DEPARTMENT OF THE INTERIOR

U. S. GEOLOGICAL SURVEY

Bibliography of the Geology of the Green River Formation, Colorado, Utah, and Wyoming, to July 1, 1986

By

Marjorie C. Smith

Open-File Report 86-466

Supersedes Geological Survey Circumlas 675 and 754

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (and stratigraphic nomenclature).

1Denver, Colorado
CONTENTS

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Geological Survey reports on the Green River Formation,</td>
<td>2</td>
</tr>
<tr>
<td>Colorado, Utah, and Wyoming</td>
<td>3</td>
</tr>
<tr>
<td>Reports by U.S. Geological Survey authors on geology of</td>
<td>25</td>
</tr>
<tr>
<td>the Green River Formation, Colorado, Utah, and Wyoming</td>
<td></td>
</tr>
<tr>
<td>in non-U.S. Geological Survey publications</td>
<td></td>
</tr>
<tr>
<td>Selected reports by non-U.S. Geological Survey authors on</td>
<td>37</td>
</tr>
<tr>
<td>geology of the Green River Formation, Colorado, Utah, and</td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

The Green River Formation in northwestern Colorado, northeastern Utah and southwestern Wyoming contains thick and extensive deposits of oil shale. The richest oil-shale deposits underlie an area of 12,000 square kilometers in the Piceance Creek and Uinta Basins in northwestern Colorado and northeastern Utah. Cashion and Donnell (1968) reported that these basins contain about 105 billion metric tons of oil in beds which are more than 4.6 m thick and which contain an average of 5.7 percent of oil by weight. Much additional oil is present in beds that contain less than 5.7 percent oil or are less than 4.6 m thick in these basins and in other areas underlain by the Green River Formation. Duncan and Swanson (1965) estimated that the known recoverable and marginal resources of oil in the entire Green River Formation are about 280 billion metric tons. In 1986, however, none of the oil shale was being mined for oil on a commercial basis.

The Green River Formation also contains gilsonite, bituminous sands, oil and gas, and sodium and aluminum minerals. Some of these minerals were being produced commercially in 1986.

This bibliography, which contains 1,340 references, was compiled to aid studies on the geology and resources of the Green River Formation. References included are mainly on the areal geology, stratigraphy, paleontology, geochemistry, and mineralogy of the Green River Formation, but some concern development of the oil-shale deposits. Recent studies also concern the effects that an oil-shale industry will have on the environment.

The bibliography is arranged in three parts: U.S. Geological Survey reports on the Green River Formation, Colorado, Utah, and Wyoming; reports by U.S. Geological Survey authors on geology of the Green River Formation, Colorado, Utah, and Wyoming, in non-U.S. Geological Survey publications; and selected reports by non-U.S. Geological Survey authors on the geology of the Green River Formation, Colorado, Utah, and Wyoming. The two parts by Geological Survey authors are as complete as possible, but the other part includes only selected references. For reports in which mention of the Green River Formation is only incidental, brackets are used to indicate the pages pertinent to the Green River Formation.


Desborough, G. A., Mountjoy, W., and Frost, I. C., 1975, Influence of caustic and water leaching on analcime-bearing and analcime-free pyrolyzed oil shale from the Green River Formation, Piceance Creek basin, Colorado:


Duncan, D. C., and Belser, Carl, 1950, Geology and oil-shale resources of the eastern part of the Piceance Creek basin, Rio Blanco and Garfield


1870, From Green River Station, via Bridger's Pass to Cheyenne, Wyoming Territory, Chap. 6, in U.S. Geological and Geographical Surveys of the Territories 4th Annual Report: 511 p. [p. 70-81] [1871].


1978a, Preliminary geologic map of the Figure Four Spring quadrangle, Rio Blanco and Garfield Counties, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-912, scale 1:24,000.

1978b, Supplementary cross sections and structure contour maps to the preliminary geologic map of the Figure Four Spring quadrangle, Rio Blanco and Garfield Counties, Colorado: U.S. Geological Survey Open-File Report 78-197.


1979b, Cross section B-B' of Upper Cretaceous and lower Tertiary rocks, southern Piceance Creek basin, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-1130-B.

