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Abstract
Frequency-magnitude data for earthquake activity in Japan, as interpreted 

by Wesnousky and others (1983) relative to Quaternary faulting, are compared 
with the data of faulting in the conterminous U.S., as interpreted by Shaw and 
others (1981) in terms of a generalized branching distribution of faults of 
all lengths measured at a scale of 1:5,000,000 (map compilation by Howard and 
others, 1978). The Japanese data plot as a zigzag trend (raw data as well as 
points based on the maximum moment model of Wesnousky and others) on the 
so-called seismic parallelogram of Shaw and others (renamed a fractogram to 
acknowledge formal relationships to the systematics of Mandelbrot's fractal 
geometry). The trend alternates between intervals roughly parallel to one or 
the other end-member modes of the fractogram. Interpreted in terms of the 
maximum moment model, this pattern suggests that each branch-length order 
defines a maximum earthquake and recurrence time each of which increases at 
the next lower order (longer fault branches of fewer number) according to a 
step-wise hierarchy. Activation of a given length-set engages longer and 
longer portions of segments (or complete segments having a scatter of lengths 
about the mean length for that order) in successive events, with a 
corresponding increase in recurrence time, until that subset attains a 
characteristic moment and magnitude for that order; activity is then expressed 
in terms of a shift, at a constant "buildup time", to a longer length-set 
order containing fewer segments. In each step the maximum earthquake 
increases, but the frequency decreases relative to what it would have been if 
the shorter length-set orders had not reached their characteristic maximum 
moment. This "maximum moment" is not necessarily the theoretical saturation 
maximum (in terms of potential fault length) for a given order; the latter is 
termed the SATURATION limit, representing activation of the longest fault 
segments in that order. In the case of Japanese earthquakes, the 
characteristic maxima seem to vary from 10 to nearly 100 percent of this 
SATURATION limit. Dynamically, these relations imply a quasi-steady, if 
piecemeal and seemingly haphazard, spatial and chronological flow of energy 
from the shorter to longer branch-length orders. Complex behavior of large 
fault systems relates to different regimes of a general progression in which 
aseismic creep, regular intermittent earthquakes, and large unpredictable 
earthquakes (including concepts of seismic gaps and locked and unlocked 
portions of long faults) represent fractally different subsets of the same 
systematic seismic cycle; the possibility is explored that such cycles may 
represent invariant fractal structures in space and time relative to the 
maximum topological dimension 4. Relative to 3 spatial dimensions, fractally 
self-similar subsets exist over small frequency-magnitude ranges, but, in 
general, the fractal dimension fluctuates from a nearly volume-filling mode 
during transitions from shorter to longer length-set orders to 
"less-than-linear" during the approach to maximum events at the longest length 
orders (as the number, N, of segments per order decreases to N = 1). These 
descriptions have also been modified to take account of the moment-magnitude 
correlations of Hanks and Boore (1984). On this basis, a theoretical 
"Ultimate Event" emerges as a natural limit of fractal dimensions calculated 
from slopes in frequency-magnitude, and moment-magnitude diagrams. 
Comparisons of paths in spatial and temporal fractal space suggest a concept 
of macroscopic uncertainty analogous to the Uncertainty Principle of quantum 
dynamics. Similar implications exist concerning simultaneous predictions of 
location and time for earthquakes. Paradoxically, this uncertainty may 
analogously increase our abilities to predict the dynamical characteristics of 
the earthquake process in space and time.

iv



Introduction.
The "b-value problem" in seismology concerns the slope, -b, in a plot of 

the logarithm of frequency vs. magnitude for some class of earthquake events, 
as originally employed by Ishimoto and lida (1939) and by Gutenberg and 
Richter (1944). The problem is one of interpreting how the events that make 
up this descriptive relation have evolved in time and space, and how this 
spatiotemporal pattern of earthquakes correlates with spatiotemporal patterns 
of tectonic deformations (and associated patterns of fault ruptures in space 
and time) which are either known or are assumed to have a causative 
relationship with a specific class of earthquakes. Although the problem is 
conceptually simple it has been notably recalcitrant to any general 
interpretation because of the large numbers of possible sequences and 
conceivable faulting events that may be implicit in a frequency-magnitude 
diagram. Regional boundaries and the spatial and chronological ordering of 
earthquake and faulting events are often either vague or unknown. Therefore, 
there is considerable ambiguity, and possible redundancy, concerning the 
matching up of earthquake and faulting events when there are no on-the-spot 
documentations of the correlative motions and shocks.

Wesnousky and others (1983) contributed significantly to a clarification 
of these problems by comparing the implications of certain simple limiting 
models of fault activation with what is probably the most completely 
documented combined sets of observations on faulting and earthquakes in the 
world; this is the catalog of Quaternary faulting and the 400-year record of 
seismicity in Japan (see Wesnousky and others, 1982, for documentation of data 
and sources). No similarly complete systematic set of data exists in the 
U.S.; however, a general compilation of young faults in the U.S. is given by 
Howard and others (1978), and a general compilation of seismicity is given by 
Algermissen and Perkins (1976) and Algermissen and others (1982). Shaw and 
others (1981) and Shaw and Gartner (1981, 1984) drew on these data sources to 
begin a tentative comparison of faulting and seismicity at the continental 
scale. The present paper attempts to bring these respective efforts into an 
alignment leading toward a unification of concepts with a common perspective 
that satisfies the requirements imposed by both the Japanese and the U.S. data.

Figure 1 shows a hypothetical set of mappable faults of different lengths 
at two magnifications. At the larger scale there is an essentially three-fold
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hierarchy of lengths in which there are fewer faults at the longer lengths. 
The smaller scale shows this set as a subinterval or subset of a more regional 
distribution which, in turn, may only be a subset of an even smaller-scale 
distribution. A map scale is not specified, so these general relations may 
apply to the outcrop scale or to the scale of tectonic plate boundaries; e.g., 
the smaller scale is not unlike a subinterval of a strike slip fault such as 
the San Andreas Fault, CA. A priori, without invoking any theoretical 
constraints, there could be several simple alternative sequences by which all 
fault segments would be eventually activated along their total mapped 
lengths.

In the discussion given by Shaw and others (1981, p 270 ff.), the term 
segment refers to a specified mapped fault that is a member of a given 
length-set order and is capable of producing an earthquake event associated 
with that length. A subinterval of a specific segment length (i.e., a 
subinterval of a single mappable fault of that total length) is referred to by 
the modifier partial segment length. The idealized branching model assumes 
that every branching-order of a characteristic length is composed of a fixed



number of faults of the same exact length; this distribution is approximated 
in Figure 1 where, at the larger scale, there are two longest segments, four 
segments of intermediate length, and ten of the shortest length. Within a 
specified total population of measured faults considered to represent a set, 
for whatever reason, there is a cumulative total length that represents the 
summation of all counted segment lengths. Use of the descriptive term total 
length refers to the complete set under consideration, unless it is 
specifically identified as referring to a different reference length (e.g., 
total length in the conterminous U.S. viewed as a set; total length within a 
Faulting Region viewed as a set; total length of faults outcropping within the 
boundary of a specified seismic zone viewed as a subset or as a combination of 
other subsets; total length within a given number/length-order viewed as a 
subset, and so on). The terms fractional length, fractional activation, or 
fractional rupture length rate (FRLR) normally will refer to the subset of 
total fault length represented by a unique number/length-order relative to the 
total length for a stipulated complete set of all number/length-orders, unless 
fraction is specifically identified in a different context. The fractional 
length of each number/length-order in Figure 1, at the larger scale, is 
roughly one-third; in the actual populations of faults measured by Shaw and 
others (1981), however, the fraction typically increases with decreasing 
segment length (and increasing numbers of segments per order).

In reality, the simplistic relation described above, and shown 
schematically in Figure 1, is likely to be violated in two important ways 
related to resolution and to changes of scale: (1) there may be a hierarchy of 
number/length sets each of which is distinguishably separable from longer or 
shorter number/length sets but which contains a range of segment lengths 
within each set (in the limit there could be a continuum of lengths subdivided 
by a specified ordering progression between a single-valued longest segment 
and a given population of shortest segments; this progression might 
conceivably be carried down to the scale of microcracks if the documentation 
warranted, but it is often limited in practice to documentation at a 
particular map scale where groupings of length populations are often 
discontinuous), and (2) segment lengths at one scale may lose their identities 
under a change in scale (e.g., the distribution of shorter lengths in Figure 1 
may be lost as the map scale is made smaller, or the resolution of associated 
earthquake events is made larger; i.e., the entire interval may be counted as 
only two or three segments at a smaller scale where the smallest segments are 
unresolved and their associated slip events are included in generalized 
foreshock and/or aftershock sequences).

Thus, in general, it may not always be possible to distinguish between 
partial activations of segment lengths and the total activation of each 
segment length within a suite of variable lengths, in the absence of a 
one-to-one documentation of a correlative rupture length for each earthquake 
event. The Japanese data considered by Wesnousky and others (1983) apparently 
is of sufficient quality to justify the statement that the historic record of 
seismicity can in most cases be associated with mappable faults that are 
activated along their total segment lengths. Alternatively, this is another 
way of saying that the mappable scales of resolution are made sufficiently 
detailed to be compatible with the resolution of seismic events. Even there, 
however, there may be some ambiguity about distinguishing complete rupture 
events from what might be regarded as foreshock and/or aftershock sequences at 
a different spatiotemporal scale of observation. This point is raised because 
the observed frequency-magnitude relations, as expressed by Wesnousky and 
others (1983) in terms of the maximum moment model, imply either a range of 
segment lengths within characteristic classes of branching-order or a



progression of partial activations of each segment length. These alternative 
interpretational viewpoints will be used to illustrate the possible 
applications of paleoseismic fractograms; in the case of the Japanese 
earthquakes the data favor the former viewpoint, but they also illustrate both 
possibilities when major changes of tectonic scale are contemplated.

Figure 2 represents the explanation by Wesnousky and others (1983) of the 
maximum moment (and magnitude) model. It differs from what they call the
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"b-value" model in that each fault has only one event (the "maximum" event) 
per recurrence time for that fault; other smaller events are interpreted as 
being associated with foreshock/aftershock sequences. They felt that such a 
model is indicated by the absences of earthquake events between the maximum 
event and the smaller events on a given fault; a more or less continuous range 
would be predicted by the application of a generalized b-value plot. From the 
standpoint of deformation states and the total potential energy available for 
seismic radiation, the maximum moment model says that all the energy avaiable 
to a mappable fault segment is released in specific quanta at intervals given 
by the recurrence time (except for the relatively negligible moments 
associated with foreshocks and aftershocks of much smaller magnitudes). The 
b-value model, by contrast, implies that for every earthquake of a given 
moment equal to that of an event in the maximum moment model there is a 
substantial amount of energy associated with other events that are almost as 

^ large (i.e., the events that would fill the gap in the distribution of Figure 
2b). This means either that the total energy available to that fault per unit 
time is greater for the b-value model, or the recurrence time for the same 
magnitude earthquake is larger than that given by the maximum moment model (it 
takes longer to build up an equivalent moment in the b-value mode, because 
part of the energy is being released in earthquakes that are almost as 

' large). This-also means that in a frequency-magnitude diagram, 
'" large-magnitude earthquakes (greater than a certain equivalence magnitude) 
:% will plot at a higher frequency if the maximum moment model describes the 
'^ mechanism of energy release better than the b-value model. The equivalence 
m- point is a crossover at the centroid of the over-represented events in the

b-value model. The b-value model, therefore, also overestimates the numbers 
of earthquakes smaller than the equivalence magnitude, because it assumes the 
existence of events that did not occur.

As pointed out by Wesnousky and others (1983, Figures 5 and 7), the 
difference in interpretation can amount to a factor of two in the forecast of 
earthquake recurrence for a given magnitude. Thus, the possible modes of 
activation of a coeval distribution of fault populations, or the sequence of 
activations in a hierarchy of genetically related fault branches, is of 
paramount importance to concepts of earthquake forecasting.

The fact that hierarchical branching patterns of fault evolution exist is 
substantiated by field studies of ground rupture before and after modern 
earthquakes. A well-studied example is the Dasht-e Bayaz earthquake of 31 
August 1968 in Iran (see, Tchalenko and Ambraseys, 1970; Tchalenko and 
Berberian, 1975). Laboratory studies of fracture patterns during progressive 
deformations show similar patterns (e.g., Tchalenko, 1968). These examples 
are used later to illustrate concepts of self-similarity.



Some Alternative Modes Of Fault Activation In A Branching Hierarchy. 
Figure 3 shows alternatives for activating fault segments in the 

distribution of Figure 1 according to modes that resemble either the b-value 
or maximum moment models. In example (a) one event is shown that activates
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the total length of one fault segment; example (b) shows a cummulative length 
that represents the same value of moment but which engages subintervals of 
several different fault segments at different times. Obviously, the largest 
magnitude event in Figure 3b is somewhat smaller than the maximum event in 
Figure 3a (this is one of a series of maximum events not indicated; no 
sequential correspondences between events in a and b are implied, nor are they 
deducible from the length distribution). If the overall rate at which the 
potential earthquake moment builds up is the same in the two cases, then an 
event in (b) that matches the maximum event in (a) will have a longer repeat 
time between occurrences. Besides the fact that in some specific cases the 
record of repetitive events on a given fault is not in accord with a 
distribution of partial activation events as in Figure 3b (see discussion of 
California earthquakes by Wesnousky and others, 1983), the assumption that 
each event is correlative with a specific fault segment makes the accounting 
of a sequence of events testable against data and/or hypotheses concerning the 
distribution of mappable faults. Therefore, we will examine the implications 
of this idea against the data and procedure used by Shaw and others (1981) to 
construct paleoseismic alternatives derived on the basis of mapped faults in 
the conterminous U. S. that have shown evidence of activity younger than about 
15 m.y.

Figure A summarizes the data in the form of histograms showing .the overall 
distribution of measured lengths vs. the counts of their occurrences; a subset 
for a well-documented map of fault distributions in the Los Angeles vicinity 
(Ziony and others, 197A) is shown to illustrate the approximate invariance 
with changes of map scale. The same data are shown in the form of log-log
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plots in Figure 5. Regression equations for these data, and for subsets of

Figure 5 near here

data for thirty different Faulting Regions, as well as the data for the Los 
Angeles vicinity, typically conform to a power-law distribution: H « kLm , 
where k is a constant charateristic of the region and map scale, and m is an 
exponent that usually has a value of -2 ±0.5 for distributions based on 
constant linear increments (Shaw and others, 1981, Table 2.2.1-1, p 91). 
Although the compilations of histograms and log-log plots were initially all 
carried out in terms of a constant linear increment of length, the data are 
also expressed in terms of a convention designated by Shaw and others (1981) 
DELX 3 X; this was done because the data sets for constant length increments 
have gaps, particularly at the longest lengths, whereas the geometrically 
progressing length scale results in sets with nearly continuous distributions 
of lengths. This convention also simplifies the manipulation of length/number 
orders, although any detailed analysis of subsets should refer to the linear 
distribution and to cummulative distributions derived from it (see Shaw and 
others 1981, Figures A.1.1-1,-2,-3 p 21A-216).

Shaw and others (1981) used the convention DELX=X to illustrate the



construction of a parallelogram that summarizes the relationships between 
assumed length distributions, rates of length activation (rates of buildup of 
seismic moment), and the consequent proportionalities between corresponding 
frequencies and magnitudes of events that would be associated with particular 
combinations of numbers of fault segments vs. their lengths. They used the 
following relation between length and magnitude:

H « 1.235 + 1.243 log L; L in meters, (1)

based on a range of possibilities from regression analyses of lengths and 
magnitudes for different classes of faults discussed by Mark (1977) and Mark 
and Bonilla (1977). This is retained as the reference equation for 
consistency and because it is reasonably compatible with relations described 
by Wesnousky and others (1983) between length, moment (Mo ) and magnitude. 
Wesnousky and others (1983, Figure 6) give a regression equation for seismic 
moment vs. length for large intraplate earthquakes in Japan, and a relation 
between moment and magnitude (see Hanks and Kanamori, 1979), as follows:

log M0 « 23.50 + 1.94 log L; Mo in dyne-cm, for L in km, (2) 

and

log MO * 16.1 + 1.5 M. (3)

Substituting the latter equation in the M vs. log L relation used by Shaw and 
others (1981) gives the equivalent relation between length and moment,

log M0 - 23.57 + 1.87 log L, (4)

which is reasonably close to the relation used by Wesnousky and others in Eq. 
2. Thus, we can directly convert their data plotted in terms of numbers of 
events vs. moment (Wesnousky and others, 1983, Figure 7) to our graphs based 
on length and calculated magnitude with little comparative error. Although we 
use simple linear functions in log-log plots to represent the fractogram, 
later we also examine some of the implications of nonlinear moment-magnitude 
relations of the form discussed by Hanks and Boore (1984).

The DELZ = X convention overestimates the numbers of faults at lengths 
below about 100 km, whereas the regressions of log H vs. log L based on 
constant linear increments of length underestimates the numbers of faults at 
lengths greater than about 200 km. In the absence of sufficient information 
to unequivocally resolve limiting distributions of both short and long faults, 
we derive an example for both distributions; however, the distribution of 
fault lengths in Japan does not have as wide a range as the U. S. data set, 
and the linear increment statistics will be used as the general basis for 
comparison.

Figure 6 shows frequency-magnitude diagrams on which we have delineated 
the areas (the fractograms of specified limits in log f and M) implied by the 
length distributions, based on an assumed overall rate of length activation; 
this has the value 10 km/yr of length activated (not to be confused with fault 
slip) as derived by Shaw and others (1981) based on extrapolations of lengths 
of faults vs. ages of activation (see p 269, and Figures 3.2-4, and 3.2-6 in 
that reference). The overall
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average of frequency-magnitude data for historic earthquakes in the U. S. as 
compiled by Algermissen (1969) is shown for reference; later we comment on the 
contrasts in slopes of different sets of frequency-magnitude data and on the 
adjustments of activation rates needed to bring the seismic and faulting data 
into alignment. Preliminary to that discussion, however, the method of 
constructing Figure 6 is derived with the aid of step-by-step tabulations 
based on number-length relations. In general, we assume a stationary 
(time-independent) distribution; the implications of transient deviations will 
be discussed in a later section.

