	317	23	9.0	81	24	5.5	200	44	87.5
12 20 15 20.8	59	29.6	152	38.3	84.6	2.7	16	6	105	48	0.26	1.1	1.5	B	81	12	1.1	329	12	1.7	205	63	2.9
13 0 37 49.5	61	59.5	150	47.1	68.8	3.0	25	10	177	39	0.51	1.1	1.3	A	81	1	0.8	169	21	1.9	348	69	2.5
13 0 41 9.9	60	42.6	143	7.0	7.2	0.7	6	4	84	33	0.36	0.6	4.8	C	20	2	0.7	290	4	0.9	137	86	9.1
13 0 50 31.5	60	31.8	144	45.5	27.5	0.6A	7	6	107	16	0.38	1.2	0.7	A	355	31	1.2	261	35	2.2	124	44	0.9
13 1 46 42.2	59	21.5	152	50.3	88.7	2.4	13	3	201	34	0.33	1.4	3.0	C	35	3	1.7	126	16	2.1	295	74	5.9
13 7 39 45.0	60	0.6	141	55.6	5.8	1.0	13	8	201	7	0.48	0.8	0.5	A	353	11	1.5	86	17	0.5	231	70	1.0
13 8 1 17.5	60	4.0	152	46.2	100.8	2.7	17	6	98	13	0.31	0.8	1.0	A	225	3	1.3	135	3	1.6	0	86	1.8
13 8 31 10.1	61	17.3	152	16.8	5.6	0.9	7	8	202	7	0.64	0.9	0.7	A	218	25	0.7	107	36	2.0	334	43	0.6
13 8 58 50.3	60	27.5	147	44.1	18.5	2.4	35	14	80	55	0.54	0.4	0.7	A	349	8	0.7	261	14	0.4	109	74	1.3
13 11 19 35.9	60	18.2	140	57.4	12.0	1.0	12	7	133	17	0.31	0.6	1.1	A	81	12	0.7	339	20	0.6	198	64	2.2
13 19 11 48.6	60	14.5	141	0.2	8.5	0.8	5	4	150	10	0.19	2.3	2.3	B	75	29	1.0	324	32	0.7	197	44	6.0
13 21 38 43.8	59	55.3	141	30.7	9.9	11	6	214	25	0.50	0.6	1.1	A	166	10	1.1	261	12	1.7	38	74	2.2	
13 22 11 31.3	62	5.2	149	42.1	48.5	2.4	28	12	184	47	0.51	0.9	1.1	A	279	9	0.7	14	29	1.5	173	59	2.2
13 23 29 44.5	61	52.2	149	40.6	5.5	2.1	30	15	162	38	0.87	0.6	1.0	A	178	7	1.0	271	25	0.4	73	64	2.1
14 0 12 39.9	61	47.8	149	2.6	14.6	1.1	24	15	121	6	0.70	0.6	0.5	A	148	8	0.7	81	42	1.1	247	43	0.5
14 1 29 9.5	61	30.6	140	26.2	3.8	1.4A	7	4	267	77	0.51	3.7	25.0	D	115	1	2.4	25	3	4.5	223	87	99.0
14 3 56 38.5	61	46.7	148	59.7	13.3	0.8	18	10	91	4	0.43	0.6	0.5	A	309	6	0.8	261	44	0.5	44	32	0.9
14 5 59 50.2	60	14.2	140	58.2	10.1	0.9	12	5	125	10	0.19	0.9	0.9	A	310	24	0.6	58	35	0.7	193	45	2.3
14 7 0 52.4	59	49.1	141	24.1	9.9	1.5	14	7	186	43	0.72	0.6	1.1	A	94	2	0.6	184	15	1.1	357	75	2.1
14 9 26 6.3	61	19.7	149	18.1	36.3	0.9A	15	8	75	17	0.37	0.8	0.8	A	34	4	0.9	128	42	1.4	300	48	1.7
14 11 57 58.8	60	31.0	153	0.9	162.8	3.5	18	7	89	34	0.25	1.4	1.2	B	134	5	2.6	43	11	1.3	248	78	2.3
14 21 22 44.5	60	18.0	141	18.1	16.3	0.9	18	6	112	19	0.26	0.5	0.6	A	308	9	0.5	43	28	0.7	202	60	1.3
15 2 5 24.3	60	18.6	140	31.7	8.7	0.3A	7	4	159	28	0.71	1.5	2.9	C	290	9	0.8	23	19	2.0	176	69	5.7
15 7 10 7.3	60	31.3	142	59.6	0.8	0.2A	6	6	106	11	0.65	1.2	18.8	D	357	1	0.7	267	2	1.8	114	88	35.3
15 10 39 52.8	59	28.6	138	43.4	11.1	1.1	4	4	296	9	0.40	6.0	3.9	D	105	19	2.4	208	33	13.4	350	51	1.0
15 10 57 41.5	60	22.6	141	17.3	14.1	1.7	22	16	119	25	0.48	0.4	0.6	A	81	12	0.6	330	14	0.5	202	62	1.1
15 11 6 10.9	60	22.5	141	15.5	10.9	0.3A	10	6	120	27	0.35	0.8	1.7	B	322	5	0.8	81	13	0.9	216	58	2.9
15 12 53 30.6	61	31.4	151	13.7	8.0	0.5A	4	4	136	27	0.50	1.2	2.5	B	1	10	0.9	267	22	0.7	114	66	5.2
15 13 53 34.2	61	7.5	146	29.5	15.4	0.6A	6	6	166	8	0.34	1.2	0.7	A	32	3	0.6	123	18	2.3	293	72	1.3
15 15 4 28.4	60	6.5	141	18.2	2.9	1.5	16	10	142	10	0.47	0.5	0.5	A	282	4	0.3	189	31	1.9	59	9.9	1.6
15 16 4 22 59.0	61	48.8	148	55.1	15.6	1.6	26	14	118	4	0.60	0.6	0.5	A	136	10	0.8	261	44	0.7	38	35	1.1
15 21 22 30.6	60	26.0	144	23.3	26.1	2.6	32	11	70	13	0.38	0.4	0.3	A	83	25	0.5	190	32	0.9	323	47	0.5
15 22 34 4.6	61	1.2	152	30.3	18.4	0.5A	4	4	220	30	0.03	3.0	6.0	D	198	4	0.6	290	23	3.2	99	67	12.1
15 23 51 3.8	60	37.5	144	40.0	0.2	1.1A	8	7	106	31	0.44	1.0	3.0	C	33	7	1.5	125	12	0.6	273	76	5.9
16 2 17 37.5	60	58.3	152	6.8	9.2	0.3A	4	3	191	24	0.40	7.8	0.8	D	284	0	14.6	194	15	0.6	14	75	1.6
16 4 22 59.0	61	48.8	148	55.1	16.4	1.7	27	16	124	4	0.60	0.4	0.4	A	137	25	0.7	261	34	0.6	39	9.9	0.9
16 7 0 47.8	61	48.6	148	53.8	16.4	1.7	27	16	124	4	0.60	0.4	0.4	A	137	25	0.7	261	34	0.6	39	9.9	0.9
16 9 33 4.2	59	57.4	21.4	31.7	0.5A	7	4	235	29	0.34	1.7	1.9	B	261	2	1.5	351	28	3.1	167	62	3.7	
16 10 7 29.9	60	11.2	141	7.8	11.0	1.3	15	6	129	6	0.39	0.8	0.6	A	194	21	1.6	296	29	0.6	73	53	1.0
16 13 56 22.7	61	16.0	152	12.1	3.1	0.7	3	3	287	3	0.05	1.1	0.9	A	192	8	0.9	101	8	2.2	327	79	1.7

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - NOVEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH			SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3			
												DEG	MIN	KM	DEG	MIN	KM	DEG	DEG	KM	DEG	DEG	KM	DEG	DEG	KM		
1984 NOV 16	17	1	50.8	61	55.4	148	56.0	8.4	2.0	30	17	167	10	0.69	0.5	0.4	A	34	28	0.6	147	36	1.0	276	41	0.5		
	16	17	59	32.0	60	12.4	141	2.3	13.8	1.1	11	4	6	0.35	1.3	0.8	B	311	28	0.7	204	28	2.8	78	48	0.9		
	16	18	57	2.6	59	35.6	151	8.6	39.0	2.1	15	6	143	24	0.32	1.6	1.5	B	278	9	1.2	184	25	3.2	63	63	2.7	
	16	21	45	14.0	59	41.4	148	42.2	36.0	2.3	27	6	205	62	0.50	0.9	0.9	A	277	13	0.8	178	33	1.9	25	54	1.5	
	17	0	39	31.9	58	51.3	152	29.8	72.3	2.7	9	4	136	75	0.34	1.7	3.7	C	347	0	1.7	81	18	2.3	257	72	7.3	
	17	2	3	25.9	60	54.7	152	30.9	3.4	2.4	24	13	105	38	0.80	0.8	0.6	A	193	19	0.6	293	29	1.6	74	55	0.9	
	17	5	35	14.1	60	15.2	141	0.2	6.7	0.6	6	4	125	11	0.41	0.9	1.2	A	81	13	1.1	340	30	0.6	191	56	2.7	
	17	6	31	1.3	60	11.9	141	11.9	2.1	0.8	9	3	130	10	0.46	1.2	1.3	B	297	5	0.5	31	36	1.6	200	54	2.9	
	17	14	30	47.2	62	16.8	148	5.2	43.2	2.4	25	15	199	54	0.50	1.0	1.9	B	81	9	0.8	349	13	1.6	205	74	3.6	
	17	15	17	16.2	61	46.9	149	2.7	13.9	0.9	16	11	112	6	0.56	0.4	0.4	A	350	14	0.6	93	42	1.0	246	45	0.5	
	17	18	35	37.4	60	7.1	141	5.7	8.5	1.1	11	4	141	5	0.50	1.1	0.6	A	294	2	0.6	25	17	2.1	197	73	1.0	
	17	23	36	28.8	61	27.8	147	59.5	27.1	2.2	26	14	65	25	0.49	0.4	0.7	A	25	0	0.8	115	2	2.5	295	88	1.2	
	18	7	14	46.0	60	14.8	141	4.5	1.1	1.0	10	10	120	11	0.48	0.8	1.4	B	310	11	0.7	44	20	1.1	193	67	2.7	
	18	7	24	52.5	60	5.2	141	10.7	3.2	0.7A	4	2	226	11	0.10	2.5	3.6	C	278	16	1.2	180	27	2.8	35	58	7.9	
	18	7	26	18.7	58	13.6	151	17.3	45.0	2.5	10	4	208	89	0.52	5.5	7.9	D	301	12	9.9	33	13	1.8	169	72	15.5	
	18	10	34	12.6	61	16.0	152	18.6	6.0	0.1A	3	3	310	8	0.01	2.2	3.1	C	193	7	2.4	286	26	3.3	89	63	6.3	
	18	11	24	54.4	61	37.9	146	33.1	26.1	2.3	34	19	81	37	0.71	0.4	0.9	A	287	2	0.5	197	7	0.7	33	83	1.7	
	18	13	28	12.3	61	12.4	141	10.9	1.6	1.8	12	4	228	28	0.47	1.8	4.4	C	81	1	2.7	318	3	1.5	184	57	6.9	
	18	14	59	5.3	60	12.7	140	56.2	9.0	1.0	8	2	123	8	0.13	1.6	1.6	B	110	6	1.2	14	43	1.0	206	46	4.1	
