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ABSTRACT

A geobotanical study was undertaken in the Walker Lake 2° quadrangle in
conjunction with the Conterminous United States Mineral Appraisal Program
(CUSMAP). Plant assemblages and plant growth habits were studied in areas
mineralized with base metals, precious metals, uranium, and industrial
minerals. Selected plant and soil samples were analyzed for key elements.

The objective of the study was to determine whether plants could be useful in
prospecting in the quadrangle.

Significant physiological changes in growth habits were observed in areas
mineralized with molybdenum and also in areas of high radiation. Many species
of Eriogonum grew in highly mineralized areas--particularly around copper and
gola-s1iver deposits--and were found to accumulate excessive amounts of many
metals. Uranium is accumulated in unusually high quantities by phreatophytes
and aquatic plants, suggesting their usefulness in prospecting for uranium
along drainage systems. The tendency of algae to accumulate arsenic could be
useful in prospecting for gold-silver deposits.

INTRODUCTION

The study of Blant species growing in mineralized areas located in the
Walker Lake 1% x 2% quadrangle, California-Nevada, was made at the request of
Frank Kleinhampl in conjunction with the mapping of mineral deposits for the
Conterminous United States Mineral Assessment Program. Areas of particular
interest were suggested in order to determine the usefulness of plant species
in delineating mineralized ground or areas for additional sampling.
Photographs of plants were requested for help in field identification by
Kleinhampl. The stations that were studied are shown on Plate 1. 1In each
area we observed plant societies, collected plant specimens if needed for
later identification, and at most stations collected soils and selected plants
for analysis. In all, we visited 18 mines in different districts, five
mineralized prospects, six areas of springs associated with hydrologically
closed basins, and five lakes or marshes. Approximately 75 plants and 50
soils or sediments were submitted for analysis. Many of the 75 plants were
divided into leaf, stem, and root components. The above-ground samples were
cut off two inches above ground and all root samples were washed. Except for
algae, the samples were dried in paper bags; algal samples were collected in
cloth sacks, wrung out and dried. The plant samples were all analyzed by
semiquantitative emission spectrography (Mosier, 1972) and, when specifically
requested, for arsenic, gold, lithium, and molybdenum by atomic absorption
spectrography (Nakagawa, Watterson, and Ward, 1975; Ward and others, 1969),
uranium (Huffman and Riley, 1970) and selenium (Harms and Ward, 1975) by
fluorimetry, tungsten colorimetry (Quin and Brooks, 1972), and total sulfur
was determined turbidimetrically (Tabatabai and Bremmer, 1970). Sulfur and
selenium, reported in dry weight of plant tissue, were converted to an ash
weight basis for easy comparison on data tables. The soil samples were all
analyzed by semiquantitative emission spectrography (Grimes and Marranzino,
1968), and selected specimens for other elements by methods described by
0'Leary and Meier (1984). Some of the algal specimens were identified by
E11ie Saboski of New England College, N.H. Identifications of the plants were
made according to Munz and Keck (1963) and Abrams (1955). Timby also
identified some plants in the Stanford herbarium.



The occurrence of plant species at different study localities and the
analytical data are presented in tables 1-6 and discussed in connection with
plant distribution in sections of the report grouped as Base-metal deposits;
Precious-metal deposits; Uranium mines and radioactive areas; Industrial
minerals; Springs; and a Mineralized well. The probable average contents of
elements in plants compiled from the literature and from the files of the
senior author are given in the appendix to aid in comparing our data with
published values.
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Topography and plant zones

From east to west, the topography of the Walker Lake quadrangle is one of
alternating desert basins and mountain ranges, culminating in the high Sierra
Nevada on the west. Salt marshes and playas occur in the eastern valleys;
Walker Lake fills the valley between the Gillis and Wassuk Ranges; the
northern part of the evaporative Mono Lake lies along the southern edge of the
quadrangle and smaller fresh-water lakes occur along the eastern flanks of the
Sierra Nevada. Six distinct plant zones occur in the quadrangle characterized
by particular plants.

Alpine, 10,000-11,000 ft. Species of Eriogonum (buckwheat), Arenaria
(sandwort), Lupinus (lupine), Draba (rock-cress), Astragalus
(milkwitch), Erigeron (fheobane).

Subalpine, 8,000-9,5 t. Pinus albicaulis (white-barked pine), Pinus
balforiana (fox-tail pine), Juniperus occidentalis (Sierra juniper).

