

METHODS AND COMPUTER PROGRAM
DOCUMENTATION FOR DETERMINING
ANISOTROPIC TRANSMISSIVITY TENSOR
COMPONENTS OF TWO-DIMENSIONAL
GROUND-WATER FLOW

U.S. GEOLOGICAL SURVEY

PREPARED IN COOPERATION WITH
THE CITY OF BRUNSWICK, AND GLYNN COUNTY, GEORGIA

OPEN-FILE REPORT 86-227

METHODS AND COMPUTER PROGRAM DOCUMENTATION FOR

DETERMINING ANISOTROPIC TRANSMISSIVITY TENSOR

COMPONENTS OF TWO-DIMENSIONAL GROUND-WATER FLOW

By Morris L. Maslia and Robert B. Randolph

UNITED STATES GEOLOGICAL SURVEY

Open-File Report 86-227

Prepared in cooperation with THE CITY of BRUNSWICK, and GLYNN COUNTY, GEORGIA

Doraville, Georgia

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Suite B 6481 Peachtree Industrial Boulevard Doraville, Georgia 30360 Copies of this report can be purchased from:

Distribution Branch U.S. Geological Survey Books and Open-File Reports Box 25425, Federal Center Denver, Colorado 80225

CONTENTS

	Page
Abstract. Introduction. Theory of anisotropic aquifer hydraulic properties. Methods for determining anisotropic transmissivity tensor components. Type-curve. Straight-line approximation. Least-squares optimization. Computer program description. Computer program application. Example 1 type-curve method using three observation wells. Example 2 type-curve method and equal weighted least-squares optimization using eight observation wells. Example 3 type-curve method and unequal weighted least-squares optimization using eight observation wells. Summary. References cited. Supplemental data: I. Definition of selected variables used in computer program. II. Data input formats III. Input data for application examples IV. Output of application examples IV. Fortran 77 computer code listing.	1 2 6 8 13 15 17 19 19 22 26 28 29 31 32 35 36 45
ILLUSTRATIONS	Page
Figure 1. Diagram showing relationships between the hydraulic gradient (\underline{J}) and discharge (\underline{q}^*) in an anisotropic aquifer	4
aligned with reference to the pumping well (PW-1) and observation wells OW-1, OW-2, and OW-3	
ellipse and directional transmissivity	12 18
6. Graph showing comparison of theoretical transmissivity ellipse and directional transmissivity for example 1, March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia	23

ILLUSTRATIONS--Continued

			Page
	7.	Graph showing comparison of least-squares transmissivity ellipse and directional transmissivity for example 2, March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia	25
	8.	Graph showing comparison of weighted least-squares trans- missivity ellipse and directional transmissivity for example 3, March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia	27
		TABLES	
		TABLES	Page
Table	1.	Cartesian coordinates and curve matching values for observation wells used in example 1	21
	2.	Cartesian coordinates and curve matching values for observation wells used in examples 2 and 3	24
		and the state of t	24

CONVERSION FACTORS

For those readers who may prefer to use metric units rather than the inch-pound unit, the conversion factors for the terms used in this report are listed below:

Multiply inch-pound	Ву	To obtain metric unit
	Length	
inch (in.)	25.40	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Area	
square mile (mi ²)	2.590	square kilometer (km²)
	Volume	
gallon (gal)	3.785 x 10-3	cubic meter (m ³)
	3.785	liter (L)
	Flow	
gallon per minute (gal/min)	6.309 x 10-3	<pre>cubic meter per second (m³/s)</pre>
	0.06309	liter per second (L/s)
	Transmissivity	
foot squared per day (ft ² /d)	0.09290	meter squared per day (m²/d)

METHODS AND COMPUTER PROGRAM DOCUMENTATION FOR DETERMINING ANISOTROPIC TRANSMISSIVITY TENSOR COMPONENTS OF TWO-DIMENSIONAL GROUND-WATER FLOW

by

Morris L. Maslia and Robert B. Randolph

ABSTRACT

This report describes the theory of anisotropic aquifer hydraulic properties and a computer program, written in Fortran 77, developed to compute the components of the anisotropic transmissivity tensor of two-dimensional groundwater flow. To determine the tensor components using one pumping well and three observation wells, the type-curve and straight-line approximation methods are developed. These methods are based on the equation of drawdown developed for two-dimensional nonsteady flow in an infinite anisotropic aquifer. To determine tensor components using more than three observation wells, a weighted least-squares optimization procedure is described for use with the type-curve and straight-line approximation methods.

The computer program described in this report allows the type-curve, straight-line approximation, and weighted least-squares optimization methods to be used in conjunction with data from observation and pumping wells. Three example applications using the computer program and field data gathered during hydrogeologic investigations at a site near Dawsonville, Ga., are provided to illustrate the use of the computer program. The example applications demonstrate the use of the type-curve method using three observation wells, the weighted least-squares optimization method using eight observation wells and equal weighting, and the weighted least-squares optimization method using eight observation wells and unequal weighting. Results obtained using the computer program indicate major transmissivity (Tgg) in the range of 347 to 296 feet squared per day, minor transmissivity $(T_{\eta\eta})$ in the range of 139 to 99 feet squared per day, aquifer anisotropy $(T_{\xi\xi}/T_{\eta\eta})$ in the range of 3.54 to 2.14, principal direction of flow in the range of N. 45.90 E. to N. 58.7° E., and storage coefficient (S) in the range of 6.3 x 10^{-3} to 3.7 x 10^{-3} . The numerical results are in good agreement with field data gathered on the weathered crystalline rocks underlying the investigation site.

Supplemental material provides definitions of variables, data requirements and corresponding formats, input data and output results for the example applications, and a listing of the Fortran 77 computer code.

INTRODUCTION

The equations that represent the movement of water in an aquifer when water is being withdrawn from a well form the basis of methods used to analyze aquifer-test data. The equations were derived under the assumption of aquifer isotropy and are not valid for the analysis of anisotropic aquifers that include, for example, flow in some secondary permeability terraines and fractured rocks. Methods for analyzing aquifer-test data for such aquifers must be based on equations which describe the distribution of drawdown around a well of constant discharge in an infinite anisotropic aquifer. In conjunction with aquifer-test data, these equations can be used to determine aquifer anisotropy and the components of the anisotropic transmissivity tensor.

Several methods have been developed to compute drawdown in an anisotropic aquifer and to determine the tensor components. Among the methods described in the literature are those by Papadopulos (1965), Hantush (1966a, b), Hantush and Thomas (1966), Way and Mckee (1982), Neuman and others (1984), and Hsieh and others (1985).

The purpose of this report is to describe the method of Papadopulos (1965) as it is applied to aquifer hydraulic data to determine the components of the anisotropic transmissivity tensor. Additionally, this report describes the use of a computer program, TENSOR2D, which automates the solution of hydraulic parameters and tensor components for an anisotropic aquifer. The rigorous application of the Papadopulos method (1965) requires data for one pumping well and three obsevation wells. To determine tensor components and aquifer hydraulic parameters, analysis of aquifer-test data using the type-curve and straight-line approximation methods are developed. Furthermore, in this report the Papadopulos method of analysis is extended to allow for more than three observation wells by developing a weighted least-squares optimization procedure for use with the type-curve and straight-line approximation methods.

To demostrate the use of the computer program that automates the solution process for the anisotropic aquifer hydraulic parameters and tensor components, three example applications are provided. The data for these example applications, obtained during hydrogeologic investigations at a site near Dawsonville, Ga. (Stewart, 1964; Stewart and others, 1964), demonstrate the use of the type-curve method using three observation wells, the weighted least-squares optimization method using eight observation wells and equal weighting, and the weighted least-squares optimization method using eight observation wells and unequal weighting.

The work and computer simulation presented in this report were done in cooperation with the city of Brunswick and Glynn County, Ga.

THEORY OF ANISOTROPIC AQUIFER HYDRAULIC PROPERTIES

A porous medium is considered to be <u>isotropic</u> if all significant properties of the medium are <u>independent</u> of direction (Lohman and others, 1972, p. 9). If, however, at an arbitrary point in the medium the properties vary

with direction, the medium at that point is referred to as <u>anisotropic</u> (Bear, 1972, p. 134). In considering two-dimensional ground-water flow, some aquifers are anisotropic. For example, in carbonate rock aquifers, flowing ground water dissolves the rocks, producing solution channels primarily along the direction of flow. The rocks then become anisotropic making the aquifer more permeable along the solution channels.

In an anisotropic aquifer, $\underline{\mathbb{I}}$ is defined as a second rank tensor quantity of transmissivity (Bear, 1972, p. 137; Bear, 1979, p. 72). It is a linear transformation relating hydraulic gradient, $\underline{\mathbb{J}}$ (in the downstream direction), to the discharge, $\underline{\mathbf{q}}^*$, averaged over the thickness of the aquifer per unit width normal to the flow direction (fig. 1). $\underline{\mathbb{I}}$ can be represented with respect to an arbitrary set of orthogonal axes $(\overline{\mathbf{x}}-\mathbf{y})$ by a 2 x 2 matrix, such that

$$\underline{T} = \begin{bmatrix} T_{XX} & T_{XY} \\ T_{YX} & T_{YY} \end{bmatrix} . \tag{1}$$

Because the transmissivity tensor is symmetric (Bear, 1979, p. 72), $T_{Xy} = T_{yx}$. Additionally, the determinant, D', of T is defined as

$$D' = T_{xx} T_{yy} - T_{xy}^{2} . \qquad (2)$$

In an anisotropic aquifer, the hydraulic gradient, \underline{J} , and discharge, \underline{q}^* , are not necessarily in the same direction (fig. la). However, in certain directions, termed the principal directions, \underline{J} and \underline{q}^* are parallel (fig. lb). These principal directions correspond to greatest and least-preferred flow directions. In these directions the ratio between \underline{q}^* and \underline{J} is known as the principal value of the transmissivity tensor or principal transmissivity. Since the principal values are all distinct, these principal directions are mutually orthogonal and can be used to define the principal coordinate system. For the principal ξ -n coordinate system, T has the form

$$T = \begin{bmatrix} T_{\xi\xi} & 0 \\ 0 & T_{\eta\eta} \end{bmatrix} , \qquad (3)$$

where $T_{\xi\xi}$ and $T_{\eta\eta}$ are defined as the major and minor or principal components of transmissivity, respectively.

(b) Hydraulic gradient (J) and discharge (q*) are parallel and aligned along the principal directions in an anisotropic aquifer.

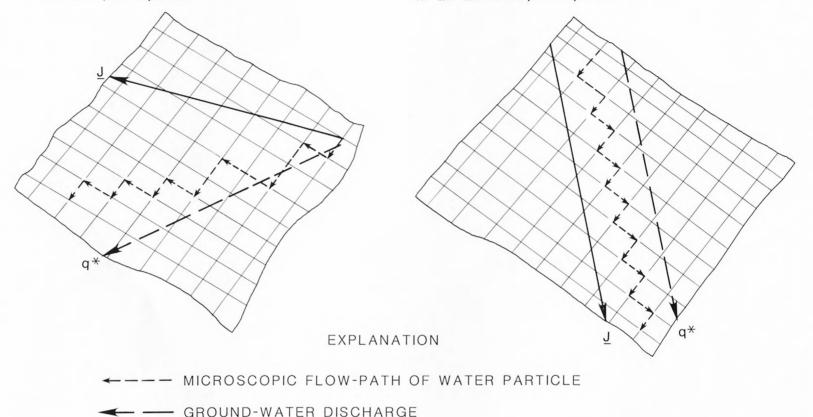


Figure 1.—Relationships between the hydraulic gradient (J) and discharge (q*) in an anisotopic aquifer.

- HYDRAULIC GRADIENT IN THE DOWNSTREAM DIRECTION

The distribution of drawdown around a fully penetrating well of constant discharge in an infinite, anisotropic, confined aquifer is described by the following equation (Papadopulos, 1965, p. 22):

$$T_{XX} \frac{\partial s^{2}}{\partial x^{2}} + 2T_{XY} \frac{\partial s^{2}}{\partial x \partial y} + T_{YY} \frac{\partial s^{2}}{\partial y^{2}} + Q\delta(x)\delta(y) = S \frac{\partial s}{\partial t}$$
 (4)

subject to the following initial and boundary conditions:

$$s(x,y,0) = 0 (5)$$

$$s(\pm \infty, y, t) = 0 \tag{6}$$

$$s(x,\pm\infty,t) = 0, \qquad (7)$$

where s = the drawdown, (L),

 T_{XX} , T_{yy} , T_{Xy} = components of the anisotropic transmissivity tensor, (L^2/T) ,

S = storage coefficient, (L°),

Q = discharge of the well, $(L^3/T)/(L^2$ of aquifer),

 δ = Dirac delta function,

x, y = coordinates of an arbitrary set of orthogonal axes with the origin at the discharge well, (L), and

t = time since pumping started, (T).

Under the assumption of aquifer homogeneity, T_{XX} , T_{yy} , and T_{Xy} are assumed to be constant over the contributing volume of the aquifer under consideration.

The problem is solved by using and applying initial condition equation 5 and the Laplace transformation with respect to time (t) to solve equation 4. Then the complex Fourier transform with respect to x and y is applied with boundary condition equations 6 and 7. The formal solution to equation 4 given by Papadopulos (1965) is

$$s = \frac{Q}{4\pi\sqrt{D'}} W(u_{XY}) , \qquad (8)$$

where $W(u_{X\,Y})$, known as the Theis well function, is defined as:

$$W(u) = \int_{u}^{\infty} \frac{e^{-v}}{v} dv$$
 (9)

in which

$$u_{xy} = \frac{S}{4t} \frac{[T_{xx}(y^2) + T_{yy}(x^2) - 2T_{xy}(xy)]}{D'},$$
 (10)

where D' is defined by equation 2.

METHODS FOR DETERMINING

ANISOTROPIC TRANSMISSIVITY TENSOR COMPONENTS

In an anisotropic aquifer, the drawdown caused by pumping is directionally dependent—that is, it is not radially symmetric. Therefore, during an aquifer test the drawdown at each observation well must be analyzed and a plot of observed drawdown (s) versus time (t or 1/t) must be made. Either the type-curve (Theis, 1935) or the straight-line method (Cooper and Jacob, 1946; Jacob, 1950) can be used to analyze the observation—well data. In order to compute the tensor components and the anisotropic aquifer parameter values, the four constants in equation 10 ($T_{\rm XX}$, $T_{\rm yy}$, $T_{\rm xy}$, and S) need to be determined. Therefore, one pumping well located at the origin of an arbitrary Cartesian coordinate system and a minimum of three observation wells are required (fig. 2). While the distribution of the wells around the pumping well is arbitrary as long as no two observation wells are radially aligned with the pumping well, the degree of radial distribution of observation wells tends to influence the results of the tensor analysis.

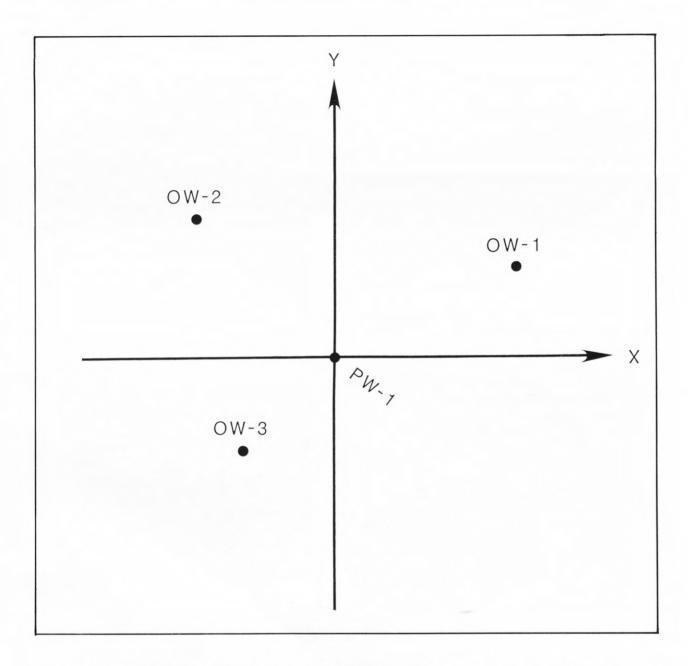


Figure 2.—Arbitary Cartesian coordinate system aligned with reference to the pumping well (PW-1) and observation wells OW-1, OW-2, and OW-3.

Type-Curve

For each observation well a log-log plot of observed drawdown versus time (or inverse time) is graphically (or numerically) matched with the Theis type curve resulting in match point values of s^* , t^* , $W(u)^*$, and u^* for each of the three observation wells. The drawdown (s^*) , well function $(W(u)^*)$, and the flow rate of the pumping well (Q) are then substituted into equation 8 to solve for the determinant (D^*) for each set of observation-well data as follows

$$D' = \left\{ \frac{Q}{4\pi s} W(u)^* \right\}^2 . \tag{11}$$

D' should have approximately the same value for each observation well. If not, an average value should be selected. Rearranging equation 10 results in

$$ST_{xx}(y^2) + ST_{yy}(x^2) - 2ST_{xy}(xy) = 4tu_{xy}D'$$
 (12)

Replacing values of $u_{\chi y}$, x, and y for each observation well and D' from equation 11, results in a system of three simultaneous equations of the general form

$$\underset{=}{\underline{A}} \underline{X} = \underline{B} \quad , \tag{13}$$

where

$$A = \begin{bmatrix} y_1^2 & x_1^2 & -2x_1y_1 \\ y_2^2 & x_2^2 & -2x_2y_2 \\ y_3^2 & x_3^2 & -2x_3y_3 \end{bmatrix},$$
 (14)

$$\frac{X}{X} = \begin{cases} ST_{XX} \\ ST_{yy} \\ ST_{Xy} \end{cases}, \text{ and}$$
 (15)

$$\underline{B} = \begin{cases}
4t_1^*u_1^*D' \\
4t_2^*u_2^*D' \\
4t_3^*u_3^*D'
\end{cases} . (16)$$

In equation 14, x_i and y_i (i=1,2,3) are the coordinate values of the three observation wells with respect to the arbitrary Cartesian coordinate system shown in figure 2. The values of $(u^*)_i$ (i=1,2,3) in equation 16, are determined from the Theis curve match for each observation well and D' is the determinant derived from equation 11.

Equation 13 can be solved by any number of simultaneous equation solvers. In this report, LU decomposition by the Crout method is employed (Stewart, 1973). In the code listing (supplemental data IV) IMSL 1 routines LUDATF and LUELMF are used to solve equation 13. Upon solving equation 13, values are obtained for $\mathrm{ST}_{\mathrm{XX}}$, $\mathrm{ST}_{\mathrm{yy}}$, and $\mathrm{ST}_{\mathrm{XY}}$.

