UNITED STATES DEPARTMENT OF INTERIOR

GEOLOGICAL SURVEY

Pb-isotope data base for sulfides from Alaska, March, 1987

by

S. E. Church¹, M. H. Delevaux², and J. E. Gray¹

Open File Report 87-259

1987

This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey standards and nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

¹DFC, P. O. Box 25046, MS 973, Denver, CO 80225
²DFC, P. O. Box 25046, MS 963, Denver, CO 80225
CONTENTS

Introduction.. 1
Presentation of the Data...................................... 1
 Deposit Information...................................... 1
 Chemistry and Mass Spectrometry.......................... 4
Acknowledgments... 6
References Cited.. 6
Pb-Isotope Bibliography for Alaska............................. 30

ILLUSTRATIONS

Figure 1. Regions of Alaska used in this report.............. 2
Figure 2. Mining regions and districts of Alaska............. 3

TABLES

Table 1. Pb-isotope data from sulfides from northern Alaska.. 8
Table 2. Pb-isotope data from sulfides from west-central Alaska.. 12
Table 3. Pb-isotope data from sulfides from east-central Alaska.. 14
Table 4. Pb-isotope data from sulfides from southern Alaska.. 18
Table 5. Pb-isotope data from sulfides from southwestern Alaska... 24
Table 6. Pb-isotope data from sulfides from southeastern Alaska... 26

APPENDICES

Appendix I. Summary of abbreviations used in Tables 1-6...... 34
Appendix II. Sample information sheet for common-Pb isotopic analysis.. 44
INTRODUCTION

The Pb-isotope data base for sulfide deposits in Alaska has come about in conjunction with the Alaska Mineral Resource Appraisal Program (AMRAP), and is a direct outgrowth of the USGS "Common-Pb in sulfides from Alaska" project. An extensive body of Pb-isotope data exists for the Canadian Cordillera (e.g. Godwin and others, 1982; Godwin and Sinclair, 1982) and for the North American Cordillera, but few previous determinations have been made of the numerous sulfide occurrences within Alaska. We have started gathering sulfide samples and anticipate analyzing up to 100 samples per year. We will concentrate in areas where the results will have the maximum impact on the assessment of the mineral endowment and geologic history of Alaska. We solicit the cooperation of geologists working in Alaska in the collection of well-documented samples for this project (see Appendix II). The primary objectives of the project are three-fold:

1.) to utilize Pb-isotope signatures, in conjunction with the regional mapping, to assess the relative ages and categorize the types of deposits studied,

2.) to relate the Pb-isotope and trace-element geochemical signatures of specific deposit and occurrences to ore-forming processes, and

3.) to use these data to correlate tectonostratigraphic terranes within the Cordillera.

PRESENTATION OF THE DATA

The data presented in Tables 1-6 represent the work completed on the project through March 1, 1987. The deposits are grouped by 1° x 3° quadrangle, and the state of Alaska is divided up into the six regions used in other regional data compilations by the U. S. Geological Survey (Figure 1). All abbreviations used in the data tables are documented in Appendix I. Mining regions and district names defined by the U. S. Bureau of Mines (Ransome and Kerns, 1954) have also been used throughout this report (Figure 2). Many of the deposits are briefly described by Berg and Cobb (1967); no attempt will be made in this report to summarize the voluminous literature on ore deposits that has been published since then.

Deposit Information

Information on each specific deposit or occurrence has been provided largely by the sample contributor (Contr.) on a form previously used in this project. However, the information on deposit characteristics has been assembled by S. E. Church, either from the information provided by the contributor or taken from the literature.
Figure 1: Regions of Alaska used in this report. Tables 1-6 give the analytical results for each region. Table 1: NORTHERN ALASKA, Table 2: WEST-CENTRAL ALASKA, Table 3: EAST-CENTRAL ALASKA, Table 4: SOUTHERN ALASKA, Table 5: SOUTHWESTERN ALASKA, Table 6: SOUTHEASTERN ALASKA.
Figure 2. Mining regions and districts of Alaska (Ransome and Kerns, 1954). Abbreviations used in Tables 1-6 are defined in Appendix I; subdistricts are not included.
Contributors were given the opportunity to modify the descriptive data in the tables prior to publication. This process should have minimized errors. Blanks in the tables indicate a lack of information. The deposit classification used in this report is based on the recent compilation by Cox and Singer (1986) and is included here only for the purpose of dialogue. Certainly, there will not be widespread agreement amongst geologists on the classification of deposits into model types! We solicit any new information that knowledgeable readers might have on the classification of specific deposits that we have studied.

Geologic information on the deposit also has been obtained either from the sample contributor or from published literature. The sample source indicates whether the sample came from outcrop, core, dump, and so forth. The deposit characteristics are short summaries (limited to three words) which describe the host rock, structure, and texture of the deposit. Veins are characterized as predominantly calcite or quartz veins in the texture column and the sulfides are disseminated within the gangue minerals of the vein. Formation names have not been used, but the assemblage of rocks containing the deposit have been designated using the tectonostratigraphic terranes (TST) defined by Monger and Berg (1984) for southeastern Alaska (Table 6), and by Jones and others (1984) for the rest of Alaska. The reader is referred to these publications for detailed geologic and stratigraphic information on these rock assemblages. Abbreviations for the TST units are given in Appendix I.

Chemistry and Mass Spectrometry

Most of the Pb-isotope data presented in Tables 1-6 have been analyzed by M. H. Delevaux in the U. S. Geological Survey, Branch of Isotope Geology laboratories. However, there are isolated data published in other sources; these data have been included here for the sake of completeness. Pb-isotope data from the studies of whole-rock Pb, largely from Cenozoic volcanic rocks, have not been included in this data base. References to the whole-rock Pb data are cited in the Pb-isotope bibliography for Alaska. All of the results from references published since 1978 have been made using the silica-gel emitter method. These data have all been corrected for thermal fractionation using the NBS SRM-981 common-Pb standard (Catanzaro and others, 1968) and are accurate, at the 2 sigma level, to within ± 0.1 % or better. All new data reported here have a precision of 0.08 % better. Triple-filament analyses from reference 79.1 have a reported accuracy of 0.1 % per mass unit. Analyses reported in reference 70.1 were determined using the PbS method and were normalized to the CIT reference Pb value. These data have been corrected for thermal fractionation (Doe and Rohrbough, 1979) and have an uncertainty of about 0.15 % per mass unit. Older data from reference 60.1 were determined using the PbI method and are much less precise as no standards were run during that time period to correct for fractionation. Analytical results from reference 60.1 are enclosed in parentheses. Analyses done by Teledyne during the late 1970's have been shown to contain analytical errors (refs 80.1 and
Pb-isotopic determinations have been made largely on sulfides. We report analyses from two types of samples: analyses made on those that contain galena (indicated by GN in the sample mineralogy column) and analyses on either mixed sulfides or on other discrete sulfide phases. Where mixed sulfides have been analyzed, we have given the Pb concentration in the sample determined either by d.c.-arc emission spectrography or in the solution used for Pb-isotopic analysis using atomic absorption spectrophotometry. Previous studies of mixed sulfides, or of separate sulfide minerals that have 100 ppm or more of Pb, indicate that the Pb-isotopic data obtained from this type of sample are comparable to that obtained from galena (e.g. Church and others, 1986; ref 86.5).

Several different chemical procedures have been used on special samples analyzed in this study. In general, galenas have been hand-picked for analysis where possible. Galena samples were prepared for analysis by digestion with ultrapure hot HCl. The sample was purified by precipitation in concentrated HNO₃ (Delevaux and others, 1966), followed by electrodeposition on a platinum electrode from a very dilute HNO₃-HClO₄ solution at 1.8 volts, d.c.. Mixed sulfides were digested in hot ultrapure aqua regia, the solution was decanted and converted first to the chloride medium and then to the bromide medium. Lead was isolated from other cations using anion column exchange in the bromide medium; ultrapure reagents were used throughout the procedure. Blanks were in the subnanogram range and are negligible. The sample was loaded on the resin in 0.75M HBr, washed with 0.75M HBr and then with 1.5M HCl. The Pb was then eluted with 0.3M HNO₃-0.025M HBr. Molybdenites were prepared by digestion in hot ultrapure 6M HCl. A white precipitate, probably Mo₃Cl₄(OH)₂.2H₂O, formed; the Pb remained in solution. Pb was purified by anion exchange in the HBr medium. High-antimony sulfides required special preparation because Sb is also adsorbed on the anion exchange resin in the HBr procedure described above. J. E. Gray has developed a chemical separation procedure that results in separation of most of the Sb from Pb in solution. We have applied this procedure to all our high-Sb solutions prior to loading on the anion exchange columns for final separation of Pb in the bromide medium. All Pb samples obtained from the column separation procedure were then electroplated as described above prior to mass spectrometric analysis.

The isotopic composition of Pb determined at the U. S. Geological Survey, Denver, Co., (Tables 1-6) was done on a 30.5 cm, 68° sector, solid-source mass spectrometer of NBS design. Duplicate analyses were made for all but one sample. Samples were run using the single Re-filament, silica-gel emitter technique at 1200 ± 20° C (Cameron and others, 1969). Two sets of eight ratio pairs for ²⁰⁶Pb/²⁰⁴Pb and one
set each of eight ratio pairs for $^{207}\text{Pb}/^{206}\text{Pb}$ and for $^{208}\text{Pb}/^{206}\text{Pb}$ are taken over a period of 30 to 40 minutes in a typical analysis. Blanks in the data table indicate that the analytical work has not been completed. Analytical results can be expected from these samples in the next 12-18 months. Published data are indicated and the reference given using a year and reference # code (e.g., 70.1 indicates the first reference in the Pb-isotope bibliography for Alaska published in 1970, etc.). Unpublished results are included here for information only and will be published formally in interpretative manuscripts. Permission to use these data in other manuscripts should be obtained by writing S. E. Church.

ACKNOWLEDGMENTS

Research in the U. S. Geological Survey, particularly in Alaska, is a team effort. Certainly, we have not visited all of the deposits or occurrences from which we have analyzed samples. Many geologists who have worked or are now doing field studies in Alaska have contributed samples to this project. We could not conduct this survey without the contributions made by many who have visited mineralized areas in the field. To them, we express our thanks for providing samples and field information about each occurrence. Their efforts are acknowledged individually in the data tables; you are encouraged to contact them if you wish further information on a particular sulfide occurrence. Finally, I thank Bruce Doe for providing Pb-isotope data from several sulfide samples analyzed by the USGS in the late 70's. Samples analyzed under his project (BD) are noted in the data tables in the analyst column (e.g., HS/BD).

REFERENCES CITED

Table 1. Pb-isotope data from sulfides from Northern Alaska

<table>
<thead>
<tr>
<th>Quadrangle</th>
<th>Locality</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample Mineralogy</th>
<th>206Pb</th>
<th>207Pb</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAIRD MOUNTAINS</td>
<td>Qaar</td>
<td>OM074</td>
<td>67 29 34</td>
<td>160 52 39</td>
<td>cp, bn, tt, gn, py (100 ppm Pb)</td>
<td>20.464</td>
<td>15.721</td>
<td>38.208</td>
</tr>
<tr>
<td></td>
<td>Qaar</td>
<td>OM122</td>
<td>67 29 32</td>
<td>160 52 37</td>
<td>cp (70 ppm Pb)</td>
<td>18.791</td>
<td>15.622</td>
<td>38.229</td>
</tr>
<tr>
<td></td>
<td>Powdermilk</td>
<td>B5JS39</td>
<td>67 27 38</td>
<td>160 48 08</td>
<td>sl, GN, py, bar</td>
<td>18.164</td>
<td>15.577</td>
<td>37.989</td>
</tr>
<tr>
<td></td>
<td>Powdermilk</td>
<td>B5JS109C</td>
<td>67 27 40</td>
<td>160 46</td>
<td>sl, GN, py, bar</td>
<td>18.194</td>
<td>15.590</td>
<td>38.050</td>
</tr>
<tr>
<td></td>
<td>Frost</td>
<td>B3JS14V</td>
<td>67 25</td>
<td>160 45</td>
<td>bar, flu, cp, GN, sl</td>
<td>18.434</td>
<td>15.603</td>
<td>38.234</td>
</tr>
<tr>
<td>AMBLER RIVER</td>
<td>Ruby Creek</td>
<td>DDH34:268</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>GN</td>
<td>18.233</td>
<td>15.589</td>
<td>38.084</td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>DDH54:1676</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>GN</td>
<td>18.191</td>
<td>15.583</td>
<td>38.065</td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>Adit @ 975'</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>GN</td>
<td>18.612</td>
<td>15.600</td>
<td>38.106</td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>DDH40:970</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>GN, cp</td>
<td>18.576</td>
<td>15.590</td>
<td>38.091</td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>DDH25:115</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>bn, tt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>DDH34:1014</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>gn, sl, cp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>DDH45:1030</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruby Creek</td>
<td>DDH93:2211</td>
<td>67 04 25</td>
<td>156 57 45</td>
<td>sl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snucker</td>
<td>DDH3:616</td>
<td>67 18</td>
<td>157 09</td>
<td>cp</td>
<td>18.358</td>
<td>15.601</td>
<td>38.240</td>
</tr>
<tr>
<td></td>
<td>Snucker (I-1)</td>
<td>SM-567</td>
<td>67 18</td>
<td>157 09</td>
<td>GN</td>
<td>18.397</td>
<td>15.601</td>
<td>38.202</td>
</tr>
<tr>
<td></td>
<td>Snucker 4B</td>
<td>4B</td>
<td>67 18</td>
<td>157 09</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambler #1</td>
<td>DDH1:117</td>
<td>67 16 30</td>
<td>157 02</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunshine Crk</td>
<td>SSC-1</td>
<td>67 13 30</td>
<td>156 40</td>
<td>cp, sl, go, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dead Creek (I-2)</td>
<td>74AMH1610</td>
<td>67 13 10</td>
<td>156 32</td>
<td>GN</td>
<td>18.347</td>
<td>15.558</td>
<td>38.218</td>
</tr>
<tr>
<td></td>
<td>West Dead Crk</td>
<td>WBC</td>
<td>67 13 10</td>
<td>156 32</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Dead Crk</td>
<td>EDC</td>
<td>67 13 10</td>
<td>156 32</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arctic</td>
<td>AT12-3B</td>
<td>67 11 30</td>
<td>156 25 00</td>
<td>cp</td>
<td>18.308</td>
<td>15.569</td>
<td>38.061</td>
</tr>
<tr>
<td></td>
<td>Arctic</td>
<td>AT39-14</td>
<td>67 11 30</td>
<td>156 25 00</td>
<td>cp, py, gn</td>
<td>18.330</td>
<td>15.587</td>
<td>38.140</td>
</tr>
<tr>
<td></td>
<td>Arctic (I-3)</td>
<td>AC-1-77</td>
<td>67 11 30</td>
<td>156 25 00</td>
<td>GN</td>
<td>18.340</td>
<td>15.560</td>
<td>38.146</td>
</tr>
<tr>
<td></td>
<td>Arctic</td>
<td>DDH34:600</td>
<td>67 11 30</td>
<td>156 25 00</td>
<td>cp</td>
<td>18.365</td>
<td>15.598</td>
<td>38.177</td>
</tr>
<tr>
<td>SURVEY PASS</td>
<td>BT (I-4)</td>
<td>BT-77</td>
<td>67 07</td>
<td>155 51</td>
<td>GN</td>
<td>18.393</td>
<td>15.651</td>
<td>38.270</td>
</tr>
<tr>
<td></td>
<td>BT</td>
<td>DDH4:145</td>
<td>67 07</td>
<td>155 51</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cynbad</td>
<td>DDH1:80</td>
<td>67 07</td>
<td>155 44</td>
<td>gn, sl, cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun</td>
<td>DDH21:43</td>
<td>67 04 30</td>
<td>155 01 30</td>
<td>py, cp, sl, gn</td>
<td>18.244</td>
<td>15.561</td>
<td>37.975</td>
</tr>
<tr>
<td></td>
<td>Sun (I-5)</td>
<td>Sun-10</td>
<td>67 04 30</td>
<td>155 01 30</td>
<td>GN</td>
<td>18.200</td>
<td>15.517</td>
<td>37.904</td>
</tr>
<tr>
<td></td>
<td>Sun (I-6)</td>
<td>Sun-12</td>
<td>67 04 30</td>
<td>155 01 30</td>
<td>GN</td>
<td>18.304</td>
<td>15.591</td>
<td>38.105</td>
</tr>
<tr>
<td></td>
<td>Sun</td>
<td>DDH20:358</td>
<td>67 04 30</td>
<td>155 01 30</td>
<td>cp</td>
<td>18.300</td>
<td>15.579</td>
<td>38.050</td>
</tr>
<tr>
<td></td>
<td>Kiwi</td>
<td>DDH1:165</td>
<td>67 06</td>
<td>155 00</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arrigetch Crk</td>
<td>7AMH110D</td>
<td>67 26</td>
<td>154 03</td>
<td>sl, GN</td>
<td>18.377</td>
<td>15.601</td>
<td>38.177</td>
</tr>
<tr>
<td></td>
<td>Akabuaq Pass</td>
<td>7AMD202E</td>
<td>67 28</td>
<td>154 41</td>
<td>GN, sl, cp, asp</td>
<td>18.497</td>
<td>15.604</td>
<td>38.206</td>
</tr>
<tr>
<td></td>
<td>Beaver Crk</td>
<td>7AMK325C</td>
<td>67 07</td>
<td>155 24</td>
<td>GN, sl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. Alatna area</td>
<td>7AMG3400</td>
<td>67 50</td>
<td>155 15</td>
<td>GN, cp, sl</td>
<td>18.364</td>
<td>15.591</td>
<td>38.274</td>
</tr>
</tbody>
</table>
Table 1. Pb-isotope data from sulfides from Northern Alaska (cont.)