Pinyon juniper, 5,000-8,000 ft. Juniperus osteosperma (Utah juniper),
Pinus monophylla (pinyon), Cercocarpus ledifolius (Mtn. Mahogany).

Sagebrush scrub, 5,000-7,000 ft. Artemisia tridentata (big sagebrush),
Purshia tridentata (antelope brush), Chyrsothammis nauseosus
(rabbitbrush).

Shadscale scrub, 3,000-6,000 ft. Atriplex confertifolia (shadscale),
Grayia spinosa (hopsage), Menodora spinescens (twinberry).

Alkali sink, less than 4,400 ft. Allenrolfea occidentalis (pickleweed),
Atriplex polycarpa (cattle spinach), Kochia americana (red molly).

Plant tolerance and metal accumulation

Generally, the greatest edaphic effect on plant distribution is the
presence of carbonate; plants are commonly listed as calcifuge or non-tolerant
of carbonate soils, or calciphile or preferring carbonate soils (Marchand,
1973). The control is actually the interaction of all the soil constituents
(including pH) on the amounts of water-soluble or exchangeable ions available
in major amounts to the plants. Plants that grow around base-metal deposits
in relatively acid iron-rich soils may tolerate large amounts of metal either
by exclusion or by the evolution of tolerant ecotypes. Also, they may grow
there because the iron increases the availability of phosphorus and
potassium. According to Baker (1979), accumulator plants accumulate metals in
the various plant parts from low or high background levels. Excluder plants,
by differential uptake, restrict the metals from reaching the shoots below a



critical level; above this level there is unrestricted transport. A high
tolerance for metals is possible for grasses because their roots are
adventitious and can be replaced continuously as the older roots become
physically clogged with toxic elements. Ricegrass and ryegrass are common in
metalliferous soils of the area. Accumulator plants are capable of
accumulating large amounts of metal in the above-ground portion of the plant,
usually in the cell walls, without harm to growth. In many cases, a tolerant
variety or subspecies has evolved in metalliferous soils and is, if
transplanted, unable to grow in normal soils. Many indicator plants are
believed to have gone through such an evolution. A particular variety,
Eriogonum ovalifolium var., ovalifolium grows only on high copper soils in
Montana (Grimes and Earhart, 1975). 1his variety was not seen in Nevada, but
two other varieties and 16 species of Eriogonum grew in mineralized soils.
Two other calcifuge genera deserve mention--Lupinus and Phacelia. Species of
Lupinus grew at several base-metal and gold-silver localities but none in
calciferous soils. No lupine grew in areas of uranium mineralization nor was
it observed near uranium deposits of the Colorado Plateau. Like Stanleya,
reproduction of the genus may be affected by radiation. The lack of petals
and stems in Stanleya was observed in radioactive areas where the levels were
not sufficientTy high to affect all spikes and the plant could continue to
survive. Stanleya and other crucifers require sulfur, which is available near
sulfide deposits. Plant species of possible geobotanical usefulness are given
in Table 1.

Base-metal deposits

Plant relationships around mines from which copper (Cu), molybdenum (Mo),
lead (Pb), zinc (Zn), tungsten (W), and chromium (Cr) had been produced, were
studied, and selected plant specimens were analyzed for concentrations of
certain elements (Table 2). No definite indicator plant of a particular metal
was observed. Although various species of mints have been used in prospecting
for Cu in Africa and China (Cannon, 1971), only one mint, Monardella
odoratissima, occurred in Cu-rich soils. Eight species of Eriogonum, a genus
known to be highly tolerant of metal-rich soils, occurred in Cu areas and in
Pb-Zn soils. No subspecies or variety of Eriogonum ovalifolium is associated
with Cu in this area, as has been the case 1n Montana, because the species is
a calcifuge and the deposits studied were largely in carbonate rocks.

However, the large number of species growing in highly mineralized soils is
significant. The poppy indicative of Cu in Arizona was not seen in the Walker
Lake quadrangle, but Argemone platyceras (thistle poppy) (fig. 3b) grew at
both Yerington and the Santiago mine.

Effects on vegetative growth were noted in areas of high Mo content in
the Pine-Nut district, Nevada. Juniper, pine, and Ephedra (all gymnosperms)
were observed to have longer than normal internodes between leaf clusters;
this caused the specimens to have a straggly or, in the case of pine, a
pendulous appearance. As this effect was not noted at the Star City mine
where the Mo is associated with Cu, the Cu may protect against anomalous
growth effects. The latter association of elements is known to protect
livestock. The pine samples contained more Mo and Cu than any plants analyzed
from other Mo-rich areas. Warren and Delavault (1965) found that plants
growing over commercial Mo deposits contained more than 500 and never less
than 50 ppm Mo and plants growing in ground unmineralized with Mo contained
less than 50 ppm. According to these figures, the Star City samples and those
collected south of Luning suggest occurrences of economic value.