Multiplying both sides of equation 2 by S^2 and rearranging, yields

$$D'S^2 = (ST_{xx})(ST_{yy}) - (ST_{xy})^2$$
 (17)

The storage coefficient for the anisotropic system is then obtained by solving equation 17

$$S = \sqrt{\frac{(ST_{xx})(ST_{yy}) - (ST_{xy})^2}{D'}}, \qquad (18)$$

where ST_{XX} , ST_{yy} , ST_{Xy} are obtained by solving the system of equations 13 and D' is the determinant derived from equation 11. Using the computed value of S from equation 18 and the three values previously obtained from equation 13, the components of T can be determined such that

$$T_{XX} = (ST_{XX})/S \tag{19}$$

$$T_{yy} = (ST_{yy})/S \tag{20}$$

$$T_{Xy} = (ST_{Xy})/S . (21)$$

To determine the principal values of $\overline{\underline{\ \ }}$, the eigenvalue problem

$$T \underline{X} = \lambda \underline{X}$$
 (22)

is solved by substituting for the components of \overline{T} and rearranging

$$\begin{bmatrix} T_{xx} - \lambda & T_{xy} \\ T_{xy} & T_{yy} - \lambda \end{bmatrix} \quad \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} . \tag{23}$$

¹Use of brand/trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

Setting the determinant of the matrix in equation 23 to zero, multiplying, and rearranging results in:

$$\lambda^{2} - \lambda(T_{xx} + T_{yy}) + T_{xx}T_{yy} - T_{xy}^{2} = 0 , \qquad (24)$$

which is a quadratic equation. Because $\underline{\underline{\mathsf{T}}}$ is symmetric, there will be two real roots. These roots are the principal values of the transmissivity tensor, which can be expressed as

$$T_{\xi\xi} = \frac{1}{2} \left\{ \left(T_{\chi\chi} + T_{yy} \right) + \sqrt{\left(T_{\chi\chi} - T_{yy} \right)^2 + 4T_{\chi\chi}^2} \right\}$$
 (25)

$$T_{\eta\eta} = 1/2 \cdot \{ (T_{xx} + T_{yy}) - \sqrt{(T_{xx} - T_{yy})^2 + 4T_{xy}^2} \}$$
 (26)

Aquifer anisotropy is now defined as the ratio $T_{\xi\xi}/T_{\eta\eta}$. The angle (Θ) between the x-axis and the maximum principal direction can be found as follows

$$\Theta = \tan^{-1} \frac{T_{\xi\xi} - T_{\chi\chi}}{T_{\chi\gamma}} . \tag{27}$$

Using the computed principal values, the equation of the theoretical transmissivity ellipse is determined as

$$\xi^2/T_{\xi\xi} + n^2/T_{nn} = 1$$
, (28)

where ξ , n = the axes of the principal coordinate system rotated by Θ degrees from the arbitrary x-y coordinate system,

 $\sqrt{T_{\xi\xi}}$ = the major axis of the transmissivity ellipse, and

 $\sqrt{T_{nn}}$ = the minor axis of the transmissivity ellipse.

The components of the transmissivity tensor can be graphically determined by plotting equation 28 on polar-coordinate paper (fig. 3). Alternatively, using the equation by Hantush and Thomas (1966)

$$1/T_{\rho} = (1/T_{\xi\xi})\cos^2\beta + (1/T_{nn})\sin^2\beta$$
, (29)

where T_0 = the theoretical directional transmissivity, and

 β = the direction of T_{ρ} from the origin with respect to the $\xi-n$ coordinate system,

the transmissivity ellipse can be obtained by plotting $\sqrt{T_\rho}$ in the direction of ß on polar-coordinate paper (fig. 3).

The directional transmissivity with respect to flow can be calculated using data from each observation well by (Hantush, 1966b, p. 422)

$$T_{\rm d} = \frac{\rm Sr^2}{4u*t*} , \qquad (30)$$

where: T_d = the directional transmissivity at the observation well,

S = the composite storage coefficient as defined by equation 18,

r = the radial distance from the origin of the arbitrary x-y
coordinate system to the observation well (fig. 2),

t* = the time at the match point determined by Theis curve matching
 at each observation well, and

 u^* = the variable of the well function at the match point for the observation well.

A plot of $\sqrt{T_d}$ in the direction of the observation well on polar-coordinate paper (positive is counterclockwise from the +x axis on fig. 2) should coincide with the transmissivity ellipse computed using equation 28 or 29 (fig. 3). The ellipse can therefore be interpreted as the magnitude of transmissivity as a function of angle θ .

Alternatively, by dividing both sides of equation 30 by S (storage coefficient), a plot of directional diffusivity ($\sqrt{T_d/S}$) in the direction of the observation well on polar-coordinate paper should coincide with the aquifer diffusivity ellipse. The diffusivity ellipse can be computed by replacing the principal transmissivities ($T_{\xi\xi}$, $T_{\eta\eta}$) in equation 28 or 29 with the principal diffusivities ($T_{\xi\xi}/S$ and $T_{\eta\eta}/S$, where S is the storage coefficient defined by equation 18). This ellipse will be proportional to the transmissivity ellipse computed as described above by a factor of $1/\sqrt{S}$.

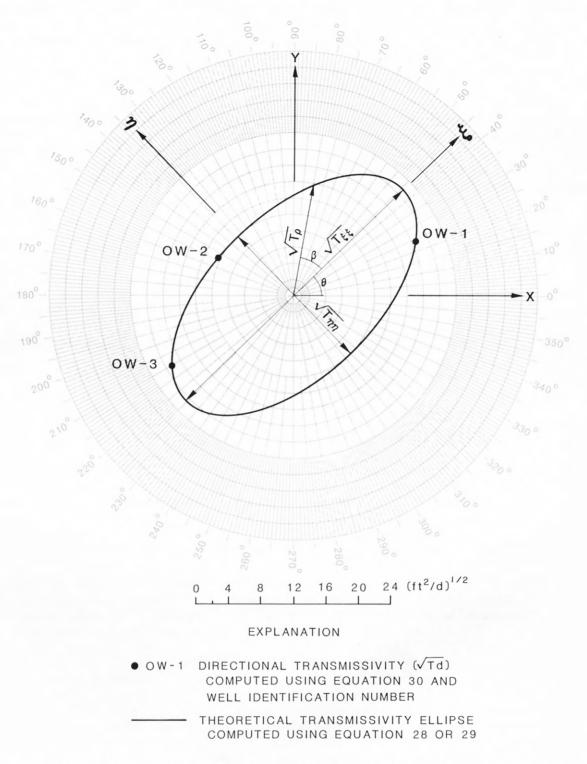


Figure 3.—Comparison of theoretical transmissivity ellipse and directional transmissivity.

It is important to note if the term $(ST_{xx})(ST_{yy})$ - $(ST_{xy})^2$ in equation 18 is negative, then no physically plausible solution exists for the components of T with the observation well data being used. That is, there is no possible way to mathematically fit a transmissivity ellipse to the given observation-well data. A plot of $\sqrt{T_d/S}$ in the direction of the observation wells on polar-coordinate paper should indicate the data are scattered and it is not possible to fit a single ellipse through the three points. This may indicate that the field data are in error, the assumption of aquifer homogeneity is incorrect, the aquifer cannot be conceptualized as an anisotropic porous medium, or the quantity and distribution of observation wells are insufficient to describe the flow regime of the aquifer.

Straight-Line Approximation

For small values of u, (u < 0.01) equation 9 can be approximated (Cooper and Jacob, 1946; Jacob, 1950) such that

$$W(u) = 2.303 \log_{10} \left(\frac{2.25}{4u}\right). \tag{31}$$

Substituting equations 31 and 10 into equation 8 yields:

$$s = \frac{2.303Q}{4\pi\sqrt{D'}} \log_{10} \left\{ \frac{2.25t}{S} \left[\frac{D'}{T_{XX}(y^2) + T_{YY}(x^2) - 2T_{XY}(xy)} \right] \right\}. \quad (32)$$

For each of the three observation wells, plotting drawdown (s) versus time (t) on semi-log graph paper with t on the logarithmic axis, equation 32 plots as a straight line with:

$$m = \frac{2.303Q}{4\pi\sqrt{D^{*}}}$$
, and (33)

$$t_0 = \frac{S}{2.25} \left[\frac{T_{xx}(y^2) + T_{yy}(x^2) - 2T_{xy}(xy)}{D'} \right], \qquad (34)$$

where: m = the slope of the line defined by equation 32, which is Δs per log cycle, and

 t_0 = the intercept of the straight line with the time axis when s = 0.

Rearranging equations 33 and 34 yields

$$D' = \left\{ \frac{2.3030}{4\pi m} \right\}^2 \text{, and}$$
 (35)

$$ST_{xx}(y^2) + ST_{yy}(x^2) - 2ST_{xy}(xy) = 2.25t_0D'$$
 (36)

The slope of the drawdown versus time data for each observation well should be approximately the same, thereby giving the same value for D' for each well (as previously discussed). By substituting the computed value of D' from equation 35 into equation 36, a linear system of three simultaneous equations can be written in the same form described by equation 13. $\underline{\underline{A}}$ and $\underline{\underline{X}}$ are defined by equations 14 and 15, respectively, and $\underline{\underline{A}}$ has the form

$$\underline{B} = \begin{cases}
2.25(t_0) & D' \\
2.25(t_0) & D' \\
2.25(t_0) & D'
\end{cases},$$
(37)

in which $(t_0)_i$ (i = 1,2,3) is the intercept of the straight line with the t-axis at s = 0 for each observation well and D' is defined by equation 35. The system of three simultaneous equations (equation 13) can now be solved by the methods previously described. Components of $\underline{\underline{\mathsf{T}}}$, the principal values of $\underline{\underline{\mathsf{T}}}$ and the principal direction of anisotropy can also be computed following the procedures described in equations 17 through 27.

The directional transmissivity (T_d) using the straight-line data for each observation well can be computed by substituting for u^* (equation 10) in equation 30 and simplifying such that

$$T_{d} = r^{2} \left\{ \frac{D'}{T_{xx}(y^{2}) + T_{yy}(x^{2}) - 2T_{xy}(xy)} \right\}. \tag{38}$$

Rearranging equation 34 yields

$$\frac{S}{2.25t_0} = \left\{ \frac{D'}{T_{XX}(y^2) + T_{yy}(x^2) - 2T_{Xy}(xy)} \right\}, \qquad (39)$$

and substituting equation 39 into equation 38 results in

$$T_{d} = \frac{Sr^2}{2.25t_0} . (40)$$

As previously discussed, a plot of $\sqrt{T_d}$ in the direction of each observation well on polar-coordinate paper should coincide with the transmissivity ellipse computed using equations 28 or 29 and will be proportional to plot of $\sqrt{T_d/S}$ by a factor of $1/\sqrt{S}$.

Least-Squares Optimization

The assumption of aquifer homogeneity is not always valid in field situations. Where significant heterogeneity occurs, the use of three observation wells in different directions to define the principal transmissivities will not always yield a physically plausible solution ($(ST_{\chi\chi})(ST_{yy})-(ST_{\chi y})^2$ in equation 18 can be negative). For example, one of the wells could be drilled into a local fracture which is not representative of the aquifer penetrated by other wells. Therefore, more than three observation wells may be needed to obtain additional information on the directional characteristics of groundwater flow at the test site. When more than three observation wells are used, the same type-curve and straight-line procedures described previously can be used. However, equation 13 will have the form

$$\begin{bmatrix} y_{1}^{2} & x_{1}^{2} & -2x_{1}y_{1} \\ y_{2}^{2} & x_{2}^{2} & -2x_{2}y_{2} \\ y_{3}^{2} & x_{3}^{2} & -2x_{3}y_{3} \\ \vdots & \vdots & \vdots \\ y_{N}^{2} & x_{N}^{2} & -2x_{N}y_{N} \end{bmatrix} \cdot \begin{bmatrix} ST_{xx} \\ ST_{yy} \\ ST_{xy} \end{bmatrix} = \begin{bmatrix} 4t^{*}_{1}u^{*}_{1}D' \\ 4t^{*}_{2}u^{*}_{2}D' \\ 4t^{*}_{3}u^{*}_{3}D' \\ \vdots \\ 4t^{*}_{N}u^{*}_{N}D' \end{bmatrix}$$

$$(41)$$

for the type-curve method, and

$$\begin{bmatrix} y_{1}^{2} & x_{1}^{2} & -2x_{1}y_{1} \\ y_{2}^{2} & x_{2}^{2} & -2x_{2}y_{2} \\ y_{3}^{2} & x_{3}^{2} & -2x_{3}y_{3} \\ \vdots & \vdots & \vdots \\ y_{N}^{2} & x_{N}^{2} & -2x_{N}y_{N} \end{bmatrix} \cdot \begin{bmatrix} ST_{xx} \\ ST_{yy} \\ ST_{xy} \end{bmatrix} = \begin{bmatrix} 2.25to_{1}D' \\ 2.25to_{2}D' \\ 2.25to_{3}D' \\ \vdots \\ 2.25to_{N}D' \end{bmatrix}$$

$$(42)$$

for the straight-line method.

Equations 41 and 42 represent a linear system of N simultaneous algebraic equations (N is the total number of observation wells) with three unknowns (ST_{XX} , ST_{yy} , and ST_{xy}). Because the system is over-determined (there are more equations than unknowns), the use of a least-squares optimization procedure is required to solve the system of equations 41 or 42 which are represented by the system of equations 13. Two least-squares procedures may be used to solve the system of equations represented by equation 13--the ordinary least-squares (OLS) method and weighted least-squares (WLS) method.

The solution to equation 13 using the OLS method is computed according to Stewart (1973, p. 221):

$$\underline{X} = (A A)^{-1} A \underline{B} . \tag{43}$$

As long as the deviation of $\sqrt{T_d}$ or $\sqrt{T_d/S}$ from the ellipse computed by the OLS method is only slight, this method works well. (See, for example, Randolph and others, 1985, fig. 7.)

If the test site is characterized by extreme heterogeneity such that the data being analyzed exhibit large deviations, a physically plausible solution may still fail to exist ((ST_{xx}) ((ST_{yy}) - $(\text{ST}_{xy})^2$ in equation 18 is negative). Additionally, if a certain area (or quadrant) is lacking observation-well data (observation wells are clustered about a certain area or quadrant), equation 43 may yield an ellipse that is unrealistically elongated in the direction of the missing data. Another problem that arises in using the OLS method is that elements of B in equation 43 are inversely proportioned to directional transmissivity (compare equation 30 and 41). Therefore, the OLS method is more sensitive to smaller values of directional transmissivity. If the data set being considered has significant variations in the values of $T_{\rm d}$, the ellipse computed from equation 43 will be biased toward the smaller $T_{\rm d}$ values. Hsieh and others (1985, p. 1670) have also noted and discussed these difficulties arising from the use of the OLS method in analyzing well data in three dimensions for computing components of the hydraulic conductivity tensor.

To address the problems associated with using the OLS method, an alternative solution methodology, the weighted least-squares method (WLS) can be used. Using the WLS method the solution to equation 13 is computed according to (Draper and Smith, 1979, p. 108; Beck and Arnold, 1977, p. 248):

where $\underline{\underline{\omega}}$ is an N x N diagonal matrix of selected weights or coefficients. The elements of $\underline{\underline{\omega}}$ are assigned values in such a manner so that large values of T_d are given appropriate weighting in deriving the least-squares transmissivity ellipse and that a physically plausible solution to equation 18 exists $(ST_{xx})(ST_{yy})$ - $(ST_{xy})^2$ is positive). It should be obvious that the manner in which the values for elements of $\underline{\underline{\omega}}$ are chosen is subjective. As such, several attempts using different weights may be required to obtain an acceptable solution if the data exhibit a large degree of scatter.

Situations may arise where the scatter of the data is so large that a fit of the field data ($\sqrt{\text{Td}}$ or $\sqrt{\text{T}_d/\text{S}}$) to a computed ellipse is not possible even with the use of the WLS method and a judicious choice of weights. When this occurs, it should be concluded that the aquifer being tested cannot be represented as an anisotropic, homogeneous porous medium on the scale of the aquifer volume being tested. Another indication that the aquifer being tested cannot be considered an anisotropic, homogeneous porous medium will be a lack of fit of s* and t* data to the type curve (or straight line). If the aquifer being tested is sufficiently homogeneous so that the methods described herein can be generally applied (a plot of $\sqrt{\text{T}_d}$ or $\sqrt{\text{T}_d/\text{S}}$ in the direction of the observation wells outlines an ellipse similar to the one derived from equation 43 or 44), then every possible combination of any of the three observation wells in three different directions should yield approximately the same results.

COMPUTER PROGRAM DESCRIPTION

The computer code listing presented in this report (Supplemental Data V) is written in FORTRAN 77 and is intended for use on the PRIME computer system of the U.S. Geological Survey, Water Resources Division. The program, TENSOR2D, is composed of a main program and four subroutine subprograms. A generalized flow chart of TENSOR2D is shown in figure 4. The purpose of the main program and each subroutine are explained below:

- MAIN PROGRAM: Dimensions the appropriate arrays and allocates the space in storage vector Y. At the present time enough space is allocated in Y to analyze 25 observation wells. If more space is required, increase the size of Y.
- SUBROUTINE TEN3TC: Uses the results of the type-curve method to compute tensor components and aquifer anisotropy for three observation wells. The system of simultaneous equations is solved by LU decomposition using the Crout method.
- SUBROUTINE TEN3SL: Uses the results of the straight-line method to compute tensor components and aquifer anisotropy for three observation wells. The system of simultaneous equations is solved by LU decomposition using the Crout method.
- SUBROUTINE WLSTC: Uses the results of the type-curve method to compute tensor components and aquifer anisotropy for four or more observation wells. The system of simultaneous equations is solved by a weighted least-squares optimization scheme.
- SUBROUTINE WLSL: Uses the results of the straight-line method to compute tensor components and aquifer anisotropy for four or more observation wells. The system of simultaneous equations is solved by a weighted least-squares optimization scheme.