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Sample Source</th>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>Model No.</th>
<th>Region/District</th>
<th>TST Age</th>
<th>Age of Contr.</th>
<th>Pb Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>0 carb-hstd shea zn breccia</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Ki</td>
<td>AAE</td>
<td>D</td>
<td>YJ</td>
<td>PF</td>
</tr>
<tr>
<td>MD</td>
<td>0 carb-hstd crs-cutting cal vein</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Ki</td>
<td>AAE</td>
<td>D</td>
<td>YJ</td>
<td>PF</td>
</tr>
<tr>
<td>MD</td>
<td>0 carb-hstd stratabound disseminated</td>
<td>Replic</td>
<td>32</td>
<td>NW/Ki</td>
<td>AAE</td>
<td>D</td>
<td>YJ</td>
<td>JS</td>
</tr>
<tr>
<td>MD</td>
<td>0 carb-hstd stratabound disseminated</td>
<td>Replic</td>
<td>32</td>
<td>NW/Ki</td>
<td>AAE</td>
<td>D</td>
<td>YJ</td>
<td>JS</td>
</tr>
<tr>
<td>HS/BD</td>
<td>C carb-hstd breccia</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td>86.1</td>
</tr>
<tr>
<td>HS/BD</td>
<td>C carb-hstd breccia</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td>86.1</td>
</tr>
<tr>
<td>HS/BD</td>
<td>D carb-hstd vein</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td>86.1</td>
</tr>
<tr>
<td>GSC</td>
<td>C carb-hstd crs-cutting cal vein</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>GSC</td>
<td>C carb-hstd crs-cutting vein</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>GSC</td>
<td>C carb-hstd breccia disseminated</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>GSC</td>
<td>C carb-hstd crs-cutting vein</td>
<td>Replic</td>
<td>32c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Ki</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>RV</td>
</tr>
<tr>
<td>TD</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Ki</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Ki</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D66S</td>
</tr>
<tr>
<td>TD</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Ki</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D66S</td>
</tr>
<tr>
<td>ALH/BD</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>DC</td>
</tr>
<tr>
<td>MD</td>
<td>D主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>DC</td>
</tr>
<tr>
<td>GC</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>RV</td>
</tr>
<tr>
<td>TD</td>
<td>D主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>C主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D66S</td>
</tr>
<tr>
<td>MD</td>
<td>D主要有-hstd stratiform disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D66S</td>
</tr>
<tr>
<td>MD</td>
<td>D主要有-hstd stratiform disseminated</td>
<td>Pb-Zn skn</td>
<td>18c</td>
<td>YR/Kk</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D6</td>
</tr>
<tr>
<td>MD</td>
<td>D主要有-hstd stratiform disseminated</td>
<td>Pb-Zn skn</td>
<td>18c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D6</td>
</tr>
<tr>
<td>MD</td>
<td>D主要有-hstd contact replacement</td>
<td>Pb-Zn skn</td>
<td>18c</td>
<td>NW/Sh</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>D6</td>
</tr>
<tr>
<td>MD</td>
<td>D主要有-hstd stratiform disseminated</td>
<td>FV</td>
<td>22c</td>
<td>YR/Kk</td>
<td>AAE</td>
<td>D</td>
<td>D</td>
<td>D6</td>
</tr>
</tbody>
</table>
Table 1. Pb-isotope data from sulfides from Northern Alaska (cont.)

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Locality</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample Mineralogy</th>
<th>204Pb</th>
<th>207Pb</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELONG MOUNTAINS</td>
<td>Red Dog</td>
<td>RD-63B</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>GN</td>
<td>18.409</td>
<td>15.598</td>
<td>38.238</td>
</tr>
<tr>
<td></td>
<td>Red Dog</td>
<td>78ARD-1</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>GN</td>
<td>18.414</td>
<td>15.602</td>
<td>38.254</td>
</tr>
<tr>
<td></td>
<td>Red Dog</td>
<td>LL26-1B</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>GN</td>
<td>18.404</td>
<td>15.590</td>
<td>38.228</td>
</tr>
<tr>
<td></td>
<td>Red Dog</td>
<td>LL4-14</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>GN, bar</td>
<td>18.413</td>
<td>15.604</td>
<td>38.197</td>
</tr>
<tr>
<td></td>
<td>Red Dog</td>
<td>LL26-6B</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>sl, GN, py</td>
<td>18.403</td>
<td>15.602</td>
<td>38.254</td>
</tr>
<tr>
<td></td>
<td>Red Dog</td>
<td>A110sphA</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>sl</td>
<td>18.393</td>
<td>15.573</td>
<td>38.151</td>
</tr>
<tr>
<td></td>
<td>Red Dog</td>
<td>A110sphB</td>
<td>68 04 00</td>
<td>162 49 30</td>
<td>sl</td>
<td>18.404</td>
<td>15.585</td>
<td>38.181</td>
</tr>
<tr>
<td></td>
<td>drinkwater</td>
<td>A109sph</td>
<td>68 12</td>
<td>162 50</td>
<td>GN</td>
<td>18.422</td>
<td>15.614</td>
<td>38.298</td>
</tr>
<tr>
<td></td>
<td>lik</td>
<td>lik</td>
<td>68 04</td>
<td>162 32</td>
<td>GN</td>
<td>18.475</td>
<td>15.608</td>
<td>38.309</td>
</tr>
<tr>
<td>MISHIPEGUK MOUNTAIN</td>
<td>Ginny Creek</td>
<td>78Ekl27A</td>
<td>68 17</td>
<td>161 16</td>
<td>GN, sl, ank, py</td>
<td>18.395</td>
<td>15.592</td>
<td>38.236</td>
</tr>
<tr>
<td>HOWARD PASS</td>
<td>Drenchwater</td>
<td>78PM-052</td>
<td>68 35</td>
<td>158 42 30</td>
<td>GN</td>
<td>18.406</td>
<td>15.592</td>
<td>38.270</td>
</tr>
<tr>
<td></td>
<td>Drenchwater</td>
<td>77ANX-13H</td>
<td>68 35</td>
<td>158 42 30</td>
<td>GN, sl, bar</td>
<td>18.428</td>
<td>15.609</td>
<td>38.351</td>
</tr>
<tr>
<td></td>
<td>Story Creek</td>
<td>79Md194B</td>
<td>68 23</td>
<td>157 58</td>
<td>GN, sl</td>
<td>18.404</td>
<td>15.595</td>
<td>38.224</td>
</tr>
<tr>
<td></td>
<td>Story Creek</td>
<td>STA B-D</td>
<td>68 23</td>
<td>157 58</td>
<td>sl, GN, py</td>
<td>18.415</td>
<td>15.606</td>
<td>38.288</td>
</tr>
<tr>
<td></td>
<td>Story Creek</td>
<td>STA 1.77</td>
<td>68 23</td>
<td>157 58</td>
<td>sl, GN, py</td>
<td>18.427</td>
<td>15.599</td>
<td>38.272</td>
</tr>
<tr>
<td></td>
<td>Whoopee Crk</td>
<td>WHC-3</td>
<td>68 14</td>
<td>157 50</td>
<td>sl (1000 ppm Pb)</td>
<td>18.398</td>
<td>15.595</td>
<td>38.253</td>
</tr>
<tr>
<td></td>
<td>Whoopee Crk</td>
<td>WHC-10A</td>
<td>68 14</td>
<td>157 50</td>
<td>sl, GN</td>
<td>18.406</td>
<td>15.600</td>
<td>38.265</td>
</tr>
<tr>
<td></td>
<td>Kivliktorta Mtn</td>
<td>AKD600B</td>
<td>68 18</td>
<td>156 38</td>
<td>GN</td>
<td>18.436</td>
<td>15.604</td>
<td>38.292</td>
</tr>
<tr>
<td></td>
<td>Koiyaktot Mtn</td>
<td>AKD601B</td>
<td>68 13</td>
<td>156 19</td>
<td>GN</td>
<td>18.422</td>
<td>15.609</td>
<td>38.304</td>
</tr>
<tr>
<td>KILLIK RIVER</td>
<td>Outwash Crk</td>
<td>AKD605B</td>
<td>68 12</td>
<td>155 02</td>
<td>GN, sl, cp, py</td>
<td>18.404</td>
<td>15.605</td>
<td>38.315</td>
</tr>
<tr>
<td></td>
<td>Itiilyiargiok Crk</td>
<td>AKD610B</td>
<td>68 07 35</td>
<td>155 16 45</td>
<td>GN, cp, sl</td>
<td>18.416</td>
<td>15.609</td>
<td>38.278</td>
</tr>
<tr>
<td></td>
<td>Kayak concretions</td>
<td>AKD613A</td>
<td>68 17 45</td>
<td>155 41 05</td>
<td>sl, GN, qz, blf cal concretions</td>
<td>18.583</td>
<td>15.611</td>
<td>38.450</td>
</tr>
<tr>
<td></td>
<td>Kavikilik Crk</td>
<td>AKD608</td>
<td>68 09 14</td>
<td>155 00 42</td>
<td>GN</td>
<td>18.490</td>
<td>15.604</td>
<td>38.271</td>
</tr>
<tr>
<td></td>
<td>Kikiktat Mtn</td>
<td>AKD073</td>
<td>68 22 36</td>
<td>154 47 37</td>
<td>cp (8 ppm Pb, 1 ms run only)</td>
<td>18.854</td>
<td>15.582</td>
<td>38.287</td>
</tr>
<tr>
<td>CHANDLER LAKE</td>
<td>Inukpasugruk Crk</td>
<td>B4AKD430R</td>
<td>68 05 00</td>
<td>151 49 35</td>
<td>py, cp (50 ppm Pb)</td>
<td>18.753</td>
<td>15.627</td>
<td>38.870</td>
</tr>
<tr>
<td></td>
<td>Three River Mtn</td>
<td>84CL444R</td>
<td>68 04 30</td>
<td>151 39 22</td>
<td>py (200 ppm Pb)</td>
<td>18.659</td>
<td>15.622</td>
<td>38.638</td>
</tr>
<tr>
<td></td>
<td>Grizzly Crk</td>
<td>CL784R</td>
<td>68 05 38</td>
<td>150 43 13</td>
<td>GN, cal</td>
<td>18.586</td>
<td>15.610</td>
<td>38.628</td>
</tr>
<tr>
<td></td>
<td>Itkikilik River</td>
<td>CL848R</td>
<td>68 14 45</td>
<td>150 24 05</td>
<td>GN</td>
<td>18.728</td>
<td>15.619</td>
<td>38.256</td>
</tr>
<tr>
<td></td>
<td>Thibideaux Mtn</td>
<td>B4CL401</td>
<td>68 17 31</td>
<td>150 08 00</td>
<td>py (150 ppm Pb)</td>
<td>18.786</td>
<td>15.631</td>
<td>38.955</td>
</tr>
<tr>
<td>PHILIP SMITH MNTS</td>
<td>MF Chandalar R.</td>
<td>PS232RA</td>
<td>68 02 05</td>
<td>147 49 50</td>
<td>GN</td>
<td>18.545</td>
<td>15.606</td>
<td>38.285</td>
</tr>
<tr>
<td></td>
<td>MF Chandalar R.</td>
<td>76ARR47</td>
<td>68 01 40</td>
<td>147 52 30</td>
<td>GN</td>
<td>18.728</td>
<td>15.619</td>
<td>38.256</td>
</tr>
<tr>
<td>TABLE MOUNTAIN</td>
<td>Bear Mtn</td>
<td>59ABeC-2C</td>
<td>68 22 20</td>
<td>142 02 00</td>
<td>GN, cp, al</td>
<td>18.786</td>
<td>15.631</td>
<td>38.955</td>
</tr>
<tr>
<td></td>
<td>Bear Mtn</td>
<td>59ABeC-5A</td>
<td>68 22 45</td>
<td>142 00 30</td>
<td>GN, al</td>
<td>18.760</td>
<td>15.624</td>
<td>38.938</td>
</tr>
<tr>
<td>Analyst Sample</td>
<td>Deposit Characteristics</td>
<td>Deposit Type</td>
<td>Region/District</td>
<td>TST Age of Contr.</td>
<td>USBM Age of Contr.</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD/BD</td>
<td>sh-hstd stratiform massive</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>85.2</td>
<td></td>
</tr>
<tr>
<td>MD/BD</td>
<td>sh-hstd stratiform massive</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>85.2</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>sh-hstd banded vein</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>80.1</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>sh-hstd breccia qz vein</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>86.6</td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>sh-hstd stratiform massive</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>86.5</td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>sh-hstd stratiform massive</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>86.5</td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>sh-hstd stratiform massive</td>
<td>SEDEX</td>
<td>31a NA/Ls</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>86.5</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sh-hstd crs-cutting vein</td>
<td>FV</td>
<td>31a? NW/Nt</td>
<td>AAD</td>
<td>D</td>
<td>M</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sh-hstd vein</td>
<td>FV</td>
<td>31a? NW/Nt</td>
<td>AAD</td>
<td>D</td>
<td>eM</td>
<td>86.6</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>sh-hstd stratiform dissem</td>
<td>SEDEX</td>
<td>31a NA/Cv</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>85.2</td>
<td></td>
</tr>
<tr>
<td>MD/BD</td>
<td>sh-hstd stratiform dissem</td>
<td>SEDEX</td>
<td>31a NA/Cv</td>
<td>AAD</td>
<td>M</td>
<td>M</td>
<td>80.1</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>sd-hstd breccia massive</td>
<td>FV</td>
<td>31a? NA/Cv</td>
<td>AAD</td>
<td>M</td>
<td>eM</td>
<td>80.1</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sd-hstd crs-cutting vein</td>
<td>FV</td>
<td>31a? NA/Cv</td>
<td>AAD</td>
<td>M</td>
<td>eM</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sd-hstd breccia vein</td>
<td>FV</td>
<td>31a? NA/Cv</td>
<td>AAD</td>
<td>M</td>
<td>eM</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sd-hstd crs-cutting vein</td>
<td>FV</td>
<td>31a? NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>eM</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>ss-hstd crs-cutting vein</td>
<td>FV</td>
<td>31a? NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>ss-hstd stratiform dissem</td>
<td>SEDEX</td>
<td>31a NA/Cv</td>
<td>AAE</td>
<td>SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>FV</td>
<td>NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>sd-hstd crs-cutting vein</td>
<td>FV</td>
<td>NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>shale stratiform syngen</td>
<td>NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>M</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td>FV</td>
<td>NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td>FV</td>
<td>NA/Cv</td>
<td>AAE</td>
<td>D</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>carb-hstd crs-cutting vein</td>
<td>FV</td>
<td>YR/C1</td>
<td>AAE</td>
<td>D</td>
<td>JC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>carb-hstd crs-cutting vein</td>
<td>FV</td>
<td>YR/C1</td>
<td>AAE</td>
<td>D</td>
<td>JC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>felsic dike shear zn qz vein</td>
<td>Fm-MTV</td>
<td>22c? 16?</td>
<td>YR/Sj</td>
<td>AAM</td>
<td>Pz</td>
<td>Somy</td>
<td>MB</td>
</tr>
<tr>
<td>MD</td>
<td>m/sd-hstd vein</td>
<td>Fm-MTV</td>
<td>22c? 16?</td>
<td>YR/Sj</td>
<td>AAM</td>
<td>Pz</td>
<td>Somy</td>
<td>MB</td>
</tr>
</tbody>
</table>
Table 2. Pb-isotope data from sulfides from West-Central Alaska

<table>
<thead>
<tr>
<th>Locality</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Mineralogy</th>
<th>(^{206}Pb)</th>
<th>(^{207}Pb)</th>
<th>(^{208}Pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iditarod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirque Prospect</td>
<td>I-0096RC</td>
<td>62 50 45</td>
<td>156 58 29</td>
<td>cp, py, (35000 ppi Pb)</td>
<td>18.923</td>
<td>15.607</td>
<td>38.583</td>
</tr>
<tr>
<td>Tolstoi Prospect</td>
<td>I-0099R</td>
<td>62 55 03</td>
<td>156 58 45</td>
<td>cp, py, gn, tu (7000 ppi Pb)</td>
<td>18.915</td>
<td>15.600</td>
<td>38.354</td>
</tr>
<tr>
<td>Snow Gulch</td>
<td>I-032</td>
<td>62 03 39</td>
<td>158 11 15</td>
<td>st (500 ppi Pb)</td>
<td>18.961</td>
<td>15.616</td>
<td>38.649</td>
</tr>
<tr>
<td>Willow Creek</td>
<td>I-280</td>
<td>62 21 25</td>
<td>156 59 00</td>
<td>st, cn (75 ppi Pb)</td>
<td>18.869</td>
<td>15.616</td>
<td>38.509</td>
</tr>
<tr>
<td>Decourcy Mine</td>
<td>I-036</td>
<td>62 03 34</td>
<td>158 27 22</td>
<td>st, cn (80 ppi Pb)</td>
<td>18.854</td>
<td>15.605</td>
<td>38.580</td>
</tr>
<tr>
<td>Granite Creek</td>
<td>I-001RB</td>
<td>62 28 54</td>
<td>157 54 41</td>
<td>st, tn, sch, cs (10000 ppi Pb)</td>
<td>18.838</td>
<td>15.592</td>
<td>38.429</td>
</tr>
<tr>
<td>Golden Horn</td>
<td>I-122A</td>
<td>62 56 53</td>
<td>156 26 42</td>
<td>py, cp (1500 ppi Pb)</td>
<td>18.837</td>
<td>15.598</td>
<td>38.546</td>
</tr>
<tr>
<td>Teller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost River</td>
<td>73AGK31B</td>
<td>65 28 10</td>
<td>167 09 30</td>
<td>GN</td>
<td>18.961</td>
<td>15.627</td>
<td>38.847</td>
</tr>
<tr>
<td>Bessie & Maple</td>
<td>73AGK12G</td>
<td>65 27</td>
<td>167 12</td>
<td>GN</td>
<td>18.961</td>
<td>15.628</td>
<td>38.854</td>
</tr>
<tr>
<td>Reed</td>
<td>73AGK14AC</td>
<td>65 31</td>
<td>167 10</td>
<td>GN</td>
<td>18.959</td>
<td>15.630</td>
<td>38.847</td>
</tr>
<tr>
<td>Hume Creek granite</td>
<td>ATS184A</td>
<td>64 54</td>
<td>166 05</td>
<td>Feldspar</td>
<td>18.94</td>
<td>15.67</td>
<td>38.76</td>
</tr>
<tr>
<td>BR granite</td>
<td>60AS145</td>
<td>65 31 30</td>
<td>167 10</td>
<td>Feldspar</td>
<td>19.05</td>
<td>15.67</td>
<td>38.96</td>
</tr>
<tr>
<td>Solomon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheeler</td>
<td>SPB-1-B2B</td>
<td>64 59</td>
<td>164 38</td>
<td>GN, py, ank, at, flu</td>
<td>18.408</td>
<td>15.607</td>
<td>38.263</td>
</tr>
<tr>
<td>Dry Canyon</td>
<td>83AG661A</td>
<td>64 51 43</td>
<td>162 27 20</td>
<td>py, gn, si (500 ppi Pb)</td>
<td>19.050</td>
<td>15.638</td>
<td>38.833</td>
</tr>
<tr>
<td>Bendelev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omilak</td>
<td>83AG672c</td>
<td>65 02 34</td>
<td>162 39 35</td>
<td>st, GN, py, asp, cp</td>
<td>20.136</td>
<td>15.710</td>
<td>38.844</td>
</tr>
<tr>
<td>Windy Creek</td>
<td>SPB-8-B2A</td>
<td>65 11</td>
<td>162 36</td>
<td>mly, flu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pargon River</td>
<td>SPB-19-B2</td>
<td>65 12</td>
<td>163 49</td>
<td>GN, cp, ml, la, py, ch</td>
<td>18.921</td>
<td>15.608</td>
<td>38.753</td>
</tr>
<tr>
<td>Marble Breccia</td>
<td>SPB-21-B2B</td>
<td>65 12</td>
<td>163 52</td>
<td>cp, ml, la, at, cr</td>
<td>18.901</td>
<td>15.611</td>
<td>38.722</td>
</tr>
<tr>
<td>Hannu Creek</td>
<td>SPB-31-B2D</td>
<td>65 55 30</td>
<td>163 21</td>
<td>GN, py, la</td>
<td>19.012</td>
<td>15.629</td>
<td>38.879</td>
</tr>
<tr>
<td>Hannu Creek</td>
<td>SPB-1-B3</td>
<td>65 55 30</td>
<td>163 21</td>
<td>GN, si</td>
<td>18.966</td>
<td>15.621</td>
<td>38.848</td>
</tr>
<tr>
<td>Independence</td>
<td>SPB-35-B2D</td>
<td>65 40</td>
<td>162 28</td>
<td>GN, pl, la, tt</td>
<td>18.904</td>
<td>15.630</td>
<td>38.760</td>
</tr>
<tr>
<td>Foster</td>
<td>DMB-5-B2</td>
<td>65 02</td>
<td>162 35</td>
<td>GN</td>
<td>19.382</td>
<td>15.656</td>
<td>38.811</td>
</tr>
<tr>
<td>Foster</td>
<td>83ED-1</td>
<td>65 01</td>
<td>162 35</td>
<td>GN, py, la</td>
<td>19.188</td>
<td>15.641</td>
<td>38.820</td>
</tr>
<tr>
<td>Nome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson</td>
<td>86AG001A</td>
<td>64 47 05</td>
<td>165 10 10</td>
<td>py, asp, si, gn (2% Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarry barite</td>
<td>86AG002C</td>
<td>64 42 07</td>
<td>165 46 00</td>
<td>bar, gn, si, ml (2% Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora Creek</td>
<td>86AG006B</td>
<td>64 43 07</td>
<td>165 36 32</td>
<td>gn, si, py, ml (1000 ppi Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena</td>
<td>86AG008B</td>
<td>64 44 11</td>
<td>165 49 31</td>
<td>gn, si, hm (1% Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steep Creek</td>
<td>86AG025A</td>
<td>64 45 57</td>
<td>165 23 24</td>
<td>gn, si, ml (2% Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyst</td>
<td>Source</td>
<td>Deposit Characteristics</td>
<td>Type</td>
<td>Region/TST</td>
<td>Age of Host</td>
<td>Age of Contr.</td>
<td>Pb</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------------------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>monzonite shear zn</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/In</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD</td>
<td>R</td>
<td>monzonite shear zn</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/In</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/Id</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD</td>
<td>R</td>
<td>sd-hstd breccia</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/Id</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>sd-hstd breccia</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/Id</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>monzonite concordant接触</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/Id</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>dacite dike disseminated</td>
<td>Pb-MTV</td>
<td>22c</td>
<td>YR/Id</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