	18	18	21	34.3	61	6.3	146	31.9	17.7	-0.1	3	204	5	0.31	25.0	18.3	D	145	145	0	99.0	272	3	0.7	40	52	3.1	
	18	19	10	54.5	61	21.6	148	55.5	28.9	1.0	16	4	45	26	0.62	0.6	1.1	A	177	5	0.7	268	16	0.9	70	73	2.1	
	19	2	17	47.7	61	40.2	149	38.8	37.5	2.5	31	19	132	12	0.66	0.6	0.5	A	266	1	0.6	357	37	1.2	175	53	0.8	
	19	3	36	54.7	60	14.6	140	53.0	12.6	1.5	14	8	131	13	0.21	0.8	0.8	A	290	0	0.7	20	44	1.0	200	46	1.8	
	19	5	24	15.7	60	36.2	141	44.7	17.4	0.4A	3	2	158	27	0.13	14.1	11.9	D	341	13	1.2	261	43	33.1	85	45	3.0	
	19	17	22	49.4	59	60.0	141	35.8	4.7	1.3	11	8	174	25	0.60	0.7	1.0	A	272	3	0.7	182	6	1.4	29	83	1.9	
	19	19	3	51.9	61	18.6	150	33.0	13.2	1.3	19	10	85	20	0.70	0.5	0.7	A	298	0	0.6	208	24	0.8	28	66	1.3	
	20	0	12	14.5	59	56.7	141	34.7	4.5	1.0A	6	3	216	23	0.41	1.2	3.0	C	175	5	2.3	265	7	1.6	50	81	5.7	
	20	0	24	2.0	59	55.7	141	35.1	4.0	0.9A	4	4	260	25	0.26	1.3	3.0	C	174	2	2.5	264	11	1.6	74	79	5.8	
	20	1	28	44.7	60	16.3	146	6.9	8.8	1.4	15	8	121	14	0.27	0.6	0.8	A	305	15	0.6	243	30	0.8	192	56	1.8	
	20	2	7	14.1	61	33.5	151	17.0	2.0	0.4A	5	5	115	31	0.58	0.7	2.4	B	261	6	0.9	333	10	1.1	136	69	4.3	
	20	3	7	43.4	61	41.0	151	0.5	4.5	1.3	5	5	124	28	0.72	0.9	1.3	A	81	4	1.4	139	13	0.7	334	56	2.1	
	20	3	28	8.2	61	31.6	151	10.0	16.3	0.5A	4	4	128	24	0.47	2.4	14.9	D	261	6	1.3	331	8	1.5	128	68	26.5	
	20	3	57	4.6	59	58.5	141	32.5	3.9	1.1A	7	4	206	20	0.54	0.9	1.8	B	261	4	0.9	160	13	1.4	7	73	3.4	
	20	4	4	24.3	61	10.1	150	7.6	15.8	1.0A	11	10	88	32	0.65	0.5	1.4	B	190	5	0.9	281	7	0.8	65	81	2.7	
	20	5	1	38.7	59	58.5	141	33.0	6.1	2.2	1.0	7	4	229	20	0.32	1.2	2.2	B	270	3	1.2	180	8	1.8	20	81	4.1
	20	9	25	4.2	61	4.9	149	41.1	41.0	1.0A	9	8	104	19	0.38	1.2	1.5	B	189	1	1.2	98	24	2.0	281	66	3.0	
	20	11	31	53.7	60	0.5	148	54.1	13.0	2.3	3.3	11	175	32	0.69	0.9	0.9	A	279	11	0.8	20	44	1.3	178	44	2.0	
	20	12	17	29.8	62	23.5	149	39.4	47.2	2.4	26	6	132	71	0.49	1.0	4.0	C	275	2	1.3	5	4	1.9	158	86	7.6	
	20	14	15	20.8	60	21.7	141	1.0	1.5	1.8	11	3	139	23	0.56	1.8	3.2	C	317	6	1.4	81	14	2.2	211	53	5.5	
	20	14	54	10.1	61	47.1	148	58.9	14.0	1.1	12	9	87	3	0.47	0.6	0.6	A	339	2	1.1	81	43	1.3	247	46	0.7	
	20	17	48	30.8	61	49.8	149	9.9	2.8	-0.1A	3	328	10	0.06	2.6	8.4	D	335	4	2.9	261	16	2.0	79	67	15.6		
	20	19	31	28.2	60	35.1	141	30.9	16.4	1.0	6	3	114	28	0.40	0.9	1.8	B	14	7	0.9	282	12	1.6	134	76	3.5	
	20	23	4	38.8	60	34.9	143	55.3	24.1	1.5	15	11	90	33	0.33	0.5	0.8	A	294	18	0.7	30	18	0.9	162	64	1.5	
	21	3	30	5.8	60	10.8	141	6.1	6.7	0.5	4	4	201	5	0.18	1.1	0.8	A	275	15	0.8	179	22	2.0	37	63	1.4	
	21	3	40	56.2	60	23.9	143	19.6	16.0	2.3	21	12	135	27	0.75	0.6	0.9	A	283	6	0.6	14	9	1.0	160	79	1.8	
	21	4	3	34.7	60	26.9	147	47.3	19.4	2.0	25	6	101	55	0.41	0.7	1.0	A	262	13	0.8	169	13	1.3	36	71	2.0	
	21	7	43	26.0	60	9.1	141	41.8	11.8	1.3	8	4	142	23	0.41	0.7	1.1	A	131	3	1.2	40	18	1.1	230	72	2.2	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - NOVEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DJ	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3			DIP3			SE3		
																					DEG	MIN	SEC	DEG	MIN	SEC			
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC		
NOV 21	8	41	31.0	59	11.9	139	38.7	18.1	1.4	5	5	267	52	0.57	2.7	2.6	C	168	28	2.8	279	34	1.9	48	43	6.6			
21	16	38	3.0	57	37.2	154	42.3	97.1	3.0	10	6	284	133	0.18	7.4	15.7	D	261	13	7.5	315	24	4.0	140	46	25.3			
21	19	3	55.0	60	11.3	141	5.3	16.5	1.3	6	2	165	5	0.13	3.0	1.6	C	222	22	5.9	117	34	3.2	339	48	1.1			
21	20	6	26.0	60	5.2	152	17.4	77.8	3.1	21	13	104	31	0.34	0.9	1.4	A	144	1	1.3	81	6	1.0	243	62	2.4			
21	20	35	25.8	61	10.5	152	31.7	16.9	0.7	5	4	216	22	0.10	2.3	3.6	C	311	14	3.9	216	21	1.0	72	64	7.4			
21	23	46	14.3	61	1.6	149	30.9	35.0	0.7A	6	6	140	24	0.14	0.9	2.7	C	313	0	1.7	223	13	1.3	43	77	5.2			
22	14	36	45.0	60	15.9	141	3.2	6.3	1.1	6	5	124	12	0.22	1.4	2.1	B	81	20	1.2	338	24	0.6	205	57	4.6			
22	15	36	40.8	60	13.8	140	59.7	9.6	1.4	10	7	122	9	0.28	1.0	1.0	A	84	28	0.8	335	33	0.7	205	44	2.5			
22	18	34	15.4	60	7.5	152	25.1	97.8	2.5	18	11	99	23	0.32	0.9	1.6	B	141	4	1.3	81	9	0.9	257	59	2.6			
22	22	3	47.7	62	0.9	150	48.1	65.0	2.3	21	14	181	38	0.50	1.1	1.2	A	86	8	0.7	182	39	1.7	346	50	2.5			
23	7	27	45.0	59	51.0	141	24.9	5.9	1.9	15	6	184	40	0.48	0.9	1.0	A	104	8	0.8	198	27	1.4	359	62	2.1			
23	9	19	40.4	61	6.9	152	16.3	0.9	1.3	6	4	193	14	0.57	0.9	1.2	A	203	12	0.5	296	14	1.6	74	71	2.4			
23	11	56	24.2	62	41.7	143	32.3	8.6	2.9	12	9	199	103	0.35	1.5	1.8	B	157	6	1.0	81	19	2.5	265	66	3.4			
23	12	17	58.5	61	8.1	152	12.8	7.9	-0.1A	3	3	313	10	0.02	1.6	2.2	B	327	14	1.6	261	30	1.9	83	50	4.1			
23	15	38	50.6	60	3.1	136	46.9	11.2	1.8	5	4	348	128	0.21	25.0	5.7	D	122	1	10.2	212	10	56.2	26	80	4.2			
23	20	26	11.9	61	17.0	150	16.7	19.0	0.8A	8	8	88	32	0.57	0.6	1.0	A	183	1	1.2	273	2	0.7	66	88	1.9			
23	20	55	30.0	59	40.7	148	39.7	35.0	2.0	17	12	208	65	0.66	1.0	0.9	A	93	3	1.0	185	30	2.1	358	60	1.5			
24	2	14	41.9	59	39.9	152	47.9	78.0	2.7	14	4	92	51	0.29	1.1	2.2	B	140	9	1.7	81	16	1.0	263	54	3.6			
24	5	12	33.8	60	13.3	141	7.2	13.9	1.4	13	6	114	9	0.56	0.8	0.7	A	65	33	1.1	308	35	0.6	185	38	1.8			
24	7	19	20.3	61	36.7	151	17.3	7.6	0.7A	9	7	114	33	0.75	0.6	1.2	A	282	13	0.7	188	19	0.6	45	67	2.5			
24	8	52	40.0	60	24.3	140	4.0	11.3	1.0	11	6	195	36	0.71	1.2	1.5	B	325	10	0.6	81	23	1.8	217	55	2.8			
24	9	15	4.5	60	22.0	140	18.8	3.3	1.0A	9	4	180	30	0.75	0.9	2.0	B	309	9	0.8	41	9	1.5	175	77	3.9			
24	10	42	28.3	60	2.7	153	11.0	128.4	3.5	16	9	138	25	0.49	1.3	1.3	A	42	17	1.1	137	17	2.4	270	66	2.5			
4.1	MB		3.4	ML	ATWC																								
24	11	30	40.2	62	39.1	143	31.5	14.0	2.3	12	8	260	136	0.32	1.6	1.4	B	195	30	2.7	309	36	1.5	76	40	3.3			
24	13	31	39.9	61	21.7	150	5.6	42.1	2.0	30	13	67	31	0.52	0.4	0.9	A	104	6	0.5	195	12	0.7	348	77	1.6			
24	19	41	10.2	61	38.5	149	54.6	44.0	2.8	33	14	81	42	0.57	0.4	0.9	A	269	0	0.5	179	8	0.7	359	82	1.6			
24	20	21	23.4	62	1.1	149	33.7	46.3	2.6	31	11	106	37	0.52	0.8	0.7	A	284	7	0.7	190	30	1.5	26	59	1.3			
25	1	51	18.2	60	25.7	141	13.9	12.1	2.2	21	10	125	29	0.56	0.5	0.8	A	15	2	0.9	285	5	0.5	127	85	1.5			
25	1	52	56.2	60	24.5	141	15.2	12.4	0.6A	8	4	123	28	0.36	1.1	2.2	B	99	13	0.9	4	20	1.1	220	66	4.5			
