
United States Department of the
Interior

Geological Survey

A C Language Implementation of the SRO (Murdock)
Detector/Analyzer

by

James N. Murdock and Scott E. Halbert

Open File Report 87-158

30 April 1991

This report is preliminary and has not been reviewed for conformity with U.S.
Geological Survey editorial standards. Any use of tradenames is for descriptive
purposes only and does not imply endorsement by the U.S. Geological Survey.

Albuquerque, New Mexico

Abstract

A signal detector and analyzer algorithm was described by Murdock and Hutt in 1983. The
algorithm emulates the performance of a human interpreter of seismograms. It estimates the
signal onset, the direction of onset (positive or negative), the quality of these determinations,
the period and amplitude of the signal, and the background noise at the time of the signal.

The algorithm has been coded in C language for implementation as a "blackbox" for
data similar to that of the China Digital Seismic Network. A driver for the algorithm is
included, as are suggestions for other drivers. In all of these routines, plus several FIR
filters that are included as well, floating point operations are not required. Multichannel
operation is supported.

Although the primary use of the code has been for in-house processing of broadband
and short period data of the China Digital Seismic Network, provisions have been made
to process the long period and very long period data of that system as well. The code for
the in-house detector, which runs on a mini-computer, is very similar to that of the field
system, which runs on a microprocessor.

The code is documented.

111
A/o PM-*-

Contents

1 Introduction 1

2 Program Flow 3

3 Detector Routines Overview 5

4 Example Drivers 11

5 Support Routines Overview 17

6 Event Detector Parameters and Onset Printouts 25

6.1 Event Detector Parameters 25

6.2 Parameters That Are Output By The Detector 28

7 Characteristics of the Code 31

8 Remarks 41

8.1 Caveats 41

8.2 Acknowledgements 41

8.3 References 42

A Event Detector C Code 43

A.I CSSTND.H - Main project definitions 43

A.2 CSCONT.H - Context and interface definitions 45

A.3 DETECT.H - Detector variables definitions 50

A.4 CSCONFIG.H - Detector configuration definitions 51

A.5 EJDETECT.C - Detector main loop and dispatch 52

A.6 EVENT.C - Event determination routine 57

A.7 P-ONE.C - P-T value generator 66

A.8 PJTWO.C - Average background estimator 70

A.9 ONSET.C - Onset picker 72

A.10 ONSETQ.C - Onset parameter determination 80

A.ll IBINGO.C - Event flag and timer setup 86

A.12 WBUFF.C - Event storage buffer setup 88

A.13 XTH.C - Threshold calculator 89

A.14 TIME-F.C - Event pick time determination 91

A.15 CK.TJCONT.C - Pick-time adjustments 93

A.16 PERIOD.C - Event period determination 95

A.17 COUNTJDN.C - Event on/off countdown 96

A.18 CONTJSETUP.C - Prepare event structures 98

B Data Management C Code 101

B.I E-BUFFER.C - Allocate data buffers 101

B.2 E.CDSNLOAD.C - Convert CDSN data into integers 102

B.3 E.CREATE.C - Allocate user detector structures 105

B.4 EJTLTER.C - Filter the user data 107

B.5 EJRJEMOVE.C - Remove and cleanup user structures 109

B.6 FFIRBB20.C - 20 SPS BB FIR filter 109

B.7 FFIRSP10.C - 10 SPS SP FIR filter Ill

B.8 FFIRSP20.C - 20 SPS SP FIR filter 113

B.9 FFIRSP40.C - 40 SPS SP FIR filter 114

B.10 FFPAV.C - 4 point running average filter 116

B.ll FNULL.C - Dummy filter 117

B.12 DISP.PAR.C - Display event parameters 119

C Example Driver 121

VI

List of Figures

5.1 Response of FfirSPlOQ filter at 10 SPS 21

5.2 Response of FfirSP20() filter at 20 SPS 21

5.3 Response of FfirSP40() filter at 40 SPS 22

5.4 Response of FfirBB20() filter at 20 SPS 22

5.5 Response of FfpavlOQ filter at 10 SPS 23

5.6 Response of Ffpav40() filter at 40 SPS 23

Vll

List of Tables

5.1 FIR filters 20

6.1 Parameters used for event detection. 25

6.2 Encoded threshold factors generated by Xth() subroutine. 27

6.3 Sample onset printout from event detector 28

7.1 Sizes of the C source files and compiled object files for event detection system
as compiled on the Sun 3/160, C compiler. The n/a is used because the code
sections of the include files are already added to the sizes of the routines. . . 34

7.2 Example execution profile of the event detector that processes 20 samples/second
data on the DEC 11/70. The n/a is used in columns which are not appli­
cable to the statistic. The filter used has 37 coefficients, each of which is
implemented with power-of-2 shifts for speed. 35

7.3 Example execution profile of the event detector that processes 40 samples/second
data on the DEC 11/70. The n/a is used in columns which are not appli­
cable to the statistic. The filter used has 17 coefficients, each of which is
implemented with power-of-2 shifts for speed. 36

7.4 Example execution profile of the event detector that processes 1 sample/second
data on the Sun 3/160. The n/a is used in columns which are not applicable
to the statistic. A 6-pole low-pass recursive filter was used. Little effort was
made to reduce the execution time for this filter. 37

7.5 Example execution profile of the event detector that processes 20 samples/second
data on the Sun 3/160. The n/a is used in columns which are not applicable
to the statistic. The filter used is the same as in the CDSN BB test. 38

7.6 Example execution profile of the event detector that processes 100 sam­
ples/second data on the Sun 3/160. The n/a is used in columns which are
not applicable to the statistic. A 2-pole low-pass recursive filter was used.
Little effort was made to reduce the execution time for this filter. 39

vm

Chapter 1

Introduction

The purpose of this report is to present a C language (Kernighan and Ritchie, 1978) imple­
mentation of the offline detector that is used to process data of the China Digital Seismic
Network (CDSN). It is very similar to the on-line detector of that system which employs a
microprocessor.

The algorithm was described by Murdock and Hutt (1983) and is sometimes referred to
as the "SRO1 detector", the "Murdock-Hutt detector", or alternatively, as the "Murdock
detector". As described in the report, the detector emulates the performance of a human
who interprets seismograms. It estimates: (1) the time of onset of the signal (2) the direction
of the onset (positive or negative, c or d) (3) the quality of these determinations (4) the
period and maximum, amplitude of the first several cycles of the signal, and (5) a measure
of the RMS background noise at the time the signal was detected.

The algorithm has been implemented herewith in C language without using any floating
point operations. The detector was designed and coded in FORTRAN by one of the authors
(Murdock) in early 1977. It has been revised and updated several times since then. This
most recent version has been designed:

 To process multiple channels of data simultaneously,

t To operate very quickly.

 To operate as a "blackbox" for data similar to that of the CDSN.

 To be portable, readable and understandable.

Whereas our goal is not to present a general purpose signal detector and analyzer,
documentation is provided so that the detector might be modified to process seismic data
other than that of the China System. One important restriction of the code is imposed
by our effort to avoid floating point operations: The sample rate (which ordinarily is an
integer) must divide into one thousand with no remainder. (The circumvention of floating
point operations has been to facilitate implementation on elementary microprocessors, as
well as to enhance speed of execution thereon.) The code could be easily modified to address
this restriction. Of course, any such modifications, or alternate use, should be accompanied
by thorough tests to demonstrate that the algorithm performs as expected.

1 Seismic Research Observatory.

Chapter 1. Introduction

The body of the report describes the flow of the code, gives a brief description of
each of the routines, and describes parameters of the code (size, speed, etc.). In addition,
descriptions of potential drivers are presented. Appendices give the code of the detector
and of a driver.

Chapter 2

Program Flow

The following is the flow of the program presented in pseudo C style:

G include flies:

detect.h definitions (# define) and externals.

csstnd.h definitions made for portability.
stdio.h G header for standard input/output

csconflg.h parameters that are configurable by the user.
cscont.h structures needed for multichannel operation, macros for the driver

(Appendix C).
signal.h for UNIX utility signalQ.

Event Detector Routine:

E_detect() the data flow manager for the detector.

P_one() find P-T (peak to trough and trough to peak) values and associated
times.
P_two() estimate sample standard deviation of P-T values.

Xth() calculate thresholds for EventQ.
Event() process P-T values to detect signals.

WJbuffQ write buffers when an event might be in progress.
IbingoQ set flags and raise thresholds when event is detected.

Onsetq() find reference sample number of onset of detected signal.
OnsetQ convert the reference sample number to time, calculate period of

signal, and calculate parameters of the signal.
PeriodQ calculate period of signal.
Time_f() convert sample number to time.
Ck_t_kont() adjust event time calculation when records are > 1 minute

long.
Count_dn() set flags for processing, and time the interval of the event.

Chapter 2. Program Flow

Chapter 3

Detector Routines Overview

These are the C routines which are the event detector. They require input parameters and
a driver to be operated. Suggestions for two simple drivers are shown in the next chapter
(Chapter 4), and a complex driver is shown in Appendix C. A description of the input
parameters is shown in Chapter 6.

- E-detect() -

Called: By User Driver.

E-detectQ orchestrates data flow within the event detector algorithm.
Although filtering is not required, the data that are input to the detector
are typically filtered. The function of Ejdetect () is to call routines that:

1. Find the amplitudes and associated times of the (typically) filtered
data, P_one().

2. Process these amplitudes and associated times to search for seismic
signals, Event().

3. Cause output of the parameters of the detected signal, OnsetqQ.
4. Time the interval of the event, Count_dn().

The main (calling program) passes to Ejdetect () the address of a struc­
ture. Although this structure contains several other variables and con­
stants, the only ones needed by Ejdetect () are:

1. sample rate x 1000 of the digital data. (This multiplication is done
so that VLP data of the China system can be detected, if one so
desires.)

2. the number of data points that will be processed.
3. the time (yr, day, hour, minute, second, millisecond) of the first data

point of the current record (the data that will be processed).
4. the address of the first data point to be processed. (The address of

the array of 32 bit data that will be processed.)
5. the address of the list (a structure) of variables and constants that

must be maintained for each detector. The parameters of the de­
tector (filhi, fillo, xthl, etc.) are included in this list and must be
loaded into the list by the user.

6 Chapter 8. Detector Routines Overview

6. the detector name (for instance, BB.Z1, BB.Z2, SP_Z, SP_N, etc).

EjdetectQ returns TRUE (the value 1) if any the data of the current
record are within the interval of an event: Upon declaring an event,
EjdetectQ will remain TRUE for a minimum of NOR-OUT x waitJblk
samples, where typically NOR.OUT = 4 and waitJblk = 1014 or 507.
(Because we envision that data will be written to tape during the interval
of the event, waitJblk typically is chosen as a function of the input record
length.) The return value of E_Detect() will remain true longer than
NOR-OUT x waitJblk if a retrigger occurs in the coda of the event.

Returns: TRUE - Current record is within the interval of an event.

FALSE - Current record is not within the interval of an event.

Fatal Errors: No fatal exits

- P_one() -

Called: By E-detectQ to process each seismic data sample. This routine deter­
mines the signed amplitudes (and associated times) of the filtered data.
(By amplitudes, we mean the difference in value of the consecutive local
maximums and minimums, hereafter referred to as the peak-to-trough
amplitudes, or P-T value.) Each peak or trough is determined by com­
paring slopes between the input samples. When a peak or trough is found,
the record and time (ie, sample number) where it occurred is documented.

In addition to calculating the peak-to-trough amplitudes, P.oneO gath­
ers information to estimate the background noise. To do this, P_one()
compares the absolute value of each of the amplitudes to a threshold thx,
The maximum of 20 successive values less than thx is fed to P_two (). (The
threshold is used to inhibit anomalously large values, such as spikes, from
contributing to the estimate of normal background.) P_two() uses these
maximums to estimate the statistical dispersion of the background noise:
twosd. (By statistical dispersion, we mean an estimate of the sample
standard deviation of the P-T values.)

Returns: TRUE - Peak or trough detected

FALSE - No Peak or trough detected

Fatal Errors: No fatal exits

- P_two() -

Called: By P_one() to estimate the dispersion of the P-T values.

P.twoQ estimates the statistical dispersion of the background noise and
calculates the four thresholds that are used in the detector. Remember

that P-oneQ finds the maximum of 20 rectified P-T values and sends
this maximum to P_two(). P>two() averages vaLavg (typically 8 or 16)
of these maximums. The average thus obtained is twosd. For zero-mean
normally distributed P-T values, twosd would be an estimate of twice the
sample standard deviation of the P-T values. (See Murdock and Hutt,
1983, for a comparison between the measured sample standard deviation
and the estimate of it hereby.) P_two() calls Xth() to calculate the
thresholds from twosd.

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

- Xth() -

Called: By P_two() to calculate each of the four thresholds when twosd is calcu­
lated.

This routine forms the thresholds from twosd and from the encoded fac­
tors xth{ (that were input by the operator). The reason for this routine
is to circumvent long multiplication of 32 bit integers.

Returns: The threshold value (thl, th2, th3, or thx)

Fatal Errors: No fatal exits

- EventQ -

Called: By EjdetectQ when PjoneQ returns TRUE (ie, for each P-T value).

Routine Event detects signals using thresholds thl and th2. Typically, an
event may be detected if 4 P-T values are greater than th2, or if 3 P-T
values are greater than th2 and one (or more) of the 3 is greater than thl
(Murdock and Hutt, 1983). However, restrictions apply: All of the P-T
values must be in a time window (typically 4 sec), and the P-T values
must "look like" they are part of a signal. Here, "look like" means that
two P-T values must not occur too close together or too far apart. If they
are too close together the second P-T value will be discarded and if they
are too far apart the window will be moved.

Upon detection, an event is declared when enough P-T values have been
processed to estimate the period of it.

Returns: TRUE when an event is declared

FALSE, otherwise

Fatal Errors: No fatal exits

8 Chapter 3. Detector Routines Overview

- WbuffQ -

Called: By Event () when an event might be in progress, but not yet declared.

This routine updates buffers that are needed when an event might be in
progress but not yet declared.

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

- IbingoQ -

Called: By Event () when an event has been detected.

It is useful to note that although Ibingo is called when an event is de­
tected, an event is not declared (i.e. routine Event () returns true), until
enough P-T values have been processed to estimate the period of the
signal. The purpose of Ibingo () is to set parameters for processing the
interval of the event.

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

- OnsetqQ

Called: By EjdotectQ when Event () returns TRUE.

The buffers for each candidate signal have at least 4 P-T values before
the first one that was > th2. OnsetqO compares the last two of these
four with yet another threshold, th3 (th3 < th2). In addition, a test is
performed to see whether or not the P-T value looks like it is part of the
signal. Here "looks like" is determined by the period of the signal. These
tests are to search for a signal onset that is smaller than th2. When the
first P-T value of the signal is found, it is flagged. In P_one(), recall the
reference time of each P-T value is given when the P-T value is declared;
hence the time is for the "trailing edge" of the P-T value. Therefore the
signal onset occurs before the time of the first P-T value of the signal.
The algorithm considers two possibilities for the onset: It is either the
time of the P-T value that immediately preceeds the signal, or if this P-T
value occurs too far ahead of the first P-T value of the signal, a correction
is applied to the time of the first P-T value of the signal. Here "too far"
is determined by the measured period of the signal. The correction (0 or
500 ms for the SP and BB) and an index to the reference P-T are sent to
routine Onset () for conversion to Universal Time.

9

In addition to this index and other parameters of the signal, Onsetq()
sends Onset () the amplitudes of the two P-T values that occur on either
side of the first P-T value of the signal. These five P-T values (the two
prior to the signal and the first three of the signal) are used by Onset ()
to estimate the quality of the time determination of the beginning of the
signal (Murdock and Hutt, 1983).

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

- OnsetQ -

Called: By OnsetqO each time Onsetq() is called.

Calculates the period of the declared signal, its maximum amplitude, the
SNR (signal to noise ratio) series (a quality evaluation, see Murdock and
Hutt, 1983), and converts the reference sample number of the signal onset
to time of signal onset. The output to a log is made here.

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

- PeriodQ -

Called: By Onset () each time Onset () is called.

The routine PeriodQ calculates the period of the detected signal from
the number of samples per period. The purpose of this routine is to
circumvent floating point operations.

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

- Time_f() -

Called: By Onset () each time Onset () is called.

This routine calculates the onset time of the detected signal from a refer­
ence sample number and a time correction. One purpose of this routine
is to circumvent floating point operations.

Returns: Integer seconds of start time that will be added to the time in the header
of the seismic data record

Fatal Errors: No fatal exits

10 Chapter 3. Detector Routines Overview

- Ck_t JcontQ -

Called: By Time_f () each time Time_f () is called, returns immediately if the
record length is less than one minute.

Ck_t_kont() is implemented to process records that are one minute or
longer in length. For such records, it reduces the reference sample number
to less than the number of samples per minute, if necessary, and adjusts
the time field that was read in the record header accordingly.

Returns: Adjusted reference sample number

Fatal Errors: No fatal exits

- Count_dn() -

Called: By EjdetectQ for each seismic data sample after an event is declared,
and while a contained counter is greater than zero.

This routine is a clock that times the interval of the event and sets flags
for processing the coda of the event.

Returns: Nothing (Modifies global variables only)

Fatal Errors: No fatal exits

Chapter 4

Example Drivers

In this chapter we give two examples of drivers for the detector. The first one is a sim­
ple driver which uses few of the data management support routines that are described in
Chapter 5.

This is a very basic idea of how to interface to the event detector. The user is providing
the data, which may or may not be filtered. The user must provide the information in the ex­
ample below, plus the values for the structure struct rMme (see cscont.h, App A). The time
loaded in r.time is the time of the first sample of thedataarray. The macro setallparams
(see cscont.h) loads the parameters of the detector and the routine Cont-setupO (Appendix
A) initializes the continuity structure struct conjsto. (Whereas here we are processing only
1 channel of data, the continuity structure is needed for multi-channel applications.) Al­
though the program can be modified to accept any sample rate, without the modifications
use only those that divide into 1000 without any remainder. Our field experience is limited
primarily to 1, 20, 40 and 100 samples/sec, though tests have been run at many other
sample rates.

#include "detect. h" /* Make sure everything is defined */

mainQ

struct detect. info thedetector; /* Data (see App A) */
struct con_sto the continuity; /* Detector continuity */

LONG thedataarray [1000] ; /* Where the data goes */

/* Get the data structures above properly filled out */

thedetector. samrte = 10000; /* Sample rate * 10000 (here 10SPS) */
thedet ector.dat apt s 1000; /* Quantity of data points */
thedetector.indatar - thedataarray; /* Where data will be */
thedet ect or. detname - "SP"; /* The name for the detector */
thedetector. incontd a ftthe continuity; /* Where continuity is */

Initialize the continuity structure */

11

12 Chapter 4- Example Drivers

Cont.setup(ftthecontinuity); /* Appendix A */

/* Set the event detection parameters into the continuity structure */
/* See Chapter 6 */

/* Load values into the continuity structure */

setallparams(&thedetector, /* A macro (in cscont.h) */
4, /* Filhi (decimal) ~ filhi « fillo */
40, /* Fillo (decimal) 0 « fillo < iwin */
80, /* Iwin (decimal) don't wrap around E_B */
4, /* N.hits (decimal) reccommend 4 or 5 */
020, /* Xthl (octal) xthl > xth2, xthl <= 0377 */
015, /* Xth2 (octal) ~ xth2 > xth3, rec. 015-017 */
010, /* Xth3 (octal) reccommend 10 */
015, /* Xthx (octal) ~ "013 <* xthx <* 0377, rec. 015-030 */
500, /* Def_tc (decimal) 1/2 nominal signal period, ms */
507, /* Wait.blk (decimal) See Chap. 6 parameter 15 */
8); /* Val.avg (decimal) 1 <= val_avg <= 16 */

/* Display parameters on the console */
/* Disp.par is in Appendix C */

Disp.par(ftthedetector);

/* User's processing loop */

FOREVER {

if (exit.condition) break;

Users_data_routine(thedataarray,ftthedetector.startt);
/* User's routine to fill in the data array

and provide the starting time */

E.detect(ftthedetector);

}

/* Clean up */

}

Here is an example of a slightly more complex detector driver which establishes multiple

13

detectors and uses many of the data management support routines.

This idea is somewhat more complicated than the one shown above. Here we are pro­
cessing two, instead of one, channels of information. Furthermore, these data are filtered.
Moreover, memory is allocated dynamically by the subroutines that employ malloc. (All
of these routines are described in Chapter 5, and are shown in Appendix B). The driver is
designed to process an arbitrary format (here it is CDSN). In the process below, the data
are input from magnetic tape that contains VLP, LP, BB, and SP data. Conceptually, as
denoted by the comments, we search for the data of interest (here BB, and SP). Routine
E_cdsnload() returns FALSE if the record that was read was not BB or SP. Otherwise,
it decodes header information and converts and loads the 16-bit gain-ranged seismic data
sample into a 32-bit integer. When all of the integers of the record have been filtered, they
are input to the detector.

Note that these examples are not strictly runnable C code as the user must supply some
code for loading the seismic data which must be passed to the decoder.

#include "detect.h" /* Define everything important */

#define MAX.LOOKBACK 40 /* For the FIR filters */
#define MAX.DATA.POINTS 1014 /* Size of CDSN data packet */

#define CDSN.INPUT.RECORD_SIZE 2048 /* Size of CDSN record in bytes */
/* 20 bytes header, 2028 data */

#define NUM.DETECTORS 2

BYTE rawcdsn[CDSN_INPUT_RECORD_SIZE]; /* Storage buffer */

mainO
#C

LONG *Common_data_buffer; /* Array of longs for detector */
struct detect_info detector[NUM_DETECTORS]; /* Detector info */

/* (See Appendix A) */
BOOL FfirBB20(), /* We will use this broadband filter

#/
FfirSP40(), /* And this short period filter */
useflag; /* Flag for detection below */

WORD i,j; /* Indexes */

/* A Common data buffer will be allocated. One could do this manually */

Common_data_buffer = EJ>uffer(MAX_DATA_POINTS,MAX_LOOKBACK);

/* Create the short period detector */

/* calls Cont_setup */

14 Chapter 4> Example Drivers

if (!(E_create(ftdetector[0], /* Detector 0 is SP */
18, /* Number filter lookback points */
1, /* SP record id # */
"SPZ", /* Give short period a name */
Common_data_buffer, /* Where data is stored */
FfirSP40Q) { /* Name of filter */

printf("Unable to E_create() the SPZ detector\n");
exitQ;

/* The SP parameters must be set */

setallparams(ftdetector[0], /* Set up SP detector */
8, /* Filhi (decimal) */
80, /* Fillo (decimal) */
160, /* Iwin (decimal) */
4, /* N_hits (decimal) */
020, /* Xthl (octal) */
015, /* Xth2 (octal) */
010, /* Xth3 (octal) */
015, /* Xthx (octal) */
500, /* Def_tc (decimal) */
507, /* Wait.blk (decimal) */
8); /* Val.avg (decimal) */

/* Create the broad band detector */

/* calls Cont_setup */

if (!(E_create(&detector[l], /* Detector 1 is BB */
38, /* Number filter lookback points */
2, /* BB record id # */
"BBZ", /* Give broad band a name */
Common_data_buffer, /* Where data is stored */
FfirBB20()) { /* Name of filter */

printf("Unable to E_create() the BBZ detector\n");
exitQ;

/* Set params for the BB detector */

15

setallparams(ftdetector [1] ,4,40,200, 5, 077, 017, 010, 030, 500, 1014, 16);

Display the parameters on the STDOUT */

for (i=0; i<NUM_DETECTORS; i
Disp_par(ftdetector [i]) ;

/* Begin the data I/O loop */

FOREVER {

if (end_of_file_in_all_input_data) break;

 Data is loaded into place from raw input
 Data is placed in rawcdsn ------

/* Search for the desired data, convert, and event detect */

for (i=0; i<NUM_DETECTORS;

useflag = E_cdsnload(ftdetector[i] , rawcdsn, 0) ;
/* Search for the ith channel, and when found,

convert component 0 (Z) */

if (useflag) { /* useflag * TRUE for BB and SP only
*/

E_f ilter (ftdetector [i]) ;
E.detect (ftdetector [i]) ;

Close your files here

For an example of a more complex event detector driver, please see the source to Det-
rnain.c in Appendix C. This is a functioning piece of code, and is used at the ASL for testing
and development of the event detector code systems.

