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SUMMARY

The Northern Nevada Lithospheric Experiments (Thompson et al., 1986) conducted
in cooperation with 17 university and government organizations, were executed in
northwestern Nevada from 17 July to 2 August, 1986. Controlled source experiments
(chemical explosions) were executed on July 22, 25, and 28, 1986. Passive experiments
to record aftershocks of the magnitude 6.1 earthquake, which occurred near Chalfant,
California on July 21, 1986, were conducted during the 24-48 hour intervals prior to and
after each of the controlled source experiments. This report provides a summary of the
data recorded using a variable-number (16-19) of six-channel, broad-band, digital data
acquisition systems (GEOS) deployed in support of both sets of experiments.

For the active experiments the instrumentation was deployed to augment the reflection
and refraction data set collected to infer 1) lithospheric structures in a region of active
extension, 2) anomalous upper-mantle velocity structure, and 3) characteristics of lower-
crustal and upper-mantle structures. Twenty-seven chemical explosions were detonated
and recorded. Data reported herein include seismograms from each of the 27 explosions.
1167 seismograms or 389 sets of three-component recordings are illustrated in record section
format.

For the passive experiments the instrumentation was programmed to record other
more distant seismic events to provide additional information on deeper upper-mantle
structure. Fifty-one seismic events were recorded at three or more GEQOS stations
during the course of the passive experiments. Forty-six of these events were identified
as aftershocks of the M ~ 6.1 Chalfant, California earthquake. One event was identified
as a nuclear explosion in south-central Nevada and four events have not been identified.
Of the forty-six aftershocks, 1, 2, 33, and 10 were in the magnitude ranges, respectively,
of 5.5-6, 4-5, 34, and 2-3. The nuclear explosion was assigned a magnitude of 4.1 (M)
by U.C. Berkeley Seismographic Station and was recorded on seven stations. Record
sections displayed herein for the passive experiments include the seismograms for twenty
of the events recorded on four or more stations. These seismograms are displayed at an
expanded time scale, 20 seconds in duration. Record sections for nine of the events also
are displayed at a reduced time scale, 60 seconds in duration.

Observed travel-times are compared with those estimated from a preliminary velocity
model in order to correlate the recordings with earthquakes identified on other networks,
identify location and timing errors, and to facilitate interpretation based on more detailed
models. Response curves for the instrumentation computed from signals recorded in situ
are presented for the various deployment locations.

Each of the seismograms illustrated in this report are available on nine-track magnetic
tape in GEOS, cassette refraction and SEG-Y formats. Copies in SEG-Y format are
available from the IRIS Data Management Center. The other formats are available from
the authors on special request.



INTRODUCTION—OBJECTIVES FOR NORTHERN NEVADA
LITHOSPHERIC EXPERIMENTS (NNLE)

The Basin and Range province of the western United States, characterized by north-
trending ranges bounded on one or both sides by normal faults separated by alluvial
valleys, represents a major continental rift zone with Cenozoic crustal extension inferred
to be at least 100 km and possibly as large as 300 km or nearly one-half the present width
of the province (Hamilton and Myers, 1966). Various plate tectonic models, proposed
for the development of the Basin and Range province, include: continuation of the East
Pacific Rise beneath the Cordillera (Menard, 1964; Cook, 1969), the development of a
wide, soft transform and spreading boundary related to San Andreas transform motion
(Atwater, 1970), thermal upwelling enhanced by stress relaxation upon initiation of the
San Andreas transform (Smith, 1978), and asthenospheric upwelling through a subducting
slab window (Dickinson and Snyder, 1979). Recent models for the structure of the mid and
upper crust propose deformation of the upper crust by brittle, normal faulting, consistent
with seismicity at a maximum depth of 15 km (Smith, 1978) and extension with ductile
stretching below 15 km (Sibson, 1982). Interpretation of near-vertical reflection data
raises questions regarding the nature of apparent upper-crustal normal faulting upon
extension to depth (e.g., Gans et al., 1985 or Wernicke, 1981) and the nature of mid-
to lower-crustal-refraction structure, especially as they relate to the nature of inferred
rifting processes in the Basin and Range province. The Northern Nevada Lithospheric
Experiment was conducted to provide additional insight regarding these questions and, in
particular, provide estimates of the structure, physical properties, and composition of the
lower crust and upper mantle as they relate to manifestations of rifting observed in the
upper crust (Thompson et al., 1986).