25	2	59	22.9	60	17.5	140	57.5	13.6	1.4	16	5	132	16	0.19	0.6	0.9	A	81	6	0.9	342	28	0.6	182	60	1.8			
25	4	30	32.5	60	39.6	140	38.5	7.8	0.9A	10	6	191	51	0.67	1.3	2.0	B	141	3	0.6	261	18	1.8	44	55	3.5			
25	4	41	29.3	61	37.4	142	12.4	0.6	1.7	15	6	241	66	0.29	1.1	8.9	D	295	0	0.9	25	1	2.1	205	89	16.8			
25	4	58	13.2	61	17.0	152	14.1	8.1	0.6	5	3	199	5	0.24	1.3	1.7	B	92	17	3.0	261	42	1.6	359	8	0.9			
25	7	34	11.8	60	13.3	141	24.2	10.6	0.3A	9	5	130	22	0.18	0.9	1.2	A	205	4	1.6	296	5	0.6	77	84	2.3			
25	7	43	9.5	59	20.2	152	36.5	67.1	2.9	13	4	122	95	0.17	1.1	3.5	C	94	6	1.2	185	8	1.9	328	80	6.6			
25	8	49	52.9	58	15.4	155	6.4	0.5	2.9	10	2	149	165	0.66	4.2	2.3	C	336	8	2.6	261	16	7.7	94	67	3.7			
4.2	MB		4.5	ML	ATWC																								
25	9	54	56.1	61	52.4	149	19.1	2.7	1.6	27	13	163	19	0.67	0.5	0.8	A	178	8	0.8	271	23	0.4	70	66	1.6			
25	12	35	57.7	59	56.3	141	13.0	9.0	1.9	16	6	173	26	0.48	0.6	0.8	A	287	0	0.6	17	11	1.4	197	79	1.5			
25	12	40	23.3	59	56.2	141	15.0	4.9	0.7A	12	3	174	27	0.24	1.0	2.1	B	291	2	1.3	201	17	1.6	28	73	4.1			
25	18	16	33.4	60	25.5	141	27.9	13.1	1.3	15	7	110	17	0.37	0.7	1.1	A	343	8	0.7	81	23	0.9	236	65	2.3			
25	19	11	57.6	60	3.9	139	38.3	12.8	0.9A	7	5	190	12	0.59	2.7	1.4	B	302	0	0.9	212	14	5.1	32	76	2.3			
25	19	29	29.5	61	24.7	146	22.5	25.4	2.1	33	14	61	26	0.60	0.3	0.7	A	349	4	0.5	261	10	0.4	101	79	1.3			
25	20	9	53.7	60	29.8	143	22.4	26.9	0.4A	8	6	113	44	0.92	1.0	1.8	B	81	8	0.9	339	9	1.8	207	73	3.5			
25	21	9	27.0	61	5.2	152	3.7	10.3	0.1A	3	3	339	11	0.06	2.8	1.2	C	273	3	5.2	182	31	2.3	8	59	2.2			
25	21	27	31.2	61	23.8	146	25.4	25.5	2.2	36	15	59	29	0.56	0.3	0.5	A	186	2	0.5	276	5	0.4	74	85	0.9			
25	21	36	29.3	59	57.3	140	38.5	6.5	0.8	8	6	188	27	0.43	1.3	2.2	B	106	6	0.7	199	26	1.4	63	4.5	4.5			
25	21	36	44.7	61	4.8	152	2.0	10.3	0.1A	3	3	339	11	0.08	2.8	1.3	C	270	10	5.4	7	36	2.3	167	52	2.3			
26	3	7	10.7	60	23.0</td																								

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - NOVEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3		
															DEG	MIN	SEC	KM	DEG	KM	DEG	KM			
1984 00 00 00	144	46.1	12.4	1.3	17	9	113	1.1	0.46	0.6	0.7	A	124	11	0.8	26	36	1.0	228	52	1.5				
NOV 26 10 32 54.0	60	28.5	141	38.4	0.3	0.6A	5	2	256	35	0.34	2.4	4.4	C	310	4	1.8	219	10	4.3	61	79	8.3		
26 12 24 19.9	60	2.8	140	58.3	10.2	0.9	10	5	128	12	0.20	1.1	1.4	B	306	10	0.8	43	36	1.1	203	52	3.2		
26 12 54 57.4	60	15.4	140	58.3	4.0	0.2A	4	3	182	11	0.17	1.2	9.0	D	3	0	2.2	273	1	0.9	93	89	16.9		
26 15 13 11.2	61	49.8	148	45.2	11.3	1.7	14	7	162	24	0.53	1.0	1.0	A	120	10	0.9	219	43	1.4	20	45	2.4		
26 21 49 53.9	60	8.7	141	40.8	147	59.8	27.9	1.6	21	12	93	22	0.42	0.3	0.9	A	105	1	0.5	195	7	0.6	7	83	1.6
27 3 21 0.8	60	58.3	138	47.3	19.2	1.1	5	2	258	9	0.20	5.7	3.0	D	222	24	11.5	118	28	5.9	346	52	1.0		
27 9 50 35.0	59	31.1	140	41.4	36.3	1.2A	10	8	99	1	0.37	0.6	0.8	A	192	2	0.6	282	4	1.1	75	86	1.5		
27 15 52 4.0	61	10.9	149	24.3	151	55.8	116.4	2.6	19	168	25	0.38	1.7	1.4	A	261	0	1.4	315	18	2.5	171	50	2.0	
28 0 22 3.7	61	51.4	142	57.9	16.2	1.2A	14	8	88	35	0.60	0.4	1.1	A	1	0	0.8	21	1	0.6	91	89	1.9		
28 0 31 31.6	60	30.6	140	58.3	67.1	2.7	11	6	138	125	0.18	1.4	7.3	D	173	2	1.6	83	5	2.2	285	85	13.8		
28 3 52 46.7	59	0.2	152	36.5	14.6	0.9A	3	2	267	34	0.31	3.2	5.7	D	275	7	1.6	182	.24	3.8	20	65	11.7		
28 4 28 40.8	59	52.9	141	50.0	12.8	1.1	8	5	235	15	0.49	1.6	1.0	B	191	6	3.0	100	13	0.8	305	76	1.8		
28 14 56 9.0	59	56.6	141	50.0	10.0	0.4	7	5	183	8	0.37	1.2	0.6	A	103	10	2.4	196	17	0.7	344	70	1.0		
29 0 7 4.5	61	9.6	152	12.3	10.4	0.8	13	9	126	11	0.22	0.7	0.7	A	300	3	0.6	32	43	0.8	207	47	1.6		
29 1 43 8.0	60	15.1	140	58.9	141	32.4	9.2	0.9	11	6	177	28	0.42	0.9	1.2	A	271	2	0.8	181	16	1.7	74	2.2	2.2
29 16 22 24.7	59	59.0	140	41.4	138	51.9	0.0	1.8A	9	5	264	113	0.81	3.3	3.3	C	330	9	1.8	81	42	8.4	231	43	1.0
29 19 28 57.5	61	17.0	150	30.2	44.6	1.6	19	14	85	24	0.56	0.4	1.3	A	190	1	0.7	100	5	0.6	291	85	2.4		
30 1 49 25.0	60	15.8	140	53.7	7.1	0.8	11	7	133	14	0.47	0.6	1.0	A	307	4	0.5	39	30	0.6	210	60	2.1		
30 4 57 28.1	61	15.7	150	24.8	39.1	1.1A	16	10	85	29	0.48	0.5	1.1	A	197	6	0.9	106	9	0.6	320	79	2.2		
30 5 0 6.0	61	33.4	150	3.7	45.1	1.6	21	12	101	14	0.44	0.5	0.8	A	261	5	0.5	169	22	0.8	3	67	1.6		
30 10 46 36.6	61	44.3	150	2.3	9.9	1.0A	15	8	149	13	0.86	0.5	0.5	A	265	15	0.4	0	17	0.9	136	67	1.0		
30 14 17 48.5	60	30.2	143	5.5	0.9	0.8	11	4	98	15	0.59	0.6	15.1	D	267	1	0.7	357	1	0.9	132	89	28.3		
30 15 35 39.0	59	58.0	141	42.0	12.4	1.4	18	9	179	20	0.48	0.7	0.6	A	97	12	0.5	0	29	1.4	207	58	1.0		
30 18 39 2.3	61	49.0	148	54.3	14.8	0.0A	5	4	145	4	0.10	1.1	1.3	B	197	11	1.9	101	27	1.0	307	60	2.8		
30 21 16 14.3	60	16.8	141	33.8	10.1	0.8	10	6	109	13	0.33	0.8	0.9	A	119	8	0.8	24	33	1.2	221	56	1.8		

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - DECEMBER 1984											
ORIGIN TIME	LAT N	LONG W	DEPTH	MAG			NP	NS	DI	RMS	SEH
				DEG	MIN	SEC	KM	SEC	KM	DEG	SEZ Q
1984	HR MN SEC	HR MN SEC	DEG MIN SEC	DEG	MIN	SEC	KM	SEC	KM	DEG	AZ1 DIP1 SE1
DEC 1 7 52 2.7	61 48.4	149 37.5	42.2	1.2	25	11	156	22	0.51	0.7 A	96 1
1 8 12 29.5	59 42.2	152 51.1	88.8	2.4	13	7	103	53	0.34	1.6	2.0 B 81
1 8 21 46.0	59 45.9	141 25.6	0.5	0.8A	5	3	254	68	0.40	3.9	3.3 C 286
1 10 59 42.3	60 21.1	141 57.8	10.3	0.5	9	6	73	12	0.69	0.5	0.7 A 12
1 11 37 15.0	61 3.3	152 17.8	13.7	0.6A	4	4	191	19	0.20	2.2	2.6 B 198
1 16 7 1.0	61 52.2	149 36.2	45.3	1.9	28	14	162	28	0.69	0.8	0.7 A 358
1 17 19 49.8	61 3.7	149 53.2	45.5	1.0A	13	11	81	52	0.31	1.5	2.4 B 81
1 18 25 53.2	60 39.0	150 17.7	46.3	3.3	31	6	55	16	0.49	0.5	1.3 A 104
3.8 MB	4.1 ML ATWC			Felt (II) at Anchorage and Soldotna.			Felt (II) at Anchorage and Soldotna.			4.4 0.4 A 171	
1 20 20 50.6	61 47.0	149 1.8	9.9	1.1	25	13	108	6	0.72	0.4	0.4 A 171
1 21 9 11.7	61 41.6	149 28.5	47.0	0.9A	12	10	131	21	0.36	1.0	1.2 A 269
2 0 27 0.7	61 59.0	149 12.9	0.0	1.1	24	13	173	21	0.71	0.5	0.8 A 197
2 1 3 29.2	61 49.2	148 31.4	9.4	0.9	22	10	170	10	0.79	0.6	0.4 A 278
2 1 11 58.8	60 38.4	143 20.5	5.0	1.3	17	9	87	34	0.66	0.4	5.7 D 281
2 4 51 52.0	61 39.4	150 58.0	59.4	2.5	27	13	117	24	0.58	0.7	0.8 A 81
