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ABSTRACT

Distributions of historical earthquakes in California and environs have 
attributes analogous to the statistical properties of language. The 
availability of complex networks of faults at many length scales (generically 
called "dendrites") represents the skeletal structure of seismic information 
sources which play a role like that of lexicographic trees in language and 
neural dendrites in the central nervous system. A general linguistic model is 
explored by comparing rank-frequency and size-frequency data of English with 
the historic seismic catalog in California for earthquakes equal to or greater 
than M = 5 (referring generally to surface wave magnitudes). Frequency 
distributions are compared both for explicit word sizes and magnitudes and for 
mean values of averaged data. The latter have overlapping distributions at 
comparable frequencies without rescaling. Incremental data are rescaled. An 
idealized length parameter is defined by L* = Base^'^, where y = M refers to 
seismic magnitude and y = m refers to word "magnitude" expressed in letters 
per word. The scaling exponent 1/q is an adjustable renormalization parameter 
for intercomparisons of different frequency-magnitude sets. The product qc, 
where c is the coefficient in moment-magnitude correlations, performs the same 
scaling function for idealized length-moment correlations. Cumulative and(or) 
incremental plots of log (NL*^) vs. log L*£, where H is the number 
frequency at a given value L*^, are used to compare frequency distributions 
and to define aggregate and(or) partial fractal dimensions of the data sets. 
Shannon's information measures of uncertainty (entropy) and redundancy are 
also calculated for idealized frequency distributions and for the historic 
seismic data, and the relations between information and fractal measures are 
illustrated. Redundancies for the most complete seismic data sets are roughly 
25 percent, which compares with about 50 percent for the English language (the 
same calculations are made for an idealized bond rupture model, providing an 
alternative method of interpretation). It is concluded that such measures of 
seismic information are much less complete than language repertoires. With 
sufficiently comprehensive data, however, seismic redundancies may approach 
those of language. If so, seismic records could be read with certainties 
approaching those demonstrated in language reading tests, and(or) in the 
construction of crossword puzzles. One reason for this suggestion is the fact 
that the fractal structures of word samples are similar to those of 
seismically defined fractals when they are comparably rescaled (e.g., the 
exponents q = 1 for seismic data and q = 3 for word data result in approximate 
fractal correspondences). Each of these sets is multifractal with subtrends 
corresponding to partial fractals ranging between about 0 and 3. Multifractal 
plots are illustrated for the seismic data as a whole and for each of eight 
subregions in California. There is sufficient indication of self-similarity 
among the grid-like patterns of partial fractal subsets to provide criteria of 
potential events based on incompleteness. These results for information 
measures and multifractal structures also have conceptual parallels with 
renormalization methods applied to critical phenomena in fluids, the droplet 
theory of the Ising model of magnetization, and structures of fluid 
turbulence. In all these cases partial fractal sets reflect structural 
domains having many scales of length, where different sets dominate under 
different sets of conditions (e.g., temperature in critical models, 
generalized deformation states in the cases of turbulent flow and 
earthquakes). Multifractal seismic distributions are expressed in units of 
fault dimensions and are compared with fractal fault dimensions obtained 
previously. Correspondences are used to propose that there is a general 
fractal coordination of the earthquake process at many scales of length and of
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deformation states throughout the western margin of the continent (the 
distribution is loosely analogous to the coordinations among small and large 
domains in the process of magnetization near the Curie point). Support for 
this viewpoint is provided by the peculiar location of California relative to 
Plate Tectonic features, and also by comparisons of local and global seismic 
moment rates. An arbitrary map of block domains is constructed and used to 
generate a space-time plot of the seismic history of California. When the 
determination of multifractal structures and domain maps are extended to lower 
magnitudes and larger map scales, it is thought that models combining 
linguistic, fractal singularity, and mean-field renormalization techniques 
will offer new insights to earthquake forecasting.
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INTRODUCTION

The central hypothesis developed by Shaw et al. (1981) during a study of 
faulting at the continental scale is that the earthquake process occurs within 
a volumetrically distributed pattern of fault branching networks that are 
directly analogous to areally distributed stream drainage networks (stream 
drainage also has a depth distribution, but the processes are generally 
confined to a near-surface thickness; exceptions occur where underground 
streams interact with more complicated flows characteristic of aquifers). A 
secondary hypothesis is that the total energy of deformation is transmitted 
 through this volumetric network in a manner analogous to hydrologic flows (a 
percolation process). That is, there are paths of volumetrically diffuse to 
highly focused trajectories of energy flow over many different scales of 
length. From the standpoint of length scales, as well as general 
considerations of energy partitioning, there are parallels with concepts of 
structural domains in critical phenomena, droplet theories of magnetization, 
and vortex structures in fluid turbulence (Wilson, 1979). Only the latter 
will receive further attention in later discussions. "Energy" is meant to 
refer to all processes contributing to seismic instabilities, including such 
things as pore fluid flow, mineral reactions, and the rheology of crustal 
deformations (another hypothesis advanced by Shaw, 1980, is that magma 
transport in the Earth is a phenomenon that plays a central role, both 
directly and indirectly, in processes that lead to seismic instabilities; I 
comment on this relationship in the concluding discussion).

If we can identify characteristic source regimes and characteristic fault 
patterns (generically abbreviated "dendrites" in the following), then we may 
also be able to map patterns of energy channeling according to frequency 
analyses of convergent domains. The purpose of this paper is to illustrate an 
approach using some statistical techniques borrowed from linguistics. This is 
possible because there appear to be a number of statistical properties of 
dendritic structures of the above types that resemble statistical structures 
known to exist in language. The paper makes both some general and specific 
comparisons with the earthquake process, derives relationships between 
concepts of information and fractal geometry, and applies concepts of 
multifractal singularity spectra to relations between fault-length 
frequencies, b-values of recurrence curves, and c-values of moment-magnitude 
relations. I illustrate the conclusions using the historic seismicity of 
California and environs for earthquake magnitudes of 5 and larger.

THE EVOLUTION OF REDUNDANCY

The linguistic model is shown in Figure 1 as a guide to subsequent 
illustrations of patterns of earthquake occurrences. Metaphorically, the

Figure 1 near here

linguistic development of a particular story line is assumed to be analogous 
to a system of evolving slip events that become focused within the branching 
hierarchy of a system of earthquake faults. The analogy is between the 
statistical measures of generalized story lines and generalized fault lines 
along which earthquakes are expressed. Seismic events are therefore 
hypothetical analogs of some set of linguistic units of measurement 
represented by letters, words, and(or) syntactical combinations of words. 
Thematic ramifications of limited subject matter are analogous to fault 
systems. The statistics of letter and word occurrences constitute the data



base for event frequencies in the linguistic case; these are the analogs of 
seismic catalogs.

In the generalized case (linguistic or seismic) probabilities become 
enhanced during the building of a story from a structurally diffuse and highly 
uncertain reservoir of words to form a relatively redundant array. This 
happens during ordinary discourse, or in the process of writing about a 
particular theme. Something like this also happens in the processes that 
produce earthquake recurrences within certain segments of fault zones. That 
is, probabilities are greatly enhanced in those localities relative to other 
zones within the same system, or within other fault systems. Figure 1 
symbolizes the idea of overlapping subject matter and intersecting story 
lines. Specific subject matter is either potential (never actually written

Figure 1 near here

before) or represents some aspect of previous themes that recurs because it 
has acquired new interest; these alternatives are analogous, respectively, to 
the formation of new fault breaks and to reactivation of existing faults.

Because the logic of Figure 1 is central to the idea that there is 
widespread coordination among earthquake events (globally, but specifically in 
California), I attempt to explain with other parallels and analogies why I 
think it is relevant. Documentation given later is expressed in more 
conventional terms, but the notion that there is a fabric of seismic 
information flow in space and time persists as the linguistic theme of this 
paper (e.g., Figure 25 is essentially a space-time plot of information flow 
involving the entire western margin of North America encompassing 
California).

The coordinate system of Figure 1 is vague because it is impossible to 
adequately portray linguistic variability on a two-dimensional map. The 
general idea, however, can be illustrated in terms of an imaginary language in 
which each statement is made up of a pair of words. Temporarily ignoring the 
dendritic lines, consider each circle to be a source represented by a person 
who may become a protagonist in a potential three-way conversation. I say 
protagonist because a priori any one of the three potential sources might take 
the lead after a conversation begins, or the lead might switch from one to 
another source. Also I say potential because the conversation may or may not 
happen depending on factors involving such things as proximity, common 
interests, and so on. Also, imagine that there is a coordinate grid of some 
sort within each circle, such as a matrix, that identifies the probability 
that a particular word-pair "sentence" may be uttered by that protagonist. 
Words exist outside the circles, but the probabilities that they will be used 
is effectively zero; that is, each circle identifies the working vocabulary 
and repertoire of statements (articulation factor) of the speaker. The 
circles are not necessarily the same size, reflecting differences in sizes of 
vocabulary and abilities of articulation. Thus, every entry in the matrix of 
available word pairs within each circle identifies a possible statement.

In order to consider how an interaction might evolve, initially consider 
the location of each circle and its probability structure to be independent of 
any other circle. The simplest example is that of three people who are 
initially either not within audible range of each other, or who have not 
caught each others attention (e.g., at a cocktail party). As proximity 
increases, however, the circles of influence begin to overlap in one or more 
of the above respects. While the statements continue to be independent, it is 
now possible that within areas of overlap between pairs of circles, or all 
three circles, a coincident statement might occur. At that stage of evolution



two alternative futures are available: (a) Coincident statements may be noted 
in passing but may not be'pursued (e.g., everyone has had the experience of 
saying or thinking something related to what someone else has just said, but 
then electing not to respond with thoughts suggested by the incident). (b) A 
coincidence stimulates a response that triggers another response that leads to 
a longer series of more or less coincidental statements (in the example this 
is represented by greater redundancies for word pairs activated within each 
circle than would occur for less specific language samples).

The areas of independent coincidences between two sources are indicated by 
the hachured areas in Figure 1, and a three-way coincidence by the 
crosshatched area. However, once a responsive mode occurs, such as (b) above, 
the subsequent interactions are no longer independent, although the general 
ranges of probabilities still exist. At this point an interplay of all three 
circles begins, so that the definition of a conversation subsequently 
applies. One way to describe the resulting influence on linguistic structure 
is to imagine that the probability matrix becomes rearranged so that certain 
word pairs have enhanced probabilities in the areas of overlap. This is 
equivalent to saying that the statements emanating from one source influence 
those of one or both other sources which in turn reciprocate, and so on. That 
is, a system of feedback ensues (note that written literature could also be 
described as a conversation, but one where there are many potential sources of 
feedback; also cause-effect responses are less direct and are sometimes buried 
deeply in the thematic structure).

The evolution of such rearrangements, and the consequent systems of 
feedback, are schematically indicated by the converging dendritic paths in 
Figure 1. Branches that tap two circles symbolize mutual reinforcement of 
statements that progressively dominate the three-way conversation, as 
indicated by the heavy arrows. It is assumed in the simplified case that 
sources take turns, but in any actual situation the sources can operate 
simultaneously. As in ordinary conversation, then, the statistical structure 
of thematic content sorts itself out via the processes of feedback.

To be complete, at this point there should be a set of symbols indicating 
the reciprocal effects of the three-way interaction on the subsequent 
probabilities in each circle, but that is harder to illustrate even in a 
schematic way. In other words, Figure 1 shows a stage of evolution where a 
conversation (or written dialogue, in the loose sense, as in the scientific 
literature) is just beginning. Linguistic trends, or story lines, would then 
propagate in specialized directions depending on the strengths of the feedback 
circuits among the sources. If the dialogue persists indefinitely a special 
pattern of word probabilities may become entrenched, meaning that a 
characteristic dendrite of feedback interactions has become redundantly 
incised (this is analogous to the development of a long-lived pattern of 
stream erosion, or of earthquake faults).

The above type of evolving interaction is reminiscent of schemes used to 
describe other complex systems. An example sometimes cited is Young's 
nineteenth century theory of color vision; see description by Erickson 
(1984). In that case, each circle would represent a pattern of receptors 
(color receptors being the systems of cones in the retina of the eye rather 
than persons or systems of faults) each of which is sensitive to the full 
spectrum of colors but has a different sensitivity function for each color.

The analogous receptors of the regions in Figure 1 represent sensitivity 
distributions to stimuli; the responses of each receptor are similar in kind 
but differ in terms of their maximum sensitivity to different types of stimuli 
(e.g., the response functions of different persons to words heard in 
conversation, or the responses of different faults to a source of



deformation). If the functions were exactly the same in every case there 
would be no variety in the responses of different receptors to different 
stimuli; there would be total uncertainty as to the association of patterns of 
reception and the patterns of their source functions. A conversation would be 
more like a chant in unison, perception of colors in vision would always be 
mixed the same way hence could not be discriminated, and all fault systems of 
the same size and geometry would have the same frequency distribution of 
earthquakes.

In the case of vision, Young hypothesized that only three types of cones 
are required to adequately codify the full spectrum of color perception. 
Neural feedback then governs subsequent reactions to the codified color 
patterns that are perceived, an aspect beyond the scope of Young's optical 
theory (see remarks by Erickson, 1984, concerning applications to mechanisms 
of perception in general). A seismic analog of color perception might be 
constructed by assuming that there were a few basic types of fault in each 
region, each having a different but similar response function; in combination, 
the response functions uniquely codify the complete repertoire of source 
interactions. Patterns of seismic radiation might be viewed as analogous to 
the visualization of color stimuli, the latter being the spatially and 
temporally diverse deformation phenomena impinging on a system of faults.

This model of communication, where a system of response functions operates 
in such a way that a more-or-less unique mapping of patterns of source 
functions is codified by a simple system of receptors (the neural network, or 
a network of potential sites for seismic slip events), also illustrates a 
sometimes contradictory aspect of information flow. In the theory of vision 
this ambiguity is easy to understand. For example, if cones were identical in 
response (individually or in sets that give the same kind of output everywhere 
on the retina), then their construction could be described as perfectly 
redundant. As a consequence, however, one cone or set of cones would see 
exactly the same color pattern as the entire retina, hence different color 
fields would not be identified in a mappable way, except in terms of intensity 
contrasts. Therefore, from the standpoint of color perception the response 
functions would be totally uncertain in that every part of the retina would be 
receiving and passing along the same indiscriminate pattern; there would be no 
correlation between a neural coordinate system and a source coordinate 
system.

A system of seismic receptors within a fault dendrite representing 
available loci of slip events has analogous attributes. For example, consider 
an idealized subduction-type fault system that is characterized completely by 
a linear array of segments each of which experiences earthquakes of the same 
total moment over a long enough time. If each segment responds in exactly the 
same way to a source of deformation that is uniformly applied, and if there 
are many such segments, then the sequence of activations is totally 
uncertain. If each segment responds in a way that spans the same frequency 
spectrum but at different characteristic magnitudes, then there is a potential 
basis for discriminating patterns of seismic events. In the same sense as in 
vision, a high degree of mechanistic redundancy can imply high discriminatory 
uncertainty, and a certain degree of mechanistic uncertainty (representing a 
diversity of response functions) can lead to high redundancy of spectral 
discrimination (i.e., the same combinations of complex stimuli produce a 
codifiable mapping of responses among what would otherwise be an 
indistinguishable array).

Descriptive ambiguities between uncertainty and redundancy can be avoided 
to some extent by defining them quantitatively in terms of specific numerical 
measures of frequency in space and(or) in time. This is attempted in later



illustrations of information contents of frequency distributions. Often, 
however, the data are inadequate to make the explicit distinctions that were 
just described in terms of idealized models.

These considerations suggest a more general theory of neural response 
systems. One compatible approach is illustrated by Edelman (1978). There, 
the analogous feedback shown in Figure 1 has been termed "phasic reentrant 
signaling". Phasic reentrant signaling refers to the fact that phases of 
stimulation (signals from and to the sources of the present model) become 
recognized in a manner such as those described above and are recorded by 
recognizer neurons. These recognizers then act as sources of signals for 
other neural responses, meaning that information is both received and 
reentered as new signals by the same arrays of neurons. The analogy with the 
earthquake process is represented by the fact that the responses of fault 
systems are influenced by changes that lead up to each seismic event, and each 
event reciprocally influences probabilities of future occurrences in the same 
and other regions of earthquake potential (that is, there is feedback among 
foreshock and aftershock effects of both local and regional scale that can 
influence the character of behavior in terms of greater or lesser degrees of 
sensory recognition, hence long-terra predictability).

Another analogy that demonstrates the roles of uncertainty and redundancy 
is provided by the way in which neural dendrites in the skin permit the 
localization of a pinprick. Sperry (1974) describes the effect with a diagram 
that also resembles Figure 1. One system of nerve fibers is distributed so 
broadly that only the general region of pain can be recognized, but systems of 
interwoven fibers (the neural networks) permit very precise mapping of 
location on the brain. This kind of circuitry is similar to those aspects of 
feedback in Figure 1 by which information becomes localized and reentered to 
influence patterns of new responses (the part not shown).

It is such pinpointing effects that are envisioned to influence the 
development of a specific type of linguistic response and the pinpointing of a 
particular sequence of seismic events within a large system of potential 
earthquake faults (the development of a seismic theme). These cases, however, 
are the inverse of the pinprick in that the analogous fault dendrites are also 
an intrinsic part of the energy sources that provide the stimulus for an event 
(something similar is illustrated by the phenomenon of a virtual sensation, a 
reversal of circuitry in which a locus of pain is induced internally by real 
or latently imprinted causes and is projected to a specific locus in the body; 
latently imprinted refers to such things as a sensation of pain in an area of 
the body where there are no actual nerve endings, either naturally or by 
reason of removal of portions of the anatomy).

Returning to the linguistic context of Figure 1, the three areas of 
initially independent discourse might be viewed as revolving around a 
generalized subject, for example the physics of the earth. As the independent 
discourses grow and overlap, at some stage a common intersection occurs in a 
form that becomes focused on a particular geophysical context (that is, it can 
propagate indefinitely in the direction of a particular subset of word 
frequencies; "direction" in this sense is a highly generalized idea in that 
the actual path of word combinations represents a multidimensional and highly 
nonlinear process). An example suggested by the present subject is discussion 
of the physics of the earthquake process. After the idea was first 
introduced, a specialized linguistic theme evolved that has a probability 
structure characteristic of the subject. For example, a special repertoire 
could have started with the word "earthquake" which was followed by the array 
of usages that attend discussions of earthquakes. In this context the word 
earthquake and many other related words occur with probabilities that are



greatly enhanced over what they would be in ordinary conversation or in 
unspecialized writing. An exception, which makes the same point, is that in 
certain areas of the world the word earthquake, or its equivalent, is a common 
household word because of a particularly high frequency of earthquakes. I 
describe the dynamical complexity of this kind of evolving process by the 
phrase "redundancy of action", because it is generally impossible to separate 
out and describe all of the acting forces and their specific response 
functions.

MEASURES OF REDUNDANCY

Qualitatively, Figure 1 symbolizes a map of disperse earthquake epicenters 
among a potential population of epicenters for which some characteristic 
pattern is just beginning to emerge. To give numerical perspective, imagine a 
matrix of all possible English words arranged as in a distance chart. In a 
large dictionary there are more than 10-* different words. Thus there would 
be over a hundred thousand columns and rows in the matrix. But even if such a 
matrix were constructed it would identify only those syntactical units limited 
to word pairs, as was assumed initially above. A story line corresponds to a 
route through such a chart, a route selected from all possible word 
combinations by some feedback process. To describe such a process, however, 
the data would have to be plotted in a very large hyperspace (i.e., one with 
10-> degrees of freedom rather than two). This is far too many variables to 
trace or to visualize any specific geometric path through the data. The 
analogous size of a seismic "vocabulary" is poorly documented compared with 
language, but the number of degrees of freedom must also be large.

The situation is clarified with a simpler example. Ignoring spaces and 
punctuation there are 26^ =* 676 possible pairs of English letters. All 
these pairs can be shown in a two dimensional array of squares each containing 
the value of probability that a given pair of letters will occur in ordinary 
English (Konheim, 1981, Table 2.3.4). It is well known that the probabilities 
are highly nonuniform and reveal a certain measure of informational 
uncertainty that can be calculated. Language, however, produces ordered 
sequences of letter pairs. These appear as linear trends, localized subsets, 
or as tortuous linear paths through the square array; patterns of 
pair-probabilities look something like a crossword puzzle (e.g., Konheim, 
1981, Table 2.3.4). Some pairs (e.g., t followed by h) are encountered 
frequently, others are rarer, and some may not be observed at all.

A model of seismic frequencies based on statistical concepts applicable to 
language might be useful in developing generalized methods of long-term 
earthquake forecasting because we have an innate experience of how to read 
such patterns even when we do not understand exactly how they evolved. 
Present methods of seismic forecasting rely heavily on detailed knowledge of 
recurrence times in specific localities, or return times for some expected 
level of ground motion in a given vicinity; see, respectively, Lindh (1983) 
and Algermissen and others (1982). A linguistic type of forecast would not 
replace these methods of prediction, rather it would ideally provide a 
framework from which experienced forecasters could "read" a pattern of 
probabilities in the same sense that experienced readers can evaluate missing 
letters and(or) words in a sample of written text. For example, it has been 
found by means of various tests that the English language is about fifty 
percent redundant (see numerical definitions below). This is based on several 
types of evidence, one of which is the fact that under controlled conditions 
readers can assess the content of messages in which about half of the symbols 
are missing; see Shannon and Weaver (1949), Miller and Chomsky (1963), Pierce



(1980). Estimates of redundancy based on reading tests are consistent with 
estimates of redundancy based on numerical measures of information.

Shannon (see Shannon and Weaver, 1949, p. 48 ff.) often referred to the 
measure of information as "the uncertainty" of a given suite of words or 
symbols, but he also coined the synonymous term "informational entropy". The 
word entropy is now commonly used to indicate information measured in terms of 
the negative of the mean logarithmic probability of a set of probabilities. 
The term uncertainty, however, is descriptively apt for the problems of 
earthquake forcasting and will be used here unless a more specific comparison 
is being drawn with entropy concepts employed elsewhere. The equivalence 
between formulations of informational and thermodynamic entropy are discussed 
by Jaynes (1957), Tribus and Mclrvine (1971), and by Pierce (1980). 
Applications of a "maximum entropy concept" to the statistics of earthquake 
frequencies have been given by Berrill and Davis (1980) and Main and Burton 
(1984).

Redundancy is a numerical measure explicitly derived from the numerical 
uncertainty of Shannon, although other meanings exist (e.g., Edelman, 1978). 
A simple demonstration of the relation between numerical uncertainty and 
redundancy is given by the ratio U0bs/U*, where Uobs is the calculated 
uncertainty of a set of observed probabilities as given below (the 
observations may refer to counts within sets of letters, sets of words, etc.), 
and U* is the calculated uncertainty of the same number of symbols of that 
type assumed to have equal probabilities. An example using the 676 
letter-pairs of the English language makes the definition clearer. The 
observed uncertainty is calculated from the equation:

uobs - -

where n (= 676 in the case of letter pairs) is the number of different symbols 
in the set, and p£ refers to the observed count of one of the 676 possible 
pairs of letters in English divided by the total count of different pairs in 
the sample that represents the context of interest (e.g., from the probability 
matrix in Konheim, 1981, Table 2.3.4). The equal-probability reference state 
is then given by:

U* = -n(l/n)log2 (l/n) = -Iog2 (l/n) = Iog2n (2)

Thus, in the equal-probability limit the reference uncertainty is given by the 
base 2 logarithm of the number of symbols in the set.

The terms "maximum entropy" or "minimum redundancy" are often encountered 
in descriptions of statistical models. Because these limits are relative to a 
particular system of symbols, the terms may be misleading. In any event it is 
necessary to refer such limits to a defined reference state. The 
equal-probability limit provides such a reference because it represents the 
inability to discriminate between possible outcomes among a specifically 
defined set of symbols. As usual the sums of probabilities of the symbols in 
a chosen set are normalized to unit value (dimensional constants required to 
distinguish different informational and physical entropy states are ignored).

Shannon called the ratio U0^,S /U* the relative entropy (relative 
uncertainty here). Designating this ratio by the notation F = UQ^S/U*, 
Shannon then defined the difference (1 - F) as the redundancy, called R here; 
see Shannon and Weaver (1949, p 56); Khinchin (1957); Gatlin (1972). These 
definitions provide a simple numerical scale that ranges between zero and one 
in either F or R. For F = 1, R = 0, the uncertainty is maximized for that set 
of symbols (i.e., the most uncertain state is given by a situation where every



symbol is equally probable; an analogy would be where each magnitude and(or) 
location is represented with equal liklihood in an earthquake catalog). Zero 
redundancy equivalently means there are no special recurrences of particular 
symbols or events in space and(or) in time. The inverse, F = 0, R = 1 can 
occur only if one symbol has unit probability and the rest zero probability 
(e.g., the monotonous recurrence of a particular letter or word, or the 
precise recurrence of a specific earthquake magnitude, especially at a given 
location, in the absence of any other events). In this case the pattern is 
said to be 100 percent redundant (R will be expressed as a percentage in 
numerical examples). Subsequently, when I use the term redundancy it is with 
these numerical definitions in mind.

Because these measures of information are sensitive to how symbols are 
defined and the sizes of the populations of given types of symbols, it is not 
immediately obvious how these concepts should apply to fault frequencies and 
seismic events. Therefore, in order to show that the linguistic approach has 
more than intuitive appeal it is necessary to show that sets of seismic 
symbols have properties in common with language. Later the statistics of the 
English language and the historic catalog of California earthquakes are 
directly compared.

Language codes, as mentioned above, have statistical structures in the 
neighborhood of 50 percent redundancy. In one sense this might be thought of 
as a fifty-fifty "mix" of both highly uncertain and highly redundant word 
combinations. However, this is not an accurate picture of the pervasive 
character of the statistical structure shown by experimental tests. Campbell 
(1982, p. 70 ff.) refers to experiments in which texts can be completed when 
more than half of the symbols are missing if the sample is large enough and 
the subject is reasonably familiar to the reader (if such an experiment were 
to apply to technical writing in a vigorously expanding field of research such 
as seismology or molecular biology, however, the reader would have to be 
up-to-date on every aspect of the changing terminology).

For the sake of argument, if it were found that the informational 
uncertainty of the earthquake process, neglecting dimensional constants, were 
the same as that of language, then it could be expected that with sufficiently 
large samples experienced forecasters could read the seismic record with the 
same confidence as readers of incomplete language texts. That is, if a 
seismic catalog could be shown to be about fifty percent complete with respect 
to stipulated bounds of thematic content (e.g., as expressed by structures and 
feedback processes contextually like Figure 1), then the rest of the expected 
events could be filled in. Like the text readers, the forecasters would be 
able to say what events are missing, or will occur next, in the catalog based 
on its overall statistical structure even if it is not possible to give a 
precise genetic description of each event and(or) there mechanical 
interactions. This conjecture has rather serious caveats, such as: (1) no 
compendium of seismic data exists with the degree of etymological definition 
found in a language dictionary, and (2) the statistical structure symbolized 
in Figure 1 must not change so rapidly that criteria of completeness are 
invalidated as fast as they are documented (e.g., a dictionary would soon be 
useless if the words were continuously being replaced with new ones).

