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INTRODUCTION

As part of the Pacific-Arizona Crustal Experiment (PACE; Howard, 1986), a seismic-
refraction experiment was conducted in western Arizona and southeastern California.
PACE is a multidisciplinary effort to understand the crust of the southwestern U.S. Cordillera
along a transect from the southern California borderland to the Colorado Plateau. The
data reported here were collected in conjunction with the first seismic-refraction experi-
ment of PACE, consisting of two perpendicular profiles centered on the Whipple Mountains
metamorphic core complex in the Colorado Desert of eastern California. Preliminary re-
sults of the seismic-refraction experiment are reported by Fuis and others (1985).

This report describes only the three-component seismic data recorded on portable
| broadband digital recorders (GEOS; Borcherdt et al., 1985). The vertical-component
data recorded on portable analog recorders (Healy and others, 1982) will be described in
forthcoming reports. This report provides analog copies of the digital recordings obtained
from velocity transducers and accelerometers for each of the sources detonated during
these experiments. Complete response curves are provided for each GEOS system for each
deployment. Digital copies of the data are available on request.

Scientific objectives for this experiment with GEOS include shear-wave velocity
structure and structure of the crust-mantle interface, especially as it can be inferred
from near- and post-critical reflection data. A study of near-critical reflection data is
stimulated by laboratory evidence and recent theoretical work (Brekhovskikh, 1960; Becker
and Richardson; 1969, 1972; Borcherdt and Wennerberg, 1985; Borcherdt, Glassmoyer, and
Wennerberg, 1986). This work shows that the characteristics of low-loss anelastic body
waves near critical angles are distinct from those that would be predicted on the basis
of elasticity or on the basis of one-dimensional anelastic models. These distinctions have
proved useful in the laboratory for measurement of material properties, especially intrinsic
absorption. The wide-angle three-component reflection data should provide information
on the structure of the crust-mantle interface as well as an opportunity to examine recently
predicted characteristics of post-critical reflections.

Other objectives for this experiment include: assessment of ground motion severity

near shot points and an evaluation of instrument performance characteristics for seismic-
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refraction experiments. For locations near shot points the GEOS systems were set as
six-channel systems with two sets of three-component transducers. This configuration
permitted on-scale strong-motion records to be obtained for all sources at each GEOS
location. The experiments also provided an opportunity to evaluate design features of the
GEOS in the field. Although the system was designed explicitly for a variety of active and
passive seismic experiments, including seismic refraction, these experiments provided the
first opportunity to evaluate these features for a complete seismic-refraction experiment

using arrays of 11 and 12 systems (66-72 channels).

INSTRUMENTATION

Data presented in this report were recorded, using General Earthquake Observation
Systems (GEOS). A detailed description of the systems is provided by Borcherdt et al.,
1985. A brief summary is provided of recording and playback system characteristics of
interest for this report. Recording system parameters chosen for this experiment are

provided in the next chapter.

Recording System

The GEOS recording system was developed by the U.S. Geological Survey for use in a
wide variety of active and passive seismic experiments. The digital data acquisition system
operates under control of a central microcomputer, which permits simple adaptation of the
system in the field to a variety of experiments; including, seismic refraction studies, near-
source high-frequency studies of strong motion, teleseismic earth structure studies, studies
of earth tidal strains, and free oscillation studies. Versatility in system application is
achieved by isolation of the appropriate data acquisition functions on hardware modules
controlled with a single microprocessor via a general computer bus. CMOS hardware
components are utilized to reduce quiescent power consumption to less than two watts for
use of the system as either a portable recorder in remote locations or in an observatory
setting with inexpensive backup power sources. The GEOS together with two sets of three-

component sensors (force-balance accelerometer, velocity transducer) and ferrite WWVB
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antenna was used at the station locations near shot points as shown in Figure 1 (see
Borcherdt et al., 1985 for hardware modules comprising the system).

The signal conditioning module for the GEOS has six input channels, selectable under
software control, permitting acquisition of seismic signals ranging in amplitude from a few
nanometers of seismic background noise to 2 g in acceleration for ground motions near large
events. The analog-to-digital conversion module is equipped with a 16-bit CMOS analog-
to-digital converter which affords 96 dB of linear dynamic range or signal resolution; this,
together with two sets of sensors, implies an effective system dynamic range of about 180
dB. A data buffer with direct memory access capabilities allows for maximum throughput
rates of 1200 sps. With sampling rates of any integral quotient of 1200, broad and variable
system bandwidth ranging from ‘(10‘5 —6x10% Hz) is achieved allowing the use of recorders
with a wide variety of sensor types.

Modern high-density (1600-6400 bpi) compact tape cartridges offer large data storage
capacities (1.25-25 Mbyte) in ANSI standard format to facilitate data accessibility via
minicomputer systems. Read capabilities of cartridge tape recorders are utilized to
allow recording parameters and system operational software to be changed automatically.
Installation of an expanded data buffer module allows the system to act as a solid-state or
a dual-media recorder. Systems equipped with modems can be utilized to transmit data
via telecommunications to a central data processing laboratory.

