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Seismic Responses for Circularly Symmetrical Bodies
By M. W. Lee

ABSTRACT

Diffraction responses of the acoustic wave equation for a circularly
symmetrical body such as a circular disc or cone were formulated based on
Trorey”s (1977) method. An accurate numerical procedure is presented for
the diffraction response of a circular disc model. However, an approximate
solution is proposed for a circular cone model because of its non-plane
surface.

This modeling technique was applied to the investigation of side echo
problems encountered in the interpretation of multichannel seismic data
over craters created by nuclear blasts at Enewetak Atoll in the Marshall
" Islands (Grow and others, 1986).

INTRODUCTION

Conventional multichannel seismic-reflection profiling techniques are
based on an assumption of two-dimensional topography and structure.
Reflections of topography or buried structures from outside the plane of
the profile result in side echoes that cannot easily be corrected with
presently available acquisition and processing techniques. Seismic data
acquired over nuclear craters in Enewetak Atoll showed side echoes off the
main reef, crater rims, and random pinnacle reefs; and these side-echoes
presented difficult interpretational problems (Grow and others, 1986).

This diffraction modeling study was initiated in order to illustrate the
side echoes from the almost circularly symmetrical crater.

A general procedure of computing diffraction response using an
acoustic wave equation can be found in Trorey (1970, 1977), Hilterman
(1970), and Berryhill (1977). Some of the applications to the circularly
symmetrical bodies are shown in Hilterman (1970, 1982).

In this investigation, Trorey”s (1977) approach is adapted to generate
acoustic responses for the circularly symmetrical bodies. 1In the case of a
cireular disc-type body, Trorey”s formula provides an accurate numerical
procedure, because the disc is a plane surface. However, Trorey”s approach
is very difficult to implement for a circular cone-type body, because a
conical surface is not a plane surface. Thus, in this report, an
approximate solution for the conical surface is presented. Combining this
modeling method with an interpolation approach for circularly symmetrical
bodies by Herman and others (1982) provided the necessary seismic responses
for studying the effects of the side echoes present in the seismic data of
Enewetak Atoll.

THEORY

The general diffraction theory for arbitrary source-receiver locations
was developed by Trorey (1977) and Berryhill (1977) using an acoustic wave
equation. In this paper, Trorey”s formula was adapted in order to
investigate the seismic response of a circularly symmetrical body such as a
circular disc or cone.

Assume that a reflecting surface is a plane reflector located in the
X-Y plane in a homogeneous half-space (fig. 1), the source and detector are
located in the X-Z plane, and the reflection coefficient (r) is independent
of the angle of incidence. Let (0, O, Zd) be the coordinate of the
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Figure 1.--Geometrical relation among source, receiver, and an elementary
reflector in the X-~Y plane. Detector is located in the Z-axis, and
source is in the X-Z plane.



detector, (XS, o, Zs) be the coordinate of the source, and (Xn, Yn’ 0) be

the coordinate of the boundary of the reflecting surface. Then from Trorey
(1977), the seismic response can be written as:
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V: medium velocity,

KN

t_: specular reflection time,

ty: traveltime from the source to the boundary of the reflector plus
traveltime from the boundary to the detector (diffraction time),

and ES: equals 1 if the specular reflection exists, and 0 otherwise.
In equation (1), Qs(t) represents the specular reflection response and

ﬁd(t) represents the diffraction response and b(t, 8) is given by:
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The upper sign in equation (1) is used for é:—O and the lower sign for

&=1.

Utilizing a property of the delta function, the diffraction response
in equation (1) can be written by the following equation:
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The main computational effort required for computing the diffraction
response is the evaluation of dG/dtd. This derivative term can be

evaluated by
(287 _ A (K 1AL
ﬂ’é - a6 4 (4)
“« Dy, 24
DX/) 2)(/) ‘
In the case of a reflection surface being a circular disc with a
radius "a", and the center of the disc being located at (Xc’ 0, 0) (fig.

2a), then the boundary of the reflecting surfaces (X » Y , 0) as a function

of B8 can be derived as:
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Also, the required derivative term an/dG in equation (4) is given by:
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Utilizing equations (1) through (6), the seismic response of a
circular disc for an arbitrary source and receiver combination can be
evaluated. Of particular interest in this paper is the computation of the
seismic response for the coincident source and receiver. By shifting the
center of the disc to the origin of the coordinate (that is, Xc=0), the
seismic diffraction response can be written as:
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The sign convention in equation (7) is:
a) When 0<X _<a,
the upper sign: 0<08<7/2 or 372 <K6<27;

the lower sign: otherwise.
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Figure 2.--Geometrical relationship of a circular disk model pertinent to
Equation 5. a) Center of a disk is (XCO); b) center of a disk is (0, 0).



b) When Xs>a,
the upper sign: X, is an arc ADC in figure 2b;
the lower sign: Xn is an arc ABC in figure 2b.

In figure 2, emax is given by:
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The solution in equation (7) does not exist when XS=O. In this case, the

solution can be easily obtained directly from equation (1), simply because
ty is not a function of 8. Thus, the solution is given by:
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The diffraction response from a conical surface cannot be evaluated by
equation (1), because the conical surface is not a plane surface.
Conceptually, in this situation, Hilterman”s approach (1970) could be more
suitable than Trorey”s, even though Hilterman”s approach requires a
complicated numerical integration. Thus in this paper, an approximate
method is proposed. The validity of this method or approximation can be
tested by a physical modeling technique:

Figure 3 shows a conical surface. The proposed approximation is that
the non-plane angle @ in figure 3 is substituted into equation (1) as a
plane angle and a curvature effect derived by Hilterman (1975) is included.
In other words,
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where Ce is the curvature effect. The curvature effect Ce is given by

I

(Hilterman, 1975):
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where

RO: normal incident path length (or wavefront radius);

RI’ RZ: two principal radii of curvature of the reflector. This
curvature effect should be applied to the specular
reflections also.
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Figure 3.--Geometrical relationship of a circular cone model. a) Side view;
b) plan view.



Using figure 3, d(b/dtd can be computed by d9/dtd, where 9 is a true

plane angle, and the solution (9) can be written by the following formulae
(see appendix):
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When —>0, then:

)§°“X& %0 2 Cwﬁ-?&bé)mw’(‘—)/

D)

Thus,

bin A —a@w%/aﬂ/’f -/

=0

Th;/m% 2 8 e f /Q//;)_/

aae d T 4T AR, b s f U Ao y

e ()]
gy Xty U dp 7.
Equation (12) is identical to equation (7), which is an exact solution.
This implies that when ¢f is small, the approximate solution (11) is very

reliable. It can also be established that when "a" is large, the solution
(11) approaches the exact solution, because the conical surface approaches

the plane surface as "a" becomes larger.
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