
UNITED STATES DEPARTMENT OF INTERIOR

GEOLOGICAL SURVEY

OCEAN BOTTOM SEISMOMETER (OBS) SOFTWARE:

MODIFICATION III

by
1

G. K. Miller

Open-file Report 86 - 269

This report is preliminary and has not been reviewed for conformity with
U.S. Geological Survey editorial standards. Use of tradenames is for
purposes of identification only and does not constitute any endorsement
by the USGS.

Woods Hole, Mass.

1986

OCEAN BOTTOM SEISMOMETER (OBS) SOFTWARE:

MODIFICATION III

This open-file publication is a listing of the modified software
program for the U.S. Geological Survey's Ocean Bottom Seismometer (OBS).
This listing supercedes the listing contained in Open-File Report 84 -
842: Ocean Bottom Instrument Package (OBIP) Software: Modification II.
Portions of the original program were written by John Godley (WHOI) and
Ogden Hammond under contract to the U.S. Geological Survey.

SOFTWARE LISTING: MOD III, OBS

Operating instructions 1
System equates18
System macros.30
Interrupt vectors.34
Main program40
Clock routines52
Macro routines62
Terminal routines.70
Tape routines.79
Parameter entry routines99

ii

PROGRAMMING INSTRUCTIONS FOR
THE USGS 4-CHANNEL OBS

PROGRAM STARTUP

1. Connect the RS232 cable from a standard computer terminal to the
RS232 connector on the OBS electronics rack (Figure 1). The terminal
should be setup for space parity, 7 data bits, 1200 baud, 1 stop bit, and
no handshake lines.

2. Install a blank data tape into the tape recorder of the OBS.

3. Apply Power by connecting the plug from the battery pack to the plug
located on the power interface board (Figure 1).

4. Press the reset button on power interface board in the OBS (Figure
1) to start the OBS program.

5. The system will start by displaying the random access memory (RAM)
test. This test will take approximately 30 seconds to perform, and any
failures found will be displayed on the terminal. If you do encounter a
RAM error, remove power and replace the CPU board. After the successful
completion of the RAM test, the following message will be displayed at
the lower left corner of your screen:

"ENTER CURRENT TIME PLUS 1 MINUTE"
"YR/Mth/Day/Hr/Min?"

6. The first information entered into the OBS is the current time ,
which is used by the OBS to set its calendar in sync with the satellite
clock or other time reference. This time sync procedure is important as
time is the only reference for data recorded by the OBS system. Connect
the satellite clock to the CPU board of the OBS (Figure 1). Read the
current time from the satellite clock and add at least one minute. It is
critical that you enter the time correctly, as there is no way for the
instrument to verify your accuracy. Time is entered into the OBS in the
following format: Year (YY = last two digits of the year), any separator
(non numerical), Month (MM = a number from 1 to 12), any separator, Day
(DD = a number from 1 to 31), any separator, Hour (HH = a number from 0
to 23), any separator, and Minute (mm = a number from 0 to 59). The
separator commonly used is a slash (/), although commas, periods, etc.
can also be used. The time entry should appear as follows:

YY/MM/DD/HH/mm(RETURN)

The entry must be followed by a carriage return (RETURN) to enter the
time into the OBS.

NOTE: This instrument is programmed on the basis of a 24-hour clock
notation (i.e., each day extends from 00:00 to 23:59). This clock cannot
correct for leap year; in leap years, the clock will be off by one day if
the transition from FEE 29 to MAR 1 occurs during deployment.

7. The OBS will check the entry for any mistakes in format, and will
ask again for the time entry if a error is found. If the entry made is
in the correct format but is not the correct time, push the reset button
on the power interface board to restart the program. If the time entry

EARLY TERMINATION BUTTON

TERMINAL CONNECTOR (RS232)

SATELLITE CLOCK
CONNECTION

RESET BUTTON

POWER CONNECTOR

Figure 1. OBS Connections

is valid, the following message will appear on the terminal:

"HIT ANY KEY TO CONTINUE"

To continue the program, simply hit any key (using the RETURN key is
suggested). The screen will then be cleared, and the following
instruction will appear in the lower left corner of the screen:

"HIT RETURN WHEN LESS THAN ONE MINUTE TO GO"

Immediately below this will appear a message indicating whether or not
the satellite clock is correctly connected. Just below this, the time you
entered earlier will appear. Your response at this point depends on
where or not the satellite clock is connected. The following
descriptions provide the course of action for either condition:

A. The system displays the following message:

"SATELLITE CLOCK NOT CONNECTED"

This means that either the OBS has failed to detect that the
satellite clock is connected, or that no satellite clock is available
to sync the time.

If the satellite clock is connected, check to be sure the
connector is correctly installed on the CPU board (Figure 1). To test
whether or not the problem has been corrected, press RETURN. A
successful repair will display nothing and the OBS will wait for the
clock pulse to start the internal clock as described in clock-
connected section (B). The following message will appear if the clock
is still not properly connected:

"HIT ANY KEY TO CONTINUE"

At this point, recheck the connections and the satellite clock output
to be sure of proper operation. Hitting any key, will cause the
screen to clear and the satellite clock connection message to be
redisplayed. If the message

"SATELLITE CLOCK NOT CONNECTED"

appears, you will almost certainly miss your synchronous
start. To avoid that, push the reset button on the power board and
start again. If the problem persists, change the CPU board and try
again.

If you do not have access to a satellite clock or any other type
of time sync, there is an alternate way to start the clock. If
you type "Control B", the clock will start. Note that this method
is accurate within one second and depends heavily on how accurate you
are at the moment you strike the keys.

B. Assuming a normal state of affairs, the following message will be
displayed:

"HIT RETURN WHEN LESS THAN ONE MINUTE TO GO"
"SATELLITE CLOCK CONNECTED"

This indicates that the OBS has successfully detected the
satellite clock connection and is ready to start the internal clock.
Read the time from the satellite clock. When the clock's time is less
than a minute behind the time you entered, press RETURN. The internal
clock of the OBS will start when the minute pulse from the satellite
clock is detected.

8. At this point, the OBS will automatically perform a tape test. The
data tape, if already in the drive, will be rewound to the beginning of
tape (EOT). If there is no tape in the OBS, The following message will
appear on the screen and will be repeated until a tape is inserted into
the drive:

"INSERT TAPE CARTRIDGE"

Once the auto-rewind sequence is completed, The OBS will check to see if
the tape is write protected. If it is, the message

"CODE 1 WRITE PROTECTED"
"REMOVE TAPE CARTRIDGE"

will be repeated until the tape is removed. Once the tape has been
removed, the insert tape message will be repeated until a new tape is
installed. At this point, a test pattern is generated in memory , written
to tape, and the message

"TESTING TAPE"

will appear. The OBS will then clear the RAM and read the test pattern
from the tape for comparison to the original. If there is a failure, the
messages

"BAD TAPE OR DRIVE"
or

"TIME OUT ERROR"

will appear. Install a new tape in the tape drive and restart the
program by pushing the reset button. If this fails, check the power
connections to be sure the proper voltages are getting to the drive. If
this still doesn't work, the system needs major repair.

If no errors occurred, the message

"TAPE DRIVE OK"
"HIT ANY KEY TO CONTINUE"

will appear in less than 15 seconds. Disconnect the satellite clock and
hit any key to continue.

9. The screen will clear and the prompt

"DEPLOYMENT # ?"

will appear in the lower left corner of the screen. This is the first of
the "header" prompts. The OBS provides no checking of these entries,
since they have no effect on the operation of the system. The "header"
prompts are provided as a convenience to record variables which
identifies a particular data tape. Any entry of up to 80 characters
(including hitting RETURN at the end) can be entered for each prompt. If
no entry is desired, then hit RETURN. If you notice your mistake in an
entry before pressing RETURN, the normal CPM editing keys (Back Space,
Delete, or Control X) can be used. The following prompts will appear
after the previous one has been entered:

"INSTRUMENT # ?"
"CHIEF SCIENTIST?"
"CRUISE # ?"
"SPHERE # ?"
"LATITUDE ?"
"LONGITUDE ?"
"FRONT END GAIN"
"CHANNEL 1 ?"
"CHANNEL 2 ?"
"CHANNEL 3 ?"
"CHANNEL 4 ?"
"FRONT END DAMPING"
"CHANNEL 1 ?"
"CHANNEL 2 ?"
"CHANNEL 3 ?"
"CHANNEL 4 ?"

After the last prompt has been entered , the message

"IS THIS CORRECT (Y/N)?"

will appear. If there is an error in your entries, answering no (N) will
restart the "header" prompts at the beginning. All prompts will have to
be reentered. If there are no errors, answering yes (Y) will store the
entries, and the program will move on to the experiment parameters. No
RETURN is necessary in answering this question, as the OBS will respond
immediately to the first key entered.

Remember that your response, or lack of it,has no effect on the
performance of the instrument.

10. At this point, the experimental parameters which affect the
operation of the OBS are entered. There are two basic modes of operation
for the OBS: the Timer (or window) mode and the Event mode. The OBS can
operate in either mode but not simultaneously.

The screen will clear and the following message will be displayed in the
lower left corner:

"SERIES #1"

"# OF CHANNELS (1-4)"

"SERIES #1" indicates that the parameters that are about to be entered
are for the first series. There can be up to eight series per
deployment, and each series represents a group of data recordings which
are defined by the parameters entered for that series.

There are four parameters which are common to both modes of
operation, so they are entered before determining which mode is desired.
These four parameters are combined to determine the length of time for
each data recording and include the number of channels, the base channel,
the record size, and the sample rate. If the length of the data
recording is important, some calculations should be done prior to
parameter entry. The OBS calculates the length of recording after these
parameters are entered, but at that point, all of the rest of the
parameters must be entered before there is an chance of reentering the
first four entries again. The length of recording can be determined
using the number of channels(1 to 4), record size (1, 2, or 4 8-K byte
blocks), and sample rate (1, 2, 4, or 8 milliseconds) in the following
equation:

[(record size)x(8192 bytes/block)-256 bytes]x(sample rate)

(no. channels)x(2 bytes/channel)x(1000 msec/sec.)

The 8192 bytes/block converts the record size value to the total number
of bytes of data recorded. The 256 bytes is subtracted from this value
to account for the loss of memory space due to the 256-byte trailer
written on the data tape at the end of each data recording. The 2
bytes/channel converts the number of channels to the total number of
bytes recorded for all channels. The 1000 msec./sec. converts the
sampling rate from milliseconds to seconds between data. The options for
entering these parameters are as follows:

The first prompt is shown above and requests an entry for the number
of channels that are recorded at each data recording. The OBS can record
from as few as one or as many as four channels simultaneously. The
number 1, 2, 3, or 4 is entered and followed by a carriage return
(RETURN). The OBS will check to see if the entry was valid, and if not,
reprompt for the number of channels. If the entry is valid, the
following prompt will appear:

"BASE CHANNEL (1-4)"

The base channel is the first active channel used to record data,
and the other active channels must lie above it. In other words, if four
channels are active (i.e, the total number of channels is 4), then
channel 1 must be the base channel. If three channels are active, then
either channel 1 or channel 2 can be the base channel. A base channel of
one would make channels 1, 2, and 3 active. A base channel of 2 would
make channels 2, 3, and 4 active. The number 1, 2, 3, or 4 is entered
(followed by a RETURN). The OBS will check to see if this entry is valid
when compared with the total number of channels entered earlier. If the

entry is not valid, the OBS will go back and reprompt for both the total
number of channels and the base channel. If the entry is valid then the
following prompt will appear:

"ENTER 1, 2, or 4 BLOCKS OF 8K"
"RECORD SIZE = "

The series record size can be one of three lengths either 8-K (an
entry of 1), 16-K (an entry of 2), or 32-K (an entry of 4) bytes long.
This entry represents the total amount of memory used to store the data.
The number 1, 2, or 4 is entered (followed by a RETURN). If the entry is
not valid, the OBS will go back and reprompt for the record size. If the
entry is valid then the following prompt will appear:

"ENTER 1ms, 2ms, 4ms, or 8ms "
"SAMPLE RATE = "

The sample rate determines how fast the data is acquired. The
sample rate can be either 8 ms (128 hertz), 4 ms (256 hertz), 2 ms (512
hertz), or 1 ms (1024 hertz). Data are gathered simultaneously from all
active channels at the selected rate until the memory space, determined
by the record size entry, is full. The number 1, 2, 4, or 8 is entered
(followed by a RETURN). The OBS will check this entry, and reprompt for
the sample rate if the entry is not valid. If the entry is valid, the
OBS will display a warning message to make sure that the proper resistor
headers have been installed in the analog board of the system. The data
are filtered at different frequencies for each sampling rate, and four
resistor headers located on the analog board set these frequencies. The
warning message will indicate which resistor headers should be installed.
If the wrong headers are installed, the power must be removed, the analog
board removed, the correct headers installed, and the program restarted
from the beginning. The warning message is followed by the record time
as calculated by the OBS and by a prompt requesting the mode of
operation. As an example, 4 is entered for the number of channels, 1 is
entered for the base channel, 4 is entered for the record size, and 8 is
entered for the sampling rate. This would result in the following
message:

"164K RESISTOR HEADERS ON FILTER BOARD FOR THIS SAMPLE RATE"
"*** WARNING ***"

"RECORD TIME = 32 sec"

"TIMER or EVENT MODE (T/E)"

11. At this point, you must decide which mode of operation (i.e. timer
or event) this series will use. If event mode is desired, skip this step
and proceed to step 12.

Timer mode in the OBS records data at fixed intervals during a
predetermined "window" of time. This mode of operation is commonly used
for refraction lines where a acoustic source is triggered at well defined
intervals of time. The OBS, which at this point is on the ocean floor,
will record data at times in sync with the time that the sound source is
triggered. The series start and stop times usually correspond to the
beginning and end of the refraction line. When the start time for the

series is reached, the OBS will record data in fixed, minute intervals of
time until the stop time or a maximum number of data recordings is
reached. The specific parameters controlling when, how often, and how
many times the OBS records data are described in the following
paragraphs.

To program the OBS for timer mode, simply enter the letter "T"
followed by a RETURN. The following message will then appear:

"# OF RECORDS = "

The number of records is the total number of data recordings to be
done during this series. The maximum number of records that the OBS
software can handle is 9999, which is a larger value than the current
data tape can record. The maximum number of records that can be recorded
onto the data tape is determined by knowing the total number of series
that will be programed for this deployment, the total number of records
for each series, and the record size for each series. The data tape
records up to 2000, 8-K byte blocks of data. The record size, entered
earlier, equals the number of 8-K byte blocks written to tape for each
data recording, so the maximum number of records for one series is
determined by dividing the record size into 2000. For example, the data
tape can record up to 500 records (data recordings) with a record size of
4. If you desire more than one series per deployment, some juggling of
numbers will be necessary to determine how many records per series can
fit onto the data tape. A number from 1 to 9999 is entered (followed by
a RETURN). The OBS will check this entry, and reprompt for the number of
records if the entry is not valid. If the entry is valid, the following
messages (using series 1 and 2 as examples) will appear:

"TIME NOW: 3/28/86 12:34"

"START TIME SERIES 1 (YR/MTH/DAY/HR/MIN)"

.or

"TIME NOW: 3/28/86 12:34"

"STOP TIME OF LAST SERIES 3/29/86 17:05"

"START TIME SERIES 2 (YR/MTH/DAY/HR/MIN)"

This prompt requests the start time for this series of records. The
OBS uses this time to determine when to begin acquiring data at regular
intervals, and the time usually corresponds the time of the first sound
source trigger for a refraction line. The time entry is done in the same
format as described in step 6, and the same checking is done by the OBS.
The system will also check to be sure that you have not entered a start
time that is earlier than the current time, for obvious reasons, and
reprompt if an error is made. The current time is displayed in the first
line to help prevent this error. The display of current time is also be
used to check the operation of the clock in the OBS. Check this time
against your time reference. If they do not agree, push the reset button
and start over. If this does not work, change the CPU board and begin
again. After series 1, the OBS will check the start time against the
stop time of the last series to be sure that there is no overlap between

the two series. The stop time for the last series is displayed to help
prevent any errors. If the system finds that the start time is before
the stop time of the last series the following message (using series 1
and 2 as examples) will appear:

"IMPROPER START TIME "

"TIME NOW: 3/28/86 12:34"

"STOP TIME OF LAST SERIES 3/29/86 17:05"

"START TIME SERIES 2 (YR/MTH/DAY/HR/MIN)"

This checking will repeat until a valid time is entered. If the start
time is still in error, in spite of all the checking done by the OBS, you
have another opportunity to correct the mistake at the end of the
parameter entry for the series. This requires, however, that all of the
parameters for the series be reentered. After successful entry of the
start time, the following message (using series 1 as an example) will
appear:

"STOP TIME SERIES 1 (YR/MTH/DAY/HR/MIN)"

When the stop time is reached, the OBS will stop collecting data and
automatically setup for the next series (or terminate data collection
completely if there is no other series). This stop time has precedence
over any other parameter (i.e., number of records) and will
unconditionally terminate the series. The time is entered in the same
manner as described for the start time. The OBS will check to see that
the stop time is later than the start time and reprompt, if an error is
found, as follows:

"IMPROPER STOP TIME"
"START TIME SERIES 1 (YR/MTH/DAY/HR/MIN)"

Notice that the system is asking for the start time again rather than the
stop time. You must reenter the start time and the stop time, as the OBS
has no way of determining which time is in error. If the stop time is
still in error, in spite of all the checking done by the OBS, you have
another opportunity to correct the mistake at the end of the parameter
entry for the series. This requires, however, that all of the parameters
for the series be reentered. After successful entry of the stop time,
the following message will appear:

"ENTER (0 - 59 sec.)"
"WINDOW OFFSET = "

There are situations where it is desirable to start acquiring data
at a time "offset" from the time of sound source trigger used in a
refraction lines. In other words, to start data-acquisition several
seconds after the sound source has been triggered. This is particularly
useful if something (such as explosives) are detonated on the even minute
and the time that soundwaves must travel is known. The offset will save
wasting valuable data space if no useful data can be acquired for the
several seconds after the detonation. The offset entry can be any number

10

of seconds from 0 to 59 (followed by hitting RETURN), and represent the
number of seconds after the even minute that the OBS will begin acquiring
data. Remember that this offset will be applied to every record in this
series. The OBS will check this entry, and reprompt for the offset if
the entry is not valid. If the entry is valid, the following message
will appear:

"ENTER (1-99 min.)"
"PERIOD OF RECORDS = "

The period of records is the time from the beginning of one record to
the beginning of the next record. This entry determines how often the
data will be acquired between the start and stop times. The minimum
period of records is calculated by the OBS. If the time required to fill
the data buffer and write the data to tape exceeds one minute, the prompt
will appear as follows:

"ENTER (2-99 min.)"
"PERIOD OF RECORDS = "

The period number is entered and followed with a RETURN. The OBS will
check the entry to be sure you are within the minimum and maximum values
and reprompt if in error. If the entry is valid, the following message
will appear:

"HIT ANY KEY TO CONTINUE"

You have reached the end of the parameter entry for this series.
Hitting any key (RETURN is suggested), will cause the screen to clear and
all of the entered parameters to be displayed. At the end of this list,
you will be asked if these entries are correct. As an example, you
entered, for series 1, a value of 4 for the number of channels, 1 for
the base channel, 4 for the record size, 8 for the sampling rate, "T" for
the mode of operation, 100 for the number of records, 86/3/28/17/05 for
the start time, 86/3/28/21/00 for the stop time, 4 for the offset, and 2
for the period. The following information will be displayed after the
last parameter has been entered:

"SERIES 1"
"# OF RECORDS = 100"
"TIMER MODE"
"START 3/28/86 17:05"
"STOP 3/28/86 21:00"
"ACTIVE CHANNEL(S) = 1,2,3,4
"RECORD SIZE - 32K"
"SAMPLE RATE = 8ms"
"RECORD TIME = 32sec."

"WINDOW OFFSET = 4sec."
"PERIOD = 2min."

"IS THIS CORRECT (Y/N)?"

11

If you answer N (no) to this question, you must reenter all of the
parameters for this series. If you answer Y (yes) to this question go to
step 13. No RETURN is necessary in answering this question, as the OBS
will respond immediately to the first key entered.