1979c, Cross section C-C' of Upper Cretaceous and lower Tertiary rocks, southern Piceance Creek basin, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-1130-C.
Johnson, R. C., and May, F. E., 1979, Preliminary stratigraphic studies of the upper part of the Mesaverde Group, the Wasatch Formation and the lower part of the Green River Formation, DeBeque area, Colorado, including environments of deposition and investigations of palynomorph assemblages: U.S. Geological Survey Miscellaneous Field Studies Map MF-1050.


Keighin, C. W., 1977a, Preliminary geologic map of the Burnt Timber Canyon quadrangle, Uintah County, Utah: U.S. Geoloical Survey Miscellaneous Field Studies Map MF-875, scale 1:24,000.


Lindskov, K. L., and Kimball, B. A., 1984, Water resources and potential


Peale, A. C., 1876, Report [on valleys of Eagle, Grand, and Gunnison rivers, Colo.]: U.S. Geological and Geographical Surveys of the Territories (Hayden), 8th Annual Report, 1874, p. 73-180 [p. 148, 156-162].


___1979, Preliminary geologic map of the Agency Draw NE quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1078, scale 1:24,000.


Pitman, J. K., 1974, Magnetic tape containing oil-shale Fischer assay data for coreholes in the Piceance Creek basin, Colorado: Available from National Technical Information Service as report PB-230 607/AS.


Pitman, J. K., and Donnell, J. R., 1974a, Average oil-yield tables for oil-shale sequences in core from the southern part (Tps. 5 S.-11 S.) of the Piceance Creek basin, Colorado, that average 15, 20, 25, 30, 35, and

1974b, Average oil-yield sequences in core from the central part (Tps. 3 S., and 4 S.) of the Piceance Creek basin, Colorado, that average 15, 20, 25, 30, 35, and 40 gallons per ton: Available from National Technical Information Service as report PB 230-962/AS, 432 p.

1974c, Average oil yield table for oil-shale sequences in core from northern part (Tps. 1 N., 1 S., and 2 S.) of the Piceance Creek basin, Colorado, that average 15, 20, 25, 30, 35, and 40 gallons per ton: Available from National Technical Information Service as report PB 230-961/AS, 208 p.


Pitman, J. K., and Van Trump, George, 1975, Magnetic tape containing oil-shale Fischer assay data for coreholes in the Uinta Basin, Utah: Available from National Technical Information Service as report PB-238 682/AS.


1972c, Geologic map of Four J Rim quadrangle, Sweetwater County, Wyoming,


1978a, Geologic map of the Mud Springs Ranch quadrangle, Sweetwater County, Wyoming: U.S. Geological Survey Geologic Quadrangle Map GQ-1438,
scale 1:24,000.

---


1986, Preliminary geologic map of the Wolf Point quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1839, scale 1:24,000.


Sears, J. D., 1924, Geology and oil and gas prospects of a part of Moffat County, Colorado, and southern Sweetwater County, Wyoming: U.S.
Tuttle, M. L., and Goldhaber, M. B., 1986, Evolution of oil shale basins;


1975a, Computer program designed to compute oil-shale thickness (ft), average value (gal. per ton), and resource (barrels per acre) from Fischer assay data: U.S. Geological Survey Open-File Report 75-110, 18 p.


1975c, Computer program designed to draw a ternary diagram based on proportions of any three variables from oil-shale Fischer assay or saline mineral data: U.S. Geological Survey Open-File Report 75-524, 10 p.


Zeller, H D., Stevens, E. V., 1964f, Geologic map of the Dickie Springs


REPORTS BY U.S. GEOLOGICAL SURVEY
AUTHORS ON GEOLOGY OF THE GREEN RIVER FORMATION,
COLORADO, UTAH, AND WYOMING,
IN NON-U.S. GEOLOGICAL SURVEY PUBLICATIONS


Bradley, W. H., 1959, Revision of stratigraphic nomenclature of Green River Formation of...


1964a, Oil shale, in Mineral and water resources of Utah: Utah Geological and Mineralogical Survey Bulletin 73, p. 61-63.


Dane, C. H., 1954, Stratigraphic and facies relationships of upper part of Green River Formation and lower part of Uinta Formation in Duchesne,


1974b, Significance of applied mineralogy to oil shale in the upper part of the Parachute Creek Member of the Green River Formation, Piceance Creek basin, Colorado, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists 25th Annual Field Conference: p. 81-89.


1957, At Piceance Creek [Colo.] 1,000 ft tests show new 30-gal. oil shale: Oil and Gas Journal, v. 55, no. 29, p.162.