MD/BD	O	granite	Pb-MTV	22c	SP/Pc	86 Ma	86 Ma	D6
MD/BD	O	granite	Pb-MTV	22c	SP/Pc	86 Ma	86 Ma	D6
MD/BD	O	granite	Pb-MTV	22c	SP/Pc	86 Ma	86 Ma	D6
MD	O	granite	Pb-MTV	22c	SP/Pc	86 Ma	86 Ma	D6

| MD | P | m/sd-hstd stringers | Pb-MTV | 22c | SP/Co | K | K | JB |
| MD | P | grndiorite gossan | Pb-MTV | 22c | SP/Co | K | K | JB |

MD	D	marl-hstd stratabound replac?	Replc?	19a?/31a?	SP/Co	Pz	Pz?	B6
MD	O	monzonite stringer	Pb-MTV	22c	SP/Co	K	K	JB
MD	R	mvol-hstd breccia	Pb-MTV	22c	SP/Co	K	K	JB
MD	P	m/sd-hstd stratiform disseminated	SEDEX	31a	SP/Fh	1C	1C	JB
MD	P	m/sd-hstd stratiform disseminated	SEDEX	31a	SP/Fh	1C	1C	JB
MD	P	m/sd-hstd stratiform disseminated	SEDEX	31a	SP/Fh	1C	1C	JB
MD	R	marl-hstd shear zn	Pb-MTV	22c	SP/Fh	K	K	JB
MD/BD	R	marl-hstd shear zn	Pb-MTV	22c	SP/Fh	K	K	JB

<p>| P | m/sd-hstd stratiform disseminated | SEDEX | 31a | SP/Na | 0 | 0? | B6 |
| Q | m/sd-hstd stratiform disseminated | SEDEX | 31a | SP/Na | 0 | 0? | B6 |
| R | m/sd-hstd stratiform disseminated | SEDEX | 31a | SP/Na | 0 | 0? | B6 |
| P | m/sd-hstd breccia disseminated | SEDEX | 31a | SP/Na | 0 | 0? | B6 |
| P | carb-hstd stratabound disseminated | SEDEX | 31a | SP/Na | 0 | 0? | B6 |</p>
<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Mineralogy</th>
<th>Sample</th>
<th>206Pb</th>
<th>207Pb</th>
<th>208Pb</th>
<th>204Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIRBANKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St Patricks Mine</td>
<td>G3091</td>
<td>64 52 25</td>
<td>147 29 10</td>
<td>st, Au, gn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogosh Prospect</td>
<td>B44SCF08</td>
<td>64 53 35</td>
<td>147 59 15</td>
<td>GN, sl, py, Au</td>
<td></td>
<td>19.102</td>
<td>15.638</td>
<td>39.105</td>
<td></td>
</tr>
<tr>
<td>Yellow Pup</td>
<td>G3122</td>
<td>64 59 10</td>
<td>147 19 35</td>
<td>st, Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleary Schist</td>
<td>B44SCF13</td>
<td>64 47 35</td>
<td>148 08 40</td>
<td>la (<10 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberty Bell</td>
<td>G3178</td>
<td>64 03 05</td>
<td>148 51 00</td>
<td>bis, Au</td>
<td></td>
<td>19.168</td>
<td>15.669</td>
<td>39.058</td>
<td></td>
</tr>
<tr>
<td>Flume Creek</td>
<td>FC-1</td>
<td>64 00 50</td>
<td>147 17 30</td>
<td>GN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIG DELTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcupine Creek</td>
<td>78AFr231</td>
<td>64 35 30</td>
<td>144 26 30</td>
<td>GN</td>
<td></td>
<td>18.788</td>
<td>15.650</td>
<td>39.043</td>
<td></td>
</tr>
<tr>
<td>Black Shell Creek</td>
<td>78AFr238</td>
<td>64 52 54</td>
<td>145 37 30</td>
<td>GN</td>
<td></td>
<td>18.431</td>
<td>15.662</td>
<td>38.379</td>
<td></td>
</tr>
<tr>
<td>EAGLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 mile</td>
<td>JA001</td>
<td>64 07 30</td>
<td>141 06 15</td>
<td>GN, Au</td>
<td></td>
<td>19.382</td>
<td>15.671</td>
<td>39.255</td>
<td></td>
</tr>
<tr>
<td>McKibben's Prospect</td>
<td>75AFr105</td>
<td>64 06 35</td>
<td>143 12 10</td>
<td>GN, st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANANA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manley dome</td>
<td>MHS</td>
<td>65 02 00</td>
<td>150 44 10</td>
<td>GN, la</td>
<td></td>
<td>20.840</td>
<td>15.838</td>
<td>40.777</td>
<td></td>
</tr>
<tr>
<td>Cooney Creek</td>
<td>G3212</td>
<td>65 08 25</td>
<td>150 42 30</td>
<td>GN, Au, cn, py</td>
<td></td>
<td>18.901</td>
<td>15.629</td>
<td>38.715</td>
<td></td>
</tr>
<tr>
<td>Omega Creek</td>
<td>G3209</td>
<td>65 10 50</td>
<td>150 19 30</td>
<td>GN, Au</td>
<td></td>
<td>18.993</td>
<td>15.652</td>
<td>38.764</td>
<td></td>
</tr>
<tr>
<td>LIVENGOOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geraghty Mine</td>
<td>G-1</td>
<td>65 29 55</td>
<td>148 30 40</td>
<td>GN</td>
<td></td>
<td>19.004</td>
<td>15.636</td>
<td>38.793</td>
<td></td>
</tr>
<tr>
<td>Nordell Mine</td>
<td>B44SCF04A</td>
<td>65 04 55</td>
<td>147 22 50</td>
<td>GN, sl, py, cp</td>
<td></td>
<td>19.139</td>
<td>15.694</td>
<td>39.214</td>
<td></td>
</tr>
<tr>
<td>Pedro Dome</td>
<td>65 02 00</td>
<td>147 30 00</td>
<td>GN</td>
<td></td>
<td></td>
<td>19.118</td>
<td>15.688</td>
<td>39.146</td>
<td></td>
</tr>
<tr>
<td>Silver Fox</td>
<td>Busty Bell</td>
<td>65 00 30</td>
<td>147 33 15</td>
<td>GN</td>
<td></td>
<td>19.126</td>
<td>15.693</td>
<td>39.177</td>
<td></td>
</tr>
<tr>
<td>Steamboat Creek</td>
<td>65 01 30</td>
<td>147 30 00</td>
<td>GN</td>
<td></td>
<td></td>
<td>19.132</td>
<td>15.685</td>
<td>39.160</td>
<td></td>
</tr>
<tr>
<td>Chechacko Vein</td>
<td>TS-1(Gem)</td>
<td>65 03 42</td>
<td>147 27 45</td>
<td>GN, py, sl</td>
<td></td>
<td>19.046</td>
<td>15.619</td>
<td>38.961</td>
<td></td>
</tr>
<tr>
<td>Cleary Road</td>
<td>TS-2</td>
<td>65 02 50</td>
<td>147 27 10</td>
<td>GN, st, la</td>
<td></td>
<td>19.087</td>
<td>15.663</td>
<td>39.044</td>
<td></td>
</tr>
<tr>
<td>Cleary Hill</td>
<td>G3134</td>
<td>65 02 50</td>
<td>147 27 10</td>
<td>cp, st, GN</td>
<td></td>
<td>19.127</td>
<td>15.680</td>
<td>39.176</td>
<td></td>
</tr>
<tr>
<td>Mackowitz</td>
<td>TS-3</td>
<td>65 02 45</td>
<td>147 30 00</td>
<td>GN, st, la</td>
<td></td>
<td>19.027</td>
<td>15.612</td>
<td>38.932</td>
<td></td>
</tr>
<tr>
<td>Gea Claim</td>
<td>JA071M(TS1)</td>
<td>65 03 42</td>
<td>147 27 45</td>
<td>GN</td>
<td></td>
<td>19.158</td>
<td>15.709</td>
<td>39.264</td>
<td></td>
</tr>
<tr>
<td>Christina Vein</td>
<td>B44SCF06</td>
<td>65 04 20</td>
<td>147 22 40</td>
<td>GN, asp</td>
<td></td>
<td>19.139</td>
<td>15.696</td>
<td>39.226</td>
<td></td>
</tr>
<tr>
<td>Hi Yu</td>
<td>G3132</td>
<td>65 04 35</td>
<td>147 16 40</td>
<td>py, cp, GN</td>
<td></td>
<td>19.161</td>
<td>15.693</td>
<td>39.224</td>
<td></td>
</tr>
<tr>
<td>CIRCLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faith Creek</td>
<td>B4C1015R</td>
<td>65 23 40</td>
<td>146 15 50</td>
<td>GN, sl, st, asp, py</td>
<td></td>
<td>19.136</td>
<td>15.715</td>
<td>39.291</td>
<td></td>
</tr>
<tr>
<td>Gold Dust</td>
<td>G3176</td>
<td>65 25 00</td>
<td>145 28 15</td>
<td>GN, Au, py, gt</td>
<td></td>
<td>19.041</td>
<td>15.676</td>
<td>39.034</td>
<td></td>
</tr>
<tr>
<td>Independence Crk</td>
<td>83AM1036E</td>
<td>65 27 33</td>
<td>145 13 27</td>
<td>GN, py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Pb-isotope data from sulfides from East-Central Alaska (cont.)

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Sample</th>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>Model No.</th>
<th>Region/District</th>
<th>Age of Host</th>
<th>Age of Contr.</th>
<th>Publ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>P</td>
<td>granite lens qz vein</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Fb</td>
<td>YT</td>
<td>K</td>
<td>SC</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>m/sd-hstd stratiform dissem</td>
<td></td>
<td></td>
<td>K-VMS</td>
<td>28a</td>
<td>YT</td>
<td>SC</td>
</tr>
<tr>
<td>MD</td>
<td>D</td>
<td>m/sd-hstd crs-cutting vein</td>
<td></td>
<td></td>
<td>FV</td>
<td>YT</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>ALH</td>
<td>D</td>
<td>m/sd-hstd stratiform dissem</td>
<td></td>
<td></td>
<td>K-VMS</td>
<td>28a?/31a?</td>
<td>Pz? Pz?</td>
<td>HF</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>m/sd-hstd replac</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Fb</td>
<td>YT</td>
<td>Pz? K-C?</td>
<td>HF</td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td></td>
<td></td>
<td>FV</td>
<td>YT</td>
<td>Pz?</td>
<td>JA</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Hs</td>
<td>MAN</td>
<td>JC</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>S</td>
<td>crs-cutting vein</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Tv</td>
<td>LG</td>
<td>JC</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>S</td>
<td>crs-cutting qz vein</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Fb</td>
<td>YT</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>granite vein</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Fb</td>
<td>YT</td>
<td>SC</td>
<td>79.1</td>
</tr>
<tr>
<td>MD</td>
<td>D</td>
<td>vein</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Fb</td>
<td>YT</td>
<td>SC</td>
<td>79.1</td>
</tr>
<tr>
<td>TD</td>
<td>P</td>
<td>m/sd-hstd shear zn replac</td>
<td>Replic</td>
<td>19a</td>
<td>YR/Fb</td>
<td>YT</td>
<td>Pz? TS</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>O</td>
<td>m/sd-hstd concordant qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Fb</td>
<td>YT</td>
<td>Pz? TS</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>m/sd-hstd shear zn qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Fb</td>
<td>YT</td>
<td>Pz? JA</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>O</td>
<td>m/sd-hstd concordant qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Fb</td>
<td>YT</td>
<td>Pz? TS</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>m/sd-hstd shear zn qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Fb</td>
<td>YT</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>m/sd-hstd qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Fb</td>
<td>YT</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Ci</td>
<td>YT</td>
<td>Pz? RT</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>S</td>
<td>Plc-Au</td>
<td>39</td>
<td>YR/Ci</td>
<td>YT</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>S</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td>Plc-Au</td>
<td>22c</td>
<td>YR/Ci</td>
<td>YT</td>
<td>Pz? WM</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Pb-isotope data from sulfides from East-Central Alaska (cont.)

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Mineralogy</th>
<th>Sample</th>
<th>204Pb</th>
<th>207Pb</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISEMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO-1</td>
<td>DDH1:50</td>
<td>67 08 30</td>
<td>152 54</td>
<td>GN, cp</td>
<td>17.837</td>
<td>15.553</td>
<td>37.508</td>
<td></td>
</tr>
<tr>
<td>Frog</td>
<td>way</td>
<td>67 18 45</td>
<td>153 00</td>
<td>cp, si</td>
<td>18.369</td>
<td>15.586</td>
<td>38.182</td>
<td></td>
</tr>
<tr>
<td>Frog (Dnx 78)</td>
<td>M-218</td>
<td>67 18 51</td>
<td>152 55 30</td>
<td>GN, si, asp, py</td>
<td>19.310</td>
<td>15.666</td>
<td>39.103</td>
<td></td>
</tr>
<tr>
<td>McCanant Crk</td>
<td>M-1290A</td>
<td>67 22 58</td>
<td>151 58 47</td>
<td>GN, al</td>
<td>18.369</td>
<td>15.586</td>
<td>38.182</td>
<td></td>
</tr>
<tr>
<td>Smith Dome</td>
<td>M-1739B</td>
<td>67 28 00</td>
<td>150 08 30</td>
<td>st (700 ppm Pb)</td>
<td>18.466</td>
<td>15.608</td>
<td>38.631</td>
<td></td>
</tr>
<tr>
<td>NF Koyukuk R.</td>
<td>M-2120</td>
<td>67 45 20</td>
<td>151 00 40</td>
<td>sl, cp, bar, py, Au, gn</td>
<td>18.703</td>
<td>15.623</td>
<td>38.778</td>
<td></td>
</tr>
<tr>
<td>Amawk Crk</td>
<td>M-972</td>
<td>67 58 30</td>
<td>150 30 00</td>
<td>cr, GN, cp, si, bar, asp, Au</td>
<td>18.704</td>
<td>15.629</td>
<td>38.785</td>
<td></td>
</tr>
<tr>
<td>Amawk Crk</td>
<td>M-2232</td>
<td>67 58 25</td>
<td>150 29 00</td>
<td>GN</td>
<td>18.704</td>
<td>15.629</td>
<td>38.785</td>
<td></td>
</tr>
<tr>
<td>CHANDALAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikado mine</td>
<td>Mikado</td>
<td>67 32 40</td>
<td>148 13 40</td>
<td>GN, asp, py, si, st, Au</td>
<td>18.804</td>
<td>15.662</td>
<td>38.938</td>
<td></td>
</tr>
<tr>
<td>Mikado mine</td>
<td>B6-Mikado</td>
<td>67 32 40</td>
<td>148 13 40</td>
<td>GN, si, py, Au</td>
<td>18.787</td>
<td>15.633</td>
<td>38.820</td>
<td></td>
</tr>
<tr>
<td>Summit mine</td>
<td>SM-1</td>
<td>67 32 30</td>
<td>148 12</td>
<td>GN, asp, py, Au</td>
<td>18.766</td>
<td>15.633</td>
<td>38.845</td>
<td></td>
</tr>
</tbody>
</table>

