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ABSTRACT

Horizontal principal stress orientations inferred from wellbore
elongations ("breakouts") in petroleum exploration wells on the Atlantic outer
continental shelf yield the following results by area (from north to south):
Georges Bank (9 wells, total depths between 4.30 and 6.66 km)-maximum
horizontal compressive stress (SHmax) orientation approximately E-W;

Baltimore Canyon (14 wells, total depths between 3.74 and 5.58 km)-SHmax
orientation between N 50° E and N 70° E; and the southeast Georgia Embayment
(3 wells, total depths between 1.83 and 2.13 km)-SHpax orientation between N
8°E and N 23°E. A11 wells 1lie within 70 km of the continental slope and the
inferred least horizontal principal stress orientations are generally aligned
perpendicular to the local trend of the slope. Focal mechanisms of
earthquakes directly adjacent onshore indicate compressional deformation
(thrust and strike-slip faulting) resulting from NE to ENE Sypax

orientation. In addition, available unambiguous data on young faulting on the
continental shelf suggest thrust and/or strike-slip faulting and in-situ
stress magnitudes measured on the Scotian shelf, offshore Canada, indicate a
strike-slip faulting stress regime with Sypax oriented about NE (Ervine and
Bell, 1987). It appears that the state of stress on the continental margin is
broadly consistent with the NE to ENE maximum horizontal compression
characterizing most of mid-plate North America, however superimposed
continental slope effects, including flexure due to sediment loading, may be
Tocally large enough to rotate the principal stresses by as much as 40 .

INTRODUCTION

Knowledge of the in-situ stress field is invaluable for assessing seismic
hazards in areas such as the eastern United States with a relatively low level
of seismicity and where major active faults have not been identified. Results
of previous studies (Zoback and Zoback, 1980; Yang and Aggarwal, 1981; and
Wentworth and Mergner-Keefer, 1983) suggested that a zone of NW-oriented
compression exists along the Atlantic seaboard of the U.S. in contrast to the
NE- to ENE- oriented maximum horizontal compressive stresses found throughout
much of the midcontinent region of North America (Sbar and Sykes, 1973; Zoback
and Zoback, 1980; M. L. Zoback and others, 1986). The evidence for a distinct
Atlantic coast stress province includes poorly constrained earthquake focal
mechanisms (Yang and Aggarwal, 1981) and small (1-2 m) late Tertiary reverse
fault offsets (Prowell, 1983).

However, new stress data suggests that the NE to ENE compressive stress
state characterizing the midcontinent region may be continous into the
mid-plate region of the Western Atlantic basin making the existence of a
separate coastal stress province doubtful. These new stress data include: 1)
better-constrained earthquake focal mechanisms in the Charleston, South
Carolina area (Talwani, 1982) and in the Western Atlantic basin (Nishenko and
Kafka, 1982), as well as new mechanisms and a re-analysis and error assessment
(Quittmeyer and others, 1985, C.T. Statton, 1984, written communication) of
earlier focal mechanisms in the New York-New Jersey area that suggested
NW-compression (Yang and Aggarwal, 1981), 2) Analysis of well bore elongations
in southeastern Canada and the northeastern U.S. (Plumb and Cox, 1987) and on
the Scotian shelf (Prodrouzek and Bell, 1985), 3) in-situ stress (hydraulic
fracturing) measurements in a 1 km-deep well in the New York-New Jersey area
(Zoback and others, 1985) and in several holes near the Georgia-South Carolina



border (M. D. Zoback and others, 1986).