12. Event mode in the OBS records data triggered by an external seismic
event. This mode is used when the acoustic source does not occur at
defined intervals of time, as is the case in earthquake detection
studies. The OBS has an event-detector as part of its circuitry, which
monitors the data continuously and initiates data recording when a
seismic event (i.e., earthquake) has been detected. The system
continuously puts data into a circular buffer which has been defined by
the parameters entered in step 10. When an event occurrs, the OBS will
continue to record this data until the buffer is filled and then write
the data to the data tape. The time of the event is recorded as the time
the data buffer is full. The time is recorded at the end of data
collection to prevent the loss of data that would occur if the system
read the clock at the moment of the event (the OBS cannot do two things
at once). The exact time of the event can only be calculated when the
data is processed. Note that because of the filter design (and the very
low frequencies that are of interest to geologists), there exists a
significant phase lag in the data. Arrival times computed from data
gathered by this mode or the Timer mode could easily be off by 50% of the
period of the waveform of interest. The following parameters are entered
to setup the event-detector, and establish when and how much data is
recorded. To enter event mode for this series type an "E" followed by a
RETURN, and the following prompt will appear:

"ENTER 87(.5), 75, 50, or 25%"
"POST-EVENT SAMPLE (%) "

The post-event sample represents the percentage of the data buffer
that is recorded after an event is detected and determines when the OBS
will stop collecting data for this event. The "87(.5)" option is entered
by typing 87 even though the actual value is 87.5. This was done to
simplify the software in the OBS required to check the entry for errors.
The number 87, 75, 50, or 25 is entered (followed by a RETURN). The OBS
will check the entry and reprompt if an error is found. If the entry is
valid, the following message will appear:

"ENTER .05, .10, .25, or .50 SEC."
"STA TIME CONSTANT = "

The short-term averager (STA) time constant represents the time
base, used in the event-detector, for averaging the short-term data
signals. The smaller the time constant, the faster the event-detector
will react. The STA entry must be exactly as shown in the prompt, or the
OBS will not accept it. The entry must be .05, .10, .25, or .50
(followed by a RETURN). The OBS will check the entry and reprompt if an
error is found. If the entry is valid, the following message will
appear:

"ENTER 6, 12, 18, or 24 db"
"THRESHOLD = "

12

The threshold value for the hardware event-detector represents a
fixed signal level above the long-term average level that is used to
determine if an event has occurred. Although the entry is an exact
number, the actual value is highly dependent on the hardware and the
stability of the background noise. This entry does give some measure of
control in determining how far above the background noise the event will
occur. The number 6, 12, 18, or 24 is entered (followed by a RETURN).
The OBS will check the entry and reprompt if an error is found. If the
entry is valid, the following message will appear:

"# OF RECORDS = (Enter 0 for maximum number)"

In most event-detection deployments, the number of records (data
recordings) will be unimportant. Event detection will occur until the
data tape is filled, or the OBS is retrieved. If this is the case,
simply enter the number 0 followed by a RETURN. If, however, you desire
to end this series after a certain number of events, enter a number from
1 to 9999 followed by a RETURN. The number of records,in this case, is
the total number of events to be done during this series. The maximum
number of records that the OBS software can handle is 9999, which is a
larger value than the current data tape can record. The maximum number
of records that can be recorded onto the data tape is determined by
knowing the total number of series that will be programed for this
deployment, the total number of records for each series, and the record
size for each series. The data tape records up to 2000, 8-K byte blocks
of data. The record size, entered earlier, equals the number of 8-K byte
blocks written to tape for each data recording, so the maximum number of
records for one series is determined by dividing the record size into
2000. For example, the data tape can record up to 500 records (data
recordings) with a record size of 4. If you desire more than one series
per deployment, some juggling of numbers will be necessary to determine
how many records per series can fit onto the data tape. The OBS will
check this entry, and reprompt for the number of records if the entry is
not valid. If the entry is valid, the following messages (using series 1
and 2 as examples) will appear:

"TIME NOW: 3/28/86 12:34"

"START TIME SERIES 1 (YR/MTH/DAY/HR/MIN)"

or

"TIME NOW: 3/28/86 12:34"

"STOP TIME OF LAST SERIES 3/29/86 17:05"

"START TIME SERIES 2 (YR/MTH/DAY/HR/MIN)"

This prompt requests the start time for this series of records. The
OBS uses this time to determine when to begin acquiring data in the event
mode. Allow 8 hours after the start time for the event-detector to
stabilize before valid events will be recorded. This is due to the slow
response of the long-term averager, in the event-detector, to background
noise. The time entry is done in the same format as described in step
6, and the same checking is done by the OBS. The system will also check

13

to be sure that you have not entered a start time that is earlier than
the current time, for obvious reasons, and reprompt if an error is made.
The current time is displayed in the first line to help prevent this
error. The display of current time is also be used to check the
operation of the clock in the OBS. Check this time against your time
reference. If they do not agree, push the reset button and start over.
If this does not work, change the CPU board and begin again. After
series 1, the OBS will check the start time against the stop time of the
last series to be sure that there is no overlap between the two series.
The stop time for the last series is displayed to help prevent any
errors. If the system finds that the start time is before the stop time
of the last series the following message (using series 1 and 2 as
examples) will appear:

"IMPROPER START TIME "

"TIME NOW: 3/28/86 12:34"

"STOP TIME OF LAST SERIES 3/29/86 17:05"

"START TIME SERIES 2 (YR/MTH/DAY/HR/MIN)"

This checking will repeat until a valid time is entered. If the start
time is still in error, in spite of all the checking done by the OBS, you
have another opportunity to correct the mistake at the end of the
parameter entry for the series. This requires, however, that all of the
parameters for the series be reentered. After successful entry of the
start time, the following message (using series 1 as an example) will
appear:

"STOP TIME SERIES 1 (YR/MTH/DAY/HR/MIN)"

When the stop time is reached, the OBS will stop collecting data and
automatically setup for the next series (or terminate data collection
completely if there is no other series). This stop time has precedence
over any other parameter (i.e., number of records) and will
unconditionally terminate the series. In event mode, however, the stop
time is not checked until the end of an event, so one event must occur
after the stop time before this series will end. The time is entered in
the same manner as described for the start time. The OBS will check to
see that the stop time is later than the start time and reprompt, if an
error is found, as follows:

"IMPROPER STOP TIME"
"START TIME SERIES 1 (YR/MTH/DAY/HR/MIN)"

Notice that the system is asking for the start time again rather than the
stop time. You must reenter the start time and the stop time, as the OBS
has no way of determining which time is in error. If the stop time is
still in error, in spite of all the checking done by the OBS, you have
another opportunity to correct the mistake at the end of the parameter

14

entry for the series. This requires, however, that all of the parameters
for the series be reentered. After successful entry of the stop time,
the following message will appear:

"HIT ANY KEY TO CONTINUE"

You have reached the end of the parameter entry for this series.
Hitting any key (RETURN is suggested), will cause the screen to clear and
all of the entered parameters to be displayed. At the end of this list,
you will be asked if these entries are correct. As an example, you
entered, for series 1, a value of 4 for the number of channels, 1 for
the base channel, 4 for the record size, 8 for the sampling rate, "E" for
the mode of operation, 75 for the post-event samples, .10 for the STA
time constant, 12 for the threshold, 0 (maximum) for the number of
records, 86/3/28/12/00 for the start time, and 86/4/10/8/00 for the stop
time. The following information will be displayed after the last
parameter has been entered:

"SERIES 1"
"# OF RECORDS = 9999"
"EVENT MODE"
"START 3/28/86 12:00"
"STOP 4/10/86 8:00"
"ACTIVE CHANNEL(S) = 1,2,3,4
"RECORD SIZE = 32K"
"SAMPLE RATE = 8ms"
"RECORD TIME = 32sec."

"POST-EVENT SAMPLE 75%"
"STA TIME CONSTANT = .lOsec."
"THRESHOLD - 12db"

"IS THIS CORRECT (Y/N)?"

If you answer N (no) to this question, you must reenter all of the
parameters for this series. If you answer Y (yes) to this question go to
step 13. No RETURN is necessary in answering this question, as the OBS
will respond immediately to the first key entered.

13. If you answer Y (yes) to this question, the following question will
appear:

"DO YOU WISH ANOTHER SERIES?"

If you answer Y (yes) to this question, the parameter entry routines for
the next series will begin. No RETURN is necessary in answering this
question, as the OBS will respond immediately to the first key entered.
If you answer N (no) to this question, you will be asked the following
question:

"IS THIS A TEST? (N/Y)"

Answering Y (yes) to this question is strictly for testing purposes and
should not be used in field work. In testing mode, the header is written
to tape immediately, and series information is displayed on the terminal.

15

The terminal is usually left connected to monitor progress of each
series. This mode has none of the checking procedures used to ensure
that the system is working before deployment.

If you answer N (no) to this question, you will be instructed to
disconnect the terminal. After the terminal is unplugged, you should be
able to hear the tape drive turn on to write the header information to
tape. If this happens, you have successfully programmed the OBS and are
ready for deployment.

If this does not happen, something went wrong. It is strongly suggested
that you start over.

16

PROGRAM TERMINATION

1. Push the Early Termination button (Figure 1) to end data gathering.

2. Connect the terminal as described in step 2 of the program startup
section and hit RETURN. The OBS should write two end of file marks on
the data tape and display the time once a second on the terminal. If
this does not happen, try entering a Control U. This is a keyboard
interrupt that goes directly to the clock read routines. If the time
still does not appear on the terminal, press the reset button on the
Power Interface Board (Figure 1). After the RAM test is completed and
when the OBS asks you to enter the time, enter a Control U instead. If
the clock is still working, you will see the current time displayed on
the terminal. The year, in this case, will be zeros.

3. Connect the satellite clock (Figure 1) and check the time sync.

4. Remove the data tape and set the write protect.

5. Disconnect the power.

17

PROGRAM LISTING

FOR THE USGS 4 CHANNEL OBS

18

SYSTEM EQUATES

;Original code was written by jhg
;UPDATE - 8/8/84 code was revised for window mode by ohh
;UPDATE - 9/6/84 Code was revised to combine W.EQU,
; WNSC810.EQU, and WPWRPRT.EQU with diagnostic
; switch by gkm
;UPDATE - 9/13/85 code was revised to alter memory
; locations of series parameters to accomodate
; expanded series and exp. numbers by gkm
;UPDATE - 2/24/86 code was revised to accomodate the
; new clock (58167) by gkm

19

ASSEMBLY CONTROL

FALSE
TRUE
DIAG
OUTP
INP
HI
LO

equ
equ
equ
equ
equ
equ
equ

0
NOT FALSE
FALSE
Olh
OOh
Olh
OOh

; Diagnostic switch
; Define as output
; Define as input
; Define as high
; Define as low

; WINDOW CONSTANTS

BITO
BIT1
BIT2
BIT3
BIT4
BITS
BIT6
BIT7

; ASCII

BS
CR
CTLU
CTLX
CTLZ
DEL
LF
SPC

; POWER

equ
equ
equ
equ
equ
equ
equ
equ

EQUATES

equ
equ
equ
equ
equ
equ
equ
equ

Olh
02h
04h
08h
lOh
2 Oh
40h
80h

08h
Odh
15h
18h
lah
7fh
Oah
20h

; \
; \
; \
; \ Use as values for
; / bit masks
; /
; /
; /

;Back space
; Carriage return
; Control U (jump to clock read)
; Control X
; Control Z (string terminator)
; Delete
;Line feed
; Space

BOARD EQUATES

; PORT LOCATIONS

PWRPRT equ Offh

; COMMAND EQUATES

LCDCLL
LCDCLH
LCDRST
NLCDR
OFF 12V
ON12V
OFF5V
ON5V

equ
equ
equ
equ
equ
equ
equ
equ

Olh
81h
02h
82h
03h
083h
OOh
080h

;Power interface board port

;Set LCD clock line low
;Set LCD clock line high
;Pull reset low on LCD ctr
;Reset hi on LCD (not reset)
;Turn off 12v to cartridge
;Turn on 12v to cartridge
;Turn off 5v to cartridge
;Turn on 5v to cartridge

20

; ANALOG BOARD EQUATES

; PORT LOCATIONS

ANAPRT equ OlOh
AVGPRT equ ANAPRT+Olh

; A-D BOARD EQUATES

;Analog board STA & threshold
;Analog board average enable

; PORT LOCATIONS

ADPORT equ 018h

; CONTROL BOARD EQUATES

;A-D board base address

; CPU

; PORT LOCATIONS

INTPRT equ Obbh

; COMMAND EQUATES

AD_INT_EN equ 08h
T1_INT_EN equ 04h
RSTC_EN equ 02h
EARLYJTERM

equ Olh

;NSC-800 interupt mask port

;RSTA from A-D enable
;Timer 1 interrupt enable
;RSTC enable

;Early terminator enable

21

NSC810

; PORT LOCATIONS

NSCIOT
P BOAT A
PCD AT A
PBDDIR
PCDDIR
NSCMDR
PBCLRB
PCCLRB
PBSETB
PCSETB
TMRO
TMROLS
TMRO MS
TMR1
TMR1LS
TMR1MS
STOPTO
STRTO
STOPT1
STRT1
CMDTO
CMDT1

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

3080h
NSCIOT+Olh
NSCIOT+02h
NSCIOT+05h
NSCIOT+06h
NSCIOT+07h
NSCIOT+09h
NSCIOT+Oah
NSCIOT+Odh
NSCIOT+Oeh
NSCIOT+OlOh
NSCIOT+OlOh
NSCIOT+Ollh
NSCIOT+012h
NSCIOT+012h
NSCIOT+013h
NSCIOT+014h
NSCIOT+015h
NSCIOT+016h
NSCIOT+017h
NSCIOT+018h
NSCIOT+019h

;NSC810 I/O- timer base
;NSC810 port B- data reg.
;Port C data reg
;Port B data direction reg
;Port C data direction reg
;Mode definition reg
;NSC810 port B- bit clear reg.
;Port C bit clear reg
;NSC810 prot B- bit set reg.
;Port C bit set reg
; Timer 0 reg
; Timer 0 Isb
; Timer 0 msb
; Timer 1 reg
; Timer 1 Isb
; Timer 1 msb
; Timer 0 stop
; Timer 0 start
; Timer 1 stop
; Timer 1 start
; Timer 0 command reg
; Timer 1 command reg

PAD ADD
PBDADD
PCD ADD
PADIR
PBDIR
PCDIR
CMDRAD
PACADD
PBCADD
PCCADD
PAS ADD
PBSADD
PCSADD
TOLSB
TO MSB
T1LSB
T1MSB
TO STOP
TOSTRT
Tl STOP
Tl STRT
TOCMD
T1CMD

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

Oh
Olh
02h
04h
05h
06h
07h
08h
09h
Oah
Och
Odh
Oeh
lOh
llh
12h
13h
14h
15h
16h
17h
18h
19h

- ADDRESSES RELATIVE TO NSCIOT(IN IX REG.)

;Port A data reg
;Port B data reg
;Port C data reg
;Port A data direction reg
iPort B data direction reg
;Port C data direction reg
;Mode definition reg
,Port A bit clear reg
;Port B bit clear reg
i Port C bit clear reg
iPort A bit set reg
;Port B bit set reg
;Port C bit set reg
;Timer 0 Isb
iTimer 0 msb
Timer 1 Isb

, Timer 1 msb
Timer 0 stop
iTimer 0 start
,Timer 1 stop
Timer 1 start
.Timer 0 command reg
,Timer 1 command reg

22

; COMMAND EQUATES
- PORT A DIRECTION

PAO
PA1
PAID
PA2
PA2D
PA3
PA4
PAS
PA6
PA7
ADIR

ADAT

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

BDIR

BOAT

equ

equ

INP
OUTP SHL 1
LO SHL 1
OUTP SHL 2
LO SHL 2
INP SHL
INP SHL
INP SHL
INP SHL
INP SHL

;Seconds pulse out
;Normal low
;Minute pulse out
;Normal low

;Satellite clock in

PBO
PBOD
FBI
PB1D
PB2
PB2D
PB3
PB4
PB5
PB6
PB7

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OUTP
HI
OUTP SHL 1
HI SHL 1
OUTP SHL 2
LO SHL 2
INP SHL 3
INP SHL 4
INP SHL 5
INP SHL 6
INP SHL 7

PCO
PCOD
PCI
PC1D
PC2
PC2D
PC3

PC4
PC5

PC5D
CDIR

equ
equ
equ
equ
equ
equ
equ

equ
equ

equ
equ

OUTP
HI
OUTP SHL 1
LO SHL 1
OUTP SHL 2
HI SHL 2
INP SHL 3

INP SHL 4
OUTP SHL 5

HI SHL 5
PCO OR PC

CD AT equ

PAO OR PA1 OR PA2 OR PA3 OR PA4 OR PA5 OR PA6 OR PA7
;Port A direction

PAID OR PA2D ;Port A data

- PORT B DIRECTION

Serial out, inverted
Space
Formerly used for reel to reel
Normal high
Not cartridge reset
Reset cartridge
Time sync in (must be connected)
From not INTR
From not RSTA
From TO out
Serial in ,inverted (also
connected to NRSTC)

PBO OR FBI OR PB2 OR PB3 OR PB4 OR PB5 OR PB6 OR PB7
;Port B direction

PBOD OR PB1D OR PB2D ;Port B data

- PORT C DIRECTION

;Not RSTA disable
;Disable RSTA initially (will change)
;Disable power save
;Disable power save intially
;Remap memory addressing
;Don't remap
;Timer gate, connected to serial
;in and NRSTC
;Timer 1 input, connected to 4040
;Timer 1 output, connected to
;NRSTB and NAND
;Normal high

PCI OR PC2 OR PC3 OR PC4 OR PCS
;Port C direction

PCOD OR PC1D OR PC2D OR PC5D
;Port C data

23

- NSC 810 MODES

MODEO
MODE1
MODE2
MODE3

»

TMODEO
TMODE1
TMODE2
TMODE3
TMODE4
TMODE5
TMODE6

»

PRE1
PRE2
PRE64

»

BIT8T
BIT16T

equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ

equ
equ

GPOLH

GPOLL

;Port A basic 10
;Strobed input mode (affects A and C)
;Strobed output mode
jTristate strobed output

- TIMER MODES

OOh
Olh
02h
03h
04h
05h
06h

OOh
08h
018h

;Kill timer
;Event counter mode
;Stopwatch event timer
;Event timer with reset
;0ne shot
;Square wave
;Pulse generator

- TIMER PRESCALER

;No prescale
;Divide by 2
;Divide by 64,timer 0 only
;(SEE NSC810 SPECS)

- TIMER READ/WRITE MODE

020h
OOh

;Single byte read/write mode (Hi or LO)
;16 bit timer. Read or write low
;byte first

- TIMER GATE CONTROL

equ

equ

OUTPOLH equ

OUTPOLL equ

OOH

040h

080h

OOh

;Gate input active high(PC3).
;This is the common gate for both timers
;Gate input active low

- TIMER OUTPUT CONTROL

;Timer output active high
;T1=PC5,TO=PIN 6
;Timer output active low

24

; MEMORY EQUATES

; REAL TIME

TMEM equ
MSEC equ
SEC.l equ
SEC equ
MIN equ
HRS equ
DAYWK equ
DAYS equ
MTH equ
LMSEC equ
LSEC . 1 equ
LSEC equ
LMIN equ
LHRS equ
LDAYWK equ
LDAYS equ
LMTH equ
INTSTAT equ
INTCMD equ
CTRRST equ
LTHRST equ
CLKSTAT equ
STPST equ
INTREG equ
CTEST equ

; NSC810 RAM

CLOCK (2000 - 2017h)

2000h
TMEM
TMEM+Olh
TMEM+02h
TMEM+03h
TMEM+04h
TMEM+05h
TMEM+06h
TMEM+07h
TMEM+08h
TMEM+09h
TMEM+Oah
TMEM+Obh
TMEM+Och
TMEM+Odh
TMEM+Oeh
TMEM+Ofh
TMEM+lOh
TMEM+llh
TMEM+12h
TMEM+13h
TMEM+14h
TMEM+15h
TMEM+16h
TMEM+17h

(3000H - 307FH)

;RTC base address
; Thousands of seconds
; Hundreds & Tenths of seconds
; Seconds
; Minutes
; Hours
;Day of week
;Day
; Month
;Msec. latch
; Hundreds & tenths latch
; Seconds latch
; Minutes latch
; Hours latch
;Day of week latch
;Days latch
; Months latch
; Clock interrupt status reg.
; Interrupt command reg.
; Counter reset
; Latch reset
; Status
; Start reg
; Standby interrupt reg.
;Test only

; - SERIES /EXPERIMENT VARIABLES

NSCRAM equ
10 equ
NCX2 equ
SERTYP equ
EXPN equ
STRTTB equ
STOPTB equ
BUFSIZ equ
PESAMPS equ
B START equ
MSAMPS equ
OFFSET equ
PERIOD equ
ADVAL equ
ANVAL equ
ENDPARA equ
NOPARA equ

3000h
NSCRAM
NSCRAM+Olh
NSCRAM+02h
NSCRAM+03h
NSCRAM+05h
NSCRAM+Oah
NSCRAM+Ofh
NSCRAM+OlOh
NSCRAM+012h
NSCRAM+013h
NSCRAM+015h
NSCRAM+016h
NSCRAM+017h
NSCRAM+018h
NSCRAM+019h

jNSC-810 ram area
;Base 10 for AD
;# samples 2
; Series type
;# Experiments in series
; Start time for series
;Stop time for series
; Buffer size in 8K blocks
;# post event samples
;High order buffer start address
;# samples (max)
; Window offset
; Window period
; Sample rate code
;STA & THRSH code
;End of series parameters

LOW (ENDPARA- NSC RAM)
; Amount of parameter storage

25

- WORKING PARAMETERS

PESAMS equ
THRSHSV equ
STASAV equ
SRATE equ
BSZSAV equ
PARBUF equ
LSTCP equ
HDRBUF equ
GPCTRL equ
GPCTRH equ
NSAMPS equ
BUFPTR equ
WBUFSAV equ
WBSTART equ

RDBUF equ
TIMSAVE equ

STACK equ
RAMST equ
ENDRAM equ
ADDRESS equ
PATRN equ
RECN equ
RWN equ
ABRTV equ
LSN equ
EQFY equ
BEND equ

; SCRATCH PAD

SCRATCH equ
NSTACK equ
TSTORE equ
TSTFLG equ
RECTIME equ
SHIFTER equ
ESECT equ
EBUFSAV equ
T1INT equ
DS equ
IS equ
IMA equ
IPA equ
ICA equ
GCODE equ
SRCODE equ
ELAPSED_MIN

equ
BASAD equ
IBUFF equ
NCI equ

NSCRAM+019h
NSCRAM+Olah
NSCRAM+Olbh
NSCRAM+Olch
NSCRAM+Oldh
NSCRAM+Oleh
NSCRAM+020h
NSCRAM+022h
NSCRAM+024h
NSCRAM+025h
NSCRAM+026h
NSCRAM+028H
NSCRAM+02ah
NSCRAM+02ch

NSCRAM+02dh
NSCRAM+02fh

NSCRAM+050h
NSCRAM+05ah
NSCRAM+05ch
NSCRAM+05eh
NSCRAM+05fh
NSCRAM+062h
NSCRAM+065h
NSCRAM+067H
NSCRAM+069h
NSCRAM+06bh
NSCRAM+06ch