16
<table>
<thead>
<tr>
<th>Analyst</th>
<th>Source</th>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>Model</th>
<th>Region/District</th>
<th>TST Age</th>
<th>Age of Contr.</th>
<th>Pb Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>mvl-hstd stratiform dissem</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Kk</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>carb-hstd vein/replac mPb-Zn skn</td>
<td>18c</td>
<td>YR/Kk</td>
<td>AAH</td>
<td>15-eD?</td>
<td>Pc</td>
<td>D66S</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>scht-hstd vein mPb-FV</td>
<td>22c</td>
<td>YR/Kk</td>
<td>AAH</td>
<td>Pc</td>
<td>Pc</td>
<td>JC</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>m/sd-hstd qz vein Pb-MTV</td>
<td>22c</td>
<td>YR/Kk</td>
<td>AAH</td>
<td>D</td>
<td>D</td>
<td>JC</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>m/sd-hstd crs-cuting qz vein</td>
<td>mV</td>
<td>36a</td>
<td>YR/Kk</td>
<td>AAC</td>
<td>D</td>
<td>J?</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>m/sd-hstd crs-cuting qz vein Sb-FV</td>
<td>27d?/22c?</td>
<td>YR/Kk</td>
<td>AAN</td>
<td>C-S</td>
<td>JC</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>m/sd-hstd crs-cuting qz vein FV</td>
<td>YR/Kk</td>
<td>AAE</td>
<td>D</td>
<td>YR/C1</td>
<td>D</td>
<td>B3.1</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>m/sd-hstd shear zn vein Pb-MTV</td>
<td>22c</td>
<td>YR/Kk</td>
<td>AAE</td>
<td>D</td>
<td>YR/C1</td>
<td>SR</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>m/sd-hstd shear zn vein Pb-MTV</td>
<td>22c</td>
<td>YR/Kk</td>
<td>AAE</td>
<td>D</td>
<td>SR</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>M</td>
<td>m/sd-hstd shear zn qz vein FV</td>
<td>YR/C1</td>
<td>AAH</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd shear zn qz vein FV</td>
<td>YR/C1</td>
<td>AAH</td>
<td>D</td>
<td></td>
<td></td>
<td>SR</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd shear zn qz vein FV</td>
<td>YR/C1</td>
<td>AAH</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Pb-isotope data from sulfides from Southern Alaska

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Locality Name</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample Mineralogy</th>
<th>(^{206}\text{Pb} \text{ppm})</th>
<th>(^{207}\text{Pb} \text{ppm})</th>
<th>(^{208}\text{Pb} \text{ppm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCHORAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(^{206}\text{Pb})</td>
<td>(^{207}\text{Pb})</td>
<td>(^{208}\text{Pb})</td>
</tr>
<tr>
<td></td>
<td>Miners’ River</td>
<td>MR-1</td>
<td>61 05 15</td>
<td>147 20 00</td>
<td>GN, sl, py, cp, asp</td>
<td>19.060</td>
<td>15.627</td>
<td>38.722</td>
</tr>
<tr>
<td></td>
<td>Homestake</td>
<td>HD-12</td>
<td>61 09 15</td>
<td>148 05 15</td>
<td>GN, ank</td>
<td>18.966</td>
<td>15.610</td>
<td>38.636</td>
</tr>
<tr>
<td></td>
<td>Independence</td>
<td>6543R</td>
<td>61 47 18</td>
<td>149 18 20</td>
<td>gn, cp (1000 ppm Pb)</td>
<td>18.827</td>
<td>15.590</td>
<td>38.499</td>
</tr>
<tr>
<td></td>
<td>Holland</td>
<td>6544R</td>
<td>61 49 00</td>
<td>149 17 27</td>
<td>cp, tt (200 ppm Pb)</td>
<td>18.867</td>
<td>15.593</td>
<td>38.523</td>
</tr>
<tr>
<td></td>
<td>Grubstake Gulch</td>
<td>M17A</td>
<td>61 44 55</td>
<td>149 24 50</td>
<td>py, la (300 ppm Pb)</td>
<td>18.948</td>
<td>15.607</td>
<td>38.630</td>
</tr>
<tr>
<td></td>
<td>Jewel</td>
<td>Jewi</td>
<td>61 02 10</td>
<td>149 06 10</td>
<td>GN, asp</td>
<td>18.963</td>
<td>15.620</td>
<td>38.670</td>
</tr>
<tr>
<td></td>
<td>Bruno-Agostino</td>
<td>BD-12</td>
<td>61 02 50</td>
<td>149 06 10</td>
<td>cp, GN, mly, Au</td>
<td>18.940</td>
<td>15.591</td>
<td>38.560</td>
</tr>
<tr>
<td></td>
<td>Miners’ Bay</td>
<td>B1AM0070A,C</td>
<td>61 05 20</td>
<td>146 26 00</td>
<td>cp, pn, po</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORDOVA</td>
<td>Scott Glacier</td>
<td>D47D</td>
<td>60 38 40</td>
<td>145 15 00</td>
<td>cp, py (1000 ppm Pb)</td>
<td>19.066</td>
<td>15.629</td>
<td>38.721</td>
</tr>
<tr>
<td></td>
<td>Copper Mtn.</td>
<td>C004</td>
<td>60 51 25</td>
<td>146 34 15</td>
<td>cp, po (240 ppm Pb)</td>
<td>18.989</td>
<td>15.600</td>
<td>38.607</td>
</tr>
<tr>
<td></td>
<td>Reynolds</td>
<td>C026AA</td>
<td>60 53 10</td>
<td>146 37 20</td>
<td>cp (75 ppm Pb)</td>
<td>18.945</td>
<td>15.600</td>
<td>38.580</td>
</tr>
<tr>
<td></td>
<td>Schlosser</td>
<td>C023A-25</td>
<td>60 46 25</td>
<td>146 24 50</td>
<td>cp (20 ppm Pb)</td>
<td>18.946</td>
<td>15.614</td>
<td>38.713</td>
</tr>
<tr>
<td></td>
<td>Fidalgo</td>
<td>74AK29A</td>
<td>60 47 40</td>
<td>146 17 45</td>
<td>cp, po</td>
<td>18.174</td>
<td>15.653</td>
<td>38.844</td>
</tr>
<tr>
<td></td>
<td>Ellamar</td>
<td>B2D60044A</td>
<td>60 53 25</td>
<td>146 38 30</td>
<td>cp, py, po, sl (70 ppm Pb)</td>
<td>18.917</td>
<td>15.607</td>
<td>38.579</td>
</tr>
<tr>
<td></td>
<td>McKinley Lake</td>
<td>MK-1</td>
<td>60 28 25</td>
<td>145 11 25</td>
<td>GN, py, asp, sl, Au</td>
<td>19.054</td>
<td>15.632</td>
<td>38.729</td>
</tr>
<tr>
<td>BLYING SOUND</td>
<td>Resurrection Pen.</td>
<td>RP-1</td>
<td>59 57 30</td>
<td>149 16 00</td>
<td>GN, py, sl</td>
<td>18.788</td>
<td>15.566</td>
<td>38.366</td>
</tr>
<tr>
<td>SEWARD</td>
<td>Beatson</td>
<td>B1AKK006B</td>
<td>60 30 15</td>
<td>147 53 40</td>
<td>po, cp, py</td>
<td>19.125</td>
<td>15.652</td>
<td>38.883</td>
</tr>
<tr>
<td></td>
<td>Beatson</td>
<td>BTS-2</td>
<td>60 30 15</td>
<td>147 53 40</td>
<td>po, cp (80 ppm Pb)</td>
<td>19.090</td>
<td>15.638</td>
<td>38.808</td>
</tr>
<tr>
<td></td>
<td>Ruav Cove</td>
<td>B1AKK005M</td>
<td>60 21 10</td>
<td>147 38 10</td>
<td>po (10 ppm Pb)</td>
<td>19.164</td>
<td>15.618</td>
<td>38.665</td>
</tr>
<tr>
<td></td>
<td>Lynx Creek</td>
<td>B1BS115H</td>
<td>60 40 20</td>
<td>149 19 30</td>
<td>py, cp (140 ppm Pb)</td>
<td>18.561</td>
<td>15.517</td>
<td>38.134</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
<td>B1BS116BB</td>
<td>60 40 20</td>
<td>149 32 50</td>
<td>gn, la (1800 ppm Pb)</td>
<td>19.041</td>
<td>15.635</td>
<td>38.758</td>
</tr>
<tr>
<td></td>
<td>Oracle</td>
<td>B1BS113AA</td>
<td>60 36 45</td>
<td>149 34 20</td>
<td>GN, asp, Au</td>
<td>19.009</td>
<td>15.626</td>
<td>38.720</td>
</tr>
<tr>
<td></td>
<td>Four-mile</td>
<td>PB-1</td>
<td>60 10 25</td>
<td>149 26 40</td>
<td>sl, cp, po, GN, Au</td>
<td>18.989</td>
<td>15.621</td>
<td>38.659</td>
</tr>
<tr>
<td></td>
<td>Priamrose</td>
<td>PR-7</td>
<td>60 19 40</td>
<td>149 25 00</td>
<td>asp, Au, GN, sl, py, cp, po</td>
<td>19.020</td>
<td>15.630</td>
<td>38.709</td>
</tr>
<tr>
<td></td>
<td>Hirshey-Carlson</td>
<td>HC</td>
<td>60 47 45</td>
<td>149 31 50</td>
<td>asp, GN, sl, Au</td>
<td>19.065</td>
<td>15.649</td>
<td>38.824</td>
</tr>
<tr>
<td></td>
<td>Kenai Star</td>
<td>KS-1</td>
<td>60 49 25</td>
<td>149 30 55</td>
<td>GN</td>
<td>19.058</td>
<td>15.644</td>
<td>38.813</td>
</tr>
<tr>
<td></td>
<td>Lucky Strike</td>
<td>LS-1</td>
<td>60 46 40</td>
<td>149 33 10</td>
<td>sl, asp, py, GN, Au, ank</td>
<td>19.065</td>
<td>15.645</td>
<td>38.811</td>
</tr>
<tr>
<td></td>
<td>Granite Mine</td>
<td>GR-1</td>
<td>60 58 15</td>
<td>148 12 30</td>
<td>py, GN, sl, po, asp, st, cp, Au</td>
<td>18.920</td>
<td>15.600</td>
<td>38.567</td>
</tr>
<tr>
<td></td>
<td>Bird Point</td>
<td>SD81009R</td>
<td>60 55 40</td>
<td>148 21 30</td>
<td>asp, po, GN</td>
<td>18.996</td>
<td>15.628</td>
<td>38.719</td>
</tr>
<tr>
<td></td>
<td>Cedar Bay</td>
<td>CB-1</td>
<td>60 57 25</td>
<td>147 22 30</td>
<td>cp, asp, sl, po (3000 ppm Pb)</td>
<td>19.096</td>
<td>15.635</td>
<td>38.759</td>
</tr>
<tr>
<td></td>
<td>Culross</td>
<td>338B</td>
<td>60 44 10</td>
<td>148 10 25</td>
<td>gn, sl, py, Au (220 ppm Pb)</td>
<td>19.005</td>
<td>15.620</td>
<td>38.662</td>
</tr>
</tbody>
</table>
Table 4. Pb-isotope data from sulfides from Southern Alaska (cont.)

<table>
<thead>
<tr>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>Model No.</th>
<th>Region/ District</th>
<th>TST</th>
<th>Age of Host</th>
<th>Age of Contr.</th>
<th>Publ. Pb Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Sample Source</td>
<td>host rock</td>
<td>structure</td>
<td>texture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>R</td>
<td>ophiolite</td>
<td>shtd-dike</td>
<td>qz-vein</td>
<td>C-VMS</td>
<td>24a</td>
<td>KP/Sw</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>sd-hstd</td>
<td>stratiform</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>sd-hstd</td>
<td>stratiform</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>ophiolite</td>
<td>lens</td>
<td>massive</td>
<td>C-VMS</td>
<td>24a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>sd-hstd</td>
<td>stratabound</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>felsic dike</td>
<td>fract zn</td>
<td>qz-vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>KP/Hp</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>felsic dike</td>
<td>fract zn</td>
<td>qz-vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>KP/Hp</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>KP/Hp</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>KP/Sw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>KP/Hp</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>qz-vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>KP/Hp</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>KP/Hp</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CS/An</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>granite</td>
<td>shear zn</td>
<td>qz-vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>stratiform</td>
<td></td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
<td>PW</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>lens</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
<td>PW</td>
</tr>
<tr>
<td>MD</td>
<td>D</td>
<td>m/sd-hstd</td>
<td>massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
<td>PW</td>
</tr>
<tr>
<td>MD</td>
<td>O</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>FV</td>
<td>CR/Pw</td>
<td>PW</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>tonalite</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/W1</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>tonalite</td>
<td>magmatic</td>
<td>opn-sp fil</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>CR/W1</td>
</tr>
<tr>
<td>MD</td>
<td>P</td>
<td>m/sd-hstd</td>
<td>concordant</td>
<td>qz-vein</td>
<td>FV</td>
<td>CR/W1</td>
<td>PE</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/An</td>
</tr>
<tr>
<td>MD</td>
<td>M</td>
<td>m/sd-hstd</td>
<td>shear zn</td>
<td>opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/An</td>
</tr>
<tr>
<td>O</td>
<td>diorite</td>
<td>magmatic</td>
<td>disseminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Pb-isotope data from sulfides from Southern Alaska (cont.)

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Locality</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample</th>
<th>Mineralogy</th>
<th>Sample</th>
<th>206Pb</th>
<th>207Pb</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALDEZ</td>
<td>Midas Mine level 3</td>
<td>M1-20</td>
<td>61 00 40</td>
<td>146 16 00</td>
<td>cp, py</td>
<td>19.113</td>
<td>15.636</td>
<td>38.745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donohue</td>
<td>Donohue</td>
<td>61 11 50</td>
<td>146 11 45</td>
<td>GN, sl, Au</td>
<td>19.049</td>
<td>15.642</td>
<td>38.762</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Millionaire</td>
<td>UM</td>
<td>61 13 10</td>
<td>146 21 30</td>
<td>GN, sl, Au</td>
<td>18.937</td>
<td>15.618</td>
<td>38.668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mayfield</td>
<td>MA-1</td>
<td>61 09 30</td>
<td>146 48 00</td>
<td>py, cp, GN, sl, asp, Au</td>
<td>18.939</td>
<td>15.610</td>
<td>38.644</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCCARTHY</td>
<td>Nelson Prospect</td>
<td>NM-1</td>
<td>61 27 00</td>
<td>142 23 00</td>
<td>cp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TALKEETNA</td>
<td>Boulder Creek</td>
<td>73AR127</td>
<td>62 54 00</td>
<td>150 09 00</td>
<td>GN</td>
<td>19.129</td>
<td>15.643</td>
<td>38.874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boulder Creek</td>
<td>73AR144</td>
<td>62 54 00</td>
<td>150 09 00</td>
<td>GN</td>
<td>19.146</td>
<td>15.654</td>
<td>38.918</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Foraker</td>
<td>MF-1</td>
<td>62 44 45</td>
<td>151 49 45</td>
<td>mly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shellabarger Pass</td>
<td>many</td>
<td>62 33 30</td>
<td>152 47 30</td>
<td>gn, cp, sl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper skarn</td>
<td>TCS-1</td>
<td>62 32 45</td>
<td>152 13 00</td>
<td>cp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TALKEETNA MOUNTAINS</td>
<td>Coal Creek</td>
<td>many</td>
<td>62 59 00</td>
<td>149 50 00</td>
<td>cs, sl, po, asp, gn, tp, tu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GULKANA</td>
<td>Hogan Hill</td>
<td>BSAIL027B</td>
<td>62 41 13</td>
<td>145 26 40</td>
<td>py, cp, bn, sl, gn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NABESNA</td>
<td>Rambler</td>
<td>BSAIL027B</td>
<td>62 23 00</td>
<td>143 03 00</td>
<td>st, cp, py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orange Hill</td>
<td>many</td>
<td>62 14 30</td>
<td>142 51 00</td>
<td>cp, mly, py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bond Creek</td>
<td>many</td>
<td>62 13 00</td>
<td>142 44 00</td>
<td>cp, py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT MCKINLEY</td>
<td>Bunnell Mine</td>
<td>BMI-1</td>
<td>63 28 50</td>
<td>151 04 15</td>
<td>GN, tt, st, sl, cp, sch</td>
<td>19.195</td>
<td>15.656</td>
<td>38.920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USBM Little Maud</td>
<td>DDH5:46-50</td>
<td>63 62 30</td>
<td>150 57 20</td>
<td>GN, asp, py, lm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USBM Jupiter-Mars</td>
<td>DDH12:226</td>
<td>63 33 25</td>
<td>150 53 00</td>
<td>GN, sl, py, lm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USBM Jupiter-Mars</td>
<td>DDH12:267</td>
<td>63 33 25</td>
<td>150 53 00</td>
<td>GN, sl, py, lm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USBM Jupiter-Mars</td>
<td>DDH16:165</td>
<td>63 33 15</td>
<td>150 53 45</td>
<td>GN, tt, asp, py, lm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USBM Galena</td>
<td>DDH17:236</td>
<td>63 32 15</td>
<td>150 50 50</td>
<td>GN, asp, py, tt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALY</td>
<td>Dry Creek (Red Mtn)</td>
<td>DC-9</td>
<td>63 55 25</td>
<td>147 23 15</td>
<td>GN, cp</td>
<td>18.765</td>
<td>15.675</td>
<td>38.824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Fork L Delta R.</td>
<td>WF-1</td>
<td>63 48 10</td>
<td>147 29 40</td>
<td>cp, py (5000 ppm Pb)</td>
<td>18.728</td>
<td>15.688</td>
<td>38.699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cirque</td>
<td>C-3</td>
<td>63 47 00</td>
<td>147 38 00</td>
<td>py, cp (2000 ppm Pb)</td>
<td>18.742</td>
<td>15.690</td>
<td>38.706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virginia Creek</td>
<td>VC-2</td>
<td>63 49 35</td>
<td>147 48 00</td>
<td>cp, py (1500 ppm Pb)</td>
<td>18.821</td>
<td>15.695</td>
<td>38.709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anderson Mtn</td>
<td>AM-3</td>
<td>63 48 35</td>
<td>147 55 50</td>
<td>cp, py, gn (3000 ppm Pb)</td>
<td>18.884</td>
<td>15.699</td>
<td>38.709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow Mtn Gulch</td>
<td>SMM-1</td>
<td>64 00 00</td>
<td>147 25 00</td>
<td>GN, sl</td>
<td>18.680</td>
<td>15.678</td>
<td>38.845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kansas Creek</td>
<td>B1X121</td>
<td>63 51 30</td>
<td>147 30 00</td>
<td>st (300 ppm Pb)</td>
<td>19.166</td>
<td>15.692</td>
<td>39.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheep Creek</td>
<td>B1C17</td>
<td>63 55 10</td>
<td>148 16 50</td>
<td>(5000 ppm Pb)</td>
<td>18.858</td>
<td>15.706</td>
<td>38.985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheep Creek</td>
<td>DDH1:210</td>
<td>63 55 00</td>
<td>148 18 10</td>
<td>gn, sl, py, cp (2000 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healy Creek</td>
<td>HC-2</td>
<td>63 49 05</td>
<td>148 16 15</td>
<td>GN, py</td>
<td>18.692</td>
<td>15.687</td>
<td>38.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glory Creek</td>
<td>GC-1</td>
<td>63 50 35</td>
<td>147 30 35</td>
<td>GN, sl, cp, py</td>
<td>19.407</td>
<td>15.683</td>
<td>39.157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Pb-isotope data from sulfides from Southern Alaska (cont.)