Microprocessor control of time-standard provides the capability to synchronize
internal clock via internal receivers (such as WWVB and satellite), external master clock,
or conventional digital clocks. Microprocessor control of internal receivers permits systems
on command to determine time corrections with respect to external standard. This
capability permits especially accurate correction for conventional drift of internal clocks.

Accurate tn situ calibration of system components improves data accuracy and permits
on-site evaluation of potential system performance malfunctions. The calibration module
currently implemented in the GEOS permits calibration of three types of sensors and the
signal-conditioning module under software control of the CPU. Calibration capabilities for
sensors include velocity transducers with and without calibration coils and force-balance

accelerometers. In the case of the velocity transducers, a dc voltage, derived under CPU
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control for appropriate gain setting from the D/A converter, is applied to either the
main or calibration coil of the transducer for a software-selectable time interval. Voltage
termination corresponds to an applied step function in acceleration to the sensor mass
with the resultant signal determining relative calibration. In the case of force-balance
accelerometers +12 volts are applied to the damped and undamped control lines. The
signal-conditioning module is calibrated using impulse of one sample duration and an
alternating dc voltage derived and applied under software control to the amplifiers while
the sensors are disconnected via appropriate relays.

Using a 32-character alphanumeric display under control of the microcomputer makes
for convenient system set-up and the flexibility to modify the system in the field for a
wide variety of applications. English-language messages to the operator, executed in an
interactive mode, reduce operator field set-up errors. A complete record of recording
system parameters is recorded on each tape together with calibration signals for both
the sensor and the recorders. These records assure rapid and accurate interpretation via
computer of signals, both in the field and in the laboratory.

Flexibility to modify the system to incorporate future improvements in technology
is achieved using a structured software architecture and modular hardware components.
Incorporation of new hardware modules is accomplished in a straightforward manner by
replacing appropriate modules and corresponding segments of controlling software.

The system response designed for seismic refraction applications was intended to allow
broadband signals (1-200 Hz) to be recorded on scale at as high a resolution as permitted by
seismic background noise levels. The amplitude response of the recording system, together
with that for two types of sensors frequently used is shown in Figure 2. Response curves
determined from signals recorded at each station location are described in a subsequent

chapter.

Data Playback System

The read and write capabilities of the mass-storage module, together with the D/A
conversion module, permits the GEOS to be used as an analog as well as digital (via RS-

232) playback system in the field. Visual inspection of digitally recorded data is useful
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for determining instrument performance, evaluation of recording parameters, evaluation
of environmental factors (e.g., local noise sources, etc.). RS-232 capabilities of data
playback unit and ANSI-standard tape cartridges permit playback of digital time series
on minicomputer systems in the field or laboratory. Digital playback of data is generally
performed using an ANSI-standard serpentine tape reader as a peripheral to minicomputer
systems in the laboratory. Deployment of minicomputer digital playback systems in the
field is generally most feasible for large-scale high-data volume experiments.

For these experiments only analog playback capability was utilized in the field. Analog
playbacks on light-sensitive paper were utilized in the field to identify seismic events,
trigger parameters, and evaluate instrument performance. Digital playback of the data
was conducted with a Tanberg serpentine tape drive attached to the PDP 11/70 at the
National Strong Motion Data Center in Menlo Park, using a variety of software packages,

developed in large part by G. Maxwell, E. Cranswick, and C. Mueller.

SITE SELECTION/INSTRUMENT CONFIGURATION
AND EVALUATION

Locations for the seismic refraction profiles are shown in Figure 3. Information
regarding shot points for the profiles is provided in Table 1. Sites along these profiles
were chosen for the GEOS recorders to provide near- and post-critical reflection data from
the crust-mantle interface. The instruments were colocated with some of the sites used
to record vertical component data on the U.S.G.S. cassette recorders. Portions of the
profiles occupied by GEOS also overlapped the near-vertical reflection profiles recorded by
U.C. Santa Barbara. The locations for each of the GEOS recorders are shown in Figures
3 and 4. Station coordinates and pertinent recording parameters for each of the three
separate deployments of the instrumentation are tabulated (Table 2).

Each of the shots detonated during the experiment were recorded on the GEOS set to
record in the pre-set time mode. The systems were programmed to automatically record
during time intervals pre-established for detonation of the various shot points. Operation
in this mode resulted in all shot points being recorded at each station with no exceptions.