Drivers can range from very simple to very complex. It is intended however that the
event detector itself be viewed and used as a complete blackbox which only need be provided
with appropriate data. It is hoped that the user would not need to modify the detector
inside; however, again, we have tried to supply sufficient documentation to aid in such an

16 Chapter 4- Example Drivers

effort should one so desire.

Chapter 5

Support Routines Overview

The following is a description of the subroutines provided to take care of details involving
data I/O management and other housekeeping support. As noted by example 1 in chapter
4, these routines are not required for use of the event detector, but are available to take
care of details for which the user might otherwise need to provide similar code.

- Subroutine: E_buffer() -

Called: LONG *E-buffer(maxdata, maxlookback) - called to allocate the buffers
for the seismic data samples. Lookback is required because some of the
routines use FIR niters. Allocates an array (size maxdata + maxlookback)
of longs and returns a pointer to the new array.

maxdata The maximum number of data points expected. This must
be as large as or larger than the maximum number of data points
which the decoder (see E-cdsnloadQ) will need.

maxlookback The maximum number of lookback points which will be
required by any of the filters. May be 0 (zero) if no filtering is to be
done, or if the user will be managing the filtering.

Returns: TRUE - All was sucessful.

FALSE - Some allocation failed. Probably due to insufficient memory.

Fatal Errors: No fatal exits

 Subroutine: E_create()

Called: BOOL E.create(detector, looksize, recordtype, detname, dataarr
ay, filter) - called by the main user program to initialize the user's
detector structures. The user creates an array of detector structures
(struct detect-info), and calls E_create(), once for each detector to be
established. E.createO will allocate memory internally for the lookback
array, and the private copy of the continuity structure each detector re­
quires. It then sets the other values in the detect-info structure to initial
values.

17

18 Chapter 5. Support Routines Overview

detector The pointer to the detect-info structure for this detector. Note
that the user must allocate the storage for this. Done by sim­
ply specifying "struct detect-info mycopyofdetect", and pass­
ing "ftmycopyofdetect" to E_create(). There should be one of
these structures for each detector to be created.

looksize This is the maximum number of lookbacks which will be re­
quired for the current detector's data filter. Note that looksize may
be less than, but must not be greater than, the maximum lookback
parameter sent to E_buffer(). If the input for the current detector
will not be filtered, use a 0 (zero) here. An array of looksize size will
be allocated, and a pointer to it will be placed in the user's detector
structure.

recordtype This is an arbitrary component type identifier. It is used
to uniquely identify the different sample rates and/or individual in­
struments in the input data. Recordtype is also used by the decoder
to determine which data is to be processed. (Our tape format has
SP, BB, LP, and VLP data, typically we process only the SP and
BB data.) See E_cdsnload() for an example of how recordtype is
used to select the components to be processed.

detnam This a pointer to a string which contains the name of the de­
tector. Used on various printouts to identify the component and
channel.

dataarray This is the pointer to the array of longs which will be used to
store the data and the lookbacks during conversion and event detec­
tion. Ordinarily, dataarray is the pointer returned by the E_buf f er ()
routine. Alternatively, the user may allocate dataarray by hand and
send the pointer to E.createC). The array must be as large as the
maximum lookback anticipated plus the maximum number of data
points that the decoder being used will need.

filter This is the pointer to the filter function that will be used to pro­
cess the decoded data when EJliter() is called. The user may
supply a pointer to a filter provided in the library, or may use one
of these filters as a template to code a custom niter. If no niter is
required, NULL should be specified here. Note that if no filtering is
desired, but a lookback greater than zero is specified, the FnullQ
niter should be specified here to get the data array moved so it
is positioned properly for the detector. The following is a situa­
tion in which a non-zero lookback, along with a null niter, would
be employed: The user has developed custom filters which require
lookback space but will not use the E_f liter () facility.

Returns: TRUE - All allocations were sucessful.

FALSE - Some allocation failed. There was probably not enough memory
to satisfy the request.

19

Fatal Errors: No fatal exits

- Subroutine: E_cdsnload() -

Called: BOOL E.cdsnload(detector, indata, off set) - Routine used to con­
vert from a raw (station tape) format to the LONG (long) array format.

Routine first checks to verify that the data in indata matches the selection
criteria in decoder (specified with recordtype to E-createQ). If they do
not match, it stops decoding, and returns FALSE.

If the record type of the input data (determined from the header) matches
the recordtype in the detector structure (specified when E_create() was
called), this data is to be event detected. The routine goes on to convert
the raw input data (here the China Network gain-ranged format) into the
elements of our 32-bit data array. The value of the looksize parameter
which was specified to the E_create() routine will be used as the initial
position for storing data in this array.

This routine might be used as a template for the users to write their own
decoders.

detector The struct detect-info detector structure. Contains the infor­
mation needed to operate the current detector.

indata Pointer to the raw CDSN data record to be processed.

offset The multiplexed channel offset. Here 0=Z, 1=N-S, and 2=E-W.

Returns: TRUE - Data matched, and was decoded. It can now be filtered, and
sent to the event detector.

FALSE - This data did not match the current detector. The driver pro­
gram should still attempt to run this data on all of the other detectors.

Fatal Errors: No fatal exits

- Subroutine: E_fllter()

Called: BOOL Ejf liter(detector) - Filter driver. Performs housekeeping in­
volved with the lookback data arrays, and invokes the user's filter to
actually niter the input data.

Before this routine is called, the data array should be filled with data by
the decoder. Upon exiting E_f liter (), the filtered data will begin at the
top of the data buffer and will be ready for event detection.

Returns: TRUE - Success.

FALSE - Some processing error - not expected to happen.

20 Chapter 5. Support Routines Overview

FIR filters for EJilterQ
Name

FfirSPlOQ
FfirSP20()
FfirSP40()
FfirBB20()

FfpavQ

Nominal Rate
10SPS
20SPS
40SPS
20SPS

Any

General Type
Band Pass
Band Pass
Band Pass
High Pass
Low Pass

Figure
See Figure 5.1
See Figure 5.2
See Figure 5.3
See Figure 5.4

See Figs 5.5 & 5.6

Table 5.1: FIR filters

Fatal Errors: No fatal exits

- Subroutine: E_remove() -

Called: E_remove(detector) - Destroy a detector. Puts the detector structure
back to the state it was in before E.create () was called. It deallocates the
continuity structure and the lookback storage areas. It also sets variables
so that the decoder will never select this detector.

Probably, this routine is not useful in normal situations unless all mal-
loc'd areas must be free'd on your operating system before exiting the
program. (One such operating system is used on the AMIGA). This rou­
tine might also be useful when the detector is implemented to process
incoming telemetered data, and there is a need to dynamically reconfig­
ure the event detectors. Once E_remove() is called, E_create() can be
called to initialize a new detector using the old detector slot.

Returns: TRUE - success.

FALSE - Unanticipated problem.

Fatal Errors: No fatal exits

There are also 5 FIR filters provided to reduce noise that is anticipated to be outside of the
signal band. The code is of general form, and might be adapted by the user to construct
new custom filters. See Table 5.1 for a list of these filters.

21

splO.dat

0

 3-20
o

-30

-40
0.(

 ^* - X

Dl 0.1

^~ ^s
V. /

1 1

Frequency (Hz)

Figure 5.1: Response of FfirSPlOO filter at 10 SPS

sp20.dat

0

s~ 10
f*>
o

-30

-40
0.(

 -- ^-> X

"''

31 0.1

^~- ^s

\ /
 >--1

1 10
Frequency (Hz)

Figure 5.2: Response of FfirSP20() filter at 20 SPS

22 Chapter 5, Support Routines Overview

sp40.dat

o

0

30

40
0.(

** X X

31 0.1

\

\ >

1

1 1

If
10 1C

Frequency (Hz)

Figure 5.3: Response of FfirSP40() filter at 40 SPS

bb20.dat

0

o
-30

-40
O.I

 **»

s s /
1 /

/
/'

31 0.1

\^V\/ V - ^M

1 1
Frequency (Hz)

Figure 5.4: Response of FfirBB20() filter at 20 SPS

23

fpavl0.dat

0

o
-30

-40
0.(31 0.1

N .

\

I I
1 1

Frequency (Hz)

Figure 5.5: Response of FipavlOQ filter at 10 SPS

fpav40.dat

0

g-io

f*>
o

-30

-40

 N
S s

\

'flr
1

tt
0.01 0.1 1 10

Frequency (Hz)
100

Figure 5.6: Response of Ffpav40() filter at 40 SPS

24 Chapter 5. Support Routines Overview

Chapter 6

Event Detector Parameters and
Onset Printouts

6.1 Event Detector Parameters

An example of parameters that are input to the detector is given below. In this particular
example, the detector is operating on the vertical component of the BB, SP, and LP data
channels of the CDSN system.

The format of the parameter file, parameters pertaining to device names, and blocking
factors are pertinent only to the detmain driver which is listed in Appendix C. The rest of
the parameters, however, are used to tune the detector itself, or to select data that will be
processed.

The explanation of the input parameters (see Table 6.1) is:

1. The name of the file (device) that will be read by the UNIX System.

2. The name of the component that will be processed.

3. The filter type that will be used (see Detmain source in Appendix G for table which
maps these codes to filter routines).

4. The offset into the multiplexed data of each channel. For instance the SP have three

34567 8 9 10 11 12 13 14 15 16
/dev/nrmtb BBZ 2 0 16 4 40 199 77 17 10 30 5 500 1014 16
/dev/nrmtb SPZ 1 0 16 8 80 160 20 15 10 15 4 500 0507 8
/dev/nrmtb LPZ 3 0 16 8 20 50 40 17 10 30 4 12000 0507 16

Table 6.1: Parameters used for event detection.

Read in by the Detmain driver (see Appendix C).

25

26 Chapter 6. Event Detector Parameters and Onset Printouts________________

components of data multiplexed in one record. 0 = Z, 1 = N, 2 = E.

5. Blocking factor for reading the tape (in this instance, the tape controller will cause
16 records to be read in one block).

6. Filhi, samples (see Murdock and Hutt, 1983, pg. 4). This parameter is used to
control winnowing. In particular, it can be used to reject spiking. Should spiking be
a problem, set filhi equal to the number of samples between (and including) the first
maximum (or minimum, if the spike is negative going) and the subsequent minimum
(or maximum). Set this way, filhi will cause zero weight to be assigned to the second
P-T of the spike. However, it must be remembered that setting filhi to reject such
spikes might cause the detector to be less sensitive to signals of short duration. The
value of filhi should be much less than that of fillo. See Event ().

7. Fillo, samples (see Murdock and Hutt, 1983, pg. 4). This parameter controls how the
window (iwin, below) moves. (As a rule of thumb, set fillo equal to twice the expected
period of the signal, or J the period of the dominant long-period noise, whichever is
smaller.) Fillo causes the window to be moved if only one weighted P-T value is >
th2 in the subwindow defined by fillo. See Event ().

8. Iwin, the window length, samples. This value should be larger than fillo. Assuming
the time criteria of filhi and fillo are met, a detection will occur if, in the window,
nJiits P-T values are > th2, or, if 3 P-T values are > th2 with at least one of the 3
being > till. Typically, we set the window length equal to twice fillo. Fillo controls
the number of detections (and false alarms) more strongly than iwin. See Event ().

9. Xthl, dimensionless. The encoded factor (octal, described more fully below) of twosd
that forms thl. We usually start tuning the detector with xthl set to 20g and raise it
to reduce false alarms. The value of this parameter must be no larger than 377s, and
xthl > xth2. SeeXthO.

10. Xth2, dimensionless. The encoded factor (octal, described more fully below) of twosd
that forms th2. We usually start tuning the detector with xth2 set to 15s and raise
it to reduce false alarms. The value of this parameter must be no larger than octal
3778 , and xth2 < xthl. Normally, it is 158 , 168 , or 178 . See XthQ.

11. Xth3, dimensionless. The encoded factor (octal, described more fully below) of twosd
that forms th3. We use 10g for xthS. It is used to time the onset of signals. The
value 108 will produce th3 equal to approximately two standard deviations of the
background. Hence, the SNE series (the quality evaluation) is easily related to the
statistics of the background. The value of this parameter must be no larger than 3778 .
SeeXthO.

12. Xthx, dimensionless. The encoded factor (octal, described more fully below) of twosd
that forms thx. Thx is used to inhibit anomalously large values from raising the
estimate of normal background. Typically, we start tuning with xthx of 158 . If we
believe that thx is not tracking the background properly, we raise xthx to allow larger
values to contribute to the estimate of normal background. Xthx should be set no
smaller than about 13g and must be set no larger than 3778 . See Xth().

6.1. Event Detector Parameters 27

xthi
(octal)

10
11
12
13
14
15
16
17
20

Value Factor
(decimal)

1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000

xthi
(octal)

30
40
50
60
70

100
300
377

Value Factor
(decimal)

3.000
4.000
5.000
6.000
7.000
8.000

24.000
31.875

Table 6.2: Encoded threshold factors generated by Xth() subroutine.

13. NJiits ("m" in the report of Murdock and Hutt, 1983). The number of weighted
P-T values in the window that is > th2, but < thl, that will cause a detection.
Normally, use 4io. Values less than 4i0 will disable the effect of thl and hence are not
recommended. Increasing nJiits will both decrease the sensitivity of the detector to
small emergent events and decrease the number of false alarms, with the other input
parameters held constant. See Event ().

14. Def-tc, milliseconds. If the detector can not find a suitable onset for the signal, it
will use the time of the first P-T value of the signal minus def-tc. Hence def-tc should
be one-half of the expected period of the signal. In later revisions, def.tc might be
calculated by the algorithm. See Onsetq.

15. Wait_bIk, samples. After an event has been declared, the detector will be disabled
for (NOR.OUT - TIM.OFF) x wait-blk samples. The detector will return TRUE
for NOR-OUT x wait.blk samples. Thus TIM-OFF is used to suppress spurious
detections in the coda of the event and NOR-OUT is used to determine the interval
that might be recorded on magnetic tape, if such recording is indeed desired. See
Count j±n().

16. Valjavg, values per average. This is the number of sets that is used to form twosd.
The maximum permitted number is hardcoded to 16io (see Cscont.h). Values larger
than the dimensioned array likely will cause aberrant behavior of the detector. Smaller
values produce a quicker response in the estimate of twosd, but can also produce larger
short-term variations in the estimate. See Cscont.h, PjtwoQ.

Table 6.2 defines the octal codes that are used for xthi, xth2, xth3, xthx. In the way we
operate, decimal values are input for all of the parameters except xthi, and octal values are
input for xth{. Octal values were selected for consistency with the on-line SRO detector.
In addition, at compile time, one may set the compiler flag LOCAL-EV (see Onset()) if

28 Chapter 6. Event Detector Parameters and Onset Printouts

1
BBZ
SPZ
BBZ
SPZ
SPZ
SPZ
SPZ
SPZ
SPZ

2
d
d
d
d
c
c
c
d
c

3
0
0
0
0
0
2
0
1
1

4
01343
00356
10300
01344
11221
11122
00300
00121
10158

5
1986
1986
1986
1986
1986
1986
1986
1986
1986

6
168
168
168
168
168
168
168
168
168

20:14
20:14
20:25
20:41
21:04
21:05
21:16
21:39
21:50

7
:14.760
:14.655
:28.510
:27.105
:16.405
:17.755
:24.680
:33.055
:50.730

8
127

2066
98

1365
805

1971
731
829

3199

9
0.450
0.425
0.200
0.500
0.375
0.550
0.125
0.250
0.525

10
32

341
32

330
417
1001
257
365
379

11
B
A
B
A
A
B
A
A
A

Table 6.3: Sample onset printout from event detector

local and regional events are the primary interest. Setting this flag aids in the detection of
secondary phases of regional events.

6.2 Parameters That Are Output By The Detector

This is the explanation of the detector output (see Table 6.3).

1. The component name.

2. Estimate of the direction of the first break (polarity of the initial onset of the signal).
The two possibilities are c or d (compression or dilatation).

3. The number of P-T values that OnsetqQ looked back to find the onset of the signal
(0, 1, or 2).

4. The quality evaluation of the estimate of the onset (see Murdock and Hutt, 1983 pg.
16). Dimensionless.

5. The year in which the signal occurred.

6. The day of the year.

7. The hour, minute, second of the estimated onset.

8. The maximum amplitude (digital counts) of the first 4 cycles of the signal.

9. The average period (seconds) of the first 4 cycles of the signal.

10. The value of the background (digital counts) at the time the signal was detected (it
is an estimate of twice the sample standard deviation of the P-T values; twosd).

11. The algorithm that produced the detection:

6.2. Parameters That Are Output By The Detector 29

A - 1 P-T > thl, 3 P-T > th2.

B - nJiits P-T > th2. (see code of Event () for more information)

30 Chapter 6. Event Detector Parameters and Onset Printouts

Chapter 7

Characteristics of the Code

This chapter is intended to give the user an overview of how fast the code might execute
on the user's machine. In viewing the data, one must consider that the input data sizes
are records of 1024 or 2048 bytes in a real-time interrupt-driven system, the record sizes
will impact on the speed of operation. Another factor that will impact on the speed of
execution is the dominant frequency of the input data. The frequency affects the speed
because the first operation of the detector is to find the local maximums and minimums of
the data, and these are the data (together with their associated times) that are processed
by the remainder of the detector.

For a conservative estimate of the speed, we have implemented the C code as described
herein, rather than integrating the code so that execution could be performed without
calling functions: Placing some of the heavily used code inline likely will result in a savings
of 20-30 percent in the time of execution.

The tests herein were performed on the following two machines and software:

 Machine: DEC PDF 11-70

- Operating System: Berkeley UNIX 2.9
- Compiler: Standard BSD 2.9 PDP-11 C

 Machine: Sun Model 3/160 Work Station. (Motorola 68020 microprocessor,
16.67 Mhz, mathematics coprocessor disabled.)

- Operation System: Sun OS V3.5 (BSD UNIX 4.2 equiv)
- Compiler: Standard Sun C Compiler

To show the likely sizes of the execution modules, Table 7.1 gives them for the Sun
Model 3/160.

To demonstrate the times of execution for the detector and the support routines, data
of 20 and 40 samples/second have been processed by the PDP-11/70, and data of 1, 20,
and 100 samples/second have been processed by the Sun 3/160. Because the runs were
made several years apart, the input data are not the same for the two different machines,
hence an exact comparison between the two machines cannot be made. However, it was
deemed useful to have execution times on a modern microprocessor as well as on a familiar
minicomputer, therefore we have given the execution times for both the Sun 3/160 and the
DEC 11/70.

31

32 Chapter 7, Characteristics of the Code

Table 7.2 shows the results for the 20 sample/second data of the 11/70. Routine P^oneQ
is called once per sample and routine Event () is called once per P-T value. Hence, the
average number of samples/P-T value is easily calculated to be 2.2, and the number of
the average frequency of the input data can be determined to be 4.5 Hz (remember that
there are 2 P-T values/cycle). The number of P-T values processed per second is calculated
by dividing the total calls to Event () (778,216) by the total time required to execute the
detector (412 sec, including overhead); which yields a speed of 1886 P-T values/second.
Similarly, one can calculate the speed of execution, relative to real time, using data for the
detector itself as 209 X real time, or for the detector plus support routines as 92 X real
time, both including the unix overhead.

Table 7.3 demonstrates execution times for the 40 sample/second data on the 11/70.
As for the above, the execution times may be calculated:

 Samples/P-T Value = 4.5, which translates to 4.4 Hz.

 P-T values processed per second = 1398.

 Detector speed, relative to real time = 157 X real time (includes all of system over­
head).

 Detector plus support = 75 X real time.

It is interesting to note that the execution times do not increase in direct proportion
to the sample rate: The 40 sample/second data is not processed one-half as fast as the 20
sample/second data. This is due primarily to the compression of the data by P_one(), as
discussed above.

Table 7.4 demonstrates the execution of times for the 1 sample/second data on the Sun
3/160. As for above, the execution times may be calculated.

 Samples/P-T Value = 13.4, which translates to .037 Hz (26.8 sec).

 P-T values processed per second = 293.

 Detector speed, relative to real time = 3936 X real time (includes all of system over­
head).

 Detector plus support = 408 X real time (Note the large time required for floating
point operations for the 6 pole low-pass recursive filter).

Table 7.5 demonstrates the execution of times for the 20 sample/second data on the Sun
3/160. As for above, the execution times may be calculated.

 Samples/P-T Value = 2.5, which translates to 4.0 Hz.

 P-T values processed per second = 3664.

33

t Detector speed, relative to real time = 460 X real time (includes all of system over­
head).

t Detector plus support = 262 X real time.

Table 7.6 demonstrates the execution of times for the 100 sample/second data on the
Sun 3/160. As for above, the execution times may be calculated.

t Samples/P-T Value = 4.39, which translates to 11.4 Hz.

 P-T values processed per second = 1621.

t Detector speed, relative to real time = 71 X real time (includes all of system overhead).

 Detector plus support = 11 x real time (Note large time required for floating point
operations for the 2 pole low-pass recursive filter).

To calculate the likely execution times for other data that may be of interest, use the
information that routine P_0ne() is called once per sample, routine Event () is called once
per P-T value (twice per cycle), routine P_two() is called approximately once every 20 P-T
values, and routine Xth() is called four times per call to P_two().

It is important to note that the execution speeds calculated (above) inlcude all of the
unix overhead. If we exclude the unix overhead plus the execution times for the support
routines, the execution for the detector subroutine itself may be calculated. These data may
be useful in comparing the detector described herein with others. The speed of execution
for the detector routine are as follows:

 On the 11-70, 20 samples/second data is 289 X real time.

 On the 11-70, 40 samples/second data is 236 x real time.

 On the 3/170, 20 samples/second data is 541 x real time.

 On the 3/170,100 samples/second data is 172 x real time.

Again, these speeds probably can be increased 20-30% by merely placing some of the
more frequently called routines inline, rather than calling them as functions.