RAM (4000 -

4000h
SCRATCH+200h
NSTACK+02h
NSTACK+04H
NSTACK+06h
NSTACK+08h
NSTACK+Oah
NSTACK+Obh
NSTACK+Odh
NSTACK+Ofh
NSTACK+OlOh
NSTACK+Ollh
NSTACK+012h
NSTACK+013h
NSTACK+014h
NSTACK+015h

SCRATCH+300h
SCRATCH+350h
SCRATCH+400H
IBUFF+MAXB+1

;Post event verify
; Threshold verify
; Short term average verify
; Sample rate verify
; Buffer size verify
; Storage for DE during parameter entry
;Last valid comp. for compare routine
; Pointer to ASCII header
;GP counter low byte
;GP counter high byte
;# samples working
;Data aquisition buffer pointer
; Storage of HL during write to tape
;High order buffer start address
; for write
; Buffer storage for read pointer
; 10 bytes to save time in case
;of entry error
;Run time stack
; Start of ram to test
;End of ram to be tested
; Storage for bad ram address
; Storage of bad ram pattern
; Record number storage
; Rewrite storage
; Abort vector storage
;2 byte, last series +1
; Event qualify counter
; Storage of end of data buffer

5FFFh)

; Scratch pad ram
; Operating stack after ramtest
; Temporary storage
;Flag for ram test
; Length of recording (mins,secs)
;Used to divideto get above value
; Save sector count for write error
;Save buffer ptr for write error
;T1 interupt vector
; Stored drive status
; Stored interface status
;Mode argument copy
;Pos. arg copy
; Command argument copy
; Analog board gain code
; Sample rate value for A-D board

; Elapsed minute count
;Base address
; ASCII input buffer
;No. characters in buffer

26

SERBUF
ESERBUF
SERPTR
CSN
CEXPN
SAMPTIM

CSEC1
CSEC
C10SEC
CMIN
C10MIN
CHRS
C10HRS
CD AYS
C10DAY
CDAYWK
CMTH
CTENMTH
CYR
CTIMER
CTIMLO
CTIMHI
DATABLOCK
EEXPBUF

MTMEM
MMSEC
MSEC.l
MSEC
MMIN
MHRS
MDAYWK
MDAYS
MMTH
MYRS
OTENMTH
TIMEN

BUF16
B16NAME
BSERNO
BEXPNH
BEXPNL
B16LB
B16RC
TIP BUF

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

5000h
50D8h
ESERBUF+Olh
ESERBUF+03h
ESERBUF+05h
ESERBUF+07h

SAMPTIM
SAMPTIM+Olh
SAMPTIM+02h
SAMPTIM+03h
SAMPTIM+04h
SAMPTIM+05h
SAMPTIM+06h
SAMPTIM+07h
SAMPTIM+08h
SAMPTIM+09h
SAMPTIM+Oah
SAMPTIM+Obh
SAMPTIM+Och
SAMPTIM+Odh
CTIMER
SAMPTIM+Oeh
ESERBUF+016h
ESERBUF+014h

Beginning of series parameter storage
;End of series parameter storage
Pointer to next series parameters
Current series number in BCD
Current exp. no. in BCD
Time of beginning of record
(5 BYTES ALLOWED)
Tenths of seconds
,Seconds
;Tens of seconds
;Unit minutes
;Tens of minutes
;Unit hours
;Tens of hrs.
;Unit days
;Tens of Days
Day of week
;Unit months
Tens of months
Year(PACKED BCD)
Millisec. (LO BYTE FIRST,2 BYTES)
;Low byte (millisec)
High byte (tenths and hundredths)
No. of sectors to write (128bytes)
;End of tape data if Offh

- MEMORY IMAGE OF CLOCK 10

5200h
MTMEM
MTMEM+Olh
MTMEM+02h
MTMEM+03h
MTMEM+04h
MTMEM+05h
MTMEM+06h
MTMEM+07h
MTMEM+08h
MTMEM+09h
MTMEM+Obh

;RTC base address
;Milliseconds
;Tenths of seconds
;Seconds
; Minutes
;Hours
;Day of week
;Day
;Month
;Yr storage
;01d month storage
;5 bytes for clock in PBCD

- TIP TAPE BUFFER

5300h
BUF16+01 h
BUF16+02h
BUF16+07h
BUF16+09h
BUF16+Odh
BUF16+Ofh
BUF16+10h

;Tape header buffer for TIP
;Header name
;Series number
;High byte of exp. no.
;Low byte of exp. no.
;Last block flag
iRecord size
;TIP buffer read location

27

; AQUISITION RAM (8000 - FFFFh)

BUFMEM equ OSOOOh ;Aquistion ram

; - HEADER RAM

HDRRAM equ OeOOOh ;Start of header ram

28

; CARTRIDGE CONTROLLER BOARD EQUATES

; PORT LOCATIONS

CPORT equ
MA equ
PA equ
CA equ
DA equ
PS equ

; COMMAND

READC equ
WRITEC equ
WRITE FMC

equ
FWDSPRECC

equ
FWDSPFILC

equ
REVSPCRECC

equ
REVSPCFILC

equ
CURSTATC

equ

SETRECLENC
equ

WRITEWCHC
equ

RECSERMASC
equ

REWINDC equ
BREADC equ
BWRITEC equ
BWRITEFMC

equ
RWREADC equ
RSTCC equ

; MASKS -

BOTM equ
COMSTATM

equ
EOTM equ
MAN equ
TRACKMA equ
MSMA equ

OfOh
CPORT
CPORT+1
CPORT+2
CPORT+3
CPORT+1

EQUATES

Olh
02h

03h

04h

05h

06h

07h

08h

09h

Oah

Obh
40h
41h
42h

43h
81h
04h

08h

030h
04h
060h
03h
OeOh

; Cartridge controller
; Mode ar gument
; Posit ion argument
; Command argument
;Data argument (write
;Port status

;Read a record
; Write a record

; Write a file mark

base

data only)

; Foward space a record

; Forward space a file

; Reverse space a record

; Reverse space a file

;send current status
;tape

; Set record length

; Write a record with

;Mask search
; Rewind
; Buffer read
; Buffer write

; Buffer file mark
;Ram read
; Cartridge controller
;on port B
;clear to reset, set

;BOT mask for DS

; Command status mask
;End of track mask
; Status mask
; Track mask
;Mask search MA excl.

command to

check

reset line

to allow operation

for IS check

track bits

29

SYSTEM MACROS

;Original code written by jhg
;UPDATE - 5/ 6/84 PRINT macro was added by ohh
;UPDATE - 10/18/84 code compiled into a seperate module by gkm
;UPDATE - 7/30/85 QPRINT macro was added by gkm

30

; SAVE ALL REGISTERS

PUSHALL MACRO
push af
push be
push de
push hi
endm

; RESTORE ALL REGISTERS

POPALL MACRO
pop hi
pop de
pop be
pop af
endm

; IMMEDIATE STORE
; - ALLOWS THE DIRECT STORAGE OF ANY
; REGISTER OR & IMMEDIATE VALUE IN A
; SPECIFIED MEMORY LOCATION.
; - NO REGISTERS AFFECTED.
; - 6 BYTES FOR REGISTER,38 TSTATES
; - 7 BYTES FOR IMMEDIATE,41 TSTATES

STA MACRO ADDR,ARG
push af
Id a,ARC
Id ADDR,a
pop af
endm

31

; DELAY n MSEC
; - THIS MACRO DELAYS N HUNDRED T-STATES
; - MACRO USES 45 TSTATES.
; - DELAYR WASTES 55 TSTATES AND CALLS A
; 100 T-STATE
; - DELAY N-l TIMES FOR A TOTAL DELAY OF N
; HUNDRED TSTATES.
; - MAX. DELAY FOR THIS MACRO IS 25.6 MS.
; - DELAY TIMES ARE BASED ON T-STATE=1
; MICRO-SEC WHICH IS ONLY APPROXIMATE.
; - APPROXIMATION IS NOT USED FOR CRITICAL
; DELAYS

DELAY MACRO NHUNDRED
push be ;11T SAVE B REGISTER
Id b,NHUNDRED-1 ; 7T SET UP B FOR DJNZ IN DELAYR
call DELAYR ;17T CALL DELAY SUBROUTINE
pop be ;10T RESTORE B AND CONTINUE
endm

; NORMAL PRINT ROUTINE

; - STRING MUST BE TERMINATED WITH A OH

PRINT MACRO STRING
push hi ;Save regs.
Id hi,STRING ;Usage: PRINT DIAGMS
call SNDMES ;DIAGMS: DB 'MESSAGE',0
pop hi ;Restore regs.
endm

32

1 QUESTION AND ANSWER MACRO #1

WPRINT MACRO STRING
push
exx
Id
call
Id
call
exx
pop
ENDM

af

hi,STRING
WPRA
hi,STRING
WPRB

af

- PRINTS STRING WITH A ?
- ANSWER IS MOVED TO THE HEADER BUFFER

;Save ace.
;Save regs.
;Point to Prompt
;Save prompt
;Get answer
;And save it
;Restore regs.
;Restore ace.

1 QUESTION AND ANSWER MACRO #2

- PRINTS STRING WITH A ?
- ANSWER IS IN REG. A

QPRINT
push
Id
call
call
pop
ENDM

MACRO
hi
hi,STRING
WPRA
GBYTNE
hi

STRING
;Save HL
;Point to Prompt
;Print it
;Get answer
;Restore HL

33

PAGE ZERO, INTERRUPT, AND RST VECTORS

Original code written by jhg
UPDATE - 5/ 6/84 code commented by ohh
UPDATE - 10/18/84 code converted to module format

and commented by gkm
UPDATE - 9/12/85 code was revised to use Tl as a

timeout trap for tape routines by gkm

34

; STARTING POINT

	ASEG
	org OOOOh

; - PROCESSOR STARTS HERE ON RESET.
; - INTERRUPT AND REFRESH REGS ARE CLEARED.
; - ALL INTERRUPTS ARE DISABLED(HARDWARE DI
; INSTRUCTION).
; - INTERRUPT CONTROL REGISTER IS SET TO 01,
; WHICH ENABLES "NOT INTR" AND MASKS OFF
; "NOT" RSTA,RSTB,RSTC.
; - NO INTERRUPT CAN WORK UNLESS BOTH AN El
; INSTRUCTION HAS BEEN ISSUED AND THERE IS
; A ONE IN THE APPROPRIATE SPOT IN THE
; INTERRUPT MASK REGISTER,WHICH IS A WRITE
; ONLY REGISTER ADDRESSED AS AN OUTPUT PORT
; (LOWER 4 BITS ONLY) BY AN OUT BBH OR
; EQUIV. INSTRUCTION.
; - THE FOLLOWING VALUES ENABLE THE
; CORRESPONDING INT. LINES:
; 08H ENABLES RSTA
; 04H ENABLES RSTB
; 02H ENABLES RSTC
; 01H ENABLES INTR
; - NOTE THAT OFH ENABLES ALL INT. LINES
; - 8080 INTERRUPT MODE IS AUTOMATICALLY
; SELECTED ON RESET

; RESTART 0 (11000111)

BEGIN: di ; Disable interrupts
	jp MAIN ; Start program

; - END OF RESET CODE

; - THESE ARE THE 8 NORMAL Z80 RESTART
; LOCATIONS.
; - IN 8080 MODE ,THESE CONSTITUTE A MEANS
; FOR EXTERNAL DEVICES TO FORCE A CALL TO
; ONE OF 8 LOCATIONS WITH ONE INSTRUCTION
; PUT ON THE BUS DURING AN INTACT CYCLE.
; - ALSO CAN BE USED AS A VERY SHORT CALL
; VIA RST INSTRUCTION.
; - NOTE THAT A DI INSTRUCTION IS
; AUTOMATICALLY EXECUTED.
; - THE INTERRUPTS NOT CURRENTLY USED BY
; THE OBS INCLUDE RETURNS FOR SAFETY.

35

; RESTART 1 (11001111) -

aseg
org 0008h
ret

; RESTART 2 (11010111) -

aseg
org OOlOh
ret

; RESTART 3 (11011111)

aseg
org 0018h
ret

; RESTART 4 (11100111)

aseg
org 0020h
ret

; RESTART 5 (11101111) -

aseg
org 0028h
ret

; RESTART C

aseg
org 002Ch
ret

; RESTART 6 (11110111)

aseg
org OOSOh
ret

36

; RESTART B

; - THIS INTERRUPT IS FROM TIMER 1. IT IS
; USED AS A TIME OUT ERROR TRAP.

aseg
org 0034h
jp TFAIL ;Tape fail routine

; RESTART 7 (11111111)

; - IN MODE 1,WILL COME HERE ON NOT INTR
; GOING LOW
; - PUSHING THE EARLY TERMINATION BUTTON
; BRINGS YOU HERE.

aseg
org 0038h
jp ETERM ;Early termination routine

; - NOTE THAT THIS REQUIRES HARDWARE OR
; MODE1 INTERRUPTS!

37

NSC800 SPECIAL INTERRUPT LOCATIONS

; RESTART A

IF INT. ENABLED AND MASK OK WILL COME
HERE AS SHOWN.
NO INSTRUCTION NEEDED ON BUS JUST
PULL THE APPROPRIATE PIN LOW.

INTERRUPT IS GENERATED ON THE A/D BOARD.
IT IS CONTROLLED BY A NUMBER OF CPU
BOARD OUTPUTS.
THE NSC 810 PORT C PIN 0 CONTROLS AN
OR GATE WHICH DISABLES THE INTERRUPT
COMING FROM THE A/D BOARD ON S-100 PIN 4
IF C-0 IS HIGH.
THE A/D BOARD WILL NOT GENERATE AN
INTERRUPT IF ITS FIRST INTERRUPT WAS NOT
ACKNOWLEDGED.
THE A/D INTERRUPT OCCURS IMMEDIATELY
AFTER CONVERSION COMPLETE FOLLOWING A
TIME-OUT OF THE SOFTWARE SETTABLE COUNTER
WHICH GIVES THE APPROXIMATE SAMPLE(WILL
HAVE ABOUT 200 MICROSECONDS OF SLOP) TIME

AQUINT;

aseg
org
ex
exx
Id
Id

AQLP:

Id
Id

or
Id
inc
ini

003Ch
af, af"

hi, (BUFPTR)
bc,(NSCRAM)

;Save all reg. in alternate set

;Get pointer for acquisition data
;Set up B&C reg. for block input

- C REGISTER IS THE 10 PORT BASE
ADDRESS-1: B REGISTER IS THE COUNTER

- FETCH DATA FROM 10 18 THROUGH 18 +2
TIMES Number Channels NCX2 BYTES TOTAL

a,(BSTART) ;Get high order buffer start address
d,a ;Save the start address to keep

;the circular buffer wrap in the
;correct area of ram

h ;Set HI bit to allow wrap corr.
h,a ;back to H
c ;IO port = port + 1(FOR LOOP)

;Move data from AD to buffer

38

; - FETCH FROM 10 PORT (C),STORE AT HL,
; DECR. B, INCR. HL .

jr z,ALLIN ;Do until B=0 (NCX2 TIMES)
Id a,h ;If FFFF increments to 0000
or d ;Bring address back to data
Id h,a ;Back to H
jr AQLP

; - TO MAINTAIN CIRCULAR 32K BUFFER,MAKE
; SURE HL ALWAYS HAS HIGH BIT SET.
; - THUS FFFF INCREMENTS TO 0000,BUT THIS
; SETS IT BACK TO 8000H.
; - SAME PRINCIPLE FOR 8K OR 16K BUFFER.
; (NOTE 24K IS NOT POSSIBLE).

ALLIN: Id (BUFPTR),hl ;Save buffer pointer

; - NOW KEEP TRACK OF THE NUMBER OF
; SAMPLES:NOTE THAT EACH SAMPLE USES NCX2
; RAM LOCATIONS.

Id hl,(NSAMPS) ;Since you just did a sample,
dec hi ;Decrement the sample count
Id (NSAMPS),hl ;and store it

; - NOW DECREMENT EVENT QUALIFY COUNTER

Id a,(EQFY) ;Get event qualifier
dec a ;decrement it
Id (EQFY),a ;Save new count

exx ;Restore original regs.
ex af,af
ei ;Enable interrupts
ret

39

MAIN PROGRAM

;Original code written by jhg
;UPDATE - 5/ 6/84 code commented by ohh
;UPDATE - 10/18/84 code converted to module format and
; commented by gkm
;UPDATE - 7/30/85 code was revised for the following
; by gkm:
; 1. TO and Tl timer routines were
; eliminated as these caused
; some time errors.
; 2. The ram test was replaced
; with a simpler, faster test
; which is now done at power up.
; 3. End of program routine was
; altered to obtain second
; pulses from the RTC rather
; than TO.
;UPDATE - 9/13/85 code was revised to add an error
; trap for tape routine at program termination to
; allow time recovery if tape fails by gkm
;UPDATE - 2/24/86 code for clock sync was rewritten to
; accommodate the new clock (58167) by gkm

40

; INITIALIZE OPERATING PARAMETERS

MAIN: im 1 ;Set mode interrupt 1
xor a ;Clear accum.
out (INTPRT),a ;Disable interrupts
Id ix,NSCIOT ;Sets up the IX register to point

;to the NSC-810

; SET-UP STACK

Id sp,STACK ;Set stack top -DATA PUSHED ON
;STACK FROM 304FH DOWN TO 3000H
;IN NSC 810 RAM

; INITIALIZE NSC810

- THE FOLLOWING CODE INITIALIZES THE
NSC 810.

- AFTER RESET THE 810 IS IN THE FOLLOWING
CONDITION:

1.ALL INTERNAL REGISTERS ARE ZEROED
2.ALL COUNTER/TIMERS ARE STOPPED AND RESET
3.ALL 10 PORTS GO TO HIGH Z INPUT MODE
4.THE RAM IS LEFT UNCHANGED

INI810:

T1DAT

Id
Id
Id
Id
Id
Id
Id

equ
Id

(IX+PADADD),ADAT
(IX+PBD ADD), BOAT
(IX+PCDADD),CDAT
(IX+PADIR),ADIR
(IX+PBDIR),BDIR
(IX+PCDIR),CDIR
(IX+CMDRAD),MODEO

;Intialize port A data
;Init. port B data
;Init. port C data
jlnit. port A direction
;Init. port B direction
;Init. port C direction
;Init. NSC-810 mode

TMODE1 or PRE1 or BIT16T or GPOLH or OUTPOLL
(IX+T1CMD),T1DAT ;Init. timer 1

; LOAD TIMER

Id (STOPTl),a
Id (IX+TlLSB),Offh
Id (IX+TlMSB),06h

; INITIALIZE EVENT DETECTOR

;Stop timer 1
;Load low byte
;Load high byte 6 sec

Id
out (AVGPRT),a

;Set average high and
;Clear pending interrupts

41

; INITIALIZE A/D BOARD

; -THE A/D BOARD CONSISTS OF 4 CHANNELS OF
; QUASI 16 BIT A/D CONVERSION
; -THIS IS ACCOMPLISHED BY A 12 BIT A/D
; USING 4 BITS OF D/A AS A GAIN RANGING
; DEVICE.
; -THESE 4 BITS OF D/A MAY BE SET BY
; SOFTWARE, BUT,IF SO,THEY ARE SENT TO ALL
; FOUR CHANNELS, WHILE THE HARDWARE GAIN
; SETTING OPTION WORKS ON EACH CHANNEL
; INDIVIDUALLY.

; FORCE A-D GAIN TO ZERO

Id a,0dh ;Select 128 Hz and force
out (ADPORT),a ;Manual gain of zero
Id a,0 ;Select 128 Hz and
out (ADPORT),a ;Gain ranging mode

. INITIALIZE POWER BOARD

PIBINITrcall OFFCART ;Kill cartridge power

; WAIT FOR TERMINAL TO TURN ON

; -BAUD RATE MUST BE 1200

TERMWAI:ld a,(PBDATA) ;Look for terminal connect
rla
jp nc,TERMWAI

42

; RAMTEST

; TEST NSCRAM

R810;

RSFILL:

RSCHEK:

PRINT
Id
xor
ex

- THIS CHECKS THE RAM LOCATIONS FROM
3000H TO 3080H.

- THE TEST FILLS THE AREA OF RAM AND THEN
RECREATES THE TEST PATTERN TO CHECK THE
VALUE LOADED IN EACH LOCATION.

CLRSCR
hi,NSCRAM
a
af,af '

;Point to the start of the NSCRAM
;0 is the first pattern loaded
;Save ace. in preparation

ex
Id
inc
inc
ex
Id
cp
jr

af ,af '
(hi), a
hi
a
af ,af '

80h
nz, RSFILL

Id
xor
ex
ex
cp
JP
inc
inc
ex
Id
cp
J r
ex
PRINT

hi, NSCRAM
a
af ,af '
af , af "
(hi)
nz, BAD RAM
hi
a
af ,af "
a,l
80h
nz, RSCHEK
af ,af '
OKNSC

- FILL THE RAM WITH THE PATTERN

;Restore pattern
;Store the pattern
;Point to the next ram location
;Increment the pattern loaded
;Save the pattern
;Get low byte of ram
;Check if end of ram
;If not, store the pattern and
;continue

- TEST THE RAM

;Restore ram start
;Create start pattern
;Save the pattern inpreperation
;Restore pattern
;Compare the pattern
;If no compare then bad
;Point to the next ram location
;Recreate the pattern
;Save pattern
;Get low byte of address
;Check if end of ram
;If not, do next

;Print OK message

43

; TEST SCRATCHPAD RAM

- THIS CHECKS THE RAM LOCATIONS FROM
4000H TO 6000H.

- THIS RAM IS CLEARED AT COMPLETION.