Timing at each of the stations was achieved using the capability of the recorders to

synchronize to WWYVB. Timing corrections were recorded at selectable intervals during the
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2448 hr. deployment periods to provide a timing accuracy of generally less than 5 ms. A
check of ten systems on the first deployment and a spot check of systems thereafter with an
external master clock confirmed this accuracy. In comparison, recorders without remote
correction capabilities yield timing accuracies of 40-80 ms over a 24-48 hour interval,
using comparable clocks. Measurement of clock drift rate and interpolation has been used
in some cases to reduce uncertainties encountered when remote correction capabilities are
not available, but they are often difficult to implement in large-scale field experiments.

In anticipation of recording a wide range in signal amplitudes ranging from seismic
background noise to more than 1 g in acceleration near the shot points, two different
types of sensors were used. For those sites near the shot points, the GEOS systems
were set as six-channel systems. These systems were used to simultaneously record the
output of both force-balance accelerometers and velocity transducers. The gain settings
for the accelerometers were estimated at the various sites based on distance and size of the
explosion (see Table 2).

For those sites more than 3 km from the shot points, the GEOS were set as three-
channel systems to record the output of L-22 velocity transducers. These conﬁgurations.of
the systems permitted the signals from all sources to be recorded on-scale at each site and
at maximum signal resolution relative to seismic background noise levels. By recording
the output of each of the velocity transducers at 60 dB gain, the minimum level of signal
resolution was determined by seismic background noise and the upper limit by a clipping
level of the A/D module. This gain setting allowed seismic radiation fields for all shot
points at a distance of more than 3 km to be detected and recorded on-scale.

Sampling rates for all but one of the locations were chosen at 200 sps per channel
with an anti-aliasing high-cut filter selected at 50 Hz (for a resultant Nyquist frequency
of 100 Hz). One location (station 379) was operated at 400 sps and 100 Hz anti-aliasing
high-cut filter. The sampling rate of 200 sps/channel resulted in an approximate 45-
minute continuous record capacity per cartridge tape for the systems used as three-channel
systems.

Automatic self-calibration capabilities of the GEOS permitted calibration signals for

both the sensor-recording system and the recording system without sensors to be recorded
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at each station location. Calibration signals for the systems set as three-channel systems
were recorded at both 36 and 54 dB gain levels. The gain levels used to calibrate the
accelerometer channels were those used to record the data (see Table 2). As calibration
signals were recorded for each GEOS deployment location, a complete evaluation of sensor
and recording system response is feasible for these locations. An evaluation of system
response for the cassette recorders and those used by U.C. Santa Barbara can be persued
at locations of cosited instrumentation using simultaneously recorded seismic signals.

In regards to an evaluation of seismic refraction design goals for the GEOS,
improvements in regard to deployment procedures were recognized, but no fundamental
changes in software or hardware were found to be needed for routine use of the system
on seismic-refraction experiments. Eleven systems were utilized for each of the first two
deployments and twelve systems for the third. For each deployment the systems were
required to record a total of 39 channels (see Table 2). Of this total, three of the channels
failed on each of the first two profiles. With the exception of these malfunctions all thirty
shots were recorded on the remaining channels. The percentage of channels operating
correctly throughout the experiment was 95%. The exceptionally high data return for
the first field deploy;nent/test of the GEOS for seismic refraction studies confirms the
initial design goals of the system for this particular application. In addition to instrument
reliability, a large part of the success of the experiment is attributable to the competent
execution of a vast array of complicated logistics by an experienced crew coordinated by
E. Criley, G. Fuis, and W. Mooney (not necessarily in that order).

Several aspects of the deployment procedures were found to be in need of improvement.
These included equipping field vehicles with instrument carrying racks and battery charging
capabilities. Implementing these improvements would permit the GEOS to be deployed
without external batteries and all record parameters to be preprogrammed at the field
office. Significant reductions in size and weight of GEOS carrying cases (shipping boxes)
also would facilitate frequent changes in instrument locations often required in refraction
studies.

The GEOS architecture represents a general framework from which a variety of special-

purpose data acquisition systems can be developed. Configuration of special-purpose or
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limited application systems may be practical, provided resources (financial and personnel
are available for development, construction and maintenance). Asthe GEOS was developed
for application in a variety of passive and active seismic experiments, it is of interest to
consider packaging changes to the GEOS that might improve its usefulness for crustal

imaging studies, but decrease applicability for other applications.

Desirable system attributes for crustal imaging are small size and éase in operation.
A configuration of GEOS currently being implemented is that of extending the data buffer
module to near 1 Mbyte. This extension, which is easily implemented by adding memory
to the data buffer module and changes in corresponding software modules, would allow the
system to be used without the tape cartridge and corresponding controller modules. This
configuration would allow reductions in size and weight of the system. Further reductions
can be achieved easily by reducing the number of input channels by simply removing
corresponding signal conditioning cards. This would allow the system to be packaged in a
container not exceeding 8 x 9 x 13 inches. Weight of the system would be reduced to less

than 15 lb.