Table 1 summarizes the calculations used to construct Figure 6. Part A 
gives the equations for number vs. length in terms of constant linear 
increments (1) and DELX = X (2); entries in subsequent sections are numbered 
(1) and (2) to indicate these conventions. Note that the equations are given 
in terms of measurements at the map scale in A (1 cm = 50 km); lengths in 
other parts of Table 1 have been converted to meters or kilometers depending 
on the context in which the data were used in the original sources. Part B 
shows the distribution of lengths ordered according to a 4-fold hierarchy to 
base 10. This arbitrary base was used to give a concise representation of a 
wide range of length-number relations for the composite statistics of U. S. 
faulting; in cases of specific fault sets there may be a nonarbitrary 
distribution that approximates a different geometric progression or which 
deviates in some way from an idealized mathematical set, as in Figure 1. Such 
deviations, however, should reveal themselves in terms of disproportionate 
lengths and slopes relative to any particular idealized distribution in a 
frequency-magnitude diagram. The numbers of fault segments, the segment 
lengths, total length per order, and the fraction of the cumulative length per 
order are tabulated. The length fraction, X (not to be confused with the 
general symbol DELX = X above), is used to proportion an aggregate rupture 
length over the range of length orders.

In part C of Table 1 the maximum event per segment length representative 
of each order (average or uniformly constant segments) is calculated for an 
assumed overall value of fault activation rate that includes all orders. This 
is the ultimate possible maximum moment model under an assumption that overall 
strain is steady and uniformly proportioned between the different orders; each 
fault segment ruptures when strain buildup reaches that appropriate length in 
each class. The segment recurrence time is the time between each maximum 
event, defining the frequency-magnitude distribution for this set of 
assumptions. Shaw and others (1981) referred to this distribution as the 
steady-state SATURATION mode of activation. That is, in order that the 
length-number distribution of activations shall be preserved over time, this 
is the limiting distribution (on average) of the frequencies of events in each 
length and magnitude, or moment, class. The value of overall rupture length 
rate, RLR, used in Table 1 is 10 km/yr, sudivided as described, which is the 
value used by Shaw and others (1981); they noted, however, that this was a 
conservative estimate of the overall rate of activation and suggested that the 
true rate was probably between 10 km/yr and 100 km/yr. Their nominal rate is 
used in the tabulation of example calculations for purposes of 
cross-reference, but we later adjust the value to about 40 km/yr to illustrate 
comparisons with overall U. S. seismicity.

If rupture according to some program of overall strain accumulation is not 
able to build up to the SATURATION limit, then ruptures must occur over 
partial segment lengths to preserve the steady state assumption. This may 
constitute a distribution like the b-value model or many other kinds of 
nonmaximized distributions. A simple way to inspect the range of 
possibilities, and to block out the region of frequency-magnitude space within



which specialized paths may occur, is to assume that strain buildup is sampled 
uniformly after different intervals of time on all partial segment lengths of 
all faults in every order. For example, Table 1 D shows that in one year 
there would be a buildup of 320 meters (1), or 160 meters (2), of potential 
length activation on the single fault in number-order N = 1 of total length 
219 km (1) or 933 km (2); maximum segment lengths are from Table 1 C. If that 
buildup is relieved by earthquakes, there are partial events of magnitude 4.35 
(1) or 3.97 (2). In order N = 1000, however, the buildup of total potential 
activation length is much larger because of the larger fractional 
representation according to the length distributions in section B of Table 1; 
accordingly, the partial activations now total 6.5 km (1) and 7.2 km (2), 
respectively. But this total is distributed equally over all the 1000 
segments, so the average partial length of activation per segment is only 6.5 
m (1) and 7.2 m (2), respectively; the equivalent magnitudes are now only 2.24 
(1) and 2.30 (2), respectively. Thus, yearly seismic release of strain 
buildup uniformly over the entire network of fault branches would result in 
over a thousand earthquakes with magnitudes ranging from about 2 to 4. Other 
calculations of this sort are listed in part D of Table 1.

The distributed mode of calculation above defines the perimeter of the 
effective area in frequency-magnitude space that Shaw and others (1981) called 
the "paleoseismic parallelogram", which we abreviate to fractogram in the 
present paper. The reference area of the fractogram is determined by the 
range of number/length orders defined by a given branching distribution and by 
the range of times considered for fault activation; the position in 
frequency-magnitude space is determined by these relations and by the Rupture 
Length Rate, RLR, proportioned according to length fractions, X. The choice 
of potential Buildup Times, BT, from 1 to 1000 years is arbitrarily chosen to 
span the range of interest for practical hazards assessments, but the range 
can be extended to consider implications of branching distributions for the 
largest conceivable earthquakes on time-scales of 10,000 years or longer, 
consistent with the statistics of measured fault lengths (cf., Figure 6b).

The concept of SATURATION length is useful because longer lengths of 
activation, and Buildup Times, would not be expected at the predicted 
frequencies. For example, as BT is made larger and larger, a given 
distribution reaches its suite of SATURATION lengths within a specific time. 
This time is 684 yearsfor distribution (1), but it is 5831 years for 
distribution (2), at which times the maximum earthquakes are, respectively, 
7.87 and 8.66 (Table 1 C). Prior to these limits the two different 
distributions give roughly the same sorts of predictions for partial potential 
events, generally differing by less than half a magnitude unit (Table 1 D). 
Distribution (1) "terminates" at 684 years where distribution (2) is still far 
from its SATURATION limit. Thus, for BT smaller than a thousand years, 
distribution (1) gives the more "cautious" suite of possibilities in that it 
predicts a larger magnitude at a given frequency of potential partial events. 
For BT greater than a thousand years, however, distribution (2) gives a crude 
estimate of potential events that might relate to faults lacking evidence of 
historic seismicity (both are subject to the general limitations discussed by 
Hanks and Boore, 1984). These are not predictions because they only represent 
possible suites of partial activations. More specific statements require 
knowledge or assumptions about the number/length orders activated and whether 
they represent partial or total activations of segment lengths. Therefore, 
comparisons of Figure 6, and the calculations of Table 1, with the analysis of 
Japanese earthquakes by Wesnousky and others (1983) suggest additional aspects 
of patterning in the possible sequences of fault activations.



Interpretation of Historic Seismicity by Use of the Simplified Fractogram With 
Constant Slopes.

Figure 7a compares the fractogram from Figure 6a with the 400-year record 
of Japanese seismicity, recalculated in terms of magnitude and frequency from 
Figure 7 of Wesnousky and others (1983); Figure 7b shows the adjusted position 
of this fractogram on the assumption that the limit of the seismic 
frequency-magnitude range for the U. S. defines a point on the SATURATION line 
for order N « 1. By this assumption, the longest segment length is about 300  
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km, a value consistent with the largest historic events on the San Andreas 
fault. If, on the other hand, the total mapped length of the essentially 
continuous portion of the San Andreas system is taken to define the maximum 
segment length at H « 1, then the SATURATION length is nearly 1000 km. 
SATURATION defined on the former basis implies that the San Andreas is 
considered to be made up of more than one characteristic branching 
distribution of genetically related faults (from the viewpoint of activation 
sequences). The SATURATION limit on the basis L = 1000 km at N = 1 is shown 
by the heavy dashed line in Figure 7b; apparently, the observed record of 
seismicity is characterized by events with maximum moments smaller than this 
single-valued maximum SATURATION event. We return to this point in later 
discussion of seismic zones in California.

In Figure 7 t the lines representing historic seismicity in the U. S. are 
based on data compiled by Algermissen (1969) and Algermissen and Perkins 
(1976). These sources expressed regression lines in terms of Modified 
Hercalli intensities. The corresponding magnitude scale is given by following 
relation :

Mc = 1.3 + 0.6 I0 , (5)

where Mc is the "corresponding magnitude" and Io is the Modified Mercalli 
intensity (Algermissen and Perkins (1976, p 16).

Although the time frames of the historic records are about the same, the 
Japanese data are more completely documented in terms of associated faulting. 
This is shown by the correspondences between observed zigzag offsets and those 
predicted by application of the maximum moment model in Figure 7. Similar 
behavior seems likely for the relation between faulting and earthquakes in the 
U. S., judging from the general parallelism of the overall distribution and 
the fact that frequency-magnitude compilations for individual seismic zones 
(Algermissen and Perkins, 1976) generally show flatter distributions than the 
composite. The distribution of seismic zones in California will be shown in a 
later graph; comparisons for all seismic zones and all faulting regions based 
on the distribution DELX * X as reference parallelogram are illustrated in 
Shaw and others (1981). Note that the U. S. data are for incremental 
frequencies, while the Japanese data are cumulative. Thus, the frequencies of 
the distribution of Japanese earthquakes would be reduced by about a factor of 
two for direct comparisons with the U. S. data. The comparisons of interest 
here, however, concern the general magnitudes and slopes of the respective 
patterns.

Referring to Figure 6 and Table 1 for proportionalities, two hypothetical 
alternative interpretations of the Japanese data illustrate application of the 
fractogram to a set of earthquake faults on the assumption that they belong to 
a generally systematic and cogenetic branching distribution of faults: (1) if 
it is assumed that the scaling of the fractogram in Figure 7a is correct, then



the implication is that the largest event, and fault length, portrayed 
represents SATURATION on the line N = 10; if so, events are not recorded for 
the longest branch N = 1 (i.e., M = 8 events would be expected only for 
recurrence times of the order 103 years), (2) if, on the other hand, it is 
assumed, or is known, that the largest event shown can definitely be 
correlated with a single fault of the maximum possible length in the set, then 
the fractogram would be shifted up and to the left so that the line N = 1 is 
at M » 7.4 (length of order 102 km), in which case the data span orders N = 
1 to N* 100. In either case, at the lowest two orders (smaller N, larger 
Dthe trend is close to the SATURATION line, which is consistent with the idea 
that the maximum moment model correlates well with the mapped lengths. In 
detail, however, the diagram suggests that there is a range of partial length 
activations spanning about 10 to 100 percent of the segment lengths at the 
shorter lengths (alternatively, this could be interpreted as a spread of 
lengths within an order that has a characteristic average length). These 
partial lengths could be interpreted as maximum moment events which occur at 
less than the ultimate SATURATION limit in the fractogram. Later we will 
examine the implications of similar step-like distributions for seismicity in 
California.

Figure 8 sketches some alternative schematic paths of relative fault 
activation in the fractogram. Example (a) signifies a "diffusive" activation

Figure 8 near here

of all number/length orders with time. Small earthquake events occur 
frequently, and the buildup of length activation never exceeds some small 
percentage of the possible SATURATION length. In the limit of smaller and 
smaller lengths per order (i.e., with a shift of the fractogram to lower 
magnitudes and higher frequencies) this mode merges with distributions more 
characteristic of aftershock sequences and ultimately with uniformly steady 
aseismic creep. The dashed line shows the corresponding record of composite . 
seismic frequencies in the absence of information on number-length 
distributions; i.e., there is a trend alternately paralleling lines of 
constant N and BT, because the distribution is assumed to be homogeneous 
(lines of constant N parallel lines of constant Rupture Length Rate, RLR).

Example (b) in Figure 8 shows the activation of each number/length order 
in a series of epochs. That is to say, at some arbitrary starting time, the 
subset order N = 1000 begins to be activated over longer and longer times 
until the maximum segment lengths for that order are activated at the 
SATURATION limit. No other number/length orders experience any earthquake 
events during this time, which in this case is about a thousand years. 
Therefore, the line at N = 1000, over the range BT = 1 to 1000, directly 
represents the record of seismicity during this time. At BT = 1000, the 
activity shifts to the next larger number/length order, N » 100 (i.e., order N 
* 1000 has experienced sufficient local strain relaxation so that this subset 
becomes dormant to small fault activity). The subset N = 100 is now 
progressively activated over the next thousand years until it, too, reaches 
the SATURATION limit. This hierarchical series of sequential order 
activations proceeds until the longest single-valued fault length is 
activated. Then the sequence may become dormant for some period or may repeat 
in a series of seismic cycles. Obviously, the seismic record depends on the 
time frame of observation; the total time of the idealized cycle is 4000 years 
in this example. Thus, if observations are made early in the first epoch, the 
record consists of numerous small events, whereas observation late in the 
fourth epoch will show infrequent large magnitude events. A variety of



frequency magnitude slopes are possible depending on how the distribution is 
sampled. Also, the entire set could be viewed as an extreme case of the 
diffusive mode in (a) in which all orders are sampled uniformly over times 
long compared to the cycle time. If so, however, the record would have to be 
at least four thousand years long to display the full spectrum of activation 
rates.

Figure 8 (c) represents a stepwise composite cycle resembling (b), except 
that the transitions between orders proceed at proportional intervals of time 
and length in each order. Two obvious modes are possible: In mode (1) order N 
= 1000 becomes dormant after 10 years, order N = 100 after 100 years, and so 
on. Each transition represents a temporary period of activation of the same 
charateristic lengths in the two adjacent orders. If these lengths are 
characteristic of the cycle, then they represent the maximum moment condition 
for that order. The larger number/length orders (large N, small L) do not 
reach the SATURATION condition, presumably because partial strain relaxation 
is sufficient to cause the shift to smaller number/length orders (small N, 
large L). In mode (2) each order has a characteristic interval of partial 
segment lengths that are simultaneously being activated over characteristic 
ranges of BT for each order. In the steady state this implies a rather high 
degree of coordination among the respective ranges of mechanical properties 
for the set as a whole. It also implies, as in the uniform "diffusive" mode 
in (b), that the seismic record has to be very long to document the full suite 
of activation rates. The dashed line indicates the average trend of the 
composite seismic record. Notice that the smaller event sequences occupy 
smaller intervals of time, thus the average slope will be sensitive to the 
time window of observation. Some intervals of observation would give trends 
subparallel to the lines of constant BT, while others would be subparallel to 
lines of constant N (and RLR). Like (b), the mode Q) cycle in (c) may be 
repetitive; in this case the cycle time is longer than about a thousand years.

Example (d) in Figure 8 represents the uniform SATURATION condition. It 
might be termed the penultimate maximum moment model in that no events occur 
Until the maximum available fault length can be totally activated. Episodes 
of activations could happen uniformly, as in (a), sequentially as in (b) and 
(c), or in swarms of activity separated by times of about a thousand years. 
In this latter case the limiting trend identifies only the average 
frequency-magnitude relation over multiple cycles. For example, at N = 1000, 
if the first event does not occur until all segments can be potentially 
activated, then the total time is BT = 1000. Then, however, if all segments 
are activated in rapid-fire sequence, there are 1000 events. Thus, the 
average rate of activation over many cycles is the same as activating one 
maximum event at the frequency corresponding to that segment length for the 
given value of FRLR (see Table 1).

The pattern of the record of seismicity and fault activation in Japan, as 
shown in Figure 7a, most closely resembles example (c) in Figure 8. Although 
it is beyond the scope of this report, it should be interesting to examine the 
data for either chronological sequences or uniformly haphazard activations of 
coordinated length sets. That is, does mode (1) or mode (2) in (c) more 
closely describe the history? Mode (1) is deterministically progressive in 
time, while mode (2) is stochastically homogeneous and haphazard in time. 
Since the record is AOO-years long and the maximum recurrence times are of the 
order 102 years, mode (2) might be approximated. If so, the implication 
would be that the overall behavior is stationary in time, with corresponding 
implications for the mechanics of faulting relative to tectonic work rates.
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Comparison of Seismic Zones in California With Patterns of Composite U. S. and 
Japan Seisroicity: Dimensional Scaling of Fractograms With Constant Slopes.

Figure 9 summarizes frequency-magnitude data from Algermissen and Perkins 
(1976) for several seismic zones which encompass the faulting regions in 
California (modified from the suites of diagrams in Shaw and others, 1981, for 
all seismic zones and faulting regions of the conterminous U. S.). Figure 10 
shows the delineation of seismic zones as given by Algermissen and Perkins 
(1976). Seismic zone 2 essentially encompasses the San Andreas fault zone

Figures 9 and 10 near here

between the Salton trough and its intersection with the northern California 
coastline (a distance of about a thousand kilometers). Notably, the 
frequency-magnitude position of the largest event in this zone is close to the 
magnitude limit as shown for the composite U. S. data (circled cross in Figure 
9). This is the approximate magnitude limit of the linear regression line in 
Algermissen (1969); it is taken to represent the SATURATION limit consistent 
with one interpretation of faulting rates (the shift required for 1000 km as 
the SATURATION limit is indicated in Figure 7b), but the seismic record is not 
long enough to substantiate a general limit. In fact, an attempt to fit the 
frequency-magnitude data for all the seismic zones in California into the same 
fractogram, or a simple sequence of frac tog rams, meets with some difficulties 
relative to the varieties of possible paths outlined in Figure 8.

Hypothetically, if we were to consider the composite seismic record of the 
U. S. as being related to a single hierarchy of branching faults, then the San 
Andreas system would represent the first order or trunk fault, N = 1, which is 
associated with the longest total length activations and highest possible 
maximum moment and magnitude. Up to a point, despite the continent-scale 
implications concerning distributions of strain energy, this interpretation is 
grossly consistent with both the faulting and earthquake data, and with the 
similar interpretation of large scale faulting and earthquake distributions in 
Japan .