To further evaluate the state of stress along the Atlantic coast area we
analyzed high resolution four-arm dipmeter logs for stress-induced borehole
elongations ("breakouts") in Continental Offshore Test wells (COST) and other
petroleum industry exploration wells drilled on the outer continental shelf.
Numerous studies using commercially available dipmeter data indicate that the
average azimuth of these elongations is generally very consistent within a
given well or oil field (Cox, 1970; Babcock, 1978; and Brown and others,
1980). Comparison with other types of data (Gough and Bell, 1981 and 1982;
Hickman and others, 1985; Plumb and Hickman, 1985; Teufel, 1985) and
theoretical analyses (Bell and Gough, 1979 and 1982; and M. D. Zoback and
others, 1985) suggest that the consistent azimuth of the elongation is
parallel to the minimum horizontal compressive stress orientation. We
determined borehole elongation azimuths for wells from three fields on the
eastern U.S. continental margin (Georges Bank, Baltimore Canyon, and Southeast
Georgia Embayment) in order to evaluate stress orientations in this region.

ANALYSIS OF LOG DATA TO DETERMINE ELONGATION DIRECTIONS

The elongation directions reported here were measured from field dipmeter
logs obtained from the U.S. Minerals Management Service and also directly from
the private companies who drilled the holes (see the Acknowledgments for a
complete 1ist of companies who provided logs). Dipmeter logs utilize an
oriented-four arm caliper tool which records hole geometry in two orthogonal
directions (for a complete description of this tool see Schlumberger, Limited,
1981). Torque in standard logging cable results in a clockwise rotation of
the tool under normal operating conditions when the wellbore is approximately
circular. In zones of wellbore elongation this rotation may temporarily be
interupted when one set of caliper arms expands and locks into the elongated
axis of the hole. Babcock (1978), Bell and Gough (1982), Cox (1983), and Dart
(1985) give a detailed discussion of identification and discrimination of
e1ong?tion ("breakout") zones from dipmeter logs and also provide numerous
examples.

The primary criteria used in this study to distinguish elongation or
breakout zones from other forms of wellbore enlargment and non-symmetrical
caving are essentially identical to those reported in Dart (1985) and are
repeated below:

1. The Togging tool must exhibit normal rotation in circular parts of
the hole.

2. Normal tool rotation is interrupted in elongation zones.

3. One of the caliper pairs must exceed the borehole diameter relative

" to the bit size.

4. The direction of elongation and azimuth of hole drift in cases where
there is a vertical deviation of the hole must not coincide. Such
non-verticality of the well bore may induce drill-pipe wear in the
form of asymmetric borehole elongation (Plumb and Hickman, 1985).



GEOLOGY OF THE STUDY AREAS

The United States Atlantic continental margin extends from the Georges
Bank southward to southern Florida, between the coastal plain and the outer
continental rise (Figure 1). The physiography of the continental margin
consists of a gently sloping shelf to depths of approximately 200 m, a
continental slope on which bathymetric depths increase rapidly to about 2,000
m, and the broad continental rise that extends seaward to the abyssal plain
(Emery and Uchupi, 1972). The continental margin is underlain by a series of
structural platforms and basement depressions that trend parallel to the
coastal plain (Maher, 1971; Klitgord and Behrendt, 1979). These platforms and
basins are syn-rift and post-rift, fault-controlled structural features
associated with the separation of the North American and African continental
landmasses (K1itgord and Behrendt, 1979; Ziegler, 1983). Basin subsidence
occurred in conjunction with the extensional thinning and cooling of the
rifted crust and the thick accumulation of terrigenous and marine sediments
{gg;;am, 1971; Falvey, 1974; Bott, 1979; Steckler and Watts,

On the basis of the available geologic and geophysical data it appears
that the entire Atlantic continental margin, from the Scotian shelf off the
Canadian Maritime Provinces to the Southeast Georgia Embayment-Blake Plateau
Basin, has undergone a similar tectonic and depositional evolution.
References to apparent similarites in structure and 1ithology among the three
areas studied and the Scotian shelf are made by Adinolfi and Jacobson (1979),
Judkins and others (1980); Grow (1980); Scholle and Wenkam (1982);

Poag and Valentine (1985); Libby-French (1983); Maher (1971); Emery and
Uchaupi (1972); and Ziegler (1983).