Utilization of the expanded data buffer as a memory board for mass data storage
offers the advantage of increasing the operating-temperature range over that imposed by
the characteristics of magnetic tape. Implementation of such a board in some systems is
planned to allow use of the GEOS in cold environments, such as Alaska. However, these
proposed changes cannot be implemented without sacrificing beneficial attributes of the
system for other applications. Utilization of the memory board reduces data capacity, data
accessibility, and data transportability. Decrease in the number of channels can reduce the
effective dynamic range and the usefulness of the system for studies requiring two types of
three-component sensors, such as aftershock studies. Use of external batteries and external
CPU for operational-parameter change eliminates the self-containment attribute of the
systems and implies that full capability to reset the systems in the field would no longer
involve merely selection of menu mode via the field-data-acquisition system. Nonetheless,
repeated use of a large number of units for seismic-refraction experiments could justify
modifying the modules to produce a subset of the GEOS for dedicated refraction use.

Fortunately, the microcomputer, together with modular hardware components, provides a
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general framework from which special systems with emphasis on particular attributes can

be easily made.

VELOCITY AND ACCELERATION TIME HISTORIES

Time histories corresponding to the three components of ground motion detected
at each location from each of the thirty shots detonated during the experiments are
shown in Appendices A and B. Those time histories, termed “velocity” (Appendix A),
correspond to signals detected using three-component velocity transducers (L-22; Mark
Products); those termed “acceleration” (Appendix B), correspond to signals detected
using three-component force-balance accelerometers (FBA-13; Kinemtrics). The analog
time histories were derived using digital playback software developed by G. Maxwell and
graphics software developed by E. Cranswick and C. Mueller. Conversion of data format to
that used for the cassette recorder by Mooney et al. has been implementc;d by W. Kohler,

for use in joint interpretation of the data sets collected on both types of recorders.

Velocity Time Histories

The velocity time histories (Appendix A) are presented in a record section format,
with each section showing one of the three components of motion recorded from each shot.
The record sections are arranged in groups corresponding to distinct shots. These groups
are arranged in chronological order according to shot time. Each group is comprised of
two sections. The figures in the first section of each group (containing usually three,
occasianally six figures) show analog traces of record sections six seconds in length as
recorded for each of the three components of motion. The last three figures of the group
show the corresponding traces plotted for thirty seconds. For each shot the figures are
labeled by a capital letter, a number, and a lower-case letter in parentheses (e.g., Figure
Al(a)). The first letter refers to Appendix A, the number refers to the shot number listed
in the shot schedule, Table 1. The lower-case letters distinguish figures within the group
corresponding to each shot.

The horizontal sensors were oriented parallel with and perpendicular, respectively to

the line of deployment. Orientation of the sensors, determined using a Brunton compass,
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is given in the figure captions. Actual shot-station azimuths and distances are given in
Tables 3, 4 and 5. Additional instrument parameters are listed in Table 2.

In the first section of figures for a given shot, consisting of six-second records, traces
are displayed with site number at the top and a range scale indicating distance from the
shot point to the site at the bottom. Amplitudes are normalized to the maximum in the
trace. Times are reduced using 6 km/sec. The shot time is indicated at the top of the
figure in GMT. The sole exception to this format is shot number 25, a fan shot from shot
point 11 into the third deployment. For this shot, the six-second recordings are presented
in the same format as the 30-second recordings.

The last three figures for a given shot are the 30-second recordings. The traces in these
figures are evenly spaced on the page in the same relative position as the instruments had
on the deployment line. Since the stations were quite evenly spaced, the format looks
similar to that for which the traces are spaced according to distance measured from the
shot point. The traces are again normalized to the maximum amplitude. For all traces
the zgro~to—peak amplitude is indicated by the length of the arrow in the heading above -
the traces. The bottom of each trace is labeled with the maximum digital counts in the
trace, thus allowing a comparison of relative amplitudes from site to site. A conversion
factor of approximately 6 x 10~7 converts digital counts to ground motion in cm/sec for
the gain setting used in all these recordings. Times start from the GMT shown in the
heading. Instrument timing was determined by synchronizing internal clocks to WWVB
radio signals. Spot checks were made with a master clock and it was found that the
accuracy of the relative timing was better than 5 msec, except for station 300 where no
time was available. The times indicated for that station are best guesses interpolated from
surrounding stations.

The thirty-second record sections show several interesting features of the recorded
data set that are not apparent in the more conventional and shorter record sections. They
sometimes show late arrivals with amplitudes comparable to those of the first arrivals
(e.g., see Figures A3d and A18e) and are useful for identification of surface waves (e.g.,
see Figure A26g).

The record sections corresponding to each of the components of horizontal motion
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show that for many of the shots, energy recorded from the horizontal sensors was nearly
comparable or in some cases larger than that recorded from the vertical sensors. The
horizontal data is expected to assist in phase identification, especially converted phases,

and to be useful for inferring shear-wave velocity structure.

