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TEMPERATURE, THERMAL-CONDUCTIVITY, AND HEAT-FLUX DATA: RAFT RIVER AREA,
CASSIA COUNTY, IDAHO (1974-1976)

By T. C. Urban, W. H. Diment, Manuel Nathenson, E. P. Smith, J. P. Ziagos,
and M. H. Shaeffer

ABSTRACT

The Energy Research and Development Administration (ERDA) selected the
southern Raft River Valley as a site for geothermal exploration and
development. The basic data presented here are a part of those collected by
the U.S. Geological Survey under a cooperative program with ERDA.

Temperatures were measured at discrete intervals in shallow (30 m; 100
ft), intermediate (100-500 m; 300-1,500 ft), and deep holes (1,500+ m; 4,500+
ft) in the Raft River area, Cassia County, Idaho, on several occasions during
1974-1976 in order to define the size and nature of the geothermal system.

The results of these measurements indicate that the system is intermediate in
temperature (~150 °C at 1.5 km). Water of this temperature is only marginally
useful for electric-power production with present technology. Thermal
conductivity measurements, by the needle-probe method on 241 core samples from
four of the intermediate-depth drill holes, yielded values that ranged from
0.8 to 2.5 W/m*K (Watts per meter<Kelvin).

Calculations indicate anomalously high heat flows (0.3+ W/m?) as would be
expected in a geothermal system. Drill hole I.D. 5 is located in an area
considered outside the system and has a heat-flow value of about 0.1 W/m?,
similar to that obtained in other parts of the Basin and Range Province.

INTRODUCTION

) The Raft River Valley is located in south-central Idaho near the Utah

border (fig. 1). It is bounded on the west by the Jim Sage Mountains, on the
south by the Raft River Range, and on the east by the Black Pine and Sublett
Ranges. The Raft River drains to the north into the Snake River. The valley
is approximately 20-24 km wide and 60 km long, although the geothermal area is
confined to the southern 20 km or so. It is a late Cenozoic downwarp bounded
by faults on the west, south, and east. The average elevation of the valley
is about 1,400 m.

The Raft River basin is filled with Pleistocene alluvium and Miocene-
Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks to a
depth of about 2 km (Williams and others, 1976). Faulted Pennsylvanian and
Permian sedimentary rocks comprise much of the Sublett and Black Pine Ranges
on the east. On the western side of the valley the Jim Sage and Cotterel
Mountains consist of Tertiary rhyolites and tuffaceous sediments. On the
south, the Raft River Range forms one of the few east-west-trending mountain
ranges in the North American Cordillera. The Raft River Range consists of
gneiss~-dome complexes of Precambrian quartz monzonite, mantled by Precambrian
and lower Paleozoic metasedimentary rocks and upper Paleozoic sedimentary
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FIGURE 1.--Map showing location of intermediate and deep wells in the Raft River area.



rocks. The Raft River flows into the valley from the southwest through a gap
known as "The Narrows," which is formed by the boundary of the Raft River
Range on the south and the southern terminous of the Jim Sage Mountains on the
north. A discussion of the geology and geophysics of the area can be found in
Ackermann (1979), Williams and others (1976), Mabey and others (1978),
Covington (1977a, b, ¢, d), Crosthwaite (1974, 1976), Oriel and others (1978),
and Nathenson and others (1979, 1980, 1982).

The Energy Research and Development Administration (ERDA) selected the
southern Raft River Valley as a potential site for a demonstration plant for
the production of electricity from intermediate-temperature (~150 °C) water
using an experimental binary-fluid geothermal powerplant. 1In 1973 ERDA, now
part of the Department of Energy (DOE), and the U.S. Geological Survey began a
cooperative program to investigate the geothermal system and to determine if
it was adequate to support the proposed demonstration plant. The data
reported here were obtained from the series of wells that were drilled during
this period (1974-1976) as part of that program or from preexisting wells in
the region. The location of the intermediate and deep holes is shown in
figure 1. Auger holes, 100 ft deep or less, were only drilled near The
Narrows structure (fig. 2).