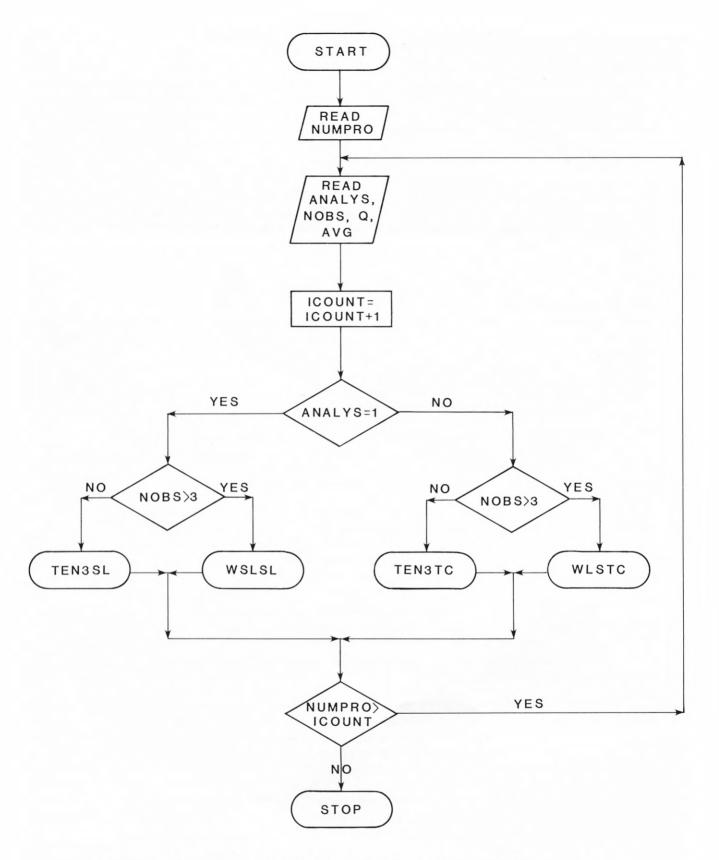


Figure 4.—Generalized flow chart of the computer program.

The definitions of selected variables used in TENSOR2D are listed in Supplemental Data I and formats of required input data are listed in Supplemental Data II. TENSOR2D is written in a modular form to accommodate user modification of input data and output results. Additionally, all input data must be in consistent units.

COMPUTER PROGRAM APPLICATION

Three numerical examples are provided to demonstrate the use of TENSOR2D. Example 1 uses the type-curve method with three observation wells. Examples 2 and 3 use the type-curve method with eight observation wells (weighted least-squares method). In Example 2 the elements of the weight matrix ($\underline{\omega}$ in equation 44) are all assigned a value of unity (1.0). This is the same as using the ordinary least-squares method (equation 43). In Example 3, the weights assigned to $\underline{\omega}$ are varied in order to demonstrate the effect of weighting on the computed transmissivity ellipse.

The examples use data gathered during hydrogeologic investigations at the site of the Georgia Nuclear Laboratory, located about 4 miles southwest of Dawsonville, Dawson County, Ga., and reported in Stewart (1964) and Stewart and others (1964). Data used in the example problems are listed in tables 1 and 2. Required input data in TENSOR2D format and solutions of the example problems are given in Supplemental Data III and IV, respectively.

Example 1 -- Type-curve method using three observation wells

On March 17-19, 1959, an aquifer test was conducted at the site of the Georgia Nuclear Laboratory to determine the capacity of saprolite, which underlies the test site, to transmit water and to yield water from storage. The estimated saturated thickness of the saprolite at the test site is about 100 feet (Stewart, 1964, p. D51). Discharge from the pumping well (TW-16) was 8.7 gallons per minute for about 30 hours. The location of observation wells AH-75, AH-93, and AH-173 and the arbitrary Cartesian (X-Y) coordinate system used for the tensor analysis are shown in figure 5. All time-drawdown data were matched with the Theis type curve. Coordinate values, radial distances and direction from the pumping well (TW-16), and type-curve match-point values for the three observation wells are listed in table 1. The arbitrary coordinate system was oriented with the Y-axis to the north (fig. 5). As previously discussed, D' (equation 11) should have the same value for each observation well. In this example (and most field situations) D' varies somewhat for each observation well (table 1). Therefore, an arithmetic average of 3.452×10^4 $(ft^2/d)^2$ was used for D' in the tensor analysis. TENSOR2D will calculate an average D' using all the observation wells or the user can specify a D' of his choosing. (See Supplemental Data II and IV.)

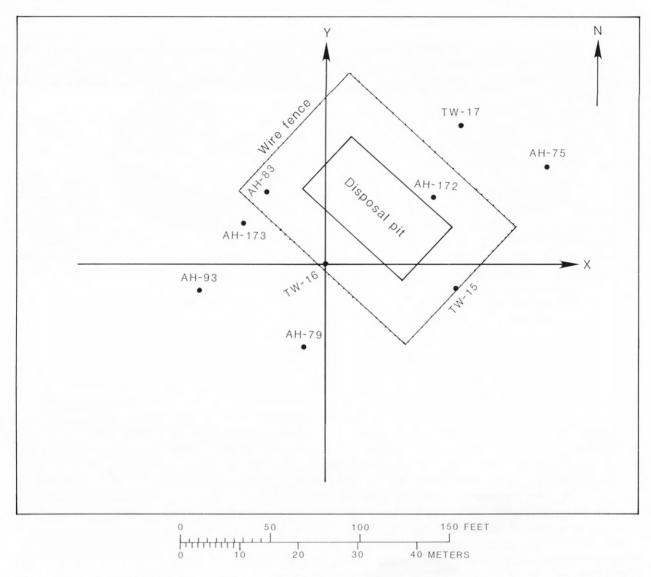


Figure 5.—Location of pumping well (TW-16), observation wells, and arbitary X-Y coordinate system used in the analysis of the March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia. Modified from Stewart (1964).

Table 1.--Cartesian coordinates and curve matching values for observation wells used in example 1

				_w 1/	type-curve match points				2/	3/
Well identification	X (ft)	y (ft)	r (ft)	Ψ ⁼ (degrees)	W(u)	u	s (ft)	t (days)	D' ^{2/} (ft ² /d) ²	Td/S 3/ (ft ² /d)
AH-75 ⁴ /	124.24	55.32	136	24°	1.0	1.0	1.23	0.0640	1.174×10 ⁴	7.23×10 ⁴
AH-93	-60.64	-12.89	62	192°	1.0	1.0	.59	.0175	5.103x10 ⁴	5.49x10 ⁴
AH-173	-42.24	20.60	47	154°	1.0	1.0	.66	.0189	4.078×10 ⁴	2.92×10 ⁴

 $[\]bot$ Direction of observation well; positive is counterclockwise from +x axis.

^{2/} See equation 11 for definition of D'.

^{3/} See equation 30 for definition of T_d . Computed value of S in Example 1 = 3.71×10^{-3} .

^{4/}See figure 5 for well locations.

Components of the transmissivity tensor and the storage coefficient computed by TENSOR2D, a plot of the transmissivity ellipse, and the directional transmissivity for each observation well are shown in figure 6. The values computed for the directional diffusivity (T_d/S) are also listed in table 1. The plot of $\sqrt{T_d}$ (equation 30 and table 1) in the direction of the observation well (fig. 6) coincides exactly with the theoretical transmissivity ellipse (computed using equation 28 or 29) since only three observation wells were used. The angle of anisotropy and principal direction of flow computed by TENSOR2D (Θ = 44.1°; N. 45.9° E.) are in good agreement with the alignment of the major axis of the observed cone of depression defined during a June 1958 aquifer test (Stewart and others, 1964, pl. 3). The azimuth of the major axis of this cone is about N. 52° E. and is parallel to the strike of rock foliation in the area of the aquifer test (Stewart and others, 1964, p. F68). The output from Example 1 is provided in Supplemental Data IV.

Example 2 -- Type-curve method and equal weighted least-squares optimization using eight observation wells

In this example, components of the transmissivity tensor and the storage coefficient were computed using the eight observation wells shown on figure 5, and data relative to the same aquifer test described in Example 1. Table 2 lists coordinate values, radial distances and direction of the observation wells from the pumping well (TW-16), type-curve match points, and values of D' (computed using equation 11). As with Example 1, the value of D' varied for each observation well (table 2), so TENSOR2D computed an arithmetric average for use in the tensor analysis. (See output of Example 2 in Supplemental Data IV.) Because there were more than three observation wells the weighted least-squares method was used to solve the over-determined system of equations (subroutine WLSTC of TENSOR2D in fig. 4 and Supplemental Data V). In this example, the weights ($\underline{\omega}$ in equation 44) were all assigned a value of 1.0 (Supplemental Data II and III). A justification of these values would be that test data from each observation well are considered to be of equal quality and did not exhibit significant scatter.

Results of the tensor analysis are shown on figure 7. The $\sqrt{T_d}$ (equation 30) for each observation well (T_d/S is listed in table 2) plotted in the direction of the observation well, compares favorably with and outlines the least-squares transmissivity ellipse computed using equation 28 or 29 (fig. 7). Additionally, the ratio of anisotropy (3.5:1) and angle of anistoropy ($\Theta = 43.4^\circ$, N. 46.6° E.) agree well with results from Example 1 and the field observations reported in Stewart and others (1964, pl. 3).

The close agreement between results of Example 1 (three observation wells) and Example 2 (eight observation wells) is one indication that the assumption of aquifer homogeneity is valid for these field data. Another indication that the assumption of a homogeneous porous medium is correct is apparent in the equal weights assigned to the observation well data (ω in equation 44 and WT(I) in Supplemental Data III-B and IV-B). Since all observation wells were equally weighted (assigned a value of 1.0) and the square root of the directional transmissivity ($\sqrt{\text{Td}}$) for the wells aligned closely

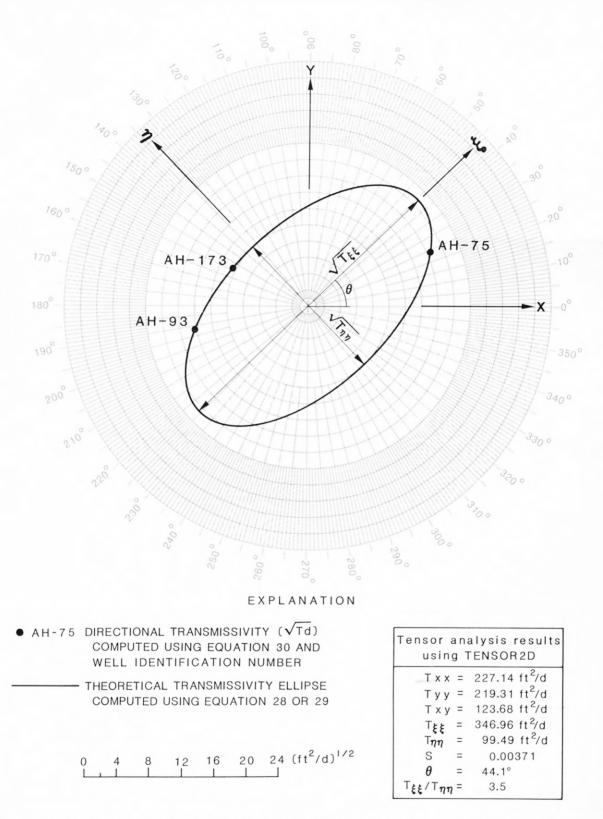


Figure 6.—Comparison of the theoretical transmissivity ellipse and directional transmissivity for example 1, March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia.

Table 2.--Cartesian coordinates and curve matching values for observation wells used in examples 2 and 3

				1/	$\frac{1}{\Psi} / \qquad \frac{\text{type-curve match points}}{W(u) u s t}$				D' ² /	3/
Well identification	X (ft)	y (ft)	r (ft)	Ψ— (degrees)	W(u)	u	s (ft)	t (days)	(ft ² /d) ²	Td/S (ft ² /d)
AH-75									1	
AH-75	124.24	55.32	136	24°	1.0	1.0	1.23	0.0640	1.17×10 ⁴	7.22×10 ⁴
AH-79	-12.68	-47.33	49	255°	1.0	1.0	.80	.0220	2.75×10 ⁴	2.73×10 ⁴
AH-83	-30.84	38.08	49	129°	1.0	1.0	.51	.0169	6.86x10 ⁴	3.55×10 ⁴
AH-93	-60.64	-12.89	62	192°	1.0	1.0	59	.0175	5.10x10 ⁴	5.49×10 ⁴
AH-172	59.88	38.15	71	32.5°	1.0	1.0	.48	.0373	7.87×10 ⁴	3.38×10 ⁴
AH-173	-42.24	20.60	47	154°	1.0	1.0	.66	.0189	4.08×10 ⁴	2.92×10 ⁴
TW-15	74.73	-13.85	76	349.5°	1.0	1.0	.66	.0494	4.08×10 ⁴	2.92×10 ⁴
TW-17	75.70	73.03	108	45.5°	1.0	1.0	1.38	.0284	9.33x10 ³	1.03x10 ⁵

^{1/}Direction of observation well; positive is counterclockwise from +x axis.

²/See equation 11 for definition of D'.

 $[\]frac{3}{\text{See}}$ equation 30 for definition of T_d . Computed value of S in Example 2 = 4.38×10^{-3} . Computed value of S in Example 3 = 6.35×10^{-3} .

^{4/}See figure 5 for well locations.

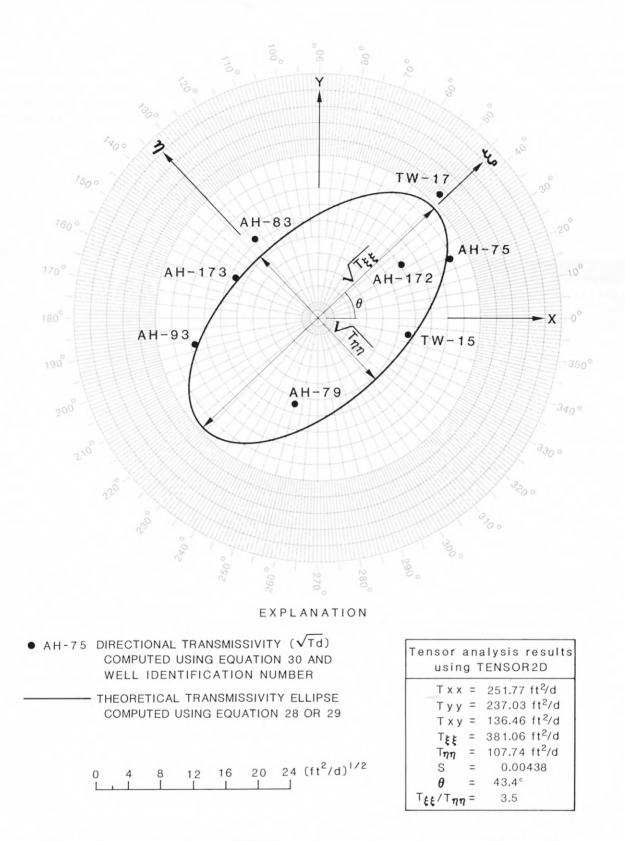


Figure 7.—Comparison of least-squares transmissivity ellipse and directional transmissivity for example 2, March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia.

with the computed transmissivity ellipse, the assumption of aquifer homogeneity appears to be valid. If the test data had exhibited significant scatter, indicating possible aquifer heterogeneities, different weighting values may have been needed to be assigned to the observation wells in order to compute the tensor components and anisotropic aquifer parameter values.

Example 3 -- Type-curve method and unequal weighted least-squares optimization using eight observation wells

Example 3 is provided to demonstrate the effect of assigning different values of weight ($\underline{\omega}$ in equation 44) to the test data on the computed transmissivity ellipse and components of the transmissivity tensor. All input data are the same as in Example 2 (table 2) with the exception of the weighting values (compare Supplemental Data III-B and III-C). Wells AH-79, AH-173, and TW-15 (fig. 5) were arbitrarily assigned a weight of 2.0, whereas wells AH-75, AH-83, AH-93, and TW-17 were assigned weights of 0.1, 0.25, 0.75, and 0.1, respectively. This implies that during the solution process of equation 44, wells AH-75 and TW-17 will be given the least amount of weight, whereas wells AH-79, AH-172, AH-173, and TW-15 will be weighted the most. It should be noted again that these weights were assigned arbitrarily to demonstrate the effect of using the weighted least-squares method.

Results of the tensor analysis using the weighting distribution described above are shown on figure 8. A plot of $\sqrt{T_d}$ (equation 30) for each observation well (T_d /S is listed in table 2) in the direction of the well shows that the wells that were weighted the most (AH-79, AH-172, AH-173, and TW-15) align most closely with the computed transmissivity ellipse. Additionally, the ratio of anisotropy has been reduced from 3.5:1 (Example 2) to 2.1:1. Computed values of the tensor components, the angle of anisotropy, and the storage coefficient are also shown in figure 8.

An important point demonstrated by Example 3 is that the weighted least-squares method allows one to use subjective judgement in evaluating the quality of data from the observation wells. Additionally, if some heterogeneities are present at the test site, they can be taken into account by the assignment of different weights (ω in equation 44) during the solution procedure.

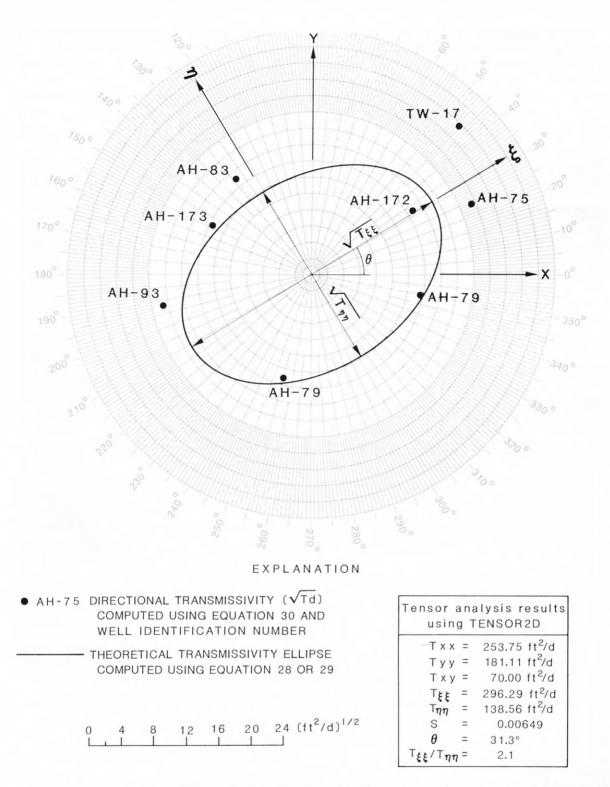


Figure 8.—Comparison of weighted least-squares transmissivity ellipse and directional transmissivity for example 3, March 1959 aquifer test, Georgia Nuclear Laboratory, Dawson County, Georgia.