Acceleration Time Histories

Near-shot accelerograms recorded on FBAs co-located with velocity sensors are
presented in chronological order in Appendix B. A brief summary of the peak accelerations
recorded is tabulated with shot sizes and shot-receiver distances in Table 6.

The largest acceleration recorded was in excess of one g on the vertical component at
station 166 which was within 100m of a 4000lb shot. The peak accelerations were found
to fall off rapidly with distance from the shot point and to scale roughly linearly with shot
size as shown in Table 6.

There are five groups of accelerograms corresponding to the five shots that were near
enough to the sensors to be recorded. Each figure shows the three components recorded
at a particular station for a given shot. Instrument parameters are given in Table 2. As
with the velocity sensors, the FBAs were placed with the horizontal components parallel
with and perpendicular to the deployment line. Azimuths of the horizontal components
are given in the figures next to the traces in the form 090/AZI, where AZI is the three-digit

azimuth. Actual shot-station azimuths and distances are given in Tables 3, 4 and 5.

IN SITU CALIBRATION OF INSTRUMENTATION

Calibration signals for the sensors and the recording equipment were recorded for each
deployment location. These signals, automatically generated by GEOS, provide a basis
for accurate inference of actual ground motion as recorded at the GEOS locations. They
also allow an estimate of differences in relative response for the cassette-recorder systems
colocated by Fuis et al. (1986) and the U.C. Santa Barbara instrumentation deployed by
Malin et al. (1986).

Fourier amplitude spectra computed from the calibration time histories recorded at

each field location are shown for the velocity transducer-recording system configuration
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(Appendix C), the force-balance accelerometer-recording system configuration (Appendix
D) and the recording system independent of the sensors (Appendixes C and D). The
calibration signals for the velocity transducers were recorded at 54 dB gain and those for

the force-balance accelerometers at the gains given in Table 2.

Velocity Channels

Two signals, generated automatically by GEOS, were utilized as calibration for the
data recorded on the velocity transducers. Termination of a known DC voltage applied to
the main coil was used as a calibration signal for the complete sensor-recording system.
An impulse voltage applied at the input of the recording system was used to provide a
calibration signal for the recording system independent of the sensors. Utilization of both
calibration signals allows the system response for the recording system to be estimated
throughout the selected bandwidth and dynamic range of the chosen detection-recording
system configuration.

The output signal recorded as a result of the termination in DC voltage to the sensor
coil is rich in low-frequency content. This input signal simulates a step-function in ground
acceleration applied to the mass of the seismometer. As the derivative of this input function
can be approximated by a delta function, the unit impulse response of the complete sensor—
recording system to ground velocity can be estimated from the Fourier transform of the
recorded time history multiplied by the square of angular frequency. Examples of the
Fourier amplitude spectra computed for each deployment location are shown for each of
the velocity transducer channels in the left-hand column of each figure in Appendix C.
These spectra emphasize that the recorded output signal is rich in low-frequency content
and are most useful for estimating the unit impulse response to ground velocity for the
sensor—recording system combination up to a high-frequency limit imposed by the corner
of the selected anti-aliasing filter and seismic background noise levels.

The Fourier amplitude spectra computed from the output signal generated by the
impulse in voltage applied at the input of the recording system is shown for each channel
in the right-hand column of each figure in Appendix C. These spectra provide an estimate

for the amplitude response of the recording system to ground velocity. As the input signal
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and resulting output signal are especially rich in high frequencies the computed spectra
are most useful for estimating the response of the recording system for frequencies greater
than some low-frequency limit imposed by the relative strength of the applied impulse
voltage for the selected gain setting relative to instrument noise levels.

Utilization of the information contained in each of the recorded calibration signals
permits a rather detailed estimate of instrumentation response to be calculated for each
deployment location. Such estimates can be used to automatically correct data recorded
on GEOS for instrumentation response. Further analysis in this report shall be limited to
general comments on instrumentation performance.

Inspection of the computed calibration curves for the first deployment (Figures C1
through C10) shows that the response of the recording systems (GEOS) (right-hand column
of each figure) was remarkably consistent. Minor variations in the amplification level
and the fall-off characteristics for the anti-aliasing filters are apparent. Knowledge of the
amplitude of the applied delta function in voltage as tabulated for each GEOS system
would allow correction for these variations. One channel (H = 90; Figure C7) shows an
anomalous response near the corner of the anti-aliasing filter. '