34 Chapter 7. Characteristics of the Code

Section
Event Detector

Data Support

Include Files

Comparitive sizes
Routine-Name
CkJ;_kont()
CountjdnQ
E-detect()
EventQ
IbingoQ
Onset()
Onset q()
Pjone()
P-two()
Period()
TimeJ()
Wbuff()
Xth()
FfirBB20()
FfirSPlOQ
FfirSP20()
FnrSP40()
FfpavQ
FnullQ
Cont_setup()
Detmain()
Disp_par()
E-bufFer()
E.cdsnloadQ
E.create()
EJilterQ
E_remove()
csconfig.h
cscont.h
csstnd.h
detect .h

of code
Code

436
128
580

2112
88

1620
1440
484
436
148
320
224
296
456
132
168
272
136
100
320

4672
196
88

1312
264
240
128
n/a
n/a
n/a
n/a

(bytes)
Data

4
4

132
4
4

80
4
4
4
4
4
4
4
4
4
4
4
4
4
4

628
152

4
4
4
4
4

n/a
n/a
n/a
n/a

Total
440
132
712

2116
92

1700
1444
488
440
152
324
228
300
460
136
172
276
140
104
324

5300
348

92
1316

278
244
132
n/a
n/a
n/a
n/a

Source
3313
2479
9010

18833
3004

12572
10004
5052
3773
1869
3028
3229
2744
3224
2178
2721
2408
2193
2174
3042

18107
1311
1260
4421
2694
1563
1238
1426
7671
3437
1611

Table 7.1: Sizes of the C source files and compiled object files for event detection system as
compiled on the Sun 3/160, C compiler. The n/a is used because the code sections of the
include files are already added to the sizes of the routines.

35

CDSN BB Test
Routine Time (sees) Calls Section% AU% ms/call

Data Support Section
FfirBB20()
E_cdsnload()
E-buffer()
Cont_setup()

432.47 5106 83.5%
85.48 15600 16.5%

0.00 1 0.0%
0.00 1 0.0%

46.5%
9.2%
0.0%
0.0%

84.70
5.48
4.17

16.67
Event Detector Section

PjoneQ
Event()
P_two()
Xth()
WbufF()
Count jdn()
Ck-t-kont()
Onset()
Period()
Ibingo()

167.65 1725828 56.2%
91.51 778216 30.7%
16.92 38909 5.7%
14.36 151384 4.8%
5.10 75125 1.7%
2.43 1109574 0.8%
0.08 28 0.0%
0.03 28 0.0%
0.00 28 0.0%
0.00 28 0.0%

18.0%
9.8%
1.8%
1.5%
0.5%
0.3%
0.0%
0.0%
0.0%
0.0%

0.07
0.12
0.30
0.08
0.06
0.02
0.21
1.28
0.43
0.21

System Overhead Section
unix overhead 114.43 n/a 100.0% 12.3% n/a

Table 7.2: Example execution profile of the event detector that processes 20 samples/second
data on the DEC 11/70. The n/a is used in columns which are not applicable to the statistic.
The filter used has 37 coefficients, each of which is implemented with power-of-2 shifts for
speed.

36 Chapter 7. Characteristics of the Code

CDSN SP Test
Routine Time (sees) Calls Section% AU% ms/call

Data Support Section
FfirSP40()
EjcdsnloadQ
E-buffer()
Cont .setup ()

427.54 10212 72.1%
165.40 15600 27.9%

0.02 1 0.0%
0.00 1 0.0%

37.5%
14.5%

0.0%
0.0%

41.87
10.60
16.67
8.33

Event Detector Section
PjoneQ
EventQ
XthQ
PJwoQ
CountjdnQ
WbufF()
Onset()
Period()
Ck_t_kont()
IbingoQ

245.46 3451656 67.1%
92.39 766196 25.2%
12.00 150204 3.3%
11.64 38285 3.2%
2.92 154634 0.8%
1.45 23479 0.4%
0.10 78 0.0%
0.04 78 0.0%
0.02 78 0.0%
0.01 78 0.0%

21.5%
8.1%
1.1%
1.0%
0.3%
0.1%
0.0%
0.0%
0.0%
0.0%

0.07
0.12
0.08
0.30
0.02
0.06
1.28
0.43
0.21
0.21

System Overhead Section
unix overhead 182.29 n/a 100.0% 16.0% n/a

Table 7.3: Example execution profile of the event detector that processes 40 samples/second
data on the DEC 11/70. The n/a is used in columns which are not applicable to the statistic.
The filter used has 17 coefficients, each of which is implemented with power-of-2 shifts for
speed.

37

Steim LP Test
Routine Time (sees) Calls Section% All% ms/call

Data Support Section
Cont_setup()
CtlWordTypeQ
EjdetectQ
E_aiter()
EjsteimloadQ
Frecgen()
FP overhead
main()

0.04 1 0.0%
4.33 330240 0.3%
7.78 1376 0.5%
0.23 1376 0.0%

11.35 80000 0.8%
163.59 1376 11.6%

1224.64 n/a 86.5%
3.16 1 0.2%

0.0%
0.3%
0.5%
0.0%
0.7%

10.4%
77.5%
0.2%

40.00
0.01
5.65
0.05
0.14

118.89
n/a

3159.86
Event Detector Section

CkJ_kont()
Count jdn()
Event()
Ibingo()
Onset()
OnsetqQ
Pjone()
PJwoQ
Period()
TimeJ()
WbuffQ
Xth()

0.00 14 0.0%
0.88 49189 4.4%
3.07 48204 15.3%
0.00 14 0.0%
0.04 14 0.2%
0.38 14 1.9%

15.00 645730 74.9%
0.24 2119 1.2%
0.00 14 0.0%
0.00 14 0.0%
0.20 7796 1.0%
0.22 8432 1.1%

0.0%
0.1%
0.2%
0.0%
0.0%
0.0%
0.9%
0.0%
0.0%
0.0%
0.0%
0.0%

0.00
0.02
0.06
0.00
2.86

27.14
0.02
0.11
0.00
0.00
0.03
0.03

System Overhead Section
Unix overhead 144.02 n/a 100.0% 9.1% n/a

Table 7.4: Example execution profile of the event detector that processes 1 sample/second
data on the Sun 3/160. The n/a is used in columns which axe not applicable to the statistic.
A 6-pole low-pass recursive filter was used. Little effort was made to reduce the execution
time for this filter.

38 Chapter 7. Characteristics of the Code

Steim BB Test
Routine Time (sees)

Data
Cont-setupQ
CtlWordTypeQ
E-filter()
E_steimload()
FfirBB20()
FrecgenQ
main()

3
45

9
157
842

0
3

.03

.48

.39

.78

.01

.48

.62
Event

CkJJcontQ
Count jdn()
E-detect()
Event()
Ibingo()
OnsetQ
Onset q()
Pjone()
PJwoQ
Period()
Time_f()
WbufF()
Xth()

0
144
185
321

0
1
7

480
15

0
0

25
13

.02

.41

.18

.05

.00

.58

.01

.57

.70

.12

.41

.36

.49
System

Unix overhead 207.30

Calls Section% AU% ms/call
Support Section

1
3335760

13899
80000
13899

0
1

0
4
0

14
79

0
0

.3%

.3%

.9%

.9%

.3%

.1%

.3%

0
1
0
6

34
0
0

.1%

.8%

.4%
A%
.2%
.0%
.1%

3029
0
0
1

60
0

3619

.86

.01

.68

.97

.58

.00

.84
Detector Section

3115
9888951

13899
5139293

3115
3115
3115

12931076
251510

3115
3115

795413
541544

0
12
15
26

0
0
0

40
1
0
0
2
1

.0%

.1%

.5%

.9%

.0%

.1%

.6%

.2%

.3%

.0%

.0%

.1%

.1%

0
5
7

13
0
0
0

19
0
0
0
1
0

.0%

.9%

.5%

.0%

.0%

.1%

.3%

.5%

.6%

.0%

.0%

.0%

.5%

0
0

13
0
0
0
2
0
0
0
0
0
0

.01

.02

.32

.06

.00

.51

.25

.04

.06

.04

.13

.03

.03
Overhead Section

n/a 100 .0% 8 .4% n/a

Table 7.5: Example execution profile of the event detector that processes 20 samples/second
data on the Sun 3/160. The n/a is used in columns which are not applicable to the statistic.
The filter used is the same as in the GDSN BB test.

30

Steim VSP Test
Routine Time (sees) Calls Section% All% ms/call

Data Support Section
Cont-setupQ
CtlWordTypeQ
E_filter()
E_steimload()
FrecgenQ
FP overhead
main()

0.21 1
93.93 6906720

3.46 28778
323.69 28800

2639.76 28778
17682.66 n/a

1.18 1

0.0%
0.5%
0.0%
1.6%

12.7%
85.2%
0.0%

0.0%
0.4%
0.0%
1.3%

10.8%
72.2%

0.0%

209.99
0.01
0.12

11.24
91.73

n/a
1179.95

Event Detector Section
Ck-t-kont()
Count -dn()
EjdetectQ
Event()
Ibingo()
Onset ()
Onset q()
P-oneQ
P-two()
Period()
Time_f()
Wbuff()
Xth()

0.00 583
17.43 1213081

336.69 28778
327.34 6095004

0.00 583
0.36 583

13.55 583
793.82 26773880
33.70 303032

0.02 583
0.07 583
4.21 130123

22.95 1183716

0.0%
1.1%

21.7%
21.1%

0.0%
0.0%
0.9%

51.2%
2.2%
0.0%
0.0%
0.3%
1.5%

0.0%
0.1%
1.4%
1.3%
0.0%
0.0%
0.1%
3.2%
0.1%
0.0%
0.0%
0.0%
0.1%

0.00
0.01

11.70
0.05
0.00
0.62

23.24
0.03
0.11
0.03
0.12
0.03
0.02

System Overhead Section
Unix overhead 2209.35 n/a 100.0% 9.0% n/a

Table 7.6: Example execution profile of the event detector that processes 100 sam­
ples/second data on the Sun 3/160. The n/a is used in columns which are not applicable to
the statistic. A 2-pole low-pass recursive filter was used. Little effort was made to reduce
the execution time for this filter.

40 Chapter 7. Characteristics of the Code

Chapter 8

Remarks

8.1 Caveats

Our experience with the detector has been primarily with the BB and SP CDSN and the
SP SRO data. Sample rates for these are 20 and 40 samples per second and the record
sizes are about 1000 16-bit gain-ranged words. In addition, we have a limited amount of
experience with 1 sps data (the LP of the CDSN system), and 100 sps data (the VSP of the
IRIS-GSN system). Hence, whereas provision is made for processing other data, care should
be exercised when doing so. In particular, EJ3, which defines the size of the large buffers
in Event (), should be great enough so that values in the last part of the window (i-win) do
not wrap around to write over values in the first part of the window. As a precaution, one
might choose EJ3 as large as, or larger than, the largest of all of the values in the set

eJ)i = 2 X (windowJengthi (sec) x Nyquist-frequencyi (Hz)) +4

Furthermore, we reemphasize, to circumvent floating-point operations, we assume that
the integer (except for VLP) sample rate will divide into one thousand with no remainder
(this limitation is easily addressed by modifying the code that depends primarily on the
variable ms-sam). In addition, one must remember that the clocks of the detector are based
on 16-bit integers: One might have severe problems processing individual records that are
32768 data bytes long, for instance. Finally, although we do not forsee major problems
in processing other seismic data, if one operates outside of our experience, thorough tests
should be conducted to demonstrate that the detector performs as expected.

8.2 Acknowledgements

The coefficients of the FIR filters that are implemented were calculated by C. R. Hutt who
is preparing a report on the design of the filters. The routine for finding the peaks and
troughs of the input time series was adapted from a 1977 program by L. G. Holcomb. The
routine Ith() was adapted from one in 1984 by R. R. Reynolds and C. R. Hutt. John J.
McDermott, Jr. cooperated in the early part of the project to convert from FORTRAN to
C language. Stuart Flicker contributed suggestions on portability of the code. Also, thanks
to Dave Barnett from Lawrence Livermore Laboratories who contributed code for enhanced
local event processing.

41

42 Chapter 8. Remarks

During the implementation of the algorithm in PASCAL for the IRIS-1 and IRIS-2 GSN
Data Aquisition Systems, Dr. Joseph Steim repaired some bugs that kept the detector
from operating with sample rates less than 1 sample per second. These changes were
then incorporated into the C detector. In 1989, Sean Keane performed extensive off-line
simulations to test for proper operation of the detector for odd sample rates and through
end-of-year boundaries and with leap years.

8.3 References

Kernighan, B. W. and D. M. Ritchie (1978). The C Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 228 pp.

Murdock, J. N. and C. R. Hutt (1983). "A new event detector designed for the Seismic
Research Observatories", USGS Open File Report 83-785, 42pp.

Appendix A

Event Detector C Code

Here is the actual C code for the event detector itself. It is extensively documented and
should be easily ported from one machine type to another.

A.I CSSTND.H - Main project definitions

* GLOBAL DIGITAL SEISMIC NETWORK *
* *
* gdsnstd.h - Standards and constants definition for project *
* ** mm ** ** ** mm ** mm ** mm mm ** ** ** ** ** ** ** ** mm mm mm mm mm mm _____._._._._._. ̂ /

^ j

/^___.,» __ _.,», _., , _.__ _._._._._._._._.___._._._._._._._._._._. __ __ __ __ __ __ __ __________________________,M ,M ,M ,M ,M Jj

* Albuquerque Seismological Laboratory - USGS - US Dept of Interior *
* ^ /

mm mm mm MM mmmmmmmmmm^mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm M ^ /

/ J- ^ mmmm mm mm w* w* w* w* w* w* w* ̂ w* A * <i>

* Modification and history *
* *
* Edit Date Who Description of changes *

* 001 24-Apr-86 SH Set up standards file *
* 002 9-Jul-86 SH Add mfree to free for UNIX29 *
* 003 22-Dec-86 SH Tailor VMS definitions *
* mm mm mm mm mm mm mm mm mm mm mm w*w* _____________^ /

I

/* Determine System Dependancies */

#ifdef VMS
define QUADJJWORDSIZE /* Ints and pointers are 32 bit */
define UNSGND unsigned /* No n- Ints can be specified as unsigned */
#def ine VOIDER void /* The compiler really has a void type */
define STDFLT double /* Standard floating */
#endif
ftifdef UNIX29

43

44 Appendix A. Event Detector C Code

ftdefine DUAL.UWORDSIZE
ftdefine UNSGND
#define VOIDER int
#define STDFLT float
#define mfree(a) free(a)
ftendif

/* Ints and pointers are 16 bit */
/* You cannot have unsigned non-ints */
/* The compiler does not have real void */
/* Standard single precision floating */
/* no mfree in unix 2.9 */

/*

ftdefine VOID VOIDER
ftdefine BOOL UNSGND char
ftdefine TEXT UNSGND char

-Define Data types- */

/* For functions which return nothing */
/* Flag quantities */
/* For character strings */

Numbers :
Unsigned:

8-Bit
BYTE
UBYTE

16-Bit 32-Bit
WORD LONG
UWORD ULONG

/* 8-Bit quantities

ftdefine UBYTE UNSGND char
ftdefine BYTE char

/* 16-Bit quantities

ftifdef QUADJJWORDSIZE
ftdefine UWORD UNSGND short
ftdefine WORD short
ftendif
ftifdef DUAL.UWORDSIZE
ftdefine UWORD unsigned int
ftdefine WORD int
ftendif

*/
*/

/* An 8-Bit definition */
/* Numeric 8-bit definition */

*/

/* 16 bit unsigned */
/* 16 bit numeric quantity */

/* Assume an int is a 16 bit number */
/* 16 bit numeric quantity */

/* 32-Bit quantities

ftifdef QUADJJWORDSIZE
ftdefine ULONG unsigned int
ftdefine LONG int
ftendif
ftifdef DUAL.UWORDSIZE
ftdefine ULONG UNSGND long
ftdefine LONG long
ftendif

*/

/* Definition of a 32 bit mask */
/* A 32 bit number */

/* 32 bit mask */
/* 32 bit number */

_________________ A.2. CSCONT.H - Context and interface definitions 45

#def ine DSKREC ULONG /* Pointer to a disk record */

/* Define some macros and contants we will use */

#define FOREVER for(;;) /* Infinite loop */

^include <stdio.h> /* Get from standard include library */

#ifndef NULL
ftdefine NULL (0) /* Impossible pointer */
#endif
#define TRUE 1 /* if (TRUE) */
#define FALSE 0 /* if (ITRUE) */
#define EOS '\0' /* End of string */

ftdefine min(a,b) ((a)<(b)?(a) : (b))
#define max(a,b) ((a)>(b)?(a) : (b))

ftifdef UNIX29
include <macros.h> /* Get from UNIX include library */
end if

#define IUBYTE(x) (((WORD) x)&OxFF)

A.2 CSCONT.H - Context and interface definitions

/# DC

* China Digital Seismograph Network *
* *
* CSCONT.H - Main structure definitions *
* *
* Contains information used to analyze seismic events. There *
* is one of these buffers for each discrete component of seismic *
* data that is being event detected. *
* #/

ftundef min

/* Continuity Structure */

struct con.sto {
/* Variables used in e.detect */

46 Appendix A. Event Detector C Code

/*

TEXT *ch_name; /* Name of detector stored in e.detect */
BYTE cur.rec; /* Index of the current record */
WORD sam_tab[CUR.MAX];/* Number of samples per record per channel

in current and prev records */

 Variable Used in event subroutine- */

WORD buf_flg[E_B]; /* flags: 1 if >= th2; 2 if >= thl */
WORD buf_sc[E_B]; /* summed delta sample counts */
LONG buf_amp[E_B]; /* P-T amplitudes values */
WORD buf_tim[E_B]; /* time coordinate of P-T values */
BYTE buf_rec[E_B]; /* record number array */

WORD abuf_sc[4];
LONG abuf_amp[4];
WORD abuf_tim[4];
BYTE abuf_rec[4];

LONG last.amp;

BOOL epf;
BOOL evon;
BOOL icheck;

WORD filhi;
WORD fillo;
WORD iwin;
WORD n.hits;

WORD fst.flg;
WORD indx;
WORD Ist.flg;
WORD Ist_flg2;
WORD lst.pt;
WORD lst.pt2;
WORD index2;

BOOL iset;

WORD jj;
WORD sumdsc;
WORD sTimflg;
WORD last.sc;
WORD last.tim;

/* last 4 delta sample counts */
/* last 4 P-T amplitudes */
/* time cord, of last 4 P-T values */
/* companion to buf.rec */

/* last P-T value */

/* event possible flag */
/* event detected flag */
/* flag, ensures period estimate */

/* see OF Report 83-785 */
/* see OF Report 83-785 */
/* window length (samples) */
/* # P-T >= th2 for detection */

// index to first flagged P-T value
/* saves fst.flg */
/* index to last flagged P-T value */
/* Ist.flg corrected for overflow */
/* index to last P-T value processed */
/* lst.pt corrected for overflow */
/* counter,checked for overflow */

/* flag, * 1 when P-T >= thl */

/* index for abrev buffers abuf */
/* sum delta sample count */
/* number of P-T values > th2 */
/* loaded to abuf_sc[] */
/* loaded to abuf_tim[] */

_________________A.2. CSCONT.H - Context and interface definitions 47

BYTE last.rec; /* record of last.tim */

LONG thl; /* largest detection threshold */
LONG th2; /* smallest detection threshold */

/* Variables used in p.one */

LONG last.y; /* amplitude coordinate of previous sample */
WORD last.x; /* time coordinate of previous sample */
BYTE rec.last.x; /* Record of last time coordinate */
WORD 8um_s_c; /* samples from last P or T to current sample */
WORD s_sum_sc; /* samples between last two P-T values */
WORD index; /* counter, calls ptwo */
LONG max_y; /* amplitude coordinate of P or T value */
WORD tim_of_max; /* time coordinate of P or T value */
BYTE rec_of_max; /* record of tim_ofjnax */
BOOL prev.slope; /* sign of last difference */
LONG maxamp; /* abs max of 20 consec. P-T values < thx */
LONG thx; /* upper bound for noise est. */
LONG s.amp; /* signed amplitude of P-T value */

/# Variables used in p_two */

LONG tsstak[16]; /* contains set of maxamp values */
LONG twosd; /* statistical dispersion of P-T values */
WORD kk; /* index for tsstak[] */
WORD val.avg; /* the number of values in tsstak[] */

/* Variables used in onsetq */

LONG th3; /* threshold for estimating onset */
LONG def.tc; /* time correction for onset (default) */
BOOL ponset; /* Print onsets? */
VOID (*onsproc)0; /* Call subroutine upon onset */

/# Variables used in count_dn */

UWORD wait.blk; /* controls re-activation of detector and *
* recording time in event coda */

WORD itc; /* counter for interval of the event */
WORD nn; /* counter for itc */

/* Variables used in xth */

UWORD xthl; /* coded threshold factor ~ xth*/

48 Appendix A. Event Detector C Code

/*

};

UWORD xth2;
UWORD xth3;
UWORD xthx;

/* " */
/* " */
/* " */
/* thl>th2>thx>th3 or thl>thx>th2>th3 */

-Variables to set up the detector- */

WORD kont_per;
LONG ms_sam;
WORD haf.per;
WORD sam_sec;
LONG s_r_x_1000;

/* counts per period */
/* milliseconds per sample */
/* samples per one-half period */
/* sample rate of the digital data */
/* Sample rate * 1000 */

 Time Structure-

struct r_time {
LONG day_yr;
LONG prv_yr;
LONG yr;
LONG day;
LONG hr;
LONG min;
LONG sec;
LONG msec;

/* Call interface-

struct detect,info {
LONG samrte; /* Sample rate * 1000 this detector */
WORD drectyp; /* Record type designator */
WORD datapts; /* Number of data points last decode */
struct r.time startt;/* Starting time of first data point */
LONG *indatar; /* ptr to data array */
WORD Ibksize; /* Space reserved for lookback */
LONG *lbkarr; /* ptr to lookback storage array */
struct con.sto *incontd; /* This detector's continuity structure */
TEXT
BOOL

ttifdef FFILTER
double
double
double

detname; / Name of this event detector */
(*filterc)(); /* Pointer to the filter function (or NULL) */

ivstack[LBSIZE][MAXSECTION]; /* Input value stack */
fbstack[LBSIZE][MAXSECTION]; /* Feedback stack */
coeff[2][LBSIZE][MAXSECTION]; /* Input Coefficients */

int
int

#endif

numsecj
flstaki;

A.2. CSCONT.H- Context and interface definitions 49

/* [NUMER/DENOM][LOOKBACK][SECTION] */
/* Number of sections in use */
/* Stack index variable (ring buffer) */

/¥ .

struct s .onset
BOOL
TEXT
TEXT
UBYTE
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
ULON6
UWORD
ULON6
ULONG

-----Auxij.j.a

 c
new. onset ;
o.polar;
o.dalgo;
o_snr[5] ;
o_year;
o_days ;
o_hours ;
ojnins ;
o.secs;
o.msecs;
o.amps;
o.pl;
o.pr;
o_ large;

Auxillarly onset information- */

/* Flag TRUE if new onset here */
/* A 'd' or 'c' for polarity of first break */
/* Detection algorithm 'A' or 'B' */
/* SNR onset quality estimate values */
/* Year of onset */

/* Amplitude of signal */
/* Integer part of period */
/* Next two decimals of period */
/* tvosd, background noise estimate */

/> Macros for convenience- */

#define filhi_set(detector,value) (detector)->incontd->filhi (value)
#define fillo_set(detector,value) (detector)->incontd->fillo » (value)
#define iwin.set(detector,value) (detector)->incontd->iwin = (value)
#define nhits.set(detector,value) (detector)->incontd->n_hits = (value)

#define xthl_set(detector,value) (detector)->incontd->xthl - (value)
#define xth2_set(detector,value) (detector)->incontd->xth2 (value)
#define xth3_set(detector,value) (detector)->incontd->xth3 = (value)
#define xthx.set(detector,value) (detector)->incontd->xthx = (value)