1980a, Potential contribution of oil shale to U.S., World energy needs:
Oil and Gas Journal, v. 78, no. 41, p. 218-224.


Donnell, J. R., 1985, Geology and energy resources of the Piceance Creek basin, in Robert B. Hall, compiler, Clays and clay minerals, western Colorado and eastern and central Utah: International Clay Conference fieldtrip guidebook, p. 5-8.


Dyni, J. R., and Goodwin, J. C., 1972, AAPG field trip roadlog—Vernal, Utah
to Rio Blanco, Colorado, in Tertiary and Cretaceous resources of the
Southern Rocky Mountains: Mountain Geologist, v. 9, nos. 2-3,
p. 115-134.
River Formation, northwestern Colorado: Geology, v. 9, no. 5,
p. 235-238.
Dyni, J. R., and Hite, R. J., 1966, Distribution of extractable aluminum and
sodium in a saline facies of the Green River Formation, northwest
Colorado [abs.]: Mining Engineering, v. 18, no. 12, p. 45.
Dyni, J. R., and Hite, R. J., 1968, Potential resources of dawsonite and
nahcolite in the oil-shale deposits of the Green River Formation, northwestern Colorado, U.S.A., in United Nations Symposium on the
development and utilization of oil-shale resources, sec. 1, Tallinn,
Estonia, U.S.S.R.: 26 p. [Published as separate]
Dyni, J. R., Hite, R. J., and Raup, O. B., 1970, Lacustrine deposits of
bromine-bearing halite, Green River Formation, northwestern Colorado, in
Symposium on salt, 3d, Northern Ohio Geological Society, Cleveland, Ohio,
p. 166-180.
Dyni, J. R., Milton, Charles, and Cashion, W. B., Jr., The saline facies in
the upper part of the Green River Formation near Duchesne, Utah, in
Geology and Energy Resources, Uinta Basin of Utah: Utah Geological
Association Publication 12, p. 51-60.
Erickson, R. L., Myers, A. T., and Horr, C. A., 1954, Association of uranium
and other metals with crude oil, asphalt, and petrolierous rock:
American Association Petroleum Geologists Bulletin V 38, no. 10,
p. 2200-2218.
Fahey, J. J., 1939, Shortite, a new carbonate of sodium and calcium: American
Mineralogist, v. 24, no. 8, p. 514-518.
_____1941, Bradleyite, a new mineral, sodium phosphate-magnesium carbonate
(with X-ray analysis by George Tunnell): American Mineralogist, v. 26,
no. 11, p. 646-650.
_____1947, Loughlinite, a new hydrous magnesium silicate [abs.]: Geological
_____1950, Searlesite from the Green River Formation of Wyoming: American
Mineralogist, v. 35, nos. 11-12, p. 1014-1020.
hydrous sodium magnesium silicate: American Mineralogist, v. 45,
no. 3-4, p. 270-281.
Fahey, J. J., and Yorks, K. P., 1963, Wegscheiderite (Na_2CO_3.3NaHCO_3), a new
saline mineral from the Green River Formation, Wyoming: American
Mineralogist, v. 48, nos. 3-4, p. 400-403.
data from the Piceance basin, Colorado: Colorado Water Resources Basic
Data Release 31, 246 p.
Fouch, T. D., 1975, Early Tertiary continental sedimentation and hydrocarbon
accumulations, northeastern Utah [abs.]: American Association of
Petroleum Geologists-Society of Economic Paleontologists and
Fouch, T. D., Cashion, W. B., Ryder, R. T., and Campbell, J. H., 1976, Field
guide to lacustrine and related nonmarine depositional environments in
Tertiary rocks, Uinta Basin, Utah, in Epis, R. C., and Weimer, R. J.,
ed.s., Studies in Colorado field geology: Colorado School of Mines
Professional Contributions no. 8, p. 358-385.

Glass, J. J., 1947, Sodium bicarbonate (nahcolite) from Garfield County, Colorado [abs.]: American Mineralogist, v. 32, nos. 3-4, p. 201.


Keighin, C. W., 1975, Resource appraisal of oil shale in the Green River Formation, Piceance Creek basin, Colorado: Colorado School of Mines
Quarterly, v. 70, no. 3, p. 57-68.