Comparison of the curves computed to estimate the sensor-recording system response
(left-hand column; Figures C1-C10) for the first deployment shows larger variations
especially for frequencies less than the natural frequency of the sensors (nominally 2 Hz).
The response of the sensor used at station 162 (sensor #201, see Table 2) suggests that each
component of the sensor was performing improperly. Irregularities in the response curves
near the corner frequency of the anti-aliasing filters can be attributed to high seismic
background noise levels at the time the calibration signals were recorded. Inspection
of the calibration curves computed for the second and third deployments (Figures C11
through C19 and Figures C10 through C30, respectively) shows upon reference to Table
2 that sensor number 201 consistently showed evidence of malfunction on at least one
horizontal component and GEOS recording unit number 26 consistently showed anomalous
response near the anti-aliasing filter corner on channel 6. Other than these apparent partial
malfunctions sensor 197 deployed at station number 214 showed a anomalous calibration

for the H = 90 component, suggesting that possibly the sensor was not properly leveled at
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time of deployment

Acceleration Channels

Two signals, generated by GEOS, were utilized as calibrations for the data recorded
from the force-balance accelerometers (FBA). The output signal generated as the result of
the termination of the application of £12 v to the damped and undamped central lines for
the FBA simulates a step function in ground acceleration applied to the FBA which can
be used to estimate the response of the sensor-recorder system. An impulse in voltage,
applied to the input of the GEOS, provides a calibration signal for the recording system
independent of the sensor.

The effect of applying £12 v to the damped and undamped central lines is to set a
non-zero reference voltage for the servo-amplifier of the FBA, hence forcing an offset of the
accelerometer mass. Resetting to zero simulates a step in acceleration. As the derivative
of this input function approximates a delta function, the unit impulse response of the
recording system to ground acceleration can be estimated from the Fourier transform of the
recorded time history multiplied by angular frequency. Examples of the Fourier amplitude
spectra computed for each deployment location for the FBAs are shown in the left-hand
columns of each figure in Appendix D. These spectra show that the recorded output signal
is richest in low-frequency content and consequently most useful for estimating the unit
impulse response of the FBA-recording system to frequencies less than some high-frequency
limit imposed by the corner of the anti-aliasing filter and noise levels. Comparison of the
spectra computed for each FBA location shows that the responses are extremely similar
with the exception of station 234. The apparent difference in the computed spectra is
attributable to the GEOS recording configuration chosen by operator when the system
was deployed. This GEOS operated at this location was set to record at 100 sps with 50
Hz anti-aliasing filters as opposed to 200 sps chosen for the other recording sites.

The Fourier amplitude spectra computed from the output signal generated by the
impulse in voltage applied at the recording system is shown for each channel in the
right-hand column of each figure in Appendix D. These spectra show that the computed

responses are much more contaminated by noise than were those computed for the velocity
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channels. This contamination is due to the low-voltage level applied at the input for
the lower gain levels used for the FBA channels. In situ calibrations for the recording
systems comparable to those shown for the velocity transducer channels could have been
obtained by setting the gain levels for all channels to those used for the FBAs. This noise
contamination does not indicate a system malfunction, but instead the need to improve

field procedures.
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Figure 1. Side and front panel view of the General Earthquake Observation System
(GEOS) together with a WWYVB antenna and two sets of three-component sensors
commonly used to provide more than 180 dB of linear, dynamic range. System operation
for routine applications requires only-initiation of power. Full capability to reconfigure
system in the field is facilitated by simple operator response to english language prompts
via keyboard.
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Two sets of sensors and linear dynamic range of 96 dB (16-bit) offers the capability to record

without gain change 10 Hz signals on scale with amplitudes ranging from 20 angstroms in
displacements to 2 g in acceleration.
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PACE - 1985
Shot Shot
Number Point
1 8
2 11
3 13
4 9
S 9'
6 8X
7 10
8 4A
9 9X
10 9x'
11 12
12 11
13 14
14 3
15 2
16 3'
17 2!
18 7
19 1

Table 1:

Master Shot List

Date

Shot Time

NOV 5,
309 7 0

Nov 5
309 7

(SR

Nov 85,

309 7 4

NOV 5,
309 7 6

NOvV 5,
309 7 30

NOv 5,
309 9 0

NOV 5,
309 9 2

NOV 5,

309 9 4

NOV 5,
309 9 6

NOV 5,
309 9 30

NOov 7,
312 6 O

NOV 7,
312 6 2

Nov 7,
312 6 4

Nov 7,
312 6 6

NOV 7,
312 6 8

Nov 7,
312 6 30

Nov 7,
312 6 34

NOV 8,
312 9 0

NOV 8,
312 9 2

1985
0.011

1985
0.009

1985
0.017

1985
0.013

1985
0.014

1985
0.011

1985
0.010

1985
0.007

1985
0.011

1985
0.013

1985
0.006

1985
0.010

1985
0.008

1985
0.010

1985
0.013

1985
0.011

1985
0.013

1985
0.007

1985
0.006

20

Latitude
Longitude

34
114

35
115

33
113

34
114

34
114

34
114

34
114

34
114

34
114

34
114

34
113

35
115

33
114

34
114

34
114

34
114

34
114

34
113

33
114

1

4,
9.