Lead poisoned soils in Norway have been reported by LSg and Bglviken
(1974) to cause plants to be stunted, chlorotic, lack fruit or be absent
entirely. Dwarfed and mishapen pine trees were noted by Mudge and others
(1968) around the Elk Creek lead-poisoned soil in Montana. Samples of white-
barked pine collected by the authors from Elk Creek contained as much as
30,000 ppm Pb in the ash of roots, 700 ppm in the wood and 500 ppm in the
needles. At the Bertha Hall mine in California, no unusual growth was noted
but an extremely healthy Eriogonum Lobbii with a tremendously large root
system contained more than 5,%50 ppm Pb and more than 20,000 ppm Zn in both
leaves and roots. Possibly the vegetation at this locality is protected from
growth damage by the high iron content of the soils.

Copper

Yerington copper pit, Lyon County, Nevada, elevation 4,300 ft. The
porphyry Cu ore occurs in a contact metamorphic deposit. The ore of pyrite
and chalcopyrite (Mo deficient) occurs as a replacement in limestone
(Ferguson, 1929). The orebody has now been mined and the Anaconda Company is
allowing the open pit to fill with water (fig. 1). Observations were made at
only two stations.

Station 1. The plants near the edge of the open pit in an area that had been
bulldozed did not include known Cu-indicator plants, but the S-loving
crucifers, Lepidium perfoliatum and Sisymbrium altissimam, and the
seleniferous Oryzopsis hymenoidis (rice grass) grew here. Dwarfing and red
stems on Erodium cicutarium (aTfileria) appeared to be related to the
mineralization.

Station 2. The Cu diggings and outcrop on the hill by the main road, where
the soil contained 2,000 ppm Cu, were covered with Chaenactis stevioides
(false yarrow) (fig. 1 and 2). Other plants included Eriogonum
sphaerocephalum, Malcothrix glabrata and Argemone platyceras (fig. 3b) of the
poppy family. Oenothera clavaeformis (primrose) was dwarfed and had reddish
leaves; the grizzly bear cactus and Grayia spinosa were also red. This
reddening phenomenon has been observed at Cu deposits in Arizona.

Santiago mine, Copper Mountain, Mono County, California, elevation 8,600
ft (Station 6I). Copper minerals occur in calcium carbonate veins. Eriogonum
microthecum, E. Baileyi, E. inflatum, and E. umbellatum grew here, but not
Eriogonum ovalifolium v. ovalifolium, the Tndicator of Cu that occurs in
Montana. Because of the calcium carbonate, several calciphile plants such as
Mentzelia were noted along with Eriogonum inflatum, known to be an indicator
of gypsum. Eriogonum ovalifolium is 1isted by Marchand (1973) as a
calcifuge. Because there are several mints that indicate Cu in different
parts of the world, Monardella odoratissima (fig. 3a) and Scutellaria nana
(skullcap) of the mint family were of particular interest. Monardella
contained 300 ppm Cu, growing in soil containing 700 ppm Cu--this was the
greatest amount detected in the above-ground portion of an herb on this
project (Table 2).

A small digging for Cu in an altered zone of carbonates was examined in
Mineral County, Nevada (Station 39) at an altitude of 4,600 ft. A value of
200 ppm Cu was reported in a rabbitbrush sample and 700 ppm Cu in soil in
which the plant was rooted.

























































































































Growth anomalies--Several growth differences have been noted in the Pine-
Nut moTybdenum district (high Mo, low Cu) which are not common in mining
districts where both Mo and Cu are high. These include a lengthening of the
internodes in Ephedra (joint fir), pine and juniper; smaller white, instead of
pink, flowers on Peraphyllum; and a brighter green color in junipers growing
on mineralized ground. The strange growth in juniper was also noted in trees
growing along washes that drain the district. A reddening of the stems and
bracts of certain plants was noted at Yerington copper pit and Nyemin autonite
mine. Dwarfing is common on highly mineralized ground and was observed at the
Bertha Hall lead mine and the Leviathan sulfur mine. The effects of radiation
damage were observed in both species of Stanleya in areas of relatively low
but measurable radiation. In highly radioactive areas, the plants cannot
reproduce, and hence are not available as indicators of U deposits that
contain Se.