Although the San Andreas system seems to fit well into the Plate Tectonics 
scheme, there are many contradictory aspects at the regional scale of seismic 
zones in California. Comparing Figure 9 with the broad regional coverage of 
zones in Figure 10, there is a conspicuous paucity of frequency-magnitude 
trends that fall inside the same -self-consistent fractogram, as delineated by 
the hierarchy of number/ length sets and the general consistency of both the 
length-scaling and the magnitude scaling of the San Andreas system. At face 
value, there are three obvious possibilities for the "missing" information: 
(a) the San Andreas is in fact a higher order (N greater than 1) number/ length 
order than was assumed by the coincidence of the length, magnitude and 
frequency agreement with the composite U. S. distribution (in this regard, 
Uesnousky and others, 1983, suggested that long strike-slip faults might be 
viewed as a system of chain- like and distinctly different fault segments each 
with a characteristic maximum moment; in the present context, however, this 
idea does not help with the problem of self-consistency of more general 
branch-length sets with different frequency-magnitude signatures), (b) the San 
Andreas is in fact an N « 1, single-valued, maximum fault with partial 
activations spanning the entire range of partial segment lengths from those 
consistent with short buildup times to SATURATION at L = 300 km and N - 1 
(i.e., this maximum event is smaller than the SATURATION value for L = 1000 km 
at N = 1); the set of observations used to establish the seismic regression 
line 2 in Figure 9 represents a time interval within the culminating epoch of 
activity in a seismic cycle something like the one shown in Figure 8b (i.e.,
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we are in the "fourth millenium" relative to the cyclical version of that 
scaling model), and (c) a cyclical model resembling the step-like distribution 
in Japan (and Figure 8c) actually exists but the sampling of seismic events in 
the historic catalog does not adequately represent the smaller higher 
frequency events in California (i.e., there have been episodes of events in 
the magnitude range 4 to 7 with frequencies exceeding one per year which are 
not adequately represented in Figure 9; if a maximum length of 1000 km were 
taken to be representative, there are also missing events at the largest 
magnitudes with recurrence times close to 103 years).

Each of the above interpretations, and probably others, has interesting 
and testable implications in the light of possible paths through a fractogram 
as sketched in Figure 8. We do not attempt to make a case for any single 
interpretation in this paper, but some comments are offered concerning those 
aspects which seem most likely to us relative to composite records such as 
those we have studied in the U. S. The San Andreas seems more reasonably 
interpreted as a system of first-order partial activations than as an 
"elongate hierarchy" of chain-like branch lengths of different orders along 
the same fault line. We therefore favor a combination of possiblities (b) and 
(c) above as an explanation for the lack of frequency-magnitude trends within 
the limits of the composite parallelogram in Figure 9. If a step-like 
distribution resembling Figure 8c is envisioned, the smaller-magnitude, 
higher-frequency episodes are of relatively short durations and could easily 
be underrepresented in the historic catalog. Some suggestion of this kind of 
effect may be represented by the frequency-magnitude trends in seismic zones 
1, 7, 17, and 19 which have distributions near that of zone 2 but with steeper 
slopes and smaller maximum magnitudes; zones 1 and 17, in particular, 
represent more diffusely distributed systems of faults along the general trend 
of the San Andreas system.

If we now consider the other seismic zones in California in terms of the 
above interpretation, analogous conclusions might be drawn for the other 
frequency-magnitude trends in Figure 9 (namely, zones 3, 4, 5, 6, 8, 12, 13, 
16, and 18). In view of the geographic discontinuities, the simplest recourse 
might be to construct several different fractograms each represented by one of 
the trends as order H » 1. In order to do so, each fractogram would be 
constructed on the basis of a characteristic rupture length rate, RLE, which 
is small compared with the composite summation of 40 km/yr. For example, if 
we were to construct such a parallelogram for zone 6 in the San Francisco Bay 
region east of the San Andreas system, we might use an effective RLR of the 
order 1 km/yr. Because of overlap, some of the higher-frequency events in 
such a distribution would be confused with those in zone 2; similar arguments 
might also apply to zone 5 in the region of complex faulting to the northwest 
of the Bay Area.

If such constructions are performed for each seismic zone, the 
distribution of H * 1 orders would be consistent with a series of maximum 
events smaller than that of the San Andreas system but also with lower net 
frequencies and longer cycle times. The interpretation of general behavior 
would otherwise be similar (notably, however, the behavior of zone 12 
resembles that of the San Andreas system at somewhat lower frequencies, 
suggesting an H = 1 fault length exceeding the zone length; Shaw and others, 
1981, Figure 4.3.2.2.-1, p 304, interpreted this as order H = 1 in the fault 
distribution of the Walker Lane faulting region and included with it the zones 
9, 10 , 11, and part of 7).

If one attempts to combine several zones into a single number/length 
hierarchy, the self-consistent fractogram imposes certain constraints on the 
implied distribution. For example, the hypothesis might be entertained that
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the coastal and offshore faults of southern California west of the San Andreas 
system might be lumped together into a single system ( zones 3, 4, and 18). 
If so, zone 18 might be viewed as a portion of the first-order fault. By that 
interpretation, however, the potential maximum event is offscale in Figure 9 
at a magnitude near 9 (linear extrapolation; see Hanks and Boore, 1984) and 
frequency of the order 10~-> yr"~*; the implied fault length would be of the 
order 103 km activated at a partial rate of about 10~2 km/yr (this is 
shown in Figure 9 as the partially delineated dotted fractogram at the lower 
right). Although such an interpretation seems less likely than more piecemeal 
constructions, it is shrouded in the uncertainties of recognizing major 
offshore faults with very long recursion times near the margin of the 
continental shelf.

Figure 11 schematically summarizes the style of faulting and seismicity in 
California. The simplest pattern consistent with both faulting and seismic

Figure 11 near here

data is that the historic catalog reflects partial activations at constant N 
with short to long Buildup Times on systems of faults described by different, 
partially overlapping, fractograms (the Inset shows an example referred only 
to the vicinity of the San Andreas system ). The higher frequency events are 
underrepresented because of their shorter durations in a generalized seismic 
cycle resembling Figure 8c and, to some extent, the pattern in Japan. We can 
not rule out, however, the possibility of composite systems of megafaulting 
with potential events larger than the known maximum event on the San Andreas 
fault; the diagrammatic magnitudes of such hypothetical events would range 
from 8.5 to 9 with recurrence times of 10** to 105 years, or longer (these 
events would be adjusted to lower magnitudes using the moment-magnitude scale 
of Hanks and Boore, 1984).
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Paleoseismic Length Scales and Nested Hierarchies of Branching Fault Sets.
Figure 12 summarizes selected sets of of age data for comparative trends 

in the relation between numbers of faults (log N) and their distributions of 
length (log L) for the U. S. and Japan. Of particular interest are the

Figure 12 near here

numbers of faults of different activation ages in the U. S., relative to the 
composite distribution for all ages in the U. S. Faults categorized as 
"young" on the map of Howard and others (1978) are faults which have shown 
evidence of activation within several different age groups in the latest 15 
m.y. (see Shaw and others, 1981). The crosses and associated regression line 
represent the conversion of moments to lengths for inferred historic faulting 
in Japan, using the earlier equation and data in Wesnousky and others (1983, 
Figure 7). We wish to illustrate two points with this diagram: (1) there is a 
general agreement between the total number/length distribution and the 
composite distribution of historic seismicity in the records of the U. S. and 
Japan (Figure 7 of the present paper), and (2) by contrast, the indicated 
record of documented historic fault activations in the U. S., or even those 
younger than 10,000 years, have a count much lower than in Japan, and too low 
to account for the historic seismicity in the U. S.

The most obvious interpretation of this discrepancy is that the overall 
fault count in the U. S. is roughly consistent with U. S. seismicity, but 
that, therefore, the recognitions of fault activations at ages less than 
10,000 years are grossly underestimated. Some of the recent announcements of 
evidence of young faulting in midwestern and southeastern states are 
consistent with this interpretation (see Obermeier and others, 1985; Kerr, 
1985); Shaw and others (1981, Sec. 5, p 344) made a generalized "prediction" 
of the discovery of expectable faulting events in several Faulting Regions 
across the U. S. on the basis of similar comparisons of fault activation 
lengths vis a vis historic seismicity.

  Inspection of the 1:5,000,000 scale map of young faults in the U. S. 
:: ; (Howard and others, 1978; Shaw and others, 1981), or maps and catalogs of 
_  faulting in Japan (see Wesnousky and others, 1982, Figure 4), indicates that 
4r within given scales of observation faults tend to be distributed in subgroups 

.;>*$. having several different and discontinuous length-scales (as in Figure 1). 
When a large sample of such populations is plotted together, as in the 
composite data for the U. S. in Figure 4, however, the population resembles a 
continuum of lengths. Such a relativity is characteristic of branching 
distributions having a range of number/length hierarchies each with different 
coefficients of slope and/or length proportionalities. Perhaps the most 
familiar example of such distributions is the ordering of stream populations 
in different drainage networks. A local stream system often has a distinct 
hierarchy of well-defined and discontinuous segment lengths (characteristic 
values of length per order) as measured from points of bifurcation. If, on 
the other hand, all stream segments were compiled for the conterminous U. S., 
there would be a continuum of lengths up to that of the "maximum stream" 
represented by the Mississippi system.

Although stream systems are distributed on a more or less planar surface 
and fault systems are distributed within large volumetric domains, there is 
some resemblance between the respective concepts of branching hierarchies. 
Because of the dimensionality, and the preservation of overprinting, fault 
systems are much more complex. Nonetheless, it seems useful to explore 
characteristic proportionalities within different scales and domains of fault 
branching hierarchies. A system that displays characteristic
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proportionalities among number/ length orders is said to be self-similar or 
scale invariant, in that the pattern is predictable at different scales on the 
basis of the same ordering rules. There may be, and usually are, different 
rules for different sets, as is the case for stream networks of different 
types in different settings. Even so, however, there may also be a general 
rule of self-similarity that describes the average behavior of composite sets 
of subsystems at different scales. For example, there are predictable numbers 
of streams in the U. S. of a given average length even though those numbers 
are not correct for a specific subsystem (i.e., the upper Missouri River 
subsystem is likely to have a different kind of scale invariance than the Ohio 
River subsystem) .

The above distinctions resemble the problem of distinguishing different 
characteristic first-order faults in Figure 9. The descriptive numbering of 
fault orders, however, is the inverse of the convention for stream orders (see 
Shaw and Gartner, 1984). That is, we use the term first-order to refer to the 
set 11=1, whatever the range of numbers and lengths may be. This is because 
information defining a characteristic "shortest" length and number for faults 
is usually not available (stream order 1 is the shortest distinguishable 
tributary stream) . Bach of the different possible scale relations discussed 
for fractograms in Figure 9 is analogous to a different stream system with 
differing scale ratios of self-similarity and different transport properties. 
In this crude analogy, the value of RLR associated with the construction of a 
given fractogram takes the place of the discharge variable in a stream 
system. Qualitatively, a fractogram based on a small RLR is analogous to a 
stream in an arid or semiarid climate zone. That is to say, the distribution 
of numbers and lengths of stream channels may be consistent with a large 
potential rate of discharge, but the actual rate may be very small, ... .or, 
more importantly, the average rate may be very small but the intermittent 
.flood may be transiently even larger than that of the stream with high average 
discharge rate. This would be the analogous case in the discussion of a 
fractogram that would simultaneously accomodate possible long-term behavior 
for seismic zones 3, 4, and 18 in Figure 9. Stated another way, confusion in 
the correlations of seismic data with fractograms in Figure 9 reflects the 
fact that analogous systems of tectonic "drainage networks" have not yet been 
established relative to the definitions of Seismic Zones (Note: In a later 
section we attempt to relate such "dendritic models" to more rigorous 
discussions of strain energy, as exemplified by Andrews, 1978).

These analogies lead naturally to an exploration of some relevant 
geometric properties of self-similar sets which may eventually prove useful in 
more quantitative evaluations of the relations between fault activation rates 
and the volumetric rates of tectonic energy transport in the earth (more 
specific attempts to compare principles of ordering are outlined in Shaw and 
Gartner, 1984). This approach may also aid in resolving some of the problems 
of missing information that have been mentioned in the contexts of compatible 
frequency-magnitude and number-length correlations, as in the comparisons of 
Figure 12.

A pictorial demonstration of the problems of correlations between possible 
self-similar patterns and energy transport rates is indicated in Figure 13. 
This diagram shows plan views of actual faulting and fracture

Figure 13 near here

patterns, lacking detailed information on the specific chronologies of 
individual segments, at four different scales spanning a range of almost 108 
in length ratios. The ratios of formative time scales are yet larger and more
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discontinuous between the different sets. The smallest two scales, (c) and 
(d), represent the deformation of a clay material in the laboratory within a 
time scale of hours and an energy scale that is very small compared with the 
larger two systems, (a) and (b). Pattern (b) shows the approximate 
distribution of ground breakage mapped after the Dasht-e Bayaz (Iran) 
earthquake of 1968 (Tchalenko, 1970; Tchalenko and Ambraseys, 1970; Tchalenko 
and Berber!an, 1975), and pattern (a) is a sketch map of some of the larger 
faults in California showing evidence of movement in the latest 15 m.y. (the 
solid circles in this sketch are the points in Figure 10 roughly demarking the 
mappably continuous portion of the San Andreas system). According to the 
earlier discussions of Figures 9 and 12, many more fault segments exist, and 
some of the larger faults shown probably were activated much more recently 
than is indicated by the age groupings documented by Howard and others (1978). 

Except for angular relationships, there is a crude visual self-similarity 
to these distributions. If no scales were indicated they would categorically 
look much alike in terms of the distributions of lengths. This similarity can 
be quantified by measurement, and even if these patterns are not from the same 
system of deformations the result represents a test of parameters defining the 
extent of general scale invariance in faulting patterns. In the absence of a 
compilation of data at all map scales for pattern (a) in California, it is 
nonetheless evident that patterns like those in Figure 13 exist (Sieh, 1981; 
Wallace, 1981). We might therefore ask, in general, how the energy of shear 
deformation might be distributed across the larger system on the assumption 
that it contains a self-similar distribution of smaller shears of the sort 
portrayed in the figure. It will aid that investigation if we can first 
identify some of the implications of self-similarity relative to the paths 
already discussed in the construction of fractograms.
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Some Properties of Fractal Sets Relative to Questions of Self-Similarity in 
Fault Systems.

The term fractal was coined by Mandelbrot (1975, 1977, 1982) by analogy 
with problems of characterizing surfaces in metal fractography (see Mandelbrot 
and others, 1984). Our use of the term fractogram was chosen to acknowledge 
the relations between studies of fractography, on the one hand, and fractal 
geometry on the other. At the time of this writing many other investigators 
have made similar observations about the application of fractal geometry to 
earthquake problems. Because this is not a review, we cite only those papers 
which directly illustrate a point we wish to emphasize relative to the more 
obvious possible interpretations of fractograms.

The definition of a fractal dimension, as applied to physical problems, 
has been illustrated in diverse ways in the literature. We will discuss 
concrete examples in which the dimension is derived from measurements 
involving fracture surfaces, fault-segment distributions, numerical 
"dissection sets'*, and fingering flow of viscous fluids. First, however, 
some derivative remarks may clarify the context of a fractal (read fractional) 
dimension.

If we define a line, whether straight or curved, as a locus of points, 
then a plane is a locus of a locus of points, and so on. Any spatial measure, 
viewed in this way, can therefore be considered to represent topological loci 
of point sets (i.e., sets with elements of near-zero dimension; "granular" 
domains, which also may have properties of shape, as in clouds, and so on). 
Higher order constructions of planes from lines and volumes from planes, 
according to Euclidean geometry, assume that there is continuity at lower 
dimensions. If we allow the idea, however, that all descriptions of form are 
essentially measurements of the relative distributions of point densities, 
then the concept of material dimensions has elements of differing relative 
sharpness, or relative fuzziness, of resolution. Described in this way, any 
quantitative measurement of resolution depends on an assumed relation between 
the measuring device and the object being measured.

If a distribution of points is defined by measurements with a linear 
measuring tool (i.e., another sort of point set defined as a ruler) which is 
capable of a limited resolution relatve to the material points of interest, 
then the dimension assigned to the measurement depends on the point spacing in 
the material relative to the ruler length. Given a standard ruler, a standard 
topological description results. This is essentially a paraphrase of the 
common rules of map scale: given a standard scale (such as the 1:5,000,000 
scale for portraying fault lengths in this paper), a standardized range of 
geometric structures results. Dimensional descrimination, then, can be 
expressed in terms of a range of length multiples of a standard length.

Thus, it could be said with some truth that the study of fractal geometry 
is very little different from the traditional studies of geology, geophysics, 
and seismology in which the challenge at hand concerns an ability to relate 
measurements on one scale of description to those at other (often vastly 
different) scales of description. As an example, we can witness the advances 
in our understanding of tectonic processes in the continents once the patterns 
of Plate Tectonics were established on the basis of scale relations for the 
kinematics of the ocean basins. A common goal of geology (including 
astrogeology) and fractal geometry, is to discover and describe techniques for 
classifying, illustrating, and correlating patterns which possess internally 
consistent types of fabrics by means of simple rules. In one way or 
another,this goal invokes concepts of relative similarity or, in geometrical 
terms, concepts of self-similarity.

Avoiding mathematical definitions, a self-similar geometry is one in which
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the intrinsic dimensional character of a fabric, no matter how complex, is 
preserved and described by means of simple constants of proportionality which 
are invariant when the pattern is scrutinized at arbitrary magnifications 
and/or reductions. The value of fractal concepts stems from the systematic 
demonstration that such criteria of self-similarity exist even when there are 
no fixed proportionalities of topological dimensions in Euclidean space (or 
even higher order spaces). One may in some cases prefer to descriminate 
between fractally self-similar and topologically self-similar structures, but 
the former is rooted in the context of scientific measurement applied to the 
natural world, whereas the latter is an idealization, or sometimes even a 
corruption, of natural geometries. The fractal dimension provides 
proportionality constants for descriptions of such nontopological sets; they 
can exist in unlimited variety, because the fractal dimension can take on any 
fractional value from zero to the maximum topological dimension under 
consideration. These "fractal objects'* represent those point-sets, or loci, 
mentioned above which can not be described in terms of constructions involving 
lines, planes or topological volumes. That is to say, they apply to 
geometries that consist of some potentially characteristic granularity (or 
segmented linearity) where the geometry can not be assigned universally to any 
single Euclidean dimension; for example, there are collective geometric forms 
as seen in a map view like Figure 13 that can't be described in terms of 
unique lines, or planar areas.