COST wells and petroleum exploration wells used in this study were drilled
in three of the major structural basins in the Atlantic continental margin:
The Georges Bank basin offshore from Massachusetts, the Baltimore Canyon
Trough offshore from New Jersey and the Southeast Georgia Embayment offshore
from Georgia and northern Florida. These wells were generally located on the
outer continental shelf, within 70 km of the shelf-slope break, but in a few
cases the wells were drilled on the continental slope itself (see Figure 4).
Wells in all three basins penetrated sedimentary strata consisting of
unconsolidated to poorly consolidated Tertiary coarse sands, gravels and soft
clay overlying poorly consolidated to well indurated Cretaceous and Jurassic
interbedded siltstone, sandstone, and shale, limestone, dolomite and evaporite
deposits (Scholle and Wenkam, 1982; Scholle, 1977, 1979 and 1980). Table A-2
correlates lithology with type of well-bore elongation for selected wells in
each of the three basins.

Basement rock was drilled in two of the basins, Paleozoic rocks in the
Georges Bank Basin and igneous intrusives and metamorphic rock in the
southeast Georgian Embayment. Paleozoic basement was not reached in the
Baltimore Canyon Trough (Scholle, 1979, 1977, 1980; and Scholle and Wenkam,
1982). Depositional environments of the rocks drilled in these three basins
varied from nonmarine and restricted marine inner shelf to outer shelf open
marine, slope and deep water pelagic (Poag and Valentine, 1985). The
identification and correlation of certain stratigraphic units and
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and others (1975, p. 1536), and Klitgord and Behrendt (1979, p. 86)



arogert 65" — e 66°15°
yd N
7~ -~ ¢
/
’,/’
— ~ \%
)
- $@$<“ &
C Q0
oY
O
4101 /
/GBS /
{COST G-1)
\ ﬁaz«cosr s-zy /
GB6 GB4
b /
/ \GBS /
GB8
@Q; /
X =)
o0 \
cﬁ /1000 >
40— 3009 -
/ ? 2.5 S'O Kilometers
0 15 30 Miles x*
39045 1 1 ydin
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Figure 3. Rose diagrams of breakout orientations for individual wells in the
Georges Bank basin.. Breakout orientations are welghted as to
length (feet) in (A) and number of breakouts (B). Totals of length
and number are given as the values of n; values of r are the radiil
of the diagrams.



lithostratigraphic units within basins and chronostratigraphic units between

basins, imply similar depositional and tectonic histories for all three areas
(Adino1fi and Jacobson, 1979; and Grow 1980). Given below is a brief summary
of the geology of each of three basins.

Georges Bank Basin

The Georges Bank Basin is a sediment-filled structural depression in
underlying the continental margin east and south of Cape Cod between the La
Have platform to the northwest and north and the Long Island platform to the
west (Schlee and Klitgord, 1982). Approximately 7,930 m of Mesozoic and
Cenozoic sedimentary rock fill the basin forming a seaward thickening wedge.
{3$4?asin extends northeast-southwest for about 195 km (Schultz and Grover,

The primary source of information on the depositional and tectonic history
of Georges Bank Basin is the COST wells G-1 and G-2 (Figure 2) and the many
miles of seismic reflection profiles run over the entire area (Scholle and
Wenkam, 1982; Amato and Simonis, 1980; and Amato and Bebout, 1980). COST well
G-2 is located approximately 4.5 km seaward of G-1 and contains primarily deep
water sedimentary strata whereas sedimentary rocks at G-1 are more clastic.

The biostratigraphy of the depositional cycle (Poag, 1982) and
correlations between lithologies of the two COST wells (Arthur, 1982) suggest
a depositional history of the Georges Bank Basin that is characterized by
intervals of marine carbonate and nonmarine sediment accumulation during
periods of sea level fluctuation and basin subsidence. Triassic interbedded
nonmarine siltstone, mudstone and shale, and marine limestone, dolomite and
anhydrite accumulated on a subsiding, post-rift, block-faulted basement
surface. Throughout the Late Triassic and Early Jurassic a carbonate platform
developed on which sequences of marine dolomite and prograded detrital sands
and muds were deposited. This entire shelf was covered by nonmarine sands and
gravels during the Cretaceous. Throughout the Tertiary the earlier pattern of
carbonate development alternating with clastic sediment deposition was
repeated with the formation of a white chalk limestone and detrital sandstone,
mudstone, siltstone and shale. Most recently, Pleistocene glacial sediment
was deposited onto the shelf.