SUMMARY

The computer program, TENSOR2D, described in this report can be used to compute the anisotropic aquifer hydraulic parameters and components of the transmissivity tensor for two-dimensional ground-water flow. The program is based on the equation of drawdown formulated by Papadopulos (1965) for nonsteady flow in an infinite anisotropic aquifer. Using aquifer-test data for one pumping well and three observation wells, the type-curve and straight-line approximation methods are developed for computing anisotropic aquifer hydraulic properties and components of the transmissivity tensor. Additionally, the method of Papadopulos (1965) as originally developed has been extended to allow for the analysis of more than three observation wells by applying a weighted least-squares optimization procedure to the type-curve and straightline approximation methods.

Three example applications using the computer program and field data gathered during hydrogeologic investigations at a site near Dawsonville, Ga. (Stewart, 1964; Stewart and others, 1964) are provided to illustrate the use of the computer program, TENSOR2D. The example applications demonstrate the use of the type-curve method using three observation wells, the weighted least-squares optimization method using eight observation wells and equal weighting, and the weighted-least squares optimization method using eight observation wells and unequal weighting. Results obtained using the computer program indicate major transmissivity $(T_{\xi\xi})$ in the range of 347 to 296 feet squared per day, minor transmissivity $(T_{\eta\eta})$ in the range of 139 to 99 feet squared per day, aquifer anisotropy in the range of 3.54 to 2.14, principal direction of flow in the range of N. 45.9° E. to N. 58.7° E., and computed storage coefficients in the range of 6.3 x 10-3 to 3.7 x 10-3. The numerical results are in good agreement with the field data gathered on the weathered crystalline rocks underlying the investigation site.

The names of program variables, data input formats, examples of input data and model output, and the Fortran 77 computer code of TENSOR2D are listed in the "Supplemental Data" sections. The program is written in a modular format to allow user modification of input data and output results.

REFERENCES CITED

- Bear, Jacob, 1972, Dynamics of fluids in porous media: New York, American Elsevier Publishing Company, 764 p.
- ---- 1979, Hydraulics of groundwater: New York, McGraw-Hill, 567 p.
- Beck, J. V., and Arnold, K. J., 1977, Parameter estimation in engineering science: New York, John Wiley, 709 p.
- Cooper, H. H., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: American Geophysical Union Transaction, v. 27, no. 4, p. 526-534.
- Draper, Norman, and Smith, Harry, 1977, Applied regression analysis: New York, John Wiley, 709 p.
- Hantush, M. S., 1966a, Wells in homogeneous anisotropic aquifers: Water Resources Research, v. 2, no. 2, p. 273-279.
- ---- 1966b, Analysis of data from pumping tests in anisotropic aquifers: Journal of Geophysical Research, v. 71, no. 2, p. 421-426.
- Hantush, M. S., and Thomas R. G., 1966, A method for analyzing a drawdown test in anisotropic aquifers: Water Resources Research, v. 2, no. 2, p. 281-285.
- Hsieh, P. A., Neuman, S. P., Stiles, G. K., and Simpson, E. S., 1985, Field determination of three-dimensional hydraulic conductivity tensor of anisotropic media, 2. Methodology and application to fractured rocks: Water Resources Research, v. 21, no. 11, p. 1667-1676.
- Jacob, C. E., 1950, Flow of ground water: Engineering Hydraulics, H. Rouse, ed., chapter 5, New York, John Wiley, p. 321-386.
- Lohman, S. W., and others, 1972, Definitions of selected ground-water terms -revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Neuman, S. P., Walter, G. R., Bentley, H. W., Ward, J. J., and Gonzalez, D. D., 1984, Determination of horizontal aquifer anisotropy with three wells: Ground Water, v. 22, no. 1, p. 66-72.
- Papadopulos, I. S., 1965, Nonsteady flow to a well in an infinite anisotropic aquifer: Proceedings of the Dubrovnik Symposium on the Hydrology of Fractured Rocks, International Association of Scientific Hydrology, p. 21-31.
- Randolph, R. B., Krause, R. E., and Maslia, M. L., 1985, Comparison of aquifer characteristics derived from local and regional aquifer tests: Ground Water, v. 23, no. 3, p. 309-316.

REFERENCES CITED--Continued

- Stewart, G. W., 1973, Introduction to matrix computations: New York, Academic Press, 441 p.
- Stewart, J. W., 1964, Infiltration and permeability of weathered crystalline rocks, Georgia Nuclear Laboratory, Dawson County, Georgia: U.S. Geological Survey Bulletin 1133-D, 59 p.
- Stewart, J. W., Callahan, J. T., and Carter, R. F., 1964, Geologic and hydrologic investigation at the site of the Georgia Nuclear Laboratory, Dawson County, Georgia: U.S. Geological Survey Bulletin 1133-F, 90 p.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: American Geophysical Union Transactions, v. 16, p. 519-524.
- Way, S. C., and McKee, C. R., 1982, In-situ determination of three-dimensional aquifer permeabilities: Ground Water, v. 20, no. 5, p. 594-603.

SUPPLEMENTAL DATA I

Definition of Selected Variables Used in Computer Program

ANALYS - type of analysis performed on the set of observation wells

AVG - user supplied 'average' value for determinant if type-curve analysis or 'average' value for slope of line if straight-line analysis

D - array of the drawdowns from the Theis curve match points for the set of

observation wells (L)

DESCR1 - description to be printed at start of computer output (line 1) DESCR2 - description to be printed at start of computer output (line 2)

DET - determinant of the matrix of a two-dimensional, symmetric transmissivity tensor based on either the type-curve or straight-line analysis of observation well data $(L^2/T)^2$

DETBAR - arithmetic average of the determinants obtained from the observation wells in an aquifer test $(L^2/T)^2$

NOBS - number of observation wells to be used in an analysis (minimum of three)

NUMPRO - number of problem datasets to be analyzed

Q - pumping rate during an aquifer test (L^3/T)

RATAN - computed ratio of anisotropy (Tss/Tnn)

S - composite storage coefficient resulting from the tensor analysis

SL - array of the slopes resulting from the straight-line fit of the observation well data ($\Delta L/\log$ T)

SLBAR - arithmetic average of the slopes resulting from the individual observation wells ($\Delta L/\log T$)

T - array of the times from the Theis curve match points for the set of observation wells (T)

Inn - principal component (minimum) of the transmissivity tensor (L^2/T)

Tss - principal component (maximum) of the transmissivity tensor (L^2/T)

Txx - anisotropic transmissivity tensor component along the x-direction of the arbitrary axes chosen (L^2/T)

Txy - cross product component of the transmissivity tensor with reference to the arbitrary axes chosen (L^2/T)

Tyy - anisotropic transmissivity tensor component along the y-direction of the arbitrary axes chosen (L^2/T)

To - array of straight-line intercepts of the time axis from Cooper-Jacob plots of observation well data (T)

THETA - angle of anisotropy, in degrees, from the positive x-axis THETAR - angle of anisotropy, in radians, from the positive x-axis

U - array of the variable of the well function from the Theis curve match points for the set of observation wells

WELLID - array of well identifications for the set of observation wells WT - array of weighting factors assigned to observation well data for use with weighted least-squares method.

WU - array of the well function from the Theis curve match points for the set of observation wells

XW - array of x-coordinates of the observation wells with respect to the arbitrary axes chosen

YW - array of y-coordinates of the observation wells with respect to the arbitrary axes chosen

NOTE: Additional variable descriptions may be found in the program listing (Supplemental Data V).

SUPPLEMENTAL DATA II

Data Input Formats

Card	Columns	Format	Variable	<u>Definition</u>
1	1-5	15	NUMPRO	Number of problem datsets to be analyzed

Group 1: Description and input data for individual problems

NUMPRO number of datasets

Card	Columns	Format	<u>Variable</u>	Definition
2	1-5	15	ANALYS	Type of analysis performed on the individual wells O: Theis non-leaky type curve 1: Cooper-Jacob straight line
	6-10	15	NOBS	Number of observation wells in a problem (minimum of three)
	11-20	G10.0	Q	Pumping rate during aquifer test
	21-30	G10.0	AVG	User supplied 'average' value for determinant if type-curve analysis or 'average' value for slope of line if straight-line analysis. If 0.0, program will internally calculate an arithmetic average.
3	1-80	A80	DESCR1	Any description the user wishes to print on one line at start of output
4	1-80	A80	DESCR2	Any description the user wishes to print on second line at start of output

NOTE 1: Consistent units should be used for input data throughout.

NOTE 2: Input data are read on Fortran Unit 5. Output data are written on Fortran Unit 6.

Data Input Formats--Continued

IF ANALYS = 1 THEN GO TO GROUP 1.1-B

Group 1.1-A: Type-curve analysis results (ANALYS = 0)

NOBS number of cards

Card	Columns	Format	Variable	Definition
	1-10	A10	WELLID	Well identification
	11-20	G10.0	XW	X-coordinate of observation well relative to the pumping well
	21-30	G10.0	YW	Y-coordinate of observation well relative to the pumping well
	31-40	G10.0	T	Time at Theis curve match point
	41-50	G10.0	D	Drawdown at Theis curve match point
	51-60	G10.0	WU	Well function at Theis curve match point
	61-70	G10.0	U	Variable of the well function at Theis curve match point
	71-80	G10.0	WT	Weight factor for observation well data to be used with weighted least-squares method. For equal weighting set WT = 1.0 for all data. WT should be omitted if analyzing only three observation wells.

NOTE 2: Input data are read on FORTRAN Unit 5. Output data are written on Fortran unit 6.

NOTE 1: Consistent units should be used for input data throughout.

Data Input Formats--Continued

Group 1.1-B: Straight-line analysis results (ANALYS = 1)

NOBS number of cards

Card	Columns	Format	Variable	<u>Definition</u>
	1-10	A10	WELLID	Well description
	11-20	G10.0	XW	X-coordinate of observation well relative to the pumping well
	21-30	G10.0	YW	Y-coordinate of observation well relative to the pumping well
	31-40	G10.0	То	Straight-line intercept of time axis
	41-50	G10.0	SL	Slope of straight line, [∆(drawdown)/∆(log(time))]
	51-60	G10.0	WT	Weight factor for observation well data to be used with weighted least-squares method. For equal weighting, set WT = 1.0 for all data. WT should be omitted if analyzing only three observation wells.

NOTE 1: Consistent units should be used for input data throughout.

NOTE 2: Input data are read on FORTRAN Unit 5. Output data are written on FORTRAN Unit 6.

SUPPLEMENTAL DATA III

Input Data for Application Examples

A. Example Problem 1

1										
0	3 16	74.866	3	0.0						
EXAMPLE	PROBL	EM#1:	MARCH	17-19	, 1959	AQUIFE	R TEST	- DAWSON	COUNTY,	GA.
3 OBSERV	ATION	WELLS	USING	TYPE-	CURVE	MATCH P	POINTS.	UNITS =	FT, DAYS	
AH-75		124.24	4 !	55.32	0.0	640	1.23	1.0)	1.0
AH-93		-60.6	4 -	12.89	0.0	175	0.59	1.0)	1.0
AH-173		-42.24	4 7	20.60	0.0	189	0.66	1.0)	1.0

B. Example Problem 2

1							
0 8	1674.8663	0.0					
EXAMPLE PRO	BLEM#2: MAI	RCH 17-19,	1959 AQUI	FER TEST - DA	AWSON COUN	NTY, GA.	
EIGHT OBSER	VATION WELL	S USING TY	PE-CURVE MA	ATCH POINTS.	UNITS =	FT, DAYS	
AH-75	124.24	55.32	0.0640	1.230	1.0	1.0	1.0
AH-79	-12.68	-47.33	0.0220	0.804	1.0	1.0	1.0
AH-83	-30.84	38.08	0.0169	0.509	1.0	1.0	1.0
AH-93	-60.64	-12.89	0.0175	0.590	1.0	1.0	1.0
AH-172	59.88	38.15	0.0373	0.475	1.0	1.0	1.0
AH-173	-42.24	20.60	0.0189	0.660	1.0	1.0	1.0
TW-15	74.73	-13.85	0.0494	0.660	1.0	1.0	1.0
TW-17	75.70	77.03	0.0284	1.380	1.0	1.0	1.0

C. Example Problem 3

1							
0 8	1674.8663	0.0					
EXAMPLE PRO	BLEM#3: MA	RCH 17-19,	1959 AQUI	FER TEST -	DAWSON COU	NTY, GA.	
USE OF DIFF	ERENT WEIGH	TS FOR LEA	ST-SQUARES			UNITS = F	T,DAYS
AH-75	124.24	55.32	0.0640	1.230	1.0	1.0	0.10
AH-79	-12.68	-47.33	0.0220	0.804	1.0	1.0	2.0
AH-83	-30.84	38.08	0.0169	0.509	1.0	1.0	0.25
AH-93	-60.64	-12.89	0.0175	0.590	1.0	1.0	0.75
AH-172	59.88	38.15	0.0373	0.475	1.0	1.0	2.0
AH-173	-42.24	20.60	0.0189	0.660	1.0	1.0	2.0
TW-15	74.73	-13.85	0.0494	0.660	1.0	1.0	2.0
TW-17	75.70	77.03	0.0284	1.380	1.0	1.0	0.10

SUPPLEMENTAL DATA IV

Output of Application Examples

A. Example Problem 1

TRANSMISSIVITY TENSOR ANALYSIS

USING THEIS TYPE-CURVE MATCH POINTS

AS DESCRIBED IN WATER-SUPPLY PAPER XXXX

PROGRAM BY: MORRIS L. MASLIA AND ROBERT B. RANDOLPH

U.S.G.S - WRD, DORAVILLE, GEORGIA 30360

REVISED: 04-12-85

EXAMPLE PROBLEM#1: MARCH 17-19, 1959 AQUIFER TEST - DAWSON COUNTY, GA.

3 OBSERVATION WELLS USING TYPE-CURVE MATCH POINTS. UNITS = FT,DAYS

INPUT DATA

(ALL DATA ARE IN "CONSISTENT UNITS")

WELL ID.	X-COORD.	Y-COORD.	TIME	DRAWDOWN	W(Uxy)	Uxy
AH-75	124.24	55.32	6.40E-02	1.23E+00	1.00E+00	1.00E+00
AH-93	-60.64	-12.89	1.75E-02	5.90E-01	1.00E+00	1.00E+00
AH-173	-42.24	20.60	1.89E-02	6.60E-01	1.00E+00	1.00E+00
	AVE	RAGE PUMPING	RATE: Q =	1.6749E+0	3	

Txx*Tyy - 2*Txy*Txy = (Q*W(Uxy)/(4*PI*D(I)))**2 = DET(I)

1.1742E+04 5.1031E+04 4.0781E+04

DETBAR = (DET(1)+DET(2)+ ... +DET(NOBS))/NOBS = 3.4518E+04

A. Example Problem 1--Continued

LINEAR EQUATION SYSTEM TO BE SOLVED

	A(N,N)		X(N)	B(N)
3.0603E+03	1.5436E+04	-1.3746E+04	STxx	8.8366E+03
1.6615E+02	3.6772E+03	-1.5633E+03	STyy	2.4162E+03
4.2436E+02	1.7842E+03	1.7403E+03	STxy	2.6095E+03

LU DECOMPOSITION OF A(N,N)

	LU(N,N)		IPVT(N)
4.2436E+02	1.7842E+03	1.7403E+03	3
3.9154E-01	2.9786E+03	-2.2447E+03	2
7.2116E+00	8.6233E-01	-2.4360E+04	3

SOLUTION VECTOR: X(I)

STxx= 8.4322E-01 STyy= 8.1418E-01 STxy= 4.5914E-01

A. Example Problem 1--Continued

OUTPUT RESULTS

STORAGE COEFFICIENT

s = 3.7124E - 03

COMPONENTS OF TRANSMISSIVITY TENSOR

Txx = 2.2714E+02 Tyy = 2.1931E+02 Txy = 1.2368E+02

PRINCIPAL COMPONENTS OF TRANSMISSIVITY TENSOR

Tss = 3.4696E+02 Tnn = 9.9485E+01

RATIO OF ANISOTROPY

Tss:Tnn = 3.49:1

ANGLE OF ANISOTROPY

THETA = 44.09 DEGREES

B. Example Problem 2

TRANSMISSIVITY TENSOR ANALYSIS

WEIGHTED LEAST-SQUARES OPTIMIZATION USING THEIS TYPE-CURVE MATCH POINTS

AS DESCRIBED IN WATER-SUPPLY PAPER XXXX

PROGRAM BY: MORRIS L. MASLIA AND ROBERT B. RANDOLPH
U.S.G.S - WRD, DORAVILLE, GEORGIA 30360

REVISED: 11-12-85

EXAMPLE PROBLEM#2: MARCH 17-19, 1959 AQUIFER TEST - DAWSON COUNTY, GA. EIGHT OBSERVATION WELLS USING TYPE-CURVE MATCH POINTS. UNITS = FT, DAYS

INPUT DATA

(ALL DATA ARE IN "CONSISTENT UNITS")

WELL ID.	X-COORD.	Y-COORD.	TIME	DRAWDOWN	W(U)	U	WEIGHT
	101.01	55.70		4 07- 00	4 00	4 00	1 00- 00
AH-75	124.24	55.32	6.40E-02	1.23E+00	1.00	1.00	1.00E+00
AH-79	-12.68	-47.33	2.20E-02	8.04E-01	1.00	1.00	1.00E+00
AH-83	-30.84	38.08	1.69E-02	5.09E-01	1.00	1.00	1.00E+00
AH-93	-60.64	-12.89	1.75E-02	5.90E-01	1.00	1.00	1.00E+00
AH-172	59.88	38.15	3.73E-02	4.75E-01	1.00	1.00	1.00E+00
AH-173	-42.24	20.60	1.89E-02	6.60E-01	1.00	1.00	1.00E+00
TW-15	74.73	-13.85	4.94E-02	6.60E-01	1.00	1.00	1.00E+00
TW-17	75.70	77.03	2.84E-02	1.38E+00	1.00	1.00	1.00E+00

AVERAGE PUMPING RATE: Q = 1.6749E+03

.....

