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IN TRIAXIAL STRESS STATES

By William Z. Savage and Henri S. Swolfs 

PREFACE

This report is the seventh of a series summarizing the results of the 
U.S. Geological Survey's research program in geomechanics aimed at 
investigating and assessing the potential of crystalline and sedimentary rock 
masses as geological repositories of nuclear waste. The first six parts of 
this series of reports are referenced below:

Savage, W.Z., and Swolfs, H.S., 1980, The long-term deformation and time- 
temperature correspondence of viscoelastic rock an alternative 
theoretical approach, Pt. 1 of In situ geomechanics of crystalline and 
sedimentary rocks: U.S. Geological Survey Open-File Report 80-708, 21 p.

Smith, W.K., 1982, Two BASIC computer programs for the determination of in 
situ stresses using the CSIRO hollow inclusion stress cell and the USBM 
borehole deformation gage [Pt. 2 of In situ geomechanics of crystalline 
and sedimentary rocks]: U.S. Geological Survey Open-File Report 82-489, 
40 p.

Swolfs, H.S., 1982, First experiences with the C.S.I.R.O. hollow-inclusion
stress cell, Pt. 3 of_ In situ geomechanics of crystalline and sedimentary 
rocks: U.S. Geological Survey Open-File Report 82-990, 10 p.

Nichols, T.C., Jr., 1983, Continued field testing of the modified U.S. 
Geological Survey 3-D borehole stress probe, Pt. 4 of_ In situ 
geomechanics of crystalline and sedimentary rocks: U.S. Geological 
Survey Open-File Report 83-750, 11 p.

Savage, W.Z., Powers, P.S., and Swolfs, H.S., 1984, RVT--A FORTRAN program for 
an exact elastic solution for tectonic and gravity stresses in isolated 
symmetric ridges and valleys, Pt. 5 jof In situ geomechanics of 
crystalline and sedimentary rocks: U.S. Geological Survey Open-File 
Report 84-827, 12 p.

Swolfs, H.S., and Powers, P.S., 1985, An update on two BASIC computer programs 
for the determination of in situ stresses using the CSIRO hollow 
inclusion cell and the USBM borehole deformation gage, Pt. 6 of In situ 
geomechanics of crystalline and sedimentary rocks: U.S. Geological 
Survey Open-File Report 85-509, 15 p.



Published journal articles that report on the findings of this program 
are referenced below:

Swolfs, H.S., and Kibler, J.D., 1982, A note on the Goodman Jack: Rock 
Mechanics, v. 15, no. 2, p. 57-66.

Swolfs, H.S., 1983, Aspects of the size-strength relationship of unjointed
rocks: Chapter 51 in Rock Mechanics Theory-Experiment-Practice: 24th 
U.S. Symposium on Rock Mechanics, College Station, Texas, p. 501-510.

Swolfs, H.S., 1984, The triangular stress diagram - a graphical representation 
of crustal stress measurements: U.S. Geological Survey Professional 
Paper 1291 , 19 p.

Swolfs, H.S., and Savage, W.Z., 1984, Site characterization studies of a 
volcanic cap rock, Chapter 39 in Rock Mechanics in Productivity and 
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p. 370-380.

Savage, W.Z., Swolfs, H.S., and Powers, P.S., 1985, Gravitational stresses in 
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p. 291-302.

Swolfs, H.S., and Savage, W.Z., 1985, Topography, stresses, and stability at 
Yucca Mountain, Nevada, in Research & Engineering Applications in Rock 
Masses: 26th U.S. Symposium on Rock Mechanics, v. 2, p. 1121-1129.
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PART VII: SLIP A FORTRAN COMPUTER PROGRAM FOR COMPUTING THE POTENTIAL
SLIDING ON ARBITRARILY ORIENTED WEAKNESS PLANES