Weighed against the first caveate is the fact that Main and Burton (1984) 
have shown that information theory itself provides some tests for the degrees 
of departure of given suites of seismic data from completeness (this approach 
is explored later in additional respects); Shaw and Gartner (1986) have also 
shown that it is possible in principle to learn how a seismic pattern 
corresponds to the time-dependent properties of fault dendrites. The second 
caveate is difficult to assess because it depends on the first one. The



following discussion of Figures 1 through 3, however, suggests that incised 
patterns of earthquake faults are not expected to suddenly change, although 
the internal patterns by which they are activated may be variable over both 
short and long time scales (see Shaw and others, 1981). That is, the 
vocabulary of fault motions available for seismic conversations is probably 
not as changeable as, say, the terminology of molecular genetics (e.g., 
compare current texts with those a few years old). But the ways in which a 
stable repertoire of earthquake faults is sampled by seismic events may be 
entirely unknown.

The linguistic approach to seismicity has some parallels with concepts of 
ramifying structures that describe geometric features of the faulting process 
(see Shaw and Gartner, 1986). Therefore, in the next two sections I consider 
some aspects of seismic prediction based on vocabularies represented by fault 
patterns.

A SCHEMATIC REDUNDANCY MODEL FOR CALIFORNIA SEISMICITY

An implication of the linguistic description of a process analogous to 
Figure 1 is the ability to state a conditional probability that a specific 
word will be uttered by one of the speakers given the history of an 
established conversation that has higher than average redundancy. One way to 
test this idea would be to analyze long samples of conversation in the same 
way as is done in reading tests mentioned above. Another might be to do a 
predictive test in which observers of the conversation are asked to anticipate 
such things as the next word spoken, who the next speaker will be, and so on. 
Carrying this approach to an extreme, it would imply such things as 
anticipation of all the words of the next sentence by one of the speakers.

Qualitative examples of such predictions are familiar. We have all 
observed conversations in which it is sometimes possible to make a good guess 
at who will say what next. Trivial examples of high conditional probabilities 
are given by responses to salutations. The repertoire of these responses, 
however, is very restricted compared to more general conversations. 
Obviously, such abilities are limited to special cases when the range of 
predictions extends beyond a few words (for discussions of ranges of 
statistical influence in written language see the previously cited references 
on information theory). If longer range predictions are possible at all they 
are based on great familiarity with the context in which an anticipated 
statement will be made (e.g., certain outcomes of stereotyped storybooks, 
movies, and so on, can be anticipated well in advance, the classic being "And 
they lived happily ever after.").

The idealized goal of earthquake prediction resembles the foregoing 
examples. Theoretically, we would like to be able to predict the locations 
and times of earthquake occurrences into the indefinite future. A prediction 
of what fault system is likely to be active next is analogous to specifying 
the next speaker, and the prediction of a specific event in that system is 
analogous to anticipating the next word the speaker will say. The greater 
goal of specifying sequences of events for a given fault system is analogous 
to anticipating an entire sentence structure by one of the speakers. Such 
analogies identify not only the complexity of the undertaking (analogous, say, 
to developing an ability to predict exactly what every head of state in the 
world is expected to say next), but they also suggest that the degree to which 
predictions will be possible is contingent on a familiarity with earthquake 
statistics comparable to that of language.

Lacking an ability to predict whole sentence structures, it is not an 
impossible goal to predict missing letters and words in an established and



ongoing dialogue. The corresponding analogy is the possibility that given a 
knowledge of those fault systems that interact it may be possible to make 
improved guesses of next events in a given system, and possibly even which 
system is most likely to make the next seismic statement. At any rate, a 
demonstration of the ability to evaluate the range of influences throughout a 
network of interacting fault systems is prerequisite to anything more 
sophisticated. A corollary of this implication is the idea that any physical 
hypotheses used to make long-term predictions of large events within any one 
of several interacting fault systems are suspect unless they can also make 
predictions of the types just mentioned. Rather than attempting the task of 
evaluating conditional probabilities using incomplete data, the approach taken 
here is to pose a model whereby patterns of seismic interactions among systems 
of faults can be studied as a prerequisite to further discussion of 
statistical structures, linguistic or otherwise.

A generalized model of earthquake fault dendrites is shown in Figure 2 
following the logic of Figure 1, except that the pattern is now viewed as a

Figure 2 near here

map scaled roughly to the area of the state of California. The circles of 
Figure 1 are left open at the perimeters, symbolizing the idea that California 
is an area surrounded by Plate Tectonic activity in which the boundaries of 
motions are of a larger scale, areally and in depth, that is not sharply 
delineated. The symbols E, CN, and BJ stand, respectively, for the 
seismically active areas off the northern California coast near Eureka, 
eastern California to central and northwestern Nevada, and Baja California. 
These areas have distinct relationships to Plate Tectonic features (e.g., 
Suppe and others, 1975; Herd, 1978), but for the present they are based only 
on the observation that they seem to represent frequency-magnitude patterns of 
earthquake activity that resemble each other more than they do interior 
regions of California.

One reason to keep the discussion general is that attempts to correlate 
specific fault sets with specific earthquake models often prove unreliable if 
there is not a great deal of control on mappable faults that correlate 
directly with the characteristics of seismic events (examples of reasonable 
control are localities where there is a great deal of information on the 
distributions and histories of seismic gaps). In a general way, therefore, 
region E also corresponds to the Northern California Offshore Zone of Ryall 
and others (1966), and CN encompasses much of their Ventura-Winnemucca Zone. 
The trends E-BJ and CN-BJ represent a convergence between the Central and 
Southern California Zones and the Ventura-Winnemucca Zone (see Insets in 
Figure 3 below). The areal distribution of faulting and earthquake activity 
discussed by Wallace (1984) categorically represents the CN portion of the 
patterns of Figures 2 and 3 here. From the plate tectonic perspective, these 
three zones are essentially coincident with the unstable triple junctions 
shown by Suppe and others (1975, Figure 5) for the western U.S.

In addition to the open-endedness of the areas in Figure 2 they have 
unspecified distributions in depth. This aspect is also beyond the scope of 
discussion here, but it is implied that these domains effectively constitute 
"cornerstones" of the seismic distribution in which there is an extended 
three-dimensional interaction with processes in the Earth's mantle. As 
discussed in Figure 1, the dendritic patterns schematically indicate a 
hypothetical stage of converging deformation that leads to the development of 
redundant structures in the common areas of overlap. Two-way and three-way 
conversations now represent the activation of characteristic fault sets (the
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incised story lines of the generalized history represented by the dendrites). 
The central common area can be viewed as the core region of present day fault 
patterns in California.

Obviously, the evolution of actual fault patterns did not develop from an 
original homogeneous distribution as would be implied by a literal parallel 
with Figure 1. The history of deformation and faulting discussed by Shaw and 
others (1981) is very long compared with activity considered here (the 
situation is analogous to ancient language themes that are structurally 
revised by renewed discussion).

Taking into account the orienting effects of older structures, Figure 3 
shows the inferred pattern of the three-way overlap that would exist if it 
were assumed that present day activity followed the logic I have outlined.

Figure 3 near here

Rather than having circular or parabolically open shapes, however, the common 
area takes the form of an intersection of folded or bifurcating U-shaped 
zones. Although this is a schematic accommodation of Quaternary fault 
distributions, it also reflects a convergence of mantle sources of 
deformational energy with the Earth's crust. However, no implication is made 
for specific types of dynamic coupling (dynamical concepts are not considered 
here, except as are implied by the statistical relationships between 
earthquake frequencies, magnitudes, and moments). The insets in Figure 3 show 
how the generalized pattern relates to event distributions and contours of 
"tectonic flux" determined by Ryall and others (1966) from earthquake data; 
see Wallace (1984) for descriptive examples of dynamic coupling in western 
U.S. suggested by the geologic history.

The rest of the paper offers a preliminary evaluation of the linguistic 
model outlined in Figures 1 through 3 in four respects: (1) The relation 
between fault dendrites and concepts of steady states of seismic activity is 
explored. (2) Similarities and differences between the statistics of language 
and the statistics of earthquakes are illustrated. (3) Evidence required to 
evaluate the degree to which an area such as California has elements of large 
scale coordination is examined in terms of the evolution of seismicity within 
smaller spatial domains over time. (4) An approach to forecasting is outlined 
based on the concept of interacting domains.

FAULT DENDRITES AND PATTERNS OF STEADY OR TRANSIENT EVENT FREQUENCIES

A schematic overview of relations between temporal frequencies and event 
magnitudes for fault dendrites is shown in Figure 4 (the language analogy 
would be represented by frequencies of syntactical units plotted against a 
measure of size, such as letters per word, words per phrase, etc.; however, 
exactly corresponding lexicographic dendrites are not easy to portray because 
of the combinatorial degrees of freedom). The heavy solid line in Figure 4a

Figure 4 near here

symbolizes the steady state, meaning that counts per unit time remain 
invariant over a characteristic length of time, and there would be a 
characteristic and constant value of b in the equation:

log f = a - bM (3) 

for M at specified increments, or for f as a cumulative frequency of events
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equal to or larger than M (the numerical range of frequencies will be 
normalized in various ways in later discussion; unless otherwise stated I use 
incremental distributions). The heavy dotted lines show how such a curve 
might be shifted parallel to itself according to global fluctuations in the 
spatially averaged deformation field. By contrast, the dashed lines indicate 
nonproportional transient variations relative to the time scales of the global 
variations. As a rough guide to the time scales, the orders of magnitudes for 
transient swings might be from decades to centuries, and for more global 
variations from thousands to millions of years (this is an artificial 
discrimination that defines steady or transient only in terms of time scales 
possibly relevant to hazards analyses).

Bifurcation styles are indicated in Figure 4b; Figures 4c and 4d show how 
subsets of trends might be distributed for the same or dissimilar branching 
ratios. If the latter represent steady states for each set they are also 
subject to the transient effects mentioned. Figures 4e and 4f show how 
individual fault sets might be activated in different styles, depending on 
local properties. Figure 4e represents a case where branches behave 
differently in terms of percentage activations, some sets reacting in groups 
over some part of their lengths (steeper trends) and some reacting over 
progressively longer sections of an individual branch (flatter trends). 
Figure 4f represents the latter mode on the assumption that there is a single 
fault branch activated in segments (a bamboo-like effect); the trend in such a 
case tends to be flat because the segmentation limits the potential number of 
active segments of given length. The same distribution is possible for a 
poplar-like dendrite of Figure 4b, but it is not similarly limited in 
potential bifurcation ratios (i.e., the cumulative length is not restricted as 
in the single segmentation model).

One basis for recognizing time-dependence comes from estimated ages of 
fault activation on the continent scale. Within the thirty different faulting 
regions outlined on the map of Howard and others (1978), the distributions of 
numbers of fault lengths measured by Shaw and others (1981) have remained 
broadly similar over different age categories ranging from the Holocene to at 
least the Miocene (see Wallace, 1984, for durations of activity on specific 
systems of faults in the Great Basin province during the late Quaternary). 
This means that variations roughly average out over time spans in the range 
10* to 10 7 years. This happens by compensating shifts between 
systematically higher and lower levels of activity, either uniformly or in a 
teeter-totter fashion. By uniformly it is meant that all frequencies of 
rupture events are increased and decreased together over spans of time shorter 
than those represented by the data set as a whole. By teeter-totter fashion 
it is meant that transient increases in the frequencies of smaller rupture 
events are compensated by energetically equivalent decreases in the 
frequencies of larger rupture events, and vice versa (Figure 4a). Trenching 
studies by Sieh (1981, 1984), Sieh and Jahns (1984), and by Weldon and Sieh 
(1985) provide evidence of variations along the San Andreas system over the 
latest 2000 years; variations at the 100-year scale are represented by 
patterns of seismicity illustrated later.

For purposes of discussing departures from concepts of average long-term 
steady states, a "short" time scale means less than 10,000 years. It is 
within this temporal range that the schematic variations of Figure 4 are 
assumed to apply, and in which the tripartite distributions in Figures 2 and 3 
are assumed to be characteristic of statistical structures. Within this 
time-frame, the regions designated E, CN, and BJ are viewed as relatively 
stable and persistent "cornerstones" that are analogous to the protagonists of 
the conversational modes of Figure 1. By contrast, when these same regions
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are viewed as structural elements of Plate Tectonic motions they are 
considered to be unstable features subject to changing kinematic styles over 
longer times; see discussion of plate reconstructions in Suppe and others 
(1975, Figure 5). The possible existence o'f such dualities over different 
scales of time and space are important to keep in mind during later 
interpretations of statistical redundancies.

The concept of time-dependence favored here reflects changes in the 
number-length ratios within branching patterns of discrete length hierarchies 
as a function of time. The total length of fault that is active in the steady 
state is determined by overall bifurcation ratios and characteristic branch 
lengths that take part in the earthquake process. Geometrically, if 
bifurcation ratios are large, then there is a large increase in total length 
of faults with decreasing branch length within a particular length hierarchy. 
The converse is true when ratios are small. The former situation seems to 
describe most fault regions in the contiguous U.S. (Shaw and others, 1981). 
Faulting in some regions, however, can have nearly a constant total length per 
length order of both long and short faults. That is, the bifurcation ratio is 
such that the sum of fault lengths within a particular length order is about 
the same as those within each of every other length order; the product N^ x 
L£ per fault order (taking L^ to be a characteristic length per branch for 
that order consisting of H^ branches) is then constant for all L^.

High bifurcation ratios tend to represent the bushier branching patterns, 
and low ratios the poplar-like patterns of Figure 4b. This is not necessarily 
true if the latter represents a densely braided structure, as occurs in many 
places along the main trunk of a major fault system such as the San Andreas; 
see Wallace (1973). If more length were represented in the longest fault 
branch than exists in the total of all shorter branches, then there would be 
an approach to the model of a segmented single main trunk (bamboo-like 
structure) in which segment lengths could be either constant or variable. The 
data of Shaw, and others (1981) suggests that the bamboo-like limit never 
actually occurs in faulting despite discussions of faults as individual linear 
entities. An alternative is a branching structure topologically collapsed 
into a surface trace with a vanishing overall width compared to the map scale 
at which the length is expressed. In such cases it would be difficult without 
intensive trenching studies to distinguish between activity on subsidiary 
branches of a ramifying system of related faulting and activity between 
segments of a single fault trace.

I prefer to view all faults as dendritic in structure with a distinctive 
bifurcation pattern wherein it is also possible for any branch to rupture over 
subintervals of a statistically averaged length (see Shaw and Gartner, 1986). 
This approach is not in conflict with results for several areas where it is 
assumed that each event is associated with movement along the total length of 
a specific fault (the so-called "maximum moment" or "characteristic 
earthquake" model) if one assumes that a particular strand or set of strands 
is associated with each event. An analogous discussion referred to the 
concept of a continuous single fault surface is given by Aki (1984) in terms 
of concepts of asperities and barriers. The San Andreas system represents 
families of structures of the above kinds, depending on model emphasis; the 
descriptions differ from concepts of characteristic earthquakes only if the 
San Andreas is viewed as a single segmented fault trace. Such a viewpoint is 
not supported by the mapping of excavated intervals in the trenching studies 
of Sieh and coworkers cited above.
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MODEL-DEPENDENT RECURRENCE TIMES

The above distinctions may be semantic or real depending on how they 
influence concepts of recurrence times. That is, the recurrence time might 
refer to: (a) the activation of the total length of each one among a set of 
unique faults, (b) the activation of characteristic subintervals of a single 
long fault, or (c) the time between events of comparable magnitude in a fault 
dendrite, In case (c), there is not necessarily a one-to-one correspondence 
between recurrence time and geographic locality. Such distinctions may 
explain contrasts between estimates based on either seismic or geologic 
evidence of faulting; see Evemden and others (1978), Wallace (1984), Aki 
(1984). Alternatives are illustrated by comparing extreme versions of these 
three types of systems.

In type (a) imagine that there is an infinite number of discrete faults in 
which there are faults of just the right length to go with any conceivable 
earthquake in a seismic catalog. In this case the interpretation of 
recurrence time depends on evidence of discreteness of both the event 
magnitudes and the numbers of faults with charateristics suitable to those 
events. For example, if there were precisely 30 characteristic event 
magnitudes distributed at exactly 0.1 magnitude units over three decades of 
magnitude, and there were precisely 30 and only 30 unique faults of exactly 
the right lengths to produce each event, then the time between like events 
might reasonably be associated with the recurrence of a characteristic event 
on the same characteristic fault (i.e., in exactly the same geograhic 
location). But what if the number of faults of similar length in broadly the 
same geograhic vicinity was unlimited? Then the recurrence time for each 
characteristic event would be effectively infinite in terms of any exact 
location within the domain. That is, there are so many possible fault strands 
available that each one need be activated only once during any duration 
significant to hazards forecasts. The same fault trace, whether expressed as 
the trajectory on the ground surface or as a planar distribution in depth, is 
never activated exactly the same way twice. Therefore, the time between 
events of like magnitude is just a property of the sampling rate of a 
distribution of independent fault surfaces.

Regularity between the intervals at which the same magnitude occurs in the 
type (a) interpretation would be a property of the availability of the right 
size fault for local rates of deformation of the system as a whole. 
Prediction, then, would depend on an understanding of two general factors: (1) 
the geometric distribution of all discrete faults, and (2) the pattern of 
deformation rates that impinge on that distribution (I say pattern because, in 
general, deformation may be homogeneous or highly heterogeneous, and it may 
vary slowly to rapidly in time in any of its spatial modes). If one combines 
these factors in a global sense, they are referring to the rheology of the 
earthquake process. In that respect the type (a) model could also be expanded 
to allow for generation of new faults and(or) dimensional rearrangements of 
existing ones.

The type (b) interpretation suggests that there is a distinctly limited 
relation between the length of a single fault and the earthquake magnitude 
associated with that length. Therefore, if every event implies a finite 
segment length and there is a finite number of magnitude intervals, then each 
magnitude can be associated with a particular segment of the fault. If the 
segments are truly characteristic of particular nonmigrating patches of the 
fault, hence particular geographic locations, then recurrence times give an 
explicit representation of the hazard potential of each vicinity. Prediction 
then depends on evidence of regularity of deformation patterns and of how well
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different characteristic patches of the fault can be described. The 
description must include evaluation of whether or not the segments are 
spatially invariant or may migrate along the main fault trace, the latter 
implying uncertainty in exactly where a specific recurrence time applies. If 
there is regularity in both the timing and the location of characteristic 
activation events, then the earthquake process is deterministically 
predictable (this does not require harmonic regularity, because 
time-predictable models also permit specific predictions for irregular timing 
if rate-of-recovery data are available from geodetic measurements).

The concept of recurrence times applied to fault dendrites in the type (c) 
interpretation combine elements of both the type (a) and (b) interpretations. 
If the dendritic pattern is unlimited, type (c) is like type (a) except that 
instead of an infinite number of discrete faults there is an infinite number 
of discrete dendrites (a forest effect). Whatever uncertainty exists in (a) 
is compounded. On the other hand, if a dendrite can be associated not only 
with a characteristic hierarchy of branch-lengths in a specifically ordered 
array, but also with a particular geographic domain, then the type (c) 
situation is analogous to type (b) relative to the "basin area" within which 
the dendrite is expressed. Therefore, deterministic prediction would also be 
possible if there is a fixed relation between branch lengths, bifurcation 
ratios per order, and a delimited geographic area associated with each branch 
order. This is the type of model explored by Shaw and others (1981) and by 
Shaw and Gartner (1984, 1986). Its apparent complexity relative to (b) is 
because there is presently an insufficient data base to test the 
time-dependent characteristics of dendritic systems of faulting. However, 
numerous studies by Wallace (see Wallace, 1984) suggest that characterization 
of fault systems according to principles of hierarchical ordering may be 
achievable.

Shaw and Gartner (1984) suggest that there may be a quantitative parallel 
between the type (c) interpretation and hydrologic principles of dendritic 
ordering where there are characteristic proportionalities between numbers, 
lengths, areas, and energy discharge (stream flow or energy of deformation). 
The simplest form of this approach would be analogous to having a 
time-predictable model for a characteristic dendrite in which the response of 
connected sequences of the smaller branches determines the magnitude-time 
relation for the next larger branch, and the integrated slip of all branches 
determines the time-magnitude potential of the main trunk fault.

The manner in which subsets of any of the above types of hierarchies are 
activated determines our experience of the characteristic areal and time 
variations of both large and small earthquakes. The difficulties of 
prediction already mentioned in the linguistic context are echoed by 
ambiguities that apparently exist among the types of faulting interpretations 
just described. That is, there are many examples where one or another type of 
model appears to be conditionally successful as a predictive tool (some data 
indicate high redundancy and others high uncertainty in the sense of numerical 
information). By this token, then, apparently the earthquake process contains 
aspects of all these viewpoints concerning recurrence times. This suggests 
that complexities of the sorts seen in the statistics of language, where there 
is a general dynamical process capable of producing simultaneously ordered and 
disordered sets of responses, are at least qualitatively paralleled by the 
earthquake process. Type (c) models geometrically resemble the notion of 
lexicographic trees, hence it might be expected that earthquake fault 
dendrites are capable of self-induced structural ordering. If this parallel 
can be strengthened, then there is a strong incentive to document geometric, 
kinematic, and linguistic properties of fault dendrites as an adjunct to
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concepts of forecasting.
With these geometric properties in mind, an imaginary model for the 

qualitative description of time-dependence in (c) is given by the motion of 
trees of different characteristic structures during waxing and waning wind 
storms. Very leafy trees may absorb or deflect energy in the motions of the 
outer branches until the wind velocity reaches a magnitude sufficient to break 
limbs and(or) uproot the tree. By contrast, an isolated palm tree takes the 
brunt of the force on a single long trunk. Other shapes and bifurcation 
ratios, such as those characteristic of pine trees, range between these 
limits. During the waxing phase in any of these examples the strain is first 
felt in the smallest structures and progressively propagates throughout the 
dendritic hierarchy if the wind is sustained long enough. For example, the 
strain may ultimately influence even the dendritic root hierarchy, but there 
the analogous energy flow would be reversed (the alternatives mimic some of 
the distinctions between energy flow in river tributary-distributary systems, 
and in strains related to foreshock and aftershock sequences; the local 
sources of energy transport have different dendritic distributions, though 
both "ends" of the system are responding to the same total energy transfer).

As the wind continues to rise, the smaller structures appear to become 
relatively static as the motion is taken up by the larger branches. This 
static appearance represents the state where the local strain rate on the 
small branches drops because they have reached the limit of local 
displacements, unless they are stripped off. These conditions are analogous 
to local sequences of foreshock microfracturing and characteristic 
earthquakes. As the wind velocity wanes the reverse sequence is seen, but the 
temporal and spatial modes differ considerably; relaxation slip events appear 
to diffuse outward from the central focus of strain accumulation (the tree 
limbs, largest activated faults, etc.). This scenario is a dendritic analogy 
of relations between asperities, barriers, and foreshock-aftershock phenomena 
described by Aki (1984).

If the dendritic scenario were used to describe earthquake distributions 
in large fault dendrites, the following sequence of observations might be 
expected: (1) Initially there is a quasi-steady state where events with small 
to intermediate magnitudes are distributed over the smaller outer branches of 
a dendritic fault array within a characteristic geographic area, in contrast 
with a series of foreshock patches restricted to a specific fault plane; 
compare Kanamori (1981). (2) If the energy input continues, this distribution 
becomes suppressed in favor of larger and more widely spaced events enveloped 
by the spatial distribution of preceding smaller events, possibly culminating 
in a single largest event; the sequence parallels the pattern of information 
flow of Figure 1 within a system such as Figure 3). (3) As the deformation 
wave temporarily subsides, the reverse sequence results in another rise in the 
rates of small-scale events generally emanating from the loci of the strongest 
events and dispersed by progressively smaller branches of the dendrite; 
compare Kanamori (1986, Figure 12). (4) All events decrease in frequency, or 
the waning phase merges with the onset of a new deformation pulse so that the 
frequencies of the smaller events remain relatively steady for some time, or 
possibly even continue to increase (see later discussion of the 1952 Kern 
County event in Figures 18 and 19, and Table 2).

The frequency-magnitude distribution for this history corresponds in a 
general way to a fault number-length hierarchy that also has a characteristic 
pattern of b-values (see Shaw and Gartner, 1986, Figure 6); step-like and(or) 
oscillating recurrence curves are expected from such interpretations (e.g., 
curves plotted by Shaw and Gartner, 1986, Figures 7 and 8; Ryall and others, 
1966, Figure 7, shown here in Figure 5 below). Since the average slopes of

16



recurrence curves depend on the way the gross available moment rate is 
distributed among regional patterns of slip rates or fault length activation 
rates, the steady state tends to alternate between limits that average to a 
characteristic b-value (see Figure 4).

In Shaw and Gartner (1986) the available moment for earthquakes is given 
by the total fault length activated during a specified time, hence the 
frequency-magnitude distribution for a fault-set of fixed bifurcation number 
is simply partitioned according to the logarithm of activated length. This 
automatically gives b = 1 for the condition of constant activation rate and 
constant bifurcation state. For steady state dendritic models of variable 
bifurcation states, however, b-value trends depend on how the total moment is 
partitioned among proportional length orders, hence the range and average of 
the net distribution of b-values can depart from unit slope depending on the 
sequence by which the dendrite as a whole is activated (compare Shaw and 
Gartner, 1986, Figure 8 with Figure 4 here).

This schematic description explains in a general way the transient 
teeter-totter effects in Figure 4a. That is, the net effect is a combination 
of partial and complete activations of branches in the fault dendrite. 
Consequently, aspects may represent the effect of either the progressive 
activation of portions of individual faults or may reflect complete activation 
of characteristic branches of all faults in the dendrite (the portion of a 
branch activated may be less than the total length and still be 
characteristic, depending on the failure conditions that affect all branches 
systemwide). In the terminology of Wesnousky and others (1983) these are the 
"b-value" and "maximum moment" types of trends, respectively. The latter type 
is the characteristic earthquake model of Coppersmith and Schwartz (1984) 
generalized to a fault dendrite with characteristic branching ratios as 
illustrated by Shaw and Gartner (1986). In the terminology of earthquake 
families discussed by Aki (1984), the former family is of the "barrier-type", 
and the latter of the "asperity-type" if the scaling is referred to patches 
restricted to a single fault surface rather than to a distribution of surfaces 
within a volume.

The above ideas are complicated by the feedback effects implied in Figures 
1 through 3, because rather than dealing with the analogy of a single tree, 
the history of motions is more like that of a forest. In either case an 
important feature is the potential reciprocity between activity on the smaller 
and larger structures in relation to the propagation of a general wave of 
deformation throughout the aggregate system. Many features of this kinematic 
distribution represent a generalization of sequences described elsewhere in 
terms of seismic gaps, seismic cycles, and "Hogi doughnuts"; see Evernden and 
others (1978), Ellsworth and others (1981), Mogi (1985), Hill and others 
(1985), and Shaw and Gartner (1986). I use the general model to guide an 
inspection of earthquake frequencies in California and to examine additional 
relationships between the statistics of lexicograhic and fault dendrites.