Txx*Tyy - 2*Txy*Txy = (Q*W(Uxy)/(4*PI*D(I)))**2 = DET(I)

1.1742E+04 2.7481E+04 6.8565E+04 5.1031E+04 7.8732E+04

4.0781E+04 4.0781E+04 9.3279E+03

DETBAR = (DET(1)+DET(2)+ ... +DET(NOBS))/NOBS = 4.1055E+04

B. Example Problem 2--Continued

LINEAR LEAST SQUARES PROBLEM TO BE SOLVED

A(M,N) X(N) B(M)

3.0603E+03 1.5436E+04 -1.3746E+04 STxx 1.0510E+04
2.2401E+03 1.6078E+02 -1.2003E+03 STyy 3.6128E+03
1.4501E+03 9.5111E+02 2.3488E+03 STxy 2.7753E+03
1.6615E+02 3.6772E+03 -1.5633E+03 2.8739E+03
1.4554E+03 3.5856E+03 -4.5688E+03 6.1254E+03
4.2436E+02 1.7842E+03 1.7403E+03 3.1038E+03
1.9182E+02 5.5846E+03 2.0700E+03 8.1125E+03
5.9336E+03 5.7305E+03 -1.1662E+04 4.6639E+03

RESIDUAL VECTOR: R = B - A*X

-6.7863E+02 1.6921E+03 -1.2168E+03 -1.9394E+02 3.5276E+03

-2.5819E+02 8.6272E+02 -8.6071E+02

MATRIX CONDITION NUMBER: CONNUM = 1/TOL = 1.04915E+01

SOLUTION VECTOR: X(I)

B. Example Problem 2--Continued

OUTPUT RESULTS

STORAGE COEFFICIENT

S = 4.3820E - 03

COMPONENTS OF TRANSMISSIVITY TENSOR

Txx = 2.5177E+02 Tyy = 2.3703E+02 Txy = 1.3646E+02

PRINCIPAL COMPONENTS OF TRANSMISSIVITY TENSOR

RATIO OF ANISOTROPY

Tss:Tnn = 3.54:1

ANGLE OF ANISOTROPY

THETA = 43.45 DEGREES

C. Example Problem 3

TRANSMISSIVITY TENSOR ANALYSIS

WEIGHTED LEAST-SQUARES OPTIMIZATION USING THEIS TYPE-CURVE MATCH POINTS

AS DESCRIBED IN WATER-SUPPLY PAPER XXXX
PROGRAM BY: MORRIS L. MASLIA AND ROBERT B. RANDOLPH
U.S.G.S - WRD, DORAVILLE, GEORGIA 30360
REVISED: 11-12-85

EXAMPLE PROBLEM#3: MARCH 17-19, 1959 AQUIFER TEST - DAWSON COUNTY, GA.

USE OF DIFFERENT WEIGHTS FOR LEAST-SQUARES.

UNITS = FT, DAYS

INPUT DATA

(ALL DATA ARE IN "CONSISTENT UNITS")

WELL ID.	X-COORD.	Y-COORD.	TIME	DRAWDOWN	W(U)	U	WEIGHT
AH-75	124.24	55.32	6.40E-02	1.23E+00	1.00	1.00	1.00E-01
AH-79	-12.68	-47.33	2.20E-02	8.04E-01	1.00	1.00	2.00E+00
AH-83	-30.84	38.08	1.69E-02	5.09E-01	1.00	1.00	2.50E-01
AH-93	-60.64	-12.89	1.75E-02	5.90E-01	1.00	1.00	7.50E-01
AH-172	59.88	38.15	3.73E-02	4.75E-01	1.00	1.00	2.00E+00
AH-173	-42.24	20.60	1.89E-02	6.60E-01	1.00	1.00	2.00E+00
TW-15	74.73	-13.85	4.94E-02	6.60E-01	1.00	1.00	2.00E+00
TW-17	75.70	77.03	2.84E-02	1.38E+00	1.00	1.00	1.00E-01

AVERAGE PUMPING RATE: Q = 1.6749E+03

.....

Txx*Tyy - 2*Txy*Txy = (Q*W(Uxy)/(4*PI*D(I)))**2 = DET(I)

1.1742E+04 2.7481E+04 6.8565E+04 5.1031E+04 7.8732E+04

4.0781E+04 4.0781E+04 9.3279E+03

DETBAR = (DET(1)+DET(2)+ ... +DET(NOBS))/NOBS = 4.1055E+04

C. Example Problem 3--Continued

LINEAR LEAST SQUARES PROBLEM TO BE SOLVED

.....

	A(M,N)		X(N)	B(M)
9.6775E+02	4.8812E+03	-4.3468E+03	STxx	3.3236E+03
3.1680E+03	2.2738E+02	-1.6975E+03	STyy	5.1093E+03
7.2504E+02	4.7555E+02	1.1744E+03	STxy	1.3877E+03
1.4389E+02	3.1846E+03	-1.3539E+03		2.4888E+03
2.0583E+03	5.0708E+03	-6.4613E+03		8.6626E+03
6.0014E+02	2.5233E+03	2.4611E+03		4.3894E+03
2.7128E+02	7.8978E+03	2.9275E+03		1.1473E+04
1.8764E+03	1.8121E+03	-3.6880E+03		1.4748E+03
=========		=========	=======	.=========

RESIDUAL VECTOR: R = B - A*X

-1.9165E+03 4.9826E+02 -8.4931E+02 -8.0325E+02 2.3873E+03

-5.7298E+02 6.5270E+02 -1.9929E+03

MATRIX CONDITION NUMBER: CONNUM = 1/TOL = 4.79334E+00

SOLUTION VECTOR: X(I)

C. Example Problem 3--Continued

OUTPUT RESULTS

STORAGE COEFFICIENT

S = 6.3494E - 03

COMPONENTS OF TRANSMISSIVITY TENSOR

Txx = 2.5375E+02 Tyy = 1.8111E+02 Txy = 7.0002E+01

PRINCIPAL COMPONENTS OF TRANSMISSIVITY TENSOR

Tss = 2.9629E+02 Tnn = 1.3856E+02

RATIO OF ANISOTROPY

Tss:Tnn = 2.14:1

ANGLE OF ANISOTROPY

THETA = 31.29 DEGREES

SUPPLEMENTAL DATA V

Fortran 77 Computer Code Lisitng

A. Main Program

C**	*******************	MAIN	10
С	PROGRAM NAME: TENSOR2D LAST REVISON: 11-12-85	MAIN	20
C**	*******************	MAIN	30
С		MAIN	40
С	THIS PROGRAM USES THE METHOD DEVELOPED BY I. S. PAPADOPULOS TO	MAIN	50
С	COMPUTE THE COMPONENTS OF A TWO DIMENSIONAL TRANSMISSIVITY TENSOR	MAIN	60
С	AND IS DESCRIBED IN WATER-SUPPLY PAPER XXXX	MAIN	70
C		MAIN	80
С		MAIN	90
С	PRIME 750 COMPUTER SYSTEM. PROGRAM COMPILED IN FORTRAN 77	MAIN	100
С	WRITTEN BY MORRIS L. MASLIA AND ROBERT B. RANDOLPH,	MAIN	110
С		MAIN	
C		MAIN	130
С	THE PROGRAM CONSISTS OF THE FOLLOWING ROUTINES:	MAIN	140
С	TENSOR2D.F77: MAIN PROGRAM	MAIN	150
С	TEN3TC.F77: SUBROUTINE: 3 OBS. WELLS, TYPE-CURVE ANALYSIS	MAIN	160
C	TEN3SL.F77: SUBROUTINE: 3 OBS. WELLS, STRAIGHT-LINE ANALYSIS	MAIN	170
С	WLSTC.F77: SUBROUTINE: >3 OBS. WELLS, TYPE-CURVE ANALYSIS	MAIN	180
С	WLSSL.F77: SUBROUTINE: >3 OBS. WELLS, STRAIGHT-LINE ANALYSIS		
C		MAIN	200
С	DEFINITION OF VARIABLES USED IN TENSOR2D	MAIN	210
C	NUMPRO: NUMBER OF PROBLEM DATASETS IN THIS RUN	MAIN	220
С	ANALYS: TYPE OF ANALYSIS PERFORMED ON THE INDIVIDUAL WELLS	MAIN	230
С	O: THEIS NON-LEAKY TYPE CURVE ANALYSIS	MAIN	240
С	1: COOPER-JACOB STRAIGHT LINE ANALYSIS	MAIN	250
С	NOBS: NUMBER OF OBSERVATION WELLS (MINIMUM OF 3)	MAIN	260
С	Q: PUMPING RATE DURING AQUIFER TEST	MAIN	270
С	AVG: USER SUPPLIED 'AVERAGE' VALUE FOR DETERMINANT IF TYPE-	MAIN	
С	CURVE ANALYSIS OR 'AVERAGE' VALUE FOR SLOPE OF LINE	MAIN	
С	IF STRAIGHT-LINE ANALYSIS. IF AVG=0.0 PROGRAM WILL	MAIN	
С	INTERNALLY CALCULATE AN ARITHMETIC AVERAGE	MAIN	
С	DESCR1: 80 CHARACTER VARIABLE FOR PROBLEM DESCRIPTION	MAIN	
С	DESCR2: 80 CHARACTER VARIABLE FOR PROBLEM DESCRIPTION	MAIN	
С	WELLID(I): WELL IDENTIFICATION	MAIN	
С	XW(I): X-COORDINATE OF WELL	MAIN	
С	YW(I): Y-COORDINATE OF WELL	MAIN	
С	WT(I): LEAST-SQUARES WEIGHTING COEFFICIENT	MAIN	
С	+++++++ Data From Theis Type-Curve Match +++++++	MAIN	
С	T(I): TIME AT THEIS CURVE MATCH POINT	MAIN	
С	D(I): DRAWDOWN AT THEIS CURVE MATCH POINT	MAIN	
С	WU(I): THEIS CURVE MATCH POINT W(U)	MAIN	
С	U(I): THEIS CURVE MATCH POINT Uxy	MAIN	
С	++++++++ Data From Cooper-Jacob Straight-Line Match ++++++++	MAIN	
С	To(I): STRAIGHT LINE INTERCEPT OF TIME AXIS	MAIN	
С	SL(I): SLOPE OF STRAIGHT LINE [ds / dlog(t)]	MAIN	
C	COMPUTED VARIABLES	MAIN	4/0

A. Main Program--Continued

С	DET(I):	Txx*Tyy-Txy*Txy = (Q*WU(I)/(4*3.14*D(I)))**2 (THEIS)	MAIN	480
С	DETBAR:	(DET(1)+DET(2)++DET(NOBS))/NOBS	MAIN	490
С	DET:	Txx*Tyy-Txy*Txy = (2.303*Q/4*3.14*SLBAR)**2 (JACOB)	MAIN	500
С	SLBAR:	(SL(1)+SL(2)++SL(NOBS))/NOBS	MAIN	510
С	A(I,1):	YW(I)*YW(I)	MAIN	520
С	A(1,2):	XW(I)*XW(I)	MAIN	530
С	A(1,3):	-2*XW(I)*YW(I)	MAIN	540
С	B(I):	4*T(I)*U(I)*DETBAR (THEIS)	MAIN	550
С	B(I):	2.25*To(I)*DET (JACOB)	MAIN	560
С	CONNUM:	MATRIX CONDITION NUMBER (RETURNED FROM IMSL ROUTINE)	MAIN	570
С	X(I):	SOLUTION TO LINEAR SYSTEM: $A(M,N) * X(N) = B(M)$	MAIN	580
С	DIFF:	X(1)*X(2) - X(3)*X(3)	MAIN	590
С	+++++++ S	TORAGE COEFFICIENT ++++++++	MAIN	600
С	S:	SQRT[(X(1)*X(2) - X(3)*X(3))/(DETBAR)] (THEIS)	MAIN	610
С	S:	SQRT[(X(1)*X(2) - X(3)*X(3))/(DET)] (JACOB)	MAIN	620
С	Txx, Tyy, Txy:	COMPONENTS OF THE ANISOTROPIC TRANSMISSIVITY TENSOR	MAIN	630
С	Tss, Tnn:	PRINCIPAL COMPONENTS OF THE TRANSMISSIVITY TENSOR	MAIN	640
С	RATAN:	RATIO OF ANISOTROPY (Tss:Tnn)	MAIN	650
С	THETAR:	ANGLE OF ANISOTROPY IN RADIANS (FROM +X AXIS)	MAIN	660
С	THETA:	ANGLE OF ANISOTROPY IN DEGREES (FROM +X AXIS)	MAIN	670
C			MAIN	680
С	DATA FO	DRMATS (ALL DATA ARE IN 'CONSISTENT UNITS')	MAIN	690
С	NUMPRO: 15		MAIN	700
С	ANALYS, NOBS,	Q,AVG: 215,2G10.0	MAIN	710
С	DESCR1: A80		MAIN	720
С	DESCR2: A80		MAIN	730
С	+++++++ D	ATA FROM THEIS TYPE-CURVE MATCH ++++++++	MAIN	740
С	WELLID(1),XW	(1),YW(1),T(1),D(1),WU(1),U(1),WT(1): A10,7G10.0	MAIN	750
С	WELLID(2),XW	(2),YW(2),T(2),D(2),WU(2),U(2),WT(2): A10,7G10.0	MAIN	760
С	WELLID(3),XW	(3),YW(3),T(3),D(3),WU(3),U(3),WT(3): A10,7G10.0	MAIN	770
С			MAIN	780
С		A10,7G10.0	MAIN	790
С	WELLID(M),XW	(M),YW(M),T(M),D(M),WU(M),U(M),WT(M): A10,7G10.0	MAIN	800
C	(M = NOBS)		MAIN	810
C	+++++++ D	ATA FROM COOPER-JACOB STRAIGHT-LINE MATCH ++++++++	MAIN	820
С	WELLID(1),XW	(1),YW(1),To(1),SL(1),WT(1) :A10,5G10.0	MAIN	830
С	WELLID(2),XW	(2),TW(2),To(2),SL(2),WT(2) :A10,5G10.0	MAIN	840
С	WELLID(3),XW	(3),YW(3),To(3),SL(3),WT(3) :A10,5G10.0	MAIN	850
С		:A10,5G10.0	MAIN	860
С		:A10,5G10.0	MAIN	870
С	WELLID(M),XW	(M),YW(M),To(M),SL(M),WT(M) :A10,5G10.0	MAIN	880
C	(M = NOBS)		MAIN	
C**	*****	**************	MAIN	910
C*		MAIN PROGRAM: INITIALIZE CONSTANT PARAMETERS *	MAIN	920
C*		SET UP STORAGE LOCATIONS *	MAIN	930
C*			MAIN	
C**	*****	***************	MAIN	950
	DIMENSION	Y(700), LOC(13)	MAIN	960
	INTEGER*2	ANALYS	MAIN	970

A. Main Program--Continued

	REAL*8 Q,AVG	MAIN 980
	CHARACTER*80 DESCR1,DESCR2	MAIN 990
	COMMON /PARAM/ M,N,PI,Q,AVG	MAIN1000
C	INITIALIZE PARAMETERS	MAIN1010
	ICOUNT = 0	MAIN1020
	READ(5,100) NUMPRO	MAIN1030
10	CONTINUE	MAIN1040
	READ(5,110) ANALYS, NOBS, Q, AVG	MAIN1050
	READ(5,120) DESCR1	MAIN1060
	READ(5,120) DESCR2	MAIN1070
	M = NOBS	MAIN1080
	N = 3	MAIN1090
	MN2 = M * N * 2	MAIN1100
	M2 = M * 2	MAIN1110
	N2 = N * 2	MAIN1120
	PI = 3.141592654	MAIN1130
C	INITIALIZE STORAGE LOCATIONS	MAIN1140
	LOC(1) = 1	MAIN1150
	LOC(2) = LOC(1) + MN2	MAIN1160
	LOC(3) = LOC(2) + M2	MAIN1170
	LOC(4) = LOC(3) + N2	MAIN1180
	LOC(5) = LOC(4) + N2	MAIN1190
	LOC(6) = LOC(5) + M2	MAIN1200
	LOC(7) = LOC(6) + M2	MAIN1210
	LOC(8) = LOC(7) + M2	MAIN1220
	LOC(9) = LOC(8) + M2	MAIN1230
	LOC(10) = LOC(9) + M2	MAIN1240
	IF(ANALYS .EQ. 1) GO TO 20	MAIN1250
	LOC(11) = LOC(10) + M2	MAIN1260
	LOC(12) = LOC(11) + M2	MAIN1270
	LOC(13) = LOC(12) + M2	MAIN1280
20	ISUM = 1 + MN2 + 2*N2 + 5*M2	MAIN1290
	IF(ANALYS .EQ. 0) ISUM = ISUM + 4*M2	MAIN1300
	DO 30 I = 1,ISUM	MAIN1310
	Y(1) = 0.0	MAIN1320
30	CONTINUE	MAIN1330
C	PRINT OUT HEADER INFORMATION	MAIN1340
	ICOUNT = ICOUNT + 1	MAIN1350
	WRITE(6,130)	MAIN1360
	IF (NOBS.GT.3) WRITE(6,140)	MAIN1370
	IF(ANALYS .EQ. 0) WRITE(6,150)	MAIN1380
	IF(ANALYS .EQ. 1) WRITE(6,160)	MAIN1390
	WRITE(6,170)	MAIN1400
	WRITE(6,180)	MAIN1410
	WRITE(6,190) DESCR1	MAIN1420
	WRITE(6,190) DESCR2	MAIN1430
	WRITE(6,180)	MAIN1440
	IF(NOBS .LT. 3) THEN	MAIN1450
		MAIN1450
		MAIN1470
	20 10 1000	