IN TRIAXIAL STRESS STATES

By
WILLIAM Z. SAVAGE AND HENRI S. SWOLFS 

INTRODUCTION

The potential for sliding on planes of weakness such as faults or joints 
under general stress states in rocks has previously been analyzed graphically 
by the Mohr-circle construction (Wallace, 1951; Jaeger, 1962; and Jaeger and 
Cook, 1969). Because such analyses tend to be rather labor intensive, we have 
developed a FORTRAN computer program, SLIP, which automates this process. 
This program gives, in coordinates appropriate for stereographic projection, 
the orientations of planes on which slip can occur and the direction of slip 
on each plane for general triaxial stress states when all principal stresses 
are compressive.

In what follows, we present the theoretical background for the computer 
program beginning with a description of the concepts of the state of stress at 
a point, the Cauchy relationship between the state of stress at a point and 
the stress vector, and the shear and normal components of the stress vector on 
a plane and their directions. Also, the criterion in terms of shear and 
normal stress vector components for frictional slip on an arbitrary weakness 
plane (Amonton's Law, Jaeger and Cook, 1969), the mathematics of stereographic 
projection, and the uses of each in the computer program are described. Some 
examples of orientations of potential slip planes and slip directions 
calculated by the program SLIP (listed in the appendix) are shown in 
stereographic projection in the final section.

STATE OF STRESS AT A POINT

The state of stress at a point represented by the infinitesimal cube with 
nine stress components a.., is shown in figure 1. The stress tensor is 
symmetric where J

a.. = a .. , ij Ji
a 11 ' a 22* a 33 are normal stresses, and

a i 2 = a 2l a l 3 = a 3i a 23 = a 32 are s^ear stress components.

If a. 1 , 0pp, an<3 GO? a°t on Planes with zero shear stresses, then

a.., 0pp» an<3 GOO are principal stresses.

CAUCHY RELATIONSHIP

Consider the tetrahedron formed by the three coordinate axis planes and 
the infinitesimal plane ABC (figure 2). The plane ABC has an area ds and a 
normal r\ with direction cosine^

n 1 = cos(n,x ), n 2 = cos(n,x 2 ), ru = cos(n,x )
The area of the infinitesimal surface OBC is ds,. = ds cos(n»x 1 ) = ruds, the 
area of the infinitesimal surface OAC is ds? = ruds, and the area of the 
infinitesimal surface OAB is ds = ruds.



Xi

Figure 1. State of stress at a point in xi coordinates, a.. , a--, v are
the normal stress components and a 10= a 01 , a.-= a_. , ana a^= a^,, are the
shear stress components. 12 W 21' "13 31 ' 23 32
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Figure 2. Stress vector T and components T acting on the infinitesimal plane
-> i 

ABC with normal n.



Calling T. the components of the stress vector T acting on ABC, we have

for equilibium of forces in the x , x , and x directions 
n
T.ds =

that is 
n
T1 = a 11 n 1 + a 21 n2 + a 31 n 3 
n

T3 = a 13n 1 + a23n2 + a33n 3

or

V "jiY
Cauchy's formula establishes the relationship between the stress 

tensor a. . at a point and the stress vector T. on a plane of arbitrary 

orientation through that point.

SHEAR AND NORMAL COMPONENTS OF THE STRESS VECTOR ON A PLANE

3 
By resolving T into components normal and tangential to the infinitesimal

plane ABC (fig. 3), we find the magnitude of the normal stress component to be

a = T«n = a..n.n.= T.n. n ji 'j i i 'i
and the magnitude of shearing or tangential stress component is given by

2 2 2 a = R -as n 5 3 n 2 r\ r\ 
where the magnitude of T is given by |T| = /T + T + T = R.

If the coordinate axes x^ are chosen to be in principal stress directions, 

we have

and

n
T2 = 
n

222 22 22 r 2 2 2-,2 
as = °11 n 1 + a 22 n 2 + a 33 n 3 ' [a 11 n 1 + a 22n 2 + a 3 3n 3 ]

or T] r\ r\ n n n ?
°s ' T! + T2 + T3 - CT1 n 1 + V2 + T3^3 ] '

Note that no ordering with respect to magnitude is implied; that is, 

a i 1 ' a??' anc* a 33 Gan ^ave ar> t>itrary values relative to each other.