2 6 7 56.0	60 2.4	141 39.6	10.3	1.2	16	8	158	21	0.46	0.6	0.6 A 91
2 6 42 40.2	61 29.6	149 56.4	43.8	0.8A	7	4	147	43	0.26	1.3	2.7 B 81
2 7 45 25.6	60 3.8	139 34.2	14.2	1.7	11	6	193	13	0.73	2.3	1.0 B 319
2 9 43 6.4	59 48.0	153 18.4	114.6	3.1	15	7	101	50	0.28	1.5	1.4 B 81
	3.5 ML ATWC			Felt (II) at Anchorage and Soldotna.			Felt (II) at Anchorage and Soldotna.			4.4 0.4 A 171	
2 17 55 7.5	60 9.3	141 8.9	6.6	1.0	13	8	98	6	0.38	0.5	0.5 A 101
2 21 26 24.6	61 14.9	152 2.5	0.1	-0.6A	3	3	169	6	0.02	0.5	25.0 D 6
2 22 34 29.8	61 28.3	149 57.0	39.2	1.1A	18	12	66	20	0.45	0.5	1.3 A 97
3 0 24 0.9	62 20.5	149 42.3	57.5	2.5	9	209	68	0.56	1.2	2.0 B 276	
3 0 50 58.1	60 14.4	139 34.3	5.2	2.0	11	5	205	32	0.69	1.0	1.4 B 303
3 2 42 2.8	60 10.7	140 6.7	0.4	0.9	6	3	184	12	0.27	1.1	2.9 C 359
3 5 51 31.0	61 10.8	152 9.4	6.8	-0.1A	3	3	272	5	0.05	1.2	1.4 A 332
3 11 20 34.1	60 24.8	150 16.0	47.8	2.2	29	8	79	11	0.41	0.6	1.3 A 261
3 22 16 57.4	60 39.7	151 8.7	59.7	2.7	27	11	57	10	0.46	0.5	1.2 A 282
3 23 18 15.9	60 12.1	141 5.3	4.8	0.8	9	7	113	6	0.50	0.6	0.8 A 299
3 23 19 31.8	60 12.3	141 6.1	4.6	0.4A	5	5	168	7	0.22	0.7	1.1 A 288
4 3 45 14.8	60 6.3	141 8.5	4.7	0.3A	5	2	195	8	0.12	3.0	2.9 C 271
4 4 53 58.9	60 12.2	141 3.8	6.6	0.3A	5	2	170	6	0.22	6.1	3.9 D 204
4 8 36 21.8	59 57.6	152 57.4	114.1	2.9	16	5	155	26	0.33	1.3	1.2 A 81
4 11 38 50.8	60 43.2	143 40.7	16.7	0.8A	12	7	116	57	0.65	0.5	2.9 C 25
4 12 58 39.4	61 7.8	151 10.9	61.8	2.3	24	12	55	44	0.42	0.6	1.1 A 81
4 14 56 36.0	61 10.1	146 33.6	18.0	0.9A	8	7	156	12	0.50	1.0	1.0 A 261
4 15 7 26.7	61 1.1	149 41.6	39.6	2.4	32	11	48	40	0.49	0.3	1.4 B 261
4 17 46 17.3	60 20.5	141 7.7	14.6	1.0	10	5	128	22	0.26	0.9	2.2 B 314
4 19 42 29.5	60 7.4	152 39.0	101.3	3.5	18	14	69	11	0.71	0.6	0.8 A 205
	3.4 ML ATWC			Felt (II) at Anchorage and Soldotna.			Felt (II) at Anchorage and Soldotna.			4.4 0.4 A 171	
4 19 53 59.4	62 10.6	150 9.3	65.9	2.4	24	10	197	60	0.48	1.1	1.7 B 90
4 20 14 12.2	60 17.8	141 14.3	9.9	1.1	8	3	116	20	0.19	0.8	1.7 B 94
4 23 3 28.5	60 10.9	141 6.8	3.8	-0.1A	4	3	171	5	0.04	1.5	1.1 A 81
4 23 43 47.0	60 10.2	141 4.2	4.4	0.6A	8	7	109	3	0.34	0.5	283 9
5 3 8 22.6	61 27.9	146 33.8	22.4	2.0	29	22	69	34	0.59	0.3	0.7 A 11
5 7 51 46.3	61 42.1	150 23.3	5.5	1.3	9	9	140	33	0.69	0.8	1.1 A 81
5 7 52 43.1	62 32.8	152 21.5	0.0	2.1	14	9	123	76	0.72	2.8	1.8 C 81
5 11 39 27.8	60 10.7	139 47.5	17.5	1.1	6	3	191	27	0.53	2.2	1.5 B 123
5 13 58 55.6	61 50.1	149 34.2	46.1	2.6	27	16	159	26	0.60	0.7	0.8 A 271

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - DECEMBER 1984

ORIGIN TIME	LAT N			LONG W			DEPTH			MAG			NP NS			GAP			DI			RMS			SEH			SEZ Q			AZ1			DIP1			SE1			AZ2			DIP2			SE2			AZ3			DIP3			SE3		
	1984	HR	MN	SEC	DEG	MIN	SEC	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM	DEG	MIN	KM																			
DEC 6 0 44 45.2	62	16.3	148	2.5	37.7	2.5	25	15	101	54	0.52	0.6	0.5 A	177	26	1.0	81	35	0.7	300	47	1.2	122	48	0.8	300	47	1.2	122	48	0.8	300	47	1.2	122	48	0.8																				
6 5 12 21.5	61	50.3	148	51.2	14.7	0.6	8	4	179	6	0.71	0.7	0.5 A	25	6	1.4	290	41	1.1	199	11	0.6	30	79	1.2	30	79	1.2	199	11	0.6	30	79	1.2	199	11	0.6	30	79	1.2																	
6 6 14 51.1	61	8.2	150	30.5	12.1	1.4	22	14	49	39	0.66	0.3	0.6 A	290	2	0.5	199	11	0.6	30	79	1.2	30	79	1.2	199	11	0.6	30	79	1.2	199	11	0.6	30	79	1.2																				
6 6 8 58 8.4	59	46.6	153	20.6	114.7	2.6	11	6	182	48	0.28	1.7	1.7 B	81	21	1.5	178	39	2.4	327	46	3.8	327	46	3.8	178	39	2.4	327	46	3.8	178	39	2.4	327	46	3.8																				
6 6 15 21 56.1	60	41.6	140	35.8	0.4	1.0 A	8	6	197	50	0.83	1.4	1.7 B	137	3	0.6	261	31	1.7	43	45	3.3	43	45	3.3	137	3	0.6	261	31	1.7	43	45	3.3	137	3	0.6	261	31	1.7																	
6 6 23 44 32.5	61	40.6	150	20.1	7.5	1.3	12	11	137	24	0.69	0.7	0.6 A	263	15	0.5	161	39	1.5	10	47	0.9	10	47	0.9	161	39	1.5	10	47	0.9	161	39	1.5	10	47	0.9																				
7 3 40 33.7	60	6.7	141	5.6	0.9	6	191	6	51	1.3	2.3 B	285	4	1.0	193	27	1.2	23	63	4.8	23	63	4.8	193	27	1.2	23	63	4.8	193	27	1.2	23	63	4.8																						
7 4 48 19.8	60	10.9	139	40.8	14.7	0.5	7	4	196	25	0.37	2.3	1.9 B	304	1	1.1	213	39	5.4	35	51	1.6	35	51	1.6	213	39	5.4	35	51	1.6	213	39	5.4	35	51	1.6																				
7 7 3 19.0	60	31.0	143	17.4	23.5	0.6 A	8	6	116	43	0.48	0.8	2.8 B	261	3	1.0	335	8	1.2	149	72	5.0	335	8	1.2	149	72	5.0	335	8	1.2	149	72	5.0																							
7 13 59 16.7	61	30.8	141	7.0	4.2	1.4	10	5	251	62	0.39	1.4	9.8 D	307	1	1.4	37	5	2.1	206	85	18.4	206	85	18.4	307	1	1.4	37	5	2.1	206	85	18.4	307	1	1.4	37	5	2.1																	
7 14 20 30.8	61	30.6	141	3.5	2.3	1.5	15	6	243	62	0.34	1.2	11.3 D	315	1	1.2	45	2	2.0	198	88	21.1	198	88	21.1	315	1	1.2	45	2	2.0	198	88	21.1	315	1	1.2	45	2	2.0																	
7 15 39 24.6	60	41.1	145	16.5	0.0	0.2	4	3	189	17	0.85	1.5	25.0 D	20	0	1.4	290	0	2.9	0	90	99.0	99.0	99.0	290	0	2.9	0	90	99.0	99.0	99.0	290	0	2.9	0	90	99.0	99.0																		
7 15 40 24.8	62	10.9	149	21.5	45.7	2.2	26	14	114	43	0.55	0.9	1.0 A	281	5	0.8	14	35	1.5	184	55	2.1	184	55	2.1	281	5	0.8	14	35	1.5	184	55	2.1	281	5	0.8	14	35	1.5																	
7 16 22 30.2	59	14.8	151	19.6	49.4	2.9	16	9	133	63	0.61	1.3	2.7 B	150	5	1.8	261	13	1.5	43	65	4.9	43	65	4.9	150	5	1.8	261	13	1.5	43	65	4.9																							
7 19 14 51.3	61	4.5	152	0.2	9.9	0.2 A	3	3	340	12	0.09	3.1	0.9 C	347	0	2.0	261	14	6.0	77	75	1.0	77	75	1.0	347	0	2.0	261	14	6.0	77	75	1.0																							
7 19 25 13.0	61	4.4	152	1.2	10.2	0.2 A	3	3	340	12	0.10	2.0	1.3 B	262	3	2.7	171	4	2.0	28	85	2.3	28	85	2.3	171	4	2.0	28	85	2.3	171	4	2.0	28	85	2.3																				
7 19 28 24.7	60	16.8	141	0.4	10.7	1.3	13	7	128	14	0.21	0.6	0.8 A	315	20	0.6	56	26	0.8	192	56	1.6	192	56	1.6	56	20	0.6	56	26	0.8	192	56	1.6	56	20	0.6	56	26	0.8	192	56	1.6														
7 22 9 43.3	60	1.0	141	35.8	1.1	0.5 A	7	7	193	24	0.55	0.8	1.4 B	81	6	0.7	339	12	1.3	195	72	2.6	195	72	2.6	72	15	0.7	339	12	1.3	195	72	2.6	72	15	0.7	339	12	1.3	195	72	2.6														
7 22 29 9.3	60	43.3	143	12.7	28.1	0.4 A	7	3	86	59	0.14	1.4	1.5 B	313	5	1.4	81	40	3.3	219	37	1.1	219	37	1.1	37	1.1	1.4	81	40	3.3	219	37	1.1	219	37	1.1	37	1.1	1.4	81	40	3.3	219	37	1.1											