A. Main Program--Continued

END IF	MAIN1480
C SUBROUTINES FOR TENSOR ANALYSIS	MAIN1490
IF(ANALYS .EQ. 1) GO TO 40	MAIN1500
C TYPE - CURVE ANALYSIS	MAIN1510
IF (NOBS.GT.3) THEN	MAIN1520
CALL WLSTC(Y(LOC(1)),Y(LOC(2)),Y(LOC(3)),Y(LOC(4)),Y(LOC(5)),	MAIN1530
1 Y(LOC(6)),Y(LOC(7)),Y(LOC(8)),Y(LOC(9)),Y(LOC(10)),	MAIN1540
<pre>2 Y(LOC(11)),Y(LOC(12)),Y(LOC(13)))</pre>	MAIN1550
ELSE	MAIN1560
CALL TEN3TC(Y(LOC(1)),Y(LOC(2)),Y(LOC(3)),Y(LOC(4)),Y(LOC(5)),	MAIN1570
1 Y(LOC(6)),Y(LOC(7)),Y(LOC(8)),Y(LOC(9)),Y(LOC(10))	,MAIN1580
2 Y(LOC(11)),Y(LOC(13)))	MAIN1590
END IF	MAIN1600
GO TO 1000	MAIN1610
40 CONTINUE	MAIN1620
C STRAIGHT - LINE ANALYSIS	MAIN1630
IF (NOBS.GT.3) THEN	MAIN1640
CALL WLSSL(Y(LOC(1)),Y(LOC(2)),Y(LOC(3)),Y(LOC(4)),Y(LOC(5)),	MAIN1650
1 Y(LOC(6)),Y(LOC(7)),Y(LOC(8)),Y(LOC(9)),Y(LOC(10)))	MAIN1660
ELSE	MAIN1670
CALL TEN3SL(Y(LOC(1)),Y(LOC(2)),Y(LOC(3)),Y(LOC(4)),Y(LOC(5)),	MAIN1680
1 Y(LOC(6)),Y(LOC(7)),Y(LOC(8)),Y(LOC(10)))	MAIN1690
END IF	MAIN1700
1000 CONTINUE	MAIN1710
C CHECK FOR ANOTHER DATA SET	MAIN1720
IF (NUMPRO .GT. ICOUNT) GO TO 10	MAIN1730
C FORMAT STATEMENTS	MAIN1740
100 FORMAT(I5)	MAIN1750
110 FORMAT(215,2G10.0)	MAIN1760
120 FORMAT(A80)	MAIN1770
130 FORMAT(1H1,///,25x,'TRANSMISSIVITY TENSOR ANALYSIS',/)	MAIN1780
140 FORMAT(23X, 'WEIGHTED LEAST-SQUARES OPTIMIZATION')	MAIN1790
150 FORMAT(23X, 'USING THEIS TYPE-CURVE MATCH POINTS')	MAIN1800
160 FORMAT(20X, 'USING COOPER-JACOB STRAIGHT-LINE RESULTS')	MAIN1810
170 FORMAT(/,21x,'AS DESCRIBED IN WATER-SUPPLY PAPER xxxx'/,15x,	MAIN1820
1 'PROGRAM BY: MORRIS L. MASLIA AND ROBERT B. RANDOLPH',/,19	XMAIN1830
2 ,'U.S.G.S - WRD, DORAVILLE, GEORGIA 30360'/,31X,	MAIN1840
3 'REVISED: 11-12-85',/)	MAIN1850
180 FORMAT(/,1X,80(1H=),/)	MAIN1860
190 FORMAT(1X,A80)	MAIN1870
200 FORMAT(//,5X, ***** ERROR: THE MINIMUM NUMBER OF WELLS REQUIRED	MAIN1880
1 ' FOR THE ANALYSIS IS 3 *****')	MAIN1890
C END MAIN PROGRAM	MAIN1900
STOP	MAIN1910
END	MAIN1920

B. Subroutine TEN3TC

C*************************************	TNTC	10
C* SUBROUTINE: TEN3TC LAST REVISION: 11-12-85 *	TNTC	20
C* TENSOR ANALYSIS USING 3 OBSERVATION WELLS *	TNTC	30
C* THEIS TYPE - CURVE METHOD *	TNTC	40
C*************************************	TNTC	50
SUBROUTINE TEN3TC(A,B,X,H,XW,YW,T,D,WU,U,DET,WELLID)	TNTC	60
C	TNTC	70
COMMON /PARAM/ M,N,PI,Q,AVG	TNTC	80
PARAMETER (IA=3, IDGT=3)	TNTC	90
INTEGER IPVT(3), IER	TNTC	
REAL*8 $A(N,N)$, $LU(3,3)$, $EQUIL(3)$, $B(N)$, $X(N)$, $XW(N)$, $YW(N)$, $T(N)$, $D(N)$, WU		
1(N),U(N),DET(N),D1,D2,DETBAR,S,TXX,TYY,TXY,TSS,TNN,THETA,THETAD,	TNTC	120
2RATAN,Q,AVG,DIFF	TNTC	130
CHARACTER WELLID(3)*10, TII(3)*4	TNTC	140
DATA (TII(J),J=1,3) /'STxx','STyy','STxy'/	TNTC	
C READ OBSERVATION WELL DATA	TNTC	160
DO 10 I=1,M	TNTC	170
READ(5,110) WELLID(I), XW(I), YW(I), T(I), D(I), WU(I), U(I)	TNTC	180
10 CONTINUE	TNTC	
C PRINT OBSERVATION WELL DATA	TNTC	200
WRITE(6,140)	TNTC	
WRITE(6,150)	TNTC	220
DO 20 I = 1,N	TNTC	230
WRITE(6,160) WELLID(I),XW(I),YW(I),T(I),D(I),WU(I),U(I)	TNTC	240
20 CONTINUE	TNTC	250
WRITE(6,170) Q	TNTC	
C COMPUTE AVERAGE VALUE FOR DETERMINANT		
C OR USE A USER SUPPLIED AVERAGE VALUE		
DETBAR = 0.00	TNTC	
DO 30 I = 1,N	TNTC	
DET(I) = (Q * WU(I) / (4.0 * PI * D(I))) ** 2	TNTC	
30 CONTINUE	TNTC	
DETBAR = $(DET(1) + DET(2) + DET(3)) / FLOAT(N)$	TNTC	
IF(AVG .GT. 0.00) DETBAR = AVG	TNTC	
C FORM LINEAR SYSTEM: [A](X) = (B)		
DO 40 I = 1,N	TNTC	
A(I,1) = YW(I) * YW(I)	TNTC	
A(I,2) = XW(I) * XW(I)	TNTC	
A(I,3) = -2.0 * XW(I) * YW(I)	TNTC	
B(I) = 4.0 * T(I) * U(I) * DETBAR	TNTC	
40 CONTINUE	TNTC	
C PRINT OUT DETERMINANT AND COMPONENTS OF		
C [A], (X), AND (B)		
WRITE(6,230)	TNTC	
WRITE(6,240) (DET(I), I=1,N)	TNTC	
IF (AVG .GT. 0.00) THEN	TNTC	
URITE(6 220) DETRAR	TNTC	470

B. Subroutine TEN3TC--Continued

	THTC /00
ELSE	TNTC 480
WRITE(6,250) DETBAR	TNTC 490
END IF	TNTC 500
WRITE(6,260)	TNTC 510
DO 50 I = 1,N	TNTC 520
WRITE(6,270) (A(I,J), $J=1,N$), TII(I), B(I)	TNTC 530
50 CONTINUE	TNTC 540
WRITE(6,280)	TNTC 550
C LU DECOMPOSITION OF [A] BY THE CROUT METHOD	
C USE IMSL LIBRARY SUBROUTINE 'LUDATF'	
C PRINT DECOMPOSITION AND PIVOT VECTOR	TNTC 580
CALL LUDATF(A,LU,N,IA,IDGT,D1,D2,IPVT,EQUIL,WA,IER)	TNTC 590
WRITE(6,290)	TNTC 600
DO 60 I =1,N	TNTC 610
WRITE(6,300) (LU(I,J), $J=1,N$), $IPVT(I)$	TNTC 620
60 CONTINUE	TNTC 630
IF(IER .EQ. 34) WRITE(6,310)	TNTC 640
IF(IER .EQ. 129) WRITE(6,320)	TNTC 650
IF(IER .EQ. 129) RETURN	TNTC 660
C ELIMINATION AND SOLUTION FOR (X)	TNTC 670
C USE IMSL LIBRARY SUBROUTINE 'LUELMF'	TNTC 680
C PRINT SOLUTION VECTOR (X)	TNTC 690
CALL LUELMF(LU,B,IPVT,N,IA,X)	TNTC 700
WRITE(6,330) X(1), X(2), X(3)	TNTC 710
C SOLVE FOR STORAGE COEFFICIENT	TNTC 720
DIFF = $X(1)*X(2) - X(3)*X(3)$	TNTC 730
IF(DIFF .LT. 0.00) THEN	TNTC 740
WRITE(6,335)	TNTC 750
RETURN	TNTC 760
END IF	TNTC 770
С	TNTC 780
S = DSQRT(DIFF / DETBAR)	TNTC 790
С	TNTC 800
IF(S .LT. E-10) THEN	TNTC 810
WRITE(6,336)	TNTC 820
RETURN	TNTC 830
END IF	TNTC 840
С	TNTC 850
WRITE(6,340)	TNTC 860
WRITE(6,350) S	TNTC 870
C SOLVE FOR COMPONENTS OF TRANSMISSIVITY	TNTC 880
TXX = X(1) / S	TNTC 890
TYY = X(2) / S	TNTC 900
TXY = X(3) / S	TNTC 910
WRITE(6,360) TXX,TYY,TXY	TNTC 920
C SOLVE FOR PRINCIPAL COMPONENTS AND	
C ANGLE OF ANISOTROPY	TNTC 940
THETA = 0.D0	TNTC 950
TSS = 0.5 * (TXX + TYY + SQRT((TXX-TYY)**2 + 4.0*TXY*TXY))	TNTC 960
TNN = $0.5 * (TXX + TYY - SQRT((TXX-TYY)**2 + 4.0*TXY*TXY))$	TNTC 970

B. Subroutine TEN3TC--Continued

```
RATAN = TSS / TNN
                                                                     TNTC 980
     IF(DABS(TXX - TYY) .LT. 1.E-5 .OR. DABS(TXX-TSS) .LT. 1.E-5)
                                                                     TNTC 990
                                                                     TNTC1000
     THETAR = ATAN2((TSS-TXX), TXY)
                                                                     TNTC1010
     THETA = THETAR * 180.00 / PI
                                                                     TNTC1020
     IF(THETA .LT. 0.00) THETA = THETA + 360.00
                                                                     TNTC1030
   70 CONTINUE
                                                                     TNTC1040
     WRITE(6,370) TSS,TNN
                                                                     TNTC1050
     WRITE(6,375) RATAN
                                                                     TNTC1060
     WRITE(6.380) THETA
                                                                     TNTC1070
C----- FORMAT STATEMENTS ----- TNTC1080
  110 FORMAT(A10,6G10.0)
                                                                     TNTC1090
  140 FORMAT(/,35X,'INPUT DATA',/,34X,12(1H=),//,
                                                                     TNTC1100
            22X.'(ALL DATA ARE IN "CONSISTENT UNITS")'.//)
                                                                     TNTC1110
  150 FORMAT(4X, 'WELL ID.', 3X, 'X-COORD.', 4X, 'Y-COORD.', 5X, 'TIME', 4X,
                                                                     TNTC1120
           'DRAWDOWN',3X,'W(Uxy)',6X,'Uxy',/,3X,10(1H-),1X,10(1H-), TNTC1130
            2X,10(1H-),2X,8(1H-),2X,8(1H-),2X,8(1H-),/)
                                                                     TNTC1140
  160 FORMAT(3X,A10,1X,2(F10.2,2X),1PE8.2,2X,E8.2,1X,2(E9.2,1X))
                                                                     TNTC1150
  170 FORMAT(//,1X,80(1H-),/,22X,'AVERAGE PUMPING RATE: Q = ',1PE10.4,/,TNTC1160
            1X,80(1H-),/)
                                                                     TNTC1170
  180 FORMAT(1H1)
                                                                     TNTC1180
  220 FORMAT(/,16X,'THE DETERMINANT INPUT BY THE USER IS: ',1PE11.4,//) TNTC1190
  230 FORMAT(11X,'Txx*Tyy - 2*Txy*Txy = (Q*W(Uxy)/(4*PI*D(I)))**2 = DET(TNTC1200
    11)'./)
  240 FORMAT((13X, 1PE11.4, 4(2X, E11.4)))
                                                                     TNTC1220
  250 FORMAT(/,9X,'DETBAR = (DET(1)+DET(2)+ ... +DET(NOBS))/NOBS = ',
                                                                     TNTC1230
           1PE11.4,//)
                                                                     TNTC1240
  260 FORMAT(22X, 'LINEAR EQUATION SYSTEM TO BE SOLVED', /, 21X,
                                                                     TNTC1250
            37(1H-),//,26X,'A(N,N)',19X,'X(N)',8X,'B(N)',/)
                                                                     TNTC1260
 270 FORMAT(10X, 1PE11.4, 2(2X, E11.4), 4X, A4, 5X, E11.4)
                                                                     TNTC1270
  280 FORMAT(/,11x,61(1H=),//)
                                                                     TNTC1280
 290 FORMAT(1H1,///,27X,'LU DECOMPOSITION OF A(N,N)',/,26X,28(1H-),//, TNTC1290
            32X, 'LU(N,N)', 17X, 'IPVT(N)',//)
                                                                     TNTC1300
 300 FORMAT(17X, 1PE11.4, 2(2X, E11.4), 4X, I2)
                                                                     TNTC1310
 310 FORMAT(///,10x,'WARNING: IMSL ERROR. IER=34. ACCURACY TEST',
                                                                     TNTC1320
            ' FAILED. COMPUTED',/,19X,'SOLUTION MAY BE IN ERROR BY',
                                                                     TNTC1330
    2
            ' MORE THAN CAN BE ACCOUNT-', 19X, 'ED FOR BY THE',
                                                                     TNTC1340
            ' UNCERTAINTY OF THE DATA. SEE IMSL',/,19X,'CHAPTER L',
                                                                     TNTC1350
            ' PRELUDE FOR MORE DETAILS.')
                                                                     TNTC1360
 320 FORMAT(///,10x,'WARNING: IMSL ERROR. IER=129. MATRIX A IS',
                                                                     TNTC1370
            ' ALGORITHMICALLY SINGULAR.',/,19X,'SEE IMSL CHAPTER L',
                                                                    TNTC1380
    2
            ' PRELUDE FOR MORE DETAILS.')
                                                                     TNTC1390
 330 FORMAT(//,29X,'SOLUTION VECTOR: X(I)',/,28X,24(1H-),/,
                                                                     TNTC1400
            13X, 'STxx=', 1PE11.4, 2X, 'STyy=', E11.4, 2X, 'STxy=', E11.4)
                                                                     TNTC1410
 335 FORMAT(//,12x,'**** ERROR: SQUARE ROOT OF NEGATIVE NUMBER ****1, TNTC1420
                                                                 *1, TNTC1430
    1
            /,12X,'* CANNOT COMPUTE STOR. COEF. OR TRANSM.
    2
                           WITH GIVEN OBSERVATION WELL DATA
                                                                 *1, TNTC1440
             3
 336 FORMAT(//,16X,'**** ERROR: STORAGE COEFFICIENT = 0.00 ****1,
                                                                     TNTC1460
           /,16X,'* CANNOT COMPUTE TRANSMISIVITY COMPONENTS *',
                                                                   TNTC1470
```

B. Subroutine TEN3TC--Continued

	2	/,16x,'* WITH GIVEN OBSERVATION WELL DATA *',	TNTC1480
	3	/,16X, ************************************	TNTC1490
34	0 FORMAT	(6(/),33X,'OUTPUT RESULTS',/,33X,14(1H=),/)	TNTC1500
35	0 FORMAT	(30X, 'STORAGE COEFFICIENT', /, 29X, 21(1H-), /, 32X, 'S =',	TNTC1510
	1	1PE11.4)	TNTC1520
36	O FORMAT	(//,22X,'COMPONENTS OF TRANSMISSIVITY TENSOR',/,	TNTC1530
	1	21X,37(1H-),/,13X,'Txx =',1PE11.4,3X,'Tyy =',	TNTC1540
	2	E11.4,3X,'Txy =',E11.4,//)	TNTC1550
37	O FORMAT	(17X, 'PRINCIPAL COMPONENTS OF TRANSMISSIVITY TENSOR',/,16X,	TNTC1560
	1	47(1H-),/,22X,'Tss =',1PE11.4,3X,'Tnn =',E11.4,//)	TNTC1570
37	5 FORMAT	(30X, 'RATIO OF ANISOTROPY', /, 29X, 21(1H-), /, 31X, 'Tss:Tnn =',	TNTC1580
	1	F6.2,':1',/)	TNTC1590
38	O FORMAT	(30X, 'ANGLE OF ANISOTROPY', /, 29X, 21(1H-), /, 29X,	TNTC1600
	1	'THETA = ',F6.2,' DEGREES')	TNTC1610
C		END SUBROUTINE TEN3TC	TNTC1620
	RETURN		TNTC1630
	END		TNTC1640

C. Subroutine TEN3SL

C****	******************	TNSL	10
C*	SUBROUTINE: TEN3SL LAST REVISION: 11-12-85 *	TNSL	20
C*	TENSOR ANALYSIS USING 3 OBSERVATION WELLS *	TNSL	30
C*	COOPER-JACOB STRAIGHT-LINE METHOD *	TNSL	40
C****	******************	TNSL	50
	SUBROUTINE TEN3SL(A,B,X,H,XW,YW,To,SL,WELLID)	TNSL	60
C		TNSL	70
	COMMON /PARAM/ M,N,PI,Q,AVG	TNSL	80
	PARAMETER (IA=3, IDGT=3)	TNSL	90
	INTEGER IPVT(3), IER	TNSL	100
	REAL*8 AVG,DIFF	TNSL	110
	REAL*8 $A(N,N)$, $LU(3,3)$, $EQUIL(3)$, $B(N)$, $X(N)$, $XW(N)$, $YW(N)$, $To(N)$, $SL(N)$,	TNSL	120
	1D1,D2,DET,Q,S,TXX,TYY,TXY,TSS,TNN,THETA,THETAD,SLBAR,RATAN	TNSL	130
	CHARACTER WELLID(3)*10, TII(3)*4	TNSL	140
	DATA (TII(J),J=1,3) /'STxx','STyy','STxy'/	TNSL	150
C	READ OBSERVATION WELL DATA	TNSL	160
	DO 10 I=1,M	TNSL	170
	READ(5,110) WELLID(I), $XW(I)$, $YW(I)$, $TO(I)$, $SL(I)$	TNSL	180
10	CONTINUE	TNSL	190
C	PRINT OBSERVATION WELL DATA	TNSL	200
	WRITE(6,140)	TNSL	210
	WRITE(6,150)	TNSL	220
	DO 20 I = 1,N	TNSL	230
20	WRITE(6,160) WELLID(I), XW(I), YW(I), To(I), SL(I)	TNSL	240
	WRITE(6,170) Q	TNSL	
	COMPUTE AVERAGE VALUE FOR SLOPE OF LINE		
C	OR USE A USER SUPPLIED AVERAGE VALUE	TNSL	270
	SLBAR = 0.00	TNSL	280
	DO 30 I = 1,M	TNSL	290
	SLBAR = SLBAR + SL(I)	TNSL	300
30	CONTINUE	TNSL	310
	SLBAR = SLBAR / FLOAT(M)	TNSL	320
	IF(DABS(AVG) .GT. 0.00) SLBAR = AVG	TNSL	
	COMPUTE DETERMINANT AND FORM		
C	LINEAR SYSTEM: [A](X) = (B)	TNSL	350
	DET = (2.3025851*Q/(4.0*PI*SLBAR))**2	TNSL	360
	DO 40 I = 1,N	TNSL	
	A(I,1) = YW(I) * YW(I)	TNSL	380
	A(I,2) = XW(I) * XW(I)	TNSL	390
	A(I,3) = -2.0 * XW(I) * YW(I)	TNSL	400
	B(I) = 2.25 * To(I) * DET	TNSL	410
	CONTINUE	TNSL	
	, , , , , , , , , , , , , , , , , , , ,		
C	COMPONENTS OF [A], (X), AND (B)	TNSL	440
	IF(DABS(AVG) .GT. 0.00) THEN	TNSL	450
	WRITE(6,220) SLBAR	TNSL	
	FISE	TNSI	470