PRELIMINARY REMARKS ON FREQUENCY-MAGNITUDE RELATIONS IN CALIFORNIA

The purpose of this section is to summarize the seismic data that will be 
used to draw more quantitative relationships between statistical descriptions 
of language and earthquakes. Figure 5 reviews the earthquake history of 
California in the form of a frequency-magnitude plot showing the pre-1900, 
post-1900, and 1800-1982 distributions of events equal to or larger than M = 5
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as given by Real and others (1978), Toppozada and others (1979a,b), and 
Sherburne and others (1985). Toppozada and others (1986) give a more

Figure 5 near here

up-to-date but geographically restricted tabulation of events above M = 6. 
The latest event listed in their table is April 24, 1984, a 6.2 event SE of 
San Jose, CA. Figure 5 in Toppozada and others (1986) shows a map of historic 
earthquake damage in California that mimics the form of Figure 3 of this 
paper.

(Note: Events in California since October, 1982 are not included in the 
data base, but the later events do not significantly change the patterns 
shown; events that occurred during 1986 while this report was being written 
qualitatively fit the pattern described in later illustrations of areal 
distributions of activity, especially the Chalfant Valley foreshock-aftershock 
sequence beginning in July, 1986 east of Long Valley, California having 
maximum magnitudes around M = 6. Magnitudes given here are as reported in the 
literature cited without evaluation, unless otherwise stated. The 
moment-magnitude scale of Hanks and Boore, 1984, shifts the higher magnitudes 
to lower values at the same values of moment because it refers to local 
magnitudes, ML . Their calibration offers a uniform basis for evaluation of 
effects of instrument saturation. The unqualified use of magnitude scales, 
however, can lead to confusion because the differences in local, surface-wave, 
and moment-based magnitudes are greater than a magnitude unit for the larger 
events in California: the evaluation of ML for the 1906 San Francisco event 
according to Jennings and Kanamori, 1979, gives the range as 6 3/4 to 7 
compared with the usually accepted surface wave magnitude, Ms , of 8 1/4. 
The value M = 8.2 is adopted here as the maximum event in the data base. 
Boore, 1984, reduces the values and range even more, as shown by the box 
plotted in Figure 2 of Hanks and Boore, 1984. Uncertainties related to 
magnitude scales are discussed by Kanamori, 1983a, and are not addressed here 
except with regard to the geometric implications of relations between moment 
and magnitude as reflected in the variability of the coefficient c in the 
equation logi0Mo = d +  cM. The range of variation in coefficient c is 
indicated by the slope in Figure 2 of Hanks and Boore, 1984. Presumably such 
variations occur for any scale based on instrument magnitudes that are subject 
to saturation effects. In the absence of explicit evaluation it is assumed 
that magnitudes cited here are roughly equivalent to Ms .).

The trends of log f vs. M in Figure 5 illustrate aspects of the frequency 
variations discussed above. This is shown by the episodic character and the 
flat portions at the highest magnitudes. Apparently this behavior reflects 
the occurrence of three great earthquakes within a half century in California 
(1857, 1872, 1906). The average slope for magnitudes less than about 7 is 
slightly below b = 1. If this represents an approach to the steady state it 
is of the oscillatory character described in the previous section.

The interpretation of these trends as effects of transient swings of fault 
activation statistics contrasts with the maximum entropy type of steady state 
model illustrated by Main and Burton (1984). There frequencies are assumed to 
vary in a regular progression modified by the effect of instrument saturation 
causing a roll-off toward low frequencies at the highest magnitudes. These 
saturation effects, and limiting geometric effects suggested by von Seggern 
(1980) and Caputo (1982) are significant aspects of any interpretation 
(compare Shaw and others, 1986, Figure 17c). Here, however, they appear to be 
overridden by oscillatory shifts among characteristic smaller and larger 
fault-length sets where the frequencies of the largest events are increased
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rather than decreased relative to a uniform Gutenberg-Richter type of trend. 
This is shown more clearly later in terms of relations between frequency 
distributions, fractal geometry, and information measures.

Interpretations of the meaning of an increase or decrease in frequency 
obviously are model-dependent in the absence of both a standard earthquake 
catalog for the steady state and a standard geometry of failure that permits a 
one-to-one correlation with measurements of lengths, areas, and volumes 
involved in the deformation that contributes to each event. This is a 
variation on the theme of uncertainties related to the teeter-totter effects 
in Figure 4. The high frequencies of the larger events in Figure 5, relative 
to extrapolation of the trends of the smaller events, represents an increase 
only if the general trend is characteristic of a distribution that describes a 
quasisteady or standard sort of behavior of constant b-value. If the feedback 
effects involving foreshock-aftershock sequences are typical (as they must be 
in any sufficiently general picture of the earthquake process) then the 
concept of a standard state characterized by monotonic b-values may be 
illusory. If so, the description of frequency shifts is ambiguous in the 
absence of a more explicit geometric context.

An instructive example of this ambiguity is shown by the contrast between 
the geometric interpretation of fault rupture due to von Seggern (1980) and 
the geometric interpretation of activated fault dendrites of Shaw and Gartner 
(1986). The conclusions of these two studies appear to agree concerning 
variations of b-values related to the fractal geometry of fault failure. 
However, they differ on the question of temporal and geographic correlations. 
The von Seggern (1980) interpretation refers to the topography of a continuous 
fault surface of complex geometry and stress distributions (the fractal 
geometry of this case is analogous to that of rough surfaces, or to a variably 
contorted suture-like interface). It was shown by him that between major 
events on such a surface there is an expectable decrease in b-values; i.e., 
foreshock sequences in several examples are shown to have lower b-values than 
aftershock sequences.

Cycles of variations in b-values discussed by Shaw and Gartner (1986, 
Figures 8 and 18), invoke uncertainties of the model types discussed above. 
The interpretation favored there is that a drop in frequencies of small to 
intermediate events distributed widely over a regional fault dendrite 
compensates a frequency increase on geographically more restricted and longer 
strands of a main trunk fault system relative to longer-term averages (a 
hydrologic analogy is given by flood stages along different reaches of a major 
river dendrite). Event distributions derived from variations in fractal 
dimensions can be artifacts of the choice of model, as is also the case with 
asperity-barrier concepts, and the differences can be geographically 
significant. This difference is related to the temporal-spatial uncertainty 
in the interpretation of recurrence times already discussed.

An important conclusion by von Seggern (1980) is that monitoring of the 
time-dependence of b-values in the fractal context should have great 
predictive significance; similar conclusions are drawn by I.G. Main (written 
commun., 13 June, 1986) and by Main and Burton (in press). Von Seggern (1980, 
p. 639) stated that an interval of low b-values should be considered as a 
hazardous state. In California, however, there are intervals of time for 
differing geographic domains where b-values (for M greater than 5) appear to 
remain low during repeated large events. It is also observed that a rise in 
frequencies of smaller and presumably independent events (i.e., independent of 
the frequency increase related to aftershock sequences discussed by von 
Seggern, 1980) on a regional scale followed by a decrease may be associated 
with occurrences of large earthquakes. As shown later, such transients can
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wax and wane over large areas with timespans apparently shorter than a decade 
(the scales of influence are indicated by regions defined in Figure 14).

Evidently the time-dependence of b-values has to be monitored over broad 
geographic domains throughout the area of Figure 3 at yearly (perhaps even 
monthly) time scales if premonitory patterns are to be adequately documented. 
Other criteria of coordination are needed to ameliorate such stringent 
monitoring requirements and to distinguish between concepts of predictable 
seismic cycles and random transients of the teeter-totter types.

The central point in these comparisons is that the geographic regions 
envisioned here are large compared to those implied by any single-fault type 
of interpretation of foreshock-aftershock sequences. Although the contrast 
may be semantic from a fractal viewpoint, there is a major distinction that 
should be of concern in a region such as the San Francisco Bay Area where 
there are several fault strands capable of M = 7 events or larger (an 
alternative way of expressing the contrast in descriptive geometry might be to 
say that the "far-field" stress distribution considered secondary in a 
fault-surface interpretation is a "near-field" stress distribution in a 
fractal dendrite model; compare Shaw and Gartner, 1986, Figure 19).

Another distinction between the present approach and previous ones is that 
the concept of complex geometries involves arrays of fractal dimensions rather 
than unique values characteristic of specific events. That is, there are many 
possible routes in fractal space from one seismic state to another, and any 
particular outcome represents a multifractal confluence of geometric 
distributions of energy sources. To illustrate, there is a parallel between 
the variable fractal paths constructed by Shaw and Gartner (1986, Figure 18) 
and the multifractal interpretations of trajectories in turbulent flow 
described by Halsey and others (1986). The concept of singularity spectra 
derived in the latter study is used later to describe seismic frequency 
distributions in terms of multifractal sets.

COMPARISON OF LINGUISTIC AND SEISMIC FREQUENCY-MAGNITUDE RELATIONS

Concepts of geometric reference states can be examined in a more general 
way on the basis of the linguistic approach previously outlined. That is, if 
there are no specifically unique geometries, perhaps it is possible that there 
is a characteristic statistical pattern within which there is imbedded more 
than one set of fractally self-similar distributions. In order to examine 
this question I compare some of the properties of English word statistics with 
earthquake statistics. This approach might be alternatively expressed as a 
search for characteristic departures from a maximum entropy type of model.

Frequencies of English words, expressed as logarithms of probabilities 
based on samples of two different total sizes, are plotted vs. the logarithm 
of word rank in Figure 6. Rank refers to the sequence of different words

Figure 6 near here

arranged in order of decreasing frequency. If all words occurred with the 
same frequency the curve would be horizontal and the order of words would be 
arbitrary (i.e., every word would be equally probable). If the slope were 
nearly vertical one word would be most probable and every other word would 
fall into some hierarchy of rapidly decreasing probabilities (the vertical 
limit is a one-word vocabulary of unit probability). The earthquake catalog 
of Figure 5 (1800-1982 data set for magnitude increments of 0.1) is plotted on 
the same graph for comparison, where frequencies have been normalized to unit 
probability. The seismic trend parallels the hyperbolic trend for English
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words over the first decade of rank and then falls off to lower relative 
frequencies (the hyberbolic trend is usually called Zipf's law; see Shannon 
and Weaver, 1949; Miller and Chomsky, 1963; Mandelbrot, 1965). In general, 
such a roll-off can be an artifact of several kinds of truncation. The most 
obvious is the effect of a limited sample regardless of magnitude range. This 
is the case where the rank is truncated and the rank-frequency range is 
restricted. In addition, however, even in long records there appears to be a 
roll-off at the larger magnitudes that results from effects such as 
instrumental saturation or an approach to a limiting moment (see discussions 
by Berrill and Davis (1980), Main and Burton (1984, in press), and Shaw and 
Gartner (1986, Figures 17 and 18).

If a particular truncation hypothesis were to be tested in a manner 
comparable to the statistics of language, it would be necessary to have a data 
set resolved to a rank of at least ten thousand intervals, or ten thousand 
distinguishably different events by whatever criteria. By comparison the 
historical record in California, as shown, is of rank 33 for intervals of 0.1 
units of magnitude, so ten thousand "words" defined in terms of the same range 
of seismic magnitudes would imply a resolution in M of 0.001.

If it were assumed that the roll-off seen in Figure 6 were statistically 
characteristic, it could be said that a steady-state seismic catalog was made 
up of a language-like part combined with a highly redundant tail. Similar 
effects are seen in small and(or) highly specialized samples of English. In 
extreme cases the first part of the curve may be nearly flat (equiprobable 
range) with an abrupt truncation; a square corner or stepwise distribution of 
this sort could be thought of as a hypothetical limit where there are mixed 
intervals of total uncertainty and total redundancy. Mandelbrot (1965) 
derived a more general relation than Zipf's law that has a flat portion at low 
rank and approaches a linear limit of nearly hyperbolic form at high rank. It 
is found here, however, that in large samples the simple hyperbolic trend is 
closely approximated, and much of the shape effect is related to either sample 
size, or, what may amount to the same thing, unusually stereotyped 
redundancies. These ideas are explored further below.

The same data are shown in Figure 7 in terms of the logarithm of 
probability plotted against word "magnitude", using the terra generically to 
indicate the measure of word size as well as seismic event size. At first

Figure 7 near here

glance there would appear to be little resemblance between the language curve 
and the seismic trend. It is possible, however, to dimensionally renormalize 
the data in ways that bring out some features that are common to both data 
sets. In order to demonstrate the logic, it is assumed that the magnitude of 
a word (letters per word) is analogous to a seismic magnitude in the sense 
that it is a function of a length scale. A proper length scale is not known a 
priori, so I arbitrarily choose proportionalities that later can be compared 
with correlations among fault length, seismic moment, and magnitude. For 
example, empirical correlations suggest that M is proportional to activated 
fault length raised to a power somewhat larger than one (depending on the 
definition of length relative to moment and magnitude, the exponent might 
range from less than 1 to 3: see Mark and Bonilla, 1977; von Seggern, 1980; 
Shaw and Gartner, 1984, 1986). In such cases the meaning of length depends on 
the nature of source geometry, hence it depends on the same kinds of 
dimensional considerations we are attempting to deduce from fault patterns and 
frequency-magnitude relations. I do not resolve this circularity here, but 
quantitative patterns are found that illustrate constraints on self-consistent

21



geometries based on fractal concepts (compare von Seggern, 1980).
For simplicity I assume that both M and m (where m corresponds to letters 

per word) are directly proportional to the same logarithmic length scale. 
Therefore, this length is given by the log base raised to either M or m. For 
example, using base 2 to emphasize this convention, the relation is expressed 
by the following proportionalities:

L*s = 2M (seismic) (4) 
and

L*a = 2ra (English) (5)

It is simpler to use base 10 so that log10L* is numerically identical to 
either m or M, but the choice of a different base emphasizes the artificial 
convention, and base 2 is commonly used in information theory. This defines 
the hypothetical length L* as a size measured in bits given by m or M. As 
shown later, renormalization can be accomplished by multiplying m or M by a 
coefficient required to give the same length-frequency relation.

The definition of L* in the seismic case is tied to a particular magnitude 
relation (and logarithmic base) which can be redefined if a more rational 
basis is found. That is, the definition can be adjusted for relations that 
represent actual geometric length-moment-magnitude scaling, meaning that the 
definition of L*s (where the subscript refers to a seismically defined 
length scale) could be standardized by choosing a given relationship as 
standard. Thus L* is a kind of fictive yardstick the meaning of which depends 
on calibration. I hope to show that a concept of multifractal sets may be 
useful in establishing an approach to such calibrations.

This demonstration is approached in several steps designed to establish 
the meaning of the fractal context in terms of the data already given. 
Subsequently I also demonstrate how these measures relate to uncertainty and 
redundancy so that there is a common thread of reasoning that permits some 
intercomparison of frequency-magnitude data with equivalent representations 
expressed in terms of complex geometric sets and Shannon's measures of 
information. I begin with frequency-length data for words expressed in a form 
that permits the definition of fractal dimensions based on the length scale 
L*a (the subscript refers to the alphabetic "length"). This is done in a 
manner directly parallel to Mandelbrot's (1982) derivations for dissection 
sets and coastline lengths. The respective total length values are obtained 
from products of frequencies multiplied by L*a , either incrementally or 
cumulatively. These values based on the curve for English words in Figure 7 
are shown in Figure 8. The incremental basis considers the geometric object

Figure 8 near here

to be discontinuous, or dust-like, hence it can be "less-than-linear" (the 
topologic dimension, DT , in Figure 8 is between 0 and 1). By contrast the 
cumulative curve expresses sets of line lengths distributed in a plane, so the 
corresponding range of DT is between 1 and 2.

The latter range can be envisioned in a manner parallel to measurements of 
a. coastline or suture line using calipers of varying aperture as the variable 
yardstick. Starting with the largest linear segment expressed by Nf£L*a , 
length accumulates at a rate depending on the lengths of shorter segments 
NjL*a as L*a is decreased. This procedure parallels the measurements of 
cumulative fault segment lengths versus frequency class as illustrated by Shaw 
and Gartner (1986, Figure 5 and Figures 13 through 16). If a formally 
constructed set of line segments, such as a Cantor set (see Figure 11), is
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viewed as a geometric array distributed in a plane, the same type of 
measurements can be made. In that case the dimension is also variable f as 
found in Figure 8, even though the set theoretic definition gives a constant 
fractal dimension (0.6309 in the case of the standard Cantor set of Figure 
11). Other linear arrays, such as some fault dendrites measured in this way, 
are fractally self-similar over a characteristic range of length scales, as 
demonstrated by Shaw and others (1981) and Shaw and Gartner (1986) in terms of 
the slopes in logarithmic plots of dendrite number-length sets (the value of 
slope, S, is approximately equal to -D; e.g., Shaw and Gartner, 1986, Figure 
5).

The essential nature of fractal sets is shown by numerical examples where 
the fractal dimension has integer values that are numerically the same as in 
the case of Euclidean forms. In contrast with Euclidean geometry, a fractal 
object of integer dimension can range from a dust-like complex array to a 
solid-like complex array. That is, it may look nothing like the idealized 
picture of a line, planar surface, or three-dimensional object. The fractal 
dimension does not necessarily suggest what the appearance of a macroscopic 
object may be like. A fractal object with D » 1 may look little like a line 
(although it could); it might be a cloud-like dust of volumetrically disperse, 
areally disperse, or linearly disperse trends. By the same token, a D = 2 
object might, on the one hand, look more like a line than a plane, or on the 
other hand look more like a Euclidean three-dimensional object than a plane 
(examples are the diverse spatial arrangements of fault sets, which may 
scatter over large volume domains or cluster in restricted depth ranges with 
highly elongated trends).

A classic example of a linear form that approaches D = 2 is an ammonite's 
sutures (the surface trace looks like an intricate line but is of fractal 
dimension closer to two). The convolutions of the cortical "surface" of the 
brain offer an analogous example of a planar form that approaches D = 3 (the 
cortex layer nearly fills a topologic volume); see numerous other examples in 
Mandelbrot (1982). The concept of the degree-of-filling of a specified 
topologic domain offers the simplest verbalization of a fractal object, if the 
domain can be specified.

In the above terms the fractal structure of English, referred to the 
reference scale L*a , apparently is of composite nature and can't be 
identified with a particular topologic domain (linguistic topology relates to 
the degrees of freedom discussed in Figure 1). On the incremental basis, 
defined by values of log NL*a vs. log L*a in Figure 8, the shorter words 
are of point-like character (D near zero), whereas the longer words (m greater 
than 8) display fractal self-similarity with values closer to unity (D is 
roughly 0.9). I emphasize that this is relative to the definition of L*a , 
so there is still the uncertainty concerning the proper length scale; a 
different fractal set based on a redefined L*a will be shown. By the same 
token, these definitions do not necessarily resemble the discussion of 
lexicographic trees in Mandelbrot (1982), although the incremental set here is 
closely related to those ideas. If a relationship between the fractal 
structure of language can be related to the physical topology of a phenomenon 
such as earthquakes, the correspondence also has interesting implications for 
linguistics.

Miller and others (1958) in attempting to model the statistics of word 
lengths as a Markov process found two distinctly different ranges of behavior, 
as though there was a different alphabet for short and long words (the 
short-word model was fitted by a 4-letter alphabet, an observation that has 
interesting parallels with the genetic code; their research was prior to the 
Watson-Crick discoveries). They explained this contrast in terms of different
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statistical structures for what they called "function" words (articles, 
prepositions, pronouns, numbers, conjunctions, auxiliary verbs, and certain 
irregular forms) vis a vis "content" words (nouns, verbs, adjectives and 
adverbs). The former compose most of the shorter words, hence they correspond 
roughly to the point-like fractal set here. The content words, on the other 
hand, are longer and more varied, hence they are more dendritically 
distributed in the fractal sense.

The great variety of big words in English would seem to be a major 
distinction between language and earthquake statistics. That is, long words 
individually tend to have low probabilites (exceptions being repetitive 
technical words such as "earthquake", "probability", etc.), but there are more 
different types of long words than short ones. If earthquakes were 
distributed that way there would be a great many different kinds of large 
magnitude events associated with relatively few types of small events repeated 
much more frequently (i.e., there would be meaningful recurrence times for 
small events but effectively infinite recurrence times for the same large 
event, as discussed earlier). Linguistically, the frequency of usage of 
specific small words is higher than that of large words in order of ranking 
but there are relatively few different types of small words (e.g., "the" is 
usually the most frequent word in samples I have examined, large or small). 
Frequencies per length class fall off rapidly at word lengths shorter than A 
letters (compare Figures 6 and 7). In my counts based on the Hanley (1951) 
catalog, words less that three letters in length make up about five percent of 
the sample while words longer than ten letters constitute almost ten percent. 
Words that are five through ten letters in length represent 75 percent of the 
sample.

The short-word, long-word distinction can be rationalized to some extent 
using the idea of multifractal sets as a demonstration of the composite 
character of word structures (earthquakes or language). The linguistic 
short-word limit is a form of truncation analogous to roll-off at the largest 
earthquake magnitudes (i.e., there is a physical limit at one letter which is 
reflected in the information potential and structural roles of two- and 
three-letter words). In this respect earthquakes and words are somewhat the 
inverse of each other. There is an irreducibility in word size (barring 
analysis of letter formation, speech sound patterns, etc.) analogous to the 
limits imposed by instrument response and(or) extendability of fault rupture 
controlling the source moment for a "maximum" earthquake. Inversely, there is 
no theoretical limit on the maximum potential size of words nor on the minimum 
size of seismic events (at least down to the atomic scale of intracrystalline 
slip).

Explanations for ultimate limits in either case relate to questions of 
dynamics as well as geometry. For example, there is no theoretical reason why 
we couldn't invent an alphabet with unlimited numbers of one-letter symbols. 
It is simply a matter of fact that the evolution of language reflects a 
dynamics wherein there is a balance between unlimited expansion or contraction 
of alphabetic degrees of freedom. In the context of word lengths, this 
tendency was described by Zipf (1949 p. 22) as a balance between "forces of 
unification and diversification", and by Mandelbrot (1961) as a kind of random 
walk in which there is an equilibrium between probabilities of lengthening a 
word and shortening it (compare Miller and Chomsky, 1963; Mandelbrot, 1982). 
The limits on earthquake sizes are analogously constrained, the maximum being 
limited by such things as crustal thiknesses and fault lengths relative to the 
velocities of sound transmission through rock (barring such things as 
continuous mega screw dislocations, supersonic shock waves, etc., that 
theoretically could feed on the total strain energy of the Earth). At the
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small end, detection of the acoustic energy emitted during deformations is 
limited only by the sensitivity of recording devices for motions at the atomic 
scale. Analogously to the construction of alphabets and words, there is a 
certain probability for lengthening faults and raising potential event 
magnitudes by coalescence of ruptures, and there is a countering probability 
for shortening them by healing, dissection of longer faults, and so on.

It can be expected that the magnitudes of words and earthquakes would 
resemble each other more if the tendency of word lengths to be unlimited could 
be renormalized. Renormalization does not address the lower seismic limit 
because earthquakes smaller than M = 5 are not included in the data base. A 
clue to renorealization is suggested by the fact that the information of large 
words tends to be amplified over that of root words (i.e., letters per word 
are increased in additive groups, but the information conveyed is greater than 
the sum of the parts; if this weren't true there would be no "selective 
pressure" to construct long words in the first place). It is well known 
(particularly in this age dominated by communications media) that the ability 
to express complex ideas is expanded more than in direct proportion to the 
increase in the size of a person's vocabulary.

A literary example often cited for informational compression related to an 
expanded vocabulary is the writing of James Joyce; "compression" refers to the 
idea that information per word increases with vocabulary size, so the 
"information density" increases. This compression, however, apparently 
reflects linguistic structures at a more subtle level than is shown by overall 
word frequencies. For example, in Figures 6 and 7 Joyce's vocabulary, at 
least as it is expressed in Ulysses, is not different from more mundane 
samples of English. At the same time it is obviously unusual with respect to 
diverse usages and the occurrences of peculiar words unlikely to be found 
elsewhere (there are 29,899 different words in a total of 260,430 words listed 
alphabetically in Hanley, 1951). Many constructions characteristic of Joyce's 
style are beyond the range of word lengths included in my counts (e.g., words 
such as "mangongwheeltracktrolleyglarejuggernaut" are not included). However, 
his tendency to use words longer than ten letters is probably well represented 
(e.g. words such as the 14-letter "lizardlettered" and the 16-letter 
"philoprogenetive").

The data in Figure 7 from Miller and others (1958, Figure 2B) represents 
5537 different words taken from three different styles of written English: (a) 
the King James version of the Bible, (b) William James Talks to Teachers, and 
(c) the Atlantic Monthly (department called "Atlantic Reports" for April and 
May, 1957). This is only 19 percent of the diversity shown by Joyce in a 
single work. If there are significant differences in the statistical 
structures of such seemingly diverse styles of writing, additional techniques 
are needed beyond those shown by trends of frequencies, rankings, and word 
lengths that are shared in common in plots such as Figures 6 and 7. It is 
proposed here that concepts of multifractal sets is such a technique, although 
its application to language is not pursued beyond the comparison with seismic 
frequencies (see Figure 9 below).

The notion that the written expression of complex thought patterns is 
compressed (or the "amount" of meaning per word expanded) by the use of large 
words seems to contradict another common notion that the most powerful 
expressions of scientific ideas are those described using the smallest 
possible words. If both are true, then they clearly reflect another (or the 
same?) optimization principle, because it is difficult to imagine that 
Einstein could have done a better job describing the theory of relativity 
using the 850-word vocabulary of Basic English (see remarks on sizes of 
vocabularies and relative redundancies in Shannon and Weaver, 1949, p. 56).
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Someone might assert that the most powerful scientific ideas could be 
expressed mathematically without using any words at all. This just changes 
the type of symbolism, however, so analogous properties of relative 
uncertainty and redundancy (and the implicit, if nebulous, autocatalytic 
optimization principles) would exist in a "language-free" codification of 
mathematical principles.

Making arbitrary use of the concept of compression, I define a new length 
scale for language by use of the relation L*a * = 2ra/ ^; the exponent 1/3 is 
chosen arbitrarily to bring the range of word lengths somewhere near that of 
seismic lengths. The result is shown in Figure 9 compared with the seismic 
data of Figure 5 expressed in terms of the length scale L*s = 2M . On the

Figure 9 near here

revised L*a * basis there is a much closer resemblance between the fractal 
structure of words and earthquakes. This resemblance is shown by the similar 
sets of slope trends. Note that crosstrends occur at fairly regular 
intervals, suggesting a tendancy toward geometric progressions. The trends of 
negative slope correspond to fractal dimensions (0) between 2 and 3, while the 
crosstrends, or jumps, of positive slopes correspond to values of D between 0 
and 1. Slopes greater than +1 do not correspond to any standard topologic 
limits in that they imply negative D, while slopes less than -2 imply D 
greater than 3 (the latter are possible regardless of logarithmic base if the 
geometry refers to dynamic variables in an n-dimensional phase space). The 
grid of light lines shows reference sets of fractal loci corresponding to D = 
0, D = 1, and D = 3 (relative to the base 2 definition of length). One line 
for D = 2 is shown because some subsets of the steeper cumulative seismic 
trend are closer to that value than to D = 3. Notably, the use of cumulative 
distributions smooths the data so that the fractal arrays are obscured (a 
similar observation was made by Shaw and Gartner, 1986, concerning the 
significance of irregularities in recurrence curves based on incremental 
rather than cumulative frequency data).