1955, New mineral garrelsite (Ba0.65Ca2.29Mg0.06H6Si2B2O20) from the Green River formation, Utah [abs.]: Geological Society of America Bulletin, v. 66, no. 12, pt. 2, p. 1597.


1955b, Tertiary rocks in the central part of the Great Divide basin,


Reynolds, M. W., Donnell, J. R., and Road Log Committee, Dudley Bolyard, Chairman, 1974, Guide to the geology of the Piceance Creek basin Field Trip Road Log, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference: p. 239-260.


1969, Stratigraphy of oil-shale deposits of Eocene rocks in the Washakie


——— 1983b, Fracture studies at C-a mine, Piceance Creek basin, Colorado [abs.]: Geological Society America Abstracts with Programs, v. 15, no. 5, p. 375.


Weeks, J. B., 1974, Water resources of the Piceance Creek basin, Colorado, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference:
Weeks, J. B., 1976a, Ground water for oil shale development, Piceance Creek basin, Colorado [abs.]: Geological Society of America Abstracts with Programs, v. 6, no. 7, p. 1003-1004.


American Association of Petroleum Geologists, 1972, AAPG Field Trip Roadlog--Rawlins to Vernal, in Tertiary and Cretaceous energy resources of the southern Rocky Mountains: Mountain Geologist, v. 9, nos. 2-3, p. 95-114.


Belser, Carl, 1949, Oil-shale resources of Colorado, Utah, and Wyoming: American Institute of Mining Engineers Transactions, v. 179, p. 78-82.

1951, Green River oil-shale reserves of northwestern Colorado: U.S.


Borg, I., 1973, Reconnaissance of the oil shale resources of the Piceance Creek basin, Colorado, from the standpoint of in situ retorting within a nuclear chimney: Available from National Technical Information Service as rept. UCRL-51329, 14 p.


Boyer, B. W., 1982, Green River laminites; does the playa-lake model really invalidate the stratified lake model?: Geology, v. 10, no. 6, p. 321-324.

Boyer, D. L., and Cole, R. D., 1979, Total sulfur content and morphology of iron-disulfide minerals in the Parachute Creek Member of Green River Formation, Piceance Creek basin, Colorado [abs.]: Geological Society of America Abstracts with Programs, v. 11, no. 6, p. 267.


Burlingame, A. L., Haug, P. A., Belsky, Theodore, and Calvin, Melvin, 1965, Occurrence of biogenic steranes and pentacyclic triterpanes in an Eocene...
shale (52 million years) and in an Early Precambrian shale (2.7 billion years)—a preliminary report: National Academy of Science Proceedings, v. 54, no. 5, p. 1406-1412.


Chew, R. T., III, 1974, Geology, hydrology, and extraction operations at the Occidental Petroleum Corp. oil shale pilot plant near DeBeque, Colorado, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference: p. 135-140.


Chronic, John, and Matsushita, H., [compilers], 1974, Selected bibliography on the geology of northwestern Colorado with special emphasis on oil shale
geology and technology, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference: p. 261-274.


___, 1974b, Primary and secondary sedimentary structures in fine-grained lacustrine rocks of Green River Formation (Eocene) Piceance Creek basin,

___1975, Primary and secondary sedimentary structures in oil shale and other fine-grained rocks, Green River Formation (Eocene), Utah and Colorado: Utah Geology, v. 2, no. 1, p. 49-67.

___1976, Comparative X-ray mineralogy of nearshore and offshore lacustrine lithofacies, Green River Formation, Piceance Creek basin, Colorado, eastern Uinta Basin, Utah [abs.]: Geological Society of America Abstract with Programs, v. 8, no. 6, p. 817.


Covington, R. E., 1957, Bituminous sandstones of the Asphalt Ridge area, northeastern Utah, in Intermountain Association of Petroleum Geologists


Dunning, H. N., 1975, Petroleum, natural gas and oil shale technology: Energy
Eugster, H. P., and Hardie, L. A., 1975, Sedimentation in an ancient playa lake complex, the Wilkins Peak Member of the Green River Formation of

---


Fish, R. H., 1983, Organometallic geochemistry; isolation and identification of organoarsenic and inorganic arsenic compounds from Green River Formation oil shale, in Geochemistry and chemistry of oil shales (Miknis,


Gelpi, Emilio, Wszolek, P. C., Yang, Esther, and Burlingame, A. L., 1971,


Hawley, J. E., 1929a, Generation of oil in rocks by shearing pressures. I:


High, L. R., Jr., and Picard, M. D., 1971, Oil impregnated lacustrine and fluvial sandstone in Green River Formation (Eocene), southeastern Uinta Basin, Utah: Utah Geological and Mineralogical Survey Special Studies no. 33, 32 p.