C. Subroutine TEN3SL--Continued

WRITE(6,230) SLBAR	TNSL	
END IF	TNSL	
WRITE(6,240) DET	TNSL	
WRITE(6,260)	TNSL	
DO 50 I = 1,N	TNSL	520
WRITE(6,270) (A(I,J), $J=1,3$), TII(I), B(I)	TNSL	530
50 CONTINUE	TNSL	540
WRITE(6,280)	TNSL	550
C LU DECOMPOSITION OF [A] BY THE CROUT METHOD	TNSL	560
C USE IMSL LIBRARY SUBROUTINE 'LUDATF'	TNSL	570
C PRINT DECOMPOSITION AND PIVOT VECTOR	TNSL	580
CALL LUDATF(A,LU,N,IA,IDGT,D1,D2,IPVT,EQUIL,WA,IER)	TNSL	590
WRITE(6,290)	TNSL	600
DO 60 I =1,N	TNSL	610
WRITE(6,300) (LU(I,J), $J=1,N$), $IPVT(I)$	TNSL	620
60 CONTINUE	TNSL	630
IF(IER .EQ. 34) WRITE(6,310)	TNSL	640
IF(IER .EQ. 129) WRITE(6,320)	TNSL	650
IF(IER .EQ. 129) RETURN	TNSL	660
C ELIMINATION AND SOLUTION FOR (X)	TNSL	670
C USE IMSL LIBRARY SUBROUTINE 'LUELMF'	TNSL	680
C PRINT SOLUTION VECTOR (X)		
CALL LUELMF(LU,B,IPVT,N,IA,X)	TNSL	
WRITE(6,330) X(1), X(2), X(3)	TNSL	
C SOLVE FOR STORAGE COEFFICIENT	TNSL	
DIFF = $X(1)*X(2) - X(3)*X(3)$	TNSL	
IF(DIFF .LT. 0.00) THEN	TNSL	
WRITE(6,335)	TNSL	
RETURN	TNSL	
END IF	TNSL	
C	TNSL	
S = DSQRT(DIFF / DET)	TNSL	
C	TNSL	
IF(S .LT. E-10) THEN	TNSL	
WRITE(6,336)	TNSL	
RETURN	TNSL	
END IF	TNSL	
C	TNSL	
WRITE(6,340)		
WRITE(6,350) S	TNSL	
C SOLVE FOR COMPONENTS OF TRANSMISSIVITY	TNSL	
TXX = X(1) / S	TNSL	
TYY = X(2) / S	TNSL	
TXY = X(3) / S	TNSL	
WRITE(6,360) TXX,TYY,TXY	TNSL	
C SOLVE FOR PRINCIPAL COMPONENTS AND		
C ANGLE OF ANISOTROPY		
THETA = 0.DO	TNSL	
TSS = 0.5 * (TXX + TYY + DSQRT((TXX-TYY)**2 + 4.0*TXY*TXY))	TNSL	
TNN = $0.5 * (TXX + TYY - DSQRT((TXX-TYY))**2 + 4.0*TXY*TXY))$	TNSL	970

C. Subroutine TEN3SL--Continued

```
RATAN = TSS / TNN
                                                                      TNSL 980
     IF(DABS(TXX - TYY) .LT. 1.E-5 .OR. DABS(TXX-TSS) .LT. 1.E-5)
                                                                     TNSL 990
     1GO TO 70
                                                                      TNSL 1000
     THETAR = ATAN2((TSS-TXX), TXY)
                                                                      TNSL1010
     THETA = THETAR * 180.00 / PI
                                                                      TNSL 1020
     IF(THETA .LT. 0.00) THETA = THETA + 360.00
                                                                      TNSL 1030
   70 CONTINUE
                                                                      TNSL1040
     WRITE(6,370) TSS.TNN
                                                                      TNSL 1050
     WRITE(6,375) RATAN
                                                                      TNSI 1060
     WRITE(6,380) THETA
C----- FORMAT STATEMENTS ----- TNSL1080
  110 FORMAT(A10,4G10.0)
                                                                      TNSL 1090
  140 FORMAT(/,35X,'INPUT DATA',/,34X,12(1H=),//,
                                                                      TNSL1100
            22X, '(ALL DATA ARE IN "CONSISTENT UNITS")',//)
                                                                      TNSL 1110
  150 FORMAT(8X, 'WELL ID.', 7X, 'X-COORD.', 8X, 'Y-COORD.', 10X, 'To', 10X,
           ' SLOPE ',/,7X,10(1H-),5X,10(1H-),
                                                                      TNSL1130
    2
            6X,10(1H-),6X,8(1H-),6X,8(1H-),/)
                                                                      TNSL 1140
  160 FORMAT(7X,A10,5X,2(F10.2,6X),1PE8.2,6X,E8.2)
                                                                      TNSL1150
  170 FORMAT(//,1X,80(1H-),/,22X,'AVERAGE PUMPING RATE: Q = ',1PE10.4,/ TNSL1160
    1
            ,1X,80(1H-))
                                                                      TNSL1170
  180 FORMAT(1H1)
                                                                      TNSL1180
 220 FORMAT(/,11X,'THE AVERAGE SLOPE (SLBAR) INPUT BY THE USER IS: ', TNSL1190
           1PE11.4.//)
                                                                      TNSI 1200
 230 FORMAT(/,11X,'SLBAR = [SL(1)+SL(2)+ ... +SL(NOBS)]/NOBS = '.
                                                                      TNSL1210
           1PE11.4.//)
                                                                      TNSL1220
 240 FORMAT(11X, 'Txx*Tyy - 2*Txy*Txy = [2.30 * Q / (4*PI*SLBAR)]**2 = DTNSL1230
    1ET',//,31X,'DET = ',1PE11.4,/)
                                                                     TNSL1240
 260 FORMAT(22X, 'LINEAR EQUATION SYSTEM TO BE SOLVED', /, 21X,
                                                                     TNSL 1250
           37(1H-),//,26X,'A(N,N)',19X,'X(N)',8X,'B(N)',/)
                                                                     TNSL1260
 270 FORMAT(10X, 1PE11.4, 2(2X, E11.4), 4X, A4, 5X, E11.4)
                                                                     TNSL1270
 280 FORMAT(/,11x,61(1H=),//)
                                                                     TNSL1280
 290 FORMAT(1H1,///,27X,'LU DECOMPOSITION OF A(N,N)',/,26X,28(1H-),//,TNSL1290
            32X, 'LU(N,N)', 17X, 'IPVT(N)',//)
                                                                     TNSL 1300
 300 FORMAT(17X, 1PE11.4, 2(2X, E11.4), 4X, I2)
                                                                     TNSL1310
 310 FORMAT(///,10X,'WARNING: IMSL ERROR. IER=34. ACCURACY TEST',
                                                                     TNSL1320
    1
            ' FAILED. COMPUTED',/,19X,'SOLUTION MAY BE IN ERROR BY',
                                                                     TNSL1330
    2
            ' MORE THAN CAN BE ACCOUNT-', 19X, 'ED FOR BY THE',
                                                                     TNSL1340
            ' UNCERTAINTY OF THE DATA. SEE IMSL',/,19X,'CHAPTER L',
                                                                     TNSL1350
            ' PRELUDE FOR MORE DETAILS.')
                                                                     TNSL 1360
 320 FORMAT(///,10X,'WARNING: IMSL ERROR. IER=129. MATRIX A IS',
                                                                     TNSL1370
    1
            ' ALGORITHMICALLY SINGULAR.',/,19X,'SEE IMSL CHAPTER L', TNSL1380
    2
            ' PRELUDE FOR MORE DETAILS.')
                                                                      TNSL1390
 330 FORMAT(//,29X,'SOLUTION VECTOR: X(I)',/,28X,24(1H-),/,
                                                                     TNSL1400
            13X, 'STxx=', 1PE11.4, 2X, 'STyy=', E11.4, 2X,
                                                                     TNSL1410
    2
            'STxy=',E11.4)
                                                                      TNSL 1420
 335 FORMAT(//,12X, 1**** ERROR: SQUARE ROOT OF NEGATIVE NUMBER ****1, TNSL1430
                                                                 *1, TNSL1440
             /,12X, '* CANNOT COMPUTE STOR. COEFF. OR TRANSM.
    1
                                                                 *1, TNSL1450
                           WITH GIVEN OBSERVATION WELL DATA
    2
             /,12X, 1*
             336 FORMAT(//16X, ***** ERROR: STORAGE COEFFICIENT = 0.00 ****,
                                                                    TNSL1470
```

C. Subroutine TEN3SL--Continued

	1	/,16X,'* CANNOT COMPUTE TRANSMISSIVITY COMPONENTS *',	TNSL1480
	2	/,16X,'* WITH GIVEN OBSERVATION WELL DATA *',	TNSL1490
	3	/,16X,	TNSL1500
	340 FORMAT	(6(/),33X,'OUTPUT RESULTS',/,33X,14(1H=),/)	TNSL1510
	350 FORMAT	(30X, 'STORAGE COEFFICIENT', /, 29X, 21(1H-), /, 32X, 'S =',	TNSL1520
	1	1PE11.4)	TNSL1530
	360 FORMAT	(//,22X,'COMPONENTS OF TRANSMISSIVITY TENSOR',/,	TNSL1540
	1	21X,37(1H-),/,13X,'Txx =',1PE11.4,3X,'Tyy =',	TNSL1550
	2	E11.4,3X,'Txy =',E11.4,//)	TNSL1560
	370 FORMAT	(17X, 'PRINCIPAL COMPONENTS OF TRANSMISSIVITY TENSOR',/,16X,	TNSL1570
	1	47(1H-),/,22X,'Tss =',1PE11.4,3X,'Tnn =',E11.4,//)	TNSL1580
	375 FORMAT	(30X, 'RATIO OF ANISOTROPY', /, 29X, 21(1H-), /, 31X, 'Tss:Tnn =',	TNSL1590
	1	F6.2,':1',/)	TNSL1600
	380 FORMAT	(30X, 'ANGLE OF ANISOTROPY',/,29X,21(1H-),/,29X,	TNSL1610
	1	'THETA = ',F6.2,' DEGREES')	TNSL1620
C-		END SUBROUTINE TEN3SL	TNSL1630
	RETURN		TNSL1640
	END		TNSL1650

D. Subroutine WLSTC

C*****************	****	WLST	10
C* SUBROUTINE: WLSTC LAST REVISION: 11-12-8		WLST	20
C* TENSOR ANALYSIS USING MORE THAN 3 OBSERVATION WELLS	*	WLST	30
C* WEIGHTED LEAST - SQUARES OPTIMIZATION	*	WLST	40
C* THEIS TYPE - CURVE METHOD	*	WLST	50
C******************	****	WLST	60
SUBROUTINE WLSTC(A,B,X,H,XW,YW,T,D,WU,U,DET,WT,WELLID)		WLST	70
C		WLST	80
COMMON /PARAM/ M,N,PI,Q,AVG		WLST	90
DIMENSION IP(3)		WLST	100
REAL*8 $A(M,N)$, $B(N)$, $X(N)$, $H(N)$, $XW(M)$, $YW(M)$, $T(M)$, $D(M)$, $WU(M)$, $U(M)$),DET	WLST	110
1M),WT(M),DETBAR,S,TXX,TYY,TXY,TSS,TNN,RATAN,THETA,THETAR,Q,T	OL,COM	WLST	120
2NUM, AVG, DIFF		WLST	130
CHARACTER WELLID(M)*10, TII(3)*4		WLST	140
DATA (TII(J),J=1,3)/'STxx','STyy','STxy'/		WLST	150
C LEAST-SQUARES PARAMETERS FOR 'LLSQF'		WLST	160
M1 = M		WLST	170
N1 = N		WLST	180
IA = M		WLST	190
KBASIS = N		WLST	200
TOL = 0.D0		WLST	210
C READ OBSERVATION WELL DATA		WLST	220
DO 10 I = 1,M		WLST	
READ(5,110) $WELLID(I),XW(I),YW(I),T(I),D(I),WU(I),U(I),WI(I)$	T(I)	WLST	240
10 CONTINUE		WLST	
C PRINT OBSERVATION WELL DATA		WLST	260
WRITE(6,140)		WLST	
WRITE(6,150)		WLST	
DO 20 I = 1,M		WLST	
WRITE(6,160) $WELLID(I),XW(I),YW(I),T(I),D(I),WU(I),U(I),$	WT(I)	WLST	300
20 CONTINUE		WLST	
WRITE(6,170) Q		WLST	320
IF (M.GT.4) WRITE(6,180)		WLST	
C COMPUTE AVERAGE VALUE FOR DETERMINANT			
C OR USE A USER SUPPLIED AVERAGE VALUE		WLST	350
DETBAR = 0.00		WLST	360
DO 30 I = 1,M		WLST	
WT(I) = DSQRT (WT(I))		WLST	380
DET(I) = (Q * WU(I) / (4.0 * PI * D(I))) ** 2		WLST	390
DETBAR = DETBAR + DET(I)		WLST	400
30 CONTINUE		WLST	410
DETBAR = DETBAR / FLOAT(M)		WLST	420
IF (AVG .GT. 0.0) DETBAR = AVG		WLST	430
C FOR LINEAR SYSTEM: [A](X) = (B)		WLST	440
DO 40 I = 1,M		WLST	450
A(I,1) = YW(I) * YW(I) * WT(I)		WLST	460
A(1,2) = XU(1) * XU(1) * UT(1)		WLST	470

D. Subroutine WLSTC--Continued

	A(I,3) = -2.0 * XW(I) * YW(I) * WT(I)	WLST	480
	B(I) = 4.0 * T(I) * U(I) * DETBAR * WT(I)	WLST	490
	CONTINUE	WLST	
	PRINT DETERMINANT AND COMPONENTS OF		
C	[A], (X), AND (B)	WLST	520
	WRITE(6,230)	WLST	530
	WRITE(6,240) (DET(I), I=1,M)	WLST	540
	IF (AVG .GT. 0.00) THEN	WLST	550
	WRITE(6,220) DETBAR	WLST	560
	ELSE	WILST	570
	WRITE(6,250) DETBAR	WLST	
	END IF	WLST	590
	WRITE(6,260)	WLST	600
	DO 50 I = 1,M	WLST	610
	IF(I .LE. 3) $WRITE(6,270)$ (A(I,J),J=1,N),TII(I),B(I)	WLST	620
	IF(I. GT. 3) $WRITE(6,275)$ (A(I,J),J=1,N),B(I)	WLST	630
50	CONTINUE	WLST	640
	WRITE(6,280)	WLST	
	SOLUTION OF LINEAR LEAST-SQUARES PROBLEM		
C	A[M x N] * X(N) = B(M)	WLST	670
C	USE IMSL LIBRARY SUBROUTINE 'LLSQF'	WLST	680
	CALL LLSQF(A, IA, M1, N1, B, TOL, KBASIS, X, H, IP, IER)	WLST	690
	IF(IER .GT. 0) RETURN	WLST	700
	CONNUM = 1.0 / TOL	WLST	
	PRINT MATRIX CONDITION NUMBER (CONNUM)		
C	RESIDUAL VECTOR (B), AND SOLUTION VECTOR (X)	WLST	730
	WRITE(6,310)	WLST	740
	WRITE(6,320) (B(I), I=1,M)	WLST	750
	WRITE(6,325) CONNUM	WLST	760
	WRITE(6,330) X(1), X(2), X(3)	WLST	770
C	SOLVE FOR STORAGE COEFFICIENT	WLST	780
	DIFF = $X(1)*X(2) - X(3)*X(3)$	WLST	790
	IF(DIFF .LT. 0.00) THEN	WLST	800
	WRITE(6,335)	WLST	810
	RETURN	WLST	820
	END IF	WLST	830
C		WLST	840
	S = DSQRT(DIFF / DETBAR)	WLST	850
С		WLST	860
	IF(S .LT. 1.E-10) THEN	WLST	870
	WRITE(6,336)	WLST	880
	RETURN	WLST	890
	END IF	WLST	900
С		WLST	910
	WRITE(6,340)	WLST	920
	WRITE(6,350) S	WLST	930
C	SOLVE FOR COMPONENTS OF TRANSMISSIVITY	WLST	940
	TXX = X(1) / S	WLST	950
	TYY = X(2) / S	WLST	960
	TXY = X(3) / S	WLST	970