The Northern Nevada Lithospheric Experiment was conducted with the cooperative
efforts of 17 government and university organizations. It consisted of active and passive
experiments to record controlled sources and earthquakes. The active experiments involved
a main EW profile (280 km in length) and a NS cross profile (200 km in length) together
with four standard reflection spreads located near the center of the profiles. The reflection
spreads were used to record seismic energy generated by both vibroseis units and chemical
explosions. The passive experiments were conducted with triggered and continuous
recording instruments located on the profiles so as to record aftershocks which occurred
during the course of the active experiments near Chalfant, California at a distance of
about 220 km from the south end of the NS profile. Instrumentation utilized for the active
experiments included 120 portable vertical-component systems, 60 three-component digital
systems, four standard-reflection systems, and several smoked-drum recorders. A variable
number of three-component digital recorders and smoked-drum recorders were used for the
passive earthquake experiments.

This report describes only the controlled source and earthquake data recorded on
the GEOS systems (Borcherdt et al., 1985). This report provides analog copies of these
data, describes the format of magnetic tapes containing the digital time series, and
provides information on instrument calibration and preliminary velocity models necessary
for detailed interpretations.



The GEOS systems were requested in support of the active experiments to increase
the number of recording locations for vertical-component data provided by other groups
and, in particular, to augment the number of three-component recordings for inferences
of shear-wave velocity structure. The fortuitous occurrence of the Chalfant earthquake
sequence at the beginning of the controlled source experiments at distances of 250-320 km
provided the opportunity to augment the controlled source information on lower-crust
and upper-mantle structure with energy penetrating deeper upper-mantle structures. The
occurrence of a nuclear explosion during the passive experiments provided recordings along
the north-south profile up to distances of about 370 km.

The experiment provided an opportunity to evaluate design features of the recently-
developed GEOS units in a moderately large-scale field experiment involving both
controlled and earthquake sources. Although the system was designed explicitly for a
variety of active and passive experiments, including the current type of experiment, these
experiments provided the first opportunity to evaluate GEOS design features for both
types of experiments conducted coincidently.

Deployment locations for the GEOS profiles were chosen near the center of each main
profile so as to provide data focused on a number of scientific objectives, when combined
with that of the other participating institutions. Objectives emphasized in the choice of
locations included:

1.) crustal structure as it can be inferred from both the vertical-component reflection and
refraction data,

2.) shear-wave structure as it can be inferred from the three-component reflection-
refraction data for both the active and passive experiments,

3.) amplitude studies for possible inferences of @ structure and additional constraints on
velocity structure as inferrable from in situ calibrations for each location, several of
which were co-sited with instrumentation deployed by the other institutions,

4.) study of near- and post-critical reflection data for the Moho and any intermediate
boundaries to provide additional insight into elastic and anelastic material properties
and geometric structure as suggested might be possible by recent theoretical and
laboratory results (Borcherdt et al., 1985, 1986; Becker and Richardson, 1969, 1972).

5.) calibration of new types of explosives used at some of the shotpoint points using on-
scale recordings of near-source ground motion with the GEOS in a six-channel config-
uration recording the output of both three-compoment force-balance accelerometers
and velocity transducers.

INSTRUMENTATION—GENERAL DESCRIPTION OF GEOS

A detailed description of the instrumentation (GEOS; General Earthquake Observa-
tion System) used to collect the data presented in this report is provided by Borcherdt
et al., 1985. Only a general summary of instrumentation characteristics pertinent to this
data set is provided here. Specific parameters chosen to record the data from the active
and passive experiments are provided in subsequent chapters.



Recording System

The GEOS recording system was developed by the U.S. Geological Survey for use in a
wide variety of active and passive seismic experiments. The digital data acquisition system
operates under control of a central microcomputer, which permits simple adaptation of the
system in the field to a variety of experiments; including, seismic refraction studies, near-
source high-frequency studies of strong motion, teleseismic earth structure studies, studies
of earth tidal strains, and free oscillation studies. Versatility in system application is
achieved by isolation of the appropriate data acquisition functions on hardware modules
controlled by a single microprocessor via a general computer bus. CMOS hardware
components are utilized to reduce quiescent power consumption to less than two watts
for use of the system as either a portable recorder in remote locations or for use in an
observatory setting with inexpensive backup power sources. The GEOS together with
two sets of three-component sensors (force-balance accelerometer, velocity transducer)
and ferrite WWVB antenna commonly used for controlled-source, reflection-refraction
experiments and local-regional earthquake experiments is shown in Figure 1 (see Borcherdt
et al., 1985 for hardware modules comprising the system).