<table>
<thead>
<tr>
<th>Analyst Sample</th>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>Model No.</th>
<th>Region/District</th>
<th>TST Age of</th>
<th>Age of Contr.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD M</td>
<td>m/sd-hstd massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>CR/Pw</td>
<td>6c</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>MD M</td>
<td>m/sd-hstd shear zn opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
<td>6c</td>
<td>Te</td>
<td>K</td>
</tr>
<tr>
<td>MD M</td>
<td>m/sd-hstd shear zn opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
<td>6c</td>
<td>Te</td>
<td>K</td>
</tr>
<tr>
<td>MD M</td>
<td>m/sd-hstd shear zn opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
<td>6c</td>
<td>Te</td>
<td>K</td>
</tr>
<tr>
<td>MD M</td>
<td>m/sd-hstd shear zn opn-sp fil</td>
<td>mAu-V</td>
<td>36a</td>
<td>CR/Pw</td>
<td>6c</td>
<td>Te</td>
<td>K</td>
</tr>
<tr>
<td>P</td>
<td>carb-hstd breccia dissem</td>
<td>CR/Nz</td>
<td>M-lTr</td>
<td>CH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD/BD O</td>
<td>granite vein</td>
<td>Pa-Sm MTV</td>
<td>20b</td>
<td>YR/Kn</td>
<td>YT</td>
<td>BR</td>
<td></td>
</tr>
<tr>
<td>MD/BD O</td>
<td>granite vein</td>
<td>Pa-Sm MTV</td>
<td>20b</td>
<td>YR/Kn</td>
<td>YT</td>
<td>BR</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>dunite qz vein</td>
<td>FV</td>
<td></td>
<td></td>
<td></td>
<td>36 Ma</td>
<td>SN</td>
</tr>
<tr>
<td>O</td>
<td>m/sd-hstd stratiform</td>
<td>C-VMS</td>
<td>24a</td>
<td>KR/Mg</td>
<td>DL</td>
<td>1D 1D</td>
<td>BR</td>
</tr>
<tr>
<td>P</td>
<td>carb-hstd replac</td>
<td>Cu skn</td>
<td>18b</td>
<td>CS/Yn</td>
<td>MY</td>
<td>65 Ma</td>
<td>CH</td>
</tr>
<tr>
<td>C</td>
<td>granite stockwork qz vein</td>
<td>Greisen</td>
<td>15c</td>
<td>CS/V1</td>
<td>WF</td>
<td>52 Ma 52 Ma</td>
<td>MB</td>
</tr>
<tr>
<td>O</td>
<td>grndiorite vein</td>
<td>Porp</td>
<td>21a</td>
<td>YR/Cc</td>
<td>WR</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>O</td>
<td>carb-hstd contact replac</td>
<td>Cu skn</td>
<td>18b</td>
<td>YR/Cs</td>
<td>Cz</td>
<td>1Tr 1Tr</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>qtz diorite stockwork dissem</td>
<td>Porp</td>
<td>21a</td>
<td>YR/Cs</td>
<td>Cz</td>
<td>K</td>
<td>105 Ma</td>
</tr>
<tr>
<td>C</td>
<td>grndiorite stockwork dissem</td>
<td>Porp</td>
<td>21a</td>
<td>YR/Cs</td>
<td>Cz</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>MD D</td>
<td>granite breccia qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Kn</td>
<td>YT</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>m/sd-hstd breccia qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Kn</td>
<td>YT</td>
<td>Pz?</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>m/sd-hstd breccia qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Kn</td>
<td>YT</td>
<td>Pz?</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>m/sd-hstd breccia qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Kn</td>
<td>YT</td>
<td>Pz?</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>m/sd-hstd breccia qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Kn</td>
<td>YT</td>
<td>Pz?</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>m/sd-hstd breccia qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Kn</td>
<td>YT</td>
<td>Pz?</td>
<td>K</td>
</tr>
<tr>
<td>MD/BD O</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>JK</td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>JK</td>
</tr>
<tr>
<td>MD R</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>JK</td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>JK</td>
</tr>
<tr>
<td>MD/BD O</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>JK</td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd crs-cutting vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M 71 Ma</td>
<td>DC</td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>DC</td>
</tr>
<tr>
<td>C</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>DC</td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd stratiform</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>M</td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd</td>
<td>K-VMS</td>
<td>28a</td>
<td>YR/Bf</td>
<td>YT</td>
<td>D-M D-M</td>
<td>SC</td>
</tr>
<tr>
<td>MD P</td>
<td>granite vein</td>
<td>Pa-MTV</td>
<td>22c</td>
<td>YR/Bf</td>
<td>YT</td>
<td>K-T K-T</td>
<td>SC</td>
</tr>
</tbody>
</table>

21
Table 4. Pb-isotope data from sulfides from Southern Alaska (cont.)

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Mineralogy</th>
<th>206pb</th>
<th>207pb</th>
<th>208pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALY (cont.)</td>
<td>79G04B</td>
<td>63 28 24</td>
<td>147 35 15</td>
<td>(200 ppm Pb)</td>
<td>18.779</td>
<td>15.663</td>
<td>38.667</td>
</tr>
<tr>
<td></td>
<td>B1CI1-3</td>
<td>63 12 50</td>
<td>149 38 40</td>
<td>(100 ppm Pb)</td>
<td>19.151</td>
<td>15.602</td>
<td>38.687</td>
</tr>
<tr>
<td></td>
<td>HKD-1,2</td>
<td>63 12 50</td>
<td>149 38 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1CI5-7</td>
<td>63 10 55</td>
<td>149 54 55</td>
<td>(2000 ppm Pb)</td>
<td>19.151</td>
<td>15.632</td>
<td>38.733</td>
</tr>
<tr>
<td></td>
<td>B1CI-X-10</td>
<td>63 06 10</td>
<td>149 24 50</td>
<td>st (1500 ppm Pb)</td>
<td>19.020</td>
<td>15.642</td>
<td>38.761</td>
</tr>
<tr>
<td></td>
<td>B1CI-X-12</td>
<td>63 02 00</td>
<td>149 29 00</td>
<td>(1000 ppm Pb)</td>
<td>19.031</td>
<td>15.605</td>
<td>38.597</td>
</tr>
<tr>
<td></td>
<td>DDH1s66.8</td>
<td>63 02 00</td>
<td>149 29 00</td>
<td>GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79AIL088A</td>
<td>63 08 10</td>
<td>147 08 20</td>
<td>cp, py (70 ppm Pb)</td>
<td>18.886</td>
<td>15.570</td>
<td>38.461</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOUNT HAYES</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Mineralogy</th>
<th>206pb</th>
<th>207pb</th>
<th>208pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trio</td>
<td>BAIL140A</td>
<td>63 15 53</td>
<td>144 02 18</td>
<td>GN</td>
<td>18.834</td>
<td>15.692</td>
<td>38.748</td>
</tr>
<tr>
<td>DDD</td>
<td>BAIL162A</td>
<td>63 15 32</td>
<td>144 14 20</td>
<td>GN</td>
<td>18.896</td>
<td>15.716</td>
<td>38.779</td>
</tr>
<tr>
<td>LP-PP2</td>
<td>B1ANK184B</td>
<td>63 14 22</td>
<td>144 07 00</td>
<td>gn (700 ppm Pb)</td>
<td>18.931</td>
<td>15.726</td>
<td>38.899</td>
</tr>
<tr>
<td>Trio</td>
<td>BAIL126C</td>
<td>63 15 44</td>
<td>144 02 02</td>
<td>GN</td>
<td>18.886</td>
<td>15.719</td>
<td>38.839</td>
</tr>
<tr>
<td>DDN</td>
<td>BOAIL02BA</td>
<td>63 16 31</td>
<td>144 16 23</td>
<td>gn (200 ppm Pb)</td>
<td>18.911</td>
<td>15.729</td>
<td>38.828</td>
</tr>
<tr>
<td>Rumble Creek</td>
<td>RC</td>
<td>63 14 22</td>
<td>144 10 00</td>
<td>cp, py, GN</td>
<td>18.672</td>
<td>15.690</td>
<td>38.663</td>
</tr>
<tr>
<td>Lam. Zn. M. Cirque</td>
<td>LZ-U</td>
<td>63 10 46</td>
<td>144 08 55</td>
<td>GN, sl, cp</td>
<td>18.645</td>
<td>15.681</td>
<td>38.630</td>
</tr>
<tr>
<td>Discovery In-PPD</td>
<td>PPD</td>
<td>63 08 30</td>
<td>144 02 36</td>
<td>GN, sl, cp</td>
<td>18.666</td>
<td>15.674</td>
<td>38.600</td>
</tr>
<tr>
<td>Roberts #1</td>
<td>BOAIL044A</td>
<td>63 35 59</td>
<td>146 14 48</td>
<td>(500 ppm Pb)</td>
<td>18.889</td>
<td>15.691</td>
<td>38.670</td>
</tr>
<tr>
<td>Niyaoka</td>
<td>BOAIL052A</td>
<td>63 41 20</td>
<td>146 39 34</td>
<td>(50 ppm Pb)</td>
<td>18.985</td>
<td>15.716</td>
<td>38.872</td>
</tr>
<tr>
<td>Rainy Creek</td>
<td>79AIL019B</td>
<td>63 19 13</td>
<td>145 57 48</td>
<td>(30 ppm Pb)</td>
<td>18.720</td>
<td>15.569</td>
<td>38.196</td>
</tr>
<tr>
<td>Rainy Creek</td>
<td>79AIL019E</td>
<td>63 19 13</td>
<td>145 57 48</td>
<td>(35 ppm Pb)</td>
<td>18.744</td>
<td>15.577</td>
<td>38.213</td>
</tr>
<tr>
<td>Ann Creek</td>
<td>79AIL091B</td>
<td>63 20 24</td>
<td>145 46 34</td>
<td>py, po (20 ppm Pb)</td>
<td>18.848</td>
<td>15.591</td>
<td>38.408</td>
</tr>
<tr>
<td>W. Fork, Chistochina R.</td>
<td>79AIL069B</td>
<td>63 11 01</td>
<td>144 58 24</td>
<td>po, py (85 ppm Pb)</td>
<td>18.986</td>
<td>15.610</td>
<td>38.383</td>
</tr>
<tr>
<td>E. Fork, Broxson Gulch</td>
<td>79AIL030A</td>
<td>63 21 00</td>
<td>146 02 40</td>
<td>py, cp, po (25 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Fork, Broxson Gulch</td>
<td>79AIL030B</td>
<td>63 21 00</td>
<td>146 02 40</td>
<td>py, cp, po (30 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Fork, Broxson Gulch</td>
<td>79AIL030C</td>
<td>63 21 00</td>
<td>146 02 40</td>
<td>py, cp, po (30 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Fork, Broxson Gulch</td>
<td>79AIL030E</td>
<td>63 21 00</td>
<td>146 02 40</td>
<td>py, cp, po (25 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Delta River</td>
<td>79AIL092D</td>
<td>63 20 25</td>
<td>145 46 43</td>
<td>cp, po (30 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Delta River</td>
<td>79AIL092E</td>
<td>63 20 25</td>
<td>145 46 43</td>
<td>cp, po (30 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Star</td>
<td>79AIL012A</td>
<td>63 18 52</td>
<td>145 59 05</td>
<td>py, cp (10 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Star</td>
<td>79AIL012C</td>
<td>63 18 52</td>
<td>145 59 05</td>
<td>py, cp (10 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Rainbow Mtn</td>
<td>79AIL024A</td>
<td>62 20 52</td>
<td>145 42 24</td>
<td>py (60 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantwell Glacier</td>
<td>79AIL081A</td>
<td>63 21 07</td>
<td>145 39 29</td>
<td>po, cp (30 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paxson Mtn</td>
<td>79AIL059A</td>
<td>63 02 14</td>
<td>145 33 44</td>
<td>cp, bn, az, al (20 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller Creek</td>
<td>85AIL019A</td>
<td>63 21 00</td>
<td>145 41 10</td>
<td>po</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller Creek</td>
<td>85AIL018A</td>
<td>63 21 22</td>
<td>145 41 58</td>
<td>po</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller Creek</td>
<td>85AIL018B</td>
<td>63 21 22</td>
<td>145 41 58</td>
<td>po</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kathleen Margaret Vein</td>
<td>79AIL038D</td>
<td>63 17 00</td>
<td>146 33 04</td>
<td>(70 ppm Pb)</td>
<td>18.724</td>
<td>15.565</td>
<td>38.369</td>
</tr>
<tr>
<td>Zackly</td>
<td>85AIL037A</td>
<td>63 13 00</td>
<td>146 41 40</td>
<td>py, cp, bn, cc, aly, ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zackly</td>
<td>85AIL036A</td>
<td>63 13 10</td>
<td>146 41 54</td>
<td>py, cp, bn, cc, aly, ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zackly</td>
<td>85AIL035A</td>
<td>63 13 12</td>
<td>146 42 12</td>
<td>cp, bn, cc, aly, ha</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Pb-isotope data from sulfides from Southern Alaska (cont.)

<table>
<thead>
<tr>
<th>Analyst Sample Source</th>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>Model USBM No.</th>
<th>Region/ District</th>
<th>Age of Age of Contr. Ref.</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD O</td>
<td>carb-hstd replac Fe skn</td>
<td>18d</td>
<td>CS/V1</td>
<td>MK</td>
<td>Tr K? DC</td>
<td>B7.3</td>
</tr>
<tr>
<td>MD O</td>
<td>granite breccia vein</td>
<td>Porp 21a</td>
<td>CS/V1</td>
<td>CH</td>
<td>60 Ma DC</td>
<td></td>
</tr>
<tr>
<td>MD O</td>
<td>gndiorite breccia vein</td>
<td>Porp 21a</td>
<td>CS/V1</td>
<td>CH</td>
<td>60 Ma HK</td>
<td></td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd vein</td>
<td>Greisen 18c</td>
<td>CS/V1</td>
<td>CH</td>
<td>K-J 60 Ma DC</td>
<td></td>
</tr>
<tr>
<td>MD O</td>
<td>m/sd-hstd crs-cutting</td>
<td>Pa-Sn MTV</td>
<td>20b</td>
<td>CS/V1</td>
<td>BP K-J T? DC</td>
<td></td>
</tr>
<tr>
<td>MD O</td>
<td>stockwork dissemin</td>
<td>Porp 20a</td>
<td>CS/V1</td>
<td>BP</td>
<td>Te 53 Ma CH</td>
<td></td>
</tr>
<tr>
<td>ALH O</td>
<td>basalt stratiform massive</td>
<td>Ba Cu 23</td>
<td>CS/V1</td>
<td>WR</td>
<td>Tr Tr 1L</td>
<td></td>
</tr>
</tbody>
</table>

ALH O | m/vol-hstd stratiform | K-VMS 28a | WR/Tk | Yt/Jc | YR/1L B7.3 | |
ALH O	m/vol-hstd stratiform	K-VMS 28a	WR/Tk	Yt/Jc	YR/1L B7.3	
ALH O	m/vol-hstd stratiform	K-VMS 28a	WR/Tk	Yt/Jc	YR/1L B7.3	
ALH O	m/vol-hstd stratiform	K-VMS 28a	WR/Tk	Yt/Jc	YR/1L B7.3	
MD R	m/vol-hstd stratiform	K-VMS 28a	WR/Tk	Yt/Jc	D D JK B7.3	
MD O	m/vol-hstd stratiform	K-VMS 28a	WR/Tk	Yt/Jc	SLC B7.3	
MD O	m/vol-hstd stratiform	K-VMS 28a	WR/Tk	Yt/Jc	SLC B7.3	
ALH O	m/vol-hstd stratiform	K-VMS 28a	WR/Bf	Yt/Hg	YR/1L	
ALH O	carb-hstd contact replac	skn 18?	YR/Dr	WR/Sr	IpZ YR/1L	
ALH O	carb-hstd contact replac	skn 18?	YR/Dr	WR/Sr	IpZ YR/1L	
ALH O	m/vol-hstd qz vein	Pm MTV 22c	CS/V1	WR/Sr	Tr YR/1L	
ALH O	gndiorite massive	Porp 21a	CS/Cc	WR/Sr	YR/1L	
O gabbro	podiform cumulate	Stwtr 1	YR/Dr	WR/Sr	Tr Tr YR/1L	
O gabbro	podiform cumulate	Stwtr 1	YR/Dr	WR/Sr	Tr Tr YR/1L	
O gabbro	podiform cumulate	Stwtr 1	YR/Dr	WR/Sr	Tr Tr YR/1L	
O gabbro	shearn zn vein	Stwtr 1	YR/Dr	WR/Sr	Tr Tr YR/1L	
O gabbro	shearn zn vein	Stwtr 1	YR/Dr	WR/Sr	Tr Tr YR/1L	
O diorite	lens dissemin	Porp 21a	YR/Dr	WR/Sr	J-K J-K YR/1L	
O diorite	lens dissemin	Porp 21a	YR/Dr	WR/Sr	J-K J-K YR/1L	
O m/sd-hstd shearn zn	qz vein mV	YR/Dr	WR/Sr	Ip-P K? YR/1L		
O qz diorite stockwork	qz vein mV	YR/Dr	WR/Sr	J-K J-K YR/1L		
O volc-hstd	qz vein mV	CS/Cc	WR/Tg	Tr K? YR/1L		
O serpentine lens	vein Stwtr 1	YR/Dr	WR/Tg	Tr Tr YR/1L		
O serpentine lens	vein Stwtr 1	YR/Dr	WR/Tg	Tr Tr YR/1L		
O serpentine lens	vein Stwtr 1	YR/Dr	WR/Tg	Tr Tr YR/1L		
ALH O	m/vol-hstd crs-cutting	qz vein mV	CS/V1	WR/Tg	K? YR/1L	
O carb-hstd contact replac	Cu skn 18b	CS/V1	WR/Tg	K 125 Ma YR/1L		
O carb-hstd contact replac	Cu skn 18b	CS/V1	WR/Tg	K 125 Ma YR/1L		
O carb-hstd contact replac	Cu skn 18b	CS/V1	WR/Tg	K 125 Ma YR/1L		
Table 5. Pb-isotope data from sulfides from Southwestern Alaska