D. Subroutine WLSTC--Continued

```
WRITE(6,360) TXX, TYY, TXY
                                                                   WLST 980
C----- SOLVE FOR PRINCIPAL COMPONENTS AND ------ WLST 990
C------ ANGLE OF ANISOTROPY ------ WLST1000
     THETA = 0.D0
                                                                   WLST1010
     TSS = 0.5 * (TXX + TYY + SQRT((TXX-TYY)**2 + 4.0*TXY*TXY))
                                                                   WLST1020
     TNN = 0.5 * (TXX + TYY - SQRT((TXX-TYY)**2 + 4.0*TXY*TXY))
                                                                   WLST1030
     RATAN = TSS / TNN
                                                                   WLST1040
     IF(DABS(TXX - TYY) .LT. 1.E-5 .OR. DABS(TXX-TSS) .LT. 1.E-5)
                                                                   WLST1050
    1GO TO 60
                                                                   WLST1060
     THETAR = ATAN2((TSS-TXX), TXY)
                                                                   WLST1070
     THETA = THETAR * 180.00 / PI
                                                                   WLST1080
     IF(THETA .LT. 0.00) THETA = THETA + 360.00
                                                                   WLST1090
                                                                   WLST1100
     WRITE(6,370) TSS, TNN
                                                                   WLST1110
     WRITE(6,375) RATAN
                                                                   WLST1120
     WRITE(6,380) THETA
                                                                   WLST1130
C------ FORMAT STATEMENTS ------ WLST1140
 110 FORMAT(A10,7G10.0)
                                                                   WLST1150
 140 FORMAT(/,35X,'INPUT DATA',/,34X,12(1H=),//,
                                                                   WLST1160
            22X, '(ALL DATA ARE IN "CONSISTENT UNITS")',//)
                                                                   WLST1170
 150 FORMAT(2X,'WELL ID.',3X,'X-COORD.',4X,'Y-COORD.',5X,'TIME',4X,
                                                                   WLST1180
            'DRAWDOWN',3X,'W(U)',4X,'U',5X,'WEIGHT',/,1X,10(1H-),1X,
                                                                   WLST1190
            10(1H-),2X,10(1H-),2X,8(1H-),2X,8(1H-),2X,5(1H-),2X,5(1H-),WLST1200
            2X,8(1H-),/)
                                                                   WLST1210
 160 FORMAT(1X,A10,1X,2(F10.2,2X),1PE8.2,2X,E8.2,2X,0PF5.2,2X,F5.2,
                                                                   WLST1220
            2X, 1PE8.2)
                                                                   WLST1230
 170 FORMAT(//,1X,80(1H-),/,22X,'AVERAGE PUMPING RATE: Q = ',1PE10.4,/ WLST1240
            ,1x,80(1H-),/)
                                                                   WLST1250
 180 FORMAT(1H1)
                                                                   WLST1260
 220 FORMAT(/,16x,'THE DETERMINANT INPUT BY THE USER IS: ',1PE11.4,//) WLST1270
 230 FORMAT(///, 11X, 'Txx*Tyy - 2*Txy*Txy = (Q*W(Uxy)/(4*PI*D(I)))**2 = WLST1280
    1DET(I)',/)
                                                                   WLST1290
 240 FORMAT((7X,1PE11.4,4(2X,E11.4)))
                                                                   WLST1300
 250 FORMAT(/,9X, 'DETBAR = (DET(1)+DET(2)+ ... +DET(NOBS))/NOBS = ',
                                                                   WLST1310
           1PE11.4.//)
                                                                   WLST1320
 260 FORMAT(17X, 'LINEAR LEAST SQUARES PROBLEM TO BE SOLVED', /, 16X,
                                                                   WLST1330
            43(1H-),//,26X,'A(M,N)',19X,'X(N)',8X,'B(M)',/)
                                                                   WLST1340
 270 FORMAT(10X,1PE11.4,2(2X,E11.4),4X,A4,4X,E11.4)
                                                                   WLST1350
 275 FORMAT(10X, 1PE11.4, 2(2X, E11.4), 12X, E11.4)
                                                                   WLST1360
 280 FORMAT(11X,59(1H=),//)
                                                                   WLST1370
 310 FORMAT(1H1,///,25X, RESIDUAL VECTOR: R = B - A*X',/,24X,32(1H-)) WLST1380
 320 FORMAT((10X,1PE11.4,4(2X,E11.4)))
 325 FORMAT(/,12X,'MATRIX CONDITION NUMBER: CONNUM = 1/TOL =',1PE15.5) WLST1400
 330 FORMAT(/,29X,'SOLUTION VECTOR: X(I)',/,28X,24(1H-),/,
            10X, 'STxx=', 1PE11.4,4X, 'STyy=', E11.4,4X, 'STxy=', E11.4)
                                                                   WLST1420
 335 FORMAT(//,12X,'**** ERROR: SQUARE ROOT OF NEGATIVE NUMBER ****1, WLST1430
    1
            /,12X, 1*
                      CANNOT COMPUTE STOR. COEF. OR TRANSM. *', WLST1440
                                                              *', WLST1450
                           WITH GIVEN OBSERVATION WELL DATA
            336 FORMAT(//,16X, ***** ERROR: STORAGE COEFFICIENT = 0.00 *****/, WLST1470
```

D. Subroutine WLSTC--Continued

	/,	,16X, 1* (CANNOT	COMPUTE	TRANSMIS	SIVITY	COMPONENTS	S *1,	WLST1480
	! /	,16X, 1*	WIT	H GIVEN	OBSERVAT	ION WEL	L DATA	*1,	WLST1490
	1	,16X, 1***	*****	*****	*****	*****	*****	****1)	WLST1500
340	FORMAT(///	///,33X,	OUTPUT	RESULTS	s',/,33X,	14(1H=)	,/)		WLST1510
350	FORMAT(30)	K, 'STORAG	GE COEF	FICIENT	',/,29X,2	21(1H-),	/,32X,'S	= 1 ,	WLST1520
	1PE	E11.4)							WLST1530
360	FORMAT(/,2	22X, COM	PONENTS	OF TRA	NSMISSIVI	TY TENS	OR',/,		WLST1540
	21)	K,37(1H-),/,13X	,'Txx =	,1PE11.4	,3X,'Ty	y = 1,		WLST1550
	E11	1.4,3X,'	Txy =',	E11.4,/)				WLST1560
370	FORMAT(17)	K, PRINC	IPAL CO	MPONENTS	S OF TRAM	ISMISSIV	ITY TENSO	R',/,16X,	WLST1570
	47	(1H-),/,2	22X,'Ts	s = 1,1PE	E11.4,3X,	'Tnn ='	,E11.4,/)		WLST1580
375	FORMAT(30)	K, 'RATIO	OF ANI	SOTROPY	',/,29X,2	21(1H-),	/,31X,'Ts	s:Tnn =',	WLST1590
	F6.	.2,':1',	/)						WLST1600
380	FORMAT(30)	K, 'ANGLE	OF ANI	SOTROPY	,/,29X,2	21(1H-),	/,29X,		WLST1610
		HETA = '							WLST1620
C		EN	ND SUBR	OUTINE V	LSTC			• • • • • • • • • • • • • • • • • • • •	WLST1630
	RETURN								WLST1640
	FND								WLST1650

E. Subroutine WLSSL

$c_{************************************$	WLSS	10
C* SUBROUTINE: WLSSL LAST REVISION: 11-12-85 *	WLSS	20
C* TENSOR ANALYSIS USING MORE THAN 3 OBSERVATION WELLS *	WLSS	30
C* WEIGHTED LEAST - SQUARES OPTIMIZATION *	WLSS	40
	WLSS	
C***********************	WLSS	60
SUBROUTINE WLSSL(A,B,X,H,XW,YW,To,SL,WT,WELLID)	WLSS	70
C	WLSS	80
COMMON /PARAM/ M,N,PI,Q,AVG	WLSS	90
DIMENSION IP(3)	WLSS	100
REAL*8 $A(M,N),B(M),X(N),H(N),XW(M),YW(M),To(M),SL(M),WT(M),SLBAR,$	WLSS	110
1s, txx, tyy, txy, tss, tnn, ratan, theta, thetar, q, tol, connum, det,	WLSS	120
2DIFF,AVG	WLSS	130
CHARACTER WELLID(M)*10, TII(3)*4	WLSS	140
DATA (TII(J), J=1,3)/'STxx', 'STyy', 'STxy'/	WLSS	150
C LEAST-SQUARES PARAMETERS FOR 'LLSQF'	WLSS	160
M1 = M	WLSS	170
N1 = N	WLSS	180
IA = M	WLSS	190
KBASIS = N	WLSS	200
TOL = 0.D0	WLSS	
C READ OBSERVATION WELL DATA	WLSS	220
DO 10 I = 1,M	WLSS	230
READ(5,110) $WELLID(I),XW(I),YW(I),To(I),SL(I),WT(I)$	WLSS	240
10 CONTINUE	WLSS	250
C PRINT OBSERVATION WELL DATA	WLSS	260
WRITE(6,140)	WLSS	270
WRITE(6,150)	WLSS	280
DO 20 I = 1,M	WLSS	290
WRITE(6,160) WELLID(I),XW(I),YW(I),To(I),SL(I),WT(I)	WLSS	300
20 CONTINUE	WLSS	310
WRITE(6,170) Q	WLSS	
C COMPUTE AVERAGE VALUE FOR SLOPE OF LINE	WLSS	330
C OR USE A USER SUPPLIED AVERAGE VALUE	WLSS	340
SLBAR = 0.00	WLSS	350
DO 30 I = 1,M	WLSS	360
SLBAR = SLBAR + SL(I)	WLSS	370
WT(I) = DSQRT (WT(I))	WLSS	380
30 CONTINUE	WLSS	390
SLBAR = SLBAR / FLOAT(M)	WLSS	400
IF(DABS(AVG) .GT. 0.00) SLBAR = AVG	WLSS	410
C COMPUTE DETERMINANT AND FORM	WLSS	420
C LINEAR SYSTEM: [A](X) = (B)	WLSS	430
DET = (2.3025851 * Q / (4.0 * PI * SLBAR)) ** 2	WLSS	440
DO 40 I = 1,M	WLSS	450
A(I,1) = YW(I) * YW(I) * WT(I)	WLSS	460
A(I,2) = XW(I) * XW(I) * WT(I)	WLSS	470

E. Subroutine WLSSL--Continued


A(I,3) = -2.0 * XW(I) * YW(I) * WT(I)	WLSS 480
B(I) = 2.25 * To(I) * DET * WT(I)	WLSS 490
40 CONTINUE	WLSS 500
C PRINT AVERAGE SLOPE, DETERMINANT, AND	
C COMPONENTS OF [A], (X), AND (B)	
IF(DABS(AVG) .GT. 0.00) THEN	WLSS 530
WRITE(6,220) SLBAR	WLSS 540
ELSE	WLSS 550
WRITE(6,230) SLBAR	WLSS 560
END IF	WLSS 570
WRITE(6,240) DET	WLSS 580
WRITE(6,260)	WLSS 590
DO 50 I = 1,M	WLSS 600
IF(I .LE. 3) WRITE(6,270) (A(I,J),J=1,N),TII(I),B(I)	WLSS 610
IF(I .GT. 3) WRITE(6,275) (A(I,J),J=1,N),B(I)	WLSS 620
50 CONTINUE	WLSS 630
WRITE(6,280)	WLSS 640
C SOLUTION OF LINEAR LEAST-SQUARES PROBLEM	
C A[M x N] * X(N) = B(M)	
C USE IMSL LIBRARY SUBROUTINE 'LLSQF'	
CALL LLSQF(A, IA, M1, N1, B, TOL, KBASIS, X, H, IP, IER)	WLSS 680
IF(IER .GT. 0) RETURN	WLSS 690
CONNUM = 1.0 / TOL	WLSS 700
C PRINT MATRIX CONDITION NUMBER (CONNUM)	
C RESIDUAL VECTOR (B), AND SOLUTION VECTOR (X)	
WRITE(6,310)	WLSS 730
WRITE(6,320) (B(I), I=1,M)	WLSS 740
WRITE(6,325) CONNUM	WLSS 750
WRITE(6,330) X(1), X(2), X(3)	WLSS 760
	WLSS 770
DIFF = $X(1)*X(2) - X(3)*X(3)$	WLSS 780
IF(DIFF .LT. 0.00) THEN	WLSS 790
WRITE(6,335)	WLSS 800
RETURN	WLSS 810
END IF	WLSS 820
С	WLSS 830
S = DSQRT(DIFF / DET)	WLSS 840
С	WLSS 850
IF(S .LT. 1.E-10) THEN	WLSS 860
WRITE(6,336)	WLSS 870
RETURN	WLSS 880
END IF	WLSS 890
С	WLSS 900
WRITE(6,340)	WLSS 910
WRITE(6,350) S	WLSS 920
C SOLVE FOR COMPONENTS OF TRANSMISSIVITY	WLSS 930
TXX = X(1) / S	WLSS 940
TYY = X(2) / S	WLSS 950
TXY = X(3) / S	WLSS 960
WRITE(6,360) TXX,TYY,TXY	WLSS 970

F. Subroutine WLSSL--Continued

```
C----- SOLVE FOR PRINCIPAL COMPONENTS AND ------ WLSS 980
C----- ANGLE OF ANISOTROPY ----- WLSS 990
     THETA = 0.D0
                                                                  WLSS1000
     TSS = 0.5 * (TXX + TYY + DSQRT((TXX-TYY)**2 + 4.0*TXY*TXY))
                                                                  WLSS1010
     TNN = 0.5 * (TXX + TYY - DSQRT((TXX-TYY)**2 + 4.0*TXY*TXY))
                                                                  WLSS1020
     RATAN = TSS / TNN
                                                                  WLSS1030
     IF(DABS(TXX - TYY) .LT. 1.E-5 .OR. DABS(TXX-TSS) .LT. 1.E-5)
                                                                  WLSS1040
                                                                  WLSS1050
     THETAR = DATAN2((TSS-TXX), TXY)
                                                                  WLSS1060
     THETA = THETAR * 180.00 / PI
                                                                  WLSS1070
     IF(THETA .LT. 0.D0) THETA = THETA + 360.00
                                                                  WLSS1080
  60 CONTINUE
                                                                  WLSS1090
     WRITE(6,370) TSS,TNN
                                                                  WLSS1100
     WRITE(6,375) RATAN
                                                                  WLSS1110
     WRITE(6,380) THETA
                                                                  WLSS1120
C----- FORMAT STATEMENTS -----
                                                                  WLSS1130
 110 FORMAT(A10,5G10.0)
                                                                  WLSS1140
 140 FORMAT(/,35X,'INPUT DATA',/,34X,12(1H=),//,
                                                                  WLSS1150
           22X, '(ALL DATA ARE IN "CONSISTENT UNITS")',//)
                                                                  WLSS1160
 150 FORMAT(6X, 'WELL ID.',5X,'X-COORD.',6X,'Y-COORD.',8X,'To',8X,
                                                                  WLSS1170
           ' SLOPE ',3X,'WEIGHT',/,5X,10(1H-),3X,10(1H-),
                                                                  WLSS1180
           4X,10(1H-),4X,8(1H-),4X,8(1H-),3X,8(1H-),/)
                                                                  WLSS1190
 160 FORMAT(5X,A10,3X,2(F10.2,4X),1PE8.2,4X,E8.2,3X,E8.2)
                                                                  WLSS1200
 170 FORMAT(//,1X,80(1H-),/,22X,'AVERAGE PUMPING RATE: Q = ',1PE10.4,/ WLSS1210
            ,1x,80(1H-))
    1
                                                                  WLSS1220
 220 FORMAT(1H1,///,11X,
                                                                  WLSS1230
           'THE AVERAGE SLOPE (SLBAR) INPUT BY THE USER IS: ',
                                                                  WLSS1240
           1PE11.4,//)
                                                                  WLSS1250
 230 FORMAT(1H1,///,11X,'SLBAR = [SL(1)+SL(2)+ ... +SL(NOBS)]/NOBS = ',WLSS1260
           1PE11.4.//)
                                                                  WLSS1270
 240 FORMAT(11X,'Txx*Tyy - 2*Txy*Txy = [2.30 * Q / (4*PI*SLBAR)]**2 = DWLSS1280
    1ET',//,31X,'DET = ',1PE11.4,/)
                                                                  WLSS1290
 260 FORMAT(///, 17X, 'LINEAR LEAST SQUARES PROBLEM TO BE SOLVED',/,
                                                                  WLSS1300
           16X,43(1H-),//,26X,'A(M,N)',19X,'X(N)',8X,'B(M)',/)
                                                                  WLSS1310
 270 FORMAT(10X, 1PE11.4, 2(2X, E11.4), 4X, A4, 4X, E11.4)
                                                                  WLSS1320
 275 FORMAT(10X, 1PE11.4, 2(2X, E11.4), 12X, E11.4)
                                                                  WLSS1330
 280 FORMAT(11X,59(1H=),//)
 310 FORMAT(1H1,///,25X, 'RESIDUAL VECTOR: R = B - A*X',/,24X,32(1H-)) WLSS1350
 320 FORMAT((10X,1PE11.4,4(2X,E11.4)))
 325 FORMAT(//,12x,'MATRIX CONDITION NUMBER: CONNUM = 1/TOL =',1PE15.5)WLSS1370
 330 FORMAT(///,29X,'SOLUTION VECTOR: X(I)',/,28X,24(1H-),/,
                                                                  WLSS1380
           10X,'STXX=',1PE11.4,4X,'STyy=',E11.4,4X,'STXY=',E11.4) WLSS1390
 335 FORMAT(//,12X, 1**** ERROR: SQUARE ROOT OF NEGATIVE NUMBER ****!, WLSS1400
            /,12X,'* CANNOT COMPUTE STOR. COEF. OR TRANSM.
                                                              *1, WLSS1410
    1
                                                            *', WLSS1420
    2
                          WITH GIVEN OBSERVATION WELL DATA
            3
 336 FORMAT(//,16X,'**** ERROR: STORAGE COEFFICIENT = 0.00 ****1,
            /,16X,'* CANNOT COMPUTE TRANSMISSIVITY COMPONENTS *',
                                                                WLSS1450
    1
                        WITH GIVEN OBSERVATION WELL DATA *1,
                                                               WLSS1460
            WLSS1470
    3
```

E. Subroutine WLSSL--Continued

	340 FORMAT	////,33X,'OUTPUT RESULTS',/,33X,14(1H=),/)	WLSS1480
	350 FORMAT	30X, 'STORAGE COEFFICIENT', /, 29X, 21(1H-), /, 32X, 'S =',	WLSS1490
	1	1PE11.4)	WLSS1500
	360 FORMAT	/,22X,'COMPONENTS OF TRANSMISSIVITY TENSOR',/,	WLSS1510
	1	21X,37(1H-),/,13X,'Txx =',1PE11.4,3X,'Tyy =',	WLSS1520
	2	E11.4,3X,'Txy =',E11.4,/)	WLSS1530
	370 FORMAT	17X, PRINCIPAL COMPONENTS OF TRANSMISSIVITY TENSOR, /, 16X,	WLSS1540
	1	47(1H-),/,22X,'Tss =',1PE11.4,3X,'Tnn =',E11.4,/)	WLSS1550
	375 FORMAT	30X, 'RATIO OF ANISOTROPY', /, 29X, 21(1H-), /, 31X, 'Tss:Tnn =',	WLSS1560
	1	F6.2,':1',/)	WLSS1570
	380 FORMAT	30X, 'ANGLE OF ANISOTROPY', /, 29X, 21(1H-), /, 29X,	WLSS1580
	1	'THETA = ',F6.2,' DEGREES')	WLSS1590
C		END SUBROUTINE WLSSL	WLSS1600
	RETURN		WLSS1610
	END		WLSS1620