The signal conditioning module for the GEOS has six input channels, selectable under
software control, permitting acquisition of seismic signals ranging in amplitude from a
few nanometers of seismic background noise to 2 g in acceleration for ground motions
near large events. The analog-to-digital conversion module is equipped with a 16-bit
CMOS analog-to-digital converter which affords 96 dB of linear dynamic range or signal
resolution; this, together with two sets of sensors, implies an effective system dynamic range
of about 180 dB. A data buffer with direct memory access capabilities allows for maximum
throughput rates of 1200 sps. With sampling rates software selectable as any integral
quotient of 1200, broad and variable system bandwidth ranging from (10~° —6 x 10% Hz)
has been achieved by using the recorders with a wide variety of sensor types (e.g., Johnston,
Borcherdt, and Linde, 1986).

Modern high-density (1600-6400 bpi) compact tape cartridges offer large data storage
capacities (1.25-23 Mbyte) in ANSI standard format to facilitate data accessibility via
minicomputer systems (1600 bpi and 1.25 Mbyte versions were used for the Nevada
experiments). Read capabilities of cartridge tape recorders are utilized to allow recording
parameters and system-operational software to be changed automatically. Installation of
an expanded data buffer module planned for systems to be constructed will allow the
system to act as a solid-state or a dual-media recorder with rapid data accessibility via
microcomputer. Systems equipped with modems can be utilized to transmit data via
telecommunications to a central data processing laboratory.

Microprocessor control of time-standard provides the capability to synchronize the
internal clock via internal receivers (such as WWVB and satellite), external master clock,
or conventional digital clocks. Microprocessor control of internal receivers permits systems
on command to determine time corrections with respect to an external standard. This
capability permits especially accurate correction for conventional drift of internal clocks.

Accurate in situ calibration of system components improves data accuracy and permits
on-site evaluation of potential system performance malfunctions. The calibration module
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currently implemented in the GEOS permits calibration of three types of sensors and the
signal-conditioning module under software control of the CPU. Calibration capabilities for
sensors include velocity transducers with and without calibration coils and force-balance
accelerometers. In the case of the velocity transducers, a dc voltage, derived under CPU
control for appropriate gain setting from the D/A converter, is applied to either the
main or calibration coil of the transducer for a software-selectable time interval. Voltage
termination corresponds to an applied step function in acceleration to the sensor mass
with the resultant signal determining relative calibration. In the case of force-balance
accelerometers +12 volts are applied to the damped and undamped control lines. The
signal-conditioning module is calibrated using an impulse of one sample duration and an
alternating dc voltage derived and applied under software control to the amplifiers while
the sensors are disconnected via appropriate relays.

A 32-character alphanumeric display under control of the microcomputer, allows the
system to be quickly and conveniently set up in the field and offers the operator considerable
flexibility to modify the system in the field for a wide variety of applications. English-
language messages to the operator, executed in an interactive mode, reduce operator field
set-up errors. A complete record of recording system parameters is recorded on each tape
together with calibration signals for both the sensor and the recorders. These records
assure rapid and accurate interpretation via computer of signals, both in the field and in
the laboratory.

Flexibility to modify the system to incorporate future improvements in technology
is achieved using a structured software architecture and modular hardware components.
Incorporation of new hardware modules is accomplished in a straightforward manner by
replacing appropriate modules and corresponding segments of controlling software.

The system response with current velocity transducers (L-22; Mark Products) allows
broad-band signals (0.5-400 Hz) to be recorded on scale with high resolution for seismic
reflection-refraction studies. The amplitude response of the recording system, together
with that for two types of sensors (velocity transducer, L—4; force-balance accelerometer)
is shown in Figure 2. Response curves determined from signals recorded at each station
location are described in a subsequent chapter.

Data Playback System

Data can be played back in either an analog or digital format in the field using the
read capability of the GEOS mass-storage module. Data can also be played back using
portable mini-computer systems configured with appropriate cartridge tape readers (see
Borcherdt et al., 1985, for details). For the experiments described herein, only the analog
playback capability was utilized in the field. Analog playbacks on light-sensitive paper were
utilized in the field to identify seismic events, trigger parameters, and evaluate instrument
performance. Digital playback of the data was conducted with a Tanberg