If the incremental distributions fell along these trends with relatively 
regular spacings it could be concluded that the linguistic structure of words 
and earthquakes was made up of a nearly periodic array, or fabric, of 
point-like to volume-filling sets. Seismic or linguistic style could then be 
represented in terms of the varieties of weaves and their intricacies, much in 
the sense that one judges handwoven rugs in these terms. Literary criticism 
seems to use a qualitatively similar concept in drawing comparisons between 
styles of authors. It could be conjectured that the weave for an author such 
as James Joyce would be relatively intricate. Another possibility, however, 
is that there are nonperiodic components that produce a more continuous 
spectrum of fractal sets. The former are analogous to what are termed 
mode-locked quasiperiodic structures in patterns of fluid convection; the 
latter are called singularity spectra. Physical systems in general may 
alternate between such styles of complex behavior, and the range of regimes 
may also include more strictly periodic and more chaotic patterns that do not 
display the same richness of structural organization. The analogy is explored 
farther in later illustrations (see Figures 12 and 19).

It would be desirable to test these ideas against other samples of 
language and earthquakes in order to ascertain whether or not a universally 
valid classification is possible. Rather than attempting this here, however, 
I tentatively accept the existence of such fractal sets in order to explore 
relationships between them and the information expressed by such patterns. 
Whatever the proper scaling of lengths may turn out to be, and whether or not
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it is unique, exponents in the terras 2ra/^ and 2M can be generalized by 
defining a variable exponent, q, giving functions of the form L* = 2M/<5. An 
expectable range of q might be from 1/3 to 3, depending on whether the length 
scale is being stretched or contracted.

In the fractal context, q is not necessarily limited to rational numbers. 
If there are parallels with structures of fluid turbulence, however, 
mode-locking tends to occur in the vicinities of rational values of dynamic 
forcing parameters; these might be revealed as fractional multiples of a 
standard value, q0 (conceivably there could be hybrid sets with more than 
one exponential multiplier, qo ^). Because q is a power of L* it can be 
thought of as a fractal dimensional coefficient; that is, it is a parameter 
required to normalize the magnitude scale relative to a common set of fractal 
dimensions.

By the same token, we can arbitrarily raise all length scales to any other 
constant dimensional coefficient. Therefore we can also define a length scale 
by the relation L*^0 = 2ctl , where c is a coefficient of proportionality 
between the logarithm of seismic moment and magnitude. On this basis, L*^c 
is proportional to seismic moment, M0 , while L*^ is proportional to 
magnitude (note that an empirical calibration of these exponents requires 
conversion to the same logarithmic base; e.g., for c as the coefficient in a 
base 10 correlation of moment and magnitude, the corresponding exponents 
require adjustment by the factor log^Q2).

These definitions are used in the next section to illustrate contrasting 
relations of fractal dimensions defined in different ways to frequencies, 
lengths, moments, and magnitudes. The relation between fractal dimensions and 
information measures is considered subsequently in sections concerning 
questions of the completeness of seismic data for subregions of California. 
Two fractional exponents of a fundamental length scale appear to be needed to 
bring the frequency-magnitude distributions simultaneously into alignment with 
other data sets representing actual length measurements of faults and 
earthquake sources as well as with dimensional interpretations of moments 
derived from the analysis of earthquake spectra using seismometer records (the 
b-value of frequency-magnitude relations can be directly converted to a 
fractal dimension, hence relations between q, c, b, and D are implied). 
Successful correlations would bring the present approach simultaneously into 
alignment with geologic measurements, observational seismology, and with 
spectral scaling relations such as those studied by Chouet and Aki (1978).

Before going ahead with a study of the parameters q and c in relation to 
Mo , b, and D for given frequencies and magnitudes, another comparison 
between language and earthquake statistics is illustrated. This is the case 
of average word sizes and event magnitudes at constant frequencies shown in 
Figure 10. When word lengths using the same data base are averaged at

Figure 10 near here

constant frequency, the range of their average size, m, is similar to the 
range of average earthquake magnitudes at constant frequency, M, based on 
trends compiled by Algermissen and Perkins (1976) for the contiguous U.S. In 
this case a compression of word length (previously accomplished by redefining 
L*a ) is caused by the fact that individual words and seismic events of 
greatly different sizes can have the same frequency of occurrence. The 
corresponding ranges of fractal dimensions are shown in Figure 11 for the 
language data in comparison with the range based on incremental word lengths 
(the trends and ranges of D for the averaged earthquake data would be similar 
to those of the averaged word data). Because L* is defined in the same way
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Figure 11 near here (note: where m and M appear, place bar above the letter 
rather than below; in this paragraph only)

for both data sets, base 10 is used in Figure 11, so the numerical values of 
L* are the same as either the average word length or the average magnitude.

Figures 10 and 11 illustrate the gross statistical resemblance of 
frequency distributions for language and earthquakes. They are more 
instructive, however, in revealing how the averaging of frequency data, either 
in terms of average magnitudes or in terms of cumulative plots, can blur the 
infrastructure expressed in the form of fractal sets. The relationships 
discussed in the next section refer to the more explicit, but more restricted, 
fractal sets illustrated in Figure 9 using incremental earthquake data in 
California.

SINGULARITY SPECTRA FOR LANGUAGE AND EARTHQUAKES

The number of possible combinations of dimensional exponents such as q and 
c defined above, and the small size of the seismic catalog used to draw 
fractal inferences in Figures 8 through 11, make it difficult to capture the 
full range of these relations in a simple diagram. However, a more formal 
concept of singularity spectra developed by Halsey and others (1986) may help 
explain the nature of multifractal sets. The idea of describing patterns of 
singularities generated by a physical process in terms of fractal sets was 
stimulated by attractor theory (see Shaw, in press) combined with experimental 
research on fluid convection and turbulence that illustrated attractor-like 
patterns of motion. This approach has grown from the work of many 
international researchers, converging on methods described in Halsey and 
others (1986).

In order to cast the seismic problem in a similar format, I use an 
idealized relation between fractal dimensions and the b-values and c-values of 
frequency-magnitude, and moment-magnitude relations as discussed by Aki 
(1981); to do the same thing with the linguistic problem would require 
introduction of a generating function analogous to moment, such as the "cost" 
of a word. Shaw and Gartner (1986, Figure 18a) relate the idealized fractal 
dimension D = 3b/c discussed by Aki to measured fractal dimensions of fault 
dendrites. If a given suite of seismic observations can be expressed in terms 
of a fractal length scale of the sort already discussed together with both the 
seismically idealized and a fault-related set of fractal dimensions, then it 
should be possible to relate L*s to coordinates that have one-to-one 
correspondences with measurements of seismic moment and with geographic length 
scales.

To keep the different bases straight, I refer to the Aki (1981) type of 
fractal as Ds relative to length Ls , and the fault-related fractal as Df 
relative to length Lf. Therefore, an important eventual goal is to find the 
transformation that will bring the sets (D*S ,L*S ), (DS ,LS ), and 
(Df,Lf) into alignment. The fractal dimensions are formally derived from 
the variations of a specified length-set (in the present context related to 
each other by adjustable exponents) as follows: (1) D*s = D based on graphs 
of L*s for specified M and q, (2) Ds = D based on Ls intrinsic to the 
relation D = 3b/c, and (3) Df = D based on graphical plots using fault 
length Lf. Present information does not permit unambiguous correlations for 
the different dimensional cases, but if one should be found it would 
facilitate the mapping of seismic parameters onto appropriate geographic 
reference frames. The result would be a step toward global predictions of
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event frequencies on fault structures within reference domains of the sorts 
shown in Figures 3 and 14.

The question of how D*s may relate to Ds can be illustrated using the 
constructions shown in Figure 12. These in turn can be related to Df and

Figure 12 near here

Lf based on fault measurements as discussed by Shaw and Gartner (1986, 
Figure 18a) for compatible values of b and c. But first consider some of the 
options for relations defined by the family of functions L*^c « BasecM . 
Taking logarithms, and using the moment vs. magnitude equation log Mo = d + 
cM, relations between L*s , magnitude and moment are defined as follows:

log L*9C = cM (6a) 

log L*^c = log M0 - d (6b)

The range of c-values are found from plots of log Ho vs. H on a 
specified basis, as discussed by Hanks and Boore (1984, Figure 2). I assume 
here that both q and c are bounded by the limits 0 and 3, and that average 
values of c are typically near 1.5 for intermediate magnitudes (see Hanks and 
Kanamori, 1979). In Figure 9 the value q = 1 was used for earthquakes and the 
value q = 3 for renormalization of L*a for English to give comparable ranges 
of fractal dimensions. If it were assumed that the topologic limit should be 
the same as that used in Aki's (1981) definition of Ds = 3b/c, then Ho is 
proportional to L|. Also, if Ls and L*s were assumed to be the same, 
then we would have qc - 3 in Eq. 6b (i.e., Mo proportional to L*|). 
However, if qc is constant, then q decreases as c increases, and vice versa. 
implying that there are continuously varying proportionalities among q, c, 
L*s , M, and Mo .

This may be valid as a general tendency even though it contradicts the 
idea that there is a fixed relation between Mo and Ls . If c exceeds 1.5 
for large events, then log L*s approaches M (i.e., q = 1 for limit qc = 3 at 
c = 3). Inversely, for small events (c = 1, or less) log L*s decreases with 
M/q; for example, at c - 1, q = 3 if qc = 3, and in that case L*s is 
compressed by the same factor as the L*a scale in Figure 9. This fits with 
observations that magnitude is roughly proportional to length for long strike 
slip faults, while magnitudes may be larger for small faults than would be 
expected from length correlations for long faults (see Mark and Bonilla, 
1977).

Another special case that illustrates a different dynamical limit is given 
by choosing qc = 1 as the constant value. Then, we have the proportionalities 
q - 1/c and log L*s = cM. For this length scale Mo is a function of the 
first power rather than the cube of L*s . Such a correlation would be 
consistent with the definition of moment as the product of a force and the 
distance from an axis of rotation. To be dynamically valid, earthquakes would 
have to represent the action of simple torques about stationary axes having 
point-like distributions (Df close to zero).

These and other specific comparisons show that no constant value of the 
product, qc, will simultaneously satisfy correlations of log L*s vs. M 
and(or) Mo as well as correlations of Mo vs. Ls or Lf, and(or) M vs. 
log Lf . Special cases would have to be invented for each of the different 
geometric correlations and(or) interpretations of M and(or) M0 that exist in 
the literature. Some combinations of q and c that span a range of possible
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empirical correlations are shown in Table 1 for the typical value c = 1.5. 

Table 1 near here

In Figure 12, Ds represents values of b and c that are assumed to be 
characteristic of some range of frequency-magnitude data. If local b-values 
were estimated for each range, and the appropriate c-values were assumed to be 
known, then sets of Ds-values could be plotted and compared with those 
inferred from plots like Figure 9. Such plots are not shown because the 
derivation of Ds , outlined below, presupposes a fixed relation between Ds 
and Ls . Forcing the sets of D*s-values to correspond to Ds by 
manipulating q and c is contradictory in that D*s is not normalized to any 
particular topologic limit. Some idea of how the values of L*s given by 
Eqs. 6 and Table 1 are related to Figure 12a is indicated by the q and c 
scales marked on the abscissa.

The main purpose of Figure 12 is to show that within the constraint of a 
fixed topologic relation between Ls and Ho used to define Ds , typical 
paths shown by the zigzag lines and arrows in Figure 12b are multifractal, and 
that for special paths such as A, B, and C there are continuous spectra of 
singularities analogous to those found in other systems of complex fractal 
geometries (in this respect, note that both q and c are variable dimensional 
exponents hence are of the same character as fractals; the term partial 
fractals may be appropriate in a manner parallel to the definition of the 
f-alpha functions used to characterize multifractal variations in Halsey and 
others, 1986). These paths are shown as geometric idealizations rather than 
as realistic examples; more realistic paths would start near b = 1 at low 
magnitudes. As indicated by the different paths in Figure 12a connected by 
the dotted lines with arrows, and by the zigzag path in Figure 12b, singular 
arrays of Ds-, b-, and c-values are typical of observed frequency-magnitude 
distributions. In this respect conclusions based on DS-LS relations are 
qualitatively the same as those based on L*s derived more directly from 
frequency-magnitude data.

Empirically MQ is often expressed by a function that is roughly 
proportional to LJf; see Shaw and Gartner (1986) and Wesnousky and others 
(1983). Since such relations span uncertain ranges of fault lengths, 
magnitudes, and c-values, the empirical proportions are imprecise and reflect 
a mixed hierarchy of length scales possibly interrelated by fractional 
exponents. In an approximate sense, the discussion by Shaw and Gartner (1986, 
Figure 17) showed that values of Df for measured fault dendrites are about 
one dimensional unit smaller than fractal dimensions based on Ds = 3b/c. 
Because the former are relative to the limit D-j = 2 (map plane), while the 
latter are relative to DT = 3, the corresponding fractal length scales are 
roughly compatible (see later discussion of Figure 19). Thus, in some cases 
it is found that L*s and Lf are consistent, and in others that Ls and 
Lf are consistent. Therefore, L*s and Ls should also be consistent over 
similar parameter ranges.

Consideration of how the relation Ds = 3b/c was derived is useful here 
because it identifies the connection between LS and a specific fault 
segmentation model described by Aki (1981). For example, he states (p. 571) 
that the slope in a plot of log H vs. log L is 3b/c, where "b is the slope in 
a log frequency-magnitude relation" (usually, b is written as a positive 
coefficient, so the slope would be -b as defined by Eq. 3). This definition 
is consistent with graphical derivations of D-values using Mandelbrot's 
formula D = (1 - Slope) in plots of log HL vs. log L, as was done in Figures 8 
and 9. This is easily verified by inserting numerical values of b and c in 
the preceding log H vs. log L relation; see graphical resume in Figure 13.

30



Figure 13 near here

But Aki also states that Ds represents a segmentation model given by the 
formula D = log M / log (1/r), where M is the number of parts and r is the 
ratio of subsegment lengths to a given fault length scale (see Mandelbrot, 
1977, p. 43). Accordingly Ds = 3b/c = log M / log (1/r). Since the 
quantitiy 3b/c evidently also represents the ratio -log M / log L for the 
previous relation normalized to M = 1 for L = 1, then the consistent 
segmentation is 1/r = 1/L, or the total fault length is made up of N 
contiguous subsegments of length r. This just means that the whole length is 
the sum of the partial lengths, in contrast with dissection sets where N is 
decreased relative to 1/r by cutting out some fraction of the parts (a 
distribution that attenuates in total length as the number of parts 
increases).

If no parts are removed, or numerically discounted, we would expect that 
Ds = 1 is a minimum because the continuity of an original assumed fault is 
not broken (the definition of a connected fractal). Thus if b can decrease 
below 0.5, c would have to decrease below 1.5 in this segmentation model 
(e.g., if Ds = 1 is the limit, then c varies as 3b). If so, low b-values 
would correlate with small event magnitudes according to a c-value correlation 
such as that of Hanks and Boore (1984). Since this does not seem to be 
generally true, it is likely that the segmentation model used to define the 
relation Ds - 3b/c is not appropriate for earthquakes on systems of small 
faults.

If the above segmentation model were generalized to dendritic systems it 
would imply hierarchies of subsegment lengths proportioned according to 
characteristic branch lengths for each length order. In this respect the 
derivation resembles the model used by Shaw and Gartner (1986) to illustrate 
the relation between fault dendrite models and Df expressed relative to 
values of b and c. To this extent fractal dimensions for connected fractals 
based on either Ls or Lf, respectively, are reasonably consistent. That 
is, dendrite-type and barrier-type models can be statistically similar with 
regard to number-length hierarchies. At the same time, however, they can 
differ importantly as mentioned earlier with regard to implications concerning 
how the fractal sets are distributed geographically.

The extent to which L*s and Ls agree or disagree would appear to 
depend on the fractal correspondences between length scales for moment 
distributions. The dotted oscillatory path in Figure 12a reflects the 
alternations of b- and c-values in Figure 12b discussed by Shaw and Gartner 
(1986) in terms of correlations between seismic data and faulting data in 
Japan (in general, c-values increase with increasing moment). This is the 
same sort of oscillating effect found in Figures 8 and 9, where the maximum 
range alternates between about D = 0 and D = 3. Apparently this can only 
happen for Ds in Figure 12a at very low or very high c-values (Ds jumps 
back and forth between the abscissa and Path C; hypothetically these 
variations are assumed to extend beyond the limit Ds = 1 discussed above). 
Therefore the most oscillatory patterns would seem to be typical of either 
high or low moment systems. Note that when c approaches the limit 3, log 
L*s becomes proportional to M, because q = 1 in the limit qc = 3.

The fractal range 0 to 3 can also be decribed as an oscillation between 
point-like and volume-filling sets, the extreme being for the "ultimate event" 
at the top of Figure 12b. Physically this would imply cycles of rapid 
exchange of strain energy from within dense dendritic arrays of areally 
distributed active faults to an expression that is point-like in character
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(point-like in this case is meant in the same context as a hypocentral locus 
of a spatial domain). Generally speaking, such patterns imply that some sets 
of events in segmented and(or) dendritic fault hierarchies will be more 
predictable (high fractal D) than others (low fractal D). This observation 
relates to the fractal interpretation of von Seggern (1980) and to the remark 
by Aki (1981, p. 571) that fractal patterns will require a very complete areal 
scrutiny to be detectable by direct monitoring techniques. Aki also suggested 
that this may be one reason why methods of intensive monitoring used in China 
are relatively successful. An analogous conclusion was drawn by Shaw and 
Gartner (1986) with respect to the need to monitor the smaller branches of 
fault dendrites in order to detect trends in seismic energy distributions 
interpreted along the lines of Figures 1 through 3 here.

The difficulties of making correlations among different types of fractal 
sets would be mitigated if better correspondences between L*s , Ls , and 
Lf could be established. Partial agreement of subsets has been found above, 
but it is difficult to state any precise functional relations because of the 
model-dependent and topology-dependent aspects of the different sets. This is 
unavoidable at present because there are few data permitting a description of 
fault dimensions with depth in the crust. At present L*s and D*s would 
appear to be the best contextual representations of topologically 
three-dimensional seismic distributions that can potentially be made precise 
by calibration. Correlations with paleoseismic fault length and(or) fault 
slip fractal sets are in progress to extend these relations to times 
characteristic of seismic cycles (see Shaw and Gartner, 1986, Figure 8).

An example of a specific correlation that is simultaneously consistent 
with definitions of L*s , Ls , and Lf is given by Row (3) in Table 1. The 
predicted relations for q = A/3, c = 3/2 can be tested against empirical 
correlations from Shaw and Gartner (1986) that are typical of others found in 
the seismological literature:

M * 1.235 -I- 1.243 log Lf (meters) (7a) 

log M0 = 23.50 + 1.94 log Lf (kilometers) (7b)

From Table 1, Row 3 the equivalent coefficients are 1.333 compared with 
1.243 in Eq. 7a, and 2 compared with 1.94 in Eq. 7b. However, because the 
correlation refers to c = 1.5, it describes only one section through the 
multifractal space of Figure 12. Therefore it appears to satisfy several 
aspects of the average behavior of the earthquake process for intermediate 
magnitudes. I say average because we still do not have one-to-one comparisons 
of fault data and moment data that correlate directly with the subsets of 
multifractal trends in Figure 9. Even so, the implication is that detailed 
correspondences among D*s , Ds , and Df may exist when magnitude and 
moment are related to L*s and when q and c are varied compatibly relative to 
median values such as q = 4/3, c = 3/2.

AN INTERPRETATION OF FRACTAL LINGUISTIC CYCLES AND OSCILLATIONS

In their discussion of the statistical heterogeneity of language, Miller 
and others (1958, p. 384) state that: "Clearly, the function words are the 
heavily overworked glue that holds our sentences together". The function 
words correspond here to one of the point-like fractal sets (D = 0) in the 
oscillatory multifractal fabric. By the same token it might be said that the 
fractal sets with D = 0 in Figure 9 are the glue that holds the patterns of 
seismic distributions together. To the extent that a correlation between
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L*s and fault length exists, as discussed in the prceding section, the same 
conclusion can be drawn for those faults that represent the point-like sets in 
a dendritic hierarchy of faults within a given geographic domain. In that 
case the point-like sets symbolize both the glue (in terms of earthquake 
frequencies) and the skeletal framework that gives fault dendrites a 
characteristic seismic pattern of expression. If so, the point-like sets 
should manifest the relationships that exist between geography, fault 
distributions, and seismicity. In this regard we have come almost full circle 
to the models outlined in Figures 1 through 4.

In the remainder of the paper this implication is explored for the 
distributions of earthquakes within smaller regions and over shorter intervals 
of time. The corresponding uncertainty-redundancy relations of information 
measures are examined, and the incompleteness of the data is discussed from 
the multifractal viewpoint.

From the previous analysis it would seem to be possible to identify the 
relations between fractal dimensions and Shannon's uncertainty measure, 
because both can be derived from the same sets of data. Because the 
uncertainty (or entropy) is formally defined only in terms of probabiltiy 
distributions, however, it is less "informative" than is the concept of 
multifractal sets. Alternatively, the fractal variables can be viewed as 
measures of other sorts of entropy distributions in a manner analogous to the 
configurational entropies of molecular structures (see treatment of partition 
functions in Halsey and others, 1986).

Another way of stating the situation is to observe that if a given 
probability distribution can be expected to reflect some hierarchical ranking, 
then the informational uncertainty will give a good representation of that 
distribution. This is the basis for maximum entropy methods applied to 
frequency-magnitude analysis by Berrill and Davis (1980) and Main and Burton 
(1984). As Jaynes (1957) put it, the maximum entropy assumption is logically 
to be preferred in an interpretation of a probability distribution in the 
absence of reasons to think otherwise (i.e., lacking knowlege of any other 
distribution). The fractal sets discussed here constitute reasons to think 
otherwise when it comes to detailed interpretations. That is, the two 
approaches only reflect differences in the degree to which the data can be 
shown to be complete or incomplete in an appropriate geometric context. 
Therefore, in principle geometric fault models (e.g., Main and Burton, 1984, 
Figure 1) could be used to derive partition functions and singularity spectra 
to compare with data sets such as those of Figures 9 and 12.

The concept of a statistical glue has parallels with other phenomena. An 
example is given by the concept of gluons in particle physics, where the gluon 
is represented by photons "as a kind of glue" that holds protons and electrons 
together in the atomic structure (Pagels, 1982, p. 253). The role of the 
point-like sets here is analogous. This can be seen fairly directly in the 
distributions of event frequencies where the point-like intervals of Figure 9 
keep resetting the trends of falling frequencies. These oscillations are 
related to what was earlier described as the transient teeter-totter effect 
relative to steady state trends of constant b-value. Now it is seen that the 
entire fabric of variations is transient (obviously the events themselves are) 
within a general trend that depends on how the fractal sets are sampled. This 
in turn relates to how the L*s fabric relates to fractal dimensions of 
mappable dendrites.

Thus, as in the atomic structure, there is an active exchange between the 
fractal structures of an energy space and the fractal structures of a tangible 
material space. Geographic predictability depends on how well the former can 
be mapped onto the latter. (Note: In view of the parallels between language
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and the genetic code, it can also be predicted that this sort of statistical 
relation between highly uncertain and highly redundant sets will be found in 
the intron-exon structure of genes in biologic systems; see Gilbert, 1985. So 
the possibility demonstrated here that such codes can be described in terms of 
singularity spectra suggests that genes also represent a multifractal fabric 
in which the interweaving of intron and exon segments provides a structural 
framework that is glued together by point-like functional sets the sampling of 
which is of high uncertainty. In this light, the idea that ordered regions 
are the only ones important in the functioning of the genome is untenable. 
The remark applies equally to biology and seismology; in the latter case the 
"genome" is represented by the integral activity of a system of interacting 
fault dendrites analogous to Figure 3.).

To clarify, I tentatively assume that D = 0 corresponds to a maximum 
relative uncertainty, F, and D = 3 corresponds to a maximum redundancy, R, in 
the sense of Shannon's measures defined earlier. The oscillations in D, and 
the teeter-totter effect, therefore represent extremal variations between 
uncertainty and redundancy. Qualitatively, an area such as the Parkfield 
vicinity of the San Andreas fault is analogous to generally high D and 
redundancy (self-similarity suggests, however, that there will also be local 
structures with oscillating fractal dimensions within that set), while the 
so-called locked portions (vicinities of the 1857 and 1906 events) have 
relatively low D and are sampled with high uncertainty. This refers to the 
current epoch where the fractal patterns based on historic seismicity may 
approximately correspond to fault behavior.

A similar remark applies to seismic gaps in general. In the dendritic 
stream analogy, these can be likened to major limb or trunk portions of an 
intermittent flow system wherein the smaller dendrites record greater 
continuity of distributed events that only occasionally contribute to the 
major flow channels. Prediction of the incidences of flow along particular 
reaches of the trunk system similarly depends on how well the smaller 
tributaries can be monitored. By the same token, however, the seismic gaps 
and point-like distributions at all scales indicate the framework within which 
more localized monitoring should be deployed.

An example of this kind that has become conspicuous in recent studies is 
the White Mountain seismic gap described in Hill and others (1985). Here 
there is a pattern of distributed events that recur regularly combined with 
uncertain occurrences of large events on individual long faults. Other 
examples are discussed in Evernden and others (1978), Aki (1981), Kanamori 
(1981, 1986, Figure 12), and Anderson and others (1986).

Unfortunately there is at present an unavoidable ambiguity in discussing 
redundancies in space and time. This was pointed out earlier in the examples 
of patterns of neural receptors in contrast with patterns of perception. If 
seismic gaps are geographically fixed, the spatial description of 
characteristic earthquakes representing the activation of specific fault 
intervals is redundant (no uncertainty of location). Activations in time, 
however, may be highly uncertain. Analogously, the locations of articles, 
prepositions, etc. in sentence structures are highly determined, but their 
temporal predictability is uncertain (i.e., both types of roles correspond to 
the point-set "gluons" above). The idea that there may be an optimal 
redundancy of events in both space and time depends on the existence of 
coordinations among multifractal sets. This permits a "reading" of space-time 
relations among D-values that define an overall redundancy pattern in the same 
manner as happens in language.

In the following sections I explore how imperfectly the seismic 
distributions in California can be read in this context in the absence of
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direct correlations with fault patterns. The results indicate that more 
intensive efforts should be made to map multifractal seismic patterns onto 
fractal fault patterns down to the scale of microearthquakes.

FREQUENCY-MAGNITUDE DATA FOR SUBREGIONS OF CALIFORNIA

An index map of California and its immediate surroundings is shown in 
Figure 14. It is subdivided into arbitrary subregions for the purpose of

Figure 14 near here

compiling subsets of earthquake frequencies. The only basis for this 
classification is that tabulated earthquakes are broadly grouped in a manner 
that fell within these geographic localities (ambiguities noted in tabulating 
the data were numerous events near the SF-C boundary, and many events near the 
CN-SS-OV boundaries in the vicinity of Mammoth Lakes, CA). The triangles are 
the corners of arbitrary linkages that generally straddle the geographic 
areas. These linkages are later used to illustrate migrations of historic 
earthquake activity according to a kinematic "bond-breaking" model. The 
arbitrary areas and benchmarks referred to in subsequent illustrations are 
identified by name and number in Figure 14.