TEMPERATURE MEASUREMENTS

Borehole termperatures were obtained during the period from 1974 through
1976 in 43 wells in the Raft River area. These measurements were made at 0.3-
to 1.5-m (1~ to 5-ft) intervals using single-bead thermistors, 4.86~-mm-
diameter Y4=conductor cables, and 5%-digit multimeters. The digital output of
the multimeter was recorded on punched-paper tape for later computer
analysis. In general, the logs were made while the probe was lowered down the
well at a steady, continuous rate of 4.6 m/min. The time constant of the
probes in stirred water is less than 2 seconds. A few of the shallow holes
were logged using a 3-mm-diameter, 4-conductor portable cable. In this case,
the probe was lowered to the depth at which the temperature was to be measured
and the resulting reading recorded from the multimeter by hand after the
reading had "stabilized."

The temperature gradients in most of the holes exceed the critical
gradient for convection. The range in temperature at a given depth caused by
the convecting liquid is approximately equal to the temperature gradient times
the radius of the hole times the aspect ratio of the convective motion. The
aspect ratio (height/radius of the convection "cell") ranges from 4 to 20 (for
example, Urban and Diment, 1985). 1In the holes considered here, errors in
temperatures caused by this effect are on the order of 0.01-0.1 °C.

The shallowest temperatures tabulated or plotted in the appendices are
usually within one-depth increment of the water level, as independently
determined with an electrical conductivity meter. Occasionally, temperatures
were measured from the surface. The temperatures in the air-filled part of a
hole are meaningless; the time constant of the probe in air is too long to
give reliable temperatures at the logging rates used.
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The thermistors were calibrated against a digital quartz-thermometer
(Hewlett-Packard model 2801A) with calibrations traceable to the National
Bureau of Standards. The thermistor resistances and the corresponding quartz-
thermometer temperatures were used to generate constants by a general least-
squares fit to the constants of the following equation: '

C1 + C2 * 1n(R)

C3 + 1n(R)

where C1, C2, and C3 are the generated constants, R is the thermistor
resistance, T is the temperature, and 1ln is the natural logarithm. This
equation is equation (4) of Robertson and others (1966, p. B6), where we have
solved for T and combined several constant expressions into single

constants. Robertson and others (1966) also discuss the effect of pressure on
thermistors and thermistor drift, which is usually on the order of 0.001-0.005
°C per month. The absolute precision of the calibration is +0.02 °C, and the
relative accuracy is x0.002 °C.

THERMAL-CONDUCTIVITY MEASUREMENTS

Samples of the cores from I.D. 1, 2, 3, and 5 were waxed to preserve the
moisture content. Due to the friability of much of the core, thermal-
conductivity measurements were conducted by E. P. Smith using the needle-probe
technique (Von Herzen and Maxwell, 1959; Lachenbruch and Marshall, 1966; Sass
and others, 1984). This entails drilling a small hole in the core and
inserting a needle containing a heater wire along its length and a thermistor
half-way along its length. A constant current is supplied to the heater wire,
and the temperature as a function of time is measured by the thermistor. The
mathematical solution for this case is that of a line source in an infinite
medium. The temperature should be a linear function of log time. Deviations
from linearity arise due to initial transient heating and at long times when
the finite size of the core invalidates the assumption of an infinite medium.

Although this is a relatively simple and straightforward technique, in
most rocks there tends to be considerable scatter in comparison to
conductivities measured by the divided bar apparatus. There are several
possible causes of the high variation (for example, Sass and others, 1984).
First, when the divided bar apparatus (Birch, 1950) is used to determine the
thermal conductivity, a rock sample is machined into a right circular cylinder
with its axis oriented along the vertical or Z direction in the earth. The
thermal conductivity is measured along the direction of this axis. Since it
is the vertical component of the heat flux out of the surface of the earth
that is desired, a measurement of the thermal conductivity in this direction
gives an unambiguous result. The needle probe, however, measures the thermal
conductivity in the plane perpendicular to the axis of the probe. If the axis
of the probe is oriented perpendicular to the vertical or Z direction in the
core and the rock thermal conductivity is isotropie, then the divided bar and
the needle probe should yield the same value. However, if the rock is
thermally anisotropic, then the resulting measurement yields a value which is
the geometric mean of the other two principal conductivities (Simmons,