8 2 47 55.0	59	48.9	141	14.4	7.3	1.1 A	11	6	199	40	0.30	1.0	1.7 B	107	5	1.0	198	14	1.7	358	75	3.3	358	75	3.3	75	14	1.7	358	75	3.3	358	75	3.3	358	75	3.3	358	75	3.3	358	75	3.3														
8 3 18 22.1	59	49.3	141	15.4	7.2	0.9 A	10	8	193	39	0.73	1.2	1.7 B	114	8	1.1	207	18	2.2	1	70	3.3	1	70	3.3	1	70	3.3	1	70	3.3	1	70	3.3	1	70	3.3	1	70	3.3	1	70	3.3														
8 8 1 43.2	61	57.2	144	3.3	1.2	1.6	15	8	218	58	0.41	1.0	14.7 D	283	0	0.9	13	1	1.7	193	89	27.5	193	89	27.5	283	0	0.9	13	1	1.7	193	89	27.5	283	0	0.9	13	1	1.7	193	89	27.5														
8 23 2 54.4	59	55.5	141	28.1	34.3	0.9 A	5	4	252	51	0.18	4.7	14.2 D	119	5	1.2	210	14	5.7	10	75	27.6	27.6	27.6	119	5	1.2	210	14	5.7	10	75	27.6	27.6	27.6	119	5	1.2	210	14	5.7	10	75	27.6													
9 0 25 41.4	62	45.3	149	34.8	62.2	2.5	18	15	149	107	0.67	0.9	4.5 C	294	2	1.5	24	8	1.2	190	82	8.5	190	82	8.5	294	2	1.5	24	8	1.2	190	82	8.5	190	82	8.5	190	82	8.5																	
9 2 43 35.1	60	11.8	141	0.1	13.2	1.4	10	8	117	16	0.35	0.8	1.0 A	311	1	0.1	204	0	0.9	21	37	0.7	202	53	2.2	21	37	0.7	202	53	2.2	21	37	0.7	202	53	2.2	21	37	0.7	202	53	2.2														
9 7 55 0.7	60	19.8	141	12.6	9.2	0.7	6	5	120	25	0.32	1.1	2.0 B	304	0	0.9	34	25	1.1	214	65	4.1	214	65	4.1	304	0	0.9	34	25	1.1	214	65	4.1	214	65	4.1	304	0	0.9	34	25	1.1	214	65	4.1											
9 9 6 42.0	61	31.8	151	12.6	9.8	0.0 A	4	4	125	26	0.49	1.6	3.1 C	228	16	0.9	324	20	1.1	102	64	6.5	102	64	6.5	228	16	0.9	324	20	1.1	102	64	6.5	228	16	0.9	324	20	1.1	102	64	6.5														
9 10 6 7.6	60	5.0	153	29.1	156.2	2.9	13	7	155	39	0.37	2.2	2.7 B	81	14	2.2	147	15	3.2	297	59	4.7	297	59	4.7	81	14	2.2	147	15	3.2	297	59	4.7	81	14	2.2	147	15	3.2	297	59	4.7														
9 11 42 10.2	61	4.1	152	17.1	15.0	0.9 A	4	4	190	18	0.16	1.7	0.6 B	107	3	3.3	198	24	1.9	10	66	1.2	1.2	10	66	1.2	1.2	107	3	3.3	198	24	1.9	107	3	3.3	198	24	1.9	107	3	3.3	198	24	1.9												
9 11 46 46.5	60	11.8	153	12.4	131.8	2.8	13	5	153	22	0.34	2.2	2.5 B	261	4	2.2	138	19	3.1	0	52	4.3	4.3	4.3	261	4	2.2	138	19	3.1	0	52	4.3	4.3	4.3	261	4	2.2	138	19	3.1	0	52	4.3													
9 15 7 24.4	61	39.7	149	34.9	37.8	2.4	28	13	128	16	0.68																																														

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - DECEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEH	SEZ	Q	AZI	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3
1984 DEC 11 4 40	61 29.3	151 13.7	6.1	1.4	9	6	99	26	0.59	0.7	0.9	A	261	4	0.7	349	10	1.2	149	79	1.7		
11 5 3 38.3	61 55.8	149 27.9	46.3	2.3	28	10	168	28	0.49	1.0	1.0	A	282	6	0.9	17	42	2.1	185	47	1.7		
11 15 43 47.0	60 27.9	148 23.6	14.7	2.1	35	10	143	44	0.89	0.6	0.7	A	156	7	1.1	261	14	0.6	43	68	1.4		
11 16 4 17.5	60 32.8	141 39.1	11.6	1.3	14	7	99	22	0.45	0.7	1.3	A	3	6	0.7	273	7	1.2	134	81	2.4		
11 19 47 55.6	61 1.5	150 49.7	15.0	1.9	20	11	45	49	0.80	0.5	1.3	A	282	0	0.7	192	6	0.9	12	84	2.4		
11 20 19 46.8	60 0.9	141 36.0	3.1	0.9	6	4	258	16	0.45	1.6	2.0	B	135	1	1.4	226	33	2.2	43	57	4.3		
12 1 31 34.2	61 9.8	151 23.4	65.2	2.1	21	12	59	36	0.32	0.7	1.2	A	208	7	0.7	116	18	1.1	318	71	2.4		
12 2 21 57.7	60 15.2	152 57.5	119.2	3.2	17	9	98	11	0.34	1.4	1.5	A	81	4	1.5	322	13	2.1	184	58	2.5		
12 4 50 56.6	61 41.5	150 49.2	61.0	3.5	24	12	74	26	0.39	0.6	0.9	A	81	11	0.7	172	12	1.2	309	74	1.7		
12 6 7 15.7	61 19.7	150 31.7	10.2	0.6A	3	3	295	19	0.39	1.9	1.6	B	200	29	1.4	90	31	3.9	323	45	3.0		
12 11 33 53.1	60 58.3	152 3.9	13.1	0.6A	4	4	198	23	0.43	3.6	3.5	C	192	20	0.6	298	37	6.3	80	46	7.3		
12 12 21 57.1	60 7.2	141 8.1	33.7	0.8A	3	2	216	7	0.20	3.4	2.7	C	122	24	1.5	11	38	8.0	236	42	1.3		
13 4 52 26.5	62 1.7	149 19.0	45.2	2.4	30	8	104	28	0.69	1.0	0.8	A	280	5	0.8	187	26	1.9	20	63	1.4		
13 8 8 40.0	60 12.6	141 2.7	0.1	0.8	6	4	119	6	0.44	2.5	2.5	B	325	10	0.6	81	16	0.8	211	58	4.7		
13 8 52 23.7	60 1.0	140 56.1	4.7	1.0	9	3	155	16	0.25	1.2	1.8	B	128	12	0.7	225	29	1.4	18	58	3.8		
13 9 19 14.7	60 11.5	141 4.4	1.3	-0.1A	5	3	146	5	0.42	2.7	3.6	C	307	9	0.6	43	35	1.0	205	54	8.4		
13 12 40 7.7	60 22.1	140 45.5	12.1	0.2A	7	2	149	27	0.29	2.4	4.3	C	94	5	1.4	1	26	2.2	194	63	9.0		
13 16 2 1.2	60 15.4	141 35.2	9.7	1.3	13	5	108	14	0.37	0.5	0.8	A	121	1	0.7	31	15	1.0	215	75	1.5		
13 16 29 55.7	60 15.6	141 14.0	10.8	0.9	10	9	112	16	0.37	0.6	0.8	A	289	8	0.6	24	35	0.7	188	54	1.8		
13 19 42 48.6	59 49.7	141 2.2	1.6	1.0A	12	5	188	27	0.43	0.8	1.8	B	306	4	1.2	215	5	1.4	74	84	3.4		
13 20 7 12.1	59 48.8	141 4.9	0.1	1.0A	10	5	196	28	0.43	1.0	1.8	B	295	2	1.0	25	7	1.9	189	83	3.4		
13 20 53 20.6	60 8.9	141 4.7	4.1	0.3A	5	2	133	3	0.17	1.1	1.0	A	146	26	1.7	261	31	0.8	27	44	2.3		
13 22 7 57.5	61 33.3	151 16.6	1.5	0.7A	8	7	108	30	0.66	0.3	0.8	A	339	2	0.6	359	4	1.4	152	86	50.3		
13 22 39 54.3	61 10.7	152 9.7	2.1	-0.5A	3	3	276	6	0.00	1.2	4.6	C	261	6	1.9	318	10	0.9	134	55	7.2		
14 0 58 33.5	60 39.6	142 50.9	14.1	0.8A	4	3	146	50	0.24	1.3	4.9	C	192	1	1.0	282	10	1.8	96	80	9.4		
14 1 27 23.4	60 6.1	152 55.4	121.4	2.9	17	5	70	11	0.37	1.3	1.2	A	50	18	1.6	304	40	2.8	159	44	1.9		
14 1 55 51.8	60 7.3	141 12.3	0.6	0.0A	3	2	148	8	0.06	2.2	25.0	D	269	2	0.6	359	4	1.4	152	86	50.3		
14 3 42 17.4	61 25.2	150 48.1	57.7	2.3	23	14	69	6	0.42	0.6	0.9	A	81	6	0.5	169	21	0.9	336	68	1.7		
14 3 42 52.1	60 11.0	141 1.5	8.7	0.3A	3	3	287	3	0.10	1.2	1.1	A	180	2	1.8	88	41	2.8	272	49	1.3		
14 4 28 18.3	59 55.3	140 7.7	5.5	0.9	6	5	173	21	0.44	1.1	1.7	B	125	1	0.6	215	30	1.2	33	60	3.7		
14 10 50 49.8	59 26.0	152 59.1	100.0	2.8	11	5	129	79	0.25	1.6	2.6	B	192	18	1.8	95	22	1.5	318	61	5.5		
14 12 39 34.1	61 35.0	150 16.5	10.4	0.7A	5	4	175	28	0.46	8.7	3.0	D	81	13	0.7	160	14	16.0	303	68	4.7		
14 14 50 53.5	61 51.5	149 7.6	1.2	0.8	7	6	180	9	0.50	0.9	2.2	B	4	10	1.1	270	17	0.8	123	70	4.3		
14 15 43 27.0	62 38.8	149 28.5	60.3	2.7	21	9	141	94	0.47	1.9	4.1	C	286	6	1.3	18	22	1.8	182	67	8.3		
14 18 27 34.0	59 47.1	152 20.1	80.0	2.9	15	6	91	52	0.31	0.9	1.2	A	95	4	0.9	186	8	1.6	339	81	2.3		
14 22 13 26.9	61 48.2	149 3.1	12.3	0.2A	4	4	264	6	0.12	1.4	0.9	B	261	2	2.7	166	31	1.0	354	59	1.9		
15 1 44 34.3	59 49.5	151 50.2	46.4	2.1	14	9	172	39	0.67	0.8	1.4	B	285	6	0.8	16	9	1.4	162	79	2.7		