Id
Id
Id
Id
PRINT
call
PRINT
Id
call

hl,4000h
(RAMST),hl
bc,60h
(ENDRAM),hi
TSCR
RTEST
OKRAM
hl,4000h
CLR2K

;Point to scratch pad ram
;Save it
;BC is end of ram to test
;Save it

;Print OK message
;Point to scratch pad ram
;Clear it

; TEST DATA BUFFER
- THIS TESTS THE RAM FROM LOCATIONS

8000H TO FFFFH.
- THE AREA DESIGNATED FOR THE HEADER

INFO IS CLEARED.

PRINT TSTB?
Id hl,8000h
Id (RAMST),hl
Id be,Oh
Id (ENDRAM),hi
call RTEST
PRINT OKRAM
call INIT HDR RAM

;Point to acquisition ram
;Save it
;Load end point
;Save it
;Test it
;Print OK message
;Initialize header ram

; JUMP TO USER PORTION OF PROGRAM

JP START

44

RAM TEST SUBROUTINES

; TEST THE AREA OF RAM

RTEST: Id
Id
xor
ex

;

RFILL: ex
Id
inc
inc
ex
Id
cp
Jr

;

Id
Id
xor
ex

RCHEK : ex
cp
JP
inc
inc
ex
Id
cp
Jr
ex
ret

BADRAM: Id
Id
call

hi, (RAMST)
bc,(ENDRAM)
a
af ,af "

- FILL

af ,af '
(hi), a
hi
a
af , af '
a,h
c
nz, RFILL

- TEST

hi, (RAMST)
bc,(ENDRAM)
a
af , af '
af , af '
(hi)
nz, BADRAM
hi
a
af ,af "
a,h
c
nz , RCHEK
af ,af '

(ADDRESS), hi
(PATRN),a
RAMER

;Get ram start
;Get ram end
;0 is the first pattern loaded
;Save ace. in preparation

THE RAM WITH THE PATTERN

; Restore pattern
; Store the pattern
; Point to the next ram location
; Increment the pattern loaded
; Save the pattern
;Get high byte of ram
; Check if end of ram
;If not, store the pattern and
; continue

THE RAM

; Restore ram start
; Restore ram end
; Create start pattern
; Save the pattern in preparation
; Restore pattern
; Compare the pattern
; If no compare then bad
; Point to the next ram location
; Recreate the pattern
; Save pattern
;Get high byte of address
; Check if end of ram
; If not , do next

; Save address of bad ram
; Save pattern at bad ram
;Go to display routine

; CLEAR HEADER RAM

INIT_HDR_RAM:
Id
Id
call
ret

hl.HDRRAM
(HDRBUF),hl
CLR2K

;Point to start of header ram
;Save it
;Clear it

45

; CLEAR A 2K HEX BLOCK OF RAM

CLR2K:

CLR2KL:

push
push
Id
call
djnz
pop
pop
ret

be
hi
b,64
CLR128
CLR2KL
hi
be

- CALL WITH HL SET TO BEGINNING OF RAM
TO CLEAR

- NO REGISTERS ALTERED

;Save regs.
;Save regs.
;Load B with no. 128 byte blocks
;Actual clear routine
;Until done
;restore regs.

; CLEAR 128 BYTES OF RAM

CLR128

CLELOP

push
push
xor
Id
Id
inc
djnz
pop
pop
ret

af
be
a
b,128
m,a
hi
CLELOP
be
af

;Save regs.
;Save regs.
;Zero A reg.
;No. of bytes to clear
;Load contents of A into Memory
;Increment to next memory
;Clear until done
;Restore regs.
;Restore regs.

; RAM TEST ERROR ROUTINE

RAMER: PRINT RAMER1
Id hi,(ADDRESS)
call PHREG
call CRLF
PRINT RAMER2
Id a,(PATRN)
call HEXOUT
call CRLF
PRINT RAMER3
call GBYT
cp CR
ret z
HALT

;Print message
;Get bad address
;Print address

;Print next message
;Get bad pattern
;Print it

;Print next message
;Wait for character
;Is it a carriage return?
;If so normal exit
;Else, stop

46

; PRINT RAM ADDRESS

PHREG: Id
call
Id

HEXOUT: push
rrca
rrca
rrca
rrca
call
pop

PCD: and
add
da a
adc
da a
JP

a,h
HEXOUT
a,l
af

PCD
af
Ofh
a,90h

a,40h

PBYT

;Get high two digits
;Print them
; Get low two digits
;Save it
;Put high nibble into bits 0-3

;Print digit
;Get low digit

;Print it

47

; PROGRAM CONTROL

; RECORD HEADER AFTER TERMINAL UNPLUGGED

; - IN EXECUTION YOU HAVE THE OPTION OF A
; DATA ACQUISITION MODE OR A TEST MODE.
; - THE DATA ACQUISITION MODE WILL ASK YOU
; TO DISCONNECT THE TERMINAL. AFTER THE
; TERMINAL IS DISCONNECTED, THE HEADER WILL
; BE WRITTEN AND THE SYSTEM WILL GO TO
; WORK. DOING THIS IS THE ONLY WAY TO
; DETERMINE IF THE SYSTEM IS WORKING AFTER
; EVERYTHING IS DISCONNECTED AND READY FOR
; DEPLOYMENT.
; - THE TEST MODE WILL WRITE THE HEADER
; IMMEDIATELY AND DISPLAY EXPERIMENT

	PARAMETERS AND CURRENT EXPERIMENT NUMBER.

EXECU: QPRINT TSTM ;Operator must indicate if this
;is a test

cp 'Y' ;Is it yes
jp z,YTEST ;If so go to test
cp 'y'

jp z,YTEST
PRINT UNPLUGM ;Print instruction

DISCON: Id a,(PBDATA) ;Look for terminal disconnect
rla
jr c,DISCON
Id b,20 ;Load count

48

- IF SLOW IN DISCONNECT, THE TERMINAL
WILL BEEP AT YOU UNTIL YOU DO.

SLOWPOKE:
PRINT BEEP
DELAY 256
Id a,(PBDATA)
rla
jr c,SLOWPOKE
djnz SLOWPOKE

YTEST: xor a
Id (WBSTART),a
STA (DATABLOCK),40h-

Id hl,HDRRAM
Id (WBUFSAV),hl
call BLNKB16
Id hi,HEADER
call MNAME
call ONCART
call WRITED
call OFFCART
call BLNKB16
Id hl,BDTAHDR
call MNAME
Id hl,HDRRAM
call CLR2K

LTMR1: jp CONTROL

;Beep
;every 25.6 ms
;Check terminal for disconnect

;Continue until disconnect
;Do 20 times to be sure
;Start of write buffer is 00
;Save it (noncircular)
 2

;Store number of write sectors
;Point to header ram
;Save it in case of trouble
;Clear the TIP header
;Point to the header ram
;Loader the TIP header name
;Turn on the cartridge
;Write the GPheader
;Turn off the cartridge
;Clear the TIP header
;Point to series header TIP name
;Create it
;Point to header ram
;Clear it
;User now unnecessary

49

; PROGRAM TERMINATION

ETERM: call
PRINT
call
JP

OFFCART
TERMIN
CONT
ENDPRO

;Print message
;Wait
;Go to clock sync routine

; CHECK CLOCK SYNC

- THIS ROUTINE DISPLAYS THE TIME UPDATING
EVERY SECOND AND SENDS OUT THE SECOND
PULSE TO ALLOW COMPARISON WITH THE
SATELLITE CLOCK.

call
PRINT
Id
call
call
call
call
di
Id
inc
daa
cp
jr
xor
Id
Id
cp
jr

Id
call
Id
call
call
call
Id
JP

CRLF ;
OVR ;
hi, CLKRD ;
ONCART
FMK ;
FMK ;
OFFCART

;
a,(TMEMf2) ;
a ;

;
60h ;
nz, CLKRD 2 ;
a ;
e,a ;
a,(TMEM+2) ;
e ;
nz,EDPRl

- OUTPUT

(IX+PASADD),2
GCLOCK
hl,TIMEN
TIMOUT
SECOUT
CRLF
(IX+PACADD),OFFH
CLKRD 1

Print CRLF
Print message
Save abort vector

Write first file mark
Write second file mark

Disable interrupts
Look for second transition
Increment second
Decimal adjust
Check if minute
If not, continue
Set sec. to 0
Move it to E
Loop until valid second
transition

SECONDS TO PORT A

;Set port A of NSC810
;Read the clock
; Point to clock
; Print the time
; Print seconds
; Print CRLF
; Clear port A of NSC810

50

DEFINE STATEMENTS

OKNSC:
OKRAM:
OVR:
RAMER1:
RAMER2:
RAMER3:
TERMEN:
TSCR:
TSTB?:
TSTM:
UNPLUGM:

BEEP:

db 'NSC RAM IS OK',CR,LF,0
db 'THIS RAM OK',CR,LF,0
db 'PROG OVR',CR,LF,0
db 'BAD RAM @ HEX ADDRESS ',0
db 'HEX PATTERN LOADED = ',0
db 'HIT RETURN TO TEST NEXT RAM',CR,LF,0
db 'TERMINATED',CR,LF,0
db 'TESTING SCRATCH PAD RAM',CR,LF,0
db 'TESTING DATA BUFFER',CR,LF,0
db CR,LF,'IS THIS A TEST? (Y/N)',0
db CR,LF,'UNPLUG TERMINAL FROM OBS',CR,LF
db 'HEADER WILL BE WRITTEN ABOUT 5 SEC. LATER'
db 0
db 7,0

51

CLOCK SUBROUTINES

.Original code written by jhg
UPDATE - 8/ 8/84 code was revised to include use of

NSC810 timers by ohh
.UPDATE - 10/18/84 code was modularized and commented

by gkm
;UPDATE - 7/30/85 code was revised to eliminate use of

the NSC810 timers TO and Tl since
; they caused errors - by gkm.
;UPDATE - 2/24/86 code was rewritten to accommodate the
; new clock (58167) by gkm

52

; ENTER THE TIME

SETCLK : PU SHALL
PRINT
Id
call
Id
Id
Id
Id
call

; SYNCH WITH

SETCLK2 :

SCCON :
CLK2:

CLKLOO :

SKIP:

Id
call
PRINT
PRINT
Id
bit
jr
PRINT
jr
PRINT
call
Id
call
call
cp
jr
cp
jr
call
Id
bit
jr
Id
bit
jr
call
DELAY
Id
Id

SETM
hl,TIMEN
TIMINP
a,(TIMEN)
(MYRS),a
a,(TIMEN+l)
(OTENMTH),a
LCM

SATELLITE CLOCK

ix,NSCIOT
CONT
CLRSCR
CLKPRM
a,(IX+0)
6 ,a
z, SCCON
SATNC
CLK2
SATC
GCLOCK
hl,TIMEN
TIMOUT
GBYT
02
z,SKIP
CR
nz,SETCLK2
LCM
a,(IX+0)
6, a
nz,SETCLK2
a,(IX+0)
6, a
z, CLKLOO
LCM
10
a,0
(STPST),a

;Save reg.
; Print set clock message
; Point to memory storage of
;Get time
;Get year
;Save it
;Get Month
;Save it for year check
;Load the clock

;Set up for 10
; Pause
; Clear screen
; Print message
;Read port "A" BIT 6
;Test bit 6
;Is sat. clock connected?
;NO! Not connected
; Skip connected message
; Print sat elk. conn.

time

; Print time of projected start

;Test for control B from
; console
; Start clock if cntl "b"
;Look for carriage return
; Repeat procedure is screw-up
;Load clock
;Read port "a"
;Test bit 6
;Must have sat elk. connected
;Read port "a"
;stay in loop until bit 6
;goes high
;Load clock
; Delay 1ms
;Load ace. with 0 to start
; real time clock

; - Satellite start sequence complete.

SECLP :

PRINT
Id
inc
Id
Id
cp
jr
POP ALL
ret

SYNTM
a,(TMEM+2h)
a
e,a
a,(TMEM+2h)
e
nz, SECLP

; Print message
; Get second
; increment it
;Move it to E
;Get second again
;Has second incremented?
; Repeat until they do
; Restore reg.

53

LOAD CLOCK

LCM:

MCLOCK;

NCLOCK:

xor
Id
Id
Id
Id
Id
Id
Id
Id
Id
DEC
INC
Id
cp
jr
INC
xor
djnz
ret

a
(INTCMD),a
a,0ffh
(CTRRST),a
(LTHRST),a
b,5
hl,TIMEN+4
de,TMEM+3
a, (hi)
(de),a
hi
de
a, b
4
nz , NCLOCK
de
a
MCLOCK

j
j
j
>
>
>
>
5
»
j
5
>
»
>
>
>

»

Clear a
Clear interrupts
Value to clear counters
Clear counter
Clear latches
Load count for transfer
Point to entered time
Point to RTC buffer
Get value entered
Move it to the clock
Increment to next value
Decrement clock pointer
Load value for compare
Is count at 3
If not, continue
Skip Day of week

;Continue til done

; GET TIME

; - INPUTS YEAR,MONTH,DAY,HOUR,MINUTE FROM
; TERMINAL.
; - AT LEAST ONE DIGIT (AND NO MORE THAN
; TWO) MUST BE ENTERED FOR EACH.(2 FOR YEAR)
; - EACH UNIT OF TIME MUST HAVE A SEPARATOR
; (ANY NON-DIGIT).
; - ENTERED TIME IS STORED IN FIVE BYTES,
; STARTING WITH BYTE POINTED TO BY HL.
; - WILL NOT RETURN UNTIL VALID ENTRY IS
; MADE.

TIMINP: PUSHALL ;Save reg.
Id (TSTORE),hl ;Save pointer

REINT: Id hl,(TSTORE) ;Get it back to be sure
PRINT YMDHM ;Here the operator must enter
PRINT QUES ;the time
call GETLN
Id de,IBUFF ;Save in input buffer
Id a,(NCI) ;Check no. characters for valid
cp 12 ; entry
jr c,REINT ;If not right get again
Id b,5 ; Load the count for buffer

54

- CHECKING IS DONE TO INSURE VALID ENTRY
FOR VALUE

TINLP call
jr
inc
inc
djnz
Id
inc
Id
cp
jr
xor
cp
jr
inc
Id
cp
jr
xor
cp
jr
inc
Id
cp
jr
inc
Id
cp
jr
POP ALL
ret

BCDIN
c,REINT
hi
de
TINLP
hl,(TSTORE)
hi
a,12H
m
c,REINT
a
m
z,REINT
hi
a,31H
m
c,REINT
a
m
z,REINT
hi
a,23H
m
c,REINT
hi
a,59H
m
c,REINT

;Get entry as packed BCD

;Increase pointer
;Pass separator
;Get next
;Restore original pointer
;Point to month
;Load test value
;Test it
;If not less than 12, try again
;Clear A
;Test for zero
;If 0 then try again
;Point to days
;Load test
;Check if greater than 31
;If so, try again
;Clear A
;Test for zero
;If so, try again
;Point to hours
;Load test
;Test if greater than 23
;If so, try again
;Point to minutes
;Load test
;Test if greater than 59
;If so, try again
;Restore reg.

55

; READ THE CLOCK

GCLOCK:
GCLOCK1 :

GCLOCK2:

GCLOCK3:

CLKCK:

OLDYR:

PU SHALL
Id
Id
Id
LDIR
Id
cp
jr
call
Id
Id
Id
Id
Id
inc
dec
Id
cp
jr
inc
xor
djnz
POP ALL
ret

PUSHALL
Id
Id
cp
jr
Id
cp
jr
Id
inc
da a
Id
cp
jr
xor
Id
POP ALL
ret

hl,TMEM
de,MTMEM
be, 8

a,(CLKSTAT)
1
z,GCLOCKl
CLKCK
hl,MTMEM+3
de,TIMEN+4
b,6
a, (hi)
(de),a
hi
de
a,b
5
nz,GCLOCK3
hi
a
GCLOCK2

- C
- U

a,(MTMEM+7)
hl,OTENMTH
m
z, OLDYR
(hi), a
1
nz, OLDYR
hl,MYRS
m

a, (hi)
9 Ah
nz, OLDYR
a
(hi), a

- CLOCK IS READ AND STORED IN THE MEMORY
IMAGE.

- VALUES ARE ALSO SAVED IN TIMEN FOR
PRINTING.

;Save reg.
;Point to read reg. of the clock
;Point to memory image
;Set up count
;Load time into memory
;Check clock status
;Look for transition flag and
;reread if clock updating
;Check month transition
;Point to memory storage
;Point to print buffer
;Load count
;Get value
;Save it
;Increment memory
;Decrement buffer
;Check count

;If not continue
;Bypass day of week

;Loop until done

- CHECK FOR MONTH TRANSITION.
- USED FOR YEAR UPDATE.

;Get month
;Point to old month value
;Compare
;If same, exit
;Save new month
;Check for year change
;Exit if not
IPoint to year
;Increment year
;decimal adjust
;Look for max
;Compare it
;Exit if not
Load a 0
;Store new year

56

; CHECK TIME
THIS SUBROUTINE IS RESPONSIBLE FOR
CHECKING THE TIME,WRITING THE TIME,ETC.
THIS ROUTINE IS FOR DATA ACQUISITION.
THE TIME IS COMPARED WITH THE START TIME
(STRTTB) AND CORRECTIONS FOR ANY OFFSET
(OFFSET).
ALL EXP. AFTER 1 ARE CALCULATION ON
MINUTE PERIODS (PERIOD).

TCHECK:

NOT_YET

;

PU SHALL
Id
cp
jr
Id
cp
jr

: Id
cp
jr
call
Id
Id
call
jr
JP

a,(CEXPN)
Olh
nz,TCKl
a,(CEXPN+l)
OOh
nz ,TCK1
a,(TMEM+2)
0
nz,NOT YET
GCLOCK
hi, STRTTB
de,TIMEN
CTIM
c,NOT YET
OFST

- AFTER

; Save regs .
;Get current low byte of exp. no
; Check if first one
;If not, use minute counter
;Get high byte of exp. no.
; Check if 0001
;If not, use minute counter
;Look for 0 seconds

;Loop until 0
;Read time
; Point to start time
; Point to timer
; Compare them
; Repeat until compare

FIRST ONE USE MINUTE TRANSITIONS
; TO DETERMINE PERIOD.

TCK1:
TCK2:

TCK3:

;
OFST:

OFFSET_

AGIN:

Id
Id
Id
Id
Id
cp
jr
inc
Id
cp
jr

Id
cp
jr
Id

WAIT:
Id
cp
jr
call
POP ALL
ret

b,0h
a,(MTMEM+3)
(GPCTRH),a
a,(TMEM+3)
hl,GPCTRH
m
z,TCK3
b
a, (PERIOD)
b
nz,TCK2

- HANDLE

a, (OFFSET)
0
z ,AGIN
e,a

a,(TMEM+2)
e
nz, OFF SET WAIT
TIMREC

; Reset the minute counter
;Get last valid minute
;Save it
;Get current minute
; Point to the last valid minute
; Compare them
;If no change, try again
; Increment the minute counter

; Check if period is complete
;If not, try again

OFFSET.

;Load offset
;Is it 0?
; Is so, do it
;Move it to E

;Get seconds
; Compare with offset
;Loop til compare
; Record the time
; Restore the registers

57

; CHECK TIME FOR STOP

NOTSTOP: di
call
ei
Id
Id
call
ret

- THIS SUBROUTINE IS RESPONSIBLE FOR
DETERMINING THAT WE ARE NOT AT STOP-TIME

- CARRY SET IF PRESENT TIME > STOP TIME.

;Disable interrupts
GCLOCK ;Read the clock

;Enable interrupts
hl,TIMEN ;Point to time
de,STOPTB ;Load stop time
CTIM ;Compare

COMPARE TIMES

CTIM:

CTIMLP;

BIGGER:

push
push
push
Id
Id
cp
inc
inc
Jr
jr
djnz
pop
pop
pop
ret

be
de
hi
b,5
a,(de)
m
hi
de
c, BIGGER
nz, BIGGER
CTIMLP
hi
de
be

- THIS SUBROUTINE COMPARES TWO TIMES
POINTED TO BY HL,DE.

- CARRY SET IF HL IS LATER.
- AF IS ALTERED.

;Save reg.

;Set up count
;Load timer value
;Compare with stored time
;Increment pointer
;Increment pointer
;If carry set, exit
;If nonzero, exit
;If count is nonzero, get next value
;Restore reg.

58

: RECORD THE TIME

- THIS SUBROUTINE RECORDS THE TIME FOR
THE TAPE RECORD IN THE EXPERIMENT SECTION
OF THE TRAILING PARAMETERS.

TIMREC:
RCLOCK:

RCLK1 :

»
»

MOVT:

PU SHALL
call
Id
Id
Id
Id
Id
Id
xor
Id
Id
call
Id
Id
dec
call
dec
Id
call
djnz
rid
Id
POP ALL
ret

rid
Id
dec
xor
rid
Id
dec
dec
xor
ret

GCLOCK
a,(MYRS)
(CYR),a
a,(MTMEM)
(CTIMER),a
a,(MTMEM+l)
(CTIMER+l),a
a
de,SAMPTIM+Obh
hl,MTMEM+7
MOVT
a,0
(de),a
de
MOVT
hi
b,3
MOVT
RCLK1

(de),a

- THIS
ONE 1

(de),a
de
a

(de),a
de
hi
a

iSave regs.
,Get time
Get year
;Save that
;Get millisecond
;Save it
Get . 1 sec value
Save it
;Clear a
;Point to buffer for sample time
;Point to time in memory
;Load time into the buffer
.Load dummy value for day of week
;Save it
;Point to next storage
;Save day
;Pass day of week
;Load count
Move hours,min,sec
iLoop til done
;Get .1 sec value
;Save it
;Restore reg.

THIS ROUTINE SPLITS THE PACKED BCD INTO
ONE DIGIT PER ADDRESS.