3
Figure 3. Stress vector T and components a and a acting on ABC

s n



SHEAR STRESS DIRECTIONS

The relation developed for shear stress on the plane ABC gives the 
magnitude of a only. Some additional relations are needed to give the
direction of a . s

The direction cosines of the normal to the plane ABC are given by

TL , ru, and ru (fig. ^)   Consider a vector OS normal to the plane defined
 * -> .

by T and n in figure 4. Let this vector have direction cosines * 5 n n n
v , Vp, and v~. Now the vector T has direction ratios T , T? , and T_. Then

by the rules of vector algebra we have
n n

The vector OR shown in figure 4, to which we assign direction cosines 
X , Xp, and X~, is parallel to a and normal to the plane defined by OSP 
Again, by the rules of vector algebra, we find

n
~ n 2T1

for the direction of as

SLIP CRITERION

Consider the plane ABC to be a plane of weakness within a rock mass 
across which sliding can occur if the shear stress and normal stress on that 
plane are uniform and satisfy the relation

a = ya s n
where \i is the coefficient of sliding friction. Thus, as the shear and normal 
stresses acting on the plane are functions of the three normal 
stresses a.., a22 , and a.,_, and the plane orientation is given by the 
direction cosines n 1 , n , and ru, we can investigate those normal stress
combinations and weakness plane orientations for which a >ya and slip cans n
occur. Further, assuming that slip will be in the direction of a , we can 
calculate the slip direction using the equations for direction cosines X .



Figure 4. Vector relationships for defining the direction of the shear stress
component, a . s



STEREOGRAPHIC PROJECTION

In order to clearly present the orientation of planes along which slip 

can occur and the associated slip directions for various combinations 

of a. , a ? _, and a^, we convert the cosines n 1 , ru, and ru to the spherical 

polar form shown in figure 5 where

n 1 = sin6cosa

ru = sinSsina

ru = cos6.

The calculation of stress magnitudes in given planes then proceeds by 

incrementing 6 and a in small angles from 0 to ir/2 and comparing normal and 

shear stresses at each point to the slip criterion. Planes across which slip 

can occur are then plotted in stereographic projection by the following 

method.

For conformal stereographic presentation, we have the following (Goodman, 

1976, and figure 5):

0V = tanCe/2] 

and

x = OVcosot 

y = OVsinot.

F is the focus of the projection. In the appended computer program, normals 

to planes on which slip occurs for combinations of CL , a ?p, a~~, and y are 

given in the xy coordinates appropriate for stereographic projection.

To represent the slip direction associated with each plane on which slip 

occurs, we calculate a new set of angles 6' and a' from
6' = cos' 1 A

and
-1 2 a' = tan [ /. ].

1 Then using the relationships

(0V)' = tan[8'/ 2 ] 

and

x' = (0V) 'cosot'

y' = (OV)'sina', 

we can plot slip directions in stereographic projection.



Xl,0

Figure 5. Spherical polar coordinates and construction for equi-angular 
stereographic projection.



DESCRIPTION OF SLIP.FOR

A FORTRAN-77 program listing of SLIP.FOR is given in the Appendix. This 
program is written for a Digital Equipment Corporation VAX-750 with VMS 
operating system. The only input required are the ratios

°11 a 22 a 33 s= / ,s= /,s= / and the friction coefficient y.
°22 y °22 Z °22,

Calculations of normal and shear stresses and the yield function are 
carried out as described in the previous section on stereographic 
projection. This information (in stereographic x, y coordinates) is written 
to the file SLIP.DAT. Normals to planes across which slip can occur and the 
slip directions are output in files SLIP1.DAT and SLIP2.DAT respectively. 
Both sets of data are in stereographic x, y coordinates and can be used with 
appropriate xy plotting software to produce plots of the type shown in the 
next section. Note that no xy plot software is included here.