Plant distribution--No strong indicators of Se were found near U mines or
prospects. The species of Astragalus that were identified are not known to be
seleniferous and did not appear to have a clear-cut association with ore. The
two Stanleya species that grew in the quadrangle have different distribution
patterns. Stanleya pinnata grows profusely on lake sediments or on fans at
low elevations; Stanleya elata is commonly confined to mineralized ground at
higher elevations. The genus requires S and also Se but not in great
quantities. Eriogonum inflatum, the mustards, Lepidium and Descurainia, and
Oenothera also indicate high S soils. Seventeen species of Eriogonum occur in
mineralized areas of the Walker Lake quadrangle and are particularly prevalent
near Cu, Au, or Ag deposits. Thus, an association of several of the above-
mentioned species growing in the same area is highly suggestive of either the
presence of sulfides or gypsum.

Ion accumulation in plants--Unusually high levels of Mo and Cu were
reported in pine and Stanleya, the latter growing in soil not known to be
mineralized. The largest values of Au and Ag were found in Eriogonum
caespitosum and in a water plant Zannichella. Zanichella, a moss, and algae
absorbed the largest amounts of As i1n Au districts, suggesting that the As
content of plants in streams may be used as an indicator of Au deposits. Two
varieties or subspecies of Eriogonum contained unusually high levels of U in
dry areas of no known U m1neralization. Spec1es of Eriogonum occur in areas
highly mineralized with Cu, Pb, Au, Ag, and U in the Nal%er Cake 1° x 2°
quadrang]e, the genus is not on]y tolerant of metals, but accumulates them.
One species of Eriogonum was shown by Grimes and Earhart (1975) to be an
indicator of Cu in ﬁontana; other species may be useful in prospecting for
many metals. Similarly, phreatophytes along drainage courses may be used in
prospecting for U, as shown by concentrations of more than 100 ppm U in willow
and sedges below the Juniper mine. Industrial mineral deposits are usually
self evident and the analysis of plants is of little value. An exception is
the analysis of phreatophytes for Li at springs or deep wells, which may
indicate the presence of economic amounts of Li at depth. Such is suggested
by the Li content of greasewood at Dead Horse Well,
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APPENDIX--Estimated average elemental contents in the ash of vegetation growing in unmineralized
soils (compiled from Titerature and from files of the senior author)*

[Leaders (--) mean insufficient data]

All Other Deciduous  Coniferous Approximate
Element vegetation Grasses Legumes  forbs Shrubs trees trees number of
analyses

Parts per million

As -- 3.1 41 9.6 -- 8.5 - 62
Al 8500 3000 4000 4400 30,000 14,000 18,000 80+
Ag 0.1-5 <1 <1 <1 <1 1.6 <1 308+
Au <0.007 --= -- -- - 0.015 <0.006 32+
B 580 200 360 600 1,200 730 570 702
Ba 1100 600 1300 500 1,140 1,900 1,300 250
Cd 9.1 22 <1 5 8 8 9 500+
Co *7 <5 8 10 14 8 *7 1367
Cr 15 22 10 12 22 6 9 1450
Cu 150 120 125 120 220 250 150 3880
Li -- 1.5 2.9 18 20 7 8.6 350
Mn 3300 1680 1730 3270 10,000 6,900 6,700 1880

. Mo 13 23 15 17 12 7 5 930

N1 65 45 25 35 95 85 55 950
Pb 70 170 20 40 80 50 75 2040
Se -- 1.3 <4 4.5 -- 1.7 - 87
Sr 1730 330 960 1920 1,935 2,080 2,500 216
U 0.62 2.8 0.8 1.7 0.4 0.7 0.7 610
v 20 20 12 20 30 15 20 320
Zn 1220 690 560 650 1,560 2,000 1,130 2150

Percentages

Ash yield 10.1 7.9 7.6 6.1 8.9 11.5 3.3 --
Ca -- 5 22 12 13 23 15 2880
S 2.4 2.6 2.1 3.6 1.5 1.6 2.0 500
Fe 0.7 0.9 0.5 1.0 1.1 0.7 1.4 790
K 23 26 23 26 17 12 20 1270
Mg 4.3 2.6 4.3 3.5 5.9 4.6 4.3 1300
Na -- 3.7 2.4 4.2 0.9 2.1 1.5 220
P 3 2.3 3.3 3.3 2.0 2.3 3.5 2620

One-half of the less than values as <500 (etc.) were used in the calculations. Arsenic, Se,
and S values reported in dry weight were converted to values in ash for easy comparison.

*Approximate only
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