Ingram, L. L., Ellis, J., Crisp, P. T., and Cook, A. C., 1983, Comparative study of oil shales and shale oils from the Mahogany zone, Green River Formation (U.S.A.) and Kerosene Creek Seam, Rundle Formation (Australia): Chemical Geology, v. 38, no. 3-4, p. 185-212.


Jackson, L. P., and Decora, A. W., 1975, Thermal reactions of shale oil components: Plant pigments as probable precursors of nitrogenous compounds in shale deposits: U.S. Bureau of Mines Report of


Kaesler, R. L., and Taylor, R. S., 1971, Cluster analysis and ordination in paleoecology of Ostracoda from the Green River (Eocene) [with discussion], in Paleoecology of ostracodes: Centre Recherches Pau Bull.,


Klusman, R. W., Condito, R. J., and Zucaro, B., 1979, Trace element baseline studies in the Colorado portion of the oil shale region [abs.]: Geological Society of America, Abstracts with Programs, v. 11, no. 6, p. 276.


Livingston, C. W., 1974, Oil shale: A roadblock and a solution, in Oil Shale Symposium, 7th: Colorado School Mines Quarterly., v. 69, no. 2, p. 185-203.


Abstracts with Programs, v. 4, no. 6, p. 393.
Golden, Colorado, p. 113-123.


Miknis, F. P., and Netzel, D. A., 1982, NMR correlations of significance in oil shale resource evaluation and processing, in Symposium papers; Synthetic fuels from Oil Shale II (Tarman, Paul B., Chairman, and others): Institute Gas Technology, Chicago, Illinois, p. 143-159.


Miller, A. E., 1975, Geologic, energy and mineral resource maps of Routt County, Colorado: Colorado Geological Survey Map Series I.


Miller, J. R., 1950, Roosevelt field, Utah, in Utah Geological Society Guidebook to the geology of Utah, no. 5: p. 147-151.


_____1950b, Petrology of Green River oil shales: St. Louis University, M.S. thesis.


_____1976, Green River Formation of Utah and Colorado and playa lake deposition: Geology, v. 4, no. 6, p. 326, 382.


Munz, Lee, 1982, Oil shale, the promise, the obstacles, the path, in Symposium papers; synthetic fuels from oil shale II (Tarman, P. B., and others, eds.): Institute of Gas Technology, Chicago, Illinois, p. 537-544.


Murray, D. K., 1974a, Estimated shale oil reserves, Colorado federal oil shale lease tracts C-a and C-b, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference: p. 131-134.


Newton, V. C., Jr., and Lawson, P. F., 1974, Oil Shale: Ore Bin, v. 36, no. 8, p. 129-143.


Ochs, A. M., 1978, Comparative petrology of lower Tertiary sandstones,
southern Piceance Creek basin, Colorado: Southern Illinois University, Carbondale, Illinois, Masters thesis.


Olson, R. W., 1974, Valley morphology and landslides, Roan Creek and Parachute Creek basins, western Colorado: Colorado State University M.S. thesis.


___1973, The crystallography and structure of eitetite, Na₂Mg(CO₃)₂: American Mineralogist, v. 58, no. 3-4, p. 2-11.


Pegram, W. J., 1977, Strontium isotope stratigraphy of a core from the Tipton Shale Member of the Green River Formation, Wyoming: Ohio State University, Columbus, Ohio, Masters thesis, 102 p.


Petersen, P. R., 1975, Lithologic logs and correlation of coreholes P. R. Spring and Hill Creek oil-impregnated sandstone deposits, Uintah County, Utah: Utah Geological and Mineralogical Survey Report of Investigations 100, 30 p.


Pfeffer, F. M., 1974, Pollutational problems and research needs for an oil shale industry: Available from National Technical Information Service as rept. PB 236 608/6SL, 44 p.


1957b, Green River and Lower Uinta Formations--subsurface stratigraphic changes in central and eastern Uinta Basin, Utah, in Intermountain Association of Petroleum Geologists Guidebook, 8th Annual Field Conference, p. 116-130.