;Get high digit
;Save it
;Go to next address
;Clear a for next value
;Get low byte
;Save it
;Go to next address
;Point to next time value
;Clear A in preparation

59

; PRINT TIME

TIMOUT: PUSHALL
push
pop
inc
call
Id
call
inc
call
Id
call
ex
call
ex
Id
call
inc
call
Id
call
inc
call
call
POP ALL
ret

hi
de
hi
PBCD
a,"/"

PBYT
hi
PBCD
a,"/"

PBYT
de,hl
PBCD
de,hl
a,' '

PBYT
hi
PBCD
a,':'

PBYT
hi
PBCD
CRLF

; PRINT SECONDS

SECOUT: PUSHALL
Id
call
Id
call
Id
call
dec
call
dec
call
POP ALL
ret

a,':'

PBYT
hl,MTMEM+2
PBCD
a,'.'

PBYT
hi
PBCD
hi
PBCD

-THIS SUBROUTINE PRINTS OUT DATE AND TIME

;Save reg.
;Save HL in DE

;Increment pointer
;Print value
;Load the separator
;Print it
;Point to next value
;Print it
;Load the separator
;Print it
;Restore HL to year
;Print year
;Restore HL
;Load a space
;Print it
;Point to hour
;Print it
;Load a colon
;Print it
;Point to minutes
;Print it
;Print a carriage return
;Restore reg.

Load a colon
; Print it
, Point to seconds
Print it
Load a decimal point
iPrint it
;Point to fractional sec
iPrint it
Point to milliseconds
Print it

60

DEFINE STATEMENTS

CLKPRM: db 'HIT RETURN WHEN LESS THAN 1 MINUTE TO GO'
	db CR,LF,0

SATNC: db 'SATELLITE CLOCK NOT CONNECTED',CR,LF,0
SATC: db 'SATELLITE CLOCK CONNECTED',CR,LF,0
SETM: db 'ENTER CURRENT TIME + 1 MINUTE',CR,LF,0
SYNTM: db 'SYNCHRONIZING TIMERS',CR,LF,0
YMDHM: db 'YR/MTH/DAY/HR/MIN',0

61

MACRO SUBROUTINES

;original code written by jhg
;UPDATE - 9/13/85 BCD handling routines were added by gkm

62

; SEND A MESSAGE TO THE TERMINAL

SNDMES :
MESSND:

SNDRET:

push
Id
cp
JP
call
inc
jr
pop
ret

af
a, (hi)
0
z, SNDRET
PBYT
hi
MESSND
af

- THIS SUBROUTINE MUST BE HERE TO AVOID
PROBLEMS WITH MACROS.

Get byte at HL.
Test for terminator.
Done if 0
Else print character,
Point at next.
and continue.

: THESE SUBROUTINES ARE PART OF WPRINT MACRO

- WARNING: THESE SUBROUTINES ARE PART OF
MACROS-REGISTERS ARE PRESERVED IN MACROS,
NOT IN SUBROUTINES!

WPRA:

WPRB:

MOVLP:

RMOV

INS:

call
Id
call
ret

Id
call
push
call
pop
call
ret

Idi
xor
cp
jr
Id
ret

Id
Id
Id
Id
LDIR
Id
Id
inc
Id
ret

SNDMES
hl,QUES
SNDMES

de,(HDRBUF)
MOVLP
de
GETLN
de
RMOV

a
m
nz, MOVLP
(HDRBUF),de

hl,IBUFF
b,0
a,(NCI)
c,a

a,0
(de),a
de
(HDRBUF),de

;Print message
;Now question mark
;Print it

;Point to buffer
;Store message
;Save reg.
;Get answer
;Restore reg.
;Store the answer

;Transfer data
;Clear A
;Test for end
;If not, transfer next
;Save pointer

;Point to ASCII buffer

;Get no. characters
;Move it to C
;Move it
;Clear A
;Insert terminator
;Account for insertion
;Save pointer

63

DELAY SUBROUTINES

; DELAY ENTRY

DELAYR: call D87T
djnz DELAYR
pop be

push be
NOP
NOP
NOP
NOP
ret

; DELAY 50 TSTATES

;17T This call included in 87T time
;13T This+87=100 per loop
;10T Waste time.Note that we have 8
;when we fall through
;11T Restore reg.

;A total of 8+21+16+10=55 TSTATES

;10T

D50T: ex
and
ex
NOP
NOP

af ,af
OFFh
af ,af

ret

; 87 TSTATE DELAY

D87T:
D77T:
D67T:
D57T:
D47T:
D37T:
D27T:

JP
JP
JP
JP
JP
JP
ret

D77T
D67T
D57T
D47T
D37T
D27T

- CALL TO COME HERE=17 TSTATES

; 4T Switch reg. to save flags
; 7T This only affects F'
; 4T Restore flags
; 4T Waste time
; 4T 4+4+4+4+7+10+call to come
;(17)=50
;10T

- CALL TO COME HERE=17 T

;10T waste time
;10T here down=77 including the
;call in 10T and so on.

;10T NOTE THAT THIS FITS WELL
;WITH DJNZ WHICH IS 13T

; 100 TSTATE DELAY

D100T: call
ex
and
ex
NOP
NOP
ret

D50T
af, af
OFFh
af,af'

- CALL TO COME HERE=17 T

;Call is included in 50T'S timing
;Same tricks as in 50T

64

MISC ROUTINES

; DIVIDE ROUTINE

DIVIDE:

OKTODV :

DLOOP :

NOINC:

NOINC2 :

or
Jr
scf
ret
Id
Id
xor
sla
rl
rl
cp
jr
inc
sub
djnz
Id
ret

a
nz , OKTODV

c,a
b,16
a
e
d
a
c
c, NOINC
e
c
DLOOP
b,a

- DIVISOR=ACC
- DE=DIVIDEND
- ANSWER IN DE,CARRY SET IF /O
- REMAINDER IN B

;Check for 0
;If not divide
;Set carry flag

;Move divisor
;Count = number of bits in divisor
;Clear A
;Shift contents left
; Same
; Same
;Divide compare
;If not greater, no increments
;Increment number
;Subtract the divisor from A
;Continue until B = 0
;Save remainder in A

; CONVERT TO PACKED BCD

HTBCD :

BCDL:

LT99:

HTRET:

push
push
Id
xor
cp
Jr
xor
inc
daa
Jr
djnz
Id
pop
pop
ret

be
af
b,m
a
b
z, HTRET
a
a

c, HTRET
BCDL
m,a
af
be

- CONVERTS THE BYTE POINTED TO BY HL TO
PACKED BCD.

- IF THE BYTE IS BIGGER THAN 99 DECIMAL,
THEN CARRY IS SET.

;Save reg.
;Save ace.
;Get value
;Clear A
;Compare
;If 0, then exit
;Make sure all flags are clear
;Increment A
;Decimal adjust
;If carry then exit
;Continue til done
;Save it
;Restore ace.
;Restore reg.

65

; BCD COUNTER INITIALIZATION

BCDCLR: xor
Id
inc
Id
ret

a
m,a
hi
m,a

- LOCATION OF COUNTER MUST BE IN HL.
- 1ST IS LOW BYTE AND 2ND IS HIGH BYTE
- BOTH BYTES WILL CONTAIN 00 AT EXIT.

;Clear A
;Store 0 in first byte
;Point to high byte
;Clear it

; BCD COUNTER ROUTINE

BCDCT: push af

BCDCT1

Id
inc
da a
Id
jr
inc
adc
daa
Id
pop
ret

a,(hi)
a

- LOCATION OF COUNTER MUST BE IN HL.
- 1ST IS LOW BYTE AND 2ND IS HIGH BYTE,

;save ace.
;Get stored low byte
;Increment the count

(hi),a
nc,BCDCTl
hi
a, (hi)

(hi),a
af

;Save it
;If no carry then exit
;Get high byte
;Adjust high byte

;Save it
;Restore ace.

2 BYTE BCD PRINT ROUTINE

BCDPT: inc
call
dec
call
ret

- LOCATION OF COUNTER MUST BE IN HL.
- 1ST IS LOW BYTE AND 2ND IS HIGH BYTE,

hi ;Get high byte first
PBCD ;Print it
hi ;Get low byte
PBCD ;Print it

; PRINT THE PACKED BCD DIGIT POINTED TO BY HL

PBCD: push
Id
rid
call
rid
call
rid
pop
ret

af
a,30h

PBYT

PBYT

af

;Save reg.
;Convert to ASCII

;Print it

;print it

;Restore reg.

66

; GET BCD ENTRY

INDAT;

INDAT2

INDAT3

PRINT
call
Id
Id
cp
jr
cp
jr
call
ret
inc
call
dec
call
ret
inc
call
xor
rrd
dec
dec
call
ret

QUES
GETLN
de,IBUFF
a,(NCI)
6
z,INDAT2
5
z,INDAT3
BCDIN

hi
BCDIN
hi
BCDIN

HL
BCDIN
a

de
hi
BCDIN

- PRINTS '?'

- GETS BCD DIGITS, AND STORES THEM AT HL,
- CARRY FLAG IS SET IF IMPROPER ENTRY.

;Print '?'
;Get response
;Point to ASCII buffer

;Enter as BCD

67

; ENTER A PACKED BCD DIGIT

BCDIN:

BCDLOP

IOK:

IBAD:

NVALIT;

push
Id
Id
Id
call
jr
rid
inc
djnz
Id
call

ccf
pop
ret

Id
cp
scf
jr

be
b,2

a,(de)
CONVAS
c,NVALIT

de
BCDLOP
a,(de)
CONVAS

be

a,b
2

z,IBAD
IOK

CLEARS LOCATION POINTED TO BY HL,
THEN ENTERS PACKED BCD DIGIT.
ONE OR TWO DIGITS ARE ACCEPTABLE,
FOLLOWED BY TERMINATOR (ANY NON DIGIT).
CARRY IS SET IF INPUT IS INVALID.
DE MUST POINT TO ASCII CHARACTER STRING,

;Save regs.
;Load B with count
;Clear location
;Get character from string
;Convert to BCD
;If not a valid entry then exit
;Shift it
;Increment pointer of string
;Continue for the count
;Get character
;Convert to BCD
;Increment pointer of string
;Complement carry flag
;Restore reg.

;Get the count
;Check it
;Set carry flag
;If count is 2 then exit
;Here if OK

; CONVERT ASCII TO BCD DIGIT

- RETURNS WITH CARRY SET IF INVALID INPUT,

CONVAS

NOTVAL:

sub
ret
cp
jr
ccf
ret

scf
ret

3 Oh
c
Oah
nc,NOTVAL

;Strip ASCII value
;Carry is set if less than 30HEX
;Must be <= 9
;If no carry then not valid
;Compliment carry (clear it)

;Set carry flag

68

; COMPARE TWO BCD NUMBERS

- ENTRY REQUIRES HL POINT TO HIGH BYTE.
- CARRY IS SET IF CONTENTS OF HL EXCEED

DE.

BCDCP Id
cpd
ret
dec
Id
cp
ret

a,(de)

nz
de
a,(de)
(hi)

;Get high byte
;Compare byte
;If no compare then exit
;Get low byte

;If larger carry is set

69

TERMINAL ROUTINES

;Original code written by jhg
;UPDATE - 2/15/85 code was revised to create a separate
; module of all terminal routines by gkm
;UPDATE - 9/13/85 code was revised to include a jump to
; the time check by entering a ~U by gkm

70

; GET BYTE AND ECHO IF ACC=0 -

GBYTNE: Id a,l ;No echo
jr NE ;Jump over echo

GBYT: Id a,0 ;Echo entry
NE: push be ;No echo entry

push af ;Save reg.
FRAMERR: Id b,8 ;Set index for no. of bits input.

; - WE MUST DETECT THE BEGINNING OF THE
; START BIT-SO THE FIRST STEP IS TO MAKE
; SURE THAT IT HAS NOT BEGUN!

MARK: Id a,(PBDATA) ;Get input and make sure it is
	;a mark

rla ;Input to carry(IS INVERTED)
jp nc,MARK ;Wait till mark

; - NOW GET TRANSITION

GTSTRT: Id a,(PBDATA) ;13T Look for start bit.
rla ; 4T Move to carry flag,
jp c,GTSTRT ;10T IF start bit not present

	; THEN go back and look again.

; - MAXIMUM ERROR IN START BIT TIME IS 27
; T-STATES.
; - FOR THIS SYSTEM THE CLOCK IS 1.0486*10^6
; - AND THE NO. OF T-STATES IN ONE BIT TIME
; FOR COMMON BAUD RATES ARE:

9600
4800
2400
1200
300

109.23 T-STATES
218.46
436.92
873.83

3495.30

DELAY
JP

4
CHSTRT

- FOR NOW, RUNNING AT 1200 BAUD, FIXED.
- 1/2 BIT TIME =437 TSTATES FOR ALL

INTENTS AND PURPOSES.
- WE NOW HAVE A HYPOTHETICAL START BIT.
- SO NOW WAIT 1/2 BIT TIME AND SEE IF IT

IS STILL THERE.
- TIME NOW=TRANSITION+14 T.

;Delay 400 TSTATES
;10T

- TIME NOW=TRANS.+424T(13T TO READ LINE
MAKES 437).

71

CHSTRT: Id a,(PBDATA) ; 13T Look for start bit again,
rla ; 4T Move it to carry flag,
jp c,GTSTRT ;10T IF start bit is gone,

;TRY AGAIN

; - PREPARE TO ECHO START BIT.
; - TIME IS 451 TSTATES AFTER START BIT
; EDGE DETECTED.
; - WE WILL NOW NEED TO DELAY ABOUT 1 BIT
; TIME SO THAT WE CONTINUE TO HIT THE
; MIDDLE OF EACH BIT AND SO THAT THE BITS
; WE ECHO ARE THE RIGHT LENGTH.

Id a,l ; 7T Prepare A as start bit
call D50T ;50T Delay 50T states
Id (PBSETB),a ;13T and send it.(NO LONGER)
call D27T ;27T Wait 27 T

; - TIME IS NOW 111 T-STATES AFTER MIDDLE
; OF BIT 763 TO GO BEFORE WE READ NEXT,847
; (IDEALLY) BEFORE NEXT ECHO.

XMIT: DELAY 7 ;Delay 700 T-STATES
call D50T ;Delay 50 more

; - 763-750=13 WHICH IS HOW LONG IT TAKES
; TO READ.

Id a,(PBDATA) ;13T Get receive bit 7 in A.
;84T to echo

rlca ; 4T Rotate into carry flag+BIT 0
rr c ; 8T then into C.
and 1 ; 7T Mask other bits and set flags

;for test
Id a,l ; 7T Prepare A to set/reset line.

;Flags unaltered from AND above
NOP ; 8 more to add
NOP

; - 50 T-STATES TO GO .LESS 13T TO DO IT
; AND 10T FOR THE JUMP LEAVES 27.

call D27T ; 27T delay
jp z,GTCLRB ; 10T test flag and goto

;appropriate echo

72

THESE ROUTINES NO LONGER DO AN ECHO
LEFT HERE FOR TIMING (IF ECHO DESIRED
PLEASE RESTORE PBCLRB WHERE APPROPRIATE)

ECHO A ONE.NOTE THAT BOTH INPUT AND
OUTPUT ARE INVERTED SO THAT THIS IS
REALLY A ZERO.

GTSETB: Id (PBSETB),a ; 13T Set output high
jp GTREST ; 10T and continue,keep timing

;the same

GTCLRB: Id

JP

GTREST: NOP
djnz

- 23 T-STATES FOR THIS BRANCH.
- THESE ROUTINES NO LONGER DO AN ECHO-­

LEFT HERE FOR TIMING (IF ECHO DESIRED
PLEASE RESTORE PBCLRB WHERE APPROPRIATE)

(PBSETB),a ; 13T Set output low
GTREST ; 10T and keep timing constant.

; 4T DELAY
XMIT ;13T Go till all bits in.

- TIMING SINCE LAST RE AD= 4+8+7+7+8+2 7+10
+13+10+4+13=111.

- TIMING SINCE LAST WRITE=10+4+13=27.
- NOTE TIMING PRESERVED THROUGH XMIT LOOP

(SEE VALUES AT START OF LOOP).
- 8T WHEN WE FALL THROUGH.
- TIMING SINCE LAST READ=111-13+8=106.
- TIMING SINCE LAST WRITE=27-13+8=22.

DELAY
call
NOP
NOP

Id
rla
JP

7
D47T

- TIMING=755+106=861 SINCE LAST READ(+13
FOR READ=874).

- TIMING=7554-22=777 SINCE LAST WRITE.

a,(PBDATA) ;13T Get receive bit 7 in A.
; 4T to carry

nc,FRAMERR ;10T Framing error if not a stop
;bit

73

- TIMING=777+27=804 SINCE LAST WRITE.

ERET:

ECHO:

CRLFR;

BACK:

call
Id
Id

DELAY

pop
push
cp
JP

pop
Id
pop
ret

Id
cp
JP
cp
JP
cp

JP
cp
JP
cp
JP
call

JP

call
JP

Id
JP

D50T
a,l
(PBSETB),a

9

af
af
0
z,ECHO

af
a,c
be

a,c
BS
z,BACK
DEL
z,BACK
CTLU
z,CLKRD
CR
z, CRLFR
SPC
c,ERET
PBYT
ERET

CRLF
ERET

c,BS
ERET

;50T
; 7T Prepare A as stop bit.
;13T Echo stop bit AT 874T

;Timing no longer critical,must
;be long enough
;Restore reg.
;Save reg.
;Echo required if zero

;No echo needed
; Transfer assembled byte to A
;Restore reg.

;Get character
;Backspace?
;Do a backspace if yes
;DEL=BS FOR US

;Control U?
;Read clock
;Carriage return?
;DO CR,LF ECHO BUT KEEP CR
;Space?
;DO NOT ECHO OTHER CONTROL CODES
;Normal echo

;Do a CRLF

;Make sure DEL and BS are same
;Let caller decide what to do(ECHO)

74

; SEND CHARACTER TO TERMINAL

: - GET READY

PBYT:

PUTLP:

push
push
Id
Id
Id

Id

PTSETB: Id

PTCLRB:

af
be
c,a
b,8

;Save reg.
;Save reg.
;4T Move output byte to C register.
;Word length
;Prepare A to send bits,

- SEND START BIT

(PBCLRB),a ;And send start bit

- TIMING=874 T-STATES TO END OF NEXT SEND

NOP
NOP
NOP
NOP
call
DELAY

rrc
JP

Id
JP

Id
JP

D27T
8

-

c
nc, PTCLRB

-

(PBSETB),a
PUTRST

-

(PBCLRB),a
PUTRST

; 4T
; 4T
; 4T
; 4T
;27T
;800T

TIMING=874-843=31 TO SEND

;8T Put bit into carry
; 10T If a zero there is no carry
;Rest is like GBYT above

FROM PUTLP TO SEND= 18+13=31 .
TIMING = 23 T STATES.

;13T
;10T

FROM PUTLP TO SEND= 18+13=31 .
TIMING = 23T FOR THIS BRANCH.

;13T
;10T

- TIMING-874-10=864 T-STATES TO SEND.
- TIMING=864-833=31.
- TIMING PRESERVED IN LOOP, 8T FALLING

THROUGH.

75

PUTRST: DELAY 8 ;800T
jp DLY1 ;10T

DLY1: jp DLY2 ;10T
DLY2: djnz PUTLP ;13T LOOP TILL DONE

; - TIMING=31+13-8=36

and OFFh ; 7T CLEAR CARRY,DELAY
NOP ; 4T DELAY
NOP ; 4T DELAY
NOP ; 4T DELAY
NOP ; 4T DELAY

; - TIMING=36-23=13 JUST TIME TO DO IT

Id (PBSETB),a ;13T STOPBIT
DELAY 9 ;TIMING NOT CRITICAL NOW
pop be ;Restore reg.
pop af jREstore reg.
ret

; BACK SPACE AND ERASE ROUTINE

BSPCR: Id a,BS ;BS/SPC/BS
call PBYT ;Print it
Id a,SPC ;Get space
call PBYT ;Print it
Id a,BS ;Get backspace
call PBYT ;Print it
ret

; SEND A CARRIAGE RETURN LINE FEED TO TERMINAL -

CRLF: push hi ;Save reg.
Id hl,CRLFM ;Point to message
call SNDMES ;Print it
pop hi ;Restore reg.
ret

. PAUSE BEFORE CLEARING SCREEN

CONT: PRINT CONTIN ;Print continue message
call GBYTNE ;Look for key
ret

76

; GET A RESPONSE TO A QUERY

GETLN:
GLN1:

GLN2:

NOBS:

NOTST:

GLEND :

CTLXR:

BLOOP :

PUSHALL
Id
Id
Id
call
cp
JP
Id
cp
JP
call
inc
dec
dec
Jr
cp
JP
cp
JP
cp
Jr
cp
Jr

Id
inc
inc
cp
JP
djnz
JP

Id
inc
Id
Id
POP ALL
ret

Id
cp
Jr
Id
call
djnz
Jr

hi, I BUFF
c,0
b,MAXB
GBYT
BS
nz,NOBS
a,b
MAXB
z,GLNl
BSPCR
b
c
hi
GLN2
CTLX
z, CTLXR
CTLU
z,CLKRD
CR
z, NOTST
SPC
c,GLN2

(hi), a
hi
c
CR
z , GLEND
GLN2
CTLXR

(hl),LF
c
a,c
(NCI),a

a,c
0
z,GLNl
b,c
BSPCR
BLOOP
GLN1

y

y

y

y

y

y

y

y

y

y

;

;
y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

;ASCII input buffer
;No. of characters
;Get max buffer length
;Get character
;Backspace?
;NO
;Compare size

;Ignore at beginning
;Backspace
;Restore character count
;No. of characters

;Try again
;CONTROL X?
;Do it if so
;CONTROL U?
;Read clock
;Carriage return?