15 2 56 11.4	61 33.8	150 12.3	9.9	0.9A	6	6	178	20	0.34	1.4	0.7	B	265	5	0.8	358	30	3.4	166	59	1.9		
15 4 46 53.8	62 11.7	147 30.2	38.2	2.6	22	16	192	41	0.70	0.5	1.1	D	27	2	5.5	118	18	3.3	291	72	21.9		
15 11 25 24.4	59 10.1	140 6.6	12.3	1.7A	6	4	293	66	0.13	0.8	1.5	B	261	1	0.8	339	14	1.1	167	72	2.8		
15 16 19 16.0	59 10.2	139 57.8	19.6	1.4	8	7	248	64	0.22	2.3	2.4	B	179	28	2.2	287	31	1.4	56	6.0			
15 21 21 43.1	62 19.0	150 36.2	12.1	1.9	20	11	221	61	0.69	1.7	1.2	B	265	5	0.8	358	30	3.4	166	59	1.9		
16 2 54 32.7	58 50.0	153 40.1	65.2	2.3	10	5	195	110	0.20	4.0	11.1	D	27	2	5.5	118	18	3.3	291	72	21.9		
16 8 18 38.3	60 10.0	150 22.8	45.2	2.5	30	15	114	40	0.53	0.7	1.5	B	261	1	0.8	339	14	1.1	167	72	2.8		
16 11 13 22 37.7	62 3.6	150 21.7	58.4	2.4	23	10	119	52	0.62	1.2	1.7	B	92	2	1.0	2	12	2.2	191	78	3.2		
16 14 15 43.8	61 39.8	148 33.6	7.2	1.1	15	10	84	20	0.56	0.6	0.8	A	143	14	0.6	261	17	0.8	25	55	1.5		
16 18 33 10.4	59 15.5	153 32.6	110.5	2.6	9	5	169	69	0.18	3.0	3.8	C	86	17	2.9	186	29	3.6	330	55	8.4		
16 18 59 48.7	60 32.9	143 2.1	6.6	16.8	1.2	7	6	121	40	0.23	1.1	2.9	C	81	1	2.0	340	4	1.0	184	78	5.3	
16 21 37 46.3	59 48.1	151 53.1	2.1	1.1	14	8	176	56	0.50	1.0	2.1	B	281	3	1.1	11	5	1.9	160	84	4.0		
16 22 55 4.8	60 31.5	143 2.7	12.8	0.9A	5	3	155	37	0.41	1.2	10.9	D	331	2	2.1	116	70	2.1	2.1	261			

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - DECEMBER 1984

ORIGIN	TIME	LAT	LONG	W	DEPTH	MAG	NP	NS	GAP	DI	RMS	SEZ Q			AZ2 DIP2 SE2			AZ3 DIP3 SE3					
												DEG	MIN	SEC	DEG	SEC	DEG	SEC					
1984	HR MN SEC	DEG MIN	DEG MIN	DEG MIN	KM					KM	KM				KM			KM					
DEC 16	23 29 25.2	60 30.4	141 15.4	11.4	1.3	14	7	5	128	32	0.48	0.8	2.1	B	167	2	0.8	81	18	0.9	263	71	4.0
17 0	25 20.7	60 30.6	141 21.4	17.5	0.8	A	7	121	27	0.54	1.5	3.3	C	14	9	0.7	108	20	1.3	261	68	6.7	
17 6	25 25.5	61 31.5	141 19.8	0.8	1.0	13	9	179	14	0.84	0.6	0.8	A	263	7	0.5	355	8	1.1	133	79	1.6	
17 6	46 31.2	60 35.3	147 22.1	28.3	2.6	36	17	60	36	0.71	0.3	0.4	A	278	1	0.4	8	3	0.5	170	87	0.8	
17 6	49 36.6	60 0.0	140 4.6	16.6	2.0	12	5	139	15	0.70	1.3	0.7	A	297	4	0.5	28	21	0.5	197	69	1.1	
17 6	58 32.5	60 0.2	141 40.2	5.5	0.6	A	10	7	175	19	0.52	0.5	0.8	A	268	0	0.6	178	2	1.0	358	88	1.6
17 11	31 30.2	60 3.4	137 11.6	9.9	1.6	7	3	299	116	0.12	3.4	3.6	C	34	22	2.7	288	35	4.1	150	47	8.4	
17 13	53 33.3	60 27.8	145 9.7	18.5	2.0	30	15	101	8	0.82	0.4	0.4	A	81	5	0.5	346	33	0.8	179	56	0.8	
17 15	37 31.4	61 11.7	146 33.4	6.2	0.2	A	3	226	14	0.11	3.9	10.7	D	16	10	1.1	283	17	1.8	135	70	21.3	
17 17	44 49.6	61 16.9	152 11.3	23.5	0.6	3	3	286	2	0.12	2.1	1.4	B	96	15	4.0	194	29	2.4	342	57	2.4	
17 18	36 25.2	59 31.9	152 21.3	71.2	3.3	13	3	110	77	0.23	1.2	2.5	B	90	10	1.3	182	15	1.7	327	72	5.0	
					3.8	ML ATWC																	
17 19	57 32.1	60 6.8	141 14.8	4.3	1.0	15	6	132	9	0.25	0.5	0.6	A	291	7	0.4	26	39	0.9	193	50	1.1	
17 21	31 30.7	61 40.2	151 21.2	77.4	3.1	26	11	95	36	0.39	0.8	0.9	A	81	12	0.7	169	33	1.2	333	55	1.8	
17 22	52 6.5	60 25.5	143 5.0	23.5	2.6	27	10	84	28	0.36	0.4	0.5	A	42	17	0.6	305	23	0.4	165	61	1.0	
17 23	13 24.6	60 25.9	143 5.6	20.6	1.7	23	14	118	29	0.41	0.4	0.7	A	35	6	0.7	304	9	0.4	158	79	1.4	
17 23	46 28.7	60 4.8	139 22.5	20.5	0.7	6	213	20	0.55	2.2	1.6	B	124	25	0.9	232	34	4.9	6	46	1.7		
18 1	15 40.1	60 25.1	143 0.9	25.9	0.7	A	7	3	112	26	0.52	4.2	4.5	C	353	28	1.0	261	37	2.2	118	45	11.0
18 1	26 35.3	60 23.8	142 56.8	27.9	0.6	A	8	6	103	22	0.33	3.6	3.3	C	261	16	1.4	151	41	9.0	7	43	0.8
18 3	44 21.0	61 48.0	148 56.0	14.0	1.0	15	10	111	3	0.40	0.5	0.5	A	128	22	0.8	261	34	0.7	21	34	0.9	
18 3	46 21.8	60 9.5	140 59.7	9.9	0.1	11	5	111	2	0.35	0.8	0.5	A	94	19	0.5	191	20	1.5	324	62	0.8	
18 6	31 43.2	60 8.4	141 11.1	5.4	1.8	17	10	101	9	0.34	0.4	0.4	A	281	5	0.4	187	43	0.8	16	47	0.6	
18 6	50 59.3	60 6.3	141 11.2	2.4	0.9	12	4	121	6	0.28	0.5	0.8	A	8	1	0.9	278	4	0.5	112	86	1.4	
18 9	42 37.2	60 7.3	141 13.6	2.7	0.8	12	3	122	9	0.40	0.7	0.9	A	176	5	1.3	266	7	0.6	51	81	1.6	
18 13	5 43.1	60 20.6	140 46.5	13.2	1.4	15	9	147	25	0.47	0.6	0.9	A	296	3	0.5	28	26	0.7	200	64	1.9	
18 13	51 14.1	61 47.9	148 56.0	13.0	1.2	18	13	97	5	0.55	0.4	0.4	A	157	16	0.7	261	39	0.5	49	46	0.9	
18 16	40 36.1	59 38.9	152 6.2	45.2	2.3	15	6	107	63	0.53	0.8	1.6	B	280	0	0.8	190	4	1.6	10	86	3.0	
19 1	5 41.5	61 37.7	151 15.7	4.1	0.9	10	6	112	33	0.72	0.6	1.4	A	149	4	0.6	261	7	0.9	35	67	2.4	
19 2	3 21.2	61 11.1	152 12.2	5.1	-0.3	A	3	283	8	0.04	1.7	2.6	B	333	7	1.4	261	14	2.9	92	66	4.7	
19 4	42 11.0	59 59.2	141 39.4	4.4	0.8	10	8	176	21	0.61	0.9	1.0	A	122	12	0.9	220	34	1.5	153	2.1	2.1	
19 6	21 7.3	60 11.5	141 28.5	1.6	0.6	6	3	126	5	0.46	1.6	3.1	C	332	13	0.9	81	17	1.5	212	62	6.2	
19 6	59 46.5	60 24.0	140 36.4	18.7	0.9	A	5	2	270	37	0.41	4.6	4.4	C	81	17	2.1	332	41	3.4	188	43	11.4
19 9	37 35.1	59 59.6	141 40.2	6.1	0.6	7	6	203	20	0.73	1.4	1.2	B	123	5	1.3	217	34	2.1	26	55	3.3	
19 20	33 45.0	60 16.3	141 36.0	8.4	1.3	10	3	94	13	0.34	1.6	1.2	B	332	9	0.8	261	34	3.3	76	51	1.3	
19 21	13 45.6	61 47.4	148 58.8	10.3	0.8	13	11	87	4	0.65	0.8	0.8	A	304	5	0.9	261	12	0.9	171	77	2.2	
19 22	56 18.1	58 6.3	151 20.8	82.1	2.9	9	3	218	79	0.58	5.9	5.6	D	30	17	1.8	283	42	12.8	136	43	8.8	
19 26	49 1.9	61 56.1	149 21.6	2.8	1.8	25	13	169	23	0.67	0.8	1.0	A	274	23	0.6	173	25	1.2	41	55	2.2	
19 26	51 41.7	61 33.4	140 39.8	4.9	1.8	8	5	261	75	0.34	3.4	25.0	D	323	1	2.2	81	3	3.6	219	62	58.1	
20 6	16 27.2	60 2.1	141 40.5	8.5	2.1	11	9	164	17	0.45	0.8	0.7	A	87	13	0.7	347	36	1.6	194	51	1.3	
20 7	12 58.0	59 58.9	140 37.3	2.7	1.0	8	4	175	24	0.28	1.4	1.7	B	290	2	0.9	199	33	2.1	23	57	3.5	
20 10	46 33.1	60 8.1	141 12.8	0.2	1.0	8	7	141	10	0.25	0.8	1.2	A	271	1	0.4	1	19	1.3	178	71	2.3	
20 12	14 30.8	61 40.4	148 35.3	8.4	0.6	A	12	7	89	20	0.56	0.5	0.8	A	151	10	0.5	261	14	0.7	33	64	1.5
20 15	14 9.6	60 7.5	141 30.8	9.1	0.8	9	7	132	2	0.50	0.6	0.5	A	281	7	0.7	188	25	1.2	26	64	0.8	
20 16	16 27.2	60 1.7	141 31.8	8.8	1.1	8	165	14	0.32	0.6	0.6	A	272	7	0.7	9	44	1.2	175	45	1.0		
20 17	12 58.0	59 58.9	140 37.3	2.7	1.0	8	4	175	24	0.28	1.4	1.7	B	290	2	0.9	199	33	2.1	23	57	3.5	
20 19	21 56 18.1	58 6.3	151 20.8	82.1	2.9	9	3	218	79	0.58	5.9	5.6	D	30	17	1.8	283	42	12.8	136	43	8.8	