#define deftc.set(detector,value) (detector)->incontd->def_tc - (value)
#define wait_set(detector,value) (detector)->incontd->wait_blk » (value)
#define avg_set(detector,value) (detector)->incontd->val_avg - (value)

#define setallparams(cs,fhi,flo,iw,nht,xl,x2,x3,xx,tc,wa,av) \
{ filhi_set(cs,fhi); fillo_set(cs,flo); iwin_set(cs,iw); nhits_set(cs,nht)

\
xthl_set(cs,xl); xth2_set(cs,x2); xth3_set(cs,x3); xthx_set(cs,xx); \

50 Appendix A. Event Detector C Code

deftc_8et(c8,tc); wait_set(cs,wa); avg_set(cs,av); }

A.3 DETECT.H - Detector variables definitions

/# Primary declarations for event detector package */

#include <csstnd.h>
#ifdef UNIX
#include <signal.h>
#endif
#include <csconfig.h>
#include <cscont.h>

#define absval(inval) (((inval)>=0)? (inval):-(inval))

ftifdef MAINDEF /* See e.detectQ */
/* Initializations added to comply with objections of Whitesmith linker */

struct r.time etime = {0}; /* Time of beginning of record */
struct r_time htime = {0}; /* Backup of beginning time */

WORD sam.no = 0; /*the number of the current seismic sample*/
WORD th_wt - 0; /*weight, = 1 if >= th2, » 2 if >» thl event*/
LONG fil.out = OL; /*output of the seismic data filter filter*/
WORD lastmin =0; /* fix the TIMESTAMP function */

WORD p.rval - 0; /* fraction of period expressed in millsec period*/
LONG p.lval - 0; /* integer value of period period*/
LONG t.rval =0; /* fraction of onset sec expressed as decimal time_f*/

struct con.sto *con_ptr; /* Global continuity structure pointer */
#else

extern struct r.time etime,htime;
extern WORD sam_no,th_wt,lastmin,p_rval,p_lval,t_rval;
extern LONG fil_out;
extern struct con_sto *con_ptr;

#endif

#define B_M1 (E_B - 1) /*buffer index for routine Event*/
#define B.M2 (E.B - 2)

A. 4. CSCONFIG.H - Detector configuration definitions 51

define
ftdefine

/*

WORD
VOID
BOOL
BOOL
VOID
VOID
LONG
VOID
VOID
BOOL
VOID
VOID
VOID
LONG

B.M3 (E..B - 3)
B_M4 (E_B - 4) /* " " " " */

- Be friendly to lint */

Ck_t_kont();
Count _dn() ;
E_detect() ;
Event ();
IbingoO;
Period () ;
Time_f () ;
Onset ();
OnsetqO ;
P_one();
P.twoO;
PeriodO;
WbuffO;
XthO;

UBYTE *malloc();

#define mfree(x) free(x)

A.4 CSCONFIG.H - Detector configuration definitions

/* Detector configurable parameters and flags */

/* Within limits, the user may adjust these to tune the detector */

define EV_OFF 2 /* following an event, disable the detector
for NOR.OUT - EV.OFF wait.blk's */

/* NB EV_OFF must <= than NOR_OUT. See count _dn (). */
#define NOR.OUT 4 /* the number of vait.blk's that controls the *

interval of the event. See count _dn (). (WORD) */
ftdefine CUR.MAX 20 /* Define modulus for the record sequences (max, 127) */
#define E_B TOO/* size of buffers in eventQ. (WORD) */

#undef RAMPUP /* Automatic quick backround estimate */

ttdeiine PONSET

#undef FFILTER /* Generic floating point filter routines
Don't define if there's no FP */

52 Appendix A. Event Detector C Code

#define MAXSECTION 4 /* Number of stages deep */
#define LBSIZE 3 /* Current lookback size - probably always 3 */

#undef RESYNCRONIZE /* Cause detector to reset pt and loop index values
after events so that the outputs of online and
offline detectors will be identical otherwise
small timing differences will cause the answers to
vary slightly */

#define ITC_PER_CNTRL/* Duration of recording made a function of the
period of the signal for high frequency events */

#define VSP.SPS 80 /* Affect all sample rates this or higher */
#deline PER.TRIG 100 /* Set new ITC on periods this or longer */
#define ITC.UP 8 /* Set the ITC to this */

A.5 E-DETECT.C - Detector main loop and dispatch

#define MAINDEF

#inelude <detect.h>

/* Make "detect" allocate storage for all global
variables in this module - see detect.h */

/*-

Function: BOOL E.detect(detector) - Event detect
a data record

Arguments: struct detect.info *detector - information for
running the detector

Returns: TRUE - Current record is within the interval
of an event.

FALSE - Current record is not within the
interval of an event.

 The interval of the event
Upon declaring an event, E.detect will remain
TRUE for a minium of NOR.OUT x wait.blk
samples, where NOR.OUT = 4 and
wait.blk = 1014 or 507. It will remain true
longer than NOR.OUT x wait.blk if a retrigger
occurs in the coda of the event.

MMMMMMMMMMMMMBMMMBMMMMBBMBMMMMMMBMMWMMBMBMMMMMMMMMMMMBMMMMMMBBM*

Fatal Errors: This routine does not have fatal exits

________________A.5. E-DETECT.C - Detector main loop and dispatch 53

* E.detect is the main driver for the event detect algorithm. *
* The function of E.detect is to call routines that *
* (1) Find the amplitudes and associated times *
* of the filtered data, P.one. *
* (2) Process these amplitudes and associated *
* times to search for seismic signals, Event. *
* (3) Cause output of the parameters of the *
* detected signal, Onsetq. *
* *
* The main (calling program) passes to E.detect the address *
* of a structure. Although this structure (detector) con- *
* tains several other variables and constants, the only *
* ones needed by E.detect are: *
* (1) sample rate x 1000 of the digital data. (This *
* multiplication is done so that VLP data of *
* the China system can be detected, if one so *
* desires.) *
* (2) the number of data points that will be processed. *
* (3) the time (yr, day, hour, minute, second, milli- *
* second) of the first data point of the current *
* record (the data that will be processed). *
* (4) the address of the first data point to be pro- *
* cessed. (The address of the array of 32 bit *
* data that will be processed.) *
* (5) the address of the list (a structure) of *
* variables and constants that must be maintained *
* for each detector. The parameters of the detec- *
* tor (filhi, fillo, xthl,etc.) are included in *
* this list and must be loaded into the list by *
* the user. *
* (6) the detector name (for instance, BB.Z1, BB.Z2, *
* SP.Z, SP.N, etc). *

* E.detect returns TRUE (the value 1) if any the data of the *
* current record are within the interval of the event *
* "the interval of the event" is a programmable feature, *
* as explained above. Otherwise E.detect returns False (the *
* value 0). *
* */

BOOL E.detect(detector)
struct detect.info *detector;
i

	LONG *ldp,tdat;

54 Appendix A. Event Detector C Code

BOOL tapewrite;

con.ptr * detect or->incontd; /* User's continuity structure */

tapewrite = FALSE;

Idp * detect or- >indatar;
/* Note 1 */

/* Associate the data with a record number */

con_ptr->cur_rec++ ;
if (con_ptr->cur_rec >= CURJUX)

con_ptr->cur_rec s 0;

/* Provide for changing the sample rate during processing */

if (detect or- >samrte != con_ptr->s_r_x_1000) {

con_ptr->s_r_x_1000 » detector->samrte;
con_ptr->sam_sec * detector->samrte / 1000L;
/* con_ptr->ms_sam = 1000 / con_ptr->sam_sec; */
con_ptr->ms_sam*1000000L/ ((LONG) con_ptr->s_r.x_1000) ;

printf ("s_r_x_1000 '/,d\n",con_ptr->s_r_x_1000);
printf ("sam.sec = Xd\n" , con_ptr->sam_sec) ;
printf ("ms_sam = '/dXn'^con.ptr-^s.sam);

con_ptr->sam_tab[con_ptr->cur_rec] * detector->datapts;
/* # of data points to be processed */

etime.day_yr s detector->startt.day_yr;
/* load time of first data point */

etime.prv_yr s detector->startt.prv_yr;
etime.yr - detector->startt .yr;
e time. day = detector->startt.day;
etime.hr s detector->st artt.hr;
etime.min = detector->startt .min;
etime.sec = detector->startt.sec;
etime.msec = detector->startt .msec;

/* etime will be changed when events are detected - backup */

htime.day_yr s etime. day_yr;
htime.prv_yr - etime. prv_yr;

________________A.5. EJDETECT.C - Detector main loop and dispatch 55

htime.yr - etime.yr;
htime.day = etime.day;
htime.hr « etime.hr;
htime.min = etime.min;
htime.sec « etime.sec;
htime.msec = etime.msec;

/* Process the input data */

for (sam_no * 0; sam_no < con_ptr->Bam_tab[con_ptr->cur_rec];
sam_no++) (

/* Note 2 */
/* P-T detected, p_one*TRUE; event declared, Event«TRUE */
/* Send input data to P_one */

tdat = *ldp;
ii (P.one(tdat) ftft Event())

Onsetq();

ldp++;

if (con_ptr->itc) { /* is data within interval oi event? */
Count_dn(); /* decrements itc */
tapewrite » TRUE;

/* print!("tsd=='/,d tl='/,d t2='/,d t3='/,d tx='/,d\n",con_ptr->twosd,
con_ptr->thl,
con_ptr->th2,
con_ptr->th3,
con_ptr->thx);*/

/* Note 3 */
return(tapewrite);

}
#i!de! JNMCOMMENT

NOTES

1. In P.one, a peak or trough is not declared until one sample past the maximum or
minimum. Thus, should the last sample of a record be a maximum or minimum,
neither will be detected until the next record has been read. We need to keep track
of in which record the data occur to cope with this situation.

56 Appendix A. Event Detector C Code

2. The input time series is sent to routine P_one which calculates the signed amplitudes
(peak-to-trough differences) and their corresponding times. Pjone calls P_two which
estimates the statistical dispersion of the amplitudes and sets the thresholds. When
a peak or trough has been found by P_one, Pjone returns TRUE and Event is called
to determine whether or not the current amplitude might be part of a signal. When
a signal is declared by Event, it returns TRUE, and Onsetq is called for further
processing of the signal. Onsetq calls Onset which outputs information about the
signal.

3. The counter itc is greater than zero if the current sample is within the interval of the
event. Routine Countjdn decrements itc.

EXPLANATION OF THE VARIABLES

con.ptr - global pointer which allows all routines of the event detector to access the
continuity structure. See cscont.h, detect .h.

CUR-MAX - the upper bound of the arbitrary record numbers. The record numbers are
reset here.

CUTJPCC - an index that keeps track of the record in which the amplitudes of the input
time series occur.

itc - a counter that is greater than zero if the current data sample is within the interval
of the event. Initialized when an event is detected to NOR-OUT. Decremented in
Count jdn.

incontd - the slot in the detect -info structure containing this detectors continuity struc­
ture. (It is a pointer to the continuity structure for this detector, see cscont.h)

Idp - a pointer that is initialized to the address of the first seismic data sample of the
current record.

new-onset - a flag set=TRUE if a signal was declared in the current record. Set=FALSE
otherwise.

sanuch - samples per channel array for this and CUR-MAX-1 previous records

sam_no - sample number of seismic data of the current demultiplexed record.

s_r_x_1000 - adjusted sample rate to permit processing VLP data that is less than 1
sample/sec, (sanusec X 1000).

samrte - adjusted sample rate to permit processing VLP data that is less than 1 sam­
ple/sec, (sanusec X 1000).

sam-sec - sample rate of the current seismic data record (samples per second).

A. 6. E VENT. C - Event determination routine 5 7

tapewrite - a flag set=TRUE if any data of the current record is within the interval of the
event. Set=FALSE otherwise. Ejdetect returns the value of tapewrite. The concept
here is that the calling routine might wish to write data to tape during, and prior to,
the interval of the event.

#endif

A.6 EVENT.C - Event determination routine

#include <detect.h>

/* *

* Function: BOOL Event() - Detect events *
* *

* Arguments: No arguments *
* *

* Returns: TRUE - if event declared *
* FALSE - no event declared *
* *

* Fatal Errors: This routine does not have fatal exits *
* *

* Detects signals using thresholds thl and th.2. For n_hits =4 *
* an event may be detected if 4 values are greater than th.2, or *
* if 3 values are greater than th.2, and one (or more) of the 3 *
* is greater than thl (see 0-F report 83-785). *
*___ _- */

BOOL EventQ {

WORD j, m;
WORD tfst.flg;
LONG ab_amp;

ab_amp = absval(con_ptr->s_amp);

if (con_ptr->jj > 3)
con_ptr->jj = 0;

/* Note 1 */
con_ptr->abuf_rec[con_ptr->jj] - con_ptr->last_rec;
con_ptr->abuf_sc[con_ptr->jj] = con_ptr->last_sc;
con_ptr->abuf_amp[con_ptr->jj] = con_ptr->last_amp;
con_ptr->abuf_tim[con_ptr->jj++] = con_ptr->last_tim;

/* NB jj incremented */
con_ptr->last_sc = con_ptr->s_sum_sc;

58 Appendix A. Event Detector C Code

con_ptr->last_amp = con_ptr->s_amp;
con_ptr->last_tim = con_ptr->tim_of_max;
con_ptr->last_rec = con_ptr->rec_of_max;

/* Note 2 */
if (con_ptr->evon) { /* evon set^TRUE in Ibingo, =FALSE in

Count _dn */
if (con_ptr->fst_flg > (con_ptr->lst_pt2 = con_ptr->lst_pt))

con_ptr->lst_pt2 += E_B;

if ((con_ptr->lst_pt2 - con_ptr->fst_flg) == 7) {
con_ptr->sumdsc += con_ptr->s_sum_sc;
WbuffO;
con_ptr->icheck = TRUE; /* Inhibit writing to buffers */
return (TRUE) ; /* Event Declared! */

if ((con_ptr->lst_pt2 - con_ptr->fst_flg) < 8) {
con_ptr->sumdsc += con_ptr->s_sum_sc;
WbuffO;
return (FALSE) ;

/* Note 3 */
if (con_ptr->icheck)

return (FALSE) ;

con_ptr->i check TRUE;
return(TRUE) ;

/* Was event possible set in previous pass(es)? */

/* Note 4 */

if (!con_ptr->epf) {

if (ab_amp < con_ptr->th2)
return(FALSE);

if (ab_amp < con_ptr->thl)
th_wt - 1;

else
th_wt = 2;

con_ptr->epf = TRUE;

A.6. EVENT.C - Event determination routine 59

con_ptr->fst_flg » 4;
con_ptr->lst_flg = 4;
con_ptr->lst_pt = 3;

m = con_ptr->jj;

if (m > 3)
m = 0;

/*-A P-T value is >* th2, hence a candidate signal just began */
/* Load large buffers from abbrev buffers */

/*-These two different buffer types are a holdover from FORTRAN */

con_ptr->sumdsc = -con_ptr->abuf_sc[m] ;

for (j = 0; j < 4; j++) {
if (m > 3)
m = 0;

con_ptr->sumdsc += con_ptr->abuf _sc [m] ;
con_ptr->buf_.rec[j] con_ptr->abuf.rec[m] ;
con.ptr->buf_.sc[j] = con_ptr->sumdsc;
con_.ptr->buf_amp[j] = con_.ptr->abuf_.amp[m] ;
con_ptr->buf _tim[j] = con_ptr->abuf_.tim[m++] ;

/* m incremented */
>
con_ptr->sumdsc += con_ptr->s_sum_.sc;

WbuffO;
return (FALSE) ;

con_ptr->sumdsc += con_.ptr->s_sum_sc;

/* Event possible flag set; however, is current */
/* p-T value >= smallest threshold? */

/* Note 5 */
if (ab.amp >= con_ptr->th2) {.

th_wt =1; /* Assign weights l to current P-T value*/

>- largest threshold? */

if (ab.amp >= con.ptr->thl)

60 Appendix A. Event Detector C Code

th_wt * 2; /* Weight*2 */

/* Is interval between P-T values too small? */
/* II so, assign weight=0 to current P-T value */

if ((con_ptr->sumdsc - con_ptr->buf_sc[con_ptr->lst_flg])
<* con.pt r->filhi) {
th_wt = 0;
WbuffO;
return (FALSE) ;

/* Is interval between P-T values too large? */
/* If so, move beginning of window to current P-T value */

if ((con_ptr->sumdsc - con_ptr->buf_sc[con_ptr->lst_flg])
>- con_ptr->fillo) {
WbuffO;
con_ptr->fst_flg = con_ptr->lst_pt ;
con_ptr->lst_flg - con_ptr->lst_pt;
return (FALSE) ;

}
/* Note 6 */

/* Is this the second P-T value of the candidate signal, */
/* with no intervening ones? (a special case) */
/* If so, write buffer and set lst_flg - lst_pt */

if (con_ptr->fst_flg =- con_ptr->lst_flg) {
WbuffO;
con_ptr->lst_flg - con_ptr->lst_pt;
return (FALSE) ;

/* Note 7 */
/* Current P-T value >~ smallest threshold, */

/* -nevertheless slide window, if necessary, to satisfy time criterion */
/* Set Ist.flg = lst_pt */

while ((con_ptr->sumdsc - con_ptr->buf_sc[con_ptr->fst_flg])
> con_ptr->iwin) {
con_ptr->indx - con_ptr->fst_flg;
con_ptr->lst_flg2 = con_ptr->lst_flg;
if ((con_ptr->indx + 1) > con_ptr->lst_flg)
con_ptr->lst_flg2 » con_ptr->lst_flg + E_B;
for (j - (con_ptr->indx +1); j < con_ptr->lst_flg2;

A.6. EVENT. C - Event determination routine 61

/* Is fst.flg largest index of buffer ? */
if (con_ptr->fst_flg == B_M1)

con_ptr->fst_flg -1;
/* changed from ==, 8 jul 86, jnm */

if (con_ptr->buf_flg[++con_ptr->fst_flg] !* 0)
break; /* fst.flg incremented */

WbuffQ;

con_ptr->lst_flg - con_ptr->lst_pt ;
con_ptr->iset = FALSE;
con_ptr->sumflg = 0;
con_ptr->lst_flg2 » con_ptr->lst_flg;

if (con_ptr->lst_flg < con_ptr->fst_flg)
con_ptr->lst_flg2 « con_ptr->lst_flg + E_B;

/* Check for event by evaluating values in flag buffer */

for (j = con_ptr->fst_flg; j <* con_ptr->lst_flg2; j++) {
con_ptr->index2 = j ;
if (con.pt r->index2 > B_M1)

con_ptr->index2 -= E_B;
if (con_ptr->buf_flg[con_ptr->index2] != 0)

con_ptr->sumf lg++ ;
if (con_ptr->buf_flg[con_ptr->index2] *= 2)

con_ptr->iset - TRUE; /* P-T >= thl */
>
if (con_ptr->sumflg < 3)

return(FALSE) ;
if (con_ptr->iset) {

IbingoO; /* Event detected */
return (FALSE) ; /* But not yet declared */

>
if (con_ptr->sumflg >= con_ptr->n_hits)

IbingoO;
return (FALSE) ; /* Event detected but not declared */

/* Event possible flag is set, however current P-T value is less */
/* than smallest threshold. Do not set lst_flg = lst_pt */

th_wt » 0;
WbuffO;

62 Appendix A. Event Detector C Code

I* Note 8 */
/* Slide window if necessary so that */
/* first value in window is a flagged value, if possible. */
/* Otherwise, reset event possible flag. */

while ((con_ptr->buf_sc[con_ptr->lst_pt] -
con_ptr->buf_sc[con_ptr->fst_flg]) > con_ptr->iwin) {

con_ptr->lst_flg2 » con_ptr->lst..flg;
if (con_ptr->fst_flg > con_ptr->lst_flg)

con_ptr->l8t_flg2 ~ con_ptr->lst_flg + E_B;
if (con_ptr->fst_flg >= con_ptr->lst_flg2) {

/* fst_flg has been rotated to, or (fail safe) past lst_flg, */
/* and lst_flg is outside of the window. */

/* Therefore, there are no flagged P-T values in the window */
/* i&t a candidate signal is not in progress */

con_ptr->epf = FALSE;
return(FALSE);

/* Rotate fst_flg thru the circular buffer */
for (j = (con_ptr->fst_flg + 1); j <- con_ptr->lst_flg2; j++]

tfst.flg = j;
if (tfst.flg > B_M1)
tfst_flg -= E_B;
if (con_ptr->buf_flg[tfst_flg] > 0)
break;

con_ptr->fst_flg s tfst_flg;
>

/* epf remains TRUE, ie, a candidate signal may be in progress */
/* However, the candidate signal has not yet been verified */

return(FALSE);

#ifdef JNMCOMMENT

NOTES

1. The abbreviated buffers (abuf) save the last 4 P-T values and their associated time
fields. Four P-T values are needed because, if the current P-T value is the first P-T

A.6. EVENT.C - Event determination routine 63

value of a signal that is > th2, the detector looks back 2 P-T values to test for the
onset. If the earliest of these two P-T values is deemed the onset, then the detector
needs the two P-T values before this onset to compute the signal-to-noise series, hence
the 4 values.

2. The event on (evon) flag is set=TRUE when routine Ibingo is called. After evon=TRUE,
we want to ensure that enough P-T values have been processed to permit an estimate
of the period of the signal. When enough values have been processed, Event returns
TRUE. It is important to note that Event returns TRUE only once in the interval of
the event, unless a new detection in the coda is made. Evon set to False in routine
Count jdn when the counter itc < EV-OFF (ie, evon set to false when (NOR.OUT -
EV-OFF) X wait J)lk samples have been processed). In the China System, EV-OFF
= 2, NOR.OUT = 4, and wait J)lk = 1014 for the BB and 507 for the SP. Because we
envision that data will be written to tape during the interval of the event, wait-blk
typically is chosen as a function of the input record length.

3. Again, we want to return event=TRUE only once per detection. The flag icheck was
set to FALSE in routine Ibingo. Therefore, if there are 8 or more P-T values currently
in the window, icheck will be set to TRUE and event returns TRUE. On subsequent
calls of routine Event, while evon = TRUE, Event returns FALSE, see [2] above for
how evon is controlled.

4. This is where processing of data for detection of an event begins. The event possible
flag (epf) is set = TRUE when a P-T value in the window is > th2. During the
time epf = TRUE, data of the large buffers are processed and data are written into
them by Wbuff. The concept of large and abbreviated buffers is a holdover from the
FORTRAN version.

5. How the detector works has been described by Murdock and Hutt in the USGS Open
File Report 83-785. In brief, an event will be detected if, in the window, 3 P-T values
are > th2 and one (or more) of them is > thl; alternatively, an event will be detected
if nJiits P-T values are > th2, where nJiits is > 3. However, these nJiits P-T values
must not occur too close together (no closer than filhi +1 samples), or too far apart
(no farther apart than fillo-1 samples).

6. This tests a special case and was implemented to enhance speed. The index fst-flg
was initialized to IstJlg, and lst.pt was initialized to fst-flg-l. lst.pt is incremented
in wbuff. Therefore, this if statement will return Event = FALSE for the second
consecutive P-T value of a candidate signal, assuming the large buffers were loaded
from the abbreviated buffers when the first of these two P-T values was processed.
Incidently, the concept of abbreviated buffers and large buffers is a holdover from the
FORTRAN version of the code.