Space?
NO OTHER CONTROL CHARACTERS
RECOGNIZED
Store character
Increase pointer
Increase character count
Look for carriage return
DONE SO EXIT PROPERLY
Get next
INPUT TOO LONG,MUST BE ERROR

;Add line feed
;Inc. character count
;Save it

;Restore reg.

;Get character count
;Check if zero
;If so, no action needed

;Clean up screen

77

DEFINE STATEMENTS

CONTIN: db
CRLFM: db
QUES: db
CLRSCR:

OKQ:

KEPT
db
ENDM
db
db
db
db
db
db
KEPT
db
ENDM
db
db
db

'HIT ANY KEY TO CONTINUE',0
CR,LF,0
' ? ',0
22
LF

CR

U.S. GEOLOGICAL SURVEY 4-CHANNEL DATA RECORDER'
CR,LF
8
CR
13
LF

CR
0
'IS THIS CORRECT (Y/N)',0

78

TAPE ROUTINES

;Original code written by jhg
;UPDATE - 8/ 8/84 code was revised to include a tape
; test and improved error checking by
; ohh
;UPDATE - 10/18/84 code was modularized and commented
; by gkm
;UPDATE - 7/16/85 code was revised by gkm for the
; following:
; 1.Addition of print routines for
; display of tape commands and
; status on diagnostic switch.
; 2.Addition of routines to keep
; track of number records written
; and write errors.
; 3.Altered end of tape routine
; to back up 2 records to allow
; room for 2 file marks and make
; possible to recover time.
; 4.Altered tape insertion routine
; so that it is no longer necessary
; to reinsert cartridge to find EOT,
;UPDATE - 7/30/85 code was added to add more protection
; with a time out routine on read status
; to restart the drive on failure by gkm.

79

;POWER CONTROL FOR TAPE DRIVE

; TURN OFF POWER TO TAPE DRIVE -

OFFCART:push
IF
PRINT
ENDIF
Id
out
DELAY
Id
out
Id
Id
pop
ret

af
DIAG
SLPMES

a,OFF12V
(PWRPRT),a
256
a,OFF5V
(PWRPRT),a
a,RSTCC
(PBCLRB),a
af

DRIVE IS TURNED OFF AND RESET
POWER TO THE DRIVE MUST BE TURNED OFF
BEFORE THE POWER TO THE CONTROLLER TO
PREVENT STRAY MOTOR MOVEMENT.

;Save ace.

;Print sleep message if diagnostics

;Turn off drive first

;25.6ms to allow power to settle
;Turn off controller

;Hold reset low

;Restore ace.

80

; TURN ON POWER TO THE TAPE DRIVE

ONCART;

NRDY;

RDY:

push
IF
PRINT
ENDIF
Id
out
DELAY
Id
Id
DELAY
Id
Id
out
DELAY
Id
Id
DELAY
Id
DELAY
Id

Id
call
Id
and
jr
DELAY
djnz
pop
ret

af
DIAG
WAKMES

a,ON5V
(PWRPRT),a
30
a,RSTCC
(PBSETB),a
100
(PBCLRB),a
a,ON!2V
(PWRPRT),a
256
a,RSTCC
(PBCLRB),a
10
(PBSETB),a
256
b,0ffh

a,CURSTATC
EXECN
a, (IS)
COMSTATM
z,RDY
20
NRDY
af

- POWER IS TURNED ON AND INTERFACE RESET.
- THE POWER TO THE CONTROLLER MUST BE

TURNED ON BEFORE THE POWER TO THE DRIVE
TO PREVENT POSSIBLE UNWANTED TAPE MOVEMENT,

;Save ace.

;Print wake message if diagnostics

;Turn on cartridge controller

;Delay 3ms for power to settle
;Set controller reset

;10ms pulse width
;Set controller for operation
;Turn on drive

;Allow drive to stabilize
;Reset again in case it came up
;srewy
;1ms pulse width
;Set controller for operation
;Let the whole thing stabilize
;Load count for ready test

;Get interface status

;Strip mask
;If ready exit
;Allow 2ms before next try
;Try again
;Restore ace.

81

;COMMANDS SPECIFIC TO OBS/TIP FORMAT

; WRITE DATA RECORD FOR WINDOW MODE

WDR: call ONCART ;Turn on the drive
call NOBLOCK ;Determine no. blocks to write
Id a,(BSTART) ;Get start address
Id (WBSTART),a ;Save it
call FIXNOS ;Create TIP header
call WRITED ;Write the data
call OFFCART ;Turn off the drive
ret

; WRITE DATA RECORD FOR EVENT MODE

EWDR: call ONCART ;Turn on the drive
call NOBLOCK ;Determine how many blocks
Id hl,(BSTART)
Id (WBSTART),hl ;Save beginning of buffer
Id hi,(BEND)
Id (WBUFSAV),hl ;Save beginning of data
call FIXNOS ;Create TIP header
call WRITED ;Write the data
call OFFCART ;Turn off the drive
ret

82

; WRITE DATA

; NOTE :

INPUTS: NAME OF FILE MUST BE IN BUF16,
WBSTART MUST BE SET FOR CIRCULAR OR
NON-CIRCULAR BUFFER, NO. OF BLOCKS TO
WRITE(EXCLUDING PARAMS) MUST BE IN THE
DATABLOCK, BEGINNING ADDRESS OF BUFFER
MUST BE IN WBUFSAV.
PARAMETERS ARE WRITTEN IF THE LAST
BLOCK=40H-2 SECTORS OF 128 BYTES.
ERROR IF A BLOCK IS NOT EITHER 4OH-2
OR 40H.

WRITED: call SNDMA
Id a,(DATABLOCK)
Id (ESECT),a
Id hi,(WBUFSAV)
Id (EBUFSAV),hl

;Send MA
;Load sector count
;Save sector count if error
;Point to start of data
;Save it in case of error

ERROR HANDLER MUST RESTORE OLD SECTOR COUNT & OLD WBUFSAV,
THEN FIX STACK AND JUMP TO WRITED. WRITED CANNOT SAVE
REGS BECAUSE OF THIS.

;See if less than or = to 40H
;If so end data
;Decrement sector counter
;Save it

;Set RECSIZ = 40h, LDF-00
;Write 16byte header
;Write data
;Until done
;This sub sends CA and
;handles errors
;Repeat as needed

;RECSIZ = 40h
;Set last block flag = 1
;Write header
;Write data
;Until done
;Check if done
;If so, write it to tape
;Write parameters
;Write to tape

BWR:

LASTBLK:

LDB:

NPB:

cp

sub
Id
Id
call
call
call
djnz
call

jr

Id
call
call
call
call
djnz
cp
jr
call
call
ret

41h
c, LASTBLK
40h
(DATABLOCK), a
b,40h
RECSIZ
WRITE16
WRITE128
BWR
WRITEIT

WRITED

b,a
RECSIZ
SETLDF
WRITE16
WRITE128
LDB
4 Oh
z,NPB
WRITEPAR
WRITEIT

83

; WRITE THE PARAMETERS TO TAPE BUFFER

- PARAMETERS ARE LAST TWO BLOCKS OF ALL
DATA RECORDS(256 BYTES).

WRITEPAR:

WRPARA;

PU SHALL
Id
Id

Id

STA
Id
call
djnz
Id

POP ALL
ret

hl,SERBUF
(WBUFSAV),hl

a,(WBSTART)

(WBSTART),0
b,2
WRITE128
WRPARA
(WBSTART),a

;Save reg.
;Point to series parameters
;WBUFSAV is preserved(in case of
; error) in EBUFSAV.We are done
;with data buffer if there is no
; error.
;Preserve circular status in
;case of error.
;Set to non circ. buffer
;Load for 2 128byte records?
;Write to tape buffer
;Write until done
;Restore circ. status since no
;regs. affected
;Restore reg.

; SET THE RECORD SIZE IN BUF16 = B REG. & LDF=0

- SET RECORD SIZE TO 40H for PARAMS

RECSIZ: push
xor
Id
Id
Id
pop
ret

af
a
(B16LB),a
a,40H
(B16RC),a
af

; SET LAST BLOCK FLAG

SETLDF: STA
ret

(B16LB),1

;Save reg.
;Clear A
;Save last block flag
;Load rec. size
;Save it
jRestore reg.

;Load last block flag

; COMPUTE # OF SECTORS OF 128B FROM BUFSIZ

; - CALL BEFORE WRITING ANY DATA RECORD

;Save reg.
;Save reg.
;Load buffer size
;Move it to B
;Clear A
;Add 64 byte groups
;Until filled
;Allow for parameters
;Save it
;Restore reg.
;Restore reg.

NO BLOCK:

ADDREC:

push
push
Id
Id
xor
add
djnz
sub
Id
pop
pop
ret

af
be
a, (BUFSIZ)
b,a
a
a,40H
ADDREC
2
(DATABLOCK),a
be
af

84

WRITE A 128 BYTE RECORD TO TAPE BUFFER

- INPUT PARAMETERS: WBSTART,WBUFSAV,

WRITE128:
PUSHALL
Id
Id
call
Id
POP ALL
ret

hl,(WBUFSAV)
b,128
WBLOCK
(WBUFSAV),hl

;Save reg.
;Get pointer
;Load no. bytes
;Write it
;Save pointer
;Restore reg.

. MOVE NAME T0 !6 BYTE HDR BUFFER

; - CALL WITH HL SET TO APPROPRIATE NAME

MNAME: PUSHALL
Id de,B16NAME
Id be,8
Idir
POPALL
ret

;Save reg.
;Point to name
;Load no. bytes
;Fill buffer
;Restore reg.

; FIX EXP # AND SERIES # IN 16 BYTE BUFFER

FIXNOS: PUSHALL
Id
Id
Id
call

Id
Id
Id
call
POP ALL
ret

b,02h
hl,CSN+l
de,BSERNO
BCDFIX

b,02h
hl,CEXPN+l
de,BEXPNH
BCDFIX

- SERIES NO. IS LIMITED TO 4 BYTES.
- EXP. NUMBER IS LIMITED TO 4 BYTES

;Load count for BCDFIX
;Point to MSB of series number
;Point to TIP buffer
;Insert the series number into
;TIP buffer
;Load count for BCDFIX
;Point to MSB of exp. no.
;Point to TIP buffer
;Insert exp. no. into TIP buffer

85

BCDFIX: Id a,(hi) ;Get High byte
and 11110000B ;Use only upper four bits
srl a ;Shift upper 4 bytes to lower 4
srl a
srl a
srl a
xor 30h ;Convert to ASCII
Id (de),a ;Save it
inc de ;Set up for next part of number
Id a,(hi) ;Get the number back
and 0000111IB ;Use the lower four bits
xor 30h ;Convert to ASCII
Id (de),a ;Save it
inc de ;Set up for next byte
dec hi
djnz BCDFIX ;Repeat til done
ret

; WRITE THE 16 BYTE TIP HEADER TO TAPE BUFFER

WRITE16: PUSHALL ;Save reg.
Id hl,BUF!6 ;Point to header buffer
Id b,16 ;Load no. bytes
Id a,(WBSTART) ;Get circ. status
STA (WBSTART),0 ;No circular buffer for 16B
call WBLOCK ;Write it
Id (WBSTART),a jPreserve WBSTART
POPALL ;Restore reg.
ret

; CLEAR THE 16 BYTE HEADER BUFFER

BLNKB16: PUSHALL ;Save regs.
Id be,16 ;Load number of bytes to clear
Id hl,BLANK16 ;Point at clear data
Id de,BUF!6 ;Point to header buffer
Idir ;Fill buffer with spaces
POPALL ;Restore reg.
ret

86

; WRITE BLOCK TO PORT BUFFER

- B MUST CONTAIN BYTE COUNT.
- HL MUST POINT TO FIRST BYTE TO WRITE.
- WBSTART MUST BE LOADED WITH ZERO IF NOT

CIRCULAR OR WITH BSTART IF CIRC.

WBLOCK:

WLOOP:

push
push
Id
call
outi
jr
Id
or
Id
jr
pop
pop
ret

af
be
c,DA
WSTAT

z,WEND
a, (WBSTART)
h
h,a
WLOOP
be
af

WEND:

; CHECK FOR END OF TRACK

EOTCH: Id
bit
ret
call
or
ret

a,(DS)
2,a
z
EOT
Offh

; END THE TRACK

EOT: push
Id
and
inc
cp
jr
or
Id
call
pop
ret

af
a,(IMA)
TRACKMA
a
4
z, ENDTAPE
MAN
(IMA),a
FMK
af

ENDTAPE: Id
call
Id
call
PRINT
JP

a,REVSPCRECC
EXECN
a,REVSPCRECC
EXECN
OT1
ETERM

;Save reg.
;Save reg.
;Point to Data argument
;Check status
;Write block of data to buffer
;If through end it
;Save new count

;Continue sending data
;Restore reg.
;Restore reg.

;Get drive status
;Check for EOT flag
;If no EOT, return
;End the track
;Set flag

;Save the reg.
;Get mode argument
;Strip mask
;Increase the track
;Check for end ot tape
;If so, exit
;Restore mask
;Save new mode argument
;Write the file mark

;Back up a record to allow room
;for 1st file mark
;Back up another rec. to allow
;room for 2nd file mark
;Print end of tape message

87

;GENERAL TAPE COMMAND EXECUTION

; INSTALL A TAPE IN THE DRIVE

IF TAPE IS ALREADY IN THE DRIVE AT
POWER UP, THE TAPE WILL REWIND TO HOT.
THIS ROUTINE ALSO CHECKS FOR WRITE
PROTECT.
ALL OTHER ERRORS WILL SIMPLY RESTART THE
ROUTINE.

STAPE:

;
STAPl:

NOTAPE:

Id
Id
call
STA
call

Id
call
Id
cp
jr
PRINT
Id
call
Id
cp
jr

hl,0000h
(ABRTV),hl
ONCART
(IMA),MAN
BLNKB16

-

a,CURSTATC
EXECN
a, (IS)
92h
nz,STAP4
INTAPE
a,CURSTATC
EXECN
a, (IS)
92h
z, NOTAPE

; Save abort vector

;Turn on drive
; Update normal mode argument
; Clear TIP header buffer

NO TAPE IN DRIVE?

;Get interface status

;Look if tape in drive
; If there, check tape
;Loop til tape is inserted

;Get interface status

;Look if tape in drive

; -MAKE SURE TAPE IS AT BOT AND NOT SAFE

STAP4:

STAP2 :

;

STAP3:

Id
call
Id
bit
jr
bit
jr
IF
PRINT

Id
call
END IF
call
ret
call
jr

a,REWINDC
EXECN
a,(DS)
0,a
z,STAP3
3, a
z, STAPl
DIAG
BOTMES

-

hl,RWN
BCDCLR

OFF CART

PROTECTED
NOTAPE

; Rewind to BOT

;Get drive status
; Check for write protect
; If so, print error
; Check for BOT
;If not, try again

; Print BOT if diagnostics

INITIALIZE WRITE ERROR COUNT.

; Point to 1st byte of count
; Zero rewrite counter

;Tape ready, so power down

; Print write protected and res

88

; TEST THE TAPE -

TSTTAP

TST:

TST3

COK:

THIS ROUTINE WRITES 1 8K RECORD TO TAPE
USING A TEST PATTERN.
THE TEST PATTERN IS RECREATED IN MEMORY,
THE TAPE IS THEN BACKED UP AND READ.
THE PATTERN READ FROM TAPE IS THEN
COMPARED WITH THE PATTERN IN MEMORY.

Id
Id

Id
Id
Id
Id
call

hi, TSTTAP
(ABRTV),hl

bc,0a0h
(ENDRAM),bc
hl,8000h
(RAMST),hl
RTEST

; Save abort vector

;Load 8000H with test pattern
;ONE TIME THROUGH, END AT AOOOH
;Save it
; point to location of ram to test
;Save it
;This loads the pattern and tests

- PATTERN LOAD ED, SO WRITE IT TO TAPE

STA
STA
Id
call
call
Id
call

xor
out
Id
Id
call
call
Id
Id
xor
ex
ex
cp
jr
inc
inc
ex
Id
cp
jr
xor
jr
PRINT
JP
PRINT
call
call
ret

(WBSTART),OH
(DATABLOCK),40H
(WBUFSAV),hl
ONCART
WRITED
hl,8000h
CLR2K

a
(PA), a
(RDBUF),hl
a,REVSPCRECC
EXECN
READIT
bc,(ENDRAM)
hl,(RAMST)
a
af , af '
af,af
(hi)
nz,TST3
hi
a
af ,af
a,h
c
nz,TST
a
z,COK
NOCOMPM
STAP1
COMPSM
OFFCART
CONT

;Load the start address for a write
;40H sectors (no param.)
;Save the pointer during write

; Write the test pattern
; Point to test pattern in memory
; Clear the memory

- NOW READ IT BACK

; Clear A (track 0)
;Send position arg. to controller
; Point to the read buffer
;Back the tape one record

;Read the record

; Point to start of ram
; Start pattern
; Save it in preparation
; Restore pattern
;Test pattern
;No compare, then error
; Point to next byte
; Increment pattern
; Save pattern
;Get high byte
;Test for end
; If not, do again
; Clear A
; If OK, then proceed
; Print error message
; Start over
; Print OK message
;Turn off cartridge
; Pause before clearing screen

89

; EXECUTE A COMMAND TO DRIVE

 COMMAND MUST BE IN A BEFORE ENTRY.
EXEC:

EXECN:

; TIME

TIMERR:

TIMER1 :

TIMOR:

TFAIL :

Id
call
Id
call
out
IF
PRINT
add
call
Id
call
ENDIF
call
call
ret

OUT

cp
ret
push
Id
xor
cp
jr
pop
ret
di
Id
Id
Id
Id
Id

out
ei
pop
ret

push
di
Id
ei
pop
ret

di
Id
ei
PRINT
call
Id
JP

(ICA),a
SNDMA
a,(ICA)
TIMERR
(CA),a
DIAG
EXEMES
a,30h
PBYT
a,' '

PBYT

ISTAT
TIMOR

ERROR ROUTINE

40h
z
af
hl,(ABRTV)
a
h
nz,TIMERl
af

(STOPTl),a
(IX+T1LSB)
(IX+T1MSB)
(STRTl),a

; Save command
; Send mode argument
; Restore command
; Set up time out routine
; Execute command

; Print command if diagnostics

; Follow command with a space

;Get status
;Stop time out error routine

;No time out if rewind

;Get abort vector
; Clear A
; Compare with memory
; Continue if not start tape
; Restore command

; Disable interrupts
;Stop timer just in case

,0ffh ; Reload values
,06h

; Start timer 1
a,Tl INT EN or EARLY TERM

(INTPRT),a

af

af

(STOPTl),a

af

(STOPTl),a

TERR
OFFCART
hi, (ABRTV)
(hi)

; Enable interrupts

; Enable interrupts

; Disable interrupts
;Stop timer 1
; Enable interrupts

; Disable interrupts
;Stop timer 1
; Enable interrupts

; Reset drive

;Try again

90

READ STATUS PORT

ISTAT: push
call
in
Id
in
Id
IF
PRINT
Id
call
Id
call
PRINT
Id
call
call
ENDIF
pop
ret

IF DIAG
TOHEX : push

Id
rra
rra
rra
rra
call
Id
call
pop
ret

SHWHEX : and
add
cp
JP
add
JP
ret
ENDIF

af
RSTAT
a,(CA)
(DS),a
a,(CA)
(IS), a
DIAG
SD
a,(DS)
TOHEX
a,'

PBYT
SI
a, (IS)
TOHEX
CRLF

af

be
c,a

SHWHEX
a,c
SHWHEX
be

Ofh
a,30h
3 ah
c,PBYT
a, 7
PBYT

THIS ROUTINE WILL READ THE STATUS PORTS
AND SAVE THE VALUES IN (IS) AND (DS).

;Save accumulator
;Wait til data is there
;Read drive status and store it

;Get interface and store it

;Print drive status

;Separate with a space

;Print interface status

;Restore accumulator

- PRINT ROUTINE FOR IS AND DS

;Save reg.
;Move A to C
;Shift A

91

; CHECK READ STATUS

RSTAT: in a,(PS)
rrca
rrca
jr nc,RSTAT
ret

; CHECK WRITE STATUS

THIS ROUTINE WILL LOOP UNTIL DATA IS
AVAILABLE.

;Read port status

;If not, loop til ready

THIS ROUTINE WILL LOOP UNTIL DRIVE IS
READY FOR DATA.

WSTAT: in a,(PS)
rrca
jr nc,WSTAT
ret

;Read port status
; Ready for data?
;If not, loop til ready

; SEND MODE ARGUMENT

SNDMA: push af
call WSTAT
Id a,(IMA)
out (MA),a
pop af
ret

;Save reg.
;Ready to receive?
;Get mode argument
;Send it to drive
;Restore reg.