Tectonically defined seismic zones are intentionally avoided in this paper 
in order to emphasize the statistical aspects of linguistic concepts. This 
does not reflect a belief that geologic insight is out-of-place. On the 
contrary, it is expected that any patterns that may be revealed in such an 
arbitrary context can be made far more explicit using detailed fault maps at 
expanded scales.

The earthquake history summarized in Figure 5 is broken down into eight 
subregions in Figure 15 (some of the 14 different subregions of Figure 14 have 
been combined). The rationale is to portray historic patterns representing
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all areas of concern from a hazards viewpoint at the same time as showing the 
general relations to areas where attention, both scientific and popular, has 
been focused on special events. Thus, the subregions E+SH, CN+TC+NS, and 
BJ+IP represent the three Plate-Tectonic "cornerstones" of the seismic 
distribution drawn schematically in Figures 2 and 3. These three areas 
resemble each other in average slopes of log f vs. M (post-1900 data sets). 
More interesting, however, is the observation that oscillations in these 
curves have suggestions of synchronization. For example there are frequency 
maxima near magnitudes 5.5 and 6 that seem to correlate over time spans as 
short as decades (see Figure 16 below).

At first sight it may be surprising that the most widely separated of the 
subregions should have the greatest behavioral resemblances. It is inferred, 
however, that these three areas behave in a coordinated manner because they 
reflect similar classes of fractal oscillations of the kinds illustrated in 
Figures 9 and 12. That is, they may reflect the average tectonic behavior of 
the continental margin more consistently than do interior regions of 
California. For example, the culturally important subregions SF (vicinity of 
the 1906 San Francisco earthquake) and C (vicinity of the 1857 central 
California earthquake) have some resemblance to these patterns when the entire 
interval 1800-1982 is considered, but the resemblance weakens at shorter time 
intervals. In the linguistic context of Figures 1 through 3, the cornerstone 
regions represent communication between plate tectonic stimuli and the
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statistical responses of receptor regions subject to their influence (note 
that this implies a coordinating role rather than a causative one; the latter 
resides in the overall plate motions expressed in the interplay of all 
subregions of Figure 14).

These inferences are examined more closely in Figure 16, where the same 
data are plotted for intervals of 30 years. The three "cornerstone regions"

Figure 16 near here

are again consistently similar to each other during the 1926-1955, and 
1956-1982 intervals. These intervals reflect the advent of instrumented 
seismic networks, whereas earlier data are too fragmentary to make such 
comparisons. It is interesting that in Figure 15 the post-1900 behavior of 
the LA subregion has been perhaps the most steady in the fractal context, 
although oscillations exist. This might fit with the highly diversified 
patterns of faulting in that vicinity and with the high fractal dimension of 
fault dendrites inferrred from length frequencies documented by Shaw and 
others (1981) and Shaw and Gartner (1986, Figure 5). It might be inferred 
that there is good temporal predictability of small to intermediate events and 
a low probability of large earthquakes in the immediate vicinity of Los 
Angeles (this is supported by the high internal consistency of fractal sets in 
Figure 19 below). However, high population densities extend into neighboring 
subregions capable of great earthquakes.

A different interpretation might be that LA represents a relatively 
long-lived deviation from a cyclic pattern of oscillating frequencies that has 
begun to reveal itself in the post-1926 behavior of other subregions. That 
is, following the rapid-fire occurrence of California's three greatest 
historically recorded earthquakes over a span of less than fifty years (1857, 
1872, 1906), all subregions eventually began to reexperience more frequent 
.events of small to intermediate magnitudes. In the fractal context, the 
extremes of oscillations became less severe and the overall seismic fractal 
dimension of the mid-20th century is higher than it was during the 1857-1906 
period.

Descriptively, fault activations during the most recent several decades 
have been areally disperse (dendritically more widely distributed) as though 
the entire state experienced a pervasive strain relaxation. The same seismic 
gaps persist and give definition to earthquake distributions, but we have been 
in intermediate and relatively damped modes of oscillating paths such as those 
illustrated by Figure 12. If true, we should watch for a statewide decrease 
in the higher frequencies reflected in a return to more extreme oscillations 
in fractal paths as premonitory indications of conditions attending those of 
great earthquakes. Analysis of multifractal patterns for events smaller than 
M = 5 and in smaller subregions may be an effective way to develop such a 
long-range forecast. Patterns appear to change with sufficient rapidity on 
the scale of 30-year intervals that it is not possible to infer exactly where 
we are in such a cycle based on the statistics of the larger events.

The mid-20th century relaxation effect can be seen in the statewide 
patterns of short-term frequencies shown in Figure 17. Here the data for all

Figure 17 near here

subregions are combined but are shown at 5-year intervals. Examination of 
regional and temporal variations together suggest that, with exceptions 
mentioned below, the log f vs. M relation tends to flatten and elongate during 
times when seismic gaps are activated, and to steepen and contract at other
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times. This is a manifestation of several effects already discussed in 
different contexts (teeter-totter swings about a steady state, oscillations in 
fractal paths, episodic reddening of frequency spectra, and concepts of 
seismic cycles; compare von Seggern, 1980; Main and Burton, 1984, in press; 
Aki, 1984; Shaw and Gartner, 1986).

An exception to this tendency is shown during the 1951-1955 period when 
the frequencies of the smaller events remained very high during the decade 
preceding and following the M = 7.7 Kern County earthquake. This pattern 
suggests that there may be at least two routes to the occurrences of large 
earthquakes in California: one is manifested by a period of waxing frequencies 
of small to intermediate magnitudes, the other by a waning period of small 
high-frequency events (a crude visual analogy is provided by the occurrences 
of breaking water waves during different regimes of the wave cycle). This 
effect can be seen better in the distribution of earthquake counts and moments 
at five-year intervals broken down according to subregion. These data are 
given in Table 2 and also are shown in the form of histograms in Figure 18.

Table 2 and Figure 18 near here

The 1951-1955 period is instructive with regard to local and statewide 
patterns. The cluster of 24 events in BF shown in Table 2A during this period 
represents a unique sequence both temporally and spatially (an idealized 
foreshock-aftershock sequence associated with the 1952 Kern County event). 
But notice also the cluster of 33 events in the CN subregion. Some of these 
occurred during the 1954 Fallen, NV earthquake sequence (two of the three 
large events shown for CN were part of this sequence), but many of the other 
events during 1954 were widely separated geographically. Thus, there was a 
major difference between the 1952 and 1954 flurries of counts in Table 2A in 
that the 1952 events were strongly localized whereas the 1954 events occurred 
throughout the state.

One interpretation of these effects (the frequency-magnitude variations in 
time and the clustering in space) is physically analogous to the charging of a 
leaky reservoir or capacitor. A general shift in earthquake counts and 
moments from northern to southern California with time is recorded in Table 2 
accompanied by increasing frequencies of small to intermediate magnitudes and 
local flurries clustered around the occurrences of large events. That is, . 
these events occurred during a period of pervasively increasing seismicity. 
By contrast, events such as the 1857, 1872, and 1906 earthquakes appear to 
reflect the discharge of stored seismic potential so that regional seismicity 
was suppressed (i.e., somehow this type of event is able to discharge the 
seismic moment within a very large crustal volume that otherwise would be 
expressed more uniformly by high frequencies of smaller events over large 
areas of the state).

The variations of b-values are distinctly different in the above modes; 
apparently, a change in statewide patterns toward either higher or lower 
b-value trends may be premonitory to a large earthquake. Distinctions, 
however, may be aided by the development of better evidence concerning the 
completeness of seismic catalogs in the fractal context. From the linguistic 
point-of-view illustrated in Figures 1 through 3, if the 1857 and 1906 events 
along the San Andreas are considered to represent a dominant theme, then the 
waxing seismic mode with local clustering of events associated with other 
fault sets is analogous to subthemes or topical asides during a conversation 
focused on the dominant theme (e.g., the making of a major point during a 
conversation is often accompanied by a pause during which the "impact soaks 
in"; by contrast, statements that are not quite as profound can occur without 
interrupting an increasingly animated exchange).
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MULTIFRACTAL ARRAYS AND COMPLETENESS OF SEISMIC DATA

An improvement on the significance of b-value variations might be made in 
terms of plots of fractal dimensions such as that shown in Figure 9. It was 
shown above that q = 4/3 represents a scaling exponent that gives approximate 
correspondences among D*s , Ds , and Df (fractal dimensions based 
respectively on seismically defined lengths from magnitudes, seismically 
defined D from b- and c-values, and geologically defined fault lengths); a 
fourth fractal set is designated D*f, for L*s recalibrated to L*f , a set 
dimensionally scaled to Lf (see Figure 19B below). For q = 4/3 as the scale 
factor, plots of log^0L*s vs. log10 (NL*s ) for eight composite 
surbregions of Figure 15 are shown in Figure 19. Each of the diagrams has two
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or more dominant fractal trends: one is the zero-set common to all plots 
regardless of logarithmic base. Others represent subtrends up to a maximum 
that depends on the logarithmic base. In Figure 19B the maximum 
characteristic fractal dimension of the set is roughly D*f = 3. Formally 
this would correspond to D*s-values in Figure 19A of about D*s = 10 
because of the factor Iog102 (see Inset in Figure 19B that gives conversions 
at constant values of b). The fact that there are fractal sets in Figure 19A 
at approximate integer values of D*s , including 3, suggests that the arrays 
are crudely invariant under exponential transformations. Said differently, 
the fractal subtrends appear to represent a wide range of geometric 
progressions, possibly including values exceeding the topologic limit DT = 3 
(the latter correspond to a phase space with more than three degrees of 
freedom; Shaw and Gartner (1986) discuss time as a fourth dimension).

The elongations of the overall arrays in Figure 19 represent a sort of 
fractally averaged b-value that can be estimated from Figure 19B (Inset). The 
fact that this trend is poorly defined, except where it is dominated by large 
events, emphasizes the fragmentary character of the distributions. Sugregion 
BF+MJ in Figure 19B is instructive in this regard. The mean trend of small 
events, many of which were aftershocks of the large event (the 1952 Kern Co. 
event, M = 7.7), corresponds roughly to an average near b - 1 (note contrast 
with the zero-set corresponding to b = 0).

If one imagines that domains exist within which there are deformation 
states that correspond to occupancies on a lattice or grid of multifractal 
states, then the trends shown in Figure 19 express the completeness or 
incompleteness of seismic expression of these states. If the full range of 
possibilities were available in the sense of self-similar structures near the 
critical conditions for transition from periodic to chaotic behavior (e.g., in 
fluids this is represented by the transition from mode-locked quasiperiodic to 
chaotic turbulence) then a singularity spectrum analogous to Figure 12a would 
be expected (see Halsey and others, 1986). The presence of characteristic 
fractal sets, therefore, suggests that at the space-time scales of these data 
the patterns in Figure 19 may represent incomplete sets and(or) quasiperiodic 
mode-locking. If the latter, the locking may be transient and (or) a function 
of spatial resolution at M = 5 and above. The same plots could be made for 
shorter time scales but the data are too few; it is possible that extending 
these plots to low magnitudes may reveal continuous singularity spectra within 
more specifically delineated spatial domains.

Assuming that the patterns in Figure 19 represent partial filling of a 
fractal grid suggested by the respective trends, then these plots offer
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additional insight concerning potential events that are missing from the 
sets. For example, in Figure 19A, SF and C are incomplete with respect to 
higher frequencies of small to intermediate magnitude events, whereas BJ+IP is 
relatively complete at the lower magnitudes and incomplete at the highest 
potential magnitude (i.e., an event near 7.5 or larger would be needed to fill 
in the lower right corner of the grid). Similarly, LA is "missing" an event 
at about M = 7. The diagram for LA is also instructive because the pre-1900 
and post-1900 data are different with respect to frequency-magnitude patterns 
but show similar fractal subsets (the close weave of the LA plot relates to 
earlier remarks concerning the frequency-magnitude pattern in Figure 15).

The pattern of BF+MJ in Figure 19A is either incomplete in a manner 
similar to SF and C, or is a combination of two sets, as mentioned above, one 
being a low-magnitude set of high fractal dimension, the other being 
represented mainly by the largest event. For example, the more "complete" set 
may primarily represent the geometry of the aftershock sequence of the 1952 
event. If so, BF+MJ is more like OV+SS, both representing the least completed 
fractal arrays in the overall set. According to this interpretation, these 
regions are conspicuous candidates for occurrences of intermediate to large 
earthquakes. The plots in Figure 19B have fractal grid-lines with nodal 
intersections shown at decade values of recurrence times ranging from 0.1 to 
10° years. These plots can be used to estimate recurrence times for any 
assumed distribution of missing events.

Another interesting feature of Figure 19A is the fact that the higher 
values of D*s are roughly the same for E+SH, CN+TC+NS, BJ+IP, and SF, 
whereas they are smaller for C and LA, and larger for BF+MJ. The subset in 
BF+MJ is probably local, as discussed above, so there may be different 
singularity spectra for northern and central to southern California that are 
also functions of more local geographic scales. In this respect, SF is 
geometrically more similar to the "cornerstone" regions than are the other 
subregions of interior California (values of D*s other than zero for OV+SS 
are not determined by the historic data at magnitudes above M = 5).

A value of D*f * 2.4 in Figure 19B would be consistent with Df 
estimated by Shaw and Gartner (1986) for young faults statewide if it were 
assumed that a reduction by one dimensional unit is appropriate to convert 
seismically derived geometries to the epicentral plane (i.e., equivalent to 
DT * 2 as the topologic limit for map data). Some of the steeper partial 
trends may reflect such a correspondence, but most most of the D*f subsets 
have much lower fractal dimensions. This is expectable if the geometries of 
the fault sets are not sampled in a fractally self-similar manner at all 
scales. The rough equivalencies found by Shaw and Gartner (1986) for fault 
fractals and values based on Ds = 3b/c are based on average b-values and are 
generally consistent with the conversions indicated in Figure 19B (Inset); 
that is, Ds is roughly 1.6 x D*f for the same b-value, so the equivalent 
average is D*f = 0.9 for DS = 1.4. This would correspond to a slightly 
positive slope for a general regression line through an aggregate array of the 
data shown in Figure 19B (the elongations of the trends shown seem to be 
consistent with this comparison).

INFORMATION THEORY AND COMPLETENESS OF SEISMIC DATA IN CALIFORNIA

An approach to questions of completeness independent of the concept of 
multifractal arrays can be based on relationships between the variables b, c, 
and Ds = 3b/c expressed in terms of measures of uncertainty and redundancy 
calculated using Eqs. 1 and 2. The latter reduce the frequency distributions 
that give rise to the patterns of Figures 9 and 19 to a single scale of
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measurement related to generalized values of b and c. Whether or not these 
values are characteristic still depends on interpretations of multifractal 
states, but these states are expressed by a model-dependent definition, in 
this case by Ds = 3b/c, rather than by fractal sets. Relations between 
idealized b-values, fractal Ds-values, information U0bs , relative 
uncertainty F, and redundancy R are illustrated in Figure 20. The values are
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calculated from hypothetical log f vs. H plots that are assumed to represent 
constant b-values ranging from 0 to 1.5. Reference fractal dimensions are 
based on the constant value c = 1.5 for illustration (if both b and c were 
assumed to vary between 0 and 3, then the ranges of b, c, and Ds would have 
the same limits; see Figure 12).

Values of Uobs , F, and R are calculated from Eqs. 1 and 2 using 
frequency ranges normalized to unit probability at constant b and for equal 
magnitude intervals of 0.1. The equal-probability reference state in this 
case is based on a set of 33 intervals; i.e., n = 33, U* = Iog2(33). This 
is the state where the liklihood of an event M£ is indistinguishable from 
that of any other event Mj in this range regardless of magnitude. The 
relative uncertainty is F = U0^S/U*, and redundancy is R = (1-F) expressed 
as a percentage.

The relation between Ds and R is shown in Figure 20c. It is not linear 
even in this ideal case. In general there can be a range of R-values for 
nonuniform frequency distributions of the same average b-value, so apparently 
there is the possibility of regimes of variation of Ds with little change in 
R, and vice versa. This is indicated schematically by the sigmoidal line. 
This underscores an earlier observation that the entropy concept applied to 
hierarchical sets of data is relative to a presumed global sequence identified 
by an ordering parameter such as the b-value. Hence where the constant 
b-value represents an average of diverse hierarchies the relation to 
definitions of entropy is nonunique. One can then deal with concepts of local 
entropy states, but this becomes essentially equivalent to dealing with 
concepts of multifractal structures expressed in terms of singularity spectra 
as discussed above.

The largest calculated ideal value of redundancy is about 41 percent, 
which is approaching the fifty percent level said to be characteristic of 
written English (see Shannon and Weaver, 1949). According to Shannon this is 
the property of English that permits the construction of two-dimensional 
crossword puzzles. He also states that three-dimensional puzzles are possible 
at about 33 percent redundancy (Shannon and Weaver, 1949, p. 57). This is so 
because as R decreases the linguistic constraints are less specialized, and 
there are more degrees of freedom in linking words together.

If one attempts to relate the constructional dimensions of crossword 
puzzles to the relations of Figure 20, according to the above statements, 
there is apparently an inverse relationship between them and fractal 
dimensions expressed by constant b-value hierarchies. This can be visualized 
by assuming that a column-and-row puzzle (i.e., a two-dimensional puzzle) taps 
a fractal information source set arbitrarily at a particular fractal 
dimension, say D = 3. This choice expresses an assumed maximum degree of 
freedom for a reservoir from which to choose suitable words. It is like 
taking a volume-filling information set (in the sense of word-size 
distributions analogous to the seismic case discussed earlier) and projecting 
combinations onto a square matrix in a manner that weaves them together.

This convention defines a dimensional set R = 50 (Shannon's conditional
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statement), D^ = 3, and Dp = 2, where the subscript i refers to the 
information context as in Figure 20, and subscript p refers to the 
hypothetical dimension of crossword puzzles. By this reasoning, an 
area-filling information set would project onto a cubic matrix (R^ = 33, 
D^ = 2, Dp = 3). That is, if Shannon is right about lower redundancy and 
higher puzzle dimension, then the R vs. D relation of Figure 20 indicates that 
the redundancy and information fractal dimension decrease as the puzzle 
dimension increases. Consequently, linear and point-like information sets 
would require puzzle hypercubes tending to infinite dimensionality at the 
limit defined by the pair (R^ =0, D^ = 0). In this limit any conceivable 
combination of words can be used, so the concept of a puzzle has been lost in 
the process; that is, the idea of fitting special words together has vanished 
along with the redundancy and fractal dimension.

If redundancy were to increase beyond R^ = 50, then the possibilities 
for choosing words would have to be ordered in more than three information 
dimensions (e.g., by specifying sequences in time and space). In puzzle 
space, combinations would have to be restricted to less-than-square arrays, to 
linear arrays (Dp =1) and finally to a condition where no sequences are 
possible at all (e.g., at R^ = 100 percent there is only one word of unit 
probability, so there are no possible word combinations). According to Figure 
20, such a case would have no physically defined information dimension, and 
the concept of a puzzle again becomes meaningless.

The dimensional transformation that occurs with puzzles resembles the 
introductory comments regarding the contrast between the redundancy of optical 
receptors as a spatial array and the redundancy of neural perceptivity of 
coded color patterns. It is also analogous to the contrast already discussed 
between the spatial redundancies of fault patterns vis a vis the redundancies 
of earthquake distributions. It is interesting that the realizable range of 
seismic fractal dimensions in Figure 20 corresponds roughly to the range of 
realizable crossword puzzle constructions (i.e., seismic puzzles are analogous 
to crossword puzzles constructed in a puzzle space somewhere between two and 
three dimensions). This reinforces an earlier conjecture that if statistical 
properties of seismic frequencies were to resemble those of language, then 
there is some optimism for believing that we could solve seismic puzzles as 
well as we can solve word puzzles. To do so, however, requires that the 
seismic "dictionary" is as complete as a language dictionary in identifying 
repertoires of related words.

The concept of a seismic dictionary is considerably more involved than 
that of a seimic catalog, because it implies knowledge of relationships 
between events (words) of different types. This knowledge is represented 
statistically by such things as multifractal sets and singularity spectra 
illustrated in Figures 9, 12, and 19. Therefore, evaluations should be 
referred to a global catalog, and data limited to an area such as California 
are only suggestive of the available repertoire. With this caveate, however, 
we can examine relations between observed redundancy structures relative to 
the previously illustrated fractal structures.

Calculations of uncertainties and redundancies were made for the observed 
seismic frequencies in the eight subregions of Figure 14 as well as in the 
total California data set using the above procedures (i.e., Eqs. 1 and 2 were 
applied to the data as described below). Results are listed in Table 3 for 
different time intervals on three assumptions, where the corresponding 
redundancies are labeled R^, R£, and R%. In each case the
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Table 3 near here

frequency data are normalized to unit probability. Column (1) uses the 
observed frequencies of Figures 5 and 15 and refers F^ and R^ to the 
reference uncertainty U* = Iog2(n) for n = 33 as in Figure 20 (n = 33 means 
that the allowed number of magnitude symbols is limited to 33, in this case 
starting with M - 5 and ending at M = 8.2 at intervals of 0.1). Column (2) 
uses the observed frequencies, but F£ and R£ are based on U* calculated 
from tne actual number of different magnitude values in the record (at the 
magnitude.resolution of 0.1) rather than basing them on the maximum allowed 
number n = 33. This is done to illustrate the effect of gaps in the record; 
for example, there are only two values of magnitude shown for BJ+IP and one 
for BF+MJ in Figure 15 during the pre-1900 time interval. Gaps reflect either 
the incompleteness of a continuous record, or conceivably that some magnitudes 
do not occur for structural reasons (e.g., if all earthquakes were of the 
maximum moment type and there was a limited repertoire of fault lengths for 
characteristic earthquakes, then the spectrum of magnitudes would also be 
limited). In Column (2), therefore, values of R£ represent a variable 
equal-probability limit where n can range from 1 to 33. Column (3) assumes 
that each of the observed magnitudes has the same probability and calculates 
F3 and R$ relative to the maximum n = 33 as in R^. This represents a 
situation where magnitude resolution is assumed to be good but where the 
earthquake counts are so poorly known that the incidence of any magnitude 
value can not be distinguished from that of any other (the simplistic extreme 
is where ignorance is so great in a region that it isn't known whether the 
next earthquake is likely to be a big one or a little one).

Relationships between the R-values of Table 3 are functions of the 
incompleteness of the seismic catalog whether that occurs from sampling 
deficiencies or from events that are structurally disallowed. Such 
alternatives indicate some of the problems with assumed reference states and 
maximum entropy models. It might be thought that Column (2) is the best 
estimate of redundancy because it is normalized to the actual magnitude values 
recorded. This could be true if a steady state were represented by clustering 
of events at magnitude intervals greater than 0.1. However, a spuriously high 
redundancy will be recorded if there are few magnitude values and the data 
gaps are not characteristic. In that case the equal-probability redundancy 
R3 can approach R^ because both are referred to n = 33 and the mean 
logarithmic probability is relatively small on either basis.

If clustering of magnitude intervals is sufficiently weak that there are 
no gaps at a level of 0.1 resolution in M for a sufficiently long record, then 
Table 3 provides some criteria by which to evaluate completeness. In that 
case, F3 = 1 and R3 = 0, so (R^-R3> = R^. By the same token R^ 
would be equal to R2 , so (R1-R2 ) =0. In other words, in a complete 
catalog judged on this basis, Columns (3) and (A) would all be zeroes, and 
Column (5) would be the same as Column (1). This agrees with intuitive 
interpretation of Figures 5 and 15 in that the 1900-1982, and 1800-1982 
intervals for the total data set in California (Region "ALL" in Table 3) come 
closest to satisfying these conditions. The 1979-1982 data set including 
magnitudes down to M = 4 is of approximately the same completeness by these 
criteria, whereas the 1975-1979 set is far from complete including the lower 
magnitudes. This tends to confirm earlier remarks that short-term 
fluctuations in b-values are important in the interpretation of teeter-totter 
oscillations about a steady state. It also suggests that the average 
redundancy for the more complete data sets of Table 3 are in the neighborhood 
of 25 to 30 percent on a basis equivalent to Figure 20 (roughly the
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three-dimensional puzzle limit discussed above). This corresponds to mean 
values somewhat smaller than b = 1 and Ds = 2, respectively, in Figure 20. 
The high values of other entries in Columns (3) and (4), and low values in 
Column (5) in Table 3, however, indicate strong departures from the same 
steady-state assumption.

Incompleteness apparently reflects a lack of sufficient information to 
adequately evaluate details of the possible oscillatory ranges of Os and b 
as illustrated for the composite data in Figures 9, 12, and 19, Therefore, 
predictability depends on such information in addition to the average values 
of parameters such as b, Ds , and R. This suggests, as concluded earlier, 
that the details of such multifractal variations may be more revealing when 
they are extended to lower magnitudes. In lieu of more extensive data sets, 
concepts of completeness can also be examined in terms of assumptions 
concerning such things as asperity and barrier counts. An idealized model is 
outlined in the next section to suggest how this approach to calculations of 
redundancies might be brought into alignment with the fractal data of Figures 
9, 12, and 19.

REDUNDANCIES OF AN IDEALIZED BOND-COUNTING MODEL

Number frequencies based on the same data as the temporal frequencies can 
be counted differently by assuming that a given magnitude represents a 
multiple of a constant exponential unit of magnitude, which I will call unit 
bond strength. For example, if M = 5 is arbitrarily chosen to represent unit 
bond strength, then M = 6 is made up of ten units, and so on. This is 
equivalent to saying that a set of events represents the partitioning of these 
hypothetical "bonds", each defined as having the same strength (e.g., if 
seismic energy were represented as a function directly proportional to the 
exponential of magnitude, then these hypothetical bonds would correspond by 
definition to equal energy quanta in the rupture process regardless of how the 
energy function related to geometric and mechanical properties). This is also 
equivalent to saying that the unit bond is proportional to a standard unit of 
length L*0 (taken literally, a given rupture event would represent a 
multiple of L*o , each length increment making an equal contribution to the 
seismic energy).

Relative to M = 5 as the reference state, one event per 0.1 magnitude 
interval corresponds to a partitioning of from 1 to 1585 equal-energy 
"bond-ruptures" between M = 5 and M = 8.2. The bond-count can be written in 
the same form as the Gutenberg-Richter relation, as follows:

log NB = Ac -I- BCM (8)

where Ng is the number of bonds, Bc is the (positive) coefficient of 
proportionality, and AC is a constant (the + sign is because Ng increases 
with M). In the idealized case Bc is equivalent to the Gutenberg-Richter 
b-value with the conversion Bc = (1-b). For an arbitrary point of 
normalization at log f = -3.2 at M = 8.2, the relation of Ng and f is given 
by log Ng = log f -f 3.2 (see Figure 21 below).