Picard, M. D., 1959, Green River and lower Uinta Formation subsurface stratigraphy in western Uinta Basin, Utah, in Intermountain Association of Petroleum Geologists Guidebook, 10th Annual Field Conference, p. 139-149.


Picard, M. D., and High, L. R., Jr., 1968, Sedimentary cycles in the Green


1972, Paleoenviromental reconstructions in an area of rapid facies change, Parachute Creek Member of Green River Formation (Eocene), Uinta Basin, Utah: Geological Society of America Bulletin, v. 83, no. 9, p. 2689-2708.


Piwinskii, A. J., and Duba, A., 1975, Electrical conductivity and dielectric properties of oil shale [abs.]: EOS (American Geophysical Union Transactions), v. 56, no. 6, p. 458.


67


Rold, J. W., 1974b, Research on environmental problems of oil shale development: an example of federal, state, and industry cooperation, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference, p. 165-170.


Savage, J. W., 1974, Oil shale and western Colorado, in Guidebook to the


Schmidt, R. A., 1974, Mechanical properties of oil shales from Anvil Points under conditions of uniaxial compression [abs.]: EOS (American Geophysical Union Transactions), v. 56, no. 12, p. 1194.


Smith, C. D., 1974, A unique approach to get oil shale out of the ground: Mining Engineering, v. 26, no. 10, p. 52-56.


Smith, J. W., 1974, Geochemistry of oil shale genesis in Colorado's Piceance Creek basin, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference: p. 71-79.


Smoot, J. P., 1976, Origin of the carbonate sediments in the Wilkins Peak Member, Green River Formation (Eocene), Wyoming [abs.]: Geological Society of America Abstracts with Programs, v. 8, no. 6, p. 1113.
---1978a, Sedimentology of a saline closed basin: The Wilkins Peak Member, Green River Formation (Eocene) Wyoming: Johns Hopkins University, Baltimore, Maryland, Ph. D. thesis.
Sparks, F. L., 1974, Water prospects for the emerging oil shale industry, in

Spelz, C. N., 1974, Coal resources of the Piceance Creek basin, Colorado, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference: p. 235-236.


Stevens, W. L. [compiler], 1978, Impressions of lizard scales from the Green River Formation (Eocene), Uinta Basin, Utah: Journal of Paleontology, v. 52, no. 2.
Sung, R., and Cotter, J. E., 1976, Sources of groundwater pollutants from oil shale recovery processes [abs.]: Eos (American Geophysical Union Transactions), v. 57, no. 12, p. 915.


1975, Oil shale deposition on a playa-lake complex, the Green River Formation [abs.]: American Association of Petroleum Geologists Annual Meeting, v. 2, p. 73.


Swain, F. M., 1964, Early Tertiary freshwater ostracoda from Colorado, Nevada, and Utah.


Thiessen, Reinhardt, 1921, Origin and composition of certain oil shales: Economic Geology, v. 16, no. 4-5, p. 289-300.


Tisot, P. R., 1967, Alterations in structure and physical properties of Green River oil shale by thermal treatment: Journal of Chemical and Engineering Data, v. 12, no. 3, p. 405-411.
Trexler, D. W., 1974b, Fold structures in the Piceance Creek basin area, Colorado, from ERTS-1 imagery, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mountain Association of Geologists, 25th Annual Field Conference, p. 41-45.


Weaver, G. D., 1973, Environmental hazards of oil-shale developments: John
Hopkins University, Baltimore, Maryland, Ph. D. thesis.

1974, Possible impacts of oil shale development on land resources: Journal of Soil and Water Conservation, v. 29, no. 2, p. 73-76.
Weichman, B. E., 1976, Oil shale is not dead: Colorado School of Mines Quarterly, v. 71, no. 4, p. 71-84.
Wetmore, Alexander, 1926, Fossil birds from the Green River deposits of eastern Utah: Carnegie Museum annals, v. 16, nos. 3-4, p. 391-402.
White, Elmer, 1967, Proposed stationary or mobile oil shale retorting system: Available from National Technical Information Service as UCRL-50380, 41 p.


Williams, M. D., 1950, Tertiary stratigraphy of the Uinta Basin, in Utah Geological Society Guidebook to the geology of Utah, no. 5, p. 102-114.


1975, Estimated average annual water balance for Piceance and Yellow Creek watersheds: Colorado State University Environmental Resources Center Technical Report Series 2.