Baltimore Canyon Trough

The Baltimore Canyon Trough is a narrow northeast-trending structural
basin filled with as much as 13.7 km of post-Paleozoic sedimentary rock and
shallow unconsolidated sediments. As in the Georges Bank Basin, the
sedimentary fi1l forms a seaward-thickening wedge that unconformably overlies
a faulted basement surface or continental-oceanic transitional crust (Scholle,
1977). The Baltimore Canyon Trough is located off New Jersey (Figure 1)
southwest of the Georges Bank Basin between the Long Island platform to the
northeast and the Carolina platform to the southwest near Cape Hatteras.

Correlation of biostratigraphic and 1ithologic data from COST wells (B-2
and B-3) combined with the analysis of multichannel seismic reflection profile
provides the primary source of information on the stratigraphic history of the
Baltimore Canyon Trough (Scholle, 1977 and 1980; Amato and Simonis, 1979; and
Smith and others, 1976). COST well B-2 is located on the shelf whereas well
B-3 is located approximately 50 km seaward on the continental slope (Figure 4).



Sedimentary strata within the trough dip gently seaward except for an
upwarping of Jurassic and Cretaceous strata beneath the shelf by a large
isolated basement instrusion known as the "Great Stone Dome" (Schlee and
others, 1976; Mattick, 1977; and Grow, 1980). Other structural features
having a disruptive effect on basin stratigraphy include salt diapirs
associated with Triassic evaporite deposits (Grow,°1980) and a series of
apparent high-angle normal faults that strike N 70 E and dip NW offsetting
sedimentary strata ~ 1.5 meters within 7 meters of the sea floor. Sheridan
and Knebel (1976) suggest that these faults are the result of basin subsidence
under the continental shelf, and that they might be related to other
high-angle normal faults at depth. Another northeast-striking fault, thought
to be down-to-the-basin, was detected at a depth of 2,152 m in the COST B-2
well (Smith and others, 1976).

The depositional history of the Baltimore Canyon Trough is very similar to
that of the Georges Bank Basin. Schlee (1981) and Poag (1979) have summarized
the two major depositional events: 1) Triassic and Jurassic deposition of near
shore nonmarine sandstone, shale and coal interbedded with shallow marine
limestone and restricted marine evaporites onto the block-faulted, post-rift
Paleozoic and Precambrian metamorphic and Triassic igneous rocks (Mattick and
Bayer, 1980). 2) Throughout the remainder of the Mesozoic and during the
Tertiary period sediment accumulation within the subsiding basin consisted of
periods of marine limestone and nonmarine deltaic and detrital sandstone,
shale and claystone deposition.

Southeast Georgia Embayment

The Southeast Georgia Embayment forms a structural depression on the edge
of the Coastal Plain which extends eastward from onshore and merges with the
broad Blake Plateau Basin (Figure 6). Faulted basement rocks are continental
under the eastern edge of the embayment to modified oceanic beneath the Blake
Plateau Basin (Dillon and others, 1978). The southern Atlantic continental
margin differs from the more typical margin physiography of shelf, slope and
continental rise found north of Cape Hatteras. South of Cape Hatteras the
continental slope divides forming the Florida-Hatteras Slope and the Blake
Escarpment, a second, seaward extension of the continental slope forming the
eastern edge of the Blake Plateau. The southeast Georgia Embayment is bound
by the Cape Fear Arch to the northeast and the Peninsular area to the
southwest (Buffler and others, 1978). The Embayment is filled with
approximately 9.7 km of Mesozoic (predominately Cretaceous) and Cenozoic
sedimentary rock. This seaward thickening wedge is composed principally of
carbonate sediments that form part of the broad carbonate shelf between Cape
Hatteras, south Florida and the Bahamas. The carbonate composition of this
shelf represents a significant transition from the more siliceous clastic
shelf sediments north of Cape Hatteras (Uchupi, 1970; Buffler and others,
1978; Dillon and others, 1978 and 1979).