These "in-between" objects, if they are self-similar, are characterized by 
a constant, but generally noninteger, dimension. That dimension, which 
remains to be demonstrated for any class of fractal object, defines the 
spatial distribution, specifically (as in numerical dissection sets 
illustrated later) or statistically (as in fault distributions), for any 
change of scale within an appropriate domain of physical .properties. The 
example used most often to illustrate fractal dimensions is the 
map-scale-dependent coastline length of any irregular landmass which increases 
as the ruler used for its measurement is made smaller and smaller (down to the 
scales of irregularities in sand and rock granularities). It is easy to see, 
in this case, that the tortuosities of the coastline (and other types of 
geological contacts) define a complex geometric form that does not preserve 
the constant proportional relation between perimeter and area for a regular 
geometric object bounded by elements of integer Euclidean dimensions. The 
fractal dimension of such a contact, in map view, is larger than one and 
smaller than two; in the same sense, the fractal dimension for an intricately 
curved planar surface, such as the brain, is between two and three (actually 
close to the latter because of the compactness of the involute-convolute 
complexity). We carry this kind of observation to the general conclusion that 
the description of any object will be found to involve fractional dimensions 
when it is examined over a wide enough range of magnifications, within 
stipulated topological limits. Stated differently, fractal geometry is the 
descriptive study in which we are engaged as geologists and geophysicists.

Rather than beginning with a description of bounded geometric sets, it 
seems more appropriate to the problems of faulting, fracture and earthquakes 
to start from the more general viewpoint of point sets. This is because, even 
though faults are represented as linear features on maps, they are notably 
imbricate and discontinuous over many different length scales (as in Figure 
13). Even if we consider them to be linearly continuous over some range of 
minimum lengths, they can still be thought of as "elongated" point sets or 
dissected line sets. The point-set analogy reflects the fact that it is 
rarely possible to uniquely define a fault as a single continuous line on the 
ground, or as a single continuous plane in excavation. In the geometric
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description of laboratory fracture experiments with metals, this problem has 
been circumvented by Mandelbrot and others (1984) by what they call Mslit 
island" analysis. This technique involves sectioning and impregnating the 
fractured fabric, so that the description of its irregularities can be defined 
in terms of area/perimeter relations of the "lakes" and "islands'* of 
contrasting materials in a manner parallel to that for coastlines. The 
fractal dimension documented in that study, relative to the surface of 
section, is about 1.28, which is similar to the fractal dimension of rugged 
coastlines like that of Great Britain (such measurements and equations of 
fractional proportionality were quantified by L. F. Richardson as an appendix 
to his remarkable work The Statistics of Deadly Quarrels long before the 
concept of fractals was systematized; see Mandelbrot, 1977, p 30-32, Plate 
32). Because the same technique is not practicable at the scale of faulting, 
we appeal to less direct methods. Depending on assumptions about the accuracy 
of map data, our measurements give a similar fractal dimension for the map 
distribution in Figure 13 (see comparisons in Figure 14, described below).

Figure 14 illustrates one approach to the determination of fractal 
dimensions for fault-fracture sets. We start by assuming that the data in

Figure 14 near here

Figure 13 hypothetically form a characteristic set, even though they are from 
different sources, scales and types of fracture systems (both field and 
laboratory); we later describe a different approach that is confined to the 
California-scale set in Figure 13 that produces a similar value (see Figure 
16). Although the values we find seem to be typical for these kinds of 
dissected complexity (as will also be demonstrated with a more formal set 
theory analogous to the dissected "cutout" set called the Cantor set; see 
Mandelbrot, 1977, p 99), Figure 14 also demonstrates the conditions under 
which an almost "area-filling" set can occur in plan view, or a 
"volume-filling" set over a depth interval that is compatibly self-similar. 

In Figure 14a, the map data of Figure 13 were measured and portrayed in 
the same manner as the faulting data in Shaw and others (1981). The segments 
fall into natural groupings of four or five orders (representing 
characteristic, if subjectively chosen, ranges of segment lengths) all of 
which are distributed in the log N vs log L plot around a trend with slope 
slightly larger than one; Shaw and others (1981, Table 2.2.1.1, p 91) give the 
regression slope for the Fault Region "California Coast" as -1.28; Figure 13, 
however, is more extensive and somewhat generalized relative to that 
determination. Thus, all these data are statistically somewhat similar in 
terms of a self-consistent distribution of lengths. Figure 14b shows the same 
suite of data concatenated according to the changes of scale plotted versus 
the range of characteristic "ruler-lengths", R, used for the measurements at 
each scale. The resulting regression trend has a slope of about -.25, which 
is equivalent to a fractal dimension of 1.25 based on the following formula 
relating map length to changing ruler length, as in the coastline problem:

L = Const, x R(I-D) , (6) 

or log L = Const. + (1-D) log R, (7)

where D is the fractal dimension. Thus the slope in plots such as Figure 14b 
defines the coefficient (1-D).

The way in which the concatenation was carried out identifies how the 
fractal dimension would be changed by modifying the assumptions concerning the 
packing density of fault segments relative to the map data taken at face
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value. The cumulative length of fractures was summed for each map scale in 
Figure 13, and the ratio of that length to the map width was determined at 
each scale. This ratio was used to multiply the total length of segments at 
the next smaller map scale (larger fracture system) on the assumption that 
every larger fracture also implies a suite of smaller fractures that were not 
mappable at that scale. This procedure was carried through from scale (d) to 
scale (a) in a sequence of multiplications of the total length of all 
fractures from the smallest in (d) to the largest in (a). In other words, a - 
network of fracture sets was hypothetically added to (a) on the assumption 
that all lengths down to the pattern of fractures in (d) are actually present 
in the vicinities of the major faults, even though the fractures can*t be seen 
at the map scale of (a).

The above procedure defines the values of log L vs log R in Figure 14b 
(two values are shown based on different assumptions concerning the slope of 
log H vs. log L). In Figure 14c, on the other hand, the lengths at each scale 
were multiplied by a factor determined from the ratio of the area at scale (a) 
in Figure 13 to the areas in each of the other map scales, normalized to the 
length scale in (a); i.e., the overall area of the California system in km2 
was divided by the areas of each of the smaller fracture systems expressed in 
units of km2 , and the total lengths were multiplied by that ratio at each 
scale. In other words, this normalization represents an assumption that the 
entire area between the major fault systems at scale (a) contains fractures at 
each of the smaller sizes with a density distribution proportional to the 
areas. This assumption is equivalent to saying that young fracture systems 
with lengths of the order 1 km and less are likely to exist at any random 
location in California, even at large distances from the mapped faults.

The length distribution in Figure 14c represents this maximum packing 
density model. This is confirmed by the fact that the slope is approximately 
-1, which gives a fractal dimension of D = 2 according to the previous 
relation. That is, this dimension implies that the space is essentially 
"filled" with smaller and smaller fractures as it is examined at higher and 

1 higher magnifications. If the same proportionalities held in arbitrary cross
section throughout the depth range of hypocenters, the fractal dimension would 

* be nearly volume-filling, or D = 3. The more dendritic, or "fuzzy", 
>$^ distribution conforming to D = 1.25 in Figure 14b, would imply a fractal 

dimension of about 2.25 if the vertical distribution is similar to the 
horizontal distribution (see Figure 14e). If, on the other hand, the 
fractures are restricted in vertical distribution, the overall fractal 
dimension can be even smaller than 2.

The slope of the number-length distribution in Figure 14a is less steep 
than the distribution for other Fault Regions in the U. S. Figure lAd 
indicates the approximate effect of increasing the slope and counts to conform 
to the equation log H = 2 - 2 log L ; the corresponding fractal dimension 
would increase to between about 1.4 and 1.5 for the concatenated dendrite 
model. The densest-packing limit model, however, would remain about 2 because 
the proportionalities remain the same (the area-filling, and potentially 
volume-filling, set).

Figure 15 investigates the question of what kind of mathematical set of 
dissected line lengths might resemble the fractal dimension of fault sets in 
plan view. The general set theory for dissected lines is described by

Figure 15 near here

Mandelbrot (1977, p 98 ff.) in terms of "cutouts", for which the usually cited 
example is the Cantor set. In the Cantor set (Figure 15a), the central 1/3 of
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the line segment is cut out, then the central third of each smaller segment, 
and so on. Such dissections are possible in general with any ratio of the 
"empty" to "solid" segment lengths. The relation between these ratios and the 
fractal dimension is given by the function:

D = log N / log (1/r), (8)

where N is the number of "solid" segments in the unit length (2 of 3 in the 
case of the Cantor set), and r is the ratio of the cutout length to the unit 
length (1/3 in the Cantor set). Thus, the fractal dimension of the Cantor set 
is about .6309, in keeping with the "less than linear" character of the 
progressive sequence of cutouts in producing the set.

Figure 15b investigates the inverse of the Cantor set. We ask the 
question: is there a simple form of dissection in which the total line length 
is increased rather than decreased? This is a growth model something like the 
replication of partial lengths in DNA splicing, in that when the central third 
is cut out, it is allowed to duplicate and remain part of the set. The 
general physical argument would be that during the initial growth history 
(whenever that was) short segments spawned shorter segments while the overall 
unit length increased. To make the distribution somewhat more fault-like the 
dashed portions of the growing system would also be preserved. Such a model 
symbolizes the pristine growth of fractures from the smallest state of 
incipient microfractures in a previously unfractured material. Fault 
activation, as envisioned in terms of the fractogram for a previously formed 
set, however, essentially represents the reverse process, in that sets of 
smaller to larger existing fault segments are progressively activated 
according to paths in the fractogram as described earlier (Figure 8). The 
fractal dimension of the simple "inverse Cantor set" is 1.26, as determined 
both by the above formula and by the summation of numbers and lengths (Figure 
15c); the fractal dimension including inherited lengths, as shown in that same 
figure, is about 1.47< Thus, the inverse Cantor set is essentially the same 

. sort of fractal object as the systems of measured faults (relative to a 
',;:f maximum topological dimension of 2; it would be 2.26 to 2.47 relative to the 
'; limit 3, if there were linear similarity in depth). The direct Cantor set, 
. itself, may describe some systems of highly disperse activations, as discussed 

later.
One more illustration of spatial fractal dimensions (temporal fractals are 

considered subsequently) is considered, because it bridges the gap between the 
viewpoints of discontinuous branching sets (dissected dendrites) and 
finger-like distributions analogous to stream dendrites and bifurcating modes 
of continuous fluid flow. Figure 16 compares the results of an experimental 
demonstration of the fractal dimension of fingering flow in a Hele-Shaw cell 
with a fractal dimension for the system of California faults, treated as 
though the faults represent the ghost traces of stream beds in an old river 
system (e.g., like an ancestral Mississippi). The method of analysis is

Figure 16 near here

highly subjective in terms of the ways in which ends of faults might be linked 
together to outline the overall "basin" of influence, but the generally 
elongated irregularity is preserved by a variety of delineations. The fractal 
dimension for the viscous fingers in Figure 16a is about 1.38, and for the 
fault system, using the same procedure, it is roughly 1.4. Qualitatively, it 
can be seen that the fingering mode of description tends to increase the 
fractal dimension for the same regional aspect ratio, relative to that of
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dissected branch sets, because it encloses more area (i.e., it represents a 
packing distribution somewhere between the concatenated and area-filling modes 
of Figure 14). These various modes of description, however, are consistent 
with the variety of branching distributions described by Shaw and others 
(1981), and by Shaw and Gartner (1984), for different Faulting Regions of the 
U. S.

"UK
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Trends in the Fractogram and Fractal Distributions of Energy Potentials.
Aki (1981) pointed out that concepts of fractal geometry should be useful 

in interpretations of frequency-magnitude data. Smalley and others (1985) and 
Turcotte and others (1985) have also applied the fractal concept to the 
discussion of asperity models of failure on a fault surface. We will now 
attempt to reconcile the interpretation of fractal dimensions with paths in 
the fractogram and with the above viewpoints concerning fault failure. Using 
the relation given previously for numbers vs segment lengths of dissected sets 
(Eq. 8), D * log tl/ log (1/r), and the fact that the seismic moment is 
generally defined in terms of a volume of rock with topological dimension 3 
(i.e., Mo proportional to the product Lsz x Wsz x dsz , where the 
subscripts refer to a seismic zone of prescribed volume), Aki (1981) showed 
that the fractal dimension is related to slopes in frequency-magnitude plots 
(the b-value of earlier diagrams) and moment-magnitude plots (the c-value, 
where a constant value of 1.5, as in Eq. 3, has been assumed in the 
comparisons of fractograms with the models of Wesnousky and others, 1983). 
According to the ratio derived by Aki (1981), D = 3 (b/c). Therefore, we can 
compare such determinations of fractal dimensions with the measurements of the 
preceding section, and with the earlier discussions of slopes in the 
fractogram.

Aki's generalization essentially reflects the fact that characteristic 
trends in the fractogram define fractally self-similar sets of relations among 
fault segment lengths, numbers, magnitudes, moments (and strain energies), and 
time. Time adds to the dimensionality, but we initially restrict the 
discussion to a maximum spatial topological dimension of 3; later we explore 
time as an additional fractal dimension. Evidently, the traditional 
frequency-magnitude scaling laws, from their inception, have represented a 
documentation of fractal geometries (many examples of fractal geometry exist 
in the literature, such as the measurements of coastline lengths mentioned 
earlier, prior to the development of a systematic nomenclature by Mandelbrot, 
1975, 1977, 1982).

Aki (1981) founded his reasoning on the general idea of fractal asperity 
models of a fault surface, and on the numbers of ways the fault length is 
subdivided. Thus, there is a strong resemblance between his model and that of 
the fractogram, except that we have generalized the distributions of segment 
lengths to sets of branching distributions consisting of a hierarchy of 
number/length orders. Fractal dimensions based on the relation D = 3b/c 
essentially represent tests of internal consistency of the earlier 
parameters. That is to say, the direct estimates of fractal dimensions, and 
the various slope regimes of log II vs log L, can be compared with the values 
based on the idealized proportionalities calculated using Aki's method.

Figure 17a illustrates the ranges of slopes and fractal dimensions based 
on the data of this paper and the c-value consistent with the construction of 
the fractogram (c * 1.5, as in Eq. 3). This is the value usually cited

Figure 17 near here

in the literature, but Hanks and Boore (1984) have given arguments in favor of 
nonlinearly varying c-values in their development of a modified scale of 
moment-generated magnitudes: simplistically, below about M = 3 on their scale 
(their Figure 2) the slope is in the vicinity of c = 1, increasing to a value 
of about c * 3 at the highest recorded magnitudes. The value c = 1.5 seems to 
be a reasonable average for intermediate to moderately large earthquakes. For 
the sake of direct comparisons with Wesnousky and others (1983), and other 
sources of earthquake data, we have not modified our earlier correlations to
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take these variations into account, which should be done for comparisons of 
our results with the highest possible magnitudes, interpreted according to the 
Hanks-Boore correlations.

If we allow c-values to vary, it would appear that c-value regimes might 
represent progressively changing types of fractal geometries of fault 
activations. Using the relation D = 3b/c, some characteristic limits can be 
delineated depending on what information is considered primary. For example, 
if we were to limit 0 to the topological maximum of 3, then b = c, meaning 
that the frequency-magnitude relations would plot near the steepest limb of 
Figure 17a for a c-value of about 1.5 (Note: The DELX = X convention of Figure 
6b has a steepest b-value of about 1.7, giving D * 3.4 for c = 1.5; since this 
exceeds the topological limit, this convention would be allowed only if the 
larger lengths and magnitudes also have larger c-values according to the 
Hanks-Boore relations. Such an interpretation is consistent with our remarks 
about the respective ranges of validity of the Constant Increment and DELX % X 
conventions of Figures 4 and 5). If c = 3 for the largest earthquakes, 
however, then b = 3 for D = 3. Hence, the conditions under which fault 
activations can be volume-filling are more complicated than is indicated by 
our linearized fractograms.

As discussed earlier, a broad and steeply oriented fractogram is 
consistent with a steep slope in the log N vs. log L relation (e.g., compare 
Table 1, Figures 6a and 6b, and Figure 14). Such fractograms represent a 
fractal space in which the distributions of earthquake faults could fill the 
topological volume of the seismic zone along the trends of constant Buildup 
Time, BT; i.e., depending on the modes of activation as outlined in Figure 8. 
Slopes in plots of log N vs log L for all Fault Regions in the U. S. (from 
Shaw and others, 1981, Table 2.2.1-1, p 91) range from about -1 to -2.5 for 
the raw data based on constant linear increments. The upper limit resembles 
Figure 6b, but the lower limit resembles the relation illustrated in Figure 
14, log N = 1 - log L. As we will show, this lower limit constitutes a 
degenerate condition in which the fractogram is of minimum slope and virtually 
zero width. It is also the condition for which the fault activations would be 
least volume-filling in the linearized models, other things being equal.

Stated another way, if b = 1.5 were assumed to be an effective upper limit 
for the composite data of faulting and earthquakes in the U. S. and Japan, as 
in Figures 6a and 7a, then the range of c-values for D = 3 would reduce to the 
invariant value c = 1.5. While this is self-consistent with our analysis, it 
disagrees with the magnitude limits implied by the analysis of Hanks and Boore 
(1984). To be consistent with both analyses, the earlier fractographic models 
would apply only to the intermediate magnitudes, where the value c = 1.5 is 
approximately satisfied. This might suggest that volume-filling fractal modes 
would be consistent only with the small to intermediate range of magnitudes 
(i.e., larger magnitudes would imply either smaller fractal dimensions, or 
larger b-values). A list of fractal dimensions for three different c-value 
regimes is shown in Table 2.