20 20	43 39.1	61 55.4	147 23.9	40.2	2.3	25	12	158	11	0.62	0.7	1.0	A	85	5	0.6	176	16	1.2	338	73	2.0	
20 20	5 51	60 9.2	141 32.3	7.2	0.6	7	3	135	8	0.46	1.1	0.9	A	290	3	0.8	198	31	2.3	25	59	1.3	
20 20	18 24 29.0	60 20.6	140 45.9	5.7	1.4	16	8	148	26	0.49	0.5	0.8	A	291	10	0.6	24	17	0.7	172	70	1.6	
20 20	20 45.0	60 6.5	141 16.3	9.7	0.7	12	14	10	16	0.25	0.6	0.5	A	278	0	0.5	188	13	1.1	8	77	1.6	
20 23	22 53.6	61 9.6	146 16.7	16.1	0.4	A	5	4	154	4	0.16	2.2	2.9	B	33	11	0.8	301	11	4.2	167	74	1.6
20 23	24 7.3	61 9.3	146 16.0	18.2	0.4	4	5	183	4	0.2	0.6	0.5	A	278	0	0.5	188	13	1.1	8	77	1.6	

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - DECEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3	
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	
DEC 21	3 26	29.1	59	56.7	140	36.7	0.6	0.4A	5	1	188	26	0.23	2.1	3.5 C	107	2	1.0	198	28	1.9	13	62	7.5
21	6 53	42.8	60	8.8	141	6.0	3.5	-0.2	4	3	167	4	0.21	0.5	0.8 A	351	4	0.9	261	14	0.6	97	75	1.6
21	8 40	20.3	60	35.1	152	25.9	12.3	0.6	3	3	172	2	0.51	25.0	8.2 D	111	9	99.0	207	34	1.6	8	55	0.7
21	18 42	14.0	61	12.3	151	51.3	7.6	-0.1	3	3	292	11	0.22	1.4	2.8 C	25	15	1.4	120	16	2.0	254	68	5.6
21	19 16	58.2	59	49.0	141	4.8	5.2	1.2	16	8	182	27	0.53	0.8	1.2 A	121	8	0.6	215	26	1.2	15	63	2.5
21	19 25	57.4	59	50.9	141	1.8	5.3	0.9A	13	6	179	24	0.54	1.2	1.5 B	120	4	0.9	212	30	1.7	23	60	3.2
21	19 32	4.3	59	51.5	141	4.4	10.4	1.3	13	7	179	33	0.58	1.3	1.5 B	126	14	0.8	225	33	2.1	16	53	3.2
21	19 34	16.3	60	52.6	152	14.2	5.4	0.4A	4	4	179	35	0.30	25.0	2.6 D	285	0	47.0	15	1	0.5	195	89	4.8
22	3 13	6.3	59	43.9	138	49.9	28.3	1.0	4	4	246	31	0.27	2.2	2.0 B	333	26	1.2	86	38	1.9	218	41	5.3
22	5 34	23.6	60	33.5	143	0.3	14.6	1.1	19	12	93	41	0.59	0.6	1.3 A	261	2	0.9	331	5	0.7	148	69	2.4
22	10 27	41.2	61	3.2	146	31.2	13.8	2.8	35	14	35	2	0.71	0.3	0.5 A	181	4	0.5	271	12	0.4	73	77	1.0
					3.0	ML	ATWC																	
23	4 40	15.5	61	36.1	146	31.2	27.2	2.0	30	18	78	34	0.70	0.5	0.9 A	289	2	0.6	199	7	0.9	35	83	1.8
23	5 50	17.6	60	24.2	142	57.4	22.3	1.2A	5	2	223	23	0.41	2.6	4.0 C	104	10	4.4	9	26	1.9	213	62	8.4
23	9 59	46.1	60	12.3	140	59.2	9.9	1.4	13	7	119	6	0.18	1.0	0.9 A	107	2	0.8	199	43	2.3	15	47	0.9
23	13 10	6.3	60	12.5	141	35.0	7.2	1.3	14	9	95	9	0.46	0.7	0.9 A	38	5	1.3	129	10	0.9	282	79	1.7
23	22 2	0.8	62	13.5	150	58.8	75.6	3.4	23	8	97	40	0.39	1.0	1.6 B	91	2	1.1	0	20	1.6	186	70	3.1
23	22 18	9.7	60	26.4	143	18.1	8.4	0.9A	4	2	188	37	0.29	3.0	11.8 D	359	4	1.4	268	8	4.5	115	81	22.3
23	23 9	29.6	61	14.8	150	37.5	8.2	0.6A	3	3	280	25	0.11	2.7	1.4 C	108	14	5.1	210	38	1.4	2	48	2.9
23	23 9	39.8	62	10.5	149	20.5	51.3	1.2	6	5	264	42	0.24	3.8	3.0 C	275	19	2.2	173	31	7.7	32	52	4.9
24	1 47	39.3	60	20.4	141	57.3	2.8	0.9	11	4	66	12	0.53	0.5	1.2 A	4	2	0.6	274	15	0.7	101	75	2.3
24	3 30	13.9	61	43.6	150	38.9	10.1	0.9A	9	8	139	30	0.82	0.4	0.9 A	357	0	0.8	267	4	0.6	87	86	1.6
24	5 42	22.0	61	48.2	148	55.2	10.2	2.4	31	9	108	5	0.65	0.4	0.5 A	173	3	0.7	264	21	0.5	75	69	1.0
24	6 16	14.0	61	36.2	150	5.5	48.1	2.5	30	16	125	13	0.45	0.5	0.8 A	266	1	0.5	176	18	0.9	359	72	1.6
24	7 13	46.1	58	16.3	153	4.8	55.9	2.9	9	3	191	68	0.16	3.8	9.6 D	341	10	1.4	81	14	4.6	219	70	18.7
24	9 26	11.0	60	12.6	141	32.8	6.4	0.9	9	5	92	8	0.68	1.0	0.9 A	328	14	0.6	261	41	2.0	75	42	1.1
24	11 44	0.2	60	21.2	141	23.8	15.4	0.7	7	5	111	19	0.19	0.7	1.3 A	359	16	0.7	95	18	1.0	230	65	2.5
24	11 51	52.8	60	35.5	142	46.1	25.3	0.8A	8	6	90	43	0.50	1.2	1.5 B	358	4	0.9	265	35	1.4	94	55	3.2
24	12 49	56.4	60	11.4	143	9.3	14.7	0.6A	9	5	207	18	0.74	2.3	1.8 B	286	21	1.5	185	28	4.5	48	54	3.2
24	13 29	57.2	58	41.7	154	22.1	23.4	2.8	9	4	213	122	0.51	5.9	12.0 D	341	2	1.5	81	23	5.6	246	65	24.2
					3.4	ML	ATWC																	
24	15 44	37.4	62	11.3	150	23.9	57.4	2.4	23	7	133	64	0.48	1.0	1.5 B	94	7	0.9	1	20	1.7	202	69	3.0
24	16 16	0.1	59	31.5	153	17.9	104.4	2.8	13	6	134	58	0.26	1.5	1.8 B	187	21	2.0	85	28	1.6	309	54	4.0
24	23 6	57.0	61	51.8	149	24.0	5.1	1.1	19	12	162	23	0.69	0.5	0.6 A	1	9	1.0	268	17	0.4	118	71	1.2
25	3 25	48.2	60	2.0	141	13.9	5.1	1.1	12	3	160	7	0.38	0.8	1.0 A	262	11	0.7	165	32	1.2	9	56	2.1
25	5 2	46.0	60	2.7	141	13.2	6.3	1.5	13	7	158	6	0.42	0.6	0.6 A	268	12	0.6	167	43	1.2	10	45	1.0
25	5 49	8.0	61	58.6	148	48.2	10.0	1.6	25	9	172	18	0.56	0.6	0.5 A	28	25	0.9	141	39	1.2	275	40	0.7
25	6 11	5.7	60	6.6	141	11.3	0.4	0.8	11	3	119	7	0.24	0.7	1.6 B	287	5	0.6	18	11	1.3	173	78	3.1
25	7 2	30.2	60	40.7	143	1.5	21.0	8	3	95	54	0.33	1.0	2.8 C	310	6	1.1	218	15	1.3	61	74	5.4	
25	7 8	44.0	60	1.8	139	54.7	10.7	0.5	6	3	168	18	0.23	2.8	0.9 C	297	7	0.6	28	7	5.3	163	80	1.5
25	9 58	47.2	60	0.9	140	39.8	12.5	1.2	9	4	164	24	0.52	1.7	1.3 B	111	6	0.7	17	35	3.6	209	54	1.8
25	10 2	16.2	60	1.1	141	14.2	3.0	1.0	12	6	163	8	0.47	0.7	0.8 A	108	4	0.6	201	36	1.1	13	54	1.7
25	11 17	25.1	60	1.7	141	13.9	2.9	0.8	10	6	161	7	0.36	0.7	0.9 A	104	7	0.5	199	33	0.9	4	56	1.8
25	12 24	28.8	60	9.5	141	1.2	5.5	0.2A	5	3	160	1	0.30	1.3	0.7 A	261	12	1.8	347	12	2.5	124	73	1.2
25	16 41	3.7	60	12.3	141	2.5	12.8	1.0	14	6	116	6	0.14	0.6	0.5 A	93	21	0.6	343	40	0.6	203	42	1.3
25	17 12	40.0	60	11.6	141	2.2	10.5	0.7	12	5	114	4	0.20	0.7	0.6 A	293	15	0.6	191	36	1.6	42	50	0.7
25	19 20	50.5	60	14.9	140	56.1	10.1	2.0	19	9	129	12	0.32	0.5	0.7 A	288	3	0.5	20	33	0.6	193	57	1.5
25	19 28	33.3	60	13.3	140	58.5	9.4	0.7	14	7	122	8	0.22	0.8	0.8 A	97	3	0.5	4	43	0.7	190	47	2.0
25	20 11	9.6	59	59.5	152	45.3	87.7	2.4	17	6	152	21	0.32	1.1	1.1 A	81	14	1.0	163	38	1.6	333	49	2.4
25	22 51	6.6	58	3.5	151	42.0	28.1	2.7	10	4	205	58	0.32	13.9	25.0 D	303	9	6.5	35	12	1.4	177	75	99.0
26	3 28	47.9	60	27.3	145	13.7	14.5	0.1A	3	3	264	9	0.34	2.2	2.8 C	46	13	3.6	144	32	2.5	297	55	6.0

PRELIMINARY DETERMINATION OF HYPOCENTERS IN SOUTHERN ALASKA - DECEMBER 1984

ORIGIN TIME	LAT	N	LONG	W	DEPTH	MAG	NP	NS	GAP	D1	RMS	SEH	SEZ	Q	AZ1	DIP1	SE1	AZ2	DIP2	SE2	AZ3	DIP3	SE3				
1984	HR	MN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC	DEG	MIN	SEC			
DEC 26	3	30	12.7	60	59.6	141	9.6	7.0	0.2A	4	3	143	4	0.08	1.3	2.4	B	21	12	1.7	286	21	1.0	139	65		
				61	42.5	150	52.2	63.9	2.3	24	11	130	28	0.48	1.0	1.4	B	81	7	0.8	172	20	1.7	332	69		