Stratigraphic and depositional sequences of Southeast Georgia Embayment
sediments are based on the published interpretations of COST well data (GE-1)
and multichannel seismic reflection profiles of the Southeast Georgia
Embayment and Blake Plateau Basin (Scholle, 1979; Buffler and others, 1978;
Dillon and others, 1978).
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Breakout orientations are weighted as to

Rose diagrams of breakout orientation for individual wells in

Baltimore Canyon trough.
given as the values of n; values of r are the radii.

and BC-17 had no breakout data and are not shown.

length (feet) (A) and number (B).

Figure 5.
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Figure 5.--Continued
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Figure 7. Rose diagrams of breakout orientations for individual wells in the
Southeast Georgia embayment. Breakout orientations are weighted as
to length (feet) (A) and number (B). Totals of length and number
are given as the values of n, values of r are the radii.
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Buffler and others (1978) subdivide the depositional history of the
Southeast Georgia Embayment into three intervals based on regional
uncomformities as seen on seismic reflection profiles. These are: 1) a
sequence of Early Cretaceous (possibly Jurassic) to Late Cretaceous nonmarine
sandstone and shale that intertongue southward with l1imestone and dolomite.
These Cretaceous sediments unconformably overly an eroded Paleozic metamorphic
basement on which Early Jurassic volcanics were deposited. 2) A Late
Cretaceous carbonate shelf section consisting of fine-grained carbonate
limestones, sandstone and shale. 3) Largely unconsolidated Tertiary sediments
including principally chalk limestone and minor quartz sand.

RESULTS

Two types of elliptical well-bore elongation are observed in the well logs
we analyzed. The shallow portions of most wells exhibited 1ong sequences of
washout zones (intervals in which both caliper diameters exceed bit-size).

The orientation of the major axis of this enlargment is often quite variable
both within an individual and in adjacent wells. By contrast, breakout zones
(intervals in which one caliper showed an enlargement and the other is at bit
size) are generally found deeper in the wells and have consistent orientations.

Referring to detailed 1ithologic descriptions for COST wells and a number
of mud logs from other wells (see Table A-1), it appears these shallow, long
washout zones occurred in poorly consolidated sandstones, siltstone,
mudstones, claystones and soft limestones, and largely unconsolidated coarse
quartz sand and sticky clay. True breakouts are generally found at greater
depths in consolidated formations that are predominantly interbedded
sandstone, shale, siltstone and limestone, and in a few cases metamorphic
basement rock (Table A-2). Based on available lithologic data and the
character of the dipmeter logs this transition from unconsolidated to
consolidated sediments, referred to here as "consolidation depth", typically
occurs gradually; in the Southeast Georgia Embayment the transition occurs
between about 1.4 to 1.65 km, in the Georges Bank Basin between about 1.0 to
1.9 km, and in the Baltimore Canyon Trough between about 1.5 and 2.5 km (see
Table A-1). Washout zones as well as and poorly consolidated to weakly
indurated strata occasionally occur below the observed “"consolidation depth".
However, in the majority of dipmeter logs analyzed in all three areas the long
well-developed washouts (typically about a hundered meters in length),
observed in the shallow parts of the logs clearly reflected a change in
sediment consolidation.

The orientations of the long axes of the washout zones in the shallow
portions of the logs do not necessarily agree with the orientation of
breakouts and washouts occuring beneath the "consolidation depth". Like
breakouts, the deep washouts are thought to be reliable indicators of the
least horizontal stress orientation because of: 1) their occurrence below the
"consolidation depth" in largely consolidated sediments, 2) the relative
consistency of their orientations, and 3) general agreement with the
orientations of breakouts. A well by well comparison of the orientation of
washouts above the "consolidation depth" and orientations of hole elongation
below the consolidation depth reveals that the shallow washouts have

14



orientations which fall into three classes: 1) random, 2) approximately the
same as the deeper elongations, or 3) at approximately 90 to the trend of the
deeper elongations. Table 1 1ists the results of this well-by-well
comparison.