7. If the number of samples from the beginning of the window to the current P-T value
is greater than the window length (samples), move the beginning of the window to the
next flagged (th.wt > 0) P-T value. Continue with this process until the difference
between the first P-T value in the window and the last P-T value in the window (both
of which are flagged) is < the window length.

64 Appendix A. Event Detector C Code

8. The current P-T value is less than th2, nevertheless, we may have a signal in progress
but not yet detected. This is certainly true if the distance between the fstJlg and the
1st Jig is less than iwin. Alternatively, if this distance is greater than iwin, we move
the end of the window to the (index of the) current P-T value and then check for
flagged P-T values in the window. If there are no flagged values (ie 1st Jig is outside of
the window) epf is set=FALSE. On the other hand, if there is a flagged P-T value in
the window (be it lst_flg or an earlier one), the beginning of the window is moved to
this point (ie fst-flg is set to the index of the first flagged P-T value in the window).

DESCRIPTION OF VARIABLES

ab_amp - absolute amplitude of the current P-T. Counts.

abuf_arnp - an abbreviated buffer that contains the signed P-T amplitudes.

abuLrec - an abbreviated buffer that contains (arbitrary) record numbers in which each
P-T value occurred.

abuf_tim - an abbreviated buffer that contains time information of the P-T values. This
information is represented by the number of sample counts from a reference time.
Check for numerical overflow is not made.

abuf.sc - an abbreviated buffer that contains the number of sample counts between the
P-T values. Here it is important to note that check for numerical overflow is not
made.

B-M1 - E_B - 1. The largest index of the large buffers.

buf_amp - a large buffer that contains signed P-T amplitudes.

buf Jig - a large buffer that contains the values of th_wt for each P-T value of the time
window. The parameter th.wt is a weighting value.

buf_rec - a large buffer that contains record numbers in which the P-T values of the
window occurred.

buf_sc - a large buffer that contains the sum of the number of samples. This clock is
initialized when the abbreviated buffers are downloaded into the large buffers. It is
important to note that values of this buffer are not checked for numerical overflow.
For very high sample rates (ie thousands of samples per second), check for impending
overflow, with appropriate subsequent action, should be implemented.

buf-tim - a large buffer that contains time information of the P-T values of the window.
This information is represented by the number of sample counts from a reference time.
The reference time is obtained from the header of a record. Check for numerical
overflow is not made. In subsequent versions of the detector, one might be able to
combine buf_tim and buf_sc.

A. 6. EVENT. C - Event determination routine 65

E J3 - size of the large buffers. The large buffers should be large enough to inhibit wrap­
around in the window. For example, if there is a maximum of 10 P-T values per
second (Nyquist frequency = 10), and the window is 4 sec long, EJB should be > 44
(4 P-T values that are loaded from the abbreviated buffers plus the maximum of 40
of the window).

epf - event possible flag. It is set=TRUE when a P-T value in the window is > th2.
Set=FALSE when an event is detected or when no values in the window are > th2.

evon - event on flag. It is set=TRUE in Ibingo. Set=FALSE in Count jdn in the interval
of the coda of the event.

fst Jig - an index to the first flagged P-T value of the window. It is an index to the first
P-T value > th2.

index2 - an index that is within the range of the large buffers: If index2 exceeds the size
of the buffer, index2 is set=0.

indx - saves the value of fst Jig when fst-flg may be changed.

iset - a flag that is set=TRUE when a P-T value of the window > thl.

icheck - a flag that is set=FALSE in Ibingo, set=TRUE in Event when enough P-T values
have been processed (8) to estimate the period of the signal.

iwin - the length of the window (samples).

jj - an index for the abbreviated buffers.

last-amp - signed amplitude of the previous (as opposed to current) P-T.

last-rec - arbitrary record number in which the previous P-T occurred.

last-sc - the number of samples (time axis) between the two previous P-T values.

last_tim - the sample number of the last P-T value (the sample number is initialized at
the beginning of each record). This sample number is used to calculate the time of
the P-T value by using the information in the record header.

Ist-flg - an index to the last P-T value that is > th2.

Ist_flg2 - circular buffers are employed, Ist_flg2 is a bound that is corrected for buffer
length.

lst.pt - an index to the last P-T value that was processed, it is incremented in routine
Wbuff.

Ist_pt2 - circular buffers are employed, Ist_pt2 is a bound that is corrected for buffer length.

m - an index for the abbreviated buffers.

66 Appendix A. Event Detector C Code

nJiits - the number of P-T values in the window that is required for a detection if they
are all > th2 but < thl.

rec-ofjmax - arbitrary record number in which the current P-T occurred,

s-amp - signed amplitude of the current P-T. Counts.

sjBumjBc - the number of samples (time axis) between the current P-T value and the
previous one.

sumdsc - the sum of the s_sumjsc that is initialized when the abbreviated buffers are
downloaded. Not checked for numerical overflow.

sumflg - the number of flagged P-T values (ie, those with an associated th.wt > 0) in the
window.

tfst Jig - temporary fst Jig.

thl - the largest threshold for detection of an event. Typically thl = 2.0 x twosd, where
twosd is an approximation of twice the sample standard deviation of the P-T values.
Counts.

th2 - the smallest threshold for detection of an event. Typically th2 = 1.5 x twosd, where
twosd is an approximation of twice the sample standard deviation of the P-T values.
Counts.

th_wt - threshold weight. Equals 2 if current P-T value is > thl. Equals 1 if current P-T
value is > th2, but < thl. Otherwise it is zero.

timjof-max - the sample number of the current P-T value (the sample number is initialized
at the beginning of each record). This sample number is used to calculate the time of
the P-T value by using the information in the record header.

#endif

A.7 PJ3NE.C - P-T value generator

^include <detect.h>
ftdefine NEG 1
#define POS 0

* Function: BOOL P_one(in_data) - Form the P-T series *
* The algorithm for finding the peaks and troughs was *
* adapted from one by L.G. Holcomb. *

* Arguments: LONG in_data, the seismic data sample *

A.7. P.ONE.C - P-T value generator 67

*
>tc

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Returns: TRUE - Peak or trough detected
FALSE - No Peak or trough detected

Fatal Errors: This routine does not have fatal exits

This routine determines the signed amplitudes (and associated
times) of the filtered data. (By amplitudes, we mean the
difference in value of the consecutive local maximums and
minimums, hereafter referred to as the peak-to-trough ampli­
tudes, or P-T value.) Each peak or trough is determined by
comparing slopes between the input samples. When a peak
or trough is found, the record and time (ie, sample number)
where it occurred is documented. In P_one, "y" denotes an
amplitude coordinate and "x" denotes a time coordinate.

In addition to calculating the peak-to-trough amplitudes,
P_one also compares each of these amplitudes to a threshold
thx. The maximum of 20 successive values less than thx is
fed to P_two. P_two uses these maximums to calculate the
statistical dispersion of the background noise. The thresh-
hold is used to inhibit anomalously large values (such as
spikes) from contributing to the estimate of the normal
background .

--*

*
--*
*

--*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.-A/

BOOL P_one(in_data)
register LONG in.data;
{

register BOOL cur_slope;
LONG del.amp, ab.amp;

del_amp - in.data - con_ptr->last_y;

con_ptr->sum_s_c++;

if (del_amp == 0) cur_slope = con_ptr->prev_slope;
/* Ensure that no zero values pass through */

else
if (del.amp < 0)

cur.slope = NEG;
else

cur_slope = POS;

/* Was the last sample a peak or trough? */

68 Appendix A. Event Detector C Code

/* Note 1 */
if (con_ptr->prev_ slope != cur _ slope) {

/* a maximum or minimum has been found */
con_ptr->s_amp = con_ptr->max_y - con_ptr->last_y;
con_ptr->tim_of_max - con_ptr->last_x;
con_ptr->rec_of_max * con_ptr->rec_last_x;

con.pt r->prev_ slope * cur.slope;
/* slope between samples */

con_ptr->max_y - con_ptr->last_y;
/* coordinate of max or min */

con_ptr->last_y = in_data;
/* current amplitude coordinate */

con_ptr->last_x - sam_no;
/* current time coordinate */

con_ptr->rec_last_x = con_ptr->cur_rec;

con_ptr->s_sum_sc = con_ptr->sum_s_c;/* save sum */
con_ptr->sum_s_c = 0;

/* initialize sum of sample counts */

/* Get max of 20 P-T values less than thx, */

if ((ab_amp - absval (con_ptr->s_amp)) > con_ptr->thx)
return (TRUE) ;

/* P-T > thx (chg frm >= 31-Aug-90/SH) */

if (ab_amp > con_ptr->maxamp)
con_ptr->maxamp - ab_amp;

if (-n-con_ptr-> index == 20) { /* increment index */

/* and send this maximum to P_two. */

if (con_ptr->maxamp>0) P_two(con_ptr->maxamp) ;

/* reset for the next 20 */
con_ptr->maxamp = OL;
con_ptr-> index = 0;

return(TRUE); /* P-T < thx */

}

A . 7. P.ONE.C -P-T value generator 69

con_ptr->last_y = in.data;
/* current amplitude coordinate */

con_ptr->last_x = sam_no; /* current time coordinate */
/* Note 2 */

con_ptr->rec_last_x = con_ptr->cur_rec;

return(FALSE) ; /* peak or trough not found */

ftifdef JNMCOMMENT

NOTES

1. If a change in slope occurs, the last sample was a peak or trough. Calculate the
peak-to-trough amplitude and document the time at which this amplitude occurred.

2. The peak or trough might occur in the last sample of the previous record. Keep track
of in which record the peak or trough occurrs.

EXPLANATION OF VARIABLES

ab_amp - the absolute value of the peak-to-trough difference.

cur .slope - slope (positive or negative) between the last data sample (amplitude coordi­
nate) and the current one.

del-amp - the current amplitude coordinate minus the previous one.

in_data - the current data sample.

index - a counter that is used to control calls to P_two.

last_y - amplitude coordinate immediately proceeding the current one.

maxamp - the absolute maximum of 20 successive P-T values < thx.

max_y - maximum (or minimum) amplitude coordinate of the last one-half cycle. (It is
the amplitude coordinate of the last peak or trough.)

prev -slope - slope (positive or negative) between the two samples (amplitude coordinates)
immediately prior to the current one.

rec Jast-x - record in which the previous time coordinate occurred.

rec_of_max - the record in which the peak or trough occurred.

s_amp - signed amplitude (signed peak-to-trough difference).

70 Appendix A. Event Detector C Code

s-sumjsc - the number of samples between the last two P-T values. (It is the number of
samples between the last peak and trough.)

sam_no - the current sample number. Set in E_detect.

sumj3_c - sum of sample counts in the interval from the last peak or trough to the current
sample.

tim-of_max - time coordinate of the last one-half cycle. (It is the time coordinate of the
last peak or trough, ie of the last P-T value.)

#endif

A.8 PJTWO.C - Average background estimator

tfinclude <detect.h>

Function: VOID

Arguments :

Returns :

Fatal Errors:

P two estimate*

P_two (maxamp) - Estimate average P-T

LONG maxamp - maximum (absolute) of 20
successive P-T values < thx

Nothing (VOID)

This routine does not have fatal exits

3 the statistical dispersion of the backeroun

 *
*

1c

 1c

1C

 1c

1C

 *

d *

1c

*
1c

1C

1C

1C

1c

* noise and calculates the four thresholds that are used in the *
* detector. Remember that P_one finds the maximum of 20 rec- *
* tified P-T values and normally sends this maximum to P_two. *
* P_two averages val.avg (8 or 16) of these maximums. The *
* average thus obtained is twosd. For zero-mean normally *
* distributed P-T values, twosd would be an estimate of twice *
* the sample standard deviation of the P-T values. (See OF 83-785*
* for a comparison between the measured sample standard devia- *
* tion and the estimate of it hereby.) P_two calls xth to cal- *
* culate the thresholds from twosd. *
* #/

VOID P_two(maxamp)
LONG maxamp;

register WORD i,c;
LONG sum,Xth();

A.8. P-TWO.C - Average background estimator 71

/*

if (! con_ptr->evon) { /* twosd not calculated while evon=TRUE */

Load buffer */

con_ptr->tsstak[con..ptr->kk] » maxamp;
if (++con_ptr->kk BS con_ptr->val_avg) con_ptr->kk - 0;

. Average buffer

sum =0; /* prepare to average */

 */

#ifndef RAMPUP

#else

for(i= 0;i < con_ptr->val_avg; i++) sum += con_ptr->tsstak[i] ;
c = con_ptr->val_avg;

for (i=0; i<con«ptr->val_avg; i
if (con«ptr->tsstak[i]>0) {

sum += con«ptr->tsstak[i] ;
C++;

#endif

/*

switch (c) { /* perform average */
case 16:

con_ptr->twosd = sum » 4;
break ;

case 8:
con_ptr->twosd = sum » 3;
break ;

default :
we try to avoid 32-bit division

if (c<=0) con_ptr->twosd=0;
else con_ptr->twosd B sum / c;
break;

*/

/*

/* Special condition if twosd ever
got to be zero, it would stay there */

if (con_ptr->twosd <- 0)
con_ptr->twosd = 1000000L;

 Calculate thresholds- */

72 Appendix A. Event Detector C Code

con_ptr->thl « Xth(con_ptr->xthl)
con_ptr->th2 = Xth(con_ptr->xth2)
con_ptr->th3 » Xth(con_ptr->xth3)
con_ptr->thx ~ Xth(con_ptr->xthx)

}
return;

#ifdef JNMCOMMENT

DEFINITION OF VARIABLES

evon - event on flag. Set = TRUE in Ibingo (event detected) Set = FALSE in rou­
tine Countjdn when itc is decremented to EV.OFF. EV.OFF typically is 2 (evon
set=FALSE when itc - EV-OFF X wait_blk samples have been processed, where itc
typically is 4 and wait_blk typically is 1014).

kk - index for the tsstak.

maxamp - the absolute maximum of 20 successive P-T values that are less than thx.

sum - the sum of the maximum amplitudes that are stored in the buffer tsstak.

tsstak - a buffer that contains the history of the maximum amplitudes that were input by
P_one.

val^avg - the number of maximum values (input from P_one) that is used to estimate each
twosd.

ftendif

A.9 ONSET.C - Onset picker

#inelude <detect.h>

/* *

* Function: VOID Onset(ibak,sper,tm_indx, *
* tc,amp_indx,ptO,ptl,pt2,pt3,pt4) *
* -Calculate onset parameters *
* *

* Arguments: *
* WORD ibak - # of P-T values looked back *
* WORD sper - period of signal (samples) *
* WORD tm.indx - index to reference time of *

A . 9. ONSET. C - Onset picker 73

*
*
*
*
*
*
*
*
*

*

*
*
*
*

first P-T value of signal
WORD tc - time correction
WORD amp_indx- index to first P-T value of

the signal
LONG ptO - value 1 for SNR calc
LONG ptl - value 2 for SNR calc
LONG pt2 - value 3 for SNR calc
LONG pt3 - value 4 for SNR calc
LONG pt4 - value 5 for SNR calc

Returns: Nothing (VOID)

Fatal Errors: This routine does not have fatal exits

Calculates period, amplitude , SNR series (0-F 83-785), and
converts sample number to time. Outputs the estimates.

*
*
*
*
*
*
*
*
*

 *

*
 *

*
 *

*
*

 */

VOID Onset (ibak, sper, tm_indx, tc, amp_indx, ptO,
ptl, pt2, pt3, pt4)

WORD ibak, sper, tm_indx, amp.indx;
LONG ptO, ptl, pt2, pt3, pt4, tc;

i, indx2, j, isnr[5], walkback, idx;
mx_amp, base, pt[5], temp, onsetl;

WORD
LONG
WORD t_samp, d_samp;
TEXT ipol;

struct s_onset onsetdata;

get polarity of first break of the signal */

if (pt2 > 0)
ipol * 'd'; /* pt2 is first P-T of signal */

else
ipol s ' c ' ;

/* load array for SNR calculation */
/* see op Report 83-785 */

pt[0] = ptO; /* 2nd P-T before signal */
pt[l] = ptl; /* P-T immediately before signal */
pt[2] = pt2; /* 1st P-T of signal */
pt[3] * pt3; /* 2nd P-T of signal */
pt[4] « pt4; /* 3rd P-T of signal */

74 Appendix A. Event Detector C Code

the SNR calculation without using long division */

for (j * 0; j < 5; j++) <
base = con_ptr->twosd - (con_ptr->twosd » 1) ;
for (i = 0; i < 10; i++) {

isnr[j] = i;
if (absvaKpt [j]) < base)
break;
base +- con_ptr->twosd;

gQt -the maximum amplitude of the first 4 cycles */

indx2 = amp.indx;
mx_amp = 0;
for (j - 0; j < 8; j++) {

temp = absval(con_ptr->buf_amp[indx2]) ;
if (temp > mx_amp)

mx.amp = temp;
if (indx2++ =« B.M1)

indx2 = 0; /* indx2 incremented */

/* calculate the Period(in seconds) of the first 4 cycles */

Period(sper) ;

/* -Compute which record the data came from so that the time will-*/
/*-be calculated correctly. */

t_samp con_ptr->buf _tim[tm_indx] ;
d_samp con_ptr->cur_rec - con_ptr->buf_rec[tm_indx] ;
if (d_samp < 0)

d.samp += CUR.MAX;

for (walkback = 0; walkback < d_samp; walkback++) {
idx = con_ptr->cur_rec - walkback - 1;
if (idx < 0)

idx += CUR.MAX;

t_samp -= con_ptr->sam_tab[idx] ;

A.9. ONSET, C - Onset picker 75

/* set up the onset time for output

onsetl = Time_f(t_samp, tc);

while (onsetKO) { onset 1+=60;
while (onsetl>59) { onset1-=60;

while (etime.min<0) { etime. min+=60;
while (etime.min>59) { etime.min-=60;
while (etime.hr<0) { etime.hr+=24;
while (etime.hr>23) { etime.hr-=24;

while (etime.day>etime.day_yr) {
etime.day -= etime.day_yr-l;
etime.yr++;

 */

etime.min ;
etime. min++;

etime.hr ;
etime. hr++;
etime. day ;
e time. day ++;

>
>

>
>
>
>

while (etime.day<l) {
etime. yr ;
etime.day += etime.prv_yr; /* Fix 3-Feb-89/SH */

/*

if (con_ptr->ponset) {
printf(" '/,s", con_ptr->ch_name) ;
printf(" y,c y,d ", ipol, ibak);
for (i - 0; i < 5; i++)

printf("'/,d", isnr[i]);
printf(" */,d ", etime.yr);
printf(n y,3d ", etime.day);
printf ("y,02d", etime .hr) ;
printf (": '/,02d:", etime .min);
printf C7,02d.y,031d '/,71d y,21d.y,03d y,71d",
onsetl, t_rval, mx_amp, p.lval, p_rval, con_ptr->twosd);

Was thl exceeded in the detection? A=yes, B=no. */

printf(" */,c ", con_ptr->iset ? 'A' : 'B');
printf("\n");

/* This code is for writing data into headers
of China System records */

onsetdata.new.onset = TRUE;
onsetdata.o_polar = ipol;

/* New onset has occured */

76 Appendix A. Event Detector C Code

onsetdata.o.dalgo » con_ptr->iset ? 'A' : 'B';
for (i = 0; i < 5; i++)

onsetdata.o_snr[i] = isnrCi];
onsetdata.o.year = etime.yr;
onsetdata.o_days = etime.day;
onsetdata.o.hours = etime.hr;
onsetdata.o_mins = etime.min;
onsetdata.o.secs = onsetl;
onsetdata.o_msec8 = t_rval;
onsetdata.o.amps = mx_amp;
onsetdata.o_pl = p_lval;
onsetdata.o.pr = p_rval;
onsetdata.o_large = con_ptr->twosd;

/* Optional processing routine for onsets */
if (con_ptr->onsproc != NULL)

(*(con_ptr->onsproc))(ftonsetdata);
/* send onsproc the address of

the output list */

/*-Duration of recording made a function of the period of the */
/* signal for high frequency events */

#ifdef ITC_PER_CNTRL

if (con_ptr->sam_sec >= VSP_SPS)
if (p_rval >= PERJTRIG) con_ptr->itc » ITC_UP;

#endif

/*-etime will be changed when events are detected - backup */

etime.day_yr = htime.day_yr;
etime.prv_yr = htime.prv_yr;
etime.yr - htime.yr;
etime.day = htime.day;
etime.hr = htime.hr;
etime.min = htime.min;
etime.sec = htime.sec;
etime.msec = htime.msec;

/* The thresholds are raised to permit processing the coda of events,*/
/* also, the indices kk and index are set so that Ptwo is called */
/* expeditiously when processing of the signal coda begins. */

A. 9. ONSET. C - Onset picker 77

/* There is a provision for tuning to process local events. Here */
/* the maximum P-T (first four cycles) of the signal is loaded into */
/* the thresholds and into the tsstak of P_two. */

/* Note 1 */
#ifdef LOCAL.EV

con_ptr->twosd = mx_amp;
for (i - 0; i < con_ptr->val_avg; i++)

con_ptr->tsstak[i] = mx_amp;
telse
#define bump(x) ((x) + ((x)»4))

/*bump value by a factor of 1.0625 (1-1/16) */
for(i - 0; i < 16; i++)

con_ptr->tsstak[i] - bump(con_ptr->tsstak[i]);
con_ptr->twosd = bump(con_ptr->twosd);

#endif

/* Raise the thresholds here by calling xth */
/* after raising twosd (above) */

con_ptr->thl = Xth(con_ptr->xthl);
con_ptr->th2 - Xth(con.ptr->xth2);
con_ptr->th3 « Xth(con.ptr->xth3);
con_ptr->thx - Xth(con.ptr->xthx);

/* To synchronize on-line and off-line detectors */
/* See P_one for definitions */

/* Note 2 */

#ifdef RESYNCRONIZE
con_ptr->maxamp - 0;
con_ptr->s_sum_sc = 0;
con_ptr->sum_s_c = 0;
con_ptr->prev_slope = 0;
con_ptr->max_y = con_ptr->last_y - 0;
con_ptr->tim_of_max - con_ptr->last_x ~ 0;

con_ptr->index =19; /* ensure call to Ptwo expeditiously */

con_ptr->kk - con_ptr->val_avg - 1;
/* ensure new average expeditiously */

#endif

return;

78 Appendix A. Event Detector C Code

#ifdef JNMCOMMENT

NOTES

1. The thresholds should be raised so that the coda of events can be processed. Indeed, if
the thresholds were not raised, and if the noise field changed dramatically (as happens
at some stations), the detector could not track the background and would continuously
produce detections. Provision is made for two different modes of processing the event
coda. If one is primarily interested in local events, one might use the code included
when LOCAL-EV is defined. Here one might input a small number for val_avg (see
P_two) so that the detector could track changes in the coda more efficiently. Alter­
natively, if one is processing data of teleseisms, and one wishes to record much of the
coda, the default option, with large values (8 - 16) for val_avg, should be employed.
In this instance, for large events, one can reasonably expect several retriggers in the
coda, some of which might be caused merely by the elevated level of overall activity,
rather than by distinct phases.

2. In implementing the code to run on a new system, one often wishes to compare the
output on the system being developed with a benchmark that is run on a different
system. The variables are set to facilitate such comparisons.