Table 2 near here

Table 2 summarizes many of the conclusions we have already drawn from 
earlier discussions. In general, the fractal dimension increases with 
increasing b-value (and implicitly with absolute value of slope in log N vs 
log L). Volume-filling fractal modes are most likely for suites of small to 
intermediate earthquakes in systems of strongly varying numbers of 
fault-length segments. The largest earthquakes have fractal dimensions near D 
« 1.2 + .3 for the typical ranges of b-values we have discussed, in keeping
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with the various kinds of direct measurements we have shown for branching 
geometries. These values of D also resemble those of inverse Cantor sets 
(Figure 15b), implying that earthquake faults with lower bifurcation numbers 
are more like linear fractal objects rather than topologically continuous 
planes. In some cases, the limiting form of the fractogram, as shown in 
Figure 17b for the distribution log N * 1 - log L, collapses to a line 
(parallelogram with zero width). This implies that all activations would 
correspond to fractally "planar" to "less- than- linear" sets for the entire 
range of small to large earthquakes (top row of numbers in Table 2), unless 
the fractogram becomes nonlinear and b-values are considerably larger than 
those we have shown based on seismic data. The fact that the California 
system of faults, as sketched in Figure 13, approximates such a number-length 
distribution suggests that the largest earthquake events for very long 
strike-slip faults, under these assumptions, might be fractally 
"less- than- linear", chainlike Cantor sets (see Figure 15a) , even in three 
dimensions (see Wesnousky and others, 1983).

This, possibly surprising, conclusion is qualitatively consistent with 
earlier discussions of the problems of reconciling the various scales of 
partial activations in California. That is, the system behaves in a generally 
coordinated manner but with a piecemeal distribution of activations over the 
ranges of potential values of the composite fractogram which tend to be 
"condensed" along a single trend parallel to the base of the fractogram. 
Thus, event sequences for the larger number/ length orders (large N, small L) 
are collapsed onto the same frequency-magnitude trend as the hypothetical 
single-valued trend (N = 1, L greater than 100 km). In a sense, this agrees 
with the suggestion of Wesnousky and others (1983) that long faults might be 
viewed as a linear system of distinctly different chain-like fault segments 
each with a characteristic set of maximum moment events. The implication of 
the. collapsed trend in Figure 17b, however, differs from this interpretation 
in a rather subtle way, in that characteristic suborders of distinct 
number-length activations, for both the partial and SATURATION modes, occupy 
specific intervals of the trend (e.g., the open circles in Figure 17b 
represent the left-hand side of the collapsed parallelogram at the shortest 
Buildup Times, and the solid circles represent the range of SATURATION 
values). The so-called "locked" and "unlocked" portions of the San Andreas 
system portrayed in Figure 11 would represent this "collapsing" of the 
different number/length orders of the same systematic distribution onto the 
same frequency-magnitude trend. The branching distribution of faults, 
however, is still distributed, geographically and in depth, rather than being 
restricted to a single chain-like topology having segments with differing 
mechanical properties (Note; This is the distinction between Euclidean and 
fractal objects that is central to interpretations of natural fabrics; e.g., 
the Euclidean dimension 1 implies a continuously connected linear object, 
whereas D = 1 implies a complex fabric that may be highly discontinuous and 
distributed within planar or volumetric Euclidean domains). Therefore, the 
buildup to large events (and interpretations of seismic gaps, etc.) might be 
evaluated in the same way as in the more general frac tog rams, by identifying 
the distributions of segment lengths with specific intervals along the trend. 
This differs from other interpretations in the implication that different 
portions of the system may appear to be locked or unlocked depending on the 
sequencing of activations in a seismic cycle much longer than the historic 
record, meaning that characteristic fractal subsets of earthquake events are 
rather "scattered" within large domains of topological volume.

Figure 17c schematically indicates how the fractogram would be modified to 
incorporate large c-values for the limits of large magnitudes according to the
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analysis of Hanks and Boore (1984). Ignoring the low-magnitude end, the 
essential effect at high magnitudes is to nonlinearly distort and foreshorten 
the "parallelogram" and therefore to progressively increase the b-values, both 
along the curves at constant N and constant BT. If this modification is 
carried to the extreme where both b = 3 and c = 3, then everything converges 
to an invariant fractal condition where the ultimate event also can be 
volume-filling (lower right entry in Table 2). How, however, there is 
"nowhere to go'* at lower orders of larger faults. If the moment-magnitude 
relation derived by Hanks and Boore (1984) is valid, then two simple 
alternatives suggest themselves: (1) this condition may in fact reflect the 
convergence to the absolutely "ultimate" earthquake, barring global changes to 
an entirely different tectonic regime, or (2) it represents a growth 
transition where an entirely new first order fault is generated so that the 
fractogram essentially shifts to lower frequencies for the new fault, and 
larger numbers of higher order faults also grow according to some general 
reshuffle of the number/length hierarchy (so that the same value of moment is 
redistributed). The second alternative violates the steady-state assumption, 
however, upon which the construction is based (see caption of Figure 8) and 
implies a general increase of fault length with time (see discussion of total 
fault lengths vs. age in Shaw and others, 1981). Another slant on the 
possibility for globally invariant fractal conditions is given by including 
time as a dimension.

Figure 18 attempts to generalize the fractal viewpoint according to the 
various assumptions about slopes, topological limits, magnitude limits, and 
time. Figure 18a shows loci of constant fractal dimension plotted against the

Figure 18 near here

coordinates b and c, restricting the range to the topological limit 3 
corresponding to Aki's (1981) derivation for length-moment-magnitude scaling 
(time is considered separately in 18b). The zigzag path of frquency-magnitude 

v data for Japan shown in Figure 7 is mimiced in this plot in terms of either 
-;F. the constant or variable c assumptions. For constant c, the path traced from 
<%» smaller to larger magnitudes alternates between b-values of about .8 and 1.4. 
,rg : , In this mode the fractal dimension correspondingly alternates between about D 

=1.6 (lower b-value) and D » 2.8 (higher b-value). This means that when a 
trend of fault activations (as in Figure 8) jumps from a higher to lower 
length/number order (i.e., from shorter more numerous to longer less numerous 
maximum segment lengths) it transiently passes through a regime of maximum 
fractal dimension nearly equal to the volumetric limit of the topological 
dimension. Another way of looking at such sequences is to imagine that each 
fractal object represents a sampling of log N vs log L in the general 
distribution that satisfies the proportionality D = 3b/c. Sometimes the 
sampling is fractally tenuous, and at other times it is fractally dense.

That is to say, the progression toward larger, less frequent earthquakes 
is accompanied by intervals of activity during which faulting and earthquakes 
are volumetrically disperse before they again focus down to fractally planar 
to linear distributions. This sort of behavior is somewhat like that 
described by Mogi (1981). The same general alternation also exists if 
c-values are allowed to increase to the vicinity of 3 at the highest 
magnitudes (the nonlinearity of Figure 17c is indicated schematically by the 
converging dotted boundaries). In this case, however, each zigzag step in the 
progression toward higher magnitudes is accompanied by a net drift, or 
sequence of transitions, toward lower fractal dimensions of both the most 
distributed and most focussed fractal sets (Note: In the dotted trend, this is
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offset by the convergence toward the invariant condition of the "Ultimate 
Event", where the fractal dimension is again maximized). Such alternations 
appear to fit some of the characteristics of seismic cycles. In these terms, 
the locked and unlocked portions of the San Andreas fault, and the evidence of 
disperse to focussed distributions of earthquakes in the partial cycle 
documented in Northern California (Ellsworth and others, 1981; Kerr, 1984; 
Wesson and Wallace, 1985), may represent stages of the fractal transitions in 
the overall cycle. Such a sequence was described earlier in terms of paths in 
the fractogram (e.g., Figures 8 and 11).

Recognizing that the frequency-magnitude diagram explicitly involves time 
as a dimension, we can also enquire if there is a fractal scale with a maximum 
topological dimension of 4 that permits additional generalization of the above 
observations. This idea is tentatively explored in Figure 18b. In this 
diagram, we have used the fractogram in Figure 17a, with c = 1.5, to plot the 
corresponding values of Buildup Times, BT, against the respective ranges of 
log 1/f (general recurrence times for a given magnitude). We arbitrarily 
define the dimension D^ as the temporal fractal determined by the slopes in 
Figure 18b, exactly as we did for spatial fractals in Figure 14. Permissable 
ranges of values are explored in terms of slopes representing various linear 
paths in the fractogram; the Inset shows line sets and a schematic path 
analogous to the zigzag trends of Figures 7, 8, and 18a. Orientation in terms 
of magnitudes (according to the linear models) is indicated by the large 
filled circles and numbers; nonlinear modifications, as in Figure 17c, will 
decrease the magnitude values, but the slope relations in the time plot remain 
the same. A path at constant fault-segment number, N, has a slope of 4-1 (= 1 
- DjfjO   defining D^ = 0. At constant Buildup Time, BT, the slope is 
zero, and D^ = 1.

The consistency of these determinations with the previous spatial 
definitions and measurements is partially tested by the line of constant 
magnitude, M = 4.3. If we limit the maximum topological dimension to 4, given 
by the heavy dashed line, then the fractal sum (D + Djfp) can not exceed 4. 
At M = 4.3, Djfj. » 2.3, so the consistent spatial fractal does not exceed D = 
1.7. This is in agreement with the pairs b » .8, c = 1.4, and b « 1.4, c * 
2.5, which also agree with the ranges in Figure 18a and Table 2, depending on 
where the line of constant magnitude is drawn (M * 4.3 is consistent with the 
first pair). The fact that there is no requirement that (D + Dj^.) = 4* 
means that such a path is not necessarily a globally self-similar set (i.e., 
in the spatial fractogram, lines of constant magnitude typically would 
intersect a range of fractal sets defined by combinations of the limiting 
slopes). Temporally, however, lines of constant magnitude represent fractal 
self-similarity, by definition, in that D^ is constant.

The bewildering array of dimensions and potential fractal objects in 4 
dimensions can be given some perspective by considering possible physical 
meanings of the extreme cases Djfj = 4, and D^ = 0. In the former case, D 
» 0, so the temporal fractal correlates with a spatial distribution of 
isolated point sources. That is to say, this object is a spatial fractal 
dust, which, like the twinkling of stars, has a maximum number of degrees of 
freedom in time (to be precise in such a description, however, time variables 
in addition to BT and 1/f would be needed; examples might include duration of 
slip, longevity of aftershock sequences, etc.). For DJ^J. = 0, on the other 
hand, events occur at "points" in time, but they have the maximum possible 
spatial degrees of freedom. There is little wonder that earthquake prediction 
has proven to be so recalcitrant. Given perfect control on spatial 
distributions of point sources, the temporal distribution is unpredictable in 
terms of the variety of time variables needed to describe the behavior. Given

27



perfect temporal control, the spatial distribution is unpredictable. This 
appears to be a macroscopic uncertainty principle directly analogous to the 
Heisenberg Uncertainty principle of particle physics.

The obvious way around this dilemma is a variant of the techniques already 
being used in seismic studies. Prediction depends on an ability to develop 
criteria of complex pattern recognition. In this regard, however, methods of 
fractal classifications, using graphical constructions such as the fractogram, 
offer new methods of pattern descrimination. If specific sequences, in the 
sense of characteristic seismic cycles, can be generically recognized, their 
relations to the extremes of indeterrainism may become quantitatively 
recognizable. A fractal classification analogous to the taxonomic 
classifications of complex biologic forms may prove useful in making 
categorical forecasts of navigational locations in seismic space.

It was noticed in the above discussion that many of the paths illustrated 
in terms of varying b-values and c-values apparently are not fractally 
self-similar in that they trace out paths of varying D. In view of the added 
time dimension, however, this is not necessarily the case relative to a 
maximum topological dimension of 4. That is, both D and DJ^J can vary while 
their sum (D + DjfjO could be a constant equal to or less than 4. Such an 
object would be self-similar relative to both spatiotemporal and energetic 
variations of earthquake dynamics. Although we do not have explicit sets of 
coordinated data to test this idea graphically, it seems to be indicated by 
the suggestions of seismic cycles characterized by the inverse behaviors of D 
and DJJJ. described above. If this fractal approach were to prove valid, it 
could for the first time provide a general framework within which to generate 
and graphically illustrate forecasts that encompass the entire spectrum of 
potential faulting and earthquake events at any scale of choice.
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Some Implications of the Fractograhic Approach to the Dynamics of Faulting and 
Earthquakes.

It remains to make a connection between the fractogram and the dynamics of 
faulting. This is attempted with the help of Figure 19 and a generalized 
example of the relation between length activation as used so far and actual 
values of fault slip during earthquake events. A priori. there is no relation

Figure 19 near here

between rupture length rate, RLR, as employed here, and strain rates. Thus, 
it would not appear to be possible to relate the fractogram directly to stress 
magnitudes estimated from assumptions about plate motions, etc. Sykes and 
Quittmeyer (1981), however, give a variety of data relating slip lengths, u, 
to fault lengths, L, for large earthquakes. For purposes of illustration, we 
use the simple proportionality log u = 10""* log L (1 m slip during a 100 km 
fault activation event), which they give for strike-slip faults (their Figure 
3). Thus, an average slip rate, v, corresponding to a given rupture length 
rate is approximately v * 10"^ RLR. For example, in Table 1 for H = 1, with 
a fraction of .032 times the total assumed value of RLR for the entire system 
of branching faults, the inferred slip rate is v = .32 cm/yr or 64 cm in 200 
years. The corresponding fault length is 64 km of partial segment length 
activated in 200 years (magnitude about 7 for the scaling in Table 1). The 
consistent slip rates agree with the scaling of activation lengths and buildup 
times, implying that the distribution of cumulative slip is distributed in a 
manner proportional to the branching distribution. That is, most of the slip 
occurs on the shorter more numerous fault segments. Using a value of 
totalstrain of the order 10 cm/yr across the width of the California system in 
Figure 13 (see Savage 1983, Figure 5), the average strain rate is about 3 x . 
10""** sec""*. Thus, these values represent a set of properties dynamically 
consistent with Plate Tectonics and with the general scale relations of the 
fractogram.

If we were to view earthquake events as representing a homogeneous flux of 
strain energy across a seismic zone of prescribed volume and fractal dimension 
3, then one would expect there to be a characteristic relationship between 
shear rate and shear stress that is the same for all sets. This would be 
analogous to an aseismic continuum flow with some form of rheological "law" 
(e.g., a power law rheology is often assumed for solid state creeping flow). 
On the other hand, when the fractal dimension is less than 3, and particularly 
when it is less than 2, the "flow" is both discontinuous and intermittent. We 
will attempt to illustrate two extremes of corresponding stress states with 
the help of a general "plate-scale" stress model similar to that described by 
Hanks (1977). The essential feature of the model for our purpose is that the 
sources of crustal stress regimes emanate from the overall tractive balances 
between the lithosphere and deeper mantle motions. Simplistically, what Hanks 
(1977) calls the "basal shear stress" represents the areally averaged tractive 
force couple. Although this stress may be only tens of bars, it is 
distributed over very large areas. Therefore, if the net work done by the 
integrated stress is transmitted through the more rigid portions of the crust 
to zones along plate boundaries, and other regions of finite shear, there is a 
great focussing or multiplier effect (analogous to the multiplier effects in 
hydraulic lifts and piston-cylinder pressure devices). Accordingly, local 
shear stresses across fault zones are potentially much higher than the basal 
stress.

Figure 19 summarizes the limiting cases of an isolated slip event on a 
single fault segment in a fault zone of low fractal dimension (a), and
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multiple steady-state events in a densely distributed system with fractal 
dimension near 3 (b). In Figure 19a there are a variety of choices for the 
dynamic relationships within and across the fault zone. For example, if 
motion is represemted only by slip on fracture surfaces, then the shear rate 
depends on the domain of description (the same general situation would apply 
relative to subtraction of a uniform background creep rate). At the position 
of section A there is a well-defined shear rate across the local fault zone 
given by (du/dt)/Wfz . At position B, however, there is apparently no 
displacement anywhere within the zone so that Vfz /wfz   0, in general. 
But, if we consider a topological area or volume domain there is some average 
displacement of one side of the overall zone width relative to the other, 
which has a magnitude given by the illustrated displacement and displacement 
rate normalized by the time of observation and the domain size. The shear 
rate Vfz/Wfz obviously is large relative to the normalized shear rate 
vavg^wmz (wnere the subscript mz refers to "megazone", or plate boundary 
domains), thus the stress regime also depends on some sort of assumption or 
measurement that depends on dimensional arguments.

If the shear stress is assumed to be constant (as it might be in an 
experimental deformation), the local dissipation of work energy is very large 
compared to the average. If the stress is assumed to be proportional to the 
shear rate, then the local value is also very large compared to the average. 
On the other hand, if the dissipation rate given by the product of shear 
stress and shear rate is assumed to be constant, then the local value of shear 
stress is very small compared to the average. Since the latter condition 
comes closest to describing the ambient situation over long times and larger 
fractal dimensions (i.e., the steady-state continuum limit for a given regime 
of basal stress and plate motion), it is an appropriate reference for stress 
states. By this view, the larger the isolated faulting event (notably, 
excepting the "Ultimate Event" of Figures 17c and 18a, as discussed in the 
preceding section) the smaller is its "fractal" stress relative to the average 
state for that general tectonic region (because of the concomitant reduction 
in D). To some extent, the associated stress drop per event may also tend to 
decrease, also because of the focussing effect; i.e., the smallest events 
closest to the ambient stress condition asymptotically approach zero stress 
drop with vanishing segment and slip lengths. Down to a certain size, 
however, stress drops may be nearly constant. (Note: An analogy is the 
potential difference for flooding in a river system with a fixed levee height, 
relative to the mean flood-plane datum; the difference is nearly the same for 
large and small events as long as flooding does not inundate the entire region 
and back up to a hydrostatic level equal to the levee height. When the 
flooding potential is nearly continuous, however, the latter condition is 
approached, and the potential difference for individual episodes decreases 
asymptotically to zero.)