37

31.
.7720

36

31.

36

4
17

48
55

16.
29.

25.

32

25.

32

54.
34.

4.

9
37

6

0.

38

6.
.1450

31

0
38

41,
56.

49,
43.

.1915
16.

0732

6421
4429

.5355
58.

3179
9558

95858

.7720

.4078
.8740

.5139
.9536

0713
0464

8152

.6694

8152

.6694

5559
6748

6421

.4429

.0963
59.

0605

.3268
31.

1450

1779

.7549

3268

L1779
.7549

4065
3975

8256
1675

Size
(1bs)
3000
4000
4000
4000
500
1000
3000
2000
1000
500
4000
2000
2100
1000
1000
500
500

3000

2000



20

21

22

23

24

25

26

27

28

29

30

4B

1X

12

14

11

6X

4B

NOV 8, 1985
312 9 4 0.010

NOV 8, 1985
312 9 6 0.013

NOV 12, 1985
317 6 0 2.93

NOV 12, 1985
317 6 2 0.011

NOV 12, 1985
317 6 4 0.154

NOV 12, 1985
317 6 6 0.010

NOV 12, 1985
317 6 8 0.010

NOV 13, 1985
317 9 0 0.008

NOV 13, 1985
317 9 2 0.011

NOV 13, 1985
317 9 4 0.010

NOV 13, 1985
317 9 8 0.010

2\

34
114

33
114

34
113

33
114

34
114

35
115

34
114

34
113

33
114

34
114

34
114

13.
25.

57.
40.

54.
34.

37.
59.

21

34

4]

49.
43,

13

27

4583
5533

3845
0010

5559
6748

0963
0605

.4211
16.

7134

.6421
.4429

.5605
.0605

.4065
56.

3975

8256
1675

.4583
25.

5533

.9460
.3169

2000

500

2400

3200

1000

2000

1000

2000

3000

2000

720

SHOT TIME
NOT EXACT

(LATE)
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Table 6: Maximum observed accelerations (see figures 31-35)

Distance Maz ace. Shotsize Shot Station
from shot pt. (em/sec?) (16s.) point
< 50 meters - 539 1000 6X 391
1km 983 < ace. <~ 1500* 4000 9 166
.1 km 322 500 9’ 166
9 km 4.1 1000 3 234
.9 km 3.5 500 3 234
1.2 km 1.4 1000 3 230
1.2 km 1.0 500 3 230
2.1 km 11.5 4000 9 164
2.1 km 3.8 4000 9 168
2.1 km 2.4 500 9’ 164
2.1 km 1.0 500 9’ 168

*Upper bound based on linear extrapolation of recorded data adjacent to clipped
data point. Lower bound is maximum on scale at 6db gain. Note that the upper bound is
slightly less than if ground motion at station 166 had scaled with shot size as station 164,
but greater than if it had scaled as station 168.
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Figure A1(a), shot point 8: 6 second velocity record. Positive vertical motion is to right.

Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A1(b), shot point 8: 6 second velocity record. Positive N33W motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure Al(c), shot point 8: 6 second velocity record. Positive N57E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A1(d), shot point 8: 30 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 3525 ~ 6 x 10~7 to get cm/sec). Times are
unreduced beginning at time indicated.
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Figure A2(a), shot point 11: 6 second velocity record. Positive vertical motion is .to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.

32



L

<<<+35:04.64-115:09.44>>> TlME=TIME—RANGE/06.00 pd
0 1 2 3 4 5 6 @]
T T T T T T T O 20
<z
2 N>
o7 ! o N
C F"]N
<
°g
s ~ )
m A
'”"‘*"“’"”MNHMMN | S
< ©
. gl
o
°l 12
N
~
o
ol A3 m
i »
<1
;;r *
O_ } q—-
SN
< :
Iy
.O'- it l : @
* o
< +
~ N
[+
2t 1. O
. ] =
[04]
< \]
a}l * *
o| Il éo
<N
m * *
g | i
! i 1 A —
! 1 i ‘ itz O
<O
o]
N - i o
o Y i —-—
It L
i MMM«MWWMWW O
| O
2l ‘ e
:p‘ A A d
o, | W

A0gL

- P

Figure A2(b), shot point 11: 6 second velocity record. Positive N33W motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A2(c), shot point 11: 6 second velocity record. Positive N57E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A2(f), shot point 11: 30 second N57E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 7825 =~ 6 x 10~7 to get cm/sec). Times are
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Figure A3(a), shot point 13: 6 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A3(b), shot point 13: 6 second velocity record. Positive N33W motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A3(c), shot point 13: 6 second velocity record. Positive N57E motion is to right.
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reduced by 6 km/sec. Shot time is indicated.