EXPLANATION OF VARIABLES

amp-indx - an index to the first P-T value of the signal. Set in routine Onsetq.

base - a reference value used to calculate the quality numbers of the onset of the signal.

B_M1 - the maximum index of the circular buffers of size EJ3.

buf_amp - a buffer of size EJB (maximum index B.M1) that contains the signed P-T
values. Loaded in routine Event.

buf-tim - a buffer that contains the number of samples from a reference time for each P-T
value in buLamp. Same size as buLamp.

buf_rec - contains the (arbitrary) record number of each P-T value. Same size as buf_amp.

CUR-MAX - MAX value for record identification. Value allows a relative age of record
to be determined. When the age reaches CUR-MAX, the record number is reset.

cur-rec - the (arbitrary) current record number. Incremented in Ejdetect, saved in Pjone,
loaded into buf_rec in Event.

d-samp - Delta samples - age of data in reference to the current record. Used to compute
times accurately.

A. 9. ONSET. C - Onset picker 79

etime.xxx - the time that was initially read in the headers of the records. These times
may be changed in the routine Ck_t Jcont.

etime.prv-yr - the number of days in the previous year.

htime.xxx - Since the time calculation routines modify etime for the onset time, we must
backup etime and restore it so that the next event in the same record can be correctly
calculated.

ibak - the number of P-T values that Onsetq looked back to find the first P-T value of the
signal. (It is the number of P-T values before fst-flg.)

indx2 - an index that references values in the circular buffers that were set up in routine
Event.

ipol - the polarity of the onset of the signal (c or d).

iset - TRUE if P-T > thl, FALSE otherwise. See Event.c.

isnr[] - the quality numbers (signal-to-noise ratios) that that are integer values each of
which is in the interval 0 < isnr < 9. Dimensionless.

xnxjaxnp - maximum amplitude of the first four cycles (first 8 P-T values) of the signal.
Counts.

new-onset - a flag set=TRUE if a signal was declared in the current record. Set=FALSE
otherwise.

onset 1 - the integer number of seconds from the reference header time. The remainder of
the seconds is in t_rval.

p-lval - the integer part of the signal period. Set in routine Period. Seconds.

p_rval - the remainder of the signal period. Set in routine Period. Milliseconds.

pt[] - this array contains the values of the first P-T amplitude of the signal (pt[2j), plus
the 2 P-T amplitudes on either side of it.

samjtab - an array containing the number of samples per record for this and the previous
CUR-MAX-1 record.

sper - the period of the signal in samples. Set in routine Onsetq.

tc - the time correction that is applied to the reference time. Set in routine Onsetq.
Milliseconds.

tm Jndx - index to the reference time of the signal. Set in routine Onsetq.

t jrval - the fraction part of onset. This value is set in routine TimeJf. Milliseconds.

t-saxnp - the reference time (in samples) for the onset of the signal. By an intermediate
process, the value is initialized at the beginning of each record in E.detect.

80 Appendix A. Event Detector C Code

twosd - an estimate of twice the sample standard deviation of the P-T values. Set in
routine P_two. Counts.

#endif

A.10 ONSETQ.C - Onset parameter determination

#inelude <detect.h>
#define RO 2 /* round off used for period estimated from 8 P-T values */

* Function: VOID OnsetqQ - Estimate onset *
* *

* Arguments: None *
* *

* Returns: Nothing (VOID) *
* *

* Fatal Errors: This routine does not have fatal exits *
* *

* As one might remember,the buffers for each candidate signal *
* have at least 4 P-T values before the first one that was *
* >= th2. Onsetq compares the last two of these four with yet *
* another threshold, th3 (th3 < th2). In addition, a test is *
* performed to see whether or not the P-T value looks like *
* it is part of the signal. Here "looks like" is determined *
* by the period of the signal. These tests are to search *
* for a signal onset that is smaller than th2. When the first *
* P-T value of the signal is found, it is flagged. In P_one, *
* recall the reference time of each P-T value is given when the *
* P-T value is declared; hence the time is for the "trailing *
* edge" of the P-T value. Therefore the signal onset occurs *
* before the time of the first P-T value of the signal. *
* The algorithm considers two possibilities for the onset: *
* It is either the time of the P-T value that immediately pre- *
* ceeds the signal, or if this P-T value occurs too far ahead *
* of the first P-T value of the signal, a correction is applied *
* to the time of this P-T value. Here "too far" is deter- *
* mined by the measured period of the signal. The correction *
* (0 or 500 ms for the SP and BB) and an index to the reference *
* p-T are sent to routine Onset for conversion to Universal Time.*

In addition to this index and other useful information, Onsetq
sends Onset the amplitudes of the two P-T values that occur
on either side of the first P-T value of the signal. These

__________________A. 10. ONSETQ.C - Onset parameter determination 81

* five P-T values (the two prior to the signal and the first *
* three of the signal) are used by Onset to estimate the *
* quality of the time determination of the beginning of the *
* signal (see 0-F Report 83-785). *

VOID OnsetqO {

WORD flg.pl, flg_p2, flg_ml, flg_m2, flg_m3, flg_m4, Ib,
il, 12, 13, 14, IB, 16, perjbnd, per.sc, kase, per.sav;

LONG tc;

kase = 0;

/* Setting up indices that are corrected for a circular buffer */

flg_m4 = con_ptr->fst_flg - 4; /* 4 P-T values before the first
flagged one */

if (flg_m4 < 0)
flg_m4 = con_ptr->fst_flg + B_M4; /* etc */

flg_m3 = con_ptr->fst_flg - 3;
if (flg_m3 < 0)

flg_m3 - con_ptr->fst_flg + B_M3;

flgjn2 - con_ptr->fst_flg - 2;
if (flg_m2 < 0)

flg_m2 = con_ptr->fst_flg + B_M2;

flg_ml » con_ptr->fst_flg - 1;
if (flg.ml < 0)

flg_ml * con_ptr->fst_flg + B_M1;

flg_pl = con_ptr->fst_flg + 1; /* 1 P-T after the first flagged one
*/

if (flg.pl >= E.B)
flg.pl = con.ptr->fst.flg - B_M1;

flg.p2 = con.ptr->fst_flg +2; /* etc */
if (flg.p2 >= E_B)

flg.p2 con_ptr->fst_flg - B_M2;

per.bnd « con_ptr->fst_flg +8; /* index of the last P-T used to
estimate the period */

if (per.bnd > B.M1)

82 Appendix A. Event Detector C Code

per.bnd -= E_B;

per_sc = con_ptr->buf_sc[per_bnd] -
con_ptr->buf_sc[con_ptr->fst_flg] + RO;

per_sc »B 2;
per.sav » per_sc; /* per.sc may be changed below, in the

process that estimates the onset of
the signal */

if (per_sc < con_ptr->sam_sec)
per.sc = con_ptr->sam_sec; /* 1 sec */

con_ptr->haf_per = per.sc » 1;

Code for looking back 2 P-T values */
/* Note 1 */

if ((con_ptr->buf_sc[flg_ml] - con_ptr->buf_sc[flg_m2]) <« per_sc)
if (absval (con_ptr->buf_amp[flg_m2]) >= con_ptr->th3)

kase = C(con_ptr->buf_sc[flg_m2] -
con_ptr->buf _sc [f Ig_m3])

> con_ptr->haf_per) ? 1 : 2;

Code for looking back 1 P-T value */

/* Note 2 */

if ((kase = 0) ftft (con_ptr->buf_sc[con_ptr->fst_flg] -
con_ptr->buf_sc[flg_ml]) <= per_sc)

if (absval (con_ptr->buf_amp[flg_ml]) >= con_ptr->th3)
kase = ((con_ptr->buf_sc[flg_ml] -

con_ptr->buf _sc [f Ig_m2])
> con_ptr->haf_per) ? 3 : 4;

Code for looking back 0 P-T values */

if ((kase == 0) ftft (con_ptr->buf_sc[con_ptr->fst_flg] -
con_ptr->buf_sc[flg_ml]) <= con_ptr->haf_per)

kase = 5;

switch (kase) {

case 1:
Ib = 2;
tc = con_ptr->def_tc;

il » flg_m2; /* index to reference time */

A .10. ON SET Q. C - Onset parameter determination 83

/*

12 * flg_m4;
13 - flg_m3;
14 = flg_m2;
15 = flg_ml;
16 * con_ptr->fst_flg;

break;
case 2:

Ib * 2;
tc * 0;

11 - flg_m3;
12 * flg_m4;
13 = flg_m3;
14 - flg_m2;
15 = flg_ml;
16 - con_ptr->fst_flg;

break;
case 3:

Ib « 1;
tc = con_ptr->def_tc;

11 = flg_ml;
12 = flg_m3;
13 = flg_m2;
14 = flg_ml;
15 * con_ptr->fst_flg;
16 = flg.pl;

break;
case 4:

Ib = 1;
tc = 0;

11 = flg_m2;
12 - flg_m3;
13 = flg_m2;
14 = flg_ml;
15 » con_ptr->fst_flg;
16 = flg.pl; /*

break;
case 5:

Ib = 0;

/* Index to amplitude of P-T */

/* */

/HI Index to reference time */
/* Index to amplitude of P-T */

*/

/HI index to reference time */
/* index to amplitude of P-T */

/* 11 */

/HI index to reference time */
/* index to amplitude of P-T */

*/

84 Appendix A. Event Detector C Code

tc » 0;

11 = flg_ml; /* index to reference time */
12 flg_m2; /* index to amplitude of P-T */
13 = flg_ml;
14 = con_ptr->fst_flg;
15 = flg.pl;
16 = flg_p2; /* " " " " " */

break;
default:

Ib = 0;
tc = con_ptr->def_tc;

11 = con_ptr->fst_flg; /* index to reference time */
12 = flg_m2; /* index to amplitude of P-T */
13 = flg_ml;
14 » con_ptr->fst_flg;
15 = flg.pl;
16 = flg_p2; /* " " " " " */

break;

/* printf("Case='/,d, tc^'/.d, per_scss'/,d,haf_per= l/ld\n",kase,tc,per_sc,
con_ptr->haf_per); */

/* printf ("ml=l/,d,m2« l/,d,m3='/,d,m4=l/,d\n",
con_ptr->buf_sc[flg_ml],
con_ptr->buf_sc[flg_m2],
con_ptr->buf_sc[flg_m3],
con_ptr->buf_sc[fIg_m4]); */

Onset(Ib, per.sav, il, tc, i4, con_ptr->buf_amp[i2],
con_ptr->buf_amp[i3], con_ptr->buf_amp[i4],
con_ptr->buf _amp Ci5] , con_ptr->buf _amp Ci""1 "

return;
}

#ifdef JNMCOMMENT

NOTES

_________________A.10. ONSETQ.C - Onset parameter determination 85

1. Algorithm for looking back two P-T values. First we check to see that the difference
between the two P-T values (fstJlg-1 and fst-flg-2) is not too large (1 sec or the
period, whichever is greater). If the P-T values pass this test, we then check whether
or not fst_flg-2 > th3. If either of these two tests fail, we proceed to the algorithm
for looking back one P-T value. However, if both tests succeed, we then test to see
what time we will use for the onset; if the preceeding (fstJlg-3) P-T value occurs too
far ahead of fst-flg-2, we use the time of fst-flg-2 - 0.5 sec (an input value), otherwise
we use the time of fst-flg-3. Here "too far" is perjsc/2. (This contrasts with the
FORTRAN progam which used a constant of 10 (samjsec/2) instead of perjsc/2: For
general purpose application, especially for the Long Period System, and perhaps for
the Broad Band as well, the 0.5 sec (10 samples) appears too small.)

2. Algorithm for looking back one P-T value. The logic parallels that explained in [1]
above. Note that kase ^ 0 if both time and amplitude criteria were met in [1] above.

EXPLANATION OF VARIABLES

B-M1

B-M2

B-M3

B_M4 - the size (E_B) of the large P-T buffers minus l,...,minus 4

buf_amp - a buffer that contains the signed P-T amplitudes.

buf-rec - a buffer that contains the record numbers in which each of the P-T values of
buLamp occurred.

bufjsc - a buffer that indicates time by using the sum of the samples. This clock is
initialized when the abbreviated buffers are downloaded in Event (when an event is
judged possibly to be in progress).

def-tc - an input value that is loaded into tc (for SP and BB of the China System it is
500 (ms)).

fst-fig - an index to the first P-T value of the current signal that is > th2.

fig-mi - fst Jig minus 1

flg_m2 - fst Jig minus 2

flg_m3 - fst Jig minus 3

flg_m4 - fst Jig minus 4

flg_pl - fst Jig plus 1

flg_p2 - fst Jig plus 2

86 Appendix A. Event Detector C Code

11

12

13

14

15

16 - indices that are used to reference values in the large buffers of Event (buf _amp, buf_rec,
buf-tim). The index il references time, the others, amplitude.

kase - an index that is used in the lookback proceedure.

Ib - the number of P-T values that Onsetq looked back to determine the first P-T of the
signal (0, 1, or 2).

per Jbnd - a bound that is used to estimate the period of the first four cycles of the signal.

per_sav - saved value of per_sc, used for outputting the period of the signal. Samples.

per_sc - the period of the signal (samples).

RO - round off for estimating the period of the signal. Samples.

sam-sec - digitizing rate of the current seismic data record. Samples per second.

haf-per - samples per one-half period.

tc - a time correction that is applied (see discussion in the header of this routine). Mil­
liseconds.

ttendif

A.ll IBINGO.C - Event flag and timer setup

include <detect.h>

/* *

* Function: VOID IbingoO - Sets parameters *
* *

* Arguments: No arguments *

* Returns: Nothing (VOID) *
* *

* Fatal Errors: This routine does not have fatal exits *
* ___ __y* «« « « « « « «« M M M M M M MM MM M M ^

A. 11. IBINGO. C - Event flag and timer setup 87

* Ibingo is called when an event has been detected. (Here it is *
* useful to note that although Ibingo is called when an event *
* is detected, an event is not declared, ie routine Event re- *
* turns true, until enough P-T values have been processed to *
* estimate the period of the signal.) The purpose of Ibingo *
* is to set parameters for processing the interval of the event. *
* The interval of the event is interval in which E_detect re- *
* turns TRUE. Typically the interval of the event is *
* itc x wait ..blk samples, where usually itc is 4 and wait.blk *
* is 1014 (samples) . *

VOID Ibingo ()
 C

con_ptr->epf « FALSE;
con_ptr->evon = TRUE;
con_ptr->icheck FALSE;
con_ptr->itc » NOR_OUT;
con_ptr->nn =0; /* Initialize for Count_dn */

return ;
}
#ifdef JNMCOMMENT

EXPLANATION OF VARIABLES

epf - event possible flag, set to TRUE by Event when a signal is deemed possibly to be in
progress (but not yet detected), set to FALSE upon detection.

evon - event on flag, set to TRUE when an event is detected, set to FALSE when NOR-OUT-
EV-OFF x wait -blk samples have been processed by Count_dn. Typically EV-OFF
= 2, wait J)lock = 1014.

icheck - used in routine Event to inhibit declaring an event until enough P-T values have
been processed to estimate the period of the signal. Set to TRUE in Event when these
values have been processed.

itc - counter for the interval of the event. Decremented to zero when the last sample of
the interval of the event has been processed. The interval of the event typically is itc
X wait -blk samples. (The interval will be longer if a retrigger occurs.) Typically, itc
= 4, wait J>lk = 1014. See Count_dn.

nn - an index used in routine Count dn.

NOR_OUT - typically 4. It is a factor of wait -blk through itc.

88 Appendix A. Event Detector C Code

thl - threshold for detection of event. See Xth, Event. (Counts.)

th2 - threshold for detection of event. See Xth, Event. (Counts.)

th3 - threshold for estimating onset of event. See Xth, Onsetq. (Counts.)

thx - upper bound for estimate of twosd. See P_one, Xth. (Counts.)

#endif

A.12 WBUFF.C - Event storage buffer setup

#include <detect.h>

/* *
* Function: VOID Wbuff() - Write buffers *
* *
* Arguments: No arguments *
* *
* Returns: Nothing (VOID) *
* *
* Fatal Errors: This routine does not have fatal exits *
* *
* Wbuff updates buffers when an event might be in progress, but *
* not yet detected, ie when the event possible flag (epf) is *
* set = TRUE plus during the interval that is required for *
* enough to data to estimate the period of the event. *
.......__........_......_.................................-/

VOID Wbuff()

if(con_ptr->lst_pt++ == B_M1) con_ptr->lst..pt - 0;
/* increment lst_pt */

con_ptr->buf_flg[con..ptr->lst..pt] - th_wt;
con_ptr->buf_sc[con_ptr->lst_pt] ~ con_ptr->sumdsc;
con_ptr->buf_amp[con_ptr->lst_pt] = con_ptr->s_amp;
con_ptr->buf_tim[con_ptr->lst_pt] = con_ptr->tim_of_max;
con_ptr->buf_rec[con_ptr->lst_pt] ~ con_ptr->rec_of_max;

return;
>

#ifdef JNMCOMMENT

A.13. XTH.C - Threshold calculator 89

EXPLANATION OF VARIABLES

buf_amp - the circular buffer of size E_B that contains the signed P-T values. See Event.

buf Jig - the circular buffer of size E_B that contains the weights (0,1,or 2) for each P-T
value of buf-amp. See Event.

buf_rec - the circular buffer of size E_B that contains the (arbitrary) record number for
each P-T value of buf-amp. See E_detect, P_one, Event.

bufLsc - the circular buffer of size E_B that contains the sum of the number of samples
(time axis) from ^utilization to each P-T of buf_amp. See Event.

buf-tim - the circular buffer of size E_B that contains a sample number for each P-T value
of buf_amp. The sample number is initialized at the beginning of each record and is
incremented for each seismic data sample. See E-detect, P_one, Event.

lst.pt - the index (within the circular buffers) of the last P-T value. The circular buffers
are of size EJB, maximum index of B_M1.

rec_of_max - the (arbitrary) record number for each tim_of_max. See P_one, Event.

s_amp - the signed P-T amplitude. See P_one.

sumdsc - sum of the sample counts that was initialized when the epf flag was set = TRUE,
ie, when the abbreviated buffers were downloaded in Event. See Event.

th-wt - a weight that is assigned by Event to each P-T value of a possible signal. Its values
are 0, 1, or 2.

tinuof-max - the sample number of each P-T value of buf_amp. The sample number is
initialized at the beginning of each record and is incremented for each seismic data
sample thereafter. tim_of_max is used to time each P-T value. See Ejdetect, P_one,
Event.

#endif

A.13 XTH.C - Threshold calculator

include <detect.h>

* Function: LONG Xth(xthi) - Calculate threshold *
* adapted from a routine by R.R. Reynolds *

* Arguments: UWORD xthi - factor *

90 Appendix A. Event Detector C Code

* Returns: Return the threshold value *

* Fatal Errors: This routine does not have fatal exits *
* *

* The routine Xth forms the thresholds from twosd and from the *
* encoded factors xthi. Shifts and encoded factors are em- *
* ployed to circumvent the need for 32 bit multiplication. *

* AS coded here, the maximum permitted value of xthi is 0377 *

LONG Xth(xthi)
register UWORD xthi;

LONG th = 0;
register UWORD x_left;

x_left = xthi »3; /* remove first three bits */

/* Calculate high order part of threshold : */

if(x_left) {
if(x_left ft 020) th = con_ptr->twosd«4;
if(x_left ft 010) th += con_ptr->twosd«3;
if(x_left ft 004) th +» con_ptr->twosd«2;
if(x_left ft 002) th += con_ptr->twosd«l;
if(x_left ft 001) th +» con_ptr->twosd;

}

/* Calculate low order part of threshold */

if(xthi ft 07) { /* use the first 3 bits */
if(xthi ft 01) th += (con_ptr->twosd »3);
if (xthi ft 02) th += (con_ptr->twosd »2) ;
if (xthi ft 04) th += (con_ptr->twosd

}
return (th);

#ifdef JNMCOMMENT

EXPLANATION OF VARIABLES

A. 14. TIMEJ'.C - Event pick time determination 91

twosd - an estimate of twice the sample standard deviation of the P-T values (counts).
See P^one, P_two.

x Jeft - an unsigned 16 bit word that contains xthi, with the first 3 bits of xthi removed.
After shifting to remove these bits, the remaining that are set in xJeft are used to
control the amount twosd is multiplied (shifted) to obtain the high order part of the
threshold, th.

xthi - the input encoded factor of twosd. Octal values. Octal values were selected for
continuity with the SRO on-line detector.

#endif

A.14 TIME-F.C - Event pick time determination

#include <detect.h>

/* *

* Function: WORD Time_f(t_kont,tc) - "floating point" *
* for output *
* *
* Arguments: *
* WORD t_kont - onset sample number *
* WORD tc - time correction *
* *

* Returns: LONG - onset time *
* *

* Fatal Errors: This routine does not have fatal exits *
* *
* This routine calculates the onset time of the detected signal *
* from t_kont and tc. One purpose of this routine is to cir- *
* cumvent floating point operations. *
* */

LONG Time_f(t_kont,tc)
WORD t_kont;
LONG tc;
{

LONG reftr,t_lval;

/* More than one minute per record? */

/* If so, adjust values read in headers. */

92 Appendix A. Event Detector C Code

t.kont - Ck_t_kont(t_kont);

if (con_ptr->sam_sec>0) £

t_lval - t_kont/con_ptr->sam_sec; /* Integer Seconds */
reftr * t_kont - t_lval * con_ptr->sam_sec; /* Rem in samples

*/
t_rval * reftr * con_ptr->ms_sam + etime.msec - tc; /* Rem ms

*/

} else £

t.lval = t.kont * (con_ptr->ms..sam / 1000);
reftr = t_kont - ((t_lval*1000) / con_ptr->ms_sam);
t_rval - etime.msec - tc;

/* printf ("time.f t_kont=y,d, t_lval=y,d, t_rval='/,d, reftr=y,d\n"
t_kont,t_lval,t_rval,reftr); */

}

IK Obtain remainder < 1000 ms */

while(t_rval >= 1000) {

t.rval -* 1000; /* milliseconds remainder */

/* The time correction could have caused remainder < 0 */

while(t.rval <= -1000) {
t_lval~;
t_rval += 1000; /* milliseconds remainder */

if(t_rval < 0) <
t_lval~;
t_rval +* 1000; /* milliseconds remainder */

Integer seconds relative to header time */

t.lval +« etime.sec;

return(t_lval) ;

A. 15. CK.TJKONT.C - Pick-time adjustments 93

#ifdef JNMCOMMENT

EXPLANATION OF VARIABLES

etime.sec - the reference time (seconds) of a record header.

ms-sam - sample rate expressed as milliseconds per sample.

samjsec - digitizing rate of the current seismic data record. Samples per second.

reftr - remainder of integer division expressed in samples.

tc - the time correction (milliseconds) that is applied to the reference onset. For BB and
SP data of the China System tc = 500 (ms) or 0.

t-kont - the number of samples from a reference time of a record header to the reference
onset of a signal.

t Jval - the integer part of the onset time (seconds).

t_rval - the remainder of the onset time expressed in milliseconds.