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Locality Name</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample Mineralogy</th>
<th>208Pb</th>
<th>207Pb</th>
<th>206Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT MOLLER</td>
<td>Apollo Mine</td>
<td>PMF089R2</td>
<td>55 11 37</td>
<td>160 33 20</td>
<td>GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Susie adit</td>
<td>BSMS50A</td>
<td>55 17 28</td>
<td>160 28 25</td>
<td>cp, si, py (10000 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyramid</td>
<td>BSADT118</td>
<td>55 37 49</td>
<td>160 44 19</td>
<td>(300 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moss Cape</td>
<td>BSAMJ607</td>
<td>55 08 38</td>
<td>161 57 35</td>
<td>(100 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH C-4</td>
<td>BSAYB671A</td>
<td>55 36 24</td>
<td>161 05 57</td>
<td>py (100 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mud Bay</td>
<td>BSAMS281C</td>
<td>55 43 46</td>
<td>160 30 47</td>
<td>GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEPOVAK BAY</td>
<td>Mistofania Island</td>
<td>BSAMS8121</td>
<td>55 50 58</td>
<td>158 52 54</td>
<td>(300 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB C-5</td>
<td>BSAMS868B</td>
<td>55 42 14</td>
<td>159 32 53</td>
<td>(100 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIGNIK</td>
<td>Warner Bay</td>
<td>BSAMS87A</td>
<td>55 09 40</td>
<td>158 24 15</td>
<td>GN, cp, sl, mly</td>
<td>18.894</td>
<td>15.544</td>
<td>38.398</td>
</tr>
<tr>
<td></td>
<td>Bee Creek</td>
<td>many</td>
<td>55 30</td>
<td>158 24</td>
<td>cp, mly, py, gn, asp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chignik A-2</td>
<td>BSAMS577C</td>
<td>56 00 03</td>
<td>158 38 16</td>
<td>(1500 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBASHIK</td>
<td>Rex</td>
<td>BSCE40</td>
<td>57 14 23</td>
<td>157 02 35</td>
<td>GN, py, mly (140 ppm Pb)</td>
<td>18.909</td>
<td>15.594</td>
<td>38.522</td>
</tr>
<tr>
<td></td>
<td>Rex</td>
<td>BSAMS608B</td>
<td>57 14 10</td>
<td>157 04 35</td>
<td>GN, sl (300 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mike</td>
<td>BSAMS85B</td>
<td>57 03 07</td>
<td>157 15 24</td>
<td>GN, py, mly (50 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mike</td>
<td>BSAMS631</td>
<td>57 03 00</td>
<td>157 16 15</td>
<td>asp, sl (100 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kilokak Cape</td>
<td>BSCE154</td>
<td>57 11 20</td>
<td>156 20 11</td>
<td>(200 ppm Pb)</td>
<td>18.140</td>
<td>15.584</td>
<td>37.851</td>
</tr>
<tr>
<td></td>
<td>David Island</td>
<td>BSAMS605</td>
<td>57 01 35</td>
<td>156 29 27</td>
<td>py (50 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KARLUK</td>
<td>Cape Kubugaki</td>
<td>BSAMS601</td>
<td>57 53 15</td>
<td>155 04 15</td>
<td>tt (50 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOUNT KATMAI</td>
<td>Mt. Griggs</td>
<td>BSAMS808</td>
<td>58 19 11</td>
<td>155 00 05</td>
<td>GN, py, sl, tt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walata Mtns</td>
<td>BSAMS85C</td>
<td>58 53 23</td>
<td>154 58 25</td>
<td>GN, py, cp, ep (30 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kulik Lake</td>
<td>BSAMS84RA</td>
<td>58 56 32</td>
<td>154 45 50</td>
<td>GN, py, mly (140 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Margot Creek</td>
<td>BSAMS804C</td>
<td>58 16 13</td>
<td>155 26 27</td>
<td>GN (300 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cape Douglas</td>
<td>BSAMS804B</td>
<td>58 40 55</td>
<td>165 53 20</td>
<td>py, sl, gn (200 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KL Prospect</td>
<td>BSAMS807B</td>
<td>58 54 12</td>
<td>154 53 20</td>
<td>py, sl, gn (200 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KL Prospect</td>
<td>BSAMS808B</td>
<td>58 54 21</td>
<td>154 54 21</td>
<td>py, sl (300 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KL skarn</td>
<td>BSAMS810D</td>
<td>58 49 09</td>
<td>154 52 20</td>
<td>sl, asp, gn (300 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILLIAMNA</td>
<td>Battle Lake</td>
<td>BSAMS808</td>
<td>59 06 30</td>
<td>154 52 30</td>
<td>bn, ch, lm (500 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paint River/Crev Crk</td>
<td>DBH1:193</td>
<td>59 08 30</td>
<td>154 39 00</td>
<td>sl, GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>McNeil Prospect</td>
<td>BSAMS806C</td>
<td>59 08 30</td>
<td>154 39 00</td>
<td>cp, py, asp, sl, gn (200 ppm Pb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAKE CLARK</td>
<td>Glacier Fork</td>
<td>BSAMS8121</td>
<td>60 51</td>
<td>153 14</td>
<td>cp, sl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kasna Creek</td>
<td>BSAMS8121</td>
<td>60 10</td>
<td>154 03 30</td>
<td>mt, cp, ha, gt, px</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redoubt volcano</td>
<td>BSAMS8121</td>
<td>60 28 48</td>
<td>152 45</td>
<td>rock</td>
<td>18.676</td>
<td>15.562</td>
<td>38.277</td>
</tr>
<tr>
<td></td>
<td>dacite, 1st unit</td>
<td>BSAMS8121</td>
<td>60 32 50</td>
<td>152 45 20</td>
<td>rock</td>
<td>18.735</td>
<td>15.508</td>
<td>38.251</td>
</tr>
<tr>
<td></td>
<td>basalt, 2nd unit</td>
<td>BSAMS8121</td>
<td>60 30 17</td>
<td>152 46 40</td>
<td>rock</td>
<td>18.703</td>
<td>15.559</td>
<td>38.305</td>
</tr>
<tr>
<td></td>
<td>dacite, 1966-68 erupt.</td>
<td>BSAMS8121</td>
<td>60 30 17</td>
<td>152 46 40</td>
<td>rock</td>
<td>18.807</td>
<td>15.596</td>
<td>38.455</td>
</tr>
<tr>
<td></td>
<td>bas-andsite, 3rd unit</td>
<td>BSAMS8121</td>
<td>60 32 37</td>
<td>152 47 01</td>
<td>rock</td>
<td>18.807</td>
<td>15.596</td>
<td>38.455</td>
</tr>
</tbody>
</table>
Table 5. Pb-isotope data from sulfides from Southwestern Alaska (cont.)

<table>
<thead>
<tr>
<th>Deposit Characteristics</th>
<th>Analyst</th>
<th>Source</th>
<th>Pb</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit Type</td>
<td>Sample</td>
<td>Host rock structure</td>
<td>Texture</td>
<td>Model Region/TST</td>
</tr>
<tr>
<td>V</td>
<td>HD</td>
<td>volc-hstd crs-cutting vein</td>
<td>FV</td>
<td>AP</td>
</tr>
<tr>
<td>D</td>
<td>HD</td>
<td>volc-hstd crs-cutting vein</td>
<td>FV</td>
<td>AP</td>
</tr>
<tr>
<td>D</td>
<td>HD</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>V</td>
<td>HD</td>
<td>volc-hstd crs-cutting qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
</tr>
<tr>
<td>V</td>
<td>HD</td>
<td>volc-hstd crs-cutting qz vein</td>
<td>FV</td>
<td>AP</td>
</tr>
<tr>
<td>D</td>
<td>HD</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
</tr>
<tr>
<td>D</td>
<td>HD</td>
<td>volc-hstd crs-cutting qz vein</td>
<td>Pa-MTV</td>
<td>22c</td>
</tr>
<tr>
<td>D</td>
<td>HD</td>
<td>volc-hstd shear zn opn-sp fil</td>
<td>FV</td>
<td>22c</td>
</tr>
<tr>
<td>ALH/BD</td>
<td>D</td>
<td>sd-hstd breccia vein</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>diorite stockwork disseminated</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>MD</td>
<td>D</td>
<td>grndiorite stockwork veinlet</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>MD</td>
<td>D</td>
<td>grndiorite stockwork veinlet</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>granite stockwork veinlet</td>
<td>L-F Mo</td>
<td>21b</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>granite stockwork veinlet</td>
<td>L-F Mo</td>
<td>21b</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>FV</td>
<td>AP</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>grndiorite shear zn opn-sp fil</td>
<td>FV</td>
<td>BB</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>grndiorite vein</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>qtz diorite magmatic disseminated</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>volc-hstd vein</td>
<td>FV</td>
<td>BB</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>grndiorite disseminated</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>grndiorite stringers qz vein</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>grndiorite stringers opn-sp fil</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>P</td>
<td>D</td>
<td>m/sd-hstd crs-cutting qz vein</td>
<td>Cu-skn</td>
<td>18b</td>
</tr>
<tr>
<td>P</td>
<td>D</td>
<td>m/sd-hstd opn-sp fil</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>m/sd-hstd opn-sp fil</td>
<td>Porp</td>
<td>21a</td>
</tr>
<tr>
<td>P</td>
<td>D</td>
<td>volc-hstd shear zn qz vein</td>
<td>Cu-skn</td>
<td>18b</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>sd-hstd crs-cutting qz vein</td>
<td>Cu-skn</td>
<td>18b</td>
</tr>
<tr>
<td>P</td>
<td>D</td>
<td>lsd-hstd lens replac</td>
<td>Cu-skn</td>
<td>18b</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>carb-hstd contact replac</td>
<td>Cu-skn</td>
<td>18b</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>carb-hstd contact replac</td>
<td>Cu-skn</td>
<td>18b</td>
</tr>
<tr>
<td>MB</td>
<td>D</td>
<td>0.7042</td>
<td>0.88 Ma</td>
<td>83.2</td>
</tr>
<tr>
<td>MB</td>
<td>D</td>
<td>0.7040</td>
<td>1966-68 erp (?)</td>
<td>83.2</td>
</tr>
<tr>
<td>MB</td>
<td>D</td>
<td>0.7046</td>
<td>1966-68 erp (?)</td>
<td>83.2</td>
</tr>
<tr>
<td>MB</td>
<td>D</td>
<td>0.7042</td>
<td>1966-68 erp (?)</td>
<td>83.2</td>
</tr>
</tbody>
</table>
Table 6. Pb-isotope data from sulfides from Southeastern Alaska

<table>
<thead>
<tr>
<th>QUADRANGLE</th>
<th>Locality</th>
<th>Sample No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample Mineralogy</th>
<th>206Pb (‰)</th>
<th>207Pb (‰)</th>
<th>208Pb (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAIG</td>
<td>Moonshine</td>
<td>84ASH50</td>
<td>55 10 24</td>
<td>132 22 55</td>
<td>GN, cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KETCHIKAN</td>
<td>Hyder (Lead?)</td>
<td>C-146</td>
<td></td>
<td></td>
<td>GN</td>
<td>(19.33)</td>
<td>(15.64)</td>
<td>(38.93)</td>
</tr>
<tr>
<td></td>
<td>Ketchikan (Copper?)</td>
<td>C-108</td>
<td></td>
<td></td>
<td>GN</td>
<td>(18.95)</td>
<td>(15.89)</td>
<td>(39.35)</td>
</tr>
<tr>
<td>PETERSBURG</td>
<td>St Johns Harbor</td>
<td>79D6102E</td>
<td>56 25 07</td>
<td>132 57 13</td>
<td>py, cp, si, gn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kupreanof Island</td>
<td>79D6135A</td>
<td>56 40 18</td>
<td>133 15 25</td>
<td>py, si, GN, bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helen S</td>
<td>79D6132A</td>
<td>56 34 11</td>
<td>133 04 03</td>
<td>sl, GN, py, asp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taylor Creek</td>
<td>79D6136A</td>
<td>56 47 38</td>
<td>133 21 45</td>
<td>py, GN, sl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacier Basin</td>
<td>80D80102</td>
<td>56 29</td>
<td>132 01</td>
<td>GN, flu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zaremba Quarry</td>
<td>79D6073F</td>
<td>56 22 56</td>
<td>132 53 53</td>
<td>GN, py, cp, sl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salmon Bay</td>
<td>79D6070A</td>
<td>56 19 12</td>
<td>133 10 06</td>
<td>GN, REE & U, Th-rich min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maid of Mexico</td>
<td>79D6141A</td>
<td>56 33 54</td>
<td>133 01 57</td>
<td>GN, si</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITKA</td>
<td>Pyrola</td>
<td>83EWO53C</td>
<td>57 57 50</td>
<td>134 33 05</td>
<td>py, cp (700 ppm Pb)</td>
<td>18.568</td>
<td>15.603</td>
<td>38.299</td>
</tr>
<tr>
<td></td>
<td>Pyrola</td>
<td>PYR-1</td>
<td>57 57 50</td>
<td>134 33 05</td>
<td>py, cp</td>
<td>18.520</td>
<td>15.570</td>
<td>38.224</td>
</tr>
<tr>
<td></td>
<td>Patty</td>
<td>DDH1:110</td>
<td>57 33 30</td>
<td>134 03 20</td>
<td>GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patty</td>
<td>DDH2:50,67</td>
<td>57 33 30</td>
<td>134 03 20</td>
<td>py, cp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patty</td>
<td>DDH2:110</td>
<td>57 33 30</td>
<td>134 03 20</td>
<td>GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pybus</td>
<td>DDH2:245</td>
<td>57 24</td>
<td>134 13 30</td>
<td>py, cp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUMDUM</td>
<td>Sweetheart Ridge</td>
<td>SW-4</td>
<td>57 55 25</td>
<td>133 37 15</td>
<td>si, cp, GN</td>
<td>18.871</td>
<td>15.656</td>
<td>38.514</td>
</tr>
<tr>
<td></td>
<td>Sweetheart Ridge</td>
<td>AHSR-7</td>
<td>57 55 25</td>
<td>133 37 15</td>
<td>si, cp, GN</td>
<td>18.882</td>
<td>15.662</td>
<td>38.571</td>
</tr>
<tr>
<td></td>
<td>Sweetheart Ridge</td>
<td>HSR80-1</td>
<td>57 55 25</td>
<td>133 37 15</td>
<td>si, cp, GN</td>
<td>18.963</td>
<td>15.671</td>
<td>38.646</td>
</tr>
<tr>
<td></td>
<td>Point Astley</td>
<td>67AHx</td>
<td>57 42 25</td>
<td>133 37 25</td>
<td>py, si, gn, po, cp, cc, cv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyst Source</td>
<td>Deposit Characteristics</td>
<td>Deposit Type</td>
<td>USBM/Region/TST</td>
<td>Age of Contr. Pb</td>
<td>Publ.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 carb-hstd</td>
<td>Pb-Sn skn 18c SE/Kt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 volc-hstd lens massive K-VMS 28a SE/Pb AXA ITr ITr</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 volc-hstd stratiform massive K-VMS 28a SE/Kp AXA ITr ITr</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 mvol-hstd stratabound dissem K-VMS 28a SE/Kp AXA ITr ITr</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 m/sd-hstd stratiform dissem K-VMS 28a SE/Kp AXA</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 granite qz vein Pa-MTV 28a SE/Pb AXA</td>
<td>T Cz</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 m/sd-hstd crs-cutting qz vein K-VMS? 28a SE/Pb AXA</td>
<td>ITr ITr</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 alk-granite crs-cutting ca vein MTV 22c SE/Kt AXA</td>
<td>D6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 m/sd-hstd crs-cutting qz vein K-VMS? 28a SE/Kp AXA</td>
<td>ITr ITr</td>
<td>DG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD 0 m/sd-hstd stratiform dissem K-VMS 28a SE/Ad AXA</td>
<td>DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C m/sd-hstd crs-cutting vein K-VMS 28a SE/Ad AXA</td>
<td>D6GS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C m/sd-hstd dissem K-VMS 28a SE/Ad AXA</td>
<td>D6GS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C m/sd-hstd crs-cutting vein K-VMS 28a SE/Ad AXA</td>
<td>D6GS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C m/sd-hstd massive K-VMS 28a SE/Ad AXA</td>
<td>D6GS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALH/BD 0 mvol-hstd stratabound massive K-VMS 28a SE/Ju TU</td>
<td>DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALH/BD 0 mvol-hstd stratabound dissem K-VMS 28a SE/Ju TU</td>
<td>DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALH/BD 0 m/sd-hstd concordant dissem K-VMS 28a SE/Ju TU</td>
<td>DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D m/sd-hstd stratabound dissem VMS 28a SE/Pb TU Tr? Tr?</td>
<td>CH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUADRANGLE</td>
<td>Locality Name</td>
<td>Sample No.</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Mineralogy</td>
<td>206Pb</td>
<td>207Pb</td>
<td>208Pb</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>JUNEAU</td>
<td>Alaska Juneau Mine</td>
<td>796D-1</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.572</td>
<td>15.687</td>
<td>38.898</td>
</tr>
<tr>
<td></td>
<td>South Pit</td>
<td>AJSP-3</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.539</td>
<td>15.655</td>
<td>38.775</td>
</tr>
<tr>
<td></td>
<td>South Pit</td>
<td>AJ-3759</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.544</td>
<td>15.646</td>
<td>38.724</td>
</tr>
<tr>
<td></td>
<td>Level 4, 400 Stope</td>
<td>AJ-3756</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 4, 400 Stope</td>
<td>AJ-3757</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 4, 400 Stope</td>
<td>AJ-3758</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>L-6 Silver Bow fault</td>
<td>AJ-3851</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 6, 91 Winze</td>
<td>AJ-3852</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 6, 800 Stope</td>
<td>AJ-3853</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 7, 800 Stope</td>
<td>AJ-3898</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 7, 830 Stope</td>
<td>AJ-3847</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 8, 53 Winze</td>
<td>AJ-3845</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 8, 1000 Stope</td>
<td>AJ-3846</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Level 9, 1010 Stope</td>
<td>AJ-3844</td>
<td>58 18 30</td>
<td>134 21</td>
<td>GN</td>
<td>19.558</td>
<td>15.662</td>
<td>38.819</td>
</tr>
<tr>
<td></td>
<td>Ascension</td>
<td>I-3765</td>
<td>58 16 52</td>
<td>134 18 3</td>
<td>GN</td>
<td>19.513</td>
<td>15.667</td>
<td>38.854</td>
</tr>
<tr>
<td></td>
<td>Ascension</td>
<td>I-3764</td>
<td>58 16 52</td>
<td>134 18 3</td>
<td>GN</td>
<td>19.513</td>
<td>15.667</td>
<td>38.854</td>
</tr>
<tr>
<td></td>
<td>Ground Hog</td>
<td>GH-3671</td>
<td>58 15</td>
<td>134 20</td>
<td>GN</td>
<td>19.545</td>
<td>15.663</td>
<td>38.796</td>
</tr>
<tr>
<td></td>
<td>Ground Hog</td>
<td>GH-3672</td>
<td>58 15</td>
<td>134 20</td>
<td>GN</td>
<td>19.545</td>
<td>15.663</td>
<td>38.796</td>
</tr>
<tr>
<td></td>
<td>Reagan</td>
<td>R-3766</td>
<td>58 16 50</td>
<td>134 16 50</td>
<td>GN</td>
<td>19.535</td>
<td>15.650</td>
<td>38.748</td>
</tr>
<tr>
<td></td>
<td>Perseverance</td>
<td>P-3670</td>
<td>58 18</td>
<td>134 20</td>
<td>GN</td>
<td>19.535</td>
<td>15.650</td>
<td>38.748</td>
</tr>
<tr>
<td></td>
<td>Glacier Mine</td>
<td>GM-3765</td>
<td>58 17 10</td>
<td>134 18 50</td>
<td>GN</td>
<td>19.535</td>
<td>15.650</td>
<td>38.748</td>
</tr>
<tr>
<td></td>
<td>Treadwell</td>
<td>JA0143R9</td>
<td>58 15 42</td>
<td>134 22 10</td>
<td>cp, py</td>
<td>18.554</td>
<td>15.537</td>
<td>38.113</td>
</tr>
<tr>
<td></td>
<td>Savage</td>
<td>JA0124R</td>
<td>58 51 40</td>
<td>135 05 20</td>
<td>GN</td>
<td>18.898</td>
<td>15.579</td>
<td>38.299</td>
</tr>
<tr>
<td></td>
<td>Greens Creek</td>
<td>PS-271660</td>
<td>58 04</td>
<td>134 37</td>
<td>cp, gn</td>
<td>18.670</td>
<td>15.610</td>
<td>38.449</td>
</tr>
<tr>
<td></td>
<td>Greens Creek</td>
<td>330B103</td>
<td>58 04</td>
<td>134 37</td>
<td>cp, gn, py</td>
<td>18.670</td>
<td>15.610</td>
<td>38.449</td>
</tr>
<tr>
<td></td>
<td>Alaska Treasure</td>
<td>AT-1</td>
<td>58 13 30</td>
<td>134 19 30</td>
<td>py, cp, gn</td>
<td>18.417</td>
<td>15.421</td>
<td>38.049</td>
</tr>
</tbody>
</table>