The purpose of this excercise is to comment on the fractal analogies 
between energy transfer processes in fault dendrites relative to those 
processes in other branching systems, such as stream dendrites. Both reflect 
a network that collects energy from topologically large areas and volumes 
involving large numbers of small dendrites of various characteristic fractal 
dimensions, and transports that energy to the larger dendrites (usually within 
the same fractal network, but sometimes also to contiguous networks with 
different fractal dimensions). In stream systems this represents nearly the 
total energy transport. In fault systems, on the other hand, only a small 
fraction of the total energy is transferred to the largest segments for the 
distributions considered, except in systems where the slope of log H vs log L 
has an absolute value less than unity (i.e., where the length fraction, X, of
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Table 1 is largest for small N, large L), and the fractal dimension is also 
large. However, judging from the discussions of self-similarity, and the 
fractal arrays of Table 2 and Figure 18a, such a distribution would be 
"unnatural" (if it existed, the stress ratio could be constant for faults of 
different lengths; again, the "Ultimate Event" represents an unusual state 
where behavior "in-the-large" can fractally resemble the behavior of 
small-scale distributed events). The analogy between strain energy and 
hydraulic energy distributions is closer for events of flooding in a river 
system with a constant long-term average discharge. Once a critical level is 
exceeded, a large local overflow can occur (large fault activation event), 
although it is a small part of the total energy transport (i.e., it is 
well-known that the total work rate of tectonics greatly exceeds the overall 
rate of seismic energy release). The "Ultimate Event" state in the hydraulic 
analogy would represent the condition of such wholesale flooding that the flow 
behavior of the mega-event would return to a distributed mode more akin to the 
localized description of the original flow field. In the seismic case, it 
must represent a limit where the scale of fault activation and slip is so 
large that the motion necessarily would have to engage the entire volumetric 
scale of Plate Tectonics. In such a limit, either tectonically or 
hydraulically, the scale of the event itself implies a potentially major 
reorganization of the system geometries (new and/or redefined fault systems, 
and/or activation distributions; new and/or redefined river channels, and/or 
levee regimes)

The above commentary seems consistent with some aspects of discussions of 
elastic field energy. There is, however, a seeming ambiguity or paradox in 
different interpretations of the energy sources for small vis a vis large 
earthquake events. The situation is stated succinctly by Andrews (1978, p 
2263), as follows:

Where does the energy for small earthquakes come from?
One possible answer is that fault creep, varying in amplitude at all 

length scales, prepares the fault for small earthquakes. A second 
possible answer,-applicable to a purely brittle seismogenic region, is 
that larger earthquakes provide energy for smaller earthquakes.

Although Andrews appears to favor the latter possibility based on the 
analysis of single events, likening it to the energy cascade from larger to 
smaller scales in fluid turbulence, there would seem to be a need for both 
types of phenomena. That is to say, there is abundant experimental evidence 
that the evolution of large failure events is preceded by the hierarchical 
growth and/or activation of systems of small fractures during progressive 
deformation imposed at the boundaries of the system (Tchalenko, 1968; Kitagawa 
and Suzuki, 1975). It also seems evident that large events are sources of 
strain energy redistribution (in particular, the "Ultimate Event" condition of 
Figures 17c and 18a). The former regime would appear to derive from the 
heterogeneities of rheological behaviors related to fractal nonlinearities of 
the sorts described above. Using the same fluid dynamical analogy, the growth 
of fluid turbulence also involves an energetic buildup, relative to static 
and/or laminar modes, wherein there is a dissipative input of vorticity 
originating from boundary tractions (or other forms of energetic coupling, 
such as from thermal sources). The cyclic buildups and cascades of 
dissipative vortical modes resemble the seismic cycles described in the 
present paper in terms of cyclical paths in the fractogram.
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Fractal Concepts and Practical Problems of Earthquake Prediction.
Our view of the dynamics of branching systems of faults has some 

resemblance to the fractal asperity model of Smalley and others (1985). Their 
model, however, refers to the distribution of stresses within a fault plane, 
while our interpretation implies an energy cascade from the smaller to larger 
segments of a fractally distributed set of fault segments. The implication of 
our model is that the stress distributions and failure conditions for the 
smaller sets of distributed fault activations provides an information base for* 
the interpretation of larger events on the more major fault segments (within a 
given context of fractal dimensions and self-similarity). In this regard 
there is some parallel with strategies of stream gauging in which information 
on discharge rates for tributaries is used to forecast potential flood 
conditions.

These inferences seem consistent with the ideas of seismic cycles in Japan 
where precursive events occur over large diffuse regions and converge toward 
the loci of major earthquakes (see Mogi, 1981, Figure 11). The picture of 
partial seismic cycles in Northern California given by Bllsworth and others 
(1981) seems to be consistent with the conclusions of this paper (cf., Kerr, 
1985; Wesson and Wallace, 1985). The interest of earthquake forecasting would 
seem to be served by placing even more effort into the documentation of the 
smaller to intermediate events and fault segments with emphasis on deriving 
information concerning the domains of coordinated fractal sets; in particular, 
comparisons of fractal regimes between the vicinities of the so-called locked 
and unlocked portions of the largest fault systems should be revealing. If 
characteristic fractal sets within space-time domains with topological limit A 
can be quantified, the earthquake process and the problems of forecasting may 
have a general solution.

This possibility is put into some perspective by simultaneously viewing 
combinations of graphical data as navigational aids to the interpretation of 
seismic patterns. For example, in combination, map patterns (Figure 13), 
fractal sets in fractograms (Figure 17), fractal sets in b-c space (Figure 
18a), and fractal sets in BT-l/f space (Figure 18b) offer an almost complete 
characterization of the earthquake process (in addition to the derived dynamic 
information concerning stress and strain states). Alternatively, Figure 18 
might be generalized in terms of a 3-dimensional stereographic projection. In 
a sense, such a diagram would be an analog of a fractal compass and clock. 
This analogy is not so fanciful, in that Figure 18a gives directions in 
fractal space, and Figure 18b identifies temporal sequences. In fact, Figure 
18b is almost literally a relativistic seimological clock, in that DJJ-J. 
increases in the clockwise direction, while 0 tends to increase in the 
counterclokwise direction (although D may have a variety of synchronizations 
relative to DJJT); at the same time (i.e., either at constant BT, or constant 
1/f) earthquake magnitudes increase from left to right and from bottom to top.

The term "relativistic" is used in reference to the macroscopic 
uncertainty principle mentioned in the discussion of temporal fractal 
dimensions. There is a close parallel here with the problems of predicting 
trajectories in particle physics, in the sense that, there, the documentation 
has to choose between specifications of position and momentum (velocity, time, 
etc.); the Heisenberg Uncertainty Principle states that these parameters 
(which are analogous to seismic hypocentral location and frequency-magnitude 
location, where time is meant in the sense of Figure 18b) can not both be 
determined uniquely at a given "point" in both time and space. In the 
equivalent seismological quantum dynamics, this principle would suggest that 
we can not expect to simultaneously predict locations in space and locations 
in time, except with regard to the similarly analogous approach to
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pattern-predictions of.alternative futures. That is to say, predictions in 
both time and space can be made on the basis of the suggested methods of 
"fractal navigation", but we can't expect them, if the analogy is correct, to 
"coincide**, in the sense of an ability to ever specify both the absolute 
location and absolute time of an event of given energy.. In a practical 
sense, this would apparently mean, on the one hand, that it would be possible 
to predict a spatial fractal sequence without being able to say when any 
specific point in that sequence would be sampled. And, on the other hand, it 
would simultaneously be possible to predict a temporal fractal sequence 
without being able to say exactly where the hypocenter would be located (in 
combination, the predictive problem would be parallel to predicting particle 
trajectories in 4-dimensional spacetime).

This interpretation, of course, refers to global predictions in the sense 
of Figure 18, and the generalized sequences in a fractogram. Prediction in 
the localized sense is still applicable as it is currently being practiced; 
i.e., massive information on the behavioral traits of a specific geometrical 
domain eventually allows pattern recognition with some confidence (a particle 
physicist who has spent a lot of time studying familiar reactions in a cloud 
chamber also can say with some confidence what kinds of sequences are likely 
to appear within given locations and time frames). As was the case in 
particle quantum dynamics, however, discovery of principles of uncertainty, 
paradoxically, adds to an entirely new ability for prediction. Before the 
principle was recognized, many physical phenomena were totally mystifying 
(zero predictive ability on any terms). Since its advent, entire realms of 
dynamical regimes previously unknown have been elucidated, from the scales of 
subatomic particles to the scales of cosmological interactions and force 
fields. It is hardly surprising, therefore, that these disciplines have in 
common the same concepts of fractal geometry and scale invariance as a 
fundamental tool for description and prediction.
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Summary.
The maximum moment model of Wesnousky and others (1983) implies that a 

fault is activated over its total mappable rupture length which is correlative 
with an earthquake of characteristic maximum magnitude and recurrence time for 
that length. By comparison, Shaw and others (1981) and Shaw and Gartner 
(1981) showed that, in general, many possible combinations exist for 
partitioning of slip among subsets of individual faults of characteristic 
lengths in a genetically coeval branching system of faults with a hierarchy of 
lengths spanning many orders of magnitude. This general relation is described 
in terms of a nomogram they called a paleoseismic parallelogram, which is 
renamed here a paleoseismic fractogram; the fractogram outlines possible 
combinations of segment lengths, numbers of segments, and their corresponding 
recurrence times relative to coordinates of frequency and magnitude. Two 
types of end-member models on this diagram are arbitrarily defined in terms 
of: (1) parallel lines of constant Buildup Tiroes which are associated with a 
characteristic subset of partial to total segment lengths, within a specified 
range of fault activation rates (segments which, in aggregate, are 
simultaneously compatible with that buildup time and with a specified overall 
rate of length activation called the Rupture Length Rate, RLR; this rate 
refers to the cumulative summation of fault length that can be activated in a 
specified system of faults, and not to the slip diplacements during 
earthquakes), and (2) parallel lines of constant branch-length number. H, 
called Orders. each of which is associated with a constant, but generally 
different, value of RLR that is characteristic of the branching order (i.e., 
Order refers to the set of fault branches associated with a given average 
length, depending on how a hierarchy of lengths is defined). 
These models represent an idealized system of fault branches in which the 

numbers of segments of a given average length decrease in some proportion to . 
increasing segment length; the proportionality used was chosen from a range of 
values determined statistically by Shaw and others (1981). According to a 
statistical counting of measured fault lengths of different ages, the value of 
RLR increases with the degree of segmentation; this is because the 
proportioning of lengths increases at the shorter lengths, and in the steady 
state this means that the rupture lengths are similarly proportioned for a 
given overall rate of strain (implicitly, volumetric as well as areal). 
Frequency-magnitude data for a well-documented 400-yr history of earthquake 
and faulting actvity in Japan, as given by Wesnousky and others (1983), plot 
as a zigzag trend that approximately bisects the acute angle between the above 
two end-member models; the trend alternates between intervals roughly parallel 
to one or the other end-member relation. Interpreted in terms of the maximum 
moment model, this pattern suggests that each branch-length order defines a 
characteristic maximum earthquake and recurrence time each of which increases 
at the next lower order (longer fault branches of fewer number) according to a 
stepwise hierarchy: activation of a given length-set engages more and more 
segment-length per event, with a corresponding increase in Buildup Time, until 
that set reaches a limit; activity is then expressed in terms of a shift, at 
constant Buildup Time, to a longer set containing fewer segments. In each 
step, the maximum earthquake increases but the frequency decreases relative to 
what it would have been if the shorter branch sets had not reached saturation 
at a characteristic maximum moment. Different portions of this sequence may 
evolve in systematic progressions or in more haphazard patterns of partial 
event sequences with mixed chronologies. This general pattern appears to 
describe paleoseismic data in the U. S., although the resolution is not 
adequate to identify step-like intervals at the scale of fault regions 
documented in Shaw and others (1981). Comparisons of paleoseismic fractograms
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for these faulting regions with frequency-magnitude data for the seismic 
regions of Algermissen and Perkins (1976) reveals mismatches which suggest the 
existence of unrecognized active fault systems. Recent discoveries of 
sand-blows and other evidence of faulting events in the midwest and southeast 
(Kerr, 1985; Obermeier and others, 1985) are consistent with generalized 
predictions of unrecognized young fault activity made by Shaw and others 
(1981).

Although the fractogram provides a convenient form of description that can 
be used as an independent method of geometrical construction, it is shown to 
be equivalent to descriptions based on concepts of fractal geometry. 
Fractally self-similar sets imply special paths in the fractogram. Observed 
paths imply changing fractal dimensions during the seismic cycle when it is 
described in terms of a maximum topological dimension of 3. Expansion to 4 
dimensions (including time) suggests that fractal variability in space may 
become fractally invariant or self-similar in spatiotemporal dimensions. If 
so, the faulting and earthquake process is, in principle, universally 
describable in terms of a common system of geometrodynamics. Data are given 
to illustrate how the fractal dimensions of fault systems can be measured, how 
they relate to dynamical conditions of tectonic stress and strain states, and 
how they can be applied to problems of prediction, with special reference to 
fault patterns in California.
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Table 2. Fractal Dimensions Consistent With Slopes of Frequency-Magnitude (b) 
and Moment-Magnitude (c) Plots.

(Note: Values in parentheses exceed the topological limit 3 for the 
volume-filling set, but time adds 1 to the potential fractal dimension in a 
topology of 4 dimensions; see Figure 18 and text. Also, observe that if c can 
assume the value 3, then the slope, -b, of the frequency-magnitude plot is 
identically equal to the fractal dimension of that data set; whether or not 
this dimension is associated with a fractally self-similar branching 
distribution of faults, however, depends on considerations such as those 
represented by the fractogram. That is to say, a self-consistent set of 
seismic data, such as sets identified with the seismic zones of Algermissen 
and Perkins, 1976, and Algermissen and others, 1982, does not necessarily 
relate to a single self-similar branching distribution of faults, because of 
intersecting trends, overprinting, etc.)

c 
1.0 1.5 3.0

b « .75 2.3 1.5 .75

b « 1.0 3.0 2.0 1.0

b m 1.5 (4.5) 3.0 1.5

b m 2.0 (6.0) (4.0) 2.0

b m 3.0 (9.0) (6.0) 3.0

40



Figure 1. Scale relations and the definition of fault segments:

(a) Total segment length equivalent to a complete activation event 
relative to two different length scales. At the larger scale, the segment is 
one of the two longest fault traces, representing the order H « 2. At the 
smaller scale, this trace may be one of a higher order set (H greater than 2), 
or the length shown may relate to a longer segment at the left as the first 
order fault, in which case the count of numbers per length may also require 
some revision.

t
Faultjength

Faultjength - rupture length for a single eerthquake event (maximum-moment)

t Fault length
^
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Figure 1. Scale relations and the definition of fault segments:

(b) Scale relations for partial segment lengths. If each demarked 
interval represents an earthquake event, then there is a more continuous 
spread of frequencies and magnitudes than there is if the segment represents 
only one discrete event of maximum magnitude.

Partial ttgmant lengths

Plrtitl Mgmant lengths aummlng to Mgmant langth in Fig. 1a.

Partial Mgmartt langtftu



Figure 2. Illustration of the difference between the frequency-magnitude 
relations for "b-value" and "maximum-moment1* type events (redrawn from 
Wesnousky and others, 1983). Essentially, one of the latter types of events 
is equivalent to the summation of several distributed events. If the total 
moment rate is the same, then it takes longer in the b-value mode to produce 
an event of the same magnitude as in the maximum-moment mode (see Figure 3 and 
discussion in text).
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Figure 3. Illustration of the b-value and maximum-moment modes in terms of 
schematic distributions of fault activation lengths:

(a) The series of x's demark fault length that is activated in a single 
earthquake of maximum-moment type (ignoring local foreshock-aftershock 
events). This event would also be the largest possible event in a region 
limited to the larger scale. At the smaller scale, this event may be small 
relative to longer fault segments of lower number/length order in a more 
regional set.

A singia Maximum-Momant Evant
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Figure 3. Illustration of the b-value and maximum-moment modes in terms of 
schematic distributions of fault activation lengths:

(b) Partial events along several segments in different number/length 
orders during the same amount of time for the buildup to the event in (a) at 
the same rate of energy accumulation. In this mode, events equivalent to (a) 
require longer to build up to the same magnitude because of the more continual 
energy consumption in the partial activation events. If the scale were made 
even smaller, it would be difficult to distinguish a partial activation from a 
total activation of a given segment length. The difference in 
frequency-magnitude plots, however, is still preserved (i.e., relatively lower 
frequencies, perhaps by as much as a factor of two, that are spurious if the 
Maximum Moment model is a more accurate description of length activations); 
see Wesnousky and others (1983) for numerical examples and discussion.

M XX * 

 *-* * 

-XXX-

 *-**-

KMXXXK-

Partial avants along several faults making up tha sama total momant as in Fig. 3a.

45



Figure 4. Histograms of fault-length measurements from Shaw and others (1981) 
based on the map of young faults in the U. S. by Howard and others (1978) at a 
scale of 1 : 5,000,000, and in the Los Angeles area by Ziony and others (197A) 
at a scale of 250,000 but plotted at the same scale as the U.S. data (i.e., at 
the scale 1 cm * 50 km). Both sets of data represent a time span of roughly 
15 m.y.; see Shaw and others, 1981, for histograms broken down into 30 
Faulting Regions and five age groups. Data for the Los Angeles vicinity are 
shown as a test of the effect of map scale on length cutoff, and as evidence 
of scale invariance of the general form of the distributions (see Figures 5 
and 13, and discussions of self-similarity in text):

(a) Counts based on constant linear increments of about 1 km (minimum 
readability at 1 cm * 50 km was about .2 mm).
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Figure 4. Histograms of fault-length measurements from Shaw and others (1981) 
based on the map of young faults in the U. S. by Howard and others (1978) at a 
scale of 1 : 5,000,000, and in the Los Angeles area by Ziony and others (1974) 
at a scale of 250,000 but plotted at the same scale as the U.S. data (i.e., at 
the scale 1 cm » 50 km). Both sets of data represent a time span of roughly 
15 m.y.; see Shaw and others, 1981, for histograms broken down into 30 
Faulting Regions and five age groups. Data for the Los Angeles vicinity are 
shown as a test of the effect of map scale on length cutoff, and as evidence 
of scale invariance of the general form of the distributions (see Figures 5 
and 13, and discussions of self-similarity in text):

(b) Counts based on the convention DELX = X, where the length interval is 
increased geometrically so that no gaps occur in the length data.
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Figure 5 Plots of log N vs. log L based on the sets of data in Figure 4; the 
Los Angeles data are shown to illustrate scale invariance (regression 
equations are for L in cm at map scale 1 cm » 50 km):

(a) Constant linear increments; in this mode the intermediate lengths 
dominate the regression slopes, and the longest fault lengths are not 
adequately represented.