92

; READ A RECORD FROM TAPE

READIT: Id
call
Id
cp
JP
Id
call
in
call
in
Id

READTIP: dec
call
ini
bit
jr
Id

READLP:

DONEOK:

dec
bit
jr
call
ini
jr
ret

- READ AN 8K BLOCK FROM TAPE
- HEADER IS READ TO TIPBUF
- BODY TO ADDRESS IN RDBUFF WHICH MUST BE

SET BEFORE CALLING.

a,READC
EXEC
a,(IS)
OCOh
nz, ABORT
c,CA
RSTAT
e,(C)
RSTAT
d,(C)
hi,TIPBUF

;Issue read command

;Get interface status
;Check for error
;If error, abort
;Test for data ready

;Get first byte for count
;Wait for next
;Get second byte
;Point to the TIP buffer

- LOAD TIP BUFFER

de ;Decrement the count
RSTAT ;Wait for data

;Move data to buffer and inc. HL
4,1 ;Look for end of data
nz,READTIP ;Continue until done
hl,(RDBUF) ;Point to the buffer for the body

- LOAD DATA BUFFER

de
7,d
nz,DONEOK
RSTAT

READLP

;Decrement the count
;Check for end of data
;Exit if done
;Wait for data
;Move data to buffer and inc. HL
;Continue til done

93

; WRITE A FILE MARK

FMK:
FMK1:

Id
Id
call
Id
and
ret
call
DELAY
call
djnz
ret

b,03h
a,WRITEFMC
EXEC
a,(IS)
COMSTATM
z
OFFCART
256
ONCART
FMK1

;Load number of tries
;Issue command to drive
;Get status

;Strip mask
;If OK exit
;If error, reset and try again

; WRITE DATA TO TAPE

WRITEIT: Id
call

BOTFIX: Id
and
jr
Id
and
jr
Id
call
jr

NOTBOT: call
Id
call
call
ret

a,WRITEWCHC
EXECN
a,(IS)
COMSTATM
nz,WABORT
a,(DS)
BOTM
z,NOTBOT
a,BWRITEC
EXECN
BOTFIX
EOTCH
a,CURSTATC
EXECN
EOTCH

;Execute write command

;Get interface status
;Strip mask
;If error, abort
;Get disk status
;Check for BOT

;Do a dummy write if BOT

;Check for end of track during write

;Check for end of track now

94

; ABORT AND ERROR ROUTINES

; WRITE ABORT HANDLER

WABORT: Id
push
IF
Id
call
ENDIF

hl,WRECOVER
hi
DIAG
hl,RWN
BCDCT

;Point to routine
;Save reg.

;Point to rewrite number
;Increment counter

; GENERAL ABORT HANDLER

ABORT: PRINT
Id
and
sla
Id
Id
Id
add
Id
inc
Id
ex
JP

ABORTM
a,(IS)
OFh
a
c,a
b,0
hl,JTABLEB
hi, be
e,m
hi
d,m
de,hl
(HL)

;Syntax reject not handled
,Load interface status
iStrip mask
;X2
;Move it to C
.Fill B with 0
;Point to error table
;Point to error
iLoad first part in E
,Incr. to next part of message
Load next part
,Move it to HL
;Go to error routine

; RECOVER A WRITE ERROR
; - SECTOR COUNT AND BUFFER PTR RESTORED

WRECOVER:
call OFFCART
DELAY 256
call ONCART
Id a,(ESECT)
Id (DATABLOCK),a
Id hl,(EBUFSAV)
Id (WBUFSAV),hl
pop hi
jp WRITED

;Turn off cartridge

;Turn on cartridge
;Load sector count
;Save it
;Point to saved pointer
;Save it

;Continue writing

95

; PRINT ERROR

FLAG: PRINT CDO
ret

PROTECTED:
PRINT CD1
ret

NODRIVE:
NORESP :

FMVER:

TABORT:

NOEOT:

RFHER:

RFCRCC :

RFSHORT:

RFBVP:

WFRAW:

WF:

RFFMD:

UNKNOWN:

JP
PRINT
ret
PRINT
ret
call
jr
Id
and
or
PRINT
call
call
ret
PRINT
ret
PRINT
ret
PRINT
ret
PRINT
ret
PRINT
ret
PRINT
ret
PRINT
ret
PRINT
ret

PRINT
ret

NOTAPE
CDS

CD6

EOTCH
z, NOEOT
a,(IMA)
TRACKMA
30h
TRACKNM
PBYT
CRLF

CD 7

CDS

CD9

CD10

CD11

CD12

CD13

CD14

CD15
i

;Check for end of track
;If not print abort mess
;Load mode argument
;Strip mask
;Convert to decimal
;Print track number

96

DEFINE STATEMENTS

; PRINT

ABORTM:
BDTAHDR:
BLANK16:

CDO:
GDI:
CD3:
CD6:
CD7:
CDS:
CD9:
CD10:
CD11:
CD12:
GDIS:
GDI 4:
CD 15:

COMPSM:
HEADER:
INTAPE:
NOCOMPM:
OT1:
;REMTAPE:
TERR:
TRACKNM:

TSTTAPM:

; ERROR

JTABLEB:

MESSAGES

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

TABLE

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

'ABORT ',0
'SOOOOEOOOO'
0,20H,20H,20H,20H,20H,20H,20H,20H
20H,20H,20H,0,0,0,0
'CODE 0 FLAG COND.',CR,LF,0
'CODE 1 WRITE PROTECTED', CR,LF,0
'CODE 3 DRIVE DID NOT DO IT',CR,LF,0
'CODE 6 FILE MARK VER. ERR.',CR,LF,0
'CODE 7 ABORT BEFORE DONE',CR,LF,0
'CODE 8 H-E-R',CR,LF,0
'CODE 9 BAD CRCC',CR,LF,0
'CODE 10 SHORT REG. ',CR,LF,0
'CODE 11 BAD V. PAR.',CR,LF,0
'CODE 12 R-A-W ERROR', CR,LF,0
'CODE 13 WRITE FAIL',CR,LF,0
'CODE 14 FILE MARK DET.',CR,LF,0
'CODES 4,5,15 IMPROPER ABORT CODES'
CR,LF,0
'TAPE DRIVE OK',CR,LF,0
'GPHEADER'
'INSERT TAPE CARTRIDGE', CR,LF,0
'BAD TAPE OR DRIVE', CR,LF,0
'OUT OF TAPE',CR,LF,0
'REMOVE TAPE CARTRIDGE', CR,LF,0
'TIME OUT ERROR', CR,LF,0
CR,LF
'TRACK #',0
'TESTING TAPE ',CR,LF,0

FLAG
PROTECTED
NODRIVE
NORESP
UNKNOWN
UNKNOWN
FMVER
TABORT
RFHER
RFCRCC
RFSHORT
RFBVP
WFRAW
WF
RFFMD
UNKNOWN

97

; DIAGNOSTIC MESSAGES

;Check DIAG flag

,0

WAKMES:
SLPMES:
BOTMES:
EXEMES:
SD:
SI:

IF
db
db
db
db
db
db
ENDIF

DIAG
'WAKE ' , 0
'ZZZZ ',0
'BOT ',0

'EXEC CMD='
'DS=',0
'IS=',0

98

PARAMETER ENTRY

;Original code written for window operation by ohh
;UPDATE - 10/19/84 code modularized and commented by gkm
;UPDATE - 9/13/85 window routines were rewritten to :
; l.make more compact
; 2.expand series and exp. nos.
; 3.add error trapping
; by gkm
;UPDATE - 11/15/85 event mode routines were added by gkm

99

; INITIALIZE TIME AND TAPE

START: PRINT
call
call
call

CLRSCR
SETCLK
STAPE
TSTTAP

; GET HEADER INFO

WHEAD: PRINT
call
Id
WPRINT
WPRINT
WPRINT
WPRINT
WPRINT
WPRINT
WPRINT
PRINT
Id
Id
call
call
PRINT
Id
Id
call
call

;Set the clock
;Install a tape in the drive
;Test the tape

- THIS ROUTINE PRINTS THE STRING,
MOVES IT TO HEADER MEMORY,
GETS RESPONSE,AND MOVES IT TOO.

- ALL REGS ARE SAVED.

CLRSCR
INIT_HDR_RAM
hi,(HDRBUF)
DEPL
INSTR
CHSCI
CRUISE
SPHERE
LAT
LONG
FEG
hl,FEG
de,(HDRBUF)
MOVLP
CHANNEL
FED
hi,FED
de,(HDRBUF)
MOVLP
CHANNEL

;Clear the screen

Get deployment
;Get instrument #
,Get chief scientist
,Get cruise ID
.Get sphere #
Get latitude

;Get longitude
Print gain message
.Point to message
Point to header buffer

;Move it
;Do it for all four channels
,Print damping message
Point to heading
Point to buffer

;Move it
;For all 4 channels

100

PBACK:

- ADD TERMINATOR AND INSERT INTO GPHEADER,

Id a,CTLZ ;ASCII buffer terminator
Id de,(HDRBUF) ;Point to buffer
call INS ;Put it in and fix DE

ISOK:

call
PRINT
Id
Id
cp
jr
call
inc
jr
QPRINT
or
cp
JP
cp
JP
JP

- PLAY DATA BACK FOR VERIFICATION,

CONT
CLRSCR
hl,HDRRAM
a, (hi)
CTLZ
z,ISOK
PBYT
hi
PBACK
OKQ
20h
"n"

z,WHEAD
y
z,SKGI
ISOK

;Wait
;Clear the screen
;Point to beginning of header
;Play back until CTLZ
;Look for terminator
;If so, then next
;Print it
;Increment pointer
;Get next
;IS IT OK?
;Force to lower case

;Do again

;Start parameter entry
;If nothing compares, ask again

101

EXPERIMENT PARAMETER ENTRY

; INITIALIZE THE SERIES NUMBER
; - CLEAR THE SERIES COUNT.

SKGI: Id hl,CSN ;Point to current series number
call BCDCLR ;Clear series count
Id de,SERBUF ;Point to parameter storage
Id (PARBUF),de ;Save it

; INCREMENT THE SERIES NUMBER
; - ONLY 9 SERIES SUPPORTED.
; - THIS LIMITATION IS DUE TO THE AMOUNT OF
; STORAGE ALLOCATED IN THE 256 BYTE TRAILER.
NSERIES;

Id
call
Id
cp
JP

hl,CSN
BCDCT
a,(CSN)
09h
z,EXECU

;Get current series number
;Increment count
;Get the series number
;Support only 9 series
;If max, then start

- ENTER HERE ON RETRY.

REPENT: PRINT CLRSCR
call SNPT

;Clear the screen
;Print the series number

; ENTER NUMBER CHANNELS
: - SUPPORTS UP TO 4 CHANNELS.

NCHAN: PRINT
Id
call
Jr
Id
cp
Jr
Id
cp
Jr

NCAP
hl,NCX2
INDAT
c, NCHAN
a, 4
m
c, NCHAN
a,0
m
z, NCHAN

;Print channel message
;Point to channel storage
;Get answer
[Invalid entry if carry
;4 to ACC
;Compare to input
;If input >4,ERROR
;Check if entry is 0

;If so, try again

102

; ENTER BASE CHANNEL
; - CHECKS TO ENSURE VALID ENTRY WITH
; RESPECT TO THE NUMBER OF CHANNELS.
; - THE BASE ADDRESS OF THE A-D IS
; CALCULATED AND STORED.

BCHAN: PRINT BCHAP ;Print BASE CHANNEL?
Id hi,10 ;Point to storage
call INDAT ;Get it
jr c,BCHAN ;If invalid, try again
Id a,(10) ;0 is invalid
cp 0
jr z,BCHAN
Id a,(NCX2) ;Get no. of channels
dec m ;BASE CHANNEL-1
add a,m ;Check for high channel <5
cp 5
jr nc,NCHAN ;If not, try again
sla (hi) ;Multiply base adjustment by 2
Id a,ADPORT-l ;Load normal starting channel
add a,m ;Create correct base address
Id m,a ;BASEPORT-1 computed and stored

	;in 10
inc hi ;Now fix no. channels
sla (hi) ;#CHANNELS*2

103

; ENTER BUFFER SIZE

BSIZ;

BZLP:

- ENTRY IS TESTED FOR VALIDITY.
- RAM ADDRESSES FOR EACH ENTRY ARE STORED

; Print CRLF
; Print HOW MANY 8K BLOCKS?
; Point to storage
;Get it
;If not valid, try again
;Get answer
; Check if entry exceeds table

; Point to entry table

;Move entry to de
;Add entry offset to table pointer

; Check if valid entry

;Save buffer start
; Point to buffer size table
;Add entry offset
;Move it to de

	- # OF SAMPLES IS CALCULATED AND STORED.

Id a,(BUFSIZ) ;Get buffer size (in 8K blocks)
Id b,a ;Move it to B
xor a ;Clear A
add a,8 ;load 8 into A
daa ;Multiply AxB
djnz BZLP
Id (BSZSAV),a ;Save it
Id a,(NCX2) ;Get no. channelsX2
call DIVIDE ;Divide to get //bytes/sample in DE
Id (MSAMPS),de ;Save it

call
PRINT
Id
call
jr
Id
cp
jr
Id
Id
Id
add
Id
cp
jr
Id
Id
add
Id
Id

CRLF
BSIZP
hl,BUFSIZ
INDAT
c,BSIZ
a,m
5
nc,BSIZ
hl,BBTBL
d,0h
e,a
hl,de
a, (hi)
Oh
z,BSIZ
(BSTART) , a
hl,BSTBL
hl,de
d,(hl)
e,0h

104

; SAMPLE RATE

SAMRAT:

WARNM:

NADS:

call
PRINT
Id
call
Jr
Id
cp
Jr
Id
call
cp
Jr
Id
Id
add
Id
Id

CRLF
SINTV
hl,SRATE
INDAT
c, SAMRAT
a,m
9
nc , SAMRAT
hl,ADTBL
TBLAD
0
z, SAMRAT
(ADVAL),a
hl,SHTBL
hl,de
a, (hi)
(SHIFTER), a

fT WARNING MESSAGE F(
- P:
RES:

call
Id
cp
Jr
PRINT
Jr
Id
call
Id
Id
call
PRINT

BOA]

CRLF
a,(SRATE)
8
nz,NAD8
WARN8
NEXP
hl,WNTBL
TBLAD
(GPCTRL),a
hl,GPCTRL
PBCD
WARN1

NEXP: call CRLF
call RTIME
call CRLF

- ENTRY IS CHECKED.
- AD CODE IS SAVED.
- SHIFTER VALUE FOR RECORD TIME IS SAVED

;Print CRLF
;Print sample rate message

;Get answer
;If not valid, try again

;Check entry is within the table
;Point to AD entry table

;Check for valid entry

;Save buffer start
;Point to shifter table
;Add entry offset
;Save it

- PRINTS WARNING TO ENSURE THAT THE PROPER
RESISTOR HEADER IS INSTALLED ON THE ANALOG

;Get sample rate
;Look for 8ms rate
;8ms warning is a little different
;Print warning message for 8ms

;Point to warning table
;Find the right value
;Cannot print unless in memory

;Print value from table
;Print rest of message

- PRINT RECORD TIME.

;Print CRLF
;Print record time
;Print CRLF

105

; ENTER WINDOW OR EVENT

EVENT: PRINT WE ;Is it WINDOW or EVENT?
call GETLN ;Get response
Id hl,IBUFF
Id a,(hi)
or 20h ;Force to lower case
Id (SERTYP),a
cp 't'

jr z,WNEXP ;If timer, go do that
cp 'e'

jp z,PES ;If event, go do that
jp EVENT ;If not, entry not valid try again

106

; PARAMETERS SPECIFIC TO WINDOW OPERATION

; ENTER NO. EXPERIMENTS
; - MAXIMUM NUMBER IS 9999.

WNEXP

WEXP4

Id
call
call
PRINT
Id
call
Jr

hl,EXPN
BCDCLR
CRLF
NEXPP
hl,EXPN
INDAT
c, WNEXP

;Clear exp. number

;Print NO. OF EXPERIMENTS IN SERIES
;Point to parameter storage
;Get response
;If carry, then invalid entry

; ENTER START AND STOP TIME

call SAVTIME

call RETIM

; ENTER OFFSET

;Save the previous stop time for
;check
;Enter start and stop time

- OFFSET CAN BE ANY WHOLE SEC LESS THAN 1 MIN,

WOFFSET: call
PRINT
Id
call
Jr
Id
cp
Jr

CRLF
WOFF1
hi,OFFSET
INDAT
c,WOFFSET
a,m
60H
nc,WOFFSET

; ENTER PERIOD

WPERIOD: call
PRINT
call
or
call
PRINT
push
Id
call
pop
Jr
Id
cp
Jr

CRLF
WPER1
MIN ALP
30H
PBYT
WPER2
be
hi, PERIOD
INDAT
be
c, WPERIOD
a,m
b
c, WPERIOD

;Print message
;Point to storage
;Get answer
;If error, try again
;Load answer
;Check for valid response (<lmin)
;If not, try again

,Print message
Calculate minimum window
Convert to ASCII
;Print it
;Print message
,Save min. window
.Point to storage
;Get answer
iRestore min. window
,If error, try again
;Load answer
;Compare with B
;If too small,try again

JP SPITBACK

107

PARAMETERS SPECIFIC TO EVENT OPERATION

; ENTER POST

PES: Id
PRINT
Id
call
jr
Id

Id
push
pop
or
rr
rr
cp
jr
or
rr
rr
cp
jr
cp
jr
sbc
ex
jr

PES1 : cp
jr

jr
rr
rr
or
sbc
ex

PESDON : Id

EVENT SAMPLES

(SERTYP),a
PESP
hl,PESAMS
INDAT
c,PES
a,m

de,(MSAMPS)
de
hi
a
d
e
50H
z, PESDON
a
d
e
25H
z, PESDON
75H
nz,PESl
hl,de
de,hl
PESDON
87H
c,PES

nz,PES
d
e
a
hl,de
de,hl
(PESAMPS),de

; Print POST- EVENT SAMPLES
; Point to storage
;Get it
;If invalid, try again
; Answer in ACC,look at prompt in
;WMESS.
;Get no. samples
;Save in HL

; Clear carry
; Divide DE by 2
;DE is now 50% total no. samples
;For choice 3,DE=50%
;So done for choice 3
; Clear carry
; Divide DE by 2
;DE is now 25% total no. samples
;(25%= choice 4)
;Done for choice 4
; NOTE: Carry cleared if equal
;If no jump, then choice 2
;100%-25%=75%=CHOICE 2
;Load into DE
;Done for choice 2
; Compare and clear carry if =
;Zero not valid-
;make sure carry is clear
;Not a valid answer
; Divide by 2
;DE=12.5%
; Clear carry
; Subtract
;DE now has 87.5% for choice 1
; Store post event samples

108

; ENTER SHORT TERM AVERAGE

SHORTERM:

P10:

P25:

P50:

SHOREND:

PRINT
Id
PRINT
call
Id
call
jr
Id
cp
jr
Id
jr
cp
jr
Id
jr
cp
jr
Id
jr
cp
jr
Id
Id

STA
hl,STASAV
QUES
GETLN
de,IBUFF+l
BCD IN
c, SHORTERM
a,m
5H
nz,P10
a,10H
SHOREND
10H
nz,P25
a,20H
SHOREND
25H
nz,P50
a,40H
SHOREND
50H
nz, SHORTERM
a,80H
(ANVAL),a

;Print message
Point to storage
;Ask for reply
Get answer
Ignore decimal point
;Convert to BCD
;If error, try again
iLoad answer
; .05 SEC. ?
ilf not, go to next
,Load code for .05
,Exit
.10 SEC. ?
If not goto next
Load code for .10
,Exit
; .25 SEC. ?
If not, go to next
;Load code for .25
Exit

; .50 SEC. ?
If not, error. Try again
Load code for .50 SEC.
Save result

109

; ENTER THRESHOLD

THRESHOLD:

DB12:

DB18:

DB24:

THREND :

PRINT
Id
call
jr
Id
cp
jr
Id
jr
cp
jr
Id
jr
cp
jr
Id
jr
cp
jr
Id
Id
Id
or
Id

THRSH
hl,THRSHSV
INDAT
c,THRESHOLD
a,m
6H
nz,DB12
a,l
THREND
12H
nz,DB18
a,2
THREND
18H
nz,DB24
a,4
THREND
24H
nz,THRESHOLD
a,8
b,a
a,(ANVAL)
b
(ANVAL), a

;Print message
I Point to storage
;Get answer
;If error, try again
;Load answer
;6DB ?
I If not, goto next
;Load code for 6 db
;Exit
;12DB ?
;If not, goto next
iLoad code for 12 db
Exit
;18DB ?
iIf not, goto next
iLoad code for 18 db
,Exit
;24DB?
;If not, error. Try again
;Load code for 24 db
iMove it to B
.Retrieve STA code
i Combine them
;Save result

110

; ENTER NO. EXPERIMENTS
; - MAXIMUM NUMBER IS 9999.

ENEXP: Id
call
call
PRINT
PRINT
Id
call
jr
Id
xor
cp
jr
inc
cp
jr
Id
dec
Id

hl,EXPN
BCDCLR
CRLF
NEXPP
EEXPM
hl,EXPN
INDAT
c, ENEXP
hl,EXPN
a
m
nz, ESTIME
hi
m
nz, ESTIME
(hl),99h
hi
(hl),99h

;Clear exp. number

;Print NO. OF EXPS IN SERIES

;Point to parameter storage
;Get response
;If carry, then invalid entry
;Get first byte
;Clear A
;See if first byte is 0
;Exit if not
;Get next byte
;See if it is 0
;Exit if not
;Load byte for max
;Get back first byte
;Load this byte for max

; ENTER START AND STOP TIME

ESTIME: call
call

JP

SAVTIME
RETIM

SPITBACK

;Save previous stop time
;Enter start and stop times

;End of event parameters

111

; CLOCK ENTRY ROUTINES

; - START TIME.

RETIM:

RETIM1

NFST:
FST:

BT:

TSOK:

PRINT
call
Id
call
Id
cp
jr

PRINT
Id
call
PRINT
call
Id
call

Id
call
Id
Id
call
jr
jr

Id
call
jr

PRINT
jr

PRINT
PRINT
call
Id
call
Id
call
ret
PRINT
JP

TIMNOW
GCLOCK
hl,TIMEN
TIMOUT
a,(CSN)
Olh
z,RETIMl

TIM1M
hl,STOPTB
TIMOUT
STFS
SNPT
hl,STRTTB
TIMINP

hl,TIMEN
GCLOCK
hl,STRTTB
de,TIMEN
CTIM
c,NFST
BT

de,STOPTB
CTIM
c,TSOK

1ST
RETIM

-

STOP
TFS
SNPT
hl,STOPTB
TIMINP
de,STRTTB
CTIM
c
IST1
RETIM1

; Print TIME NOW
;Read clock
; Point to buffer
; Print it
; Check if first series

; Don't print last stop time if
; Series 1

;Point to last stop time
; Print it
; Print START TIME FOR SERIES
;#
; Start time in 5 bytes, packed BCD
; Store and check it

CHECK AGAINST CURRENT TIME or
PRECEDING STOP TIME.