EXAMPLES

We conclude with some examples calculated with SLIP.FOR. Figure 6 is a 
computer generated stereographic projection of poles to planes on which slip 
can occur for y = 0.67, and the normalized principal stresses

o o o
s = / = 0.1, s = / = 1.0, and O.Ks = J3 / <1.0. a 22 y 0 22 z o 22

Figure 6 is identical to figure 3.82 on page 72 of Jaeger and Cook (1979) 
which was produced by a three-dimensional Mohr circle graphical analysis 
described in Jaeger (1962).

Figure 7 shows several panels of computer generated stereographic plots 

of poles to possible slip planes (p) and associated slip directions (s) for 

the case of thrust faulting where s , the intermediate stress, varies between

1.0 and 0.33, s = 1.0, s , the least vertical stress, equals 0.3, and y = 0.6, y z
Note that although the orientations of all possible slip planes and associated 

slip directions are shown, each plane will have a unique slip direction on it 

given by the equations X , X , and X . It is interesting to note the small 

range of slip plane orientations and slip directions for values of the 

intermediate principal stress (in this case s ) between 0.6 and 0.8. The
A.

range of orientations and slip directions increases as s approaches either 

the least principal stress, s , or the greatest principal stress, s .

10



Sz=0.1 Sz=0.2 Sz=0.3 Sz=0.4

Sz=0.5 $z=0.6

M=0.67,Sx=0.1,Sy=1.0

Figure 6. Stereographic projection of calculated regions (stippled) in which 
poles to planes of weakness must fall for slip to be possible 
when y = 0.67, sx = 0.1, s = 1.0, and s = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.8, and 1.0. Orientations of s , s , and s are shown in the first 
figure. x y z
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When s equals s , we have the situation shown in the first panel of x z
figure 8. From here through the remaining five panels of figure 8, 

orientations of poles to possible slip planes and associated slip directions 

are shown for strike slip faulting where y = 0.6, s , the least principal
A

stress, equals 0.3, s , the greatest principal stress, equals 1.0, and the 

intermediate principal stress, s , varies between 0.3 and 0.9. The relative
Z

ordering of s , s , and s in figure 8 is the same as in figure 6, but here
 **  jr ^*

the stress differences are smaller permitting a smaller range of potential 

slip planes. The range of slip plane orientations and slip directions changes

rapidly when the magnitudes of s and s are close (first four panels ofx z
figure 8), becomes more restricted for values of s between 0.4 and 0.6, and

&

begins to broaden again as s approaches s .

The first panel of figure 9 shows the orientations of poles to possible 

slip planes and associated slip directions when s = s . In this and the 

succeeding panels of figure 9, orientations of poles to possible slip planes 

and associated slip directions are shown for normal faulting

where y = 0.6, s = 0.3, s varies between 1.0 and 0.3, and s =1.0. Note x y z
again the rapid changes in orientations and directions for values

of s close to either s or s , and the relative lack of change for y z x °
intermediate values of s . Finally, in figure 9 and the preceding two figures 

(8 and 7), notice that the greatest range of possible slip plane orientations 

and slip directions is obtained when two of the principal stresses are 

equal. Also note that in each case nothing has been said about the sense of 

slip because this is known either through experimentation or field 

observations (Jaeger and Cook, 1969).