This basis inverts the probability distribution of bond-counts relative to 
that defined in terms of earthquake events without otherwise changing the form 
of the distribution. Physically, a large event represents many bond-counts, 
while a small event represents few. The rationale for such a convention can 
be made in terms of energy partitioning. For example, if the earth's crust 
were viewed as a network of bonds of approximately the same strengths, and 
these bonds were being broken individually and in contiguous groups at certain
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intervals of time, we would want to know the numbers of breaks within 
stipulated volume domains both at short times and averaged over long times. 
It might also be assumed that for reasons of structural configurations (bond 
angles, etc), bond breaking is clustered in some regions and diffusely 
distributed in others. If this behavior were characteristic, the bond-counts 
per volume domain would also be characteristic in the same sense as are events 
in recurrence curves. However, the accounting of transient behavior would 
have a different probabilistic implication in that a single large event that 
normally represents a low event probability now represents a very large 
bond-count probability.

This idealized model resembles asperity and barrier concepts, but it 
relates more closely to the kinetic fracture model of Termonia and Meakin 
(1986). There crack distributions are expressed in terms of fractal 
dimensional sets that resemble those of fault dendrites. This relation will 
be cited later in discussion of a kinematic linkage model of California 
earthquakes. In the present context a bond-count model illustrates the effect 
of a different choice of reference states on the calculation of informational 
redundancies.

Relations between log f and log NB are summarized in Figure 21 for 
b-values ranging from 0 to 1.5. The probability distribution is

Figure 21 near here

identical for the curves of event counts at b = 1 (Bc =0) and curves of 
bond counts at Bc = 1 (b = 0). Note that the relative changes of counts 
with changes in b-values are different than those in Figure 20, as are the 
definitions of equal-probability distributions. On either basis, equal 
probability refers to constant frequencies at each magnitude; e.g., the same 
numbers of events or of bond counts occur for each and every magnitude 
interval. Normalized to a single event at M = 8.2, log NB = 3.2 and the 
bond-count equal-probability basis has 1585 bond ruptures at each magnitude 
between 5 and 8.2. For the bond-count model this occurs by definition at the 
value Bc = 0 (b = 1); the equal-probability event basis occurs by definition 
at b = 0 (Bc = 1).

Although the equal-probability definition is the same in each case, it is 
physically quite different. For example, if the equal-probability event basis 
is represented by one event at each magnitude, then there is one bond count at 
M = 5 increasing to 1585 bond counts at M = 8.2. As a consequence, at low 
b-values, or for disproportionate numbers of large events, the total 
bond-rupture count will be very large and highly biased toward the larger 
magnitudes compared to the total event count. In other words, bond-count 
probabilities for large events are greatly enhanced, and this will be 
reflected in the corresponding calculations of information parameters U, F, 
and R. In order to distinguish these conventions, I indicate the event basis 
by the symbols Ug, Fg, Rg, and the bond-count basis by UB , FB , and 
RB .

The relations between RB , b, and DS , analogous to Figure 20c, are 
shown in Figure 22. Also, the data of Table 3 for California event 
frequencies by subregion and time interval are recalculated on the bond-count 
basis in Table A. The main difference between Figures 20c and 22 is the fact

Figure 22 and Table A near here

that there is now an extremum in the relation between Ds and RB for 
monotonically increasing b-values. The highest b-value still corresponds to
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the fractal value Ds * 3, but the greatest redundancy, RB , occurs at b * 0 
(this is because b = 0 gives the largest range of bond counts, hence the 
steepest variation in probabilities). Maximum uncertainty (RB = 0) occurs 
at b = 1, the bond-count equal-probability condition. This coincides with 
Ds = 2 for the definition Ds = 3b/c and c - 1.5. The simplest physical 
interpretation is that the most uncertain bond-count distribution is the 
area-filling one. That is, b =s 1, Ds = 2 is the maximum entropy reference 
state for the idealized bond-count model.

The data from Figure 22 and Table 4 are plotted in Figure 23 in terms of 
relative uncertainties FB = 1-Rg. This diagram emphasizes the inversion

Figure 23 near here

of redundancies relative to event counts and provides an alternative way to 
express measures of completeness. For example, if b = 1 happened to represent 
the steady state, then the steady state would coincide with the bond-count 
maximum uncertainty. This is the only state in the bond-count basis that has 
a unique relation to fractal dimension, Ds = 2 (i.e., the fractal dimension 
is not single-valued at other values of FB and Rg). At greater bond-count 
redundancies (i.e., for frequency distributions that give net uncertainties 
below the maximum of Figure 23) more than a single b-value and fractal 
dimension are required to describe the geometry of the set. This plot, then, 
is another way to illustrate earlier conclusions concerning the existence of 
oscillations between low and high fractal dimensions within a set of frequency 
data, even though the set as a whole may be described by a regression relation 
of constant b-value (alternatively, Figure 23 can be viewed as a modified form 
of singularity spectrum analogous to Figure 12a).

A novel feature of Figure 23 is that the concept of completeness is 
expressed in a manner analogous to the filling of an "uncertainty reservoir". 
There is no requirement that a complete steady-state distribution must 
correspond to the maximum at b = 1, but it is evident that the more complete 
data sets for California earthquakes are closest to the maximum-entropy 
bond-count state at Fg = 1. It is emphasized, however, that the position of 
the maximum is an artifact of the convention Ds = 3b/c as well as of the 
bond-count model. Obviously other singularity curves would be possible for 
redefinitions of the fault segmentation model of Aki (1981) and(or) 
redefinitions of the bond-strength model. This might be a useful way to 
"tune" the relationships among FB , Ds , and b relative to constraints on 
fractal and topologic limits. For example, there are direct relationships 
between NB , M, and the q-c relations in Figure 9 and Table 1 which can be 
used to test self-consistent bond-count distributions. However, these 
relations are not explored farther in the present paper. Instead Figure 23 is 
used primarily to summarize the relative completeness of different data sets.

It has already been observed that frequency distributions for the 
long-term data at magnitudes greater than 5 are similar to the short-term data 
for magnitudes greater than 4 from 1979 to 1982. This might suggest that a 
fractal oscillation in the neigborhood of b-values between 0.5 and 1.5 (the 
limiting range in Figure 23) is characteristic of the more complete data sets 
in California over differing time and magnitude ranges. The corresponding 
range of Ds is from about 1 to 3; these ranges of fractal and b-value 
variations are also similar to those found by Shaw and Gartner (1986) for 
comparisons of paleoseismicity in the U.S. and Japan.

These comparisons of fractal and b-value ranges in Figure 23 and Table 4 
for California illustrate that most of the subregions fall far below the range 
of bond-count uncertainties characteristic of the more complete data sets,
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implying variations of fractal dimensions exceeding the self-consistent range 
of the idealized model. This is another way of characterizing the transient 
frequency oscillations of the teeter-totter type sketched in Figure 4 and 
discussed in terms of frequency-magnitude diagrams. In the bond-count 
context, extremely low b-values and high Rg alternate with extremely high 
b-values and high Rg, rising and falling relative to the maximum entropy 
state (RB =0, b = 1); this is the fulcrum of the teeter-totter effect, 
represented here by the extremum of Figure 22. In agreement with earlier 
observations, the effect is greatest in Figure 23 for those subregions and 
time intervals associated with the largest earthquakes.

A SPACE-TIME FLOW MODEL OF SEISMICITY IN CALIFORNIA

The discussion of frequency distributions is concluded by examining the 
geographic variations in time of the events considered here, recognizing that 
a similar treatment is needed for the far larger data base at magnitudes below 
M = 5. To illustrate patterns, a set of linkage maps is constructed that 
represents the data at intervals of 5 years relative to the continuity of 
tielines between the arbitrary benchmarks in Figure 14. If an event of M - 5 
or larger occurs in the subregion between two benchmarks, then that imaginary 
link is considered to be "broken". In this way a kinematic model of linkage 
breaks is constructed, as shown in Figure 24. Obviously, if smaller

Figure 24 near here

magnitudes were considered at the same map scale, all of the imaginary 
linkages would be broken and the maps would be blank. Therefore there is a 
relation between the geometric scale of the subregions, event magnitudes, and 
the patterns of mappable progressions of intermittent disappearances and 
reappearances of linkages. Although there are no dynamic parameters in this 
portrayal, if size scales are adjusted appropriately, then such maps show 
patterns that resemble the evolution of bond ruptures in experiments and 
dynamic s imulat ions.

This idea resembles the bond-count model of the previous section, but it 
does not discriminate linkages according to strengths greater than a threshold 
value equivalent to M * 5 (i.e., any event in the data set occurring between 
contiguous benchmarks is considered a break). In order to bring the two 
concepts together with regard to geographic distributions of bond counts, the 
maps would have to be constructed according to a hierarchy of increasing 
threshold strengths. Such a construction should be informative as to 
kinematic motions of linkage breaks if it were based on a finer geograhic grid 
using data for events smaller than M = 5. For example, sets of linkage maps 
could be constructed for all breaks at magnitude intervals of 0.5 starting 
from M s 2 or lower. As the magnitude threshold increases, the map patterns 
of linkage breaks would converge toward the loci of the larger events. The 
patterns described below offer heuristic examples of this approach.

A computer simulation based on a kinetic fracture model with similar 
kinematic implications is given by Termonia and Meakin (1986). This study is 
of interest because it measures the fractal dimensions of the areas of 
coalescing ruptures in a way comparable to the fault dendrite fractal 
measurements of Shaw and Gartner (1986). The patterns of Figure 24 are too 
crude to permit such measurements, but the idea is consistent with dimensional 
scaling over different magnitude ranges. Given patterns at different scales a 
fractal linkage dimension could be evaluated in an analogous way. This sort 
of measurement would provide a direct relationship between geographic fractal
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dimensions and the seismic fractal sets illustrated here. Combined with 
measurements of fractal dimensions of fault dendrites at comparable map 
scales, data would then be available to calibrate relationships between 
fractal sets defined on several different bases.

For example, if the patterns of Figure 24 were assumed to resemble those 
shown by Termonia and Meakin (1986), then the fractal dimension of active 
faults in California would be similar to their measurements. They give a 
fractal dimension of about 1.3 for such an array relative to the topologic 
limit DT = 2. This is the approximate value estimated by Shaw and Gartner 
(1986) for the overall pattern of young faults in California. Thus there may 
be a reasonably close correspondence between ranges of fractal measurements 
based on seismic data, linkage models, and fault dendrites.

The space-time behavior of California seismicity shown in Figure 24 may be 
of interest from the forecasting viewpoint. In addition to the post-1926 
"loosening up" of frequency-magnitude distributions previously noted (Figures 
15 through 18) there is a suggestion that linkage breaks in central portions 
of California evolved by encroachment from the "cornerstone" subregions of 
Figures 2 and 3. In several instances the activation of events in coastal 
regions appears to have occurred by coalescence of propagating deformations 
that emanated from subregions E and BJ (representing loci of Plate Tectonic 
activity off the northwestern coast and in the Gulf of California). This 
behavior describes precursive histories of the 1857 and 1906 San Andreas 
breaks. Analogously, the 1872 Owens Valley event responded to coalescence of 
linkage breaks that emanated from E and CN (the offshore California and 
northwest Nevada cornerstones).

Given these suggestions of systematic evolution, future occurrences of 
similar events might be anticipated by watching the progressions of linkage 
patterns defined in terms of subregions an order of magnitude smaller and 
based on events greater than, say, magnitude 3 or 4. Current patterns of 
behavior described by Hill and others (1985) in the vicinity of the White 
Mountains, California may be an example of this effect converging toward the 
locus of a major event analogous to the 1872 Owens Valley event (see 
discussion of Figure 19).

Patterns of migrating activity are consistent with inferences concerning 
dendritic interactions over large geographic domains. They add weight to the 
implication that monitoring activities need to be expanded in range and 
simultaneously at reduced length scales to include smaller subregions than 
those considered here. Such a basis is required not only to evaluate the 
time-dependence of b-values and fractal dimensions discussed above, but also 
to permit the monitoring of deformation waves and seismic subcycles that wax 
and wane over time scales measured in decades.

A schematic summary of space-time evolution is summarized in Figure 25. 
The temporal continuity of each linkage is indicated in Figure 25a for the

Figure 25 near here

24 arbitrary links defined in Figure 14. The paragenetic sequence of broken 
lines is shown according to ascending number but could be rearranged according 
to different geographic scenarios using the information in Figure 24. Tests 
of alternative sequences, however, did not change the general patterns of 
convergences, so the numerical sequence in Figure 14 was retained (to 
correlate these sequences more specifically with geography they can be 
cross-referenced with Figure 14). Domains of persistently broken linkages are 
connected in Figure 25b; events greater than about M = 7 are also shown on 
this diagram by date and general position in the sequence.
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The relative positions of continuously interrupted linkages and large 
events in Figure 25b suggest that these events tend to occur in the vicinities 
of space-time convergences of linkage-breaking events. This is another way to 
view patterns of transiently migrating deformations suggested by Figure 24. 
Figure 25c gives a schematic generalization of this idea, where the arrows 
show hypothetical trajectories of flow of seismic moment. Localities shown at 
the right margin represent subregions where future activity would be expected 
on the basis of such flow patterns (Note: At the time of this writing several 
additional events have occurred in the vicinites marked "Los Angeles-San 
Diego", "South Central", and "E. Sierra-Nevada"; the White Mountain seismic 
gap is within the latter vicinity. Nto events have occurred in north central 
California at M = 5 and above, but there has been low-level activity in the 
region between the northern Sierras and Eureka, and Mount Lassen has been 
experiencing long-period seismicity of types seen in active volcanic 
terrains).

From the perspective of fractal sets and information theory the kinematic 
patterns in Figure 25c can be interpreted according to concepts of convective 
motions in fluids. As demonstrated by the work of Halsey and others (1986) 
the concept of singularity spectra and fractal interpretations of Figures 9, 
12, 19, and 23 can be related to thermodynamic as well as informational 
concepts of entropy production. According to the discussion given earlier 
here, the point-like sets which represent seismic gaps, and so on, act in an 
information sense something like a structural glue (analogous to gluons in 
particle physics and function words in language). This view is generally 
consistent with the patterns in Figure 25c. The large events identify the 
structural "backbone" of the multifractal sets, in accord with the high 
redundancies associated with such events in the bond-count model of Figure 
23. At the same time these events represent both sources and sinks of energy 
dissipation and information flow according to ideas of phasic reentrant 
signaling discussed early in the paper (Edelman, 1978). They are information 
sources in the sense that they are loci of high uncertainty on the event basis 
of Table 3, Column (2) accompanied by low values of D and b; i. e., they feed 
information to subsequent states of neighboring regions. And they are 
information sinks in the sense that they occupy centroids of vicinities where 
previously generated information is flowing in the directions of the arrows in 
Figure 25c; i.e., they are loci of focused dissipation and high bond-count 
probabilities that correlate with low uncertainty values in Figure 23 and high 
bond-count redundancies in Table A.

Large events in the space-time plot resemble whirlpools in a river that 
contains numerous islets (domains of unbroken linkages). Such structures are 
spatially redundant in that they are invariant sites in the channel geometry 
and represent high concentrations of vortical kinetic energy (analogous to 
high concentrations of bond counts and energy dissipation); in this respect 
they may also have high localized fractal dimensions, analogous to the right 
side of redundant distributions in Figure 23. At the same time, however, the 
distribution of whirlpool sites can also be of low fractal dimension and high 
informational uncertainty from the point-of-view of the overall geometry of 
flow in the river within which they are imbedded. These properties of 
simultaneous redundancy and uncertainty, depending on viewpoint, appear to be 
common to language, turbulent fluid motion, and the earthquake process.

DISCUSSION: CONJECTURES ON CORRELATIONS WITH GLOBAL SEISMIC MOMENT AND WITH 
GLOBAL MAGMA TRANSPORT

Given the suggestions of coordination over large geographic areas in
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western North America, it is of importance to consider relations to phenomena 
on the global scale. Such correlations might be approached in terms of the 
concept of propagating deformation waves considered in the light of time 
variations of global moment. In examining Kanamori's (1978) compilation of 
the world's great post-1900 earthquakes (those with event moments greater than 
10^8 dyne cm, and usually with magnitudes greater than Ms = 8) it is 
striking that 12 of the 79 events listed by him (his Figure 4) occurred 
between 1904 and 1907. Several of these were distributed along the western 
margin of North and South America. This temporal concentration of events is 
even more interesting in that it was globally localized within a narrow swath 
that involves many plate boundaries of different types. These coincidences 
tend to be forgotten or to be overshadowed by the fact that the peak of 
Kanamori's moment distribution occurred between 1950 and 1970. This was a 
time when there was only one event in California that came anywhere near the 
magnitude of the 1906 event (the 1952 Kern County event of Ms = 7.7 in 
southern California, subregion BF).

Seen in another light, however, the post-1926 strain relaxation effect 
discussed earlier suggests the possibility that the absence of large events at 
a time of peak global moment might be expectable. If the strain states in 
California during the period 1950-1970 had been what they were during the 
1850-1900 period, then it seems very likely that the probability of great 
earthquakes would have been very high during the time of peak global moment. 
As it is we have had a reprieve from that eventuality until the state-wide 
frequency pattern has again passed through a general maximum and falls into 
the pattern of high event uncertainty and high bond-count redundancy that was 
conspicuous during the late nineteenth and early twentieth centuries.

In order to illustrate these contrasts, the moment rate based on 5-year 
averages for California is shown in Figure 26 compared with the global curve 
from Kanamori (1978). Allowing for some phase shift, there is a suggestion

Figure 26 near here

of correlation (also compare with the curve in Figure 26 showing estimates of 
eruptive volcanic energy from Kanamori, 1983, Figure 5). These relations 
support a conjecture that concepts of monitoring already discussed may be 
enhanced by combining them with data on global moment flow. A physical 
connection is provided by the idea that patterns of moment flow in the 
Circumpacific seismic zones are signaled by the cornerstone regions of Figures 
2, 3, and 14. According to this interpretation the seismic responses of 
interior portions of California result from areally more dispersed processes 
of crust-mantle interactions than are described by models of simple slip along 
linear zones taken to define the plate margin.

Updates of the compilation of global moment are given in Kanamori (1983, 
1986). There have been 18 post-1970 events with Ms of about 8 or higher 
which occurred in Central and South America and in the western Pacific (Japan, 
Philippines, Indonesia). This does not include the Ms = 8.1 Michoacan, 
Mexico event of 19 Septhember, 1985 that devastated Mexico City (Anderson, and 
others, 1986). The average event rate since 1970 has been about one great 
earthquake per year. For comparison there were about three per year during 
the 1903-1907 interval and as high as two per year during other 5-year 
intervals. The rate during the mid-1980's appears to be on an upswing. It is 
suggested that a pattern of high global rates of great earthquakes 
concentrated along coordinated portions of contiguous Circumpaciic plate 
margins is more important to the incidence of major earthquakes in California 
than is the amplitude of the maximum value of global moment (e.g., as existed
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during the 1950-1970 period). This conjecture is consistent with a scenario 
where deformation waves propagate into central portions of the state from the 
cornerstone regions, as illustrated in Figures 24 and 25.

There is an analogous suggestion of an upswing in volcanic energy 
subsequent to the events cited in the compilation by Kanamori (1983) shown in 
Figure 26. This is manifested, in addition to the activity at Mount St. 
Helens, WA beginning with the May 18, 1980 eruption, by evidence of magmatic 
intrusion beneath Long Valley, CA (see Hill and others, 1985), and evidence of 
increasing uplift rates at Yellowstone, WY (see Smith and Braile, 1984). It 
is also conspicuous that Kilauea, HI, has been in a pattern of higher 
transport and eruption rates since the beginning of 1983 than any previously 
recorded (see discussion of B'igure 6 in Shaw, in press). Numerous other 
volcanic regions of the Pacific and Circumpacific apparently are also close to 
unstable eruptive states. Thus, many phenomena point to the present time as 
one of a high and possibly increasing rate of global magmatic and seismic 
activity.

Moments per five-year interval from Table 2 are broken down by vicinity in 
Figure 27 in three different ways: (1) In Figure 27a the total data set is 
divided into two parts of roughly comparable areas; the northern part is 
defined by subregions E, SH, SF, NS, TC, CN, and C, and the southern part by 
subregions SS, 0V, BF, MJ, LA, and BJ; (2) Figure 27b shows a more localized 
two-part comparison influenced by the central to northern San Andreas and the 
Garlock-southern San Andreas systems, represented respectively by (SF+C) and 
(LA+BF); (3) In Figure 27c the total data set is subdivided into five major 
regions within which there is likely to be coupled tectonic activity.

Figure 27 near here

The comparisons in Figure 27 combined with the patterns of Figures 24 and 
25 support the conclusion that there is a high degree of regional coordination 
of strain states governing seismicity within California. During the latest 
hundred years highs and lows of seismic moment are roughly in phase between 
northern and southern California, possibly with inversely related amplitudes. 
During the 1950-1955 period four of the five major regions of Figure 27c 
represent moment maxima, notably excluding the southernmost region, and the 
1979-1982 period represents an upward trend in moments in all five regions. 
Moment fluctuations in all these regions have similarities during the 20th 
century.

An interesting pattern of relative fluctuations of global volcanic energy 
and moment rates in California is shown by the curves in Figure 26. Highs in 
eruptive energy correspond to lows in moment rates during the latest hundred 
years. Although the compilation of data used by Kanamri (1983) to document 
volcanic energy dissipation is not a complete description of volcanic rates, 
the inverse correlation may not. be totally coincidental. Shaw (1980) pointed 
out that there are resemblances between volume rates of global magma transport 
and global seismic moments. Including the cornerstone regions E, TC+CN, and 
BJ+IP, California is subjected to a nearly pervasive potential for magmatic 
injections from the mantle. In some instances, such as the activity in Hawaii 
described by Shaw (1980) and in the Long Valley Caldera beginning in May, 1980 
(coincidently just after the Mount St. Helens, WA eruption), a correlation of 
high magma transport rates and high seismic moment rates is expected. On the 
global basis, however, there will also be an effect analogous to earlier 
descriptions of deviations from long-term steady states (the teeter-totter 
effect illustrated schematically in Figure 4).

For example, if globally high magmatic rates correlate with globally high
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seismic moment rates, and if magmatic rates fluctuate along the Circumpacific 
plate margins, then both the local seismic moment rate and the local magma 
supply rate to California and vicinity can lag the global rates. In this 
respect magma transport acts to signal the interaction of mantle and crust 
that governs the distribution of crustal deformation states. This is proposed 
as one reason why the cornerstone regions of the present report seem to behave 
similarly and to act as indicators of seismic activity interior to 
California. The next few decades represent a crucial period during which to 
monitor possible global balances of this type.

In conclusion, some combination of the following five general factors 
seems crucial to the incidence of large earthquakes in California: (1) There 
is a rapid increase in global moment over a time interval of a few years (an 
event in California could represent the onset of any global fluctuation, but 
typically it would be expected to occur somewhere during the interval of a 
global maximum). (2) There is a period of increasing frequencies of large 
events along contiguous portions of the western margins of the Americas, 
perhaps involving two or more per year somewhere along an arc extending from 
the Aleutians to southern South America. (3) There is a premonitory pattern 
of numerous "unbroken linkages" at a magnitude level of 5 and above prevalent 
across California in the context of Figures 24 and 25 persisting for at least 
a few years (this is analogous to the concept of seismic gaps generalized over 
the linkage network of Figure 14). (4) On the basis of event counts there is 
a rapid premonitory drop (see local exceptions noted below) in average 
b-values and fractal Ds-values combined with a high informational 
uncertainty within one or more of the key subregions identified in Figure 14; 
rapid means during a time of the order of a decade (event redundancies are 
likely to be below 10 percent for data collected over a few decades at M = 5 
and above, or over about a decade at M = 4 and above; improved forecasting is 
contingent on similar studies of smaller regions at lower magnitudes). (5) 
Related to the factors in (4) there is a pattern of b-value and Ds-value 
windows oscillating between extremum values with increasing magnitudes, 
ultimately resulting in extreme redundancies calculated on a bond-count basis 
such as that shown in Figures 22 and 23.