; Point to buffer
;Read the clock
; Point to start time
; Point again to time buffer
; Compare
;If carry, then exit
; Error if here

; Point to stop time
; Compare
;If OK, then exit

; Print error message
;Try again

STOP TIME.

; Print STOP TIME
; Print message

; Stored at STOPTB
;Get it
; Point to start time
; Compare
;Stop time is later if MINUS
; Print error
;Try again

112

;PARAMETER VERIFICATION ROUTINES

; EVENT PARAMETER CHECK

SPITBACK:

PESTO

PESTY;

call
call
call
Id
cp
JP

CRLF
CONT
SPITP
a,(SERTYP)
'e'

nz,WINDSPIT

;Print CRLF
;Wait
;Print common series info
;Get Series type
;Check if event mode
;If not, goto window routine

- POST EVENT SAMPLES.

PRINT
PRINT
Id
call
Id
cp
jr
Id
call
Id
call
Id
call
call

PESPP
EQUALS
hl,PESAMS
PBCD
a,87H
m
nz, PESTY
a,'.'

PBYT
a, '5'

PBYT
a,'%'

PBYT
CRLF

;Print message
;Print '='
;Point to value
;Print value
;If post event is 87 add .5

;Load a
;Print it
;Load a '5'

;Print it
;Load a '%'

;Print it
;Print CRLF

- SHORT TERM AVERAGE.

SHORTSPIT:
PRINT STA1
Id
call
Id
call
PRINT
call

a, .
PBYT
hl,STASAV
PBCD
SECOND
CRLF

;Print message
;Load a
;Print it
;Point to value
;Print it
;Print 'seconds'
;Print CRLF

- THRESHOLD.

THRESHSPIT:
PRINT
Id
call
PRINT
call
jr

THRSH1
hl,THRSHSV
PBCD
DBP
CRLF
OKPARAM

;Print message
;Point to value
;Print it
;Print message
;Print CRLF
;Goto verify routine

113

; WINDOW PARAMETER CHECK

- OFFSET.

WINDSPIT:
PRINT
Id
call
PRINT

PRINT
Id
call
PRINT
call

WOFF
hi,OFFSET
PBCD
SECOND

;Print message
;Point to value
;Print it
;Print 'seconds'

- PERIOD.

WPER
hi,PERIOD
PBCD
MINUTE
CRLF

;Print message
;Point to value
;Print it
;Print 'minutes'
;Print CRLF

114

. VERIFY PARAMETERS

OKPARAM: QPRINT
or
cp
jr
call
JP

PARSTOR: Id
Id

PARMOV: LDI
Id
cp

Id
call
QPRINT
or
cp
JP
JP
ret

OKQ
20h'y'
z,PARSTOR
RESTIME
REPENT
de,(PARBUF)
hl,NSCRAM

LOW(ENDPARA)
nz,PARMOV
(PARBUF),de
CRLF
NEXTSER
20h
"n"

z,EXECU
NSERIES

;Force to lower case
;A11 OK?
;If so, store them

;Start over if not
;Point to buffer
;Point to NSCRAM
;Move data
;Get low byte of parameter pointer
;Compare
;If not end, do some more
;Save pointer

;Force to lower case

;Goto to next

; COMMON PARAMETERS

SPITP

SWIND;

PUSHALL
PRINT
call
call
PRINT
Id
call
call
Id
cp
jr
PRINT
jr
PRINT

CLRSCR
SNPT
CRLF
NEXPP
hl,EXPN
BCDPT
CRLF
a,(SERTYP)
'e'

nz, SWIND
EVENTP
SPIT2
WPRMT

;Save regs.
;Clear the screen
;Print series no.

;Next no. exp.
;Point to storage
;Print it
;Print CRLF
;Get series type
;Check if event
;If not, goto window routine
;Print message
;Goto next
;Print window message

115

SPIT2:

PCHLO:

SPITBSIZ:

SAMRATS:

PRINT
Id
call
PRINT
PRINT
Id
call
call
PRINT
Id
rrca
Id
Id
sub
or
rrca
inc
or
call
push
Id
call
pop
inc
djnz
call
call

PRINT
Id
call
Id
call
call
PRINT
Id
call
PRINT
call
call
call
POP ALL
ret

STFS
hl,STRTTB
TIMDUT
STOP
TFS
hl,STOPTB
TIMOUT
CRLF
ACHAN
a,(NCX2)

b,a
a, (10)
ADPORT-1
a

a
30H
PBYT
af
a,','

PBYT
af
a
PCHLO
BSPCR
CRLF

BSIZP1
hl,BSZSAV
PBCD
a,'K'

PBYT
CRLF
SINTV1
hl,SRATE
PBCD
MILSEC
CRLF
RTIME
CRLF

iPrint 'start'
; Point to storage
Get time
,Print 'stop'
Print message
;Point to storage
Get time

, Print CRLF
;Print no. active channels
Get value
;Shift it
;Move it to B
^et base channel
;Remove port address
Clear carry
;Divide by 2 (2 PORTS/CHAN)
,First channel =1 for user
iConvert to ASCII
Print it
Save ace.
,Load a ','

; Print it
iRestore regs.
iIncrement A
For all channels

; Backspace
iPint CRLF

;Print buffer size
; Point to storage
;Print it
Load a 'K'

, Print it
Print CRLF
Print sample interval
Point to storage
Print it
;Print 'ms'

, Print CRLF
Print time
iPrint CRLF
Restore regs.

116

ENTRY SUBROUTINES

; SAVE THE STOP TIME

SAVTIME
exx
Id
Id
Id
LDIR
exx
ret

be, 10
de,TIMSAVE
hl,STOPTB

;Save regs.
;Load count
;Point to time temporary storage
;Point to stop time storage
;Move it
;Restore regs.

; RESTORE THE STOP TIME

RESTIME
exx
Id
Id
Id
LDIR
exx
ret

be, 10
de,STOPTB
hl,TIMSAVE

;Save regs.
;Load count
;Point to stop time
;Point to temp storage
;Move it
;Restore regs.

 CALCULATE THE MINIMUM WINDOW PERIOD
- THE MINIMUM PERIOD IS BASED ON THE
AMOUNT TIME REQUIRED TO FILL THE BUFFER
PLUS TIME TO WRITE DATA TO TAPE.

- TIME TO WRITE TO TAPE IS BASED ON BUFSIZ,

MINALP

NOMIN:

Id
sla
or
Id
Id
add
daa
cp
Id
jr
inc
inc
Id
add
Id
ret

a, (BUFSIZ)
a
10H
b,a
a,(RECTIME+l)
a,b

59H
b,0
c, NOMIN
b
b
a,(RECTIME)
a,b
b,a

;Load buffer size
I Shift it
I Allow at least 10 sec for write
;Move it to B
;Load record time
;Add them
;Decimal adjust
;Check if greater than 1 min
;Start minute count at 0
;If less than 1 min. increment only once
Increment minute count
iAgain
;Get record time
,add them together
Save it in B

117

; GET GAIN OR DAMPING FOR EACH CHANNEL
; - GETS 1 OR 2 BCD DIGITS, STORES THEM AT HL,
; AND CARRY FLAG IS SET IF IMPROPER ENTRY.

CHANNEL:
WPRINT CH1
WPRINT CH2
WPRINT CH3
WPRINT CH4
ret

;Print channell?
;Print channe!2?
;Print channels?
;Print channe!4?

; COMPUTE AND DISPLAY RECORD TIME

RTIME:

SHLP:

push
exx
PRINT
Id
Id
Id
sra
rr
djnz
Id
call
Id
Id
inc
Id
dec
call
call
PRINT
inc
call
call
PRINT
call
pop
exx
ret

af

RTIMEP
de, (MS AMPS)
a, (SHIFTER)
b,a
d
e
SHLP
a, 60
DIVIDE
hl,RECTIME
m,e
hi
m,b
hi
HTBCD
PBCD
MINUTE
hi
HTBCD
PBCD
SECOND
CRLF
af

; PRINT SERIES #

SNPT: PRINT
Id
call
call
ret

SN
hl,CSN
BCDPT
CRLF

;Save regs.
;Print message
;Get no. samples (max)
;Get AD value
;Move it to B
;Divide by 4

;Until shifter value goes to zero
;Divide by 60 to get minutes

;Point to storage
;Save minutes

;Save seconds

;Convert it to packed BCD
;Print the result minutes

;Print the resulting seconds

;Print "SERIES #"
;Point to the series number
;Print it

118

; TABLE LOOKUP ROUTINE
; - ALL REGISTERS ARE ALTERED.
; - ON ENTRY HL MUST POINT TO TABLE AND A
; MUST HAVE THE ENTRY.
; - ROUTINE EXITS WITH TABLE VALUE IN A,
; TABLE POINTER IN HL, AND THE TABLE

	OFFSET IN DE.

TBLAD: Id
Id
add
Id
ret

d,0h
e,a
hl,de
a,(hi)

;Clear D for 16 bit addition
;Move the entry to E
;Add the entry to the table
;pointer

119

;CONTROL AND ACQUISITION ROUTINES

; SET UP SERIES NO. AND BUFFER
; - SAVE THE TOTAL NUMBER OF SERIES IN LSN,
: - START CURRENT SERIES WITH 0001.

CONTROL:
Id
Id
Id
Id
inc
inc
Id
Id
Id
call
Id
Id
Id
Id

hi, LSN
de,CSN
a,(de)
m,a
hi
de
a,(de)
m,a
hl,CSN
BCDCLR
a,l
(CSN),a
hl,SERBUF
(SERPTR),hl

; INITIALIZE THE SERIES

NEWSER: di
Id
out
Id
ei
Id
call
STA
call
call
Id
cp
Jr
cp
jr
JP

a,l
(INTPRT),a
(STOPTl),a

hl,CEXPN
BCDCLR
(CEXPN) , 1
LDSER
SPITP
a,(SERTYP)
'e'

z,EVENTX
't'

z, WINDOW
ENDPRO

;Point to the last series number
;Point to the current series no.
;Get LSB of number
;Save it in LSN
;Bump pointers

;Get MSB of no.
;Save it in LSN
;Point to current series no.
;Clear it

;First series is #1
;Load start of series buffer
;Save it

;Disable interrupts
;Load 1
;Send it to interrupt mask
;Stop timer 1
;Enable interrupts
;Clear the old exp no.

;First experiment is #1
;Load series variables
;Print them
;Load series type
;Is it event mode?
;If it is, setup event
;Is it timer mode?
;If so, setup window
;If neither, then end it

120

; EVENT SETUP

EVENTX :
EVNT2:

EVNT1 :

call
Id
Id
call
xor
out
call
call
call
jr
ccf
call
JP

TCHECK
hl,EVNTl
(ABRTV),hl
INITW
a
(AVGPRT) , a
PEM
EDO IT
NEXTW
nc,EVNT2

INCSER
NEWSER

;Look for start time
; Save abort vector

; Initialize ports and buffers
; Clear A
; Enable long term average
; Print exp message
;Get data
; Increment exp no.
; Continue if not done
; Clear carry flag
; Increment series number
;Get next series

; WINDOW SETUP

WINDOW:

WIN1:

; LOAD

LDSER:

Id
Id
call
call
call
call
call
jr
ccf
call
JP

SERIES

exx
Id
Id
Id
Idir
Id
exx
ret

hl,WINl
(ABRTV),hl
INITW
PEM
TCHECK
DOIT
NEXTW
nc, WINDOW

INCSER
NEWSER

PARAMETERS FROM

hl,(SERPTR)
bc,NOPARA
de,NSCRAM

(SERPTR),hl

; Save abort vector

; Initialize ports and buffer
; Print exp message
; Check time
;Get data
; Increment exp. no.
; Continue until done
; Clear the carry flag
; Increment series no.
; Start new series

THE SERIES BUFFER

; Save regs.
; Get series pointer
;Load no. of parameters
; Point to NSCRAM
;Move it
; Save pointer
; Restore regs.

; PRINT EXPERIMENT MESSAGE

PEM: PRINT
Id
call
PRINT
Id
AND
or
call
Id
call
ret

EXPM
hl,CEXPN
BCDPT
TM
a,(IMA)
TRACKMA
30H
PBYT
a,CR
PBYT

; Print message
; Point to experiment no.
; Print it
; Print track message
;Load the track number
; Strip the mask
; Convert to ASCII
; Print it
;Load CR
; Print it

121

; INITIALIZE BUFFER AND PORTS

INITW: xor
Id
Id
Id
Id
Id
Id
Id
Id

di
out
ei
Id
Id
ret

; ACQUIRE
'

DOIT:

;

ALLAC? :

;
ACQUIRED :

Id
out
Id
out
di
Id
out
ei

Id
xor
or
inc
or
jr
bit
jr
dec
Jr

i

di
Id
out
Id
Id
ei
call
ret

a ; Clear A
l,a ;Move it to L
a,(BSTART) ;Load starting address
h,a ;Move that to H
(BUFPTR),hl ;Save it as buffer pointer
(WBUFSAV),hl ;Save it again
hl,(MSAMPS) ; Point to no. samples (max)
(NSAMPS),hl ;Save that
a,Tl-INT-EN or EARLYJTERM

; Load interrupt value
; Disable interrupts

(INTPRT),a ;Send it out
; Enable interrupts

a, 1 ; Load A
(PCCLRB),a ; Clear port B of NSC810

WINDOW DATA
- LOADS PORTS AND SETS INTERRUPTS.

a,(ADVAL) ;Load sample rate
(ADPORT),a ; Send it out
a,(ANVAL) ;Load STA & THRES code
(ANAPRT),a ; Send it out

; Disable interrupts
a,Tl INT_EN or AD INT_EN or EARLY TERM
(INTPRT),a ; Enable board interrupts

; Enable interrupts

- LOOP UNTIL NSAMPS GOES TO 0.

hl,NSAMPS ;Get no. samples
a ; Clear A
m
hi
m
z, ACQUIRED
7, (hi) ;JUST IN CASE OF STRANGE EVENTS
nz, ACQUIRED
hi
ALLAC?

- RESETS INTERRUPTS AND WRITES DATA.

; Disable interrupts
a,Tl INT_EN or EARLYJTERM
(INTPRT),a ; Enable board interrupts
a, 1 ;Load A
(PCSETB),a ;Set Port B of NSC810

; Enable interrupts
WDR ; Write data

122

; ACQUIRE EVENT DATA

EDOIT;

ALLACE;

Id
out
Id
out
di
Id
out
ei

Id
xor
or
inc
or
jr
bit
jr
dec
jr

- LOADS PORTS AND SETS INTERRUPTS

a,(ADVAL) ;Load sample rate
(ADPORT),a ;Send it out
a,(ANVAL) ;Load STA & THRES code
(ANAPRT),a ;Send it out

;Disable interrupts
a,Tl_INT_EN or AD_INT_EN or EARLYJTERM
(INTPRT),a ;Enable board interrupts

;Enable interrupts

- LOOP UNTIL NSAMPS GOES TO 0.

hi,NSAMPS
a
m
hi
m
z,EGOT
7,(hi)
nz ,EGOT
hi
ALLACE

;Get no. samples
;Clear A
;Look bor both bytes NSAMPS
;to go to 0

;If 0 then done
;JUST IN CASE OF STRANGE EVENTS

jRepoint to first byte
;Try again

- LOOK FOR AN EVENT.

EGOT: in a,(ANAPRT) ;Look for an event
rla ;Rotate bit 7 to carry
jp nc,EGOT ;Continue until event

; - NOW QUALIFY THE EVENT.

Id a,14h ;Event line must be high 20 events
Id (EQFY),a ;Set counter

EGOT1: in a,(ANAPRT) ;Look for event
rla ;Rotate bit 7 to carry
jp nc,EGOT ;No event
Id a,(EQFY) ;Get count
cp 0 ;Is it zero?
jr nz,EGOTl ;If not,try again
Id a,l ;Disable average
out (AVGPRT),a

123

- GET POST EVENT SAMPLES.

Id hl,(PESAMPS)
Id (NSAMPS),hl
Id hl,NSAMPS

PELP1: xor a
or m
inc hi
or m
jr z,EAQUR
bit 7,(hi)
jr nz,EAQUR
dec hi
jr PELP1

;Load no. post event samples
;Load counter
;Point to counter
;Clear A
; Is it zero?
;Get next byte
Is it zero?
If so, record data
;In case of strange events
iThen done
,Get back to PECTR
,Get some more

; - GET TIME AND RECORD DATA.

EAQUR: Id hl,(BUFPTR) ;Get current pointer
Id (BEND),hi ;Save it
di ;Disable interrupts
Id a,Tl_INT_EN or EARLY_TERM
out (INTPRT),a ;Enable interrupts
Id a,l
Id (PCSETB),a ;Set port B of NSC810
ei ;Enable interrupts
call TIMREC ;Get time
call EWDR ;Write data
ret

124

; INCREMENT THE SERIES #
; - CHECKS THAT RESULT IS LESS THAN LSN.

INCSER: push
Id
call
Id
Id
call
JP
pop
ret

af
hl,CSN
BCDCT
de,LSN+l
hl,CSN+l
BCDCP
c,ENDPRO
af

;Save ace.
;Increment series number

;Point to last series number
;Point to current series number
;Compare them
;If there, end it
;Restore ace.

. INCREMENT THE BCD EXPERIMENT #
; - CHECKS THAT IT IS LESS THAN THE MAX
; - ALSO CHECKS THAT NOT AT STOPTIME.
; - AF ALTERED.
; - CARRY IS SET IF AT MAX.

NEXTW: call NOTSTOP ;Check if at stop time
ret c ;End if carry
Id hl,CEXPN ;Get exp. no.
call BCDCT ;Increment it
Id hl,CEXPN+l ;Point to current exp. no.
Id de,EXPN+l ;Point to last exp. no.
call BCDCP ;Compare them
ret

125

; DEFINE STATEMENTS

ACHAN:

BCHAP:

BSIZP:
BSIZP1:

CH1:

CH2:

CH3:

CH4:

CHSCI:

CRUISE:

DEPL:

DBF:

EEXPM:

EQUALS:

EVENTP :

EXPM:

FED:

FEG:

INSTR:

1ST:

IST1:

LAT:

LONG:

MAX:

MINUTE:

MILSEC:

db

db

db
db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

'ACTIVE CHANNEL(S) = ',0

'BASE CHANNEL (1-4)',0

'ENTER 1,2, or 4 blocks of 8K'
CR,LF, 'RECORD SIZE = ',0

'CHANNEL 1 ',0

'CHANNEL 2 ',0

'CHANNEL 3 ',0

'CHANNEL 4 ',0

'CHIEF SCIENTIST ',0

'CRUISE # ',0

'DEPLOYMENT # ',0

' db',0

'(Enter 0 for maximum number) ',0

= ',o

'EVENT MODE',CR,LF,0

'EXPERIMENT #',0

'FRONT END DAMP ING ',CR,LF,0

'FRONT END GAIN',CR,LF,0

'INSTRUMENT # ',0

'IMPROPER START TIME' ,CR,LF,0

'IMPROPER STOP TIME',CR,LF,0

'LATITUDE ',0

'LONGITUDE ',0

'MAXIMUM ',0

' min. ',0

ms . ' , 0

126

NCAP: db CR,LF,'# OF CHANNELS (1-4)',0

NEXPP :
SN:

NEXTSER:

PESP:

PESPP:

RTIMEP :

SECOND:

SINTV:
SINTV1:

SPHERE:

STA:

STA1:

STFS:
TFS:

STOP:

TIM1M:

TIMNOW:

THRSH:
THRSH1 :

TM:

WARN8:
WARN1:

WARNO:

WE:

WOFF1 :
WOFF:

WPER1:

WPER2 :
WPER:

db
db

db

db
db
db

db

db

db
db

db

db
db
db

db
db

db

db

db

db
db

db

db
db
db
db

db

db
db

db

db
db

'# OF RECORDS = ',0
'SERIES # ',0

CR,LF,'DO YOU WISH ANOTHER SERIES',0

CR,LF,'ENTER 87(.5), 75, 50, or 25%'
CR,LF
'POST-EVENT SAMPLE (%)',0

'RECORD TIME = ',0

' sec.',0

'ENTER 1ms, 2ms, 4ms, or 8msec '
CR,LF,'SAMPLE RATE = ',0

'SPHERE # ,0

WPRMT: db

CR,LF,'ENTER .05, .10, .25, or .50 SEC.'
CR,LF
'STA TIME CONST = ',0

CR,LF,'START '
'TIME ',0

'STOP ',0

'STOP TIME OF LAST SERIES ',0

'TIME NOW: ',0

CR,LF,'ENTER 6, 12, 18, or 24 db.',CR,LF
'THRESHOLD = ',0

TRACK #',0

'164'

'K RESISTOR HEADERS ON FILTER BOARD FOR'
'THIS SAMPLE RATE'
CR,LF,'*** WARNING *** ',CR,LF,0

'TIMER or EVENT MODE(T/E) ',0

'ENTER (0-59 sec.)'
CR,LF,'WINDOW OFFSET = ',0

'ENTER (',0

'-99 min.)'

CR,LF,'PERIOD of RECORDS = ',0

'TIMER MODE',CR,LF,0

127

; TABLES

; - BUFFER SIZE TABLES

BBTBL: db 00h,0e0h,0c0h,00h,80h
BSTBL: db 00h,20h,40h,00h,80h

; - SAMPLE RATE TABLES

ADTBL: db 0,2,6,0,1,0,0,0,5
SHTBL: db 00h,0ah,09h,0,08h,0,0,0,07h

WNTBL: db

- WARNING TABLE

021h,041h,00h,082h

END

128