In all three areas a significant percentage of the shallow washouts have
random orientations. However, it is interesting to note that in both the
Georges Bank Basin and the Baltimore Canyon Trough a high percentage of the
shallow washouts have orientations that are orthogonal to the trend of
breakouts and prefentially oriented washouts (POW) that occured below the
"consolidation depth". One possible explanation of hole elongation orthogonal
to the breakout direction (i.e. in the direction of maximum horizontal stress)
js the occurrence of drilling-induced hydraulic fractures and preferential
erosion of the well-bore in this direction.

Results of our borehole elongation determinations for each well are given
in the rose diagrams in Figures 3, 5, and 7. In these three figures two sets
of orientation determinations (A and B) are shown for each well. InA,
orientations weighted by length (feet--the standard industry practice on well
logs is to scale depth in feet) are plotted, n gives the total length of
elongated wellbore (ft) and r is the radius (also in feet) of the rose
diagram. The second set of determinations (marked B) are based on number of
observed elongations (independent of length). In this case n refers to the
total number of elongations and r is the radius (in number of observations).
Both representations of the data are presented to check for consistency.
Occasionally, long intervals of the wellbore may be elongated for reasons
other than true breakout formation (possibly due to tool wear). We are
suspicious of single long breakouts that have an orientation inconsistent with
other observations in the well. Typically however, the statistical results of
orientations determined by the length-weighted and non-length-weighted methods
agree within a few degrees as is clear from Tables 2, 3 and 4. Also given in
Tables 2, 3 and 4 are quality rankings for the determinations from each well
based on the ranking system for quality of tectonic stress orientations
inferred from reliable data (Zoback and Zoback, in press). Their quality
rankings for the borehole elongation data are as follows:

A - orientations for a single well with a standard deviation (S.D.) of <
15", or average of orientations in 2 or more wells in close
geographic proximity. . .

B - orientations in a single well with 15 < S.D, < 25

C - 1less than 4 distinct elongations (of uniform orientation) in a single
well

D - elongations in a single well with S.D. > 30° (generally bimodal
results), or a single elongation in a well.

Zoback and Zoback (in press) concluded that only the A, B and C rankings give
reliable orientations of the tectonic stress field. For this reason and the

fact that the North American stress database is so large, the D quality data

are not included in regional compilations.

15



Table 1 -- Comparison of Deep Breakout and Shallow Washout Orientations

[The orientations of long shallow washouts above the "consolidation depth"
were compared with orientations of deeper well bore elongations in individual
wells. Washout orientations are separated into three classes: 1) random, 2)
at approximately the same orientation trend of breakout and POWs (0°), or at
approx1mate1y 90° to the trend of breakouts and POWs (90°). Percentages are
given collectively by area.]

Random at 0° at 90°
Southeast Georgia Embayment 45 percent 20 percent 35 percent
Georges Bank Basin 14 percent 14 percent 72 percent
Baltimore Canyon Trough 33 percent 0 percent 67 percent
A11 Areas Combined 36 percent 15 percent 48 percent
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Georges Bank

The necessary field dipmeter or fracture identification logs were obtained
for 9 of the 10 exploration wells drilled on the outer Georges Bank shelf.
The Tocation and names of the wells with logs are shown on Figure 2. As
indicated on the figure, the wells are located from 70 to roughly 5 km from
the shelf-slope break (taken as the 200 m bathymetric contour?. Total depths
of the wells vary between 2969 m and 6656 m (see Table 2).