According to several of these criteria California has been experiencing 
the ebb tide of a generalized seismic cycle during the mid-twentieth century. 
Accompanying this effect, however, has been a sort of following wave of 
increasing seismic moments and frequencies that have locally culminated in 
large events such as the 1952 Kern County earthquake (see discussion of Table 
2). This can be viewed as a subcycle, or as a phase of the overall seismic 
cycle in which large events occur on the ascending limb of seismic moment 
rates rather than at a maximum moment where the moment rate tends to fall 
abruptly. These projections would suggest that an earthquake as large as an 
1857, 1872, or 1906 event would not be expected before the turn of the 
century. A transition in these patterns, however, appears to be occurring 
about now. If so, the apparent rapidity with which each of the above 
phenomena can change in amplitude, or even in sign, makes such a forecast 
unreliable in the absence of better documentation of all the factors 
mentioned. There is some optimism that extending criteria of multifractal 
analysis and the space-time variations of fractal seismic sets to lower 
magnitudes and smaller subregions will provide a premonitory network the 
patterns of which will be diagnostic for events greater than about M = 7 
within time windows of one or two years over intervals of two or more decades 
into the future.
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FIGURE 1. Schematic illustration of overlapping probability domains analogous 
to repertoires of word probabilities in a conversation among three people, or 
event probabilities in three faulting regions that have similar but not 
identical dynamical properties. The tree-like dendritic patterns indicate the 
effect of interaction on the channeling of information toward themes of common 
interest in the case of language, or toward faults of mutual influence in the 
case of earthquakes. Probabilities are progressively enhanced in regions of 
overlap, so that where there is a three-way overlap all of the subregions 
contribute to the same theme, whether it be a subject of focused conversation 
or a subject of focused seismic activity. Prior to the onset of feedback 
interactions, the probabilities in each subregion were different and totally 
independent except for limitations given by the possible numbers of letters 
and words in language or of the possible numbers of seismic mechanisms in the 
earthquake process. In subsequent diagrams, Circle 1 corresponds to subregion 
E (coastal and offshore northern California near Eureka), Circle 2 to 
subregion BJ (the general area of southernmost Imperial Valley and Baja 
California, including the Gulf of California and areas of convergence with the 
East Pacific Rise), and Circle 3 to subregion CN (the composite area 
consisting of eastern and northeastern California and western and northwestern 
Nevada).
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FIGURE 2. Schematic illustration of how the probability structure of Figure 1 
might be mapped onto the tectonic framework of seismicity in California. 
There is still a three-way interaction of domains characterized by systems of 
deformationally interactive fault dendrites, but now the boundaries of the 
source subregions are open to other interactions at the global scale of Plate 
Tectonics; the probability logic is otherwise the same. Subregion E is 
essentially the Northern California Offshore Zone of Ryall and others (1966), 
CM corresponds roughly to their Ventura-Winnemucca Zone, while trends between 
E and BJ and between CN and BJ correspond to the converging areas between 
their Central and Southern California Zones (see discussion in text).
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FIGURE 3. A more specific version of Figure 2 showing the general 
distribution .of major Quaternary faults traced from the index map of Toppozada 
and others (1978). Each of the subregions E, CM, and BJ is now shown as a 
fold-shaped or prong-shaped area, reflecting the complexity of interactions 
among long-lived features of crustal structure interacting with sources of 
mantle motions (for patterns of active faulting over time spans from the 
historic to roughly 15 Ma, see Howard and others, 1978; Shaw and others, 
1981). Inset A: Historic fault breaks and epicenters, according to Ryall and 
others (1966, Figure 5). Inset B: Tectonic flux map evaluated by Ryall and 
others (1966, Figure 3) using earthquake data; map is modified to show areas 
inscribed within the lowest flux contour in their distribution. The inset map 
provides an independent seismic description of patterns that are assumed here 
to represent the convergence of three broadly interacting mantle-crust sources 
of deformation. See discussions in text, and Wallace (1984).
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FIGURE 4, Schematic frequency-magnitude diagrams illustrating relations 
between steady and transient behaviors of dendritic fault distributions having 
a variety of different bifurcation ratios (see discussion of length orders of 
branch sets in the text): (a) Transient excursions from an assumed steady 
state (heavy solid line) occur proportionally at a constant b-value (dotted 
lines), proportionally at b-values varying relative to a pivotal magnitude 
(heavy dashed lines), or occur disproportionally at variable b-values 
(combinations of the above), (b) Examples of dendrite types; shape and 
bifurcation ratio are theoretically independent variables, but the more 
compressed and elongated the shape the smaller are the lengths and numbers of 
the shorter branches (see exception in f below), (c) Families of independent 
fault dendrites having similar shapes and bifurcation ratios tend to have the 
same b-value; the frequency level is determined by the amount of deformational 
energy supplied to each one (analogous to variable discharge from stream 
dendrites of otherwise similar geometries), (d) Fault dendrites with 
dissimilar shapes and(or) bifurcation ratios tend to have highly dissimilar 
b-values averaged over the respective sets (any of the above can have subsets 
that resemble at a smaller scale the behavior of a different dendrite unless 
the dendritic structure is self-similar at all scales of sizes and rates of 
deformation), (e) Example of partial activations of subsets of a single 
dendrite having a relatively large bifurcation ratio. Depending on how the 
branches of different lengths, and subsegments of branches of different 
lengths, are sampled, the b-value oscillates between lower and higher values 
over different ranges of magnitudes which may or may not be characteristic. 
If characteristic, the oscillatory pattern represents a quasisteady state with 
constant average b-value and with generally constant ranges of alternating 
b-values (i.e., the zigzag line is essentially invariant over times that allow 
all subsets to be represented in the data; see inset of Figure 5, and examples 
illustrated by Shaw and others, 1986). (f) If the activation of subsegments 
of a single fault trace, whether continuously joined end-to-end as in a bamboo 
pole or in discontinuous intervals, influences increased rates of activation 
of longer and longer composite sections in a quasisteady manner, then the 
b-value can be significantly smaller than unity (i.e., the fractal dimension 
can be one or less and the b-value one or less; their relation depends on how 
the mechanisms of faulting are mapped onto the geometries of faulting). 
However, the same can be true for dendrites of compact form analogous to 
stream braiding; see text for discussion, and Shaw and others (1986).
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FIGURE 5. Incremental frequency-magnitude data for pre-1900 (crosses), 
post-1900 up to 1982 (dots), and total historic record 1800-1982 (open 
circles) of seismicity in California and immediate surroundings. The data 
represent all the earthquakes recorded in the following catalogs at magnitudes 
of 5 and above: Real and others (1978), Toppozada and others (1979a,b), 
Sherbume and others (1985). Toppozada and others (1986) give a list of 
earthquakes greater than magnitude 6 restricted to the immediate vicinity of 
California for events to 24 April, 1984; events more recent than 31 October, 
1982 are not included in the figure. Inset: Cumulative recurrence curves for 
seismic zones in the western United States, modified from Ryall and others 
(1966, Figure 7). The regression lines are theirs (solid lines); the 
groupings of points, however, suggest a pattern where intervals of lower 
b-values are intermittently offset by steps or intervals of higher b-values. 
This effect is analogous to the more exaggerated oscillations seen in the 
incremental data; compare with zigzag patterns of frequency-magnitude data 
discussed by Shaw and Gartner (1986). Differences in patterns are explained 
in part by the different plotting bases (incremental or cumulative) and by 
regional effects and the methods of rate normalization used in the study of 
Ryall and others (1966, p. 1120 ff.). See later discussion of Figure 9 and 
seismically derived fractals in the text.
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FIGURE 6. The relation of symbol probabilities to their rank, comparing data 
for large samples of words in English (dots and crosses) with earthquake 
events from Figure 5 normalized to unit probability (open circles). For 
purposes of comparison each magnitude value at intervals of 0.1, as in Figure 
5, constitutes a different word-like symbol and the frequency represents the 
relative numbers of times a given event symbol is used (i.e., an earthquake 
event is analogous to a word in a language statement involving variable rates 
of repetition of different words which also differ in "magnitude"; the most 
obvious measure of word magnitude is size measured in letters per word, but 
other criteria exist based on classifications of word types, etc.). Rank 
refers to the sequence of words or events arranged in order of decreasing 
probability (sequences at constant probability are included but relative rank 
is arbitrary in such intervals). The hyperbolic limit of direct inverse 
proportionality (solid line of slope -1) is often referred to as Zipf's law 
(see text). The trend of the earthquake data is roughly parallel to the 
language trend up to a rank of about 16 and then falls off abruptly. This 
sort of roll-off is a truncation effect that is also characteristic of samples 
of language limited to comparable total numbers of words. It is inferred that 
if an earthquake catalog were as extensive as these language catalogs, the 
probability-rank relations would be essentially indistinguishable (taken by 
itself this is not a strong test of comparable structural organization, as has 
been pointed out on several occasions; see Mandelbrot, 1961, 1965, and Miller 
and Chomsky, 1963). The dots were calculated from word counts in the listing 
of Hanley (1951) representing the 260,430 words in James Joyce's Ulysses, and 
the crosses were obtained similarly from the listing of words occurring 11 
times or more in a 100,000-word sample of ordinary English given by Dewey 
(1923).
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FIGURE 7. Relation between symbol probability and size for word-symbols in 
English (circles and crosses), where size is expressed in letters per word; 
earthquake events are also plotted (dots), where the abscissa value of symbol 
size is taken to be equal to the magnitude (data of Figure 5). One set of 
data for English (circles) was obtained by making counts of the numbers of 
words at integer values of letters per word using the catalog of Hanley 
(1951); the other language set was taken directly from Miller and others 
(1958, Figure 2B). The similarity of these two data sets and the 
probability-rank relations of Figure 6 for three distinctly different samples 
of English usage indicates that statistical distinctions are more subtle than 
are demonstrated by gross probability-rank-size relations. These gross 
similarities are striking in view of the alleged semantic richness of the 
writing style of James Joyce (see Shannon and Weaver, 1949, p. 56) compared to 
the more ordinary forms of written English represented by the other data 
sets.
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FIGURE 8. Diagram illustrating basis for calculating fractional length scales 
(fractal dimensions) for language symbols based on an arbitrary convention for 
expressing symbol size in terms of a length dimension analogous to fault 
rupture lengths related bo earthquake magnitudes (the data base is the Hanley 
set of Figure 7). For this purpose the length scale L* is defined according 
to the function L* = 2m , where m is the word size ("magnitude") in letters 
per word (the range is from 2 to 18 letters). Base two is used to emphasize 
the fact that log L* represents a potential family of length functions 
determined by a size or magnitude quantity; in this form, word magnitude 
measured in letters per word represents binary size units, or bits (a 
two-letter word is a two-bit word, etc.)* If base ten were used, log^QL* 
would be synonymous with letters per word. The ordinate gives total lengths 
expressed in two ways: (1) Circles represent incremental total lengths, where 
H is the number of symbols of length L* (this is the number of words of 
integer letters per word; N is normalized to a total vocabulary of 100,000 
different words in this plot). (2) Crosses represent cumulative total 
lengths, where each, point is the sum of ML* for all sets with lengths equal to 
or greater than L* in the sample. The latter is analogous to measuring the 
total length of all symbols using a yardstick of length L* applied to all 
symbols of equal or greater length (this convention is similar to methods of 
measuring coastline lengths using dividers set at varying lengths; see 
Mandelbrot, 1982; Shaw and Gartner, 1986). The slopes of curves in such 
diagrams are related to fractal dimension according to S = (1-D), where S is 
the slope and D is the fractal dimension (Mandelbrot, 1977, 1982). The 
incremental basis is limited only by the appropriate maximum topologic limits 
(typically 0 to 3), while the cumulative basis is necessarily limited to 
fractal dimensions between 1 and 2 because it is confined to the plane as in 
the coastline problem; see Figure 11 for comparison with data expressed in 
terms of mean word-length, and also for formal relations to a standard Cantor 
set expressed both in terms of the above construction and set theory.
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FIGURE 9. Diagram comparing fractal constructions for an earthquake length 
scale L*s = 2M (open circles, incremental; crosses cumulative) and a 
revised language length scale L*a * = 2m/3 (open squares, incremental; 
pluses, cumulative). Reference slopes and fractal D-values are otherwise 
constructed in the same way as in Figure 8; however, here the total number of 
different words is 29,899 based on the catalog of Hanley (1951). Except for 
multiplicative constants, and the roll-off at small word size reflecting the 
differing statistics of function and content words (see text), the seismic and 
language fractal subsets are similar (i.e., the seismic length scale is 
proportional to the cube root of the alphabetic length scale defined on the 
same logarithmic basis). Note that to compare the seismic set with empirical 
length data expressed to Base 10, length contributions are reduced by the 
factor log^02, resulting in a maximum average slope for the cumulative set 
equivalent to about D - 1; incremental sets may still have subtrends that 
define higher fractal dimensions (see comparisons in Figure 19).
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FIGURE 10. Trends of average word size and event magnitude evaluated at a 
given frequency or frequency range. The frequency scale is that of the 
earthquake compilation of Algermissen and Parkins (1976) for the contiguous 
U.S., where the data points (open circles) represent frequency-magnitude 
values at the ends of their regression intervals (tielines omitted to show 
scatter); heavy dashed lines show averages and ranges of magnitudes for half 
log unit ranges of frequencies. Language data are represented by large and 
small dots and heavy bars. Frequencies of word counts were normalized to a 
range similar to that of the earthquake data by dividing by 400 (e.g., as 
though the counts represented a catalog generated over a 400-year time 
interval). Individual dots indicate average word length per frequency class 
in the word catalogs for the higher frequency values. Data sources are: small 
dots from Dewey (1923), and large dots from Hanley (1951). The heavy 
horizontal bars indicate averages taken over a frequency range indicated by 
the heavy vertical bars using the data of Hanley (1951), where the line 
lengths are estimates of the range of averages for the range of frequencies. 
The lumping was done to shorten the laborious process of extracting numbers 
from the Hanley catalog over small increments of frequency (there is a total 
of 260,430 words in the catalog and 29,899 different words, each word listed 
alphabetically with its count; a condensed tabulation is given only for the 
hundred most frequent words, which are represented here by the large dots). 
Light lines are reference slopes of -1, showing that the average trends 
(b-values of the averages) are somewhat less than unity for both data sets, 
apparently decreasing with decreasing average magnitudes. This roll-off is a 
truncation effect related to under-representation of the smaller words and 
event magnitudes; in the language data this reflects structural distinctions 
between function and content words (see text), but for the earthquake data it 
reflects truncation of the numerical regressions at intensities equivalent to 
about M = 4.3.
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FIGURE 11. Fractal constructions as in Figure 8 but for word length expressed 
in terras of average numbers of letters per word. All data are taken from the 
catalog of Hanley (1951) but are averaged in two different ways. One set 
(dots and crosses) represents the data for averages shown by heavy bars in 
Figure 10. The other set (open circles and triangles) was obtained using the 
trend of data for the hundred most frequent words extrapolated to about the 
same word size of 8 letters per word and read at integer word lengths. The 
latter is heavily weighted by the shorter words, resulting in a compression 
analogous to the renormalized word set of Figure 9 (to compare the base 10 
length scale with the base two length scale for the same letters per word, 
divide the former by 3.322; corresponding values are given at top of the 
diagram). The inset shows the same construction for a standard Cantor set, 
where the set theoretic fractal dimension is defined by D = logN/log(l/r), 
where N is the number of partial line segments in the unit generator, and r is 
the ratio of segment length to unit length. The generator of the standard 
Cantor set is given by a unit interval in which the central third is cut out 
in each successive generation, giving N = 2, r = 1/3, hence D = Iog2/log3 = 
0.6309...(see Mandelbrot, 1977, p. 98; Shaw and Gartner, 1986, Figures 15 and 
16). In the present case this result is obtained graphically, where the slope 
is 0.37 for basis log(NL) giving D = (1-.37) = 0.63. The result for 
cumulative ML differs because it refers to an array of segments measured by 
successively smaller subsegments as the yardstick, hence it cannot be less 
than D = 1; i.e., when the Cantor set is measured as a dendritic set of line 
segments in a plane, as though it were a dissected fault set, it has a 
variable dimension between 1 and 2, hence in that context it is not a 
self-similar fractal (in real fault sets there is typically a self-similar 
interval where cumulative log-log plots are linear over a characteristic range 
of lengths; see Shaw and Gartner, 1986, Figures 5 and 14).
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FIGURE 12, Seismic singularity routes through multifractal space: (a) 
Examples of regimes selected from posslbllltes Illustrating nonunlqueness of 
seismic parameters Ds vs. c and(or) q. Path C In (a) expresses an extreme 
where both b- and c-values Increase together toward the limit 3 at the upper 
right In (b) followed by abrupt decrease In b-values at c = 3. Any of the 
paths Imply possible alternations with subsets at lower maximum b-values, as 
Indicated by the dashed curve and stippled region in (a). Paths A through C 
do not represent any actual data sets, rather they suggest ranges of states 
over which frequency-magnitude data would describe continuous singularity 
spectra of types found in fluid turbulence (see Inset). Two q-value scales 
are shown at the bottom of (a), one assuming that seismic moment, Mo , is 
proportional to L*|, the other that it is proportional to L*|. The 
former corresponds to Dg defined for a topologic dimension of 3, and the
latter corresponds approximately to equivalence of a fault length scale

1/9 (symbol Lf in text) that is roughly proportional to MQ (see empirical
data discussed by Wesnousky and others, 1983, and by Shaw and Gartner, 1986). 
Magnitudes are as defined In Eq 6a, log L*| = M. Inset; Path A in (a) 
rescaled to unit range of Ds and normalized c-values compared with the 
singularity spectrum of a two-scale Cantor set determined by Halsey and others 
(1986, Figures 2 and 4>. The two-scale Cantor set is a mixed dissection set 
where there are two pairs of generating parameters N and r (see Figure 11). 
It is analogous to fractal measures of a hybrid tree in which there are two 
bifurcation ratios sampled according to a systematic mixing scheme, hence 
there are two limiting fractal dimensions on the abscissa at the distil limits 
f = 0 (representing the "pure end-members") converging to a common dimension 
for the set as a whole at maximum f (complete "end-member mixing"); note that 
the range of alpha exceeds the set dimension and in general may exceed unit 
value depending on the N-r ranges of the numerical generators or their dynamic 
equivalents (i.e., the function D » logN/log(l/r) for either of the generating 
functions of a generalized Cantor set is not restricted). There is a close 
resemblance to descriptions of statistical mechanical partition functions in 
critical phenomena of chemical phase equilibria and mixing trajectories in 
fluid convection (see discussions in Jensen and others, 1985; Halsey and 
others, 1986).
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FIGURE 12. Seismic singularity routes through multifractal space:
(b) Consistent values of parameters b, c, and fractal Ds based on Ds = 

3b/c (see text); given two parameters the third is read from a point on, or 
interpolated from, isopleths of Ds in Figure Ida of Shaw and Gartner 
(1986). Lines with arrows in (b) illustrate b-c-Ds routes consistent with 
particular patterns of b-value variations in frequency-magnitude diagrams of 
Shaw and Gartner (1986); curves A and B indicate generalized sets suggested by 
frequency-magnitude data with multiple b-values (and implicitly c-values) 
ranging between 0 and 3 (analogous to fractal arrays in Figure 9). The 
extrema in Paths A and B express a possibility of large variations in b-values 
at low or high c-values and relatively constant b-values at intermediate 
c-values.
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FIGURE 13. Demonstration of relations between numbers (N), lengths (Lf), 
slopes (S), fault fractals (Df), and recurrence parameters (b-values) for 
idealized fault dendrites scaled to N = 1 at a fault length roughly equivalent 
to an M « 8 earthquake using formula M = 4.964 + 1.243 log Lf for Lf in 
kilometers (converted from Eq. 1 in Shaw and Gartner, 1986): (a) log M vs. log 
Lf. (b) log (NLf) vs. log Lf, (c) log (Sum NLf) vs. log Lf 
(summation is for all segments of length equal to or greater than a chosen 
yardstick length). Lines of the same constant b-values are numbered 1 through 
5 in each plot. Note that the absolute value of slope Sa in (a) is 
identical to the value of Df determined from the relation D = (l-Sb ) in 
(b), where S^ refers to the slope of a given plot. Therefore, D = -Sa in 
a plot of segment number against segment length for sets ordered as in (a); 
see number-length slopes of fault data given by Shaw and Gartner (1986, Figure 
5). The formula D - (1-S) applied to (c) quickly converges to Df = 1 for 
b-values below 0.5 (curve 2). Because of the summation convention for line 
segments, Df in (c) can not be less than unity; however, Df in (c) is 
similar to values derived from (a) and (b) over the more linear portions of 
the steeper curves (divergences near log N = 0 depend on summation increments; 
the dotted line is for intervals of 0.1 compared with intervals of 0.5 for the 
other lines). Graph (c) treats discontinuous line sets in a manner similar to 
that for connected fractals, where N would represent the number of divider 
intervals of length L measured along the irregular but unbroken line (as in 
measurements of coastlines). In that case it is obvious that the minimum 
fractal dimension of an unbroken line is D = 1, and the maximum is D = 2 for 
measurements in a plane; however, if the trajectories of connected lines can 
depart from the plane, as in Brownian motion, the fractal dimension can 
approach D = 3 (the same is true for disconnected sets such as dust clouds in 
which there is a hierarchical size distribution, or for debris clouds of platy 
fragments in which there is a wide range of aspect ratios). For connected 
lines, the quantities ML and Sum ML are automatically the same, but for 
broken, or "dissected" line sets the cumulative and incremental lengths are 
not the same because N refers to a partial measure representing a given subset 
in (b) which is then summed in (c); see alternative methods of measuring fault 
sets discussed by Shaw and Gartner (1986), and by Okubo and Aki (in press).
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FIGURE 14. Index and "linkage" map of California and environs showing 
locations of subregions used for regional variations of frequency-magnitude 
patterns; "benchmarks" are positioned to approximately straddle the 
subregions. Numbered lines connecting the triangles are referred to 
descriptively as kinematic links for purposes of illustrating time variations 
of regional patterns for events equal to or greater than M = 5 (see Figure 
24). The lines between the most northern and northeastern triangles are not 
numbered because data are not available in the catalogs to evaluate activity 
just beyond these limits (they are shown here and in Figure 24 to identify the 
perimeter of "California and environs"); in general, however, central Oregon, 
southwestern Idaho, eastern Nevada-western Utah, and western Arizona have had 
low seismicity during historic times (see Inset B of Figure 3; and Ryall and 
others, 1966). Events in SH and TC are generally south of 42° north 
latitude; more northerly events offshore in E are referred to either lines 13 
or 15. Events in the eastern parts of TC and CN are referred to lines 16, 17, 
and(or) 19, depending on coordinates. The arbitrary benchmarks are identified 
by nearby towns or geographic features.
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FIGURE 15. Frequency-magnitude data of Figure 5 subdivided into eight 
regional classes representing one or more of the subregions identified in 
Figure 14 (subregions were combined where there is a paucity of data or no 
specific reason to show individual sets; e.g., data for the northeast corner 
of California and northwestern Nevada were lumped). The three "cornerstone" 
areas are represented in this illustration by the groups E+SH (Eureka, 
Shasta), CN+TS+NS (California-Nevada, Three-Corner area, Northern Sierra), and 
BJ+IP (Baja California, Imperial Valley). The left column of diagrams gives 
the historic record; the right column is broken down according to pre- and 
post-1900 data.. A point to notice is the resemblance of frequency 
oscillations among the three cornerstone groups compared to other regions; 
e.g., there are relatively high frequencies in the vicinites M = 5, M = 5.5, M 
= 5.8, M » 6, and for E+SH and BJ+IP near M = 6.5. Also the oscillatory 
behavior often appears to reflect alternations between trends of similar 
b-values over roughly a decade in frequency (except LA which has a narrower 
bandwidth). Such effects are interpreted (see text) to correspond to shifts 
or "jumps" from one fractal subset to another among sets of the sorts 
illustrated in Figures 9 and 12. Comparisons with behavior of smoothed data 
over somewhat larger areas is indicated by the cumulative frequency curves of 
Ryall and others (1966) shown in the Inset of Figure 5.
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Figure 15. Continued.
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FIGURE 16. Frequency-magnitude data broken down into 30-year intervals for 
nine regional classes, from top left: E+SH, CN+TC+NS, BJ+IP, SF, C, LA, OV+SS, 
BF, MJ. The year of occurrence is given for some of the larger events in each 
class. Note that for the post-1926 data the patterns in the first three sets 
(the "cornerstone regions") are mutually more similar than they are to other 
sets; this marks the time when modern seismic networks began to be 
established, hence these resemblances probably apply to longer term behavior.
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Figure 16. Continued
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FIGURE 17. Synopsis of overall frequency-magnitude fluctuations at intervals 
of five years. The logarithmic frequency scale is compressed to emphasize 
contrasts in the distributions and ranges of magnitudes. Some of the larger 
events are identified by locality and year of occurrence (see Table 2 and 
Figure 18 for event counts and moments within subregions).
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FIGURE 18* Summary histograms of earthquake counts and moments at five-year 
intervals from data of Table 2:

A. Total counts and counts per subregions of Figure 14. The numbers of 
large events (H = 7.0 + 0.3) are shown by stars; major events (M = 7.5 and 
greater) are shown by solid dots. The sum of counts per histogram is given at 
right with symbol of subregions.
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FIGURE 18. Summary histograms of earthquake counts and moments at five-year 
intervals from data of Table 2:

B. Moments calculated using relation log M0 = 16.1 + 1.5 M (Hanks and 
Kanamori, 1979; Shaw and Gartner, 1986, Eq. 3). Ordinate gives the logarithm
of moments summed within each five-year interval identified by region; stars 
and solid dots identify the largest events, as in A. Total moments per 
category in units of 10^° dyne-cm are given immediately below the subregion 
symbols (count numbers from A shown in parentheses above symbols). The moment 
magnitude equivalent to the total moment per category, designated EMM, is also 
given below the corresponding values of moment (e.g., EMM = 8.5 for M0 = 
7.3x10)28 dyne-cm, using the above equation).
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FIGURE 19. Multifractal diagrams constructed as in Figure 9 from 
frequency-magnitude data in Figure 15 for California subregions of Figure 14:

A. Length scale based on relation L*s = 2M/<1 for q = 4/3. The Base 2 
data are shown for comparison with Figure 9 and to illustrate approximate 
invariances of fractal subtrends with changes of logarithmic base. 
Frequencies are normalized to 1000 years. To compare with empirical 
correlations to Base 10 in Table 1 (and diagrams in B), values of log^Q 
L*s should be multiplied by factor log^Q2. Differences in Base 2 and 10 
plots are indicated by average slopes of overall sets on the different bases 
(i.e., regression lines through all data points of a set have negative slopes 
in A and positive slopes in B). Dashed lines indicate self-similar fractal 
subsets of constant D*s for specified basis (see Inset at right). Trends 
with slopes that are algebraically smaller than -2 (allowing for appropriate 
conversion of logarithmic base) exceed topologic range DT = 3 and refer to 
higher order phase space (see Shaw and Gartner, 1986, for discussion of time 
as a fourth topologic dimension); slopes greater than +1 are imaginary because 
they have dimensions less than zero for any exponent of length scale. The 
full historic record is used in all cases except LA because the pre-1900 data 
are significant only in SF and LA. The latter subregion is shown for three 
time ranges because the pre- and post-1900 data are clearly separated (note 
that even though values are shifted the general patterns remain similar).
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FIGURE 19. Multifractal diagrams constructed as in Figure 9 from 
frequency-magnitude data in Figure 15 for California subregions of Figure 14:

B. Length scale in A converted to dimensional exponents and units 
consistent with fault measurements in Shaw and Gartner (1986). Frequencies 
are renormalized to numbers of events occurring in 10,000 years (Holocene) at 
the temporal frequencies of Figure 15 (i.e., log^QN = log^Qf + 4). The 
length L*£ and fractal dimension D*f refer to length obtained by equating 
the following relations at the same value of M: M = 4.964 + 1.243 log10Lf 
(for length in kilometers), and logi0L*8 = (M/q) Iog102
(magnitude-defined units of length). Units defined by equating magnitude are 
called the seismically defined fault length. L*f; it is given by the 
empirical equation log^QL*^ =3.56 log^0L*s - 4. This defines 
magnitude scale at top as approximately that of Shaw and Gartner (1986) for 
faults of length defined on scale at bottom, where lengths are converted from 
values of L*s in A (i.e., these are geometrical relations calibrated by 
specified regression relation of fault-length vs. magnitude). Grid lines are 
drawn for fractal dimensions D*f = (1-S). Nodes are shown for each decade 
of recurrence interval in years (i.e., at values of 1/f); e.g., for N = 1000, 
l°Sio^ ~ ~1» giving average recurrence interval T = 10 years at M = 5 
(converted fault length, L*f, is about 1 km). Large dots and heavy lines 
are converted data equivalent to A; estimated values D*f are listed below 
region symbols. Inset (at right): slope vs. fractal relation for constant 
b-values from 0 to 1.5 for arbitrary log N vs. M. Ratios of fractal 
dimensions on different bases D*s , D*f, and Ds are given in Inset; 
similarities of values suggest that multifractal trends are roughly invariant 
at integer powers of length scale (i.e., multifractals form crude universal 
sets in n-dimensional hyperspace up to at least D*s = 10, D*f =3).

100



B
.

A
P

P
R

O
X

IM
A

T
E

 
M

A
G

N
IT

U
D

E

i 
0 

5
6

 
6
2
 

6
8
 

7
5
 

8
1

 
8
7

5
.0

 
5

6
 

6
2

 
6

8
 

7
5
 

8
1

 
8

7

2 x^
» O T

 

CD
 

O
lo

g
10

LJ
 (

km
)

5
0
 

5
6
 

6
2
 

8
8
 

7.
5 

8
1
 

8
7
 

5
0
 

5.
6 

6
2
 

6.
8 

7
5
 

8.
1 

8
7

5
0
 

S.
6 

6
2
 

6.
8 

7 
S 

8
1
 

8
7

II
,

Q
 

L 
(U

N
IT

S
 
IN

O
IC

A
tC

O
)

lo
g

1Q
L
j 

(k
m

)



FIGURE 20. Idealized relations among b-values, fractal dimensions based on 
the definition Ds = 3b/c, and the information measures U (Shannon 
uncertainty), F (Shannon relative uncertainty), and R (Shannon redundancy) 
based on Equations (1) and (2) in text; F * Uobs/U*, and R = (l-F)xlOO; R 
expressed in percent:

A. Idealized steady-state log f vs. M used to calculate values of U from 
Eq. (1).

B. Corresponding values of b, Ds , U, F, and R; i.e., each row shows a 
b-value in A. and the calculated values of the other parameters at that 
b-value. For this demonstration the value of the coefficient in the log M0 
vs. M relation is assigned the constant value c = 1.5 (this is the usual 
assumption in the absence of specific evaluations); therefore in this special 
case Ds = 2b.