#endif

A.15 CK_T-KONT.C - Pick-time adjustments

#include <detect.h>

/# *
* Function: WORD Ck_t_kont(t_kont) reduces t_kont *

* Arguments: WORD t.kont - number of counts from beginning *
* or end of record to reference time of event *

* Returns: t_kont *
* *

* Fatal Errors: This routine does not have fatal exits *

* Ck.t.kont is implemented to process records that are one minute *
* or longer in length. For such, records, it reduces t.kont to *
* less than the number of counts per minute, and it adjusts the *
* time field that was read in the record header accordingly. *

94 Appendix A. Event Detector C Code

WORD Ck_t_kont(t_kont)
WORD t_kont;
 C

LONG min_cor;

if (con_ptr->sam_sec>0) { /* sam_sec is a WORD */

min_cor = t_kont / (con_ptr->sam..sec * 60) ;

it (min_cor ==0)
return (t_kont) ;

t_kont -= 60L * con_ptr->sam_sec * min_cor;

} else {

/* printiO'org t_kont='/,d ",t_kont); */

min_cor = (((LONG) t_kont) * (con_ptr->ms_sam / 1000L));
t_kont = (min_cor '/, 60L) / (con_ptr->ms_sam / 1000L) ;
min_cor = min.cor / 60L; /* Calculate minutes */

/* print! ("fix t.kont^y.d min_cor=y,d\n" J t_kont > min..cor); */

if (min_cor ==0)
return (t.kont) ;

>

/* II the correction != 0, header time must be adjusted */

etime. min += min_cor;

while (etime. min<0) { etime. min+^eO; etime.hr ; }
while (etime. min>59) { etime. min-=60; etime. hr++; }
while (etime. hr<0) { etime. hr+=24; etime. day ; >
while (etime. hr>23) { etime. hr-=24; etime. day++; >

while (etime. day>etime.day_yr) {
etime. day -= etime. day_yr-l;
etime. yr++;

while (etime. day<l) {
etime. yr ;

A. 16. PERIOD.C - Event period determination 95

etime.day +* etime.prv_yr; /* Fix 3-Feb-89/SH */
}

return(t_kont);
}

#ifdef JNMCOMMENT

EXPLANATION OF VARIABLES

etime.day - the time (day) that was read from the header of the seismic data record.

etixne.hr - the time (hour) that was read from the header of the seismic data record.

etime.min - the time (min) that was read from the header of the seismic data record.

etime.prv_yr - the number of days in the previous year.

etime.yr - the time (year) that was read from the header of the seismic data record.

ms-sam - Milliseconds per sample - used for sample rates less than one

minjcor - the correction (minute) that is applied to the time in the header of the seismic
data record.

prev_yr - the number of days in the previous year.

sam_sec - digitizing rate of the current seismic data record. Samples per second.

t Jkont - the number of samples from a reference minute (of the record header) to the
reference point of the signal. See Onset (t_samp).

#endif

A.16 PERIOD.C - Event period determination

#include <detect.h>

/)fc _ _ M MM MMMMMM MMMMM M M M MMMMMMMMMMMMlfe V " " w w ww BBW www ^

* Function: VOID Period(p_kont) - Find "floating point" *
* for output *
* *

* Arguments: *
* WORD p.kont - samples in the period *
* *

* Returns: Nothing (VOID) *

96 Appendix A. Event Detector C Code

* Fatal Errors: This routine does not have fatal exits *

* The routine Period calculates the period of the detected signal *
* from the value P.kont. The purpose of this routine is to *
* circumvent floating point operations. *

VOID Period(p_kont)
WORD p.kont;
<

if (con_ptr->sam_sec>0) {
p_lval = p_kont/con_ptr->sam_sec;
p_rval (p_kont '/, con_ptr->sam_sec) * con_ptr->ms_sam;

> else {
p_lval = p_kont * (con_ptr->ms_sam / 1000);
p_rval s 0;
/* printf ("p_kont=l/,d,ms_sam-l/,d,p_lval=l/,d\n",

p_kont l con_ptr->ms_sam l p_lval); */

return;
>

#ifdef JNMCOMMENT

EXPLANATION OF VARIABLES

ms-sam - milliseconds between successive samples of the digital data.

pJcont - the average number of samples per cycle in the first four cycles of the declared
signal. See Onsetq.

p Jval - the integer part of the period. Seconds.

p_rval - the remainder (decimal fraction) of the period expressed in milliseconds.

sam-sec - samples per second of the digital data. See E.detect.

ftendif

A.17 COUNT_DN.C - Event on/off countdown

#include <detect.h>

A. 17. COUNTJ)N.C - Event on/off countdown 97

*
*

*

*

Function: VOID

Arguments :

Returns :

Count _dn() - Count Down Interval of Event

No arguments

Nothing (VOID)

*
 *

*
 *

*

* Fatal Errors: This routine does not have fatal exits *
* *

* As implemented here, to inhibit multiple printouts immediately *
* after a detection, the detector is disabled for (NOR_OUT - *
* EV_OFF) x wait_blk samples and then reenabled. The interval *
* of the event is NOR_OUT x wait_blk samples. *
* */

VOID Count.dnO

if (con_ptr->itc > 0) { /* itc was set to NOR.OUT in Ibingo */
if (++con_ptr->nn >= con_ptr->wait_blk) { /* increment nn */

con_ptr->nn = 0;
con_ptr->itc ; /* decrement wait-block counter */

/* enable detecting events */
if (con_ptr->itc <= EV_OFF) con_ptr->evon = FALSE;

return;

#ifdef JNMCOMMENT

EXPLANATION OF VARIABLES

EV_OFF - controls the interval in which events are detected in the P coda. Typical value
= 2. To enable detections throughout the P coda, set EV.OFF = NOR.OUT. To
completely disable detections as well as recomputation of thresholds in the P coda,
set EV.OFF = 0. Note: 0 < EV.OFF < NOR.OUT.

evon - the event on flag. While evon = TRUE, events are not detected and P -two is not
called (thresholds are not computed). We want to inhibit detections in the Pjcoda to
suppress spurious printouts by Onset.

98 Appendix A. Event Detector C Code

itc - counter for the interval of the event. Set = NOR-OUT in Ibingo. When itc = 0, the
interval of the event is terminated.

nn - counter for itc.

wait-blk - wait block. The variable itc is a factor of wait_blk. The interval of the event
is NOR-OUT x wait_blk. As stated previously, because we envision that data will
be written to tape during the interval of the event, wait_blk typically is chosen as a
function of the input record length.

#endif

A.18 CONTJSETUP.C - Prepare event structures

#include <detect.h>

Function: VOID Cont_setup(conptr) - Initialize continuity

Arguments: struct con.sto *contin - pointer to the
continuity info (data from the previous run)

Returns: Nothing (VOID)

Fatal Errors: This routine does not have fatal exits

This routine initializes parameters on the first pass.
In particular, the routine sets itc to a value greater than
zero so that E.detect returns true during the initilization
process. If one expects to change the sample rate during the
processing, Main should call this routine to reinitialize the
parameters.

**
*
**
*
*
**
*
**
*
**
*
*
*
*
*

**/

VOID Cont .setup (contin)
register struct con_sto *contin;

WORD i;
contin->last_x = 0;
contin->rec_last_x - 0;
contin->sum_s_c - 0;
contin->s_sum_sc s 0;
contin->evon = FALSE;

/* initialize for P_one */
/* initialize for P_one */
/* initialize for P_one */
/* initialize for P_one */
/* initialize for Event */

A. 18. CONT.SETUP.C - Prepare event structures 99

contin->epf = FALSE; /* initialize for Event */
contin->fst_flg =0; /* initialize for Event */
cont in- > index =0; /* initialize for P_one */
contin->kk =0; /* initialize for P_two */
contin->jj =0; /* initialize for Event */

contin->prev_slope » 2; /* initialize for P_one */
contin->s_amp = 600000L; /* initialize for P_one */
contin->last_y =01; /* initialize for P_one */
contin->maxamp = OL; /* initialize for P_one */
contin->max_y = OL; /* initialize for P_one */

/* Set the thresholds high enough to suppress retriggers */
/* in the initialization process */

contin->thl 500000L;
contin->th2 500000L;
contin->th3 = 500000L;

I* Ensure that the thresholds will remain high */
/* during the initialization process. See P_two, Xth. */

contin->twosd = 300000L;
contin->thx = contin->twosd «1;

#ifndef RAMPUP
for(i = 0;i < 16;i++) contin->tsstak[i] = 1000000L;

#else
for(i = 0;i < 16;i++) contin->tsstak[i] = 0;

#endif

Initialize the buffers for Event */

for(i = 0;i < 4;
contin->abuf_sc[i] = contin->abuf_tim[i] = 0;
contin->abuf_amp[i] = OL;

for(i = 0;i < EJ3;
contin->buf_flg[i] = contin->buf_sc [i] - 0;
contin->buf_tim[i] * 0;
contin->buf_amp[i] = OL;

}

contin->itc = NOR_OUT;

 Defaults for onset processing */

100 Appendix A. Event Detector C Code

#ildei NOPONSET
contin->ponset=FALSE; /* No output on standard out */

#else
contin->ponset=TRUE; /* Output on standard out */

#endif

contin->onsproc=NULL; /* No auxillarly output */

return;

Appendix B

Data Management C Code

Here is the C code for the optional subsidiary routines which can assist in assembling the
desired customized event detection system.

B.I E_BUFFER.C - Allocate data buffers

ttinclude <detect.h>

* Function: LONG *E_buffer (maxdata, maxlookback) - allocate and *
* initialize data area *
* *
* Arguments : WORD maxdata - Maximum number of expected *
* data points for data array *
* WORD maxlookback - Maximum lookback area *
* expected (if any) . Leave 0 if *
* no lookback is to be used. *
)|(«H""MV"WMMMMM«MMMMMM«MMMWV«MMWM""|i"VVMMM«"MMM«OTM"V"WWVMWM""|i"*|(

* Returns: Address of allocated buffer, or NULL if *
* there was not enough memory or total size<=0 *
£__ _)|C

* Allocates memory for the user's data. Provides memory for the *
* "lookback" that is required by the FIR filters. *

__ __ __ __ ______ « M«M M^__ ____ __ __________________ __ ____ __ ,f.

LONG *E_buffer (maxdata ,maxlook)
WORD maxdata, maxlook;

UWORD total;
LONG *newptr;

/* printf ("E_buffer('/,d,'/,d)\n" .maxdata, maxlook) ; */

101

102 Appendix B. Data Management C Code

total=maxdata+maxlook;
total*=sizeof(LONG); /* Calculate size */

if (total==0) return(NULL); /* No action */

newptr=(LONG *) malloc(total); /* Get storage */

return(newptr); /* Pass or fail */

B.2 E.CDSNLOAD.C - Convert CDSN data into integers

include <detect.h>

* Function: BOOL E_cdsnload (detect or, indat a .offset) - load cdsn *

* Arguments: struct detect. info * detect or - calling info *
* UBYTE *indata - pointer to raw CDSN data record *
* WORD offset - what multiplexed channel *
* *

* Returns: TRUE - Data valid and converted *
* FALSE - the recordtype did not match *

* Fatal Errors: This routine does not have fatal exits *
* *

* Examine a CDSN record in its internal format. Determine a *
* record type key from the sample rate and compare this key *
* with the selection criteria in the structure "detector". If *
* the record types are the same, decode the rest of the data *
* and return TRUE. Otherwise, do no more, and return FALSE *
* immediately. *

#define SAM.RC 1014 /* Size of the data in words */
#define CDSN.EPOCH 83 /* No data before 1983 */
#define CDSN.CENT 1900 /* This is the 20th century */

#define IUBYTE(x) ((x)&OxFF) /* Low order byte */
#define HINIB(x) ((IUBYTE(indata[x])»4)&OxF) /* High order nibble
#/
#define LONIB(x) (IUBYTE(indata[x])&OxF) /* Low order nibble */

B.2. E.CDSNLOAD.C - Convert CDSN data into integers 103

BOOL E.cdsnload (detect or, indata, offset)
struct detect _info *detector;
UBYTE * indata;
WORD offset;
i

WORD i, rect, numcomp, leap;
LONG samrat, sampr, zuasec, fmsec, fsec, fmin, fhour;
BOOL nak;

WORD Ip, j, gr, ct;
LONG l.data, * oar ray;
UBYTE * bytarr;

samrat = HINIB(16) * 10000L +
LONIB(16) * 1000L + HINIBU7) * 100L;

i = samrat / 10;
switch (i) <

case 4000: /* 40 samples per second */
rect » 1;
break;

case 2000: /* 20 samples per second */
rect = 2;
break ;

case 100: /* 1 sample per second */
rect = 3;
break ;

case 10: /* 0.1 sample per second */
rect = 4;
break ;

default: /* Unknown, therefore illegal sample rate */
rect - 0;
break ;

if (detector->drectyp != rect)
return(FALSE) ; /* Not this one */

detector->samrte = samrat; /* Detector needs this */

numcomp = LONIB(8); /* Number of components in this record */

/* Compute a complete date */

104 Appendix B. Data Management C Code

i = LONIB(l) * 10 + HINIB(2);
if (i < CDSN.EPOCH)

i += 100;
i +- CDSN.CENT;

if (i != detector->startt.yr) {
leap = 0;
detect or->startt.yr » i;
if (Ki '/, 4))

leap = 1;
if (!(i X 100))

leap = 0;
if (!(i '/, 400))

leap = 1;
detector->startt.day_yr 365 + leap;
i - i - 1;
if (!(i '/, 4))

leap - 1;
if (!(i '/, 100))

leap = 0;
if (!(i I 400))

leap = 1;
detector->startt .prv_yr = 365 + leap;

detector->startt.day = LONIB(2) * 100 + HINIB(3) * 10 + LONIB(3);
detector->startt.hr - HINIB(4) * 10 + LONIB(4);
detector->startt.min = HINIB(5) * 10 + LONIB(5);
detector->startt.sec = HINIB(6) * 10 + LONIB(6);
detector->startt.msec = HINIB(T) * 100 + LONIB(7) * 10;

bytarr = &indata[20] ;
oarray = &detector->indatar[detector->lbksize] ;

ct 0;

if (offset > mracomp)
offset = mracomp; /* Offset specified is illegal */

if (offset < 0)
offset =0; /* Offset illegal */

/* Convert data from gain-ranged */

for (Ip = offset * 2; Ip < (SAM.RC * 2) ; Ip +

_______B.3. E.CREATE.C- Allocate user detector structures 105

numcomp * 2) <

j * (bytarr[lp] ft Ox3F) « 8; /* Strip off exponent */
j |= (bytarr[lp + 1] ft OxFF);

j - 8191; /* Form signed value */

l.data » (LONG) j;

gr = (bytarr[lp] ft OxCO) » 6; /* Get the exponent */

switch (gr) { /* Apply exponent to form 32 bit integer */
case 1:

l.data «- 2;
break;

case 2:
l.data «= 4;
break;

case 3:
l.data «= 7;
break;

*oarray++ * I.data; /* Load data into output array */
ct++; /* increment count */

}
detector->datapts = ct; /* Save count */

return(TRUE); /* Sucess */

B.3 E.CREATE.C - Allocate user detector structures

#include <detect.h>

* Function: BOOL E_create(detector,looksize,rectyp,detnam,dataarr, *
* filter) - create an event detector with given parameters *

* Arguments: struct detect.info *detector - calling detector *

106 Appendix B. Data Management C Code

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

configuration information
WORD looksize - lookback size for detector

(0 if no lookback)
WORD rectyp - record type to detect - see the

decoder (such as E_cdsnload()) you
are using to find what
numbers to use here

TEXT *detnam - name of detector.
LONG *dataarr - Pointer to the beginning of

data array. The size of the array must
be at least as large as the maximum
number of data points plus the maximum
value of lookback.

BOOL (*inf liter) () - function to be used as a
filter. FnulK) is used if NULL is
specified here.

Returns: Returns TRUE if job completed sucessfully

Creates an event detector. Allocates memory for the lookback
array and the continuity structure. It then calls the
Cont_ setup () routine to initialize the continuity structure.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-*
*
-*
*
*
*
.*/

BOOL E_create (detector, looksize, rectyp, detnam,dataarray,infilter)
struct detect _info *detector;
WORD looksize, rectyp;
TEXT *detnam;
LONG *dataarray;
BOOL (*infilter)();

UWORD msize;
BOOL FnulK);

/* First allocate the continuity structure */

detector->incontd= (struct con_sto *) malloc((UWORD)
sizeof (struct con_sto));

if (detector->incontd NULL) return (FALSE) ; /* Nope */

/* Allocate the lookback storage array */

detector->lbkarr-NULL; /* Initialize to no lookback */

B.4- E-FILTER.C - Filter the user data 107

if (looksize>0) {
msize=looksize ;
msize*=sizeof (LONG) ;

detector->lbkarr=(LONG *) malloc(msize) ;

if (detector->lbkarr=*NULL) {
mfree((UBYTE *) detector->incontd) ;

/* Don't leave a mess */
return (FALSE) ;

Of thg rest of the setup */

detector->samrte=0 ;
detector->drectypsrectyp ;
detector->datapts=0 ;
detector->indatar=dataarray ;
detector->lbksize=looksize ;
detect or->detnamesdetnam;
detector->f ilterc=inf ilter ;
if (infilter==NULL) detector->filterc=Fnull;

/* Call the continuity setup */

Cont .setup (detector->incontd) ;
detector->incontd->ch_namesdetnam;

return (TRUE) ;

B.4 E_FILTER.C - Filter the user data

#inelude <detect.h>

/* *

* Function: BOOL E_filter(detector) - Implements filtering *

* Arguments: struct detect.info detector - detector *

108 Appendix B. Data Management C Code

* configuration parameters *
* *
* Returns: Returns TRUE if job completed sucessfully *
* *
* Gets the old lookback from the temporary buffer in detector, *
* and places it in the data array. E_filter() then saves the *
* lookback data which will be used the next time the current *
* detector is called. Routine then calls the filtering *
* subroutine specified in E_create() and placed as a pointer *
* to a function in detector structure. *
* #/

BOOL E_filter(detector)
struct detect.info tdetector;
<

WORD i;

/* Retrieve the old lookback */

if (detector->lbksize>0) {

for (i=0; i<detector->lbksize; i++) detector->indatar[i]
detector->lbkarr[i];

>

/# put new lookback away */

if (detector->lbksize>0) {

for (i-0; i<detector->lbksize; i++) detector->lbkarr[i]=
detector->indatar[i+detector->datapts];

}

/# Do tne required filtering */

(*(detector->filterc))
(detector,detector->datapts,detector->lbksize,

detector->indatar);

return(TRUE);

_____________B.5. EJtEMOVE.C - Remove and cleanup user structures 109

B.5 E-REMOVE.C Remove and cleanup user structures

#include <detect.h>

* Function: BOOL E.remove(detector) - Remove an event detector *
* *

* Arguments: struct detect_info *detector - calling info *

* Returns: Returns TRUE if job completed sucessfully *
* DC

* This routine is called when one of the detectors is no longer *
* needed or is to be changed by calling E.create. It frees the *
* memory the detector was using and ensures that the detector *
* won't be called again unless it is created anew. *

BOOL E.remove(detector)
struct detect_info *detector;

/* free input continuity area */
if (detector->incontd!*NULL) mfree((BYTE *) detector->incontd)
/* free lookback area */
if (detector->lbkarr!=NULL) mfree((BYTE *) detector->lbkarr);

detector->samrtessO;
detector->drectypas9999; /* Illegal record type */
detector->datapts=0;
detector->lbksize=0;
detector->detname=NULL;

return(TRUE);

B.6 FFIRBB20.C - 20 SPS BB FIR filter

#include <detect.h>

* Function: BOOL FfirBB20(detector,points,lookback,data) *
* - 20SPS BB fir *

110 Appendix B. Data Management C Code

*
*
*

*

*
*
*
*
*

*

*

*

*

*

Arguments: struct detect_info *detector - context info
WORD points - number of data points in the

the current record
WORD lookback - amount of lookback required

for this filter
LONG *data - array that contains the seismic

samples to be processed by the
FIR filter

Returns: Returns TRUE if job completed sucessfully
(not used in this implementation)

Lookback: This filter has a lookback of 36

This routine processes the current record, which has "points"
seismic samples, with an FIR filter. The array "data"
contains these samples plus the last "lookback" values from
the previous record (the values from the previous record,
that are needed for the FIR filter, are stored in the Oth
through lookback-1 positions of the array). Hence, upon
input, the first sample of the current record is stored at
index "lookback" of the array.

To conserve RAM, we use the same array (the array "data")
for both input to the filter and output of it: Each time
we process a new sample, a slot is free above the lookback
area. We fill this slot with the filtered data; hence,
when the record has been completely processed, the first
"points" slots of the array contain the filtered seismic
samples of the record.

-*

*
*
*
*
*
*
*
-*

*
-*
*

-*
*
*
*
*

*
*
*

*
*
*
*
*
-A/

BOOL FfirBB20(detector,point,lookback,data)
struct detect_info *detector;
WORD point,lookback;
LONG *data;
#C

#define cSH.,20 » 5
#define filta(x) (- *(x-l) - *(x-2) - *(x-3) - *(x-4) - *(x-5) \

- *(x-6) - *(x-7) - *(x-8)) « 2
#define filtb(x) (- *(x-9) - *(x-10) - *(x-ll) - *(x-12) + *(x-19) \

+ *(x-20) + *(x-21)) « 1
#define filtc(x) (- *(x-13) - *(x-14) + *(x-22) + *(x-23) + *(x-24) \

B. 7. FFIRSP10. C- 10 SPS SP FIR filter 111

+ *(x-25) + *(x-26))
ttdefine filtd(x) (- *(x-15) + *(x-27) + *(x-28) + *(x-29)) » 1
#define filte(x) (- *(x-16) + *(x-18) + *(x-30) + *(x-31) + *(x-32)) » 2
#define filtf(x) ((*(x-33) + *(x-34))»3) + (*(x-35)»4) \

+ ((*(x-36) - *(x-17))»5) + (*x«5)

LONG *ldp, result;
WORD i;

ldp= &dat a [lookback] ;
/* the address of the first sample of the current record */

for (i«0; i<point; i
/^process all of the data of the current record */

result=f ilta(ldp) ;/* implemented on different lines because
some compilers don't like long macros */

result+=f iltb(ldp) ;
result+=filtc(ldp) ;
result +=f iltd(ldp) ;
result+=f ilte(ldp) ;
result+=f iltf (Idp) ;

result=result cSH_20;
ldp++; /* address of next sample */

data[i]=result ; /* store the result in the slot just above
the lookback of the next sample */

return(TRUE);

>

B.7 FFIRSP10.C - 10 SPS SP FIR filter

#include <detect.h>

/* *

* Function: BOOL FfirSP10(det,points,lookback.data) - 10SPS SP fir*
* *

* Arguments: struct detect.info *det - detector info *
* WORD points - number of data points *

112 Appendix B. Data Management C Code

*
*
*

*
*
*
*

*

*

*
*
*
*
*

*
*

*
*
*
*
*
*
*

WORD lookback - amount of lookback present
LONG *data - array of data to be processed

Returns: Returns TRUE if job completed sucessfully

Lookback: This filter has a lookback of 3

This routine processes the current record, which has "points"
seismic samples, with an FIR filter. The array "data"
contains these samples plus the last "lookback" values from
the previous record (the values from the previous record,
that are needed for the FIR filter, are stored in the Oth
through lookback-1 positions of the array). Hence, upon
input, the first sample of the current record is stored at
index "lookback" of the array.

To conserve RAM, we use the same array (the array "data")
for both input to the filter and output of it: Each time
we process a new sample, a slot is free above the lookback
area. We fill this slot with the filtered data; hence,
when the record has been completely processed, the first
"points" slots of the array contain the filtered seismic
samples of the record.