The last set of computer generated stereographic plots shows the 

influence of increasing the friction coefficient y, from 0.6 to 0.8, and 

finally, to 0.85 for the case where s =1.0 and s = s =0.2 (figure 10a), 

and where

s = s =1.0 and s =0.2 (figure 10b). As might be expected, the range of x y z
possible slip planes decreases as the coefficient of sliding friction is 

increased.
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a
Sx=1.0 $x=0.9

s
sx=0.8 Sx=0.6

S

sx=0.35 Sx=0.33

Figure 7. Orientation of poles to possible slip planes (p) and associated 
slip direction (s) for thrust faulting where
U=0.6, 0.33*3 S1.0, s =1.0, and s =0.3. 

x y
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a sz=0.3

8

Sz=0.4

z=0.5 Sz=0.6

$z=0.8 Sz =0.9

s S

Figure 8. Orientation of poles to possible slip planes (p) and associated 
slip directions (s) for strike slip faulting where

= 0.6, s = 0.3, x s =1.0, and 0.9.



a sv=1.0

s

$y=0.90

S

sy=0.40 Sy=0.35

8 S

e sy=0.32 sy=0.30

S s

Figure 9. Orientation of poles to possible slip planes (p) and associated 
slip directions (s) for normal faulting where
U = 0.6, s = 0.3, O.S^s £1.0, and s = 1.0. x y z
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a Sx=Sy=o.2;Sz=l.O

^=0.85

b Sy=Sx=1.0;Sz=0.2

Figure 10. Distribution of poles to planes along which slip can occur 

for (a) s =1.0, s =s =
£* JTL j

of y (0.6, 0.8, 0.85).

for (a) s =1.0, s =s =0.2, (b) s =s =1.0, s =0.2, and increasing values
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APPENDIX

SLIP.FOR

open(30,file='slip.dat',form='formatted 1 .status-'new')
open(31,file='siipl.dat 1 ,form='formatted',status='new')
open(32,file='siip?.dat',form-'formatted',status='new')
rad=.01745
t1nc=2.5
tint=0.0
tfin=90.0
ainc=?.5
aint=0.0
afin=90.0
print *, 'Enter sigx,sigy,sigz,emu'
read *,sigx,sigy,sigz,emu
write(30,6)sigx,sigy,sigz,emu
write(31,6)sigx,sigy,sigz,emu
write(3?,6)sigx,sigy,sigz,emu
theta=aint*rad

1 alfa=aint*rad
2 el=sin(theta)*cos(alfa)

e2=sin(theta)*sin(alfa)
e3=cos(theta)
px=el*sigx
py=e2*sigy
pz=e3*sigz
rsq=px**2+py**2+pz**2
sgn?=(el*px+e2*py+e3*pz)**2
tsq=rsq-sgn2
f=tsq-sgn2*emu**2
sigs=sqrt(abs(rsq-sgn2))
sign=sqrt(sgn2)
tau=f
ov=tan(.5*theta)
x=ov*cos(alfa)
y=ov*sin(alfa)
if(tau.lt.O.O) go to 5
al=e2*(el*py-e2*px)-e3*(e3*px-el*pz)
a2=e3*(e2*pz-e3*py)-el*(el*py-e2*px)
a3=el*(e3*px-el*pz)-e2*(e2*pz-e3*py)
ak = sqrt(al**2+a2**2+a3**2)
ell=al/ak
e!2=a2/ak
e!3=a3/ak
thets=acos(e!3)
if(el3.lt.0.0) thets=acos(el3)+3.1416
alfs=atan2(el2,ell)
av=tan(.5*thets)
xs=av*cos(alfs)
ys=av*sin(alfs) 

5 thet=theta/rad
alf=alfa/rad
write(30,3) x,y,xs,ys,thet,alf,sigs,sign,tau
if (tau .ge. 0.0) then
write(31,4) x,y
write(32,4) xs.ys
end if
alfa=alfa+ainc*rad
if(alfa.le.afin*rad) go to 2
theta=theta+tinc*rad
if(theta.le.tfin*rad) go to 1

3 format(9f8.3)
4 format(2f9.5)
6 formatdx, 1 SX=',f5.2,' SY=',f5.2,' SZ=' 

& ^5.2,' MU=',f5.2)
close(31)
close(32)
stop
end

If