C. Trend of idealized fractal dimension, Ds , vs. the redundancy, R, 
from values in B, indicating possible deviations from idealized case. Light 
dashed line is trend if R were directly proportional to Ds in range 0 to 3.
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FIGURE 21. Conversion graph illustrating the relation between temporal 
frequencies and number frequencies in the idealized bond-count model for the 
same b-values used in Figure 20 (see text). Ordinate values at left give log 
Ng (for Kg the number of hypothetical "bonds") vs. M for the indicated 
b-values corresponding to temporal frequencies given by ordinate values on the 
right for events (as defined in previous illustrations) at the same b-values. 
Bond-count frequencies, NB , are normalized so that there is one bond count 
at M = 5 for b = 0, and 1585 bond counts at M = 8.2 for b = 0; the reference 
points at M = 8.2 could be made the same for events and bond counts, but then 
there would be one bond count at M = 8.2 for b = 0 and 1/1585 count at M = 5 
for b = 0. Other proportions vary according to the b-values of the 
corresponding curves; e.g., for b = 1 there is a constant count of N^, = 1585 
for the normalization shown (if the reference at M = 8.2 were redefined so 
that log HB = log f, there would then be one bond count at each magnitude 
for b = 1).
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FIGURE 22. Bond-count redundancy, RB , plotted against fractal dimension, 
Ds , using the same relations employed in Figure 20 (c = 1.5) but based on 
probabilities calculated from bond counts in Figure 21 rather than on 
probabilities calculated from event frequencies as in Figure 20. The extremum 
at Ds = 2 at b = 1 occurs because this is where the slope of log NB vs. M 
changes sign in Figure 21 (by contrast the plot of event redundancy, Rg, 
against Dg in Figure 20 is monotonic because the variations of log f vs. M 
have slopes of the same sign).
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FIGURE 23. Bond-count relative uncertainty, FB = (1- RB/100) f plotted 
against fractal dimension, Ds , for the same b-values used in Figures 20 and 
22. FB is shown on the ordinate so that the extremum at RB = 0 in Figure 
22 is now a maximum at FB = 1, b = 1. This point defines the maximum 
uncertainty relative to a convention where there is equal probability that the 
same numbers of bond ruptures will occur at every magnitude within the 33 
magnitude increments between M = 5 and M = 8.2 (i.e., this condition 
corresponds to the maximum entropy model based on bond counts for the 
delimitation of frequency-magnitude relations in Figure 20). Values of FB 
calculated in the same way for the observed data within variously defined 
regions of Figure 14 and time windows are shown by horizontal lines (data from 
Table 4); time windows of areally total data sets are shown in parentheses. 
The fact that most of the partial data sets do not intersect the solid 
portions of the idealized curve is taken to reflect incompleteness of the 
seismic record and(or) deviations of the actual rupture statistics from the 
idealized definitions of PB and Ds (i.e., a model might exist that would 
permit the full ranges of FB and Ds for the observed ranges of average 
b-values found in frequency-magnitude plots). Note different informational 
implications for conventions based on the statistics of bond counts vis-a-vis 
events: on the event basis, high fractal Ds , high b-values, and high event 
redundancy, Rg, go together (this redundancy refers to the time domain 
because there is no spatial information in the frequency-magnitude data for 
events); the bond-count basis gives nonunique Ds and b (they are not 
single-valued) at a given value of uncertainty, FB , but as a general 
tendency high uncertainty and fractal Ds go with higher b-values while the 
highest redundancy (lowest FB ) is at b = 0, Dg = 0. These quantities are 
also inferred from temporal data, but they contain geographic information 
related to implicit clustering of bond-count distributions at each magnitude. 
In this context the largest events have the greatest redundancies (lowest 
uncertainties, compared with highest uncertainties on the event basis) and the 
greatest possible paired ranges of Ds and b-values; these limits mimic the 
geographic invariance of major seismic gaps which simultaneously display high 
temporal uncertainty.
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FIGURE 24. Kinematic linkage maps drawn at intervals of five years based on 
arbitrary subregions and benchmarks of Figure 14 and event statistics compiled 
in Table 2 and Figure 18. A "link'* is defined as any one of the tielines 
between benchmarks of Figure 14 that remains "unbroken" by the occurrence of 
an event of M = 5 or larger in any part of a subregion lying near that line; 
the years of occurrence and approximate locations of the largest events having 
M = 6.7 or larger are also shown. Kinematically, the large events emanate 
from windows where there was prior development of linkage "breaks": the 1857 
San Andreas fault reflects convergences of linkage breaks emanating from 
northwestern (subregion E) and southern sources (subregion BJ); the 1872 Owens 
valley fault break reflects convergences of northwestern (subregion E) and 
northeastern (subregion CM) sources; and the 1906 San Andreas fault break 
again reflects the northwestern and southern source effects (the different 
locations on the fault appear to be influenced by the relative contributions 
of these sources, possibly modified by differing contributions from the 
northeasterly source region). Inset (bottom): Patterns of coalescing breaks 
based on a kinetic model of physical bond ruptures developed by Termonia and 
Meakin (1986, Figure 2); although there are no direct correspondences of 
dynamic scaling, the implications of areally distributed deformations and 
coalescing fault breaks are analogous. The fractal dimension of the ruptures 
determined by these authors is about 1.27, a value similar to estimates of 
fault fractal Df by Shaw and Gartner (1986) for active faults in 
California. Such comparisons suggest that more detailed linkage maps at 
progressively larger map scales, and based on occurrences of progressively 
smaller earthquakes, may provide significant tests for self-similarity and 
space-time patterns of migrating loci of fault ruptures.
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FIGURE 25. Space-time diagrams of migration of seismic activity in California 
based on patterns of. linkage continuity in Figure 24 arranged according to the 
numbering of tielines between the arbitrary benchmarks of Figure 14:

A. Paragenetic lines; blank portions represent times when the 
corresponding tielines have been broken by an event of M = 5 or larger. The 
times of occurrences of the six major events of Table 2 and Figure 18 are 
shown for reference.
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FIGURE 25, Space-time diagrams of migration of seismic activity in California 
based on patterns of linkage continuity in Figure 24 arranged according to the 
numbering of tielines between the arbitrary benchmarks of Figure 14:

B. Diagram in A modified by enclosing space-time regions within which 
linkage breaks were continuous. Events of M = 8 or larger are shown by large 
stars, events from M = 7.3 to M = 7.7 by solid dots, and events near M = 7 by 
open circles and dots.
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FIGURE 25. Space-time diagrams of migration of seismic activity in California 
based on patterns of linkage continuity in Figure 24 arranged according to the 
numbering of tielines between the arbitrary benchmarks of Figure 14:

C. Pattern in B modified to schematically illustrate trajectories of 
migrating seismic moments across subregion boundaries with time relative to 
distributions of the larger earthquakes. In a manner analogous to the effects 
of constrictions produced by boulders and promontories in rivers at low water, 
the large events represent loci of convergence relative to "upstream" 
trajectories and divergence relative to "downstream" trajectories (there is a 
physical analogy between such hydrodynamic stationary points and singular 
portions of faults where strain energy becomes concentrated). Inferences from 
these schematic trajectories for "regional forecasts" are shown at right 
margin (Mote: Spatial relations can be inferred by comparison with Figure 
14. Because two space dimensions are projected onto one space dimension 
represented by one of the numbered tielines, such diagrams can be ordered in a 
variety of ways. Trial constructions in which the sequences of tielines were 
rearranged, however, did not change the general patterns and inferences. 
Actual trajectories in three dimensions representing latitude, longitude, and 
time might be illustrated using stereo pairs as is done in three-dimensional 
representation of convective particle trajectories or structures of complex 
molecules.)
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FIGURE 26. Time variation of moment rate for California earthquake history 
based on data compiled in Table 2. The rate is based on running sums of 
moments per five year interval divided by five. This is a histogram of 
discontinuous data shown connected by the heavy dashed lines to emphasize the 
variations (i.e., minima below 10^ dyne-cm yr~* are not shown). The 
solid curve in upper right shows the trend of post-1900 Circumpacific moment 
rates based on the same time intervals and shown on the same ordinate scale 
(redrawn from Kanamori, 1978). Global seismic moment rates are more than an 
order of magnitude higher because they are dominated by convergent plate 
margin events any one of which may exceed the entire moment for historic 
seismicity in California; see Table 2B). Open circles and light lines show 
order-of-magnitude estimates of global thermal energy release of major 
volcanic eruptions, redrawn from Kanamori (1983, Figure 5); volcanic energy is 
in units of erg yr"1 on same ordinate scale (i.e., values are one-tenth of 
Kanamori*s 10-year estimates). The vertical bar at right margin indicates 
orders of magnitude of thermal energy transport by magma (erg yr~*): GMM is 
estimated global rate of magma production from Shaw (1970, 1980); GSM is 
estimated upper limit for secular rate of silicic magma production based on 
10:1 ratio to mafic magma, after Smith and Shaw (1975) and Shaw (1985); HH is 
approximate secular average for Hawaiian volcanism from Shaw (1980, in press); 
HEM is 74-m.y. average rate for volcanic edifices of the Hawaiian-Emperor 
volcanic chain, from Shaw (1985); and SM is estimate of secular average rate 
of silicic magma production fed by a mafic source equivalent to HEM, from 
Smith (1979) and Shaw (1985). Note that rates of seismic energy release are 
more than four orders of magnitude smaller than moment rates (Kanamori, 1978, 
Figure 2), hence they are comparable to range of Kanamori's estimated eruptive 
energies, and smaller than either GMM or GSM by zero to four orders of 
magnitude. See text for remarks on post-1950 volcanicity.
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FIGURE 27, Five-year increments of moments from Table 2 showing trends of 
moment rates for several different geographic distributions in Figure 14 
(symbols are plotted at midpoints of five-year intervals up to 1975 and 
thereafter approximately at midpoints of the 1975-1979 and 1979-1982 
intervals; absence of a symbol in any interval represents a gap of five years 
or longer in the data):

(a) northern vs. southern California, represented by subregions 
E+SH+SF+MS+TC+CM+C (open circles and dashed lines) vs. SS+OV+BF+MJ+LA+IP+BJ 
(dots and solid lines);

(b) San Francisco and neighboring vicinities of central and northern 
California represented by SF+C (open circles and dashed lines) vs. Los Angeles 
and neighboring regions represented by LA+BF (pluses and solid lines);
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FIGURE 27. Five-year increments of moments from Table 2 showing trends of 
moment rates for several different geographic distributions in Figure 14 
(symbols are plotted at midpoints of five-year intervals up to 1975 and 
thereafter approximately at midpoints of the 1975-1979 and 1979-1982 
intervals; absence of a symbol in any interval represents a gap of five years 
or longer in the data):

(c) five composite regions of possible tectonic affinities consisting of 
subregions as labeled on the diagrams.
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TABLE 1. Relations of magnitude and moment to the statistically derived 
seismic length scale L*s .

q c qc MQ^' log L*g5.'

(1) 2/3 3/2 1 L* M/q = cM = 3M/2

(2) 1 3/2 3/2 L*3/2 M/q = M

(3) 4/3 3/2 2 L*2 M/q = cM/2 = 3M/4

(4) 2 3/2 3 L*3 M/q = cM/3 = M/2

(a) Entries give the function of L*s that is proportional to seismic 
moment, MQ , for the indicated values of q and c according to Eq. 6b for 
logarithms to Base 10.

(b) Entries give the equivalent functions of magnitude, M, that are 
proportional to a logarithmic length scale in Eq. 6a consistent with c in Eq 
6b and this table (i.e., q defined by L*s = 10M (*).
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TABLE 2. A. Counts at intervals of five years for earthquakes with magnitudes 
equal to or greater t;han M = 5 distributed by subregion in Figure 14.^a> 

B. Logarithms of momenta from log^o Mo = 16.1 +  1.5 M (Hanks and 
Kanamori, 1979; Shaw and Gartner, 1986)) for events in A.

Time Interval (b >
Subregion^
A. Counts:

1800-05
1806-10
1811-15
1816-20
1821-25
1826-30
1831-35
1836-40
1841-45
1846-50
1851-55
1856-60
1861-65
1866-70
1871-75
1876-80
1881-85
1886-90
1891-95
1896-1900
1901-05
1906-10
1911-15
1916-20
1921-25
1926-30
1931-35
1936-40
1941-45
1946-50
1951-55 (d)

1956-60
1961-65
1966-70
1971-74 (e)
1975-79< f)
1979-82 ( S>

Sums: 603 w

E
-
-
-
-
-
-
-
-
-
-
 
-
1
2
2*
-

1
3
-
2*
-
3
1
1
4**
4
6
5
6
4
5
5
6
3
4
1
5*

74

SH
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
-
 
-
-
-
-
-
-
 
-
1
-
2
 
-
-
_
_
3
-

7

SF
1
1
1
-
1
1
-
2**
1
-
2
3
7
2*
-
-
4
5
7
3
3
If
2
-
-
1
-
-
-
1
2
1
1
3

_

4

60

MS
-
 
 
-
 
-
-
 
-
-

1
1
1
2
1
-
-

1
-
_
-
2
-
-
-
-
-
-
1
1
1
-
-
2

_
1

14

TC
-
-
-
-
 
-
 
-
-
-
_
-
-
-
-
-

1
1
_
_
-
-

It
-

1
-
-
-

1
1

CM
-
-
-
-
-
-
-
-
-
-
-
1*
-

3
-
-
_
1
-
_
-
-
3
1
-
-
5*
5
9
1

C
-
-
-
-
 
-
-
 
-
-
-
It
1
-
-
-
4
2
1
3
2
2
1
1
2
6t
5
4
 
1

SS
-
-
 
-
_
-
-
-
-
-
_
-
 
_
-
-
1
-
_
_
-
-
1
-
-
1
-
1
-
_

0V
-
-
-
-
-
 
-
 
-
-
_
-
-
-
5t
 
_
-
_
1
 
1
1
-
-

1
-
2
1
1

33***4
-
2
_
_
1

10

7
3
_
_
2
17

91

3
2
5
1

1

52

 
2
_
_

1

7

1
_
_
_
_
-

14

BF
-
 
-
-
-
-
 
-
-
-
_
-
-
_
-
_
_
_
_
_
2
-
-
3
-

1
-
1
1
7
24t
 
4
_
_
_
1

44

HJ
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-
_
_
 
1
-
1
-

1
-
4
4
10
_
-
1
_
_
3

25

LA
2
1
2*
-
-
1
-
-
1
-
1
-
-
-
-
.-

1
3
3
2
-
4
-
3*
2
6
14
1
5
3
1
-
2
3
7
1
1

70

IP
-
-
 
-
-
 
-
-
-
 
 
-
-
_
-
-
_
 
_
_
-
-
2
2
-
4
3
8*
7
4
7
3
_
3
1

7

51

BJ
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
_
-
2*
_
1*
1
1*
1
3
1
5*
6
3
3
14
31*
4
6
_
 

1

84
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TABLE 2 B. Logarithms of moments from log^o MQ = 16.1 + 1.5 M (Hanks and 
Kanamori, 1979; Shaw and Gartner, 1986)) for events in A.

B. log MXi) :

1800-05
1806-10
1811-15
1816-20
1821-25
1826-30
1831-35
1836-40
1841-45
1846-50
1851-55
1856-60
1861-65
1866-70
1871-75
1876-80
1881-85
1886-90
1891-95
1896-1900
1901-05
1906-10
1911-15
1916-20
1921-25
1926-30
1931-35
1936-40
1941-45
1946-50
1951-55
1956-60
1961-65
1966-70
1971-74
1975-79
1979-82

Totals.

(1) M0 : 7 
(2) M:

25.9
23,7
26.7
  
23.6
23.7
  
26.8
23.7
  

26.0
28.1
25.6
25.5
28.1
  
25.5
25.3
26.7
26.5
26.6
28.4
27.6
26.4
27.3
27.4
27.2
26.4
26.1
26.0
27.8
26.7
25.0
25.9
25.9
25.2
26.8

Row (1) 
Row (2)

.3 
8.5

E
-
 
 
-
 
 
-
 
-
-
 
-
24.8
23.9
26.6
-
23.6
25.0
-
26.2
-
25.2
25.9
25.9
27.3
25.2
25.9
25.0
25.9
25.2
26.0
25.3
24.7
25.1
24,1
24.1
26.5

SH
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
24.0
-
-
-
-
-
-
-
-
-
-
24.7
-
24.5
-
-
-
-
 
24.8
-

SF NS TC CN C
23.6 -
23.6 -
23.6 -
_ - _ _ _
23.6 -
23,6 -
- _ - _ _
26.8 -
23.6 -
_ _ _ _ _

23.9 23.6 -
25.4 24.1 - 26.2 28.1
25.5 23.6 - - 24.8
25.4 23.9 - 25.2 -

25.1 -
_____
25.1 - 24.5 - 25.4
24.5 24.8 24.4 24.5 25.0
26.1 - - - 23.9
25.6 - 25.2
24.6 - - - 24.5
28.4 24.4 - - 24.4
26.0 - 27.5 25.7 24.4

23.9 24.4
23.6 - 25.9

24.4 - - 27.4
27.0 25.2
24.9 24.5

24.1 23.6 25.3 -
23,9 25.1 23.6 23.6 23.6
24.5 23.6 - 27.2 25.2
24.1 - - 25.7 24.2
23,6 - 24.2 - 24.7
24.6 25.2 - - 24.6

23.9
23.9 24.8 -

25.2 23.8 - 26.1 24.5

: moments per subregion in units of 
: moment magnitudes of single event 
total moments per subregion' ' : 

E SH SF NS TC CN C
.34 
7.6

.002 
6.1

2.6 .003 .32 .29 1.5 
8.2 6.3 7.6 7.6 8.1

SS
-
-
_
_
_
-
-
_
-
 
-
-
-
-
-
-
23.6
 
 
-
-
 
23.6
-
-
25.1
_
23.6
-
 
 
-
24.2
-
-
-
25.6

0V
-
-
 
 
-
-
-
_
 
-
 
-
-
-
28.1
-
-
-
-
25.1
-
24.4
24.4
-
-
24.4
-
23.7
23.6
24.5
-
23.9
-
-
-
-
 

BF
-
-
-
-
-
-
-
_
-
-
-
-
-
-
-
-
-
-
-
-
23.7
 
-
25.2
-
23.6
-
23.6
23,9
25.8
27.7
-
24k 2
-
-
-
24.1

MJ
-
-
-
_
_
-
-
_
-
-
 
-
-
-
-
-
-
-
-
-
-
25.9
-
24.4
-
24.4
-
24.4
24.5
25.6
 
-
23.6
-
-
24.3
 

LA
25.9
23.6
26.7
-
_
23.6
-
-
23.6
-

25.1
-
-
-
-
-
24.4
24.8
25.1
25.7
-
25.2
-
26.3
25.5
24.5
24.8
24.4
25.1
23.9
25.0
-
23.7
24.3
25.9
23.8
24.2

1028 dyne-cm; 
representing total moment

SS 0V BF MJ LA
.005 
6.4

1.3 
8.0

.50 
7.7

.012 
6.7

.10 
7.3

IP
_
 
-
_
-
-
-
_
 
-
 
-
-
-
-
-
 
-
 
 
-
 
25.5
24.4
 
24.8
23.8
26.3
26.0
25.9
25.4
24.1
-
25.8
23.8
-
26.1

and

IP
.063 
7.1

BJ
-
-
-
-
-
-
-
-
-
-

25.9
-
-
-
-
-
-
-
26.6
-
26.6
25.1
26.8
23.6
24.4
23.6
26.9
25.2
24.5
24.8
25.8
26.6
24.9
25.6
-
-
25.3

BJ
.29 
7.6
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TABLE 2 (footnotes) cont.

(a) Occurrences of large events (defined as range M = 7.0 + 0.3) in a category 
is shown by an asterisk (one per event), and the occurrence of a major event 
(defined as exceeding M = 7.3) is shown by a large solid dot; no "large" 
events occur within the same space-time windows as the "major" events. There 
are six events designated as major, in chronological order: (1) central San 
Andreas, 1857, 8.0, (2) Owens Valley, 1872, 8.0, (3) northern San Andreas, 
1906, 8.2, (4) M.W. Nevada, 1915, 7.6, (5) Lompoc vicinity, 1927, 7.5, (6) 
Kern County, 1952, 7.7. Restriction of the pre-1850 data to SF and LA 
reflects the fact that San Francisco and Los Angeles were the main sources of 
historical documentation at that time (see documentation and interpretation of 
historic reports by Toppozada and others, 1979a).

(b) Data sources are from Figure 5. The last three rows span about four years 
rather than five because of the chronological limits of the data sets.

(c) Counts may not agree exactly with frequency-magnitude plots in Figures 16 
and 17 because of ambiguities where events occur on boundaries between 
subregions. Counts for the pre-1900 intervals are based on magnitudes 
interpreted from intensity data by Toppozada and others (1979a, last column in 
their table 2).

(d) Most of the events in CM for this period occurred during 1954, including 
two earthquakes (7.1 and 7.2) east of Fallen, Nevada; other 1954 events, 
however, occurred from the southernmost to northernmost subregions. By 
contrast, most of the events in BF were foreshock-aftershock events of the 
1952 Kern County event (7.7); relatively few 1952 events occurred elsewhere.

(e) Several of the events in LA were associated with the 1971 San Fernando 
earthquake (6.4).

(f) Events occurring from 1 January, 1975 through 31 March, 1979 listed by 
Toppozada and others (1979b).

(g) Events occurring from 1 April, 1979 through 31 October, 1982 listed by 
Sherburne and others (1985). Many of the events in CN were in the southwest 
corner near the CM-SS boundary and represent the flurry of activity beginning 
in 1980 in the vicinity of Mammoth Lakes, California (there were earthquakes 
of magnitudes 6.4, 6.5, and 6.3, and many smaller shocks, within a period of a 
few days in May, 1980); these are thought to have been associated in part with 
magmatic transport in the Long Valley volcanic system. Events have occurred 
previously in that vicinity (see maps of Real and others, 1978; Toppozada and 
others, 1979a) though not as a conspicuous flurry within the Long Valley 
Caldera.

(h) The moment magnitude of an earthquake equivalent to the total historic 
moment in California and environs (8.5 in totals at end of table B.) is 
approximately equaled by any one of many post-1900 events in Circumpacific 
regions of subduction zone tectonics. Events of about this size occurred in 
Chile in 1906 and 1922; the 1960 event in Chile was an order of magnitude 
larger (see Kanamori, 1978).

(i) The column of moments immediately following the time interval gives the 
sums per time interval for all subregions.
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TABLE 3. Redundancies for seismic event frequencies in California calculated 
from Eqs. (1) and (2).

Region and Time Interval^a^ Redundancies (percent)

(b) (c) (d)
1 

(1)

59.3

2 

(2)

3 

(3)

(R1~V 

(4)

(e)

CH+TC+NS:

BJ+IP:

SF

LA:

BF+MJ:

OV+SS:

ALL(h)

(R1~R3 > 

(5)

(f)

E+SH: 1800-1900 59.3 20.6 48.7 38.7 10.6 
1900-1982 26.5 9.3 19.0 17.2 7.5 
1800-1900 43.6 10.3 37.1 33.3 6.5 
1900-1982 33.1 17.4 19.0 15.7 14.1 
1800-1900 71.9 8.5 69.3 63.4 2.6 
1900-1982 29.7 16.5 15.8 13.2 13.9 
1800-1900 33.7 16.4 20.7 17.3 13.0 
1900-1982 37.7 9,1 31.5 28.6 6.2 
1800-1900 47,2 5.1 44.4 42.1 2.8 
1900-1982 43.2 17.2 31.4 26.0 11.8 
1800-1900 45.6 17.3 34.2 28.3 11.4 
1900-1982 36.2 13.1 26.6 23.1 9.6 
1800-1900 100.0  .(8) 100.0  . (g) 0.0 
1900-1982 35.3 18.3 20.8 17.0 14.5 
1800-1900 55.4 3.1 54.0 52.3 1.4 
1900-1982 46.4 9.9 40.5 36.5 5.9 
1800-1900 28.9 17.0 14.3 11.9 14.6 
1900-1982 27.8 24.3 4.7 3.6 23.1 
1800-1982 26.0 23.1 3.7 2.9 22.3 
1975-1979 34.0 16.8 20.7 17.3 13.3 
1979-1982 24.1 26.1 2.6 2.0 21.5

(a) Regions identified in Figure 14.
(b) Calculated from Eqs. (1) and (2) for n = 33.
(c) Calculated from Eqs. (1) and (2) for n corresponding to tbe number of 

magnitude values for which there are actual events (magnitudes are read at 
intervals of 0.1 beginning from M = 5).

(d) Calculated from Eq. (2) for the observed n-values relative to the 
assumed limit n = 33 (i.e., relative to all possible M values between 5 and 
8.2); the redundancy is zero for nobs = 33 because this gives the maximum 
relative uncertainty, F = 1, for this assumption.

(e) The difference R^-R2 is zero if events occur at each of the 33 
magnitude values. Dividing by (1-R2 ) gives R3 .

(f) The difference Ri~R3 becomes equal to R^ if events occur at all 
magnitude values, because when nobs = 33, F = 1 and R3 = 0

(g) This is the case nobs = 1, Uobs = 0, Fx = 0, RX = 100%, 
-R3) = 0; but F2 = 0/0, so R2 and (R1-R2 ) are indeterminate, 
(h) Data sources are the same as in Figure 5.
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TABLE 4* Redundancies based on an idealized bond-count model*.

Time Interval RB (percent) Time Interval Rg(percent)

E+SH

CH+TC+NS

BJ+IP

SF

1800-1900 
1800-1982

1800-1900 
1900-1982

1800-1900 
1900-1982

1800-1900 
1900-1982

1800-1900 
1900-1982

66.6
34.1

57.2
38.4

80.4
27.3

35.0
87.9

89.7
63.1

LA

BF+MJ

OV+SS

ALL

1800-1900 
1900-1982

1800-1900 
1900-1982

1800-1900 
1900-1982

1800-1900 
1900-1982 
1800-1982 
1975-1979 
1979-1982

51.6
32.8

100.0
58.4

92.5
54.4

50.6
18.0
17.8
23.2
16.0

* The data sources and equations are the same as were^used in Table 2 but are 
adjusted so that there is unit bond count at M = 5 increasing in direct 
exponential proportion to 1585 counts at M = 8.2. Probabilities, 
uncertainties, and redundancies in Eqs. (1) and (2) are calculated using the 
normalized bond-count frequencies.
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