1961). For example, if the x and y axes are in the horizontal plane, the z
axis is vertical, the principal conductivities Kx = Ky # KZ, and the needle



probe is oriented along the y axis, then the measured conductivity is the
geometric mean of Kx and KZ. Hence, the magnitude of Kx will determine
whether the effective conductivity is greater or less than the desired
vertical conductivity, Kz. Even if Kz is constant as measured by the divided
bar apparatus, variations in KX will cause variations in the effective
conductivity as measured by the needle probe and, thus, a scatter in the
apparent thermal conductivity. Due to time constraints when the measurements
were made, only a single conductivity determination was made on the available
core samples. The conductivities were measured with the needle probe oriented
perpendicular to the z or vertical axis of the core. Second, this technique
works best in rocks that are fine grained. 1In rocks which contain large
crystals or pebbles, the measured conductivity is dominated by the effect of
the nearby crystal or pebble and does not represent the overall rock
conductivity. Finally, although the waxing procedure tends to preserve the
moisture content of the core sample, there is some water loss. Moreover, the
measurements were made at atmospheric pressure and some disaggregation
probably occurred. The replacement of water by air, which has a significantly
lower thermal conductivity, tends to lower the observed, apparent conductivity
of the sample, All of these factors tend to contribute to the scatter
observed with this kind of measurement as opposed to that of the divided-bar
apparatus. The average conductivities are probably a bit low.

HEAT-FLUX

The vertical heat flux out of the Earth is the product of the thermal
conductivity and the thermal gradient over saome interval in the well that can
be reasonably assumed to be undisturbed by water flows, terrain effects, the
annual temperature wave, and other disturbances. In the case of the
measurements reported here, many of the wells undoubtedly are affected by
these disturbances. However, since the intent is to examine the geothermal
system for anomalous conditions, the size of these disturbances probably is
small in comparison to the effects of the movement of geothermal fluids
throughout the system. Two methods were used to calculate the heat flux out
of the surface. The first method used was the product of the thermal gradient
over some interval and the average thermal conductivity in that interval or
assumed for that interval, based on the thermal conductivity in nearby
holes. The second method was suggested by Bullard (1939):

Q= (T - To)/ z (Azi/Ki)

where T is the temperature as a function of depth, T, is a constant, Ki is the
thermal conductivity in the Azi interval, and Q is the heat flux. The
advantage of the Bullard method is that it allows for beds of varying
thickness and conductivity in the analysis. The disadvantages are that the
conductivities for the various intervals are not of uniform accuracy, the
vertical component of the conductivity in the interval may be overestimated or
underestimated, as discussed above, and systematic errors may arise from
nonideal sampling of the core.

The results of these calculations are tabulated in tables 1 and 2 and are
plotted and contoured in figures 3 and 4. The contour interval in these plots
is nonuniform due to the large range in values and the high concentration of
holes near The Narrows. Several observations are apparent from an examination



TABLE 1.--Heat flux for intermediate and deep holes by
Bullard resistivity integral and gradient times
conductivity product

[+ is the error in calculating the heat flux (slope of the line
in the resistivity integral)]

Well Bullard Range Heat flux Conductivity
No. resistivity of (watts per used in
interval calculation! meter well?
(meters) (meters) squared)
I.D. 1 20 90 -170 0.132 + 0.004 ————
I.D. 2 20 80 -180 .302 + .009 ———
I.D. 3 20 160 =300 .333 £ .027 ——-=
I.D. 4 (*) 6.7- 13.4 .835 I.D. 1*
I.D 5 20 60 =160 .122 + .006 ———
RRGE-1 20 100 -220 374 £ .016 ———-
RRGE-2 20 80 -400 .150 £+ .004 I.D. 3
RRGE-3 20 80 -180 545+ 017 I.D. 2
MALTA 20 60 =160 .198 + .010 I.D. 5
SHMW 5 65 -'80 669 + .027 I.D. 3
ALMO 1 (*) 9.1- 25.0 1.317 I.D. 1*
ALMO 2 (*) 30.5-170.7 .057 I.D. 2°
STREVE11l *) 62.5-221.0 .116 I.D. 5°

!Interval over which the resistivity integral was
calculated, or the interval over which the gradient was
calculated for use with the average thermal conductivity (see
footnotes 4, 5, and 6).