SKAGWAY

	Mt. Henry Clay	83DB110A	59 22	136 25	sl, py, cp	18.924	15.589	38.281
	Mt. Henry Clay	DY 3043	59 22	136 25	sl, py, cp	18.924	15.589	38.281
	Glacier Creek	BL-1	59 24	136 23	py, cp, tt, mt, sl, gn	18.417	15.421	38.049

28
<table>
<thead>
<tr>
<th>Analyst Sample</th>
<th>Deposit Characteristics</th>
<th>Deposit Type</th>
<th>USBM No.</th>
<th>Region/District</th>
<th>TST of</th>
<th>Age</th>
<th>Age of Contr.</th>
<th>Pb Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS/BD M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>KM M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>M m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>Ta-Te</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>MD B m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>eCz?</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>MD B m/sd-hstd</td>
<td>crs-cutting qz vein</td>
<td>mAu-V</td>
<td>36a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>eCz?</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>ALH/ BD M volc-hstd</td>
<td>stratiform massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>SE/ Ad</td>
<td>Tr</td>
<td>P-Tr</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>M volc-hstd</td>
<td>stratiform massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>SE/ Ad</td>
<td>Tr</td>
<td>P-Tr</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>P m/sd-hstd</td>
<td>stratabound disseminated</td>
<td>K-VMS</td>
<td>28a</td>
<td>SE/ Ju</td>
<td>Tr</td>
<td>SN</td>
<td>JK</td>
<td>JK</td>
</tr>
<tr>
<td>MD R m/sd-hstd</td>
<td>stratabound massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>SE/ Ad</td>
<td>Tr</td>
<td>P-Tr</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>CBS m/sd-hstd</td>
<td>stratabound</td>
<td>K-VMS</td>
<td>28a</td>
<td>SE/ Ad</td>
<td>Tr</td>
<td>P-Tr</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>TD volc-hstd</td>
<td>stratiform massive</td>
<td>K-VMS</td>
<td>28a</td>
<td>SE/ Ad</td>
<td>Tr</td>
<td>P-Tr</td>
<td>DB</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Pb-isotope data from sulfides from Southeastern Alaska (cont.)
Pb-isotope Bibliography for Alaska

1960

1970

1978

1979

1980

1982
1983

1984

1985

3) LeHuray, A. P., Church, S. E, and Nokleburg, W. J., 1985, Lead isotopes in sulfide deposits from the Jarvis Creek Glacier and Wrangellia Terranes, Mount Hayes Quadrangle, eastern

1986

1987

APPENDIX I

Summary of abbreviations used in Tables 1-6

Sample Mineralogy

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ank</td>
<td>ankerite</td>
</tr>
<tr>
<td>Au</td>
<td>gold</td>
</tr>
<tr>
<td>bis</td>
<td>bismuthinite</td>
</tr>
<tr>
<td>cs</td>
<td>cassiterite</td>
</tr>
<tr>
<td>cp</td>
<td>chalcopyrite</td>
</tr>
<tr>
<td>cv</td>
<td>covellite</td>
</tr>
<tr>
<td>flu</td>
<td>fluorite</td>
</tr>
<tr>
<td>hm</td>
<td>hematite</td>
</tr>
<tr>
<td>ml</td>
<td>malachite</td>
</tr>
<tr>
<td>py</td>
<td>pyrite</td>
</tr>
<tr>
<td>po</td>
<td>pyrrhotite</td>
</tr>
<tr>
<td>scr</td>
<td>scrodite</td>
</tr>
<tr>
<td>tn</td>
<td>tennantite</td>
</tr>
<tr>
<td>tu</td>
<td>tourmaline</td>
</tr>
<tr>
<td>ang</td>
<td>anglesite</td>
</tr>
<tr>
<td>az</td>
<td>azurite</td>
</tr>
<tr>
<td>bn</td>
<td>bornite</td>
</tr>
<tr>
<td>cr</td>
<td>cerussite</td>
</tr>
<tr>
<td>ch</td>
<td>chrysocolla</td>
</tr>
<tr>
<td>dl</td>
<td>dolomite</td>
</tr>
<tr>
<td>gn</td>
<td>galena</td>
</tr>
<tr>
<td>lm</td>
<td>limonite</td>
</tr>
<tr>
<td>mly</td>
<td>molybdenite</td>
</tr>
<tr>
<td>pl</td>
<td>pyrolusite</td>
</tr>
<tr>
<td>qz</td>
<td>quartz</td>
</tr>
<tr>
<td>sl</td>
<td>sphalerite</td>
</tr>
<tr>
<td>tp</td>
<td>topaz</td>
</tr>
<tr>
<td>asp</td>
<td>arsenopyrite</td>
</tr>
<tr>
<td>bar</td>
<td>barite</td>
</tr>
<tr>
<td>cal</td>
<td>calcite</td>
</tr>
<tr>
<td>cc</td>
<td>chalcocite</td>
</tr>
<tr>
<td>cn</td>
<td>cinnabar</td>
</tr>
<tr>
<td>ep</td>
<td>epidote</td>
</tr>
<tr>
<td>gt</td>
<td>garnet</td>
</tr>
<tr>
<td>cn</td>
<td>cinnalear</td>
</tr>
<tr>
<td>px</td>
<td>pyroxene</td>
</tr>
<tr>
<td>sch</td>
<td>scheelite</td>
</tr>
<tr>
<td>st</td>
<td>stibnite</td>
</tr>
<tr>
<td>tt</td>
<td>tetrahedrite</td>
</tr>
</tbody>
</table>

Sample source

<table>
<thead>
<tr>
<th>Core</th>
<th>Dump</th>
<th>Mine</th>
<th>Outcrop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospect pit</td>
<td>Rubblecrop</td>
<td>Stream bed</td>
<td>Quarry</td>
</tr>
</tbody>
</table>

Deposit Characteristics (abbreviations underlined)

<table>
<thead>
<tr>
<th>Host rock terms</th>
<th>Sedimentary rocks</th>
<th>Metamorphic rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igneous rocks</td>
<td>Sedimentary rocks</td>
<td>Metamorphic rocks</td>
</tr>
<tr>
<td>dacite</td>
<td>carbonate-hosted</td>
<td>marble-hosted</td>
</tr>
<tr>
<td>diorite</td>
<td>conglomerate-hosted</td>
<td>metasediment-hosted</td>
</tr>
<tr>
<td>dunite</td>
<td>sediment-hosted</td>
<td>metavolcanic-hosted</td>
</tr>
<tr>
<td>felsic</td>
<td>shale-hosted</td>
<td>schist-hosted</td>
</tr>
<tr>
<td>gabbro</td>
<td>sandstone-hosted</td>
<td>serpentine</td>
</tr>
<tr>
<td>granodiorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>granite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>monzonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ophiolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tonalite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Structural terms		
breccia		
ign. contact		
shear zone		
stratiform		
concordant		
lens		
sheeted-dike		
stringer		
Textural terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>banded</td>
<td>cumulate</td>
</tr>
<tr>
<td>replacement</td>
<td>disseminated</td>
</tr>
<tr>
<td>vein</td>
<td>massive</td>
</tr>
<tr>
<td>open-space filling</td>
<td></td>
</tr>
</tbody>
</table>

Deposit-types (after Cox and Singer, 1986)

<table>
<thead>
<tr>
<th>Synonym</th>
<th>Model no.</th>
<th>Descriptive deposit names</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPOSITS RELATED TO MAFIC AND ULTRAMAFIC INTRUSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stwtr</td>
<td>1</td>
<td>Stillwater Ni-Cu</td>
</tr>
<tr>
<td>Bush Cu</td>
<td>2a</td>
<td>Bushveld Cr</td>
</tr>
<tr>
<td>MR</td>
<td>2b</td>
<td>Mersensky Reef PGE</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Bushveld Fe-Ti-V</td>
</tr>
<tr>
<td>Dul Cu</td>
<td>5a</td>
<td>Duluth Cu-Ni-PGE</td>
</tr>
<tr>
<td>Nor PGE</td>
<td>5b</td>
<td>Noril’sk Cu-Ni-PGE</td>
</tr>
<tr>
<td>Komat</td>
<td>6a</td>
<td>Komatiitic Ni-Cu</td>
</tr>
<tr>
<td>UM Cu</td>
<td>6b</td>
<td>Dunitic Ni-Cu</td>
</tr>
<tr>
<td>Volc Ni</td>
<td>7a</td>
<td>Synorogenic-synvolcanic Ni-Cu</td>
</tr>
<tr>
<td></td>
<td>7b</td>
<td>Anorthositic Ti</td>
</tr>
<tr>
<td>Pod Cr</td>
<td>8a</td>
<td>Podiform Cr</td>
</tr>
<tr>
<td>LF Co</td>
<td>8c</td>
<td>Limassol Forest Co-Ni</td>
</tr>
<tr>
<td></td>
<td>8d</td>
<td>Serpentine-hosted asbestos</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Alaskan PGE</td>
</tr>
<tr>
<td>DEPOSITS RELATED TO ALKALIC INTRUSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Carbonatite deposits</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Diamond pipes</td>
<td></td>
</tr>
<tr>
<td>DEPOSITS RELATED TO FELSIC INTRUSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-skn</td>
<td>14a</td>
<td>W skarns</td>
</tr>
<tr>
<td>Sn-skn</td>
<td>14b</td>
<td>Sn skarns</td>
</tr>
<tr>
<td>Rep Sn</td>
<td>14c</td>
<td>Replacement Sn</td>
</tr>
<tr>
<td>W-FV</td>
<td>15a</td>
<td>W veins</td>
</tr>
<tr>
<td>Sn-FV</td>
<td>15b</td>
<td>Sn veins</td>
</tr>
<tr>
<td>Greisen</td>
<td>15c</td>
<td>Sn greisen</td>
</tr>
<tr>
<td>H-F Mo</td>
<td>16</td>
<td>Climax Mo</td>
</tr>
<tr>
<td>Porp Cu</td>
<td>17</td>
<td>Porphyry Cu</td>
</tr>
<tr>
<td>Po Cu-skn</td>
<td>18a</td>
<td>Porphyry Cu, skarn-related deposits</td>
</tr>
<tr>
<td>Cu-skn</td>
<td>18b</td>
<td>Cu skarns</td>
</tr>
<tr>
<td>Pb-Zn skn</td>
<td>18c</td>
<td>Zn-Pb skarns</td>
</tr>
<tr>
<td>Fe-skn</td>
<td>18d</td>
<td>Fe skarns</td>
</tr>
<tr>
<td></td>
<td>18e</td>
<td>Carbonate-hosted asbestos</td>
</tr>
<tr>
<td>Replc</td>
<td>19a</td>
<td>Polymetallic replacement deposits</td>
</tr>
<tr>
<td></td>
<td>19b</td>
<td>Replacement Mn</td>
</tr>
<tr>
<td>Deposit Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Porphyry Sn</td>
<td>Porp Sn</td>
<td>20a Porphyry Sn</td>
</tr>
<tr>
<td>Sn-polymetallic veins</td>
<td>Fm Sn MTV</td>
<td>20b Sn-polymetallic veins</td>
</tr>
<tr>
<td>Porphyry Cu-Au</td>
<td>Po Cu-Au</td>
<td>20c Porphyry Cu-Au</td>
</tr>
<tr>
<td>Porphyry Cu-Mo</td>
<td>Porp</td>
<td>21a Porphyry Cu-Mo</td>
</tr>
<tr>
<td>Porphyry Mo, low-F type</td>
<td>L-F Mo</td>
<td>21b Porphyry Mo, low-F type</td>
</tr>
<tr>
<td>Volcanic-hosted Cu-As-Sb</td>
<td>VH sulso</td>
<td>22a Volcanic-hosted Cu-As-Sb</td>
</tr>
<tr>
<td>Au-Ag-Te veins</td>
<td>Pm-Te FV</td>
<td>22b Au-Ag-Te veins</td>
</tr>
<tr>
<td>Polymetallic veins</td>
<td>Pm MTV</td>
<td>22c Polymetallic veins</td>
</tr>
</tbody>
</table>

DEPOSITS RELATED TO SUBAERIAL MAFIC EXTRUSIVE ROCKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Bas Cu Basaltic Cu</td>
</tr>
</tbody>
</table>

DEPOSITS RELATED TO MARINE MAFIC EXTRUSIVE ROCKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24a</td>
<td>Cyprus massive sulfide C-VMS</td>
</tr>
<tr>
<td>24b</td>
<td>Besshi massive sulfide B-VMS</td>
</tr>
<tr>
<td>24c</td>
<td>Volcanogenic Mn Vol-Mn</td>
</tr>
<tr>
<td>24d</td>
<td>Blackbird Co-Cu BB-Co</td>
</tr>
</tbody>
</table>

DEPOSITS RELATED TO SUBAERIAL FELSIC TO MAFIC EXTRUSIVE ROCKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25a</td>
<td>Hot-springs Au-Ag HS-Au</td>
</tr>
<tr>
<td>25b</td>
<td>Creede epithermal veins Cd MTV</td>
</tr>
<tr>
<td>25c</td>
<td>Comstock epithermal veins Cs MTV</td>
</tr>
<tr>
<td>25d</td>
<td>Sado epithermal veins S-MTV</td>
</tr>
<tr>
<td>25e</td>
<td>Epithermal quartz-alunite Au QA-Au</td>
</tr>
<tr>
<td>25f</td>
<td>Volcanogenic U Mn-MTV</td>
</tr>
<tr>
<td>25g</td>
<td>Epithermal Mn</td>
</tr>
<tr>
<td>25h</td>
<td>Rhyolite-hosted Sn</td>
</tr>
<tr>
<td>25i</td>
<td>Volcanogenic-hosted magnetite</td>
</tr>
<tr>
<td>26a</td>
<td>Carbonate-hosted Au-Ag</td>
</tr>
<tr>
<td>27a</td>
<td>Hot-springs Hg</td>
</tr>
<tr>
<td>27b</td>
<td>Almaden Hg</td>
</tr>
<tr>
<td>27c</td>
<td>Silica-carbonate Hg</td>
</tr>
<tr>
<td>27d</td>
<td>Sb veins Sb-FV</td>
</tr>
<tr>
<td>27e</td>
<td>Disseminated Sb deposits</td>
</tr>
</tbody>
</table>

DEPOSITS RELATED TO MARINE FELSIC TO MAFIC EXTRUSIVE ROCKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28a</td>
<td>Kuroko massive sulfides K-VMS</td>
</tr>
<tr>
<td>28b</td>
<td>Algoma Fe</td>
</tr>
</tbody>
</table>
DEPOSITS HOSTED IN CLASTIC SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cg-Au</td>
<td>29a</td>
<td>Quartz pebble conglomerate Au-U</td>
</tr>
<tr>
<td>OD-Cu</td>
<td>29b</td>
<td>Olympic Dam Cu-U-Au</td>
</tr>
<tr>
<td>ss Pb-Zn</td>
<td>30a</td>
<td>Sandstone-hosted Pb-Zn</td>
</tr>
<tr>
<td>sd Cu</td>
<td>30b</td>
<td>Sediment-hosted Cu</td>
</tr>
<tr>
<td></td>
<td>30c</td>
<td>Sandstone-hosted U</td>
</tr>
<tr>
<td>SEDEX</td>
<td>31a</td>
<td>Sedimentary exhalative Zn-Pb</td>
</tr>
<tr>
<td>B Bar</td>
<td>31b</td>
<td>Bedded barite</td>
</tr>
<tr>
<td></td>
<td>31c</td>
<td>Emerald veins</td>
</tr>
</tbody>
</table>

DEPOSITS HOSTED IN CARBONATE ROCKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM Pb-Zn</td>
<td>32a</td>
<td>SE Missouri Pb-Zn</td>
</tr>
<tr>
<td>Apl Zn</td>
<td>32b</td>
<td>Appalachian Zn</td>
</tr>
<tr>
<td>Kip Cu</td>
<td>32c</td>
<td>Kipushi Cu-Pb-Zn</td>
</tr>
</tbody>
</table>