*
*

--*
*

 *
*

--*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

 */

BOOL Ff irSPIO (detector .point , lookback , data)
struct detect_info *detector;
WORD point , lookback ;
LONG *data;

#define aSH_10 »3 /* shift for 10 samples/sec filter */
#define filta(x) (*x«2) - (*(x-2)) - (*(x-3))

LONG *ldp, result;
WORD i;

ldp= ftdat a [lookback] ;

for (i=0; i<point; i++) {

result=f ilta(ldp) ;

result-result aSH_10;
ldp++ ;

B.8. FFIRSP20.C- 20 SPS SP FIR filter 113

data [i] -result ;

return (TRUE) ;

B.8 FFIRSP20.C - 20 SPS SP FIR filter

include <detect.h>

* Function: BOOL FfirSP20(det, points, lookback, data) - 20SPS SP fir*
* *
* Arguments: struct detect.. info *det - detector information *
* WORD points - number of data points in the *
* the current record *
* WORD lookback - amount of lookback required *
* for this filter *
* LONG *data - array that contains the seismic *
* samples to be processed by the *
* FIR filter *
£___________ __ _______..___g||

* Returns: Returns TRUE if job completed sucessfully *
* (not used in this implementation) *
* *

* Lookback: This filter has a lookback of 7 *
* *

* This routine processes the current record, which has "points" *
* seismic samples, with an FIR filter. The array "data" *
* contains these samples plus the last "lookback" values from *
* the previous record (the values from the previous record, *
* that are needed for the FIR filter, are stored in the Oth *
* through lookback- 1 positions of the array), Hence, upon *
* input, the first sample of the current record is stored at *
* index "lookback" of the array. *
* *
* To conserve RAM, we use the same array (the array "data") *
* for both input to the filter and output of it: Each time *
* we process a new sample, a slot is free above the lookback *
* area. We fill this slot with the filtered data; hence, *
* when the record has been completely processed, the first *

114 Appendix B. Data Management C Code

* "points" slots of the array contain the filtered seismic *
* samples of the record. *

BOOL Ff irSP20 (detector , point , lookback , data)
struct detect. info *detector;
WORD point, lookback;
LONG *data;

#define aSH_20 »3 /* shift for 20 samples/sec filter */
#define filta(x) (*x«l) + (*(x-l)«2) + (*(x-2)«l) \

- (*(x-5)) -(*(x-6)«l) -(*(x-7))

LONG *ldp, result;
WORD i;

ldp= ftdata [lookback] ; /* the address of the first sample of the
current record */

for (i^O; i<point; i++) { /^process all of the data of the
current record */

result=f ilta(ldp) ; /* implemented on different lines because
some compilers don't like long macros

#/

result«result aSH_20;
ldp++; /* address of next sample */

data[i]=result; /* store the result in the slot just above
the lookback of the next sample */

return (TRUE) ;

B.9 FFIRSP40.C - 40 SPS SP FIR filter

#include <detect.h>

B.9. FFIRSP40.C - 40 SPS SP FIR filter 115

Function: BOOL FfirSP40(det,points,lookback,data) - 40SPS SP fir*
. *

Arguments: struct detect.info *det - detector info *
WORD points - number of data points *
WORD lookback - amount of lookback present *
LONG *data - array of data to be processed *

Returns: Returns TRUE if job completed sucessfully *
. *

Lookback: This filter has a lookback of 16 *

* This routine processes the current record, which has "points" *
* seismic samples, with an FIR filter. The array "data" *
* contains these samples plus the last "lookback" values from *
* the previous record (the values from the previous record, *
* that are needed for the FIR filter, are stored in the Oth *
* through lookback-1 positions of the array). Hence, upon *
* input, the first sample of the current record is stored at *
* index "lookback11 of the array. *

* To conserve RAM, we use the same array (the array "data") *
* for both input to the filter and output of it: Each time *
* we process a new sample, a slot is free above the lookback *
* area. We fill this slot with the filtered data; hence, *
* when the record has been completely processed, the first *
* "points" slots of the array contain the filtered seismic *
* samples of the record. *
* #/

BOOL FfirSP40(detector,point,lookback,data)
struct detect.info *detector;
WORD point,lookback;
LONG *data;

#def ine bSH_40 »4
#define filta(x) (- *(x-10) - *(x-12) - *(x-14) - *(x-16))
#define filtb(x) (*x + *(x-2) + *(x-4) + *(x-6) - *(x-ll) - *(x-12) \

- *(x-14) - *(x-15)) « 1
#define filtc(x) (*(x-l) + *(x-2) + *(x-4) + *(x-5) - *(x-13)) « 2
#define filtd(x) *(x-3) « 3

LONG *ldp,result;
WORD i;

116 Appendix B. Data Management C Code

ldp= ftdata[lookback];

for (i=0; i<point;

result=filta(ldp);
result+=filtb(ldp);
result+*filtc(ldp);
result+=filtd(ldp);

result=result bSH_40;

data[i]=result;

return(TRUE);

}

B.10 FFPAV.C 4 point running average filter

#include <detect.h>

* Function: BOOL Ffpav(det,points,lookback,data) - four point *
* running average filter *
* *
* Arguments: struct detect_info *det - detector context *
* WORD points - number of data points *
* WORD lookback - amount of lookback present *
* LONG *data - data array to be processed *
* *
* Returns: Returns TRUE if job completed sucessfully *

* Lookback: This filter has lookback of 3 *
* *

* This routine processes the current record, which has "points" *
* seismic samples, with an FIR filter. The array "data" *
* contains these samples plus the last "lookback" values from *
* the previous record (the values from the previous record, *
* that are needed for the FIR filter, are stored in the Oth *
* through lookback-1 positions of the array). Hence, upon *
* input, the first sample of the current record is stored at *

B.ll. FNULL.C - Dummy filter 117

* index "lookback" of the array. *
* *
* To conserve RAM, we use the same array (the array "data") *
* for both input to the filter and output of it: Each time *
* we process a new sample, a slot is free above the lookback *
* area. We fill this slot with the filtered data; hence, *
* when the record has been completely processed, the first *
* "points" slots of the array contain the filtered seismic *
* samples of the record. *

BOOL Ffpav(detector,point,lookback,data)
struct detect.info *detector;
WORD point.lookback;
LONG *data;

#define SHFT.DEF »2 /* Shift for default filter */
#define fil.def(x) (*x) + (*(x-l)) + (*(x-2)) + (*(x-3))

LONG *ldp,result;
WORD i;

ldp= &data[lookback];

for (i=0; i<point; i++) {

result=fil_def(Idp);

re suit=resuit SHFT_DEF;
ldp++;

data[i]^result;

return(TRUE);

>

B.ll FNULL.C - Dummy filter

#include <detect.h>

118 Appendix B. Data Management C Code

* Function: BOOL FnulKdet,points,lookback,data) - Null filter *
* *
* Arguments: struct detect_info *det - detector context *
* WORD points - number of data points *
* WORD lookback - amount of lookback present *
* LONG *data - array of data to be processed *
* *

* Returns: Returns TRUE if job completed sucessfully *
* *

* Lookback: This Filter has a lookback of 0 *
* *

* This routine processes the current record, which has "points" *
* seismic samples, with a dummy FIR filter. The array "data" *
* contains these samples plus the last "lookback" values from *
* the previous record (the values from the previous record, *
* that are needed for the FIR filter, are stored in the Oth *
* through lookback-1 positions of the array). Hence, upon *
* input, the first sample of the current record is stored at *
* index "lookback" of the array. *

* To conserve RAM, we use the same array (the array "data") *
* for both input to the filter and output of it: Each time *
* we process a new sample, a slot is free above the lookback *
* area. We fill this slot with the filtered data; hence, *
* when the record has been completely processed, the first *
* "points" slots of the array contain the filtered seismic *
* samples of the record. *
* *

* This routine will be used if no filter has been specified to *
* E_Create(). *
* */

BOOL Fnull(detector,point,lookback,data)
struct detect_info *detector;
WORD point,lookback;
LONG *data;
 C

LONG *ldp,result;
WORD i;

Idp- &data[lookback];

for (i=0; i<point;

B.12. DISP.PAR. C - Display event parameters 119

result* *ldp;
ldp++ ;

data [i] =result ;

return (TRUE) ;

B.12 DISP-PAR.C - Display event parameters

in elude <detect.h>

* Function: VOID Disp.par (detector) - display detector parameters *
* *
* Arguments: struct detect.info *detector - call information *
* - *

* Returns: Nothing (VOID) *
* *

* Fatal Errors: This routine does not have fatal exits *

* Called by user programs to display the currently set detector *
* parameters . *
* #/

VOID Disp.par (detector)
struct detect .info *detector;
{

register struct con.sto *continu;
continu-detector->incontd;

printf ("Parameters of detector '/,s : \n" , continu->ch_name) ;
printf (" filhi='/,d; fillo='/,d; iwin='/,d; n_hits=(/,d;\n",

continu->f ilhi , continu->f illo , continu->iwin, continu->n_hits) ;
printf (" xthl='/,o; xth2='/,o; xth3=(/,o; xthx='/,o ; \n" ,

continu->xthl , continu->xth2 , continu->xth3 , continu->xthx) ;
printf (" def_tc*'/,ld; wait_blk=(/,d; val_avg=y,d\n\n" ,

continu->def _tc , continu->wait_blk ,
continu->val_avg) ;

return;

120 Appendix B. Data Management C Code

Appendix C

Example Driver

Here is the code of an example driver to detect various data streams on an input data tape.
This may be adapted for custom situations.

#include <detect.h>

/* *

* Function: VOID main() - main section for detecting data streams *

* Arguments: Arguments are taken from STDIN *
* *

* Returns: Nothing (VOID) *
* *

* Fatal Errors: If any mallocs fail, or user types an *
* interrupt, the program will exit abnormally *
^MMMWiMWiMWiMMMMMMMMMMMMWMMMMiMMMMMM »» ._ ._ ._ ._ ._ ._ ._ ._._ ._ ._ ._ __ ._ ._ __ »^^^__^^^____^____»»»»ifa

* This is an example of how to define a main or other subroutine *
* to setup and call the event detector. This particular example *
* defines an off-line detector which will read through as many *
* different input devices as required and will do event *
* detection on as many different channels, as desired. It is *
* even possible to run multiple detections on the same channel, *
* so as to test different parameters. Processing will continue *
* until there is an end of file on all input devices. *
* *
* The information used to set up the various event detectors *
* is entered in STDIN as a parameter file, here is an example: *
* *
* /dev/rmtb bb_z 1 0 12 4 40 200 77 17 10 30 5 500 1014 16 *
* /dev/rmtb sp_z 2 0 12 8 80 160 20 15 10 15 4 500 0507 8 *
* *
* The parameters are in the following order separated by spaces: *
* *
* input_device detector_name rec_type component block_factor *
* filhi fillo iwin xthl xth2 xth3 xthx njiits def_tc wait_blk *
* val_avg *

121

122 Appendix C. Example Driver

 */

#define MAXDET 12 /* Maximum number of event detected channels */
#define DBF.SIZ 2048

struct detstr {
TEXT detnam[20]; /* Place to store detector name */
TEXT devnam[30]; /* Device for this detector */
WORD dev.nbr; /* Number in device array for this detector */
WORD recotyp; /* Record type */
WORD compon; /* Component to use */
WORD block.f; /* Blocking factor */
LONG s.filhi, s.fillo, s.iwin, s.xthl, s_xth2, s_xth3, s_xthx,
s.n.hits, s_def..tc, s.waitjblk, s.val.av;

/* User's detector parameters */
} dtectr[MAXDET]; /* One for each detector */

struct detect.info edete[MAXDET];/* Detector setup data */

struct devlst {
TEXT lstnam[30]; /* The name of the device */
WORD filnum; /* The file number vhere it is openQ'd */
WORD deblock; /* The size of the block */
WORD b.fact; /* The blocking factor */

} dvice[MAXDET]; /* One per device */

UBYTE * in.rec; /* Our read in buffer */
LONG * mainarray; /* Main data array */

VOID mainQ {

WORD det.nbr, dv.nbr, i, k, maxb;
WORD det.no, dev.no;
WORD ikount;
BOOL any, ev, (*filt)(), FfirBB20(), FfirSP40(), FfpavQ;

/****Note I****/
/* Let interupts get us out under UNIX */

ttifdef UNIX /* Only meaningful on UNIX */
extern onintrC);
if (signaKSIGINT, SIG.IGN) != SIG.IGN)

signal(SIGINT, onintr);
#endif

123

Initialize variables for loops */

ikount = 0; /* counts number of devices closed, for
normal exit */

maxb - 0; /* the maximum blocking factor used
herein */

det.nbr =0; /* number of the detector, incremented
in while loop */

dv_nbr - (-1); /* number of the device, incremented in
while loop */

mainarray = E_buffer(338, 40);/* Max lookback 40 */

/*****Note 2*****/
/* Loop through to get each of our detector parameter lines */

while (Ifeof(stdin)) {

i * scanf("'/,s y,s '/,d '/,d '/,d U U '/,d '/,o '/,o '/,o '/,o '/,d '/,d '/,d '/,d\n",
dtectr[det_nbr] .devnam,
dtectr[det_nbr] .detnam,
&dtectr[det_nbr] .recotyp,
ftdtectr[det_nbr] . compon,
ftdtectr [det_nbr] .block_f ,
&dtectr[det_nbr] .
&dtectr[det_nbr] .
&dtectr[det_nbr] .s_iwin,
ftdtectr [det_nbr] . s_xthl ,
ftdtectr [det_nbr] . s_xth2 ,
&dtectr[det_nbr] ,s_xth3,
&dtectr[det_nbr] ,s_xthx,
&dtectr[det_nbr] .s_n_hits,
&dtectr[det_nbr] .s_def_tc,
&dtectr[det_nbr] .s_wait_blk,
&dtectr[det_nbr] .s_val_av) ;

#ifdef DISP.P
printf ("Detector #'/,d Device '/,s Channel '/,s #'/,d (rec '/,d) ", det.nbr,

dtectr[det_nbr] .devnam, dtectr[det_nbr] .detnam,
dtectr[det_nbr] .compon, dtectr[det_nbr] .recotyp) ;

printf ("Blocking Factor '/,d\n",
dtectr[det_nbr] .block.f) ;

printf ("f ilhi='/,d , f illo='/,d , iwin='/,d , xthl='/,o , xth2='/,o , xth3='/,o , \
xthx='/,o ,n_hits='/,d, \ndef .tc='/,dms , \ wait.blk^'/d, val.avg='/,d\n" ,

dtectr[det_nbr] .s_filhi, dtectr[det_nbr] .s_

124 Appendix C. Example Driver

dtectr[det_nbr] .s_iwin, dtectr[det_nbr] ,s_xthl,
dtectr [dot _nbr] ,s_xth2,

dtectr[det_nbr] . s_xth3, dtectr[det_nbr] . s_xthx,
dtectr [det_nbr] .s_n_hits, dtectr [det_nbr] . s_def_tc,
dtectr [dot _nbr] .s_wait_blk, dtectr [dot _nbr] ,s_val_av) ;

#endif

3*****/
/* Calculate maxb for malloc */

if (dtectr [det_nbr] ,block_f > maxb)
maxb dtectr [dot _nbr] .block_f ;

/* More than one detector per device is permitted */

for (i 0; i <= dv_nbr; i
if (! strcmp (dvice [i] . Istnam, dtectr [det_nbr] . devnam)) {

jjew detector, same device */

i = (-1);
break;

if (i != -1) {

/###*Note 4****/
jjew device */

strcpy (dvice [++dv_nbr] .Istnam, dtectr [dot _nbr] .devnam);
dvice [dv_nbr] .filnum - (-1) ;
if ((dvice [dv_nbr] .filnum = open (dvice [dv_nbr] .Istnam,

000)) >= 0) {
printf ("Device '/,s opened\n",

dvice [dv_nbr] .Istnam) ;

else
printf ("Device '/,s cannot be opened\n",

dvice [dv_nbr] .Istnam) ;

if (dvice [dv_nbr] .filnum >= 0)

125

/****Note 5****/
/* Put user's parameters into the continuity structure */

switch (dtectr [det_nbr] .recotyp) {
case 1:

k = 18;
filt * FfirSP40;
break;

case 2:
k « 38;
filt = FfirBB20;
break;

default :
k * 3;
filt = Ffpav;

E_create(ftedete[det_nbr] , k, dtectr [det_nbr] .recotyp,
dtectr [det_nbr] .detnam, mainarray, filt);

setallparams (&edete[det_nbr] ,
dtectr [det_nbr] .s_filhi,
dtectr [det_nbr] .s_fillo,
dtectr [det_nbr] . s_iwin ,
dtectr [det_nbr] .s_n_hits,
dtectr [det_nbr] .s_xthl,
dtectr [det_nbr] . s_xth2,
dtectr [det_nbr] . s_xth3,
dtectr [det_nbr] . s_xthx ,
dtectr [det_nbr] . s_def _tc ,
dtectr [det_nbr] .s_wait_blk,
dtectr [det_nbr] . s_val_av) ;

Disp_par (ftedete [det_nbr]) ;

dvice [dv_nbr] .d_block -
dtectr [det.nbr] .block.f * DBF.SIZ;

dvice [dv_nbr] ,b_f act = dtectr [det_nbr] .block_f;
dtectr[det_nbr] .dev_nbr - dv_nbr;

det_nbr++;

126 Appendix C. Example Driver

if (Kin.rec = malloc ((UWORD) maxb * DBF.SIZ))) {
printf ("failure on malloc of rec_str\n") ;
exit(l);

printf ("Detectors created\n") ;

any = FALSE;

/****Note 6****/
/* Main loop - process input data */

do {
for (dev_no = 0; dev_no <= dv_nbr; dev_no++) {
/* check all devices */

if (dvice[dev_no] .filnum >3 0) {
any » TRUE;
if (k = (read (dvice [dev.no] .filnum, (UBYTE *) in.rec,

dvice [dev_no] . d.block)) ! -
dvice [dev.no] ,d_block) {

dvice [dev_no] .filnum (-1);
/* error condition */

if (k == 0)
printf ("Drive '/,s at EOF\n",

dvice [dev.no] . Istnam) ;
if (k < 0)

printf ("Drive */,s got error y,d\n",
dvice [dev.no] .Istnam, k) ;

if (k > 0)
printf ("Drive */,s read short record C/,d)\n",

dvice [dev.no] .Istnam, k) ;
close (dvice [dev.no] .filnum) ;
dtectr[det_nbr] .dev.nbr = -1;
if (ikount++ == dv.nbr)

exit(O);
else

continue; /* try another device */

/****Note 7****/
/* Process and detect each data */

for (det.no = 0; det.no < det.nbr; det_no++) <

if (dtectr[det.no].dev.nbr » dev.no)

127

for (k = 0; k < dvice[dev.no].b.fact; k++) {
if (E_cdsnload(&edete[det_no],

(UBYTE *) in.rec + (k * DBF.SIZ),
dtectr[det.no].compon)) {

E.filter(ftedete[det.no]);
E.detect(ftedete[det.no]);

} while (any » TRUE) ; /* True while valid file number exists
*/

#ifdef UNIX
onintrQ { /* the sole purpose of this routine is to indicate

that an interrupt has occurred. It is called
by the UNIX utility signal in the routine
Detmain */

printf ("processing interrupt \n") ;
exit(l);

}
end if

#ifdef SHCOMMENT

Program Notes (see inline code)

1. On UNIX, the program ocassionally had difficulty being interrupted and closing down
correctly. This signal was inserted to assure that this problem would not occur. It
might not be necessary on other versions of UNIX (not BSD 2.9), or on other operating
systems. In any case, an interrupt here forces an exitQ, which is useful when doing a
profile.

2. The event detector information is read from standard in with scanfQ. No attempts
are made to assure data accuracy or format. Please keep your input data accurate
and always provide the correct number of parameters.

3. The maximum buffer size is computed. This will be the size of the largest input block.

4. The devices requested in the input parameters are compared which the current table.
Device names which are not identical to the names in the table are declared new
devices, and are placed in the tables. Do not use alias device names for the same

128 Appendix C. Example Driver

device, and be sure that the names are spelled the same, and are in the same case,
for the same device.

Here, an attempt is made to open the device, however if it cannot be opened, the
detectors for this device are automatically eliminated.

5. The filtering and lookback information are determined based on the record type, and
then the detector structure is built via E_create(). The event detector parameters are
then stowed away in the detector's continuity structure with setallparamsQ (a macro).

6. All parameters are loaded, and all devices are opened. This is the main processing
loop. Each device is read round-robin fashion, and one device block is read on each
device. This means that large blocked devices will process more records than smaller
ones. Take this into account when planning the data flow through the detector.

7. The above block is deblocked. All of the event detectors which use this device are
checked against each block. If the data are pertinent, the data are filtered, and the
event detector is run. Event onset information is captured via standard out. If the
user wishes more complex onset information processing, the user's onset routine can
be pointed to by the continuity structure (see OnsetQ).

Explanation of Variables

dtectr - An array of structures whose purpose is to keep track of the input/output (I/O)
details of each detector. These data are stored when the configuration/parameters
data are read in.

edete - An array of detector structures which will contain all of the actual logistical infor­
mation required by each detector. This is originally set up by e.create, and updated
and refered to by all of the e_* routines called by the event detector. It contains the
continutity structure for each detector, and contains the lookback data be used for
filtering. It also contains pointers to the data storage arrays plus information which is
used by the loader/decoder to ensure that the detector will process the proper data.

dvice - An array of structures which contain information for each discrete I/O device which
is read to get data for the detector. Housekeeping information for general device I/O
is kept here.

det_nbr - This is the current count of detectors in the dtectr and edete arrays. It is
incremented and used as an index as information is loaded, and is used as an index
maximum in the read loops.

dv_nbr - This is the current count of devices, and it is also the index to the dvice structure
array. It is used similarly to det_nbr. The use of dv_nbr is similar to that of det_nbr.

i, k - These are temporary variables for looping and indexing.

maxb - This is used to contain the largest buffer size requested in the input parameters,
so that an input buffer of sufficient size can be mallocQ'd.

120

det.no, dev.no - variables corresponding to the detector and device arrays, which are
used as indexes during the read loops.

ikount - This contains the current count of devices. It is set to the number of devices that
are to be opened and it is decremented as devices reach end of Hie. When ikont is
zero, all data has been processed, and the program will terminate.

any - A boolean flag.

flit - A pointer to a filter function. The pointer for the filter function is passed on to
E.Greate(), and the pointer is stored in the detector structure for that particular
detector.

mainarray - An array of LONG (32-bit) values that is used for storage of the decoded
input data, and it is also used for output of the filtered data. This multiple use of
buffers is efficient in terms of time and memory.

If one does not desire filtering, be sure to specify a lookback of 0 when the filter is set
up. If one wishes a lookback to be stored for the user's own filter, specify FnullQ to
E_create().

injrec - This is the buffer which is maxb chars long. The buffer is used to load the raw
unconverted data from the various input devices. The decoder then processes this
data.

ftendif

*********************** psprint 1.1

USER

ACCOUNT

JOB

NODE

FILE

FORMAT

QUEUED

PAGES

NOTE

SCOTT

ASL-BFEC

MAIN

ASLE

ASL$MANAGERS : [SCOTT . DOCS . MURDOCK] MAIN. DVI; 42

DVI

5-JUN-1991 11:06:54.84

136