2Leaders (----) indicate thermal conductivities were
available from the indicated well.

'Gradient times conductivity method was used.

“Average conductivity from I.D. 1 1.08 W/meK.

SAverage conductivity from I.D. 2 = 1.30 W/m-K.

[}

®Average conductivity from I.D. 5 = 2,10 W/ m+K.



TABLE 2.--Surface heat flux for the shallow auger holes by
gradient times conductivity product

Well Interval Thermal Date Heat flux?
No. depth! gradient of (Watts
(meters) (degrees temperature per
Celsius logging meter
per squared)
kilometer)
AH 1S 10.4-28.7 207 2/09/76 0.22
AH 1A 4.9- 6.7 5,102 2/09/76 5.5
AH 2A 5.5- 6.7 149 1/16/76 .16
AH 3A 7.3-11.3 946 8/16/76 1.0
AH 4A 6.7- 8.8 133 2/09/76 .14
AH 5 .3- 7.6 43 8/16/76 .046
AH 5A 4,0- 9.4 1,033 2/09/76 1.1
AH 6 9.4-28.3 75 2/09/76 ~.080
AH 6A 5.2-12.8 3,450 8/16/76 3.7
AH 7-N 8.5- 9.8 17,713 8/16/76 19
AH 7-S .9- 4.9 4,763 1/16/76 5.1
AH 7A 1.8- 6.4 3,623 1/16/76 3.9
AH 84 1.5- 5.8 3,116 2/09/76 3.7
AH 9 7.6-14.,3 51 2/09/76 .055
AH 9A 2.1-10.1 1,107 1/16/76 1.2
AH 1 29.0-30.2 77 2/08/76 ©.083
AH 11A 5.5- 8.8 4,987 1/16/76 5.4
AH 12 3.4- 6.7 726 2/08/76 .78
AH 13-N 7.0-10.1 4,388 8/16/76 b, 7
AH 13-S 3.0-10.1 4,954 1/17/76 5.4
AH 13A 6.4-13.1 244 1/17/76 .26
AH 15 5.2- 8.5 302 2/09/76 .33
AH 16 4. 6- 5.8 4yo 2/09/76 .48
AH 17 7.9-13.4 143 8/15/76 .15
AH 19 3.0- 6.7 531 2/08/76 .57
AH 20 5.2- 8.2 580 8/08/76 .63
AH 21 5.5-10. 4 630 8/08/76 .68
AH 28 9.1-11.3 464 8/16/76 .50
AH 31 5.5- 7.3 160 2/09/76 7

!Interval depths are the end points of the "best" straight
line as determined by placing a straight edge on the temperature
plots of the auger holes in appendix I. Using the temperatures
associated with these end points, the thermal gradients were
calculated.

2An average thermal conductivity of 1.08 W/m*K from I.D. 1
was used to calculate the heat flux. Heat-flux values have been
rounded to two significant figures.
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of figures 3 and 4, 1In figure 3, only the intermediate and deep holes are
shown (see fig. 1 for identification). The roads and part of Raft River have
been left out for clarity. The contours wrap around the southern boundary of
the Jim Sage Mountains and in part are associated with The Narrows structure
(Williams and others, 1976), a northeast-trending linear feature most easily
seen in the Bouguer gravity anomaly map of the southern Raft River Valley
(Mabey and others, 1978). The 0.5 contour associated with RRGE-1 and RRGE-2
is roughly constrained by the Bridge fault and The Narrows structure in this
area. The extension of the 0.1 contour to the vicinity of Malta and Strevell
(fig. 3) would be questionable due to the lack of wells. 1In the area east of
The Narrows, a considerable number of shallow auger holes were drilled. These
holes are entirely in the alluvium and subject to disturbances caused by the
annual temperature wave and near-surface water movement.