L“



(S

w
OV

94

%?
i

[44

¥9

A 081

01 ? 3 4 56 7 8 9101112131415161718 1920212223 242526272829
T 1 T 1T 1T 1T T 11

-
-

LzZ\

£Ll

J[

€L

T T T T T T T 1T T

[iesrt il

A'09L

D3S/WO
A3ZIMVYNYON

N/ LHD
—

AP9lL

A'991

/O+600*Cg o

70

AVl

/1081
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Figure A3(e), shot point 13: 30 second N33W velocity record. Abscissa is labeled with
maximum counts in record (multiply by it ~ 6 X 10~7 to get cm/sec). Times are
unreduced beginning at time indicated.
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Figure A4(a), shot point 9, NW stations: 6 second velocity record. Positive vertical motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.
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Figure A4(b), shot point 9, NW stations: 6 second velocity record. Positive N33W motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.
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Times are reduced by 6 km/sec. Shot time is indicated.

Y7



0{0 )

00'¢

00'¥

00°'S

0 1 2 N 4 5

JONVY ¥1°0

L 3
i |
A'99!
4an/LHD 03S/WO
—  Q3ZITVYNHON

00'Z

209

<<<+34:31.96-114:36.77>>>  TIME=TIME—RANGE/06.00

m

pd
~

.!.
70+ B0C%CS

AZIL

90

*
*

A0SL

1000

W@W@M@M

a

Figure A4(d), shot point 9, SE stations: 6 second velocity record. Positive vertical motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.

qg



<<<+34:31.96-114:36.77>>> TIME=TIME-RANGE/06.00
1 2 3 4 5

MLTUA } L ML S M LR A B A L A I A I R AR I I L I I A A A I R A RS R R A RS AR

o
Y o
] W 2
o) <
>
z
(2}
m

JA—
03S/NO
d3ZINMYWYON

00°!|

ZHD/060

—— ===
J0+605%Cg |

:h p—y
3] 3
< e .
O
@)
o .
= 4
O
O
o
< —
@GN

Ladatatatodotatatatadetabatatstodotebotadototat ety oottt Modad Mo tutadotobay ot totabo ot todebolatotobabadslotalatel

[ 4

Figure A4(e), shot point 9, SE stations: 6 second velocity record. Positive N33W motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.
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Figure A5(a), shot point 9', NW stations: 6 second velocity record. Positive vertical motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.
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Figure A5(c), shot point 9, NW stations: 6 second velocity record. Positive N57E motion

is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.
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Figure A5(d), shot point 9/, SE stations: 6 second velocity record. Positive vertical motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
Times are reduced by 6 km/sec. Shot time is indicated.
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Figure A5(e), shot point 9’, SE stations: 6 second velocity record. Positive N33W motion
is to right. Abscissa is distance to shot point. Top of trace is labeled with station number.
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Times are reduced by 6 km/sec. Shot time is indicated.

- 59



£9L2¢

5098

9¥S

=

l—%_ %

_/\'OQL ABLL.
71000

LELT

ov68

LIGZ I

6+L2

6891

-

111213141516 17 18 1920212223 24 25 26 27 28 29
I

o roror T

AQ91
D03S/ND
A3ZITYWHON

3

A9t

N/ LHD
—

F

AN¥91

A'991

ANOLL

/O+600*CQ =

.
*

0¢

*
*

NvLl

Pl

Figure A5(g), shot point 9’: 30 second vertical velocity record. Abscissa is labeled with

maximum counts in record (multiply by 3
unreduced beginning at time indicated.

10

55 & 6 x 1077 to get cm/sec). Times are
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Figure A5(h), shot point 9" ‘
maximum counts in record (multiply by
unreduced beginning at time indicated.

10
2570

30 second N33W velocity record. Abscissa is labeled with
~ 6 x 10~7 to get cm/sec). Times are
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Figure A5(i), shot point 9"

-

30 second N57E velocity record. Abscissa is labeled with

~

maximum counts in record (multiply by 72z =~ 6 X 10-7 to get cm/sec). Times are

unreduced beginning at time indicated.
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Figure A6(a), shot point 8X: 6 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A6(b), shot point 8X:

AOBL

6 second velocity record. Positive N33W motion is to right.

Abscissa is distance to shot point.

Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure A6(c), shot point 8X: 6 second velocity record. Positive N57E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure A6(d), shot point 8X: 30 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by z74%% =& 6 X 10~7 to get cm/sec). Times are
unreduced beginning at time indicated.
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Figure A6(e), shot point 8X: 30 second N33W velocity record. Abscissa is labeled with

~

maximum counts in record (multiply by -27}-2—2;

unreduced beginning at time indicated.

6 x 10~7 to get cm/sec). Times are
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Figure A6(f), shot point 8X: 30 second N57E velocity record. Abscissa is 1a.b<31ed with
maximum counts in record (multiply by 7z4%5 = 6 X 10~7 to get cm/sec). Times are
unreduced beginning at time indicated.
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