The result of the orientation determinations are shown on Figure 3 and
summarized in Table 2. The data were generally high-quality and very
consistent. Mean orientations ranged from N 13'W to N 13'E, the overall mean
for the 9 wells sampled in the basin was N 3 E, implying an maximum horizontal
compressive stress (Symax) orientation of about E-W (N 87°W). As shown on
Figure 2, the trend of the continental slope is curved through this region
with an overall trend of about N 60 E. The breakout orientations (believed
equivalent to the minimum horizontal compressive (Shm ) orjentations) are
plotted on Figure 2 and are aligned at a high angle, gg -60 ', but not truly
perpendicular to the continental slope, with the possible exception of well
GB7 located only a few kilometers from the slope.

Baltimore Canyon Trough

A total of 23 logs were obtained for the Baltimore Canyon region. The
location, names, and mean breakout orientations of the wells are shown on
Figure 4, note that the D quality orientation determinations were not
plotted. Most of the wells were drilled on the slope itself or within 15 km
of the shelf-slope break.

The orientation results are presented on rose diagrams in Figure 5 and
summarized on Table 3. Note that wells with highly scattered results or
bimodal orientations (BC-3, BC-4, BC-9, BC-11, BC-16, BC-20, BC-21, BC-22 and
BC-25) received a D quality ranking based on their standard deviations.
Ignoring these D quality points, the overall mean breakout orientation for the
region (equivalent to Sppin) was N 35°W, almost exactly perpendicular to the
Tocal trend of the continental slope. The inferred mean Sypax orientation
was N 55 E (Table 6).

Southeast Georgia Embayment

Dipmeter logs were obtained from six wells in the Southeast Georgia
Embayment however, reliable borehole elongations were determined in only 3 of
these wells. The wells and these orientations are plotted on Figure 6. The
orientation determinations are shown on the rose diagrams on Figure 7 and the
results are summarized in Table 4. The results are rather scattered,
particularly in the determination weighted by length. As indicated in Table
4, GE-2 was given a B quality and GE-1 and GE-5 were given C quality rankings.

As discussed previously, the typical shelf-slope physiography of the
western Atlantic margin is disrupted in the vicinity of the Southeast Georgia
Embayment. The continental slope is broken into two smaller slopes, the
Florida-Hatteras Slope and the Blake escarpment. The wells investigated are
all located with 30 km of the ~600 m high NNE-trending Florida - Hatteras

Slope. The inferred Sppip orientations (equivalent to breakout
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orientations) plotted on Figure 6 are roughly perpendicular to this slope and
imply a Sypax orientation of approximately NNE, a substantial deviation from
the inferred regional midplate SHpax orientation of NE to ENE (M. L. Zoback
and others, 1986).

DISCUSSION

The results of the borehole elongation analysis indicate a Symax
orientation between N 25°E to N 93'E for all wells from the continental
shelf. The actual borehole elongation and inferred stress orientations are
quite consistent within each of the three study areas (Table 5, Figure 8).
However, there is considerable and statistically significant variability in
the mean orientation between areas: approximately E-W in Georges Bank area, N
55" E in Baltimore Canyon, and about N 20 E in the Southeast Georgia
Embayment. As indicated above, in each area the Sypax orientations are
parallel to or nearly parallel to the local orientation of the shelf-slope
break, implying a minimum horizontal stress orientation perpendicular to the
continental slope.

Several geophysical characteristics of continental margins predict an
extensional stress regime with SHpax orientation perpendicular to the
margin. Two major potential sources of stress at passive continental margins
include Tithosphere flexure related to sediment loading (e.g. Turcotte and
others, 1977; Neugebauer and Sohn, 1978; and Cloetingh and others, 1983), and
stresses induced by body forces associated with the lateral variation in
density and thickness of the continental and oceanic crustal columns (Bott and
Dean, 1972). Both of these effects predict extensional stresses within the
continental shelf lithosphere, with a least principal stress (Sppin)
oriented perpendicular to the continental slope.