NOTE: Fractal geometric analysis described later (Figures 13-18) shows that 
the fractal dimension is given by the relation Slope » (1 - D) in a plot of 
log (ML) vs. log L, where N is the number of units of length L associated with 
all faults individually equal to or longer than L; that is, HL represents all 
of the fault length for faults of length L and longer. Thus, L becomes the 
"yardstick" for measurement of length. Furthermore, if the slope, s, in plots 
of log number vs. log length, as given in this figure, is greater than unity 
then it provides an approximation to log (ML) vs. log L because most of the 
length at each L is accounted for by the incremental values. By this 
approximation the relation between s and D is given by (s + 1) » (1 - D), or D
* -s. Accordingly, absolute values of slopes in Shaw and others (1981, Table 
2.2.1-1.) indicate approximate variations of D for different faulting 
regions. Qualifications are: (1) maximum D should not exceed 2 for planar map 
distributions, therefore absolute values of s greater than 2 should not be 
observed (larger values occur because long faults are underestimated in some 
regions due to truncation or lack of recognition; this applies to the LA data 
of this figure, although the value may approach 2); (2) values near s * -1 
underestimate D. The US value of 1.76 may be a true reflection of a "bushier" 
distribution than exists for long strike-slip fault systems; the value of 1.28
- 1.38 for California Coast agrees with other measurements given later.
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Figure 5 Plots of log N ys log L based on the sets of data in Figure 4; the 
Los Angeles data are shown to illustrate scale invariance (regression 
equations are for L in cm at map scale 1 cm = 50 km):

(b) DELX » X convention; in this mode the longer faults dominate the 
regression equation, and the numbers of short faults are overestimated.
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Figure 6. Construction of the fractogram for coordinates of magnitude, M, 
and the logarithm of frequency, log f, (the "paleoseismic parallelogram" of 
Shaw and others, 1981) based on the data in Figure 5 and Table 1 (U.S. data, 
all ages) for a rate of length activation ("rupture length rate" of Shaw and 
others, 1981) of 10 taa/yr. The number of segments is indicated for four 
arbitrary orders to base 10, N * 1 to N * 1000. Values in parentheses 
identify the buidup time, BT, for the value of RLR normalized by the fraction 
of the total length in each order (see Table 1). The crosses and dashed lines 
indicate the SATURATION condition in Table 1. The heavy dot-dash lines show 
the composite distribution of historic seismicity for the U. S. from 
Algermissen (1969); the Roman numerals V and XII designate Modified Mercalli 
intensities representing his suggested range of validity of the regression 
(see text for definitions of magnitude derived from length data and from 
intensities). Fractograms are not constructed at the larger map scale of the 
Los Angeles data, because regional comparisons with seismicity in the U.S. and 
Japan are emphasized in this paper. A parallel construction can be made, 
however, following the same stepwise procedure detailed in Table 1 and tested 
against seismic data available in the Los Angeles vicinity (see Algermissen 
and others, 1982). In the regression equations, L is in cm for the scale 
ratio 1 era = 50 km.

(a) Constant linear increment, U.S. data: log N = 1.12 - 1.76 log L.
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Figure 6.

(b) DELX = X, U.S. data: log N = 2.81 - 2.21 log L (Note: This equation is 
a correction of the equation used in Shaw and others, 1981, to illustrate 
the construction of the fractograra: two data points apparently were misread 
in the input of the original regression routine, resulting in an 
erroneously large value of absolute slope.)

The parallelogram in (b) is not drastically different from (a), but 
notice that the Buildup Time to SATURATION is considerably greater because 
of the greater segment lengths per order. The maximum length at N = 1 is 
nearly equal to the length of the San Andreas (see Figures 10 and 11).
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Figure 7. Frequency-magnitude diagrams showing the relative positions of 
fractograms, fault activation rates, RLR, and seismic data for Japan and the 
U. S. In this and later illustrations, the fractogram is scaled as in Figure 
6a, unless otherwise stated (see Figure 17); in some cases, however, it is 
shifted relative to the coordinates to illustrate contrasts in assumed local 
or overall activation rates (see b below, and Figure 9). Open circles 
indicate the raw data for historic seismicity in Japan, and the crosses 
represent the corresponding calculations for the maximum moment model 
(replotted from Wesnousky and others, 1983, Figure 7; Note: Their data are 
expressed in terms of cumulative moment, thus the frequencies equivalent to 
the incremental data based on lengths, or equivalent to the U.S. seismicity, 
will be somewhat lower, depending on the scales of resolution. These 
uncertainties, however, are masked by the uncertainties of RLR, and of the 
moment vs. magnitude relations discussed by Hanks and Boore, 1984, and 
illustrated in Figure 17c.). The heavy dash-dot line represents the U. S. 
data from Figure 6. Lines marked RLR represent the loci of frequencies and 
magnitudes for steady-state production of activated fault length at the rates 
indicated on the curves, using the same relation for magnitude from length 
given in the text; e.g., at a rate of 1000 km/yr, the length of activated 
fault produced in 100 years is 10 km which converts to a magnitude of about 
6.2, etc. The potential rate identified by a value of RLR, such as the value 
10 km/yr used for the rate of activation of total length in Table 1, is 
normalized by the fraction of length in each number/length order to give the 
relative distribution of frequencies and magnitudes for a given branching 
hierarchy (see stepwise calculations in Table 1):

(a) Position of the fractogram as in Figure 6, based on RLR = 10 km/yr.
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Figure 7. Frequency-magnitude diagrams showing the relative positions of 
fractograms, fault activation rates* RLR, and seismic data for Japan and the 
U. S. In this and later illustrations, the fractogram is scaled as in Figure 
6a, unless otherwise stated (see Figure 17); in some cases, however, it is 
shifted relative to the coordinates to illustrate contrasts in assumed local 
or overall activation rates (see b below, and Figure 9). Open circles 
indicate the raw data for historic seismicity in Japan, and the crosses 
represent the corresponding calculations for the maximum moment model 
(replotted from Wesnousky and others, 1983, Figure 7; Note; Their data are 
expressed in terms of cumulative moment, thus the frequencies equivalent to 
the incremental data based on lengths, or equivalent to the U.S. seismicity, 
will be somewhat lower, depending on the scales of resolution. These 
uncertainties, however, are masked by the uncertainties of RLR, and of the 
moment vs. magnitude relations discussed by Hanks and Boore, 1984, and 
illustrated in Figure 17c.). The heavy dash-dot line represents the U. S. 
data from Figure 6. Lines marked RLR represent the loci of frequencies and 
magnitudes for steady-state production of activated fault length at the rates 
indicated on the curves, using the same relation for magnitude from length 
given in the text; e.g., at a rate of 1000 km/yr, the length of activated 
fault produced in 100 years is 10 km which converts to a magnitude of about 
6.2, etc. The potential rate identified by a value of RLR, such as the value 
10 km/yr used for the rate of activation of total length in Table 1, is 
normalized by the fraction of length in each number/length order to give the 
relative distribution of frequencies and magnitudes for a given branching 
hierarchy (see stepwise calculations in Table 1):

(b) Position of the fractogram on the assumption that the termination of 
the seismic line for the U. S. identifies the SATURATION value at order N = 1; 
to fit both this assumption and the number vs length distributions, the value 
of RLR would have to be about 40 km/yr distributed according to the same 
fractions as in (a) and Table 1. SATBT indicates the buildup time for 
SATURATION based on this assumption and its submultiples, as in Figure 6a; 
here, however, SATBT is identical with the right side of the parallelogram and 
is slightly smaller (about 600 years instead of 700; dashed line in a). The 
heavy dashed line shows where the SATURATION limit would be if the longest 
first-order fault were of length 1000 km; the Buildup Time, BT, in this case 
would be about 1000 years (compare with Figure 6b, where SATURATION for a 
comparable length is about 6000 years). Open circles connected by a solid 
line represent the trend of the observed seismicity in Japan from graph (a). 
The light dashed lines and numbers in parentheses represent seismic trends 
within some selected Seismic Zones from Algermissen and Perkins (1976): (2) 
San Andreas system, CA, (61) vicinity of Mississippi Embayment (New Madrid 
system, etc.), (65) vicinity of Charleston, SC. We refer to the Seismic Zones 
of Algermissen and Perkins (1976), rather than Algermissen and others (1982), 
because the general trends are the same, and the earlier zonations are more 
readily compared with the Faulting Regions in Shaw and others (1981); see 
Figure 9.
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Figure 8. Hypothetical regimes of fault-length activation expressed as 
combinations of order sequences in the fractogram as constructed in Figures 6 
and 7 from Table 1:

(a) All number/length orders are uniformly activated in proportion to the 
fraction of the aggregate fault length (length fraction X in Table 1); in this 
"diffusive** mode the potential magnitudes and frequencies are given by the 
same uniform buildup time for which it is assumed earthquakes can occur (this 
kinematic balance does not consider information on failure conditions). The 
dashed line schematically indicates the trend of net frequency-magnitude 
relations.

(b) Each number/length order, beginning with the highest order (large N, 
small L), is activated in a sequence of partial events which terminate in a 
SATURATION event ("ultimate** moment for that order) before the next lower 
order (larger length-subset) begins to show seismic activity. When all orders 
have been sampled the sequence repeats. The dashed line indicates that the 
net frequency-magnitude graph would lie above and subparallel to the trends at 
constant N.

(c) Similar to (b) except that the sequence in each order is terminated at 
some maximum event charateristic of that order, at a level of potential 
activation less than SATURATION; the total cycle time in this case is less 
than in (b). Numbers indicate 6 subregimes of the overall cycle, 3 at 
constant N, and 3 at constant BT.

(d) SATURATION mode, in which no events occur until every order has built' 
to its ultimate potential moment, and events then occur in proportion to the 
SATURATION lengths and length fractions of the total activation rates (see 
Table 1).

Note: The fractogram is based on generally steady-state arguments 
concerning distributions of activation lengths. The above models, however, 
imply transient behavior in strain distributions (apart from the obvious 
transients associated with seismic radiation) over at least some portions of a 
seismic cycle. In order to reconcile these viewpoints, information on actual 
rates of change in strain energy distributions is needed (a relationship 
between RLR and rates of fault slip is considered in a later section; see 
Figure 19). For a steady-state RLR in these diagrams, the portions of faults 
for which no events are recorded imply either aseismic slip or storage of 
strain energy equivalent to a given value of RLR. In the former case, RLR is 
a potential rate relative to seismicity even though it is an actual measure of 
fault lengths showing evidence of motion; in the latter case, both motion and 
seismicity are episodic in the several kinds of possible sequences. The 
effective values of RLR during the episodes of motion, therefore, are 
increased in proportion to the times representing storage episodes in each 
order. This will modify the assumption concerning the constant fractional 
distribution of RLR; in the storage mode the fractions also will be functions 
of time which average to the steady state distributions over multiple cycles.
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Figure 9. Regression distributions of historic seismicity for selected 
Seismic Zones in California calculated from data in Algermissen and Perkins 
(1976) and plotted vs the range of values of RLR in earlier diagrams; the 
dotted outlines show the positions, respectively, of the fractogram in Figure 
7b and one that might hypothetically include activity only in zones 3, 4, and 
18. The geographic boundaries of Seismic Zones are shown in Figure 10.

Note: Algermissen and others (1982) revised the seismic zoning of 
Algermissen and Perkins (1976) into many more zones. For present purposes, 
however, the coarser distribution is more readily compared with the Faulting 
Regions evaluated by Shaw and others (1981). Ranges and patterns of b-values 
are generally similar in the newer zonations, but any detailed study of 
geographic/chronologic correlations will have to consider questions of 
systematic interactions at the finer resolution.
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Figure 10. Distribution of Seismic Zones in California as defined by 
Algermissen and Perkins (1976; redrawn from their Figure 2). Seismic Zone 2 
essentially refers to a mappably continuous portion of the San Andreas system; 
solid circles indicate an approximately 1000 km length of the San Andreas 
system, which is also used as a reference length in Figures 11 and 13. A more 
detailed map of seismic zones is given by Algermissen and others (1982), but 
the general distributions of b-values in frequency-magnitude plots remains 
roughly the same (see Figure 9).

Note: A fractogram constructed from the fault-length distributions for the 
Los Angeles vicinity shown in Figure 5, following the procedure in Table 1, 
can be compared with Seismic Zone 4, and with its revised subdivisions in 
Algermissen and others (1982).
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Figure 11. Sketch map of the San Andreas system (modified from Alien, 1968). 
Solid circles indicate the approximately continuous zone with a length of 
about 1000 km as shown in Figures 10 and 13. The Inset shows possible 
relationships to hypothetical portions of the fractogram as outlined in Figure 
8 (see text). If the San Andreas system is viewed in the context of multiple 
Seismic Zones and Fault Regions (Howard and others, 1978; see Shaw and others, 
1981), a multiple hierarchy of fractograms is required to accomodate the 
implicit ranges of RLR and frequency-magnitude trends. It is noted later (see 
Figure 17b) that as log N vs log L approaches direct inverse proportionality, 
the fractogram collapses to a line ("parallelogram of zero width"); the 
"California Coast" Fault Region, which largely includes the San Andreas system 
has the following regression equations: log N = .13 - 1.28 log L (linear 
increments), and log N = 1.31 - 1.26 log L (DBLX = X), for cm at scale 1 cm * 
50 km. In such a case the distributions of activation lengths and seismic 
events are nearly superimposed on the same trend, making it difficult to 
distinguish between partial and maximum events in the absence of direct 
correlations of activation lengths with specific earthquakes. As noted in 
Figure 3, however, the distinctions between b-value and maximum moment 
interpretations are nonetheless real and important. Also, the linearity of 
the fractogram does not imply restriction of fault activations to a linear 
zone, as is usually assumed for the San Andreas system. Therefore, the same 
general implications hold concerning the importance of establishing 
characteristic number/length hiearchies over a "dendritic" region (see later 
discussion of fractal dimensions in text, and compare with Figures 8, 17, and 
18). The Inset schematically indicates subregimes of the fractogram, as in 
Figure 8, that might apply to different portions of the San Andreas system; 
smaller events are distributed over a range of number/length orders and higher 
frequencies during a characteristic portion of a seismic cycle, as in Figure 
8, whereas another portion of the cycle experiences partial activations of 
larger events and lower frequencies' within a restricted number/length order 
(e.g., N * 1). At present, these would correspond roughly to the unlocked and 
locked portions, respectively, of the fault. Such distributions would show 
seismic gaps, both in terms of the frequency-magnitude plots, and in terms of 
geographic locations.
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Fi&ure 12. Comparison of fault-length distributions implied by record of 
historic seismicity in Japan with data for U. S. based on measurements for 
different age classes from Shaw and others (1981). Lengths for the Japanese 
data were inverted from moment distributions (Wesnousky and others, 1983, 
Figure 7) using the relation in the text (Eq. 2): log Mo = 23.50 + 1.94 log 
L, for L in km. The trend for Japan therefore represents the number of 
equivalent lengths greater than or equal to the length L; this overestimates 
the number relative to the incremental data for the U. S. by about a factor of 
2 (.3 log unit). The step-like distribution of crosses is partly an artifact 
of the assumption that each event represents the activation of an entire fault 
segment; if some partial activations exist , as is inferred from Figure 7, and 
if incremental data were used, the steps would be less conspicuous. It is 
evident, however, that the seismically inferred numbers of active faults in 
Japan are much greater than are the measured numbers in the U. S. over a 
comparable time-span of activity, relative to the more similar comparative 
levels of seismicity as shown in Figure 7 (see discussion in text). By 
inference, many active faults exist in the U. S. that are not included in the 
catalog of direct measurements compiled by Shaw and others (1981); that 
reference draws the same conclusion on the basis of comparing levels of 
implicit fault activation for each Seismic Zone of Algermissen and Perkins 
(1976) with measured levels of faulting in each of the Fault Regions of Howard 
and others (1978).
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Figure 13. Geometric comparison of fracture patterns as a function of scale 
without regard to either kinematic or dynamic histories of growth: (a) 
California faults showing evidence of activity in the latest 15 my, redrawn 
from Howard and others (1978; see maps in Shaw and others, 1981); (b) through 
(d) were redrawn from Tchalenko (1970, Figure 11): (b) Dasht-e Bayaz 
earthquake fault, Iran, (c) clay deformation in a Reidel shear experiment, (d) 
detail of shear box experiment. The solid circles in (a) mark the approximate 
1000 km interval of the San Andreas fault zone shown in Figures 10 and 11.

(a) California faultt ence of activity in latatt 16 m.y. (Howard and othars, 1978)

100km

(b) Oartt-t Bayaz earthquake fault. Iran (Tchatenko. 1971)

100m

(c) Clay deformation in a Raidal sheer experiment (Tchalanko, 1971)

/.