The calculation of the heat flux for the auger holes was based on an
average thermal conductivity for I.D. 1 and the "best" thermal gradient in the
hole. The use of this value for the thermal conductivity was determined from
the examination of the available conductivity information for all the wells in
the area. Since the auger holes were entirely in alluvium, the effective
thermal conductivity probably is quite low, and probably not too different
from the conductivity in I.D. 1. An increase in the conductivity value used
in figure 4 would increase the heat-flux values but would not change the
appearance of the anomaly significantly, since the gradients associated with
the anomaly are quite large.

The thermal anomalies (figs. 3 and 4) in the vicinity of The Narrows have
no surface expression except for The Narrows spring near I.D. 4 at the edge of
Raft River. This spring has a temperature of about 38 °C, which is not large
in comparison to the temperatures observed in many of the auger holes. The
anomaly of figure 4 is confined almost entirely to the south of the road as is
the thermal infrared anomaly of Watson (1974, 1975). Since the holes north of
the road are cooler, this would tend to imply that the hot water does not move
out from under the Jim Sage Mountains (Nathenson and others, 1980). However,
this anomaly is based entirely on the shallow auger holes and deeper drilling
might change this conclusion. For example, the anomaly parallels the contours
rather nicely in figure 4, suggesting that there is some topographic
relationship. This may, however, be fortuitous since the holes were drilled
along a nearly linear trend paralleling the road.

DISCUSSION

Temperature measurements in shallow, intermediate, and deep holes show
the thermal regime in the Raft River area is complex. The maximum
temperatures and geochemistry indicate that the geothermal system is a medium-
temperature system (approximately 150 °C). Water of this temperature is only
marginally useful for electric-power production with present technology. A
discussion of the temperatures and geochemistry of the wells reported in this
paper are contained in Nathenson and others (1980). Additional background
information on the ground-water resources of the valley may be found in Nace
and others (1961) and Crosthwaite (1974). The geology and geophysics are
discussed in various publications listed in the references.

The bulk of this report contains plots (app. I) and listings (app. III)
of the temperature data obtained on the various dates shown in table 3. Some

11
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of the wells are artesian (table U4) and were logged under pressure through a
lubricator. Thermal conductivity data (app. IV) and plots (app. II) are given
where available. Calculated heat flows (Urban and Diment, 1975) are as high
or higher than most of those in the Basin and Range Province to the south
(Blackwell, 1978; Lachenbruch and Sass, 1978) and indicate an anomalous
thermal regime in the valley. Although some irrigation does occur in the Raft
River Valley, most of it is to the north of the geothermal system. What
little irrigation that does occur in the southern part of the valley is a
considerable distance from the holes considered in this report and the
irrigation wells are too shallow (100 m or less) to affect the temperature
profiles in the deep holes.
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TABLE U4.--Artesian wells in Raft River area

[Well-head pressure: C, cold; H, hot, from Kunze and Miller (1977).
Leaders (---) indicate no data available]

Well No. Well-head Flow Maximum Solids
pressure (gal/min) temperature in

(PSIG) (°C) water'

(mg/1)

RRGE-1 50 (C)-175 (H) 600 146 1,700

RRGE-2 60 (C)-165 (H) 780 148 1,800

RRGE-3 4o (C)-140 (H) 350 146 4,600
Malta 55 20 9.7 —
I.D. 3 9 10 98.7 -
Almo 1 11.5 .04 73.5 -

?For additional data on chemistry, permeability, porosity, and
density of the RRGE wells, see Stoker and others (1977).
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APPENDIX I

TEMPERATURES PLOTTED AS A FUNCTION OF DEPTH FOR WELLS LOGGED IN THE RAFT
RIVER AREA, CASSIA COUNTY, IDAHO (1974-1976)
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