Unfortunately, the borehole elongation data do not constrain the relative
magnitudes of the stresses (stress regime). Data from seismic reflection
profiling in several areas on the U.S. continental shelf indicate late
Cenozoic (possibly Quaternary) faulting (Hutchinson and Grow, 1985; Hutchinson
and others, 1986) however, these faults are nearly vertical and on the
vertically exaggerated seismic profiles the true sense of displacement (normal
or reverse) is ambiguous. Offshore from Charleston, South Carolina, Behrendt
and Yuan (1987) have identified a major N 66 E trending left-stepping
en-echelon fault zone that they named the Helena Banksofau1§ zone. They
interpret multiple crossing of the steeply-dipping (70" * 5°) fault zone by
high-resolution seismic profiles to indicated high-angle reverse offset
coupled possibly with a major strike-slip (left-lateral ) offset inferred from
the fault geometry. Thus in the one documented study of young faulting on the
continental shelf the style of faulting is compressional (reverse and possible
strike-slip). :

Further evidence suggesting that the modern state of stress on the
continental margin may not be extensional comes from data on in-situ stress
magnitudes determined from 1og data and leak-off tests in wells on the Scotian
shelf, offshore Nova Scotia (for location see Figure 9) (Ervine and Bell,
1987). The data indicate that for depths between 815-5783m a strike-slip
stress regime exists (SHmax > Svertical > Shim), although at 6000 m Sy
and Sppin may become equal, resulting in a stress regime transitional to
normal faulting. The SHpax orientations inferred for the Scotian shelf
trend NE, (Podrouzek and Bell, 1985) also parallel to the local trend on the
continental shelf.
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TABLE 5: Composite maximum horizontal principal stress
directions from breadout data for the individual basins

Number of mean SHpax orientation mean Sypax orientation
Wells (based on length) (baseg on number)
Georges Bank Basin 9 N 87.1°W + 13.3° N 86.4°W + 14.7°
Baltimore Canyon 14 N 53.1°E + 17.6° N 56.2°E + 20.8°
Trough -
SE Georgia Embayment 3 N 17.8°E + 22.7° N 24.9°E + 24.5°
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GEORGES BANK BASIN

Figure 8. Composite rose diagram of breakouts In the three study areas.
Breakout orientations are weighted as to length (feet) (A) and
number (B). Totals of length and number are given as values of n,
values of r are the radii. Breakout data from wells BC-3, 4, 9,
1, 15, 17, 20, 21, 22, and 25 are not included in the composite
for the Baltimore Canyon trough due to lack of usable data or
highly scattered or bimodal data.
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The faulting and stress magnitude data suggest that although the Synip
orientations obtained in the present study are nearly orthognal to the local
trend of the continental slope, the stress regime may be compressional, not
extensional, as would be expected from either lithosphere flexure or body
forces due to lateral density forces at the continent-ocean boundary.

The inferred Sypmax orientations on the continental shelf (N 25 E to E-W)
are broadly consistent with the NE to ENE compression observed throughout most
of eastern North America, Figure 10 (M. L. Zoback and others, 1986). The
variation in stress orientation between the three study areas (into an
approximate parallel and perpendicular configuration with the local trend of
the continental margin) can probably best be explained in terms of a
superposition of the mid-plate compressional stress field and local
continental margin stresses.

CONCLUSIONS

Horizontal stress orientations inferred from wellbore elongations
("breakouts") in petroleum exploration wells in three study areas on the outer
continental shelf on the eastern United States yield consistent results within
a single well and between wells within each study area. There appears to be,
however, a statistically significant variability in the mean orientation of
the maximum horizontal stress (Sypax) betweep areas: Georges Bank - N 93°E
+ 13, Baltimore Canyon trough - N 53 E * 18, and the Southeast Georgia
Embayment - N 18" + 23°. These Sypax orientations are broadly consistent
with the NE to ENE compression observed throughout the eastern United States
and Canada. However, in each area, the inferred Spuin orientations are
perpendicular or nearly perpendicular to the local trend of the continental
slope. Available data suggest a modern compressional stress regime on the
continental shelf in contrast to continental margin effects (including lateral
density contrast and lithosphere flexure due to sediment loading) which
predict extensional stress regimes. It appears likely that the state of
stress on the continental shelf is the result of the superposition of the NE
to ENE midplate compressive stress regime and local continental margin
extensional stress field.
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