10mm

(d) Detail of rtear box experiment (Tchalenko, 1971)
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Figure 14. Estimates of fractal dimensions, D, for the fracture patterns of 
Figure 13 taken to represent a potentially self-similar set:

(a) Measurements of log N vs log L for each of the patterns subdivided 
into 4 or 5 number/length orders; the mean slope is about -1, and the 
distribution is given approximately by: log N = 1 - log L, for L given by the 
scale of the drawing (slope -2 is shown for reference).
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Figure 14. Estimates of fractal dimensions, D, for the fracture patterns of 
Figure 13 taken to represent a potentially self-similar set:

(b) Total length of fracture at each scale based on multiples of the total 
measured length in (a) plotted vs the ruler length, R, characteristic of the 
individual measurements; that is, each scale is considered to contain 
additional fractures as shown at the higher magnifications, so that the total 
number and length of fractures of all sets in (a) is a product of the series 
of proportions. The slope of about -.25 is for the distribution log H = 1 - 
log L, and the slope about -.4 is for log N = 2 - 2 log L; this denser 
distribution is considered because the steeper slope is more typical for fault 
measurements. The fractal dimensions are determined from the relation (Eq. 7) 
that equates the slope with the quantity (1-D), where D is the fractal 
dimension; the respective values are D = 1.25 and D = 1.4 (see discussion in 
text)
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D = 1.40

  Dense packing
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Figure 14, Estimates of fractal dimensions, D, for the fracture patterns of 
Figure 13 taken to represent a potentially self-similar set:

(c) Total length of fractures on the assumption that gaps (areas, and 
implicitly volumes) between the faults in (a) contain fractures at all the 
larger scales. The slope is about -1, giving a fractal dimension D = 2 in 
agreement with an area-filling distribution (this would be D » 3 for a 
volume-filling distribution, if the same ratios applied to patterns in cross 
section).
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Figure 1A. Estimates of fractal dimensions, D, for the fracture patterns of 
Figure 13 taken to represent a potentially self-similar set:

(d) Density of fracture pattern for* a number-length relation approximating 
the distribution log N * 2 - 2 log L. If the sets at different scales have 
systematically steeper slopes than -1, the fractal dimensions will vary from 
those in (b), but the distribution in (c) remains the same if the ratios of 
areas are constant (i.e., the area-filling, and volume-filling, modes are the 
fractal limits for topological dimensions 2 and 3, respectively).
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FiRure 14. Estimates of fractal dimensions, D, for the fracture patterns of 
Figure 13 taken to represent a potentially self-similar set:

(e) Fractal dimension of a fracture surface in metal (300-Grade Maraging 
steel), as measured by Mandelbrot and others (1984) using the technique called 
"slit island analysis". The ratio of area to perimeter, measured with 
different ruler lengths, defines the fractal dimension. A linear regression 
fit of the data defines the constant fractal proportionality, D = 1.28, 
showing that the data are fractally self-similar (within the statistical 
accuracy of the measurements). The drawing is modified from Mandelbrot and 
others (1984, Figure 1); the line D = 1 was added. Note: In that reference, 
there is an ambiguity between the definition of fractal dimension and "fractal 
dimensional increment" (which may be a missprint). It is clear from the 
context, and the definition in their text (p. 722), that the dimension D* is 
the slope in the graph of log (area) vs. log (length), which is about 6/4.7 « 
1.28, where D* refers to a maximum topological dimension 2 (giving D = 2.28 
for their specimen as a whole). In the figure caption, however, 1.28 is said 
to be the fractal dimensional increment. We prefer to use the single symbol D, 
referring in each case to the appropriate topological limit.

"6

UJcc

10'

PERIMETER

72



Figure 15. Illustration of "dissected" line sets:

(a) The Cantor set in which the central 1/3 is cut out in successive 
stages of dissection (see Mandelbrot, 1977, p 98 ff.); the fractal dimension 
is about D i .63, a value that is "less-than-linear".
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Figure 15. Illustration of "dissected" line sets:

(b) An "inverse Cantor set" as invented in this paper to illustrate a 
dissection sequence in which the central third doubles in every successive 
cutout; D * 1.26 based on formula D - log H / log (1/r), where H is the number 
of "solid" segments and r is the ratio of the cutout length to the unit length 
(1/3 in the Cantor set). Any other ratio of cutout length and degree of 
subdivision is possible, making the variety of possible fractal sets created 
in this manner unlimited. If the cutout lengths are included (dashed lines), 
as though they represented the fossil traces of previous segment lengths, the 
fractal dimension increases to about D = 1.47. This set is a geometric object 
with a similar fractal structure to the fracture patterns in Figure 13 as 
measured in Figure 14; as discussed in the text, however, there are implicit 
regimes of fault activation where the fractal dimension implies a degree of 
dissection resembling the Cantor set proper (D less than 1).
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Figure 15. Illustration of "dissected" line sets:

(c) Plot of Total Length vs. segment length as Ruler Length, normalized to 
the value L0 = 1000 (as in a maximum fault length of 1000 kin). Slopes 
measured from direct plotting of cumulative segment lengths agree with Eq. 8, 
D = Log N / log (1/r). The horizontal dashed line demarks the transition from 
less-than-linear to greater-than-linear fractal sets.
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Figure 16. Illustration of the measurement of fractal dimension for dendritic 
patterns, by analogy with the fingering flow of a viscous fluid:

(a) Published example of fractal dimension (D = 1.38) as measured for flow 
in a Hele-Shaw experiment (redrawn from Nittmann and others, 1985); the ruler 
length, R, defines different lengths of perimeter which are plotted as in 
Figure 14, except that here the total number, H, rather than total length of 
measurement is plotted (H is to be multiplied by R to get the total length).
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Figure 16. Illustration of the measurement of fractal dimension for dendritic 
patterns, by analogy with the fingering flow of a viscous fluid:

(b). Fracture pattern from Figure 13a enclosed by a subjective perimeter, 
as though the overall pattern represented an irregular valley eroded by 
prehistoric stream action that left only traces of channels. Measurement by 
various ways with different ruler lengths gives a fractal dimension of about D 
» 1.4, in reasonable agreement with (a), in that this is a more closed rather 
than open dendrite. The fractal dimension also resembles the value of about D 
» 1.4 for dense "dendritic" packing illustrated in Figures 14b and 14d.
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Figure 17. Fractal sets implied by slopes in the fractogram based on the 
relation D * 3b/c, for the volumetric topologic limit D = 3, where b is the 
slope and c is the coefficient in the moment-magnitude equation (e.g., Eq. 3): 
log M0 = Const. -I- c M, (Aki, 1981):

(a) Values of b and D along the limiting slopes of the fractogram, and 
along the overall trend of U.S. historic seismicity, for constant c * 1.5. 
The transition slopes at constant BT (D = 2.83) are nearly volume-filling at c 
a 1.5, the overall seismic trend is a little more than area-filling (D = 2.1), 
and the base of the fractogram, which corresponds approximately in b-value to 
many of the seismic zones in California (see Figure 9), is about halfway 
between a line-filling and area-filling fractal (D = 1.6). All these values 
of D are larger than the measured values in Figures 14 through 16. This is 
because those values are based on planar measurements (i.e., they are relative 
to the maximum topologic dimension 2). For comparative purposes, we can 
either add 1 to the previous values, or subtract 1 from the present values. 
The latter gives the respective values: D = 1.83, D = 1.1, and D = .6, which 
is essentially the same range as the measurements (the highest value 
approximates the area-filling mode in Figure 14c, and the smallest is 
essentially that of the direct Cantor Set in Figure 15).
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Figure 17. Fractal sets implied by slopes in the fractogram based on the 
relation D = 3b/c, for the volumetric topologic limit D = 3, where b is the 
slope and c is the coefficient in the moment-magnitude equation (e.g., Eq. 3): 
log M0 « Const. + c M, (Aki, 1981):

(b) Degenerate fractogram for the relation log H = 1 - log L. Whereas 
there is only one limiting slope, with a single value of D = 1.6 (b * .80) for 
constant c = 1.5, there is a series of possible partial and total activation 
lengths, ranging from the set marked by open circles (BT - 1 year, and H = 1 
to 1000) to the SATURATION values indicated by solid circles (BT much less 
than before, about 200 years, and N = 1 to 1000). The distribution, however, 
is still "dendritic** within some topological volume. Also, the fractal 
dimension varies with variable c (see caption of c below; also see Figure 18, 
Table 2, and text for discussion of ranges of coefficient c). These 
considerations may apply to interpretations of the San Andreas system (e.g., 
compare this diagram with Figures 9, 11, and 18). Coincidently, the 
SATURATION value of BT resembles the recurrence time for large events on the 
San Andreas fault proper, according to trenching studies by Sieh (1981) and 
Weldon and Sieh (1985). According to this interpretaion, the various Seismic 
Zones in Figure 9 would apparently represent subsystems each of which is 
fractally self-similar with the overall distribution (i.e., the single trend 
would be the sum of the subtrends). Because, the slopes of log N vs. log L 
for the Faulting Regions of California (Shaw and others, 1981), however, are 
significantly steeper than -1, the degenerate model does not totally resolve 
the sorting problems implied by seismic cycles that must be consistent, 
simultaneously, with the various views of Figures 8, 9, and 11.
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Figure 17, Fractal sets implied by slopes in the fractogram based on the 
relation D = 3b/c, for the volumetric topologic limit D = 3, where b is the 
slope and c is the coefficient in the moment-magnitude equation (e.g., Eq. 3): 
log MQ =* Const. + c M, (Aki, 1981):

(c) Fractogram modified schematically to account for the variable slopes 
(c-values) of the moment-magnitude relation of Hanks and Boore (1984) at large 
magnitudes; relations at small magnitudes have not been adjusted. The result 
is to systematically and progressively increase both b-values and fractal 
dimensions, D, near the SATURATION limit in the fractogram (i.e., magnitudes 
are smaller for the same values of moment, hence they are smaller for the same 
distributions of fault-length segments for the largest partial or total 
activation events). In the limit, a condition is reached where the b-values 
for the base and the sides of the fractogram tend toward the same value (heavy 
dashed lines at lower right). If these slopes attain the common value b = 3, 
at c a 3, the lower right apex of the fractogram becomes globally invariant at 
a fractal dimension D = 3 (from the relation D = 3b/c). This would mean that 
changes either at constant number, N, or at constant buildup time, BT (but 
variable N), both represent a topological volume-filling mode of behavior 
under conditions of the ultimate earthquake event implied by the analysis of 
Hanks and Boore (1984). This would also imply a condition in which no 
distinction could be drawn between multiple activations within a constant 
number/length order (e.g., for H * 1), or activations engaging a sequence of 
orders of decreasing numbers of maximum moment events, as in the SATURATION 
condition (cf., Figure 8). Whether or not this is physically plausible is not 
resolved by these dimensional considerations. Qualitatively, however, it is 
evident that when fault activation reaches a length-scale comparable to the 
scale of Plate Tectonics, it is difficult to avoid implications of volumetric 
modes of deformation. This issue compounds the ambiguities mentioned in (b) 
above concerning interpretations of California earthquakes.
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Figure 18. Fractal dimensions in space and time:

(a) Lines of constant fractal dimension, limited to topological dimension 
3, plotted vs. variable values of b and c as defined in Figure 17 (see text). 
The solid lines with arrows schematically indicate the paths of fractal 
dimensions for two different assumptions concerning stepwise progressions of 
seismic frequency-magnitude data, as in Japan (see Figures 7 and 8): (1) the 
heavy horizontal line with arrows indicates the alternations of D 
corresponding to alternations of b between the limiting slopes of the 
fractogram in Figure 7a for a constant value of c = 1.5, and (2) the 
orthogonal zigzag line with arrows indicates the same alternations, but with c 
increasing in the larger events according to the correlation of Hanks and 
Boore (1984). There are two important qualifications of these idealized 
sequences: (i) when c increases, the equations relating fault length, moment, 
and magnitude are also modified, so that b also increases; in the extreme 
limit, b might also approach the value 3 for the ultimate magnitudes shown in 
Figure 17c, so that the upper part of the zigzag path is skewed to the right 
toward the fractal limit 0=3, as indicated by the dotted lines (see 
discussion in text, and caption b), and (ii) if the log number-length relation 
has a slope near -1, the fractogram degenerates to a more nearly single-valued 
slope, so that the range of b-values shrinks toward zero difference for 
different paths of number/order activations (see Figure 17b, and discussion in 
text; qualification (i), of course, still holds. The stippled area represents 
the range of conditions, for small to intermediate earthquakes, where 
volume-filling activations are possible (i.e., D = 3); however, there is 
another possible volume-filling limit corresponding to the Hanks-Boore 
ultimate magnitudes mentioned above, where the dotted curves converge at the 
value D = 3 (cf., caption b).
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Figure 18. Fractal dimensions in space and time:
(b) Temporal fractal dimension implied by the relation of Buildup Time, 

BT, in the fractogram to recurrence time, 1/f, as the "ruler length" for 
time. Examples ot temporal fractal, D^ (the subscript is a reminder that 
the definition refers to magnitude-time, or energy-time, space) are shown for 
different assumptions about paths in the fractogram (actually this is a grid 
of parallel lines, shown in the Inset, representing arbitrary choices of the 
parameters); none of the fractal slopes illustrated is necessarily unique, 
because each specific earthquake sequence may have a different fractal 
signature, both spatially and temporally (see text concerning possibility of a 
characteristic spatiotemporal fractal relative to a maximum topological 
dimension of 4). The roman numerals indicate fractal regimes (angular sectors 
of slope regimes), increasing in the clockwise direction, according to the 
same rule used for spatial fractals (Slope = 1 - D). Thus, in I the slope 
exceeds +1, and the fractal dimension is negative (or imaginary). In II, 
Dgj has the range 0 to 1, and in III it has the range 1 to the maximum 
topological limit, whatever that may be. This limit depends on dimensional 
context, which may be unlimited (the vertical line for "constant time" implies 
an "infinite fractal", which is qualitatively explained by the fact that this 
imaginary condition implies that "all magnitudes", hence energies, are 
siroultaneosly present. The dashed line indicates an assigned topological 
limit of 4. If it is assumed that in real spacetime the fractal dimension is 
equal to or less than the sum, D 4- D^ = 4, then the line at DJJ-J. = 4 is 
associated with a spatial fractal dimension zero; i.e., this is a spatial 
distribution of point sources of maximal temporal degrees of freedom, a 
"fractal dust of earthquakes in spacetime", presumably representing the 
extreme of randomized distributions of spatially unique events. Any set of 
lines with slope zero (DOT * D* meaning at constant BT, implies that the 
spatial fractal, D, is less than or equal to 3, indicating, as mentioned 
before, that such conditions have the higher b-values and are the more 
volume-filling regimes (see a above, Figure 17c, and discussion in text). 
Notice that D 4- Dgj does not have to sum to the limit 4. The set of lines 
for constant numbers of fault segments, N, have D^ = 0, hence D implicitly 
can range up to 4; i.e., 3 is volume-filling, and values between 3 and 4 are 
spatially imaginary. This limit is of interest relative to the implicit 
conditions of the "ultimate earthquake" according to the discussion of a, and 
of Figure 17c, in that it occurs at a unique "point in time" and is 
volumetrically maximizing. This is, however, a different sort of 
spatiotemporal fractal from D^ = 1, which also tends to be volume-filling, 
in that the latter is, presumably, a linear sequence in time (i.e., a fractal 
"time-line" analogous to a spatial fractal of D = 1); see discussion of Figure 
17c. The special case for constant magnitude, M » 4.3, is shown because it 
gives an indication of internal consistency of the various fractal 
definitions: the slope is -1.3, giving Djfj = 2.3, and a maximum value D = 
1.7 for topological limit 4. This implies a self-consistent value of c = 1.4, 
which is a reasonable value at this magnitude; a completely consistent value 
for constant c * 1.5, and the definition D = 3b/c, gives D «  1.6 for b = .80, 
as in the base of the fractogram in Figure 17a. Apparently, this also implies 
that there is a fractal distribution of earthquakes in space and time 
occurring along all the number/length orders (distributed mode of Figure 8), 
which is consistent with earlier interpretations (cf., Figures 8 and 11). The 
large filled circles with numbers indicate respective magnitude values, as in 
Figure 6a and Table 1; these values would be decreased according to the moment 
magnitude relations of Hanks and Boore (1984), but the general slope regimes 
remain the same.
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Figure 18. Fractal dimensions in space and time:

The Inset shows a schematic sequence of earthquake events resembling the 
relations in Figure 7 for Japanese earthquakes. Although the path tends to 
alternate between Djfj = 0, and DJJJ = 1, transition intervals of higher 
temporal fractal dimensions may exist (intervals of negative slopes). Such a 
distribution is not a unique self-similar fractal object, but it could be 
viewed as a "self-similar set" of subintervals each of which is more strictly 
a self-similar fractal (see Figure 17b, caption, and discussion in text).
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Figure 19. Schematic illustration of transient and steady-state slip and 
shear rates relative to spatial distribution and duration of activation events:

(a) Single maximum moment event relative to scale of a major "subzone" and 
a "megazone" (plate-boundary scale) shear system. The Inset defines relations 
of fault zone width, wfz , megazone width, w^, slip, u, activation length, 
L, and slip velocity, v. In this transient case the definition of shear rate 
is extremely structure-dependent as compared to continuum models of 
deformation (see text for discussion of relation to fractal dimensions).
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Section A

TRANSIENT STAGE   SUBZONE

Sections

TRANSIENT STAGE - MEGAZONE B

DEFINITIONS: 

L * (Activated length) 

u   (Slip length)

£ Unu * (Net slip length across megazone) 

(Slip rate on a fault)

(Fault zone shear rate) 

(Net slip rate across megazone)

r (Net megazone shear rate)

I

s

 

1

^. -  _ w  ^*" ___ UU-^*^pi*^^ ^^^ "*^^ **fv

(fault zone width) 

W,,,, (Mega zone width)

Length L
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Figure 19. Schematic illustration of transient and steady-state slip and 
shear rates relative to spatial distribution and duration of activation events:

(b) Quasi-steady and nearly area-filling (and possibly volume-filling) 
mode of shear for zones in (a) averaged over times long compared to the 
overall buildup times for the seismic cycle (see text for discussion of 
average shear rate relative to stress models and fractal structure).
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