26	5	53	33.0	61	57.5	59	29.8	138	49.9	10.9	1.4	8	4	247	6	0.57	4.6	2.2	C	223	22	9.3	117	34	3.6	339	48
26	6	52	57.5	59	29.8	139	49.9	10.9	1.4	8	4	247	18	0.17	19.6	25.0	D	305	19	4.0	204	31	0.9	62	53		
26	6	55	43.9	61	44.5	152	18.2	15.0	0.5A	3	3	195	22	0.41	2.7	1.3	B	312	13	0.9	218	16	5.2	79	69		
26	8	50	42.8	61	49.0	148	57.1	1.1	-0.1A	4	4	149	2	0.32	1.1	3.6	C	162	7	0.8	81	9	1.7	293	76		
26	9	36	56.1	58	35.3	154	48.3	24.8	-2.5	7	4	228	138	0.38	17.3	25.0	D	151	4	2.5	81	21	8.2	251	61		
26	19	54	23.5	59	59.8	152	57.4	108.4	2.7	13	10	150	22	0.52	1.6	1.8	B	81	11	1.6	155	21	2.5	332	54		
27	7	30	42.5	61	33.3	149	52.0	51.4	1.0A	13	9	117	39	0.36	0.7	1.3	A	81	2	0.6	191	7	1.3	335	83		
27	8	11	12.4	59	57.8	139	42.0	18.8	0.7	5	5	155	4	0.42	2.7	1.0	C	46	16	5.3	305	34	0.9	157	51		
27	9	3	55.0	60	7.8	139	49.2	13.3	0.9	7	2	193	22	0.41	2.7	1.3	B	312	13	0.9	218	16	5.2	79	69		
27	19	39	50.2	60	10.9	141	7.0	13.6	0.7	13	8	109	6	0.19	0.6	0.5	A	295	21	0.6	192	29	1.2	55	53		
28	0	58	10.8	59	22.0	154	38.7	0.7	2.1	9	6	201	53	0.65	2.2	1.4	B	295	24	4.4	187	35	1.8	52	45		
28	4	29	54.4	59	21.5	151	20.0	33.9	2.4	16	6	150	52	0.71	1.2	3.2	C	267	4	1.1	176	5	2.3	35	84		
28	5	36	7.0	61	8.5	146	26.2	15.5	0.6	12	6	88	6	0.84	0.7	0.6	A	225	3	0.6	134	33	1.4	320	57		
28	6	14	46.4	61	46.8	149	4.3	-0.3A	4	4	228	8	0.42	1.7	1.2	B	169	24	1.3	81	27	3.2	301	54			
28	13	21	8.6	60	20.4	140	0.4	0.4	0.5	7	4	199	30	0.57	0.9	1.7	B	316	3	0.7	81	10	1.2	214	54		
28	13	34	13.1	60	18.3	140	0.6	7.2	0.7	7	3	196	27	0.27	1.4	2.7	C	331	10	0.8	81	21	1.1	220	60		
28	18	35	8.3	61	9.5	150	9.2	51.0	1.0A	9	9	89	46	0.59	0.6	2.0	B	336	1	0.9	81	5	0.9	236	74		
28	20	3	9.8	61	27.8	149	43.6	33.8	1.5	25	12	64	22	0.83	0.4	0.6	A	92	3	0.5	184	27	0.6	356	63		
28	22	56	25.0	61	38.6	142	25.7	0.0	1.2	11	4	237	68	0.57	2.2	6.7	D	292	0	0.8	22	4	4.1	202	86		
28	22	56	46.0	61	43.3	142	26.3	0.5	1.2	6	4	243	77	0.73	3.0	3.8	C	280	0	1.2	10	7	5.6	190	83		
29	3	2	14.6	60	3.4	153	18.8	150.7	3.9	16	8	75	31	0.42	1.2	1.4	B	206	8	1.7	111	29	2.2	310	60		
29	4	32	57.0	61	20.4	146	58.9	21.5	2.2	32	14	46	33	0.44	0.3	0.9	A	209	2	0.6	300	7	0.5	103	83		
29	6	23	11.9	62	38.6	149	29.2	43.5	2.4	21	5	142	94	0.50	1.6	6.2	D	309	5	2.2	40	10	2.0	193	79		
29	9	4	19.3	61	51.5	149	16.4	4.9	1.1	14	11	178	96	0.67	0.7	1.1	A	358	1	1.3	267	24	0.7	90	66		
29	17	9	43.4	62	35.5	151	15.9	93.9	2.8	18	4	194	69	0.36	4.1	3.5	C	85	16	2.8	188	39	9.2	337	47		
29	18	2	18.9	61	6.4	152	12.4	9.1	0.5	4	4	179	12	0.27	2.4	2.7	C	197	26	1.0	301	28	2.9	71	50		
29	20	8	30.3	61	11.2	152	13.0	8.2	1.7	10	10	164	9	0.88	1.0	0.5	A	285	5	1.9	20	43	1.2	190	47		
30	2	3	28.5	61	4.6	152	19.3	14.9	0.6	4	4	198	19	0.19	2.4	0.9	B	107	5	4.5	199	27	1.0	7	63		
30	2	20	2.8	61	33.2	151	13.8	5.2	1.1	11	8	104	28	0.69	0.6	1.1	A	81	5	0.8	161	10	1.1	323	75		
30	2	28	0.7	62	10.6	151	8.9	80.2	2.9	22	9	168	30	0.41	1.7	1.3	B	81	18	1.1	337	23	3.3	203	58		
30	6	34	47.7	62	9.8	149	32.7	15.8	2.5	7	191	47	0.56	1.1	2.8	C	189	4	1.9	280	17	0.9	86	73			
30	11	5	14.9	58	36.8	137	43.4	16.1	1.7	5	3	347	114	0.31	25.0	9.1	D	81	5	99.0	149	45	4.3	346	41		
30	7	42	48.2	61	1.3	152	13.0	10.1	3	3	3	20	0.23	15.0	25.0	D	194	2	1.8	284	16	6.2	97	99.0			
30	8	30	11.8	60	25.0	141	27.2	17.6	0.7	5	4	112	17	0.27	2.6	3.8	D	139	7	1.7	81	32	1.0	240	46		
30	9	42	10.3	61	26.0	140	12.0	0.2	1.6	8	4	255	80	0.42	2.4	18.9	D	349	0	4.5	81	1	3.5	259	88		
30	10	27	30.5	60	26.3	141	24.5	11.3	0.8	6	3	116	21	0.27	3.3	7.3	D	20	15	0.9	115	18	1.6	253	66		
30	11	5	14.9	58	36.8	137	43.4	16.1	1.7	5	3	347	114	0.31	25.0	9.1	D	81	5	99.0	149	45	4.3	346	41		
31	0	4	24.2	61	34.0	150	43.1	54.7	2.5	23	16	114	12	0.53	0.5	0.8	A	82	4	0.6	174	18	0.9	340	71		
31	8	19	52.0	61	42.3	142	25.8	0.2	1.8	12	3	220	75	0.59	2.4	5.4	D	293	0	1.1	23	9	4.3	203	81		
31	11	18	54.0	61	40.0	142	26.9	4.0	0.9A	4	2	238	70	0.19	4.7	25.0	D	105	1	1.3	15	4	5.4	209	86		
31	13	19	38.8	60	8.9	139	44.4	20.3	0.9	6	3	191	23	0.46	2.5	1.5	B	120	15	1.1	218	26	5.1	3	59		
31	17	46	3.7	59	58.6	140	42.8	0.5	0.7	5	3	232	27	0.37	1.2	1.9	B	277	4	0.7	187	5	2.2	46	84		
31	23	29	8.8	61	48.3	148	60.0	13.6	1.0	17	13	105	4	0.61	0.4	0.4	A	147	7	0.8	261	40	0.5	50	44		
31	23	46	26.7	61	13.2	141	40.9	8.2	1.2	6	3	223	34	0.37	2.1	2.7	C	301	11	0.9	38	33	2.5	195	55		

Appendix B

References of Previously Published Catalogs

- Lahr, J. C., Page, R. A., and Thomas, J. A., 1984, Catalog of earthquakes in south central Alaska, April-June 1972, U.S. Geological Survey Open-File Report, 35 p.
- Fogleman, K. A., Stephens, Christopher, Lahr, J. C., Helton, S. M., and Allan, M. A., 1978, Catalog of earthquakes in southern Alaska, October-December 1977, U.S. Geological Survey Open-File Report 78-1097, 28 p.
- Stephens, C. D., Lahr, J. C., Fogleman, K. A., Allan, M. A., and Helton, S. M., 1979, Catalog of earthquakes in southern Alaska, January-March 1978, U.S. Geological Survey Open-File Report 79-718, 31 p.
- Stephens, C. D., Astrue, M. A., Pelton, J. R., Fogleman, K. A., Page, R. A., Lahr, J. C., Allan, M. A. and Helton, S. M., 1982, Catalog of earthquakes in southern Alaska, April-June 1978, U.S. Geological Survey Open-File Report 82-488, 36 p.
- Stephens, C. D., Lahr, J. C., Fogleman, K. A., Helton, S. M., Cancilla, R. S., Tam, Roy and Baldonado, K. A., 1980, Catalog of earthquakes in southern Alaska, October-December 1979, U.S. Geological Survey Open-File Report 80-2002, 53 p.
- Stephens, C. D., Fogleman, K. A., Lahr, J. C., Helton, S. M., Cancilla, R. S., Tam, Roy and Freiberg, J. A., 1980, Catalog of earthquakes in southern Alaska, January-March 1980, U.S. Geological Survey Open-File Report 80-1253, 55 p.
- Fogleman, K. A., Stephens, C. D., Lahr, J. C., Rogers, J. A., Helton, S. M., Cancilla, R. S., Tam, Roy, Freiberg, J. A., and Melnick, J. P., 1983, Catalog of earthquakes in southern Alaska, April-June 1980, U.S. Geological Survey Open-File Report 83-14, 54 p.
- Fogleman, K. A., Stephens, C. D., Lahr, J. C., Rogers, J. A., Cancilla, R. S., Tam, Roy, Helton, S. M., Freiberg, J. A., and Melnick, J. P., 1983, Catalog of earthquakes in southern Alaska, July-September 1980, U.S. Geological Survey Open-File Report 83-15, 54 p.