CHEMICAL-SEDIMENTARY DEPOSITS

<table>
<thead>
<tr>
<th>Code</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd Mn</td>
<td>34a</td>
<td>Superior Fe</td>
</tr>
<tr>
<td></td>
<td>34b</td>
<td>Sedimentary Mn</td>
</tr>
<tr>
<td></td>
<td>34c</td>
<td>Upwelling-type phosphate deposits</td>
</tr>
<tr>
<td></td>
<td>34d</td>
<td>Warm-current-type phosphate deposits</td>
</tr>
</tbody>
</table>

DEPOSITS RELATED TO REGIONAL METAMORPHISM

<table>
<thead>
<tr>
<th>Code</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAu-V</td>
<td>36a</td>
<td>Low-sulfide Au-Quartz veins</td>
</tr>
<tr>
<td>Home</td>
<td>36b</td>
<td>Homestake Au</td>
</tr>
<tr>
<td></td>
<td>37a</td>
<td>Unconformity U-Au</td>
</tr>
<tr>
<td></td>
<td>37b</td>
<td>Au on flat faults</td>
</tr>
</tbody>
</table>

DEPOSITS RELATED TO SURFICIAL PROCESSES AND UNCONFORMITIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plc Au</td>
<td>39a</td>
<td>Placer Au-PGE</td>
</tr>
<tr>
<td></td>
<td>39b</td>
<td>Placer PGE-Au</td>
</tr>
<tr>
<td></td>
<td>39c</td>
<td>Shoreline placer Ti</td>
</tr>
<tr>
<td></td>
<td>39d</td>
<td>Diamond Placers</td>
</tr>
<tr>
<td></td>
<td>39e</td>
<td>Alluvial placer Sn</td>
</tr>
</tbody>
</table>
AP ALASKAN PENINSULA
AI ALEUTIAN ISLANDS
BS BERING SEA
BB BRISTOL BAY
CS COOK INLET-SUSITNA RIVER
 An Anchorage
 Rd Redoubt
 Vi Valdez Creek
 Wl Willow Creek
 Yn Yentna
CR COPPER RIVER
 Cc Chistochina
 Nc Nelchina
 Nz Nizina
 Pw Prince William Sound
 Yt Yakataga
KP KENAI PENINSULA
 Hp Hope
 Hm Homer
 Sw Seward
KD KODIAK
KR KUSKOKWIM RIVER
 Ak Aniak
 Bt Bethel
 Gb Goodnews Bay
 Mg McGrath
NA NORTHERN ALASKA
 Ba Barrow
 Cn Canning
 Cv Colville
 Ls Lisburne
 Ww Wainwright
NW NORTHWESTERN ALASKA
 Ki Kiana
 Nt Noatak
 Sl Selawik
 Sh Shungnak
SP SEWARD PENINSULA
 Co Council
 Fh Fairhaven
 Kg Kougarok
 Ky Koyuk
 Nm Nome
 Pc Port Clarence
 Sr Serpentine

SE SOUTHEAST ALASKA
 Ad Admiralty
 Ch Chichagof
 Hy Hyder
 Ju Juneau
 Kt Ketchikan
 Kp Kupreanof
 Pb Petersburg
 Yk Yakutat

YR YUKON RIVER
 Av Anvik
 B1 Black
 Bf Bonnifield
 Ch Chandalar
 Cs Chisana
 Ci Circle
 Dr Delta River
 Ea Eagle
 Fb Fairbanks
 Fm Fortymile
 Gp Goodpaster
 Hs Hot Springs
 Hu Hughes
 Id Iditarod
 In Innoko
 Ka Kaiyu
 Kn Kankishna
 Kk Koyukuk
 Ma Marshall
 Ml Melozitna
 Rm Rampart
 Ru Ruby
 Sj Sheenjek
 Tk Tok
 Tv Tolovana
 Yf Yukon Flats
Tectonostratigraphic terranes (TST)

Alaska (from Jones and others, 1984; Monger and Berg, 1984)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Coldfoot subterrane of the Arctic Alaska terrane</td>
</tr>
<tr>
<td>AAD</td>
<td>DeLong Mountains subterrane of the Arctic Alaska terrane</td>
</tr>
<tr>
<td>AAE</td>
<td>Endicott Mountains subterrane of the Arctic Alaska terrane</td>
</tr>
<tr>
<td>AAH</td>
<td>Hammond subterrane of the Arctic Alaska terrane</td>
</tr>
<tr>
<td>AAN</td>
<td>North Slope subterrane of the Arctic Alaska terrane</td>
</tr>
<tr>
<td>AM</td>
<td>Amgayucham terrane</td>
</tr>
<tr>
<td>AX</td>
<td>Alexander terrane</td>
</tr>
<tr>
<td>AXA</td>
<td>Admirality subterrane of the Alexander terrane</td>
</tr>
<tr>
<td>AXC</td>
<td>Craig subterrane of the Alexander terrane</td>
</tr>
<tr>
<td>AXN</td>
<td>Annette subterrane of the Alexander terrane</td>
</tr>
<tr>
<td>BP</td>
<td>Broad Pass terrane</td>
</tr>
<tr>
<td>BR</td>
<td>Bridge River terrane</td>
</tr>
<tr>
<td>BRY</td>
<td>Baldry terrane</td>
</tr>
<tr>
<td>BV</td>
<td>Barkerville terrane</td>
</tr>
<tr>
<td>CC</td>
<td>Cache Creek terrane</td>
</tr>
<tr>
<td>CCB</td>
<td>Bonaparte subterrane of the Cache Creek terrane</td>
</tr>
<tr>
<td>CCF</td>
<td>French Range subterrane of the Cache Creek terrane</td>
</tr>
<tr>
<td>CCM</td>
<td>Marble Range subterrane of the Cache Creek terrane</td>
</tr>
<tr>
<td>CCN</td>
<td>Nakina subterrane of the Cache Creek terrane</td>
</tr>
<tr>
<td>CCP</td>
<td>Pavilion subterrane of the Cache Creek terrane</td>
</tr>
<tr>
<td>CCS</td>
<td>Sentinel subterrane of the Cache Creek terrane</td>
</tr>
<tr>
<td>CG</td>
<td>Chugach terrane</td>
</tr>
<tr>
<td>CH</td>
<td>Chulitna terrane</td>
</tr>
<tr>
<td>CK</td>
<td>Chilliwack terrane</td>
</tr>
<tr>
<td>CR</td>
<td>Crescent terrane</td>
</tr>
<tr>
<td>CW</td>
<td>Clearwater terrane</td>
</tr>
<tr>
<td>CZ</td>
<td>Crazy Mountains terrane</td>
</tr>
<tr>
<td>DL</td>
<td>Dillinger terrane</td>
</tr>
<tr>
<td>HZ</td>
<td>Hozameen terrane</td>
</tr>
<tr>
<td>GD</td>
<td>Goodnews terrane</td>
</tr>
<tr>
<td>IN</td>
<td>Innoko terrane</td>
</tr>
<tr>
<td>KA</td>
<td>Kandik River terrane</td>
</tr>
<tr>
<td>KG</td>
<td>Kagvik terrane</td>
</tr>
<tr>
<td>KH</td>
<td>Kahiltna terrane</td>
</tr>
<tr>
<td>KIL</td>
<td>Kilbuck terrane</td>
</tr>
<tr>
<td>KK</td>
<td>Kachimak terrane</td>
</tr>
<tr>
<td>KL</td>
<td>Kluane terrane</td>
</tr>
<tr>
<td>KD</td>
<td>Kootenay terrane</td>
</tr>
<tr>
<td>KY</td>
<td>Koyukuk terrane</td>
</tr>
<tr>
<td>LG</td>
<td>Livengood terrane</td>
</tr>
<tr>
<td>MAN</td>
<td>Manley terrane</td>
</tr>
<tr>
<td>MD</td>
<td>McLeod terrane</td>
</tr>
<tr>
<td>MK</td>
<td>McKinley terrane</td>
</tr>
<tr>
<td>ML</td>
<td>MacLaren terrane</td>
</tr>
<tr>
<td>MO</td>
<td>Monashee terrane</td>
</tr>
<tr>
<td>MN</td>
<td>Minchumina terrane</td>
</tr>
<tr>
<td>MNK</td>
<td>Minook terrane</td>
</tr>
<tr>
<td>MT</td>
<td>Methow-Tyaughton terrane</td>
</tr>
</tbody>
</table>
MY Mystic terrane
NK Nooksack terrane
NN Nenana terrane
NX Nixon terrane
NY Nyack terrane
PC Porcupine terrane
PE Peninsular terrane
PN Pingston terrane
PW Prince William terrane
QN Quesnellia terrane
QNR Harper River subterrane of the Quesnellia terrane
QNO Okanagan subterrane of the Quesnellia terrane
RB Ruby terrane
SD Seward terrane
SE Saint Elias terrane
SH Shuksan terrane
SHE Sheenjek terrane
SK Skagit terrane
SM Slide Mountain terrane
ST Stikinia terrane
SU Sustina terrane
SV Seventymile terrane
TA Tracy Arm terrane
TG Togiak terrane
TK Tikchik terrane
TU Taku terrane
TZ Tozitna terrane
VEN Venetie terrane
WC Woodchopper Canyon terrane
WF West Fork terrane
WHM White Mountains terrane
WM Windy-McKinley terrane
WR Wrangellia terrane
WS Wickersham terrane
WY Windy terrane
YA Yakutat terrane
YO York terrane
YT Yukon Tanana terrane

Geologic symbols used to designate geologic ages of units or rock assemblages that are not accreted
Cz Rocks of Cenozoic age
K Rocks of late Cretaceous age
T Rocks of Tertiary age
GN Gravina-Nutzotin Belt
Abbreviations used for ages of the geologic time scale

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Period</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cz</td>
<td>Cenozoic (Tertiary)</td>
<td>0-66.4 Ma</td>
</tr>
<tr>
<td>Tq</td>
<td>Quaternary</td>
<td>1.6 Ma</td>
</tr>
<tr>
<td>Tp</td>
<td>Pliocene</td>
<td>5.3 Ma</td>
</tr>
<tr>
<td>Tm</td>
<td>Miocene</td>
<td>23.7 Ma</td>
</tr>
<tr>
<td>To</td>
<td>Oligocene</td>
<td>36.6 Ma</td>
</tr>
<tr>
<td>Te</td>
<td>Eocene</td>
<td>57.8 Ma</td>
</tr>
<tr>
<td>Ta</td>
<td>Paleocene</td>
<td>66.4 Ma</td>
</tr>
<tr>
<td>Mz</td>
<td>Mesozoic</td>
<td>66.4-245 Ma</td>
</tr>
<tr>
<td>K</td>
<td>Cretaceous</td>
<td>144 Ma</td>
</tr>
<tr>
<td>J</td>
<td>Jurassic</td>
<td>208 Ma</td>
</tr>
<tr>
<td>Tr</td>
<td>Triassic</td>
<td>245 Ma</td>
</tr>
<tr>
<td>Pz</td>
<td>Paleozoic</td>
<td>245-570 Ma</td>
</tr>
<tr>
<td>P</td>
<td>Permian</td>
<td>266 Ma</td>
</tr>
<tr>
<td>IP</td>
<td>Pennsylvanian</td>
<td>320 Ma</td>
</tr>
<tr>
<td>M</td>
<td>Mississippian</td>
<td>360 Ma</td>
</tr>
<tr>
<td>D</td>
<td>Devonian</td>
<td>408 Ma</td>
</tr>
<tr>
<td>S</td>
<td>Silurian</td>
<td>438 Ma</td>
</tr>
<tr>
<td>O</td>
<td>Ordovician</td>
<td>505 Ma</td>
</tr>
<tr>
<td>C</td>
<td>Cambrian</td>
<td>570 Ma</td>
</tr>
<tr>
<td>Pc</td>
<td>Precambrian</td>
<td>>570 Ma</td>
</tr>
</tbody>
</table>

The time-stratigraphic terms, early (e), middle (m), and late (l), have been applied as modifiers to the age designations where the fossil data are sufficiently restrictive. Radiometric ages are used where available and are expressed in million years (Ma).

Names and addresses of analysts

MB M. L. Bevier, Canadian Geological Survey, 601 Booth St., Ottawa, Ontario, K1A 0E8 CANADA
GC G. L. Cumming, Dept. Geology, Univ. Alberta, Edmonton, Canada
MD M. H. Delevaux, USGS, P. O. Box 25046, MS 963, Denver, CO 80225
ALH A. P. LeHuray, Lamont-Doherty Geol. Obs, Palisades, NY 10964
KM K. J. Mizon, CSIRO, P. O. Box 136, North Ryde, AUSTRALIA
HS H. J. Stein, USGS, P. O. Box 25046, MS 905, Denver, CO 80225
CGS Ralph Thorpe, Canadian Geological Survey, 601 Booth St., Ottawa, Ontario, K1A 0E8 CANADA
K. M. Dawson, Canadian Geological Survey, 100 W. Pender St., Vancouver, British Columbia, V6B 1R8 CANADA
Names and addresses of contributors

JA J. C. Antweiler, USGS, PO Box 25046, MS 973, Denver, CO 80225
MA M. E. Allen, Freeport-McMoRan Gold Co., PO Box 41330, Reno, NV 89504
DB D. A. Brew, USGS, MS 904, 345 Middlefield Rd., Menlo Park, CA 94025
JB J. A. Briskey, USGS, MS 901, 345 Middlefield Rd., Menlo Park, CA 94025
WB W. P. Brosge', USGS, MS 904, 345 Middlefield Rd., Menlo Park, CA 94025
DC D. P. Cox, USGS, MS 901, 345 Middlefield Rd., Menlo Park, CA 94025
JC J. B. Cathrall, USGS, PO Box 25046, MS 973, Denver, CO 80225
SC S. E. Church, USGS, PO Box 25046, MS 973, Denver, CO 80225
SL S. L. Culp, Consulting Geologist, 816 Laurel, Fort Collins, CO
HF H. L. Foster, USGS, MS 904, 345 Middlefield Rd., Menlo Park, CA 94025
JF J. G. Frisken, USGS, PO Box 25046, MS 973, Denver, CO 80225
PF P. F. Folger, USGS, PO Box 25046, MS 973, Denver, CO 80225
BG B. M. Gamble, USGS, 4200 University Dr., Anchorage, AK 99508
DG D. J. Grybeck, USGS, 4200 University Dr., Anchorage, AK 99508
JG J. E. Gray, USGS, PO Box 25046, MS 973, Denver, CO 80225
NG J. N. Grant, Billiton International Metals, PO Box 436, 2260 AK
 Leidschenadam, The Netherlands
RG R. J. Goldfarb, USGS, PO Box 25046, MS 973, Denver, CO 80225
CH C. C. Hawley, 7011 Old Seward Highway, Anchorage, AK 99502
JH J. W. Hammitt, Kennicott, PO Box 11248, Salt Lake City, UT 84147
HK H. D. King, USGS, PO Box 25046, MS 973, Denver, CO 80225
JK J. M. Kelly, Consulting Geologist, Salt Lake City, UT
RK R. A. Koski, USGS, MS 999, 345 Middlefield Rd., Menlo Park, CA 94025
RV R. V. Kirkham, Canadian Geological Survey, 601 Booth St., Ottawa, Ontario K1A 0E8 CANADA
IL I. M. Lange, Dept. Geology, Univ. of Montana, Missoula, MT 59801
TL T. D. Light, USGS, PO Box 25046, MS 973, Denver, CO 80225
WM W. D. Menzie, USGS, MS 984, 345 Middlefield Rd., Menlo Park, CA 94025
DM D. H. Madden, USGS, PO Box 25046, MS 973, Denver, CO 80225
SN S. W. Nelson, USGS, 4200 University Dr., Anchorage, AK 99508
WN W. J. Nokleberg, USGS, MS 904, 345 Middlefield Rd., Menlo Park, CA 94025
BR B. L. Reed, USGS, 4200 University Dr., Anchorage, AK 99508
ER Earl Redman, USBM, PO Box 20550, Juneau, AK 99802
SR Scott Rose, USGS, PO Box 25046, MS 973, Denver, CO 80225
MS M. L. Silberman, USGS, PO Box 25046, MS 973, Denver, CO 80225
JS J. M. Schmidt, USGS, 4200 University Dr., Anchorage, AK 99508
TS T. E. Smith, Division of Geological and Geophysical Surveys, 794
 University Ave., Fairbanks, AK 99701
RT R. B. Tripp, USGS, PO Box 25046, MS 973, Denver, CO 80225
FW F. H. Wilson, USGS, 4200 University Dr., Anchorage, AK 99508
DGGS M. W. Henning, Division of Geological and Geophysical Surveys, PO Box
 772116 Eagle River, AK 99577

43
APPENDIX II

SAMPLE INFORMATION SHEET FOR COMMON-Pb ISOTOPIC ANALYSIS

<table>
<thead>
<tr>
<th>Contributor: _____________________</th>
<th>Sent to: S. E. Church</th>
</tr>
</thead>
<tbody>
<tr>
<td>address: ________________________</td>
<td>Branch of Geochemistry</td>
</tr>
<tr>
<td></td>
<td>U. S. Geological Survey</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 25046, MS 973</td>
</tr>
<tr>
<td></td>
<td>Denver, CO 80225</td>
</tr>
<tr>
<td>phone: _________________________</td>
<td>(303) 236-1900</td>
</tr>
<tr>
<td>date: _________________________</td>
<td>FTS 776-1900</td>
</tr>
</tbody>
</table>

SAMPLE No. ____________________ Lab. No. ____________________

Sample Location: Lat.___________ Long.______________
or sec. ______ Township _______ & Range _________
Quadrangle _______________ State ________________
Name of deposit or occurrence ____________________
USBM Region ___________ District _____________

GEOLOGIC INFORMATION

Sample Source___________ Type of host-rock____________
Age of host-rock (how obtained?) _______________________
Formation ___
Tectonostratigraphic terrane (if appropriate) ____________
Descriptive information (structure, texture, form, etc.) __________
Mineralogy of sample ________________________________
Mineralogy of deposit ________________________________
Gangue minerals ______________________________________
Structural and Stratigraphic relations ____________________

Deposit type (Singer and Cox, 1986) _____________________
Age of Mineralization (how obtained?) _____________________
Size of deposit ________________________________

Other field information:

Chemical data available: Chemical analysis () Modal analysis ()
Thin or polished sections () Spectrographic analysis ()
Stable isotopic data () Other (specify)________________

Are detailed studies of this deposit or occurrence published or in progress? ________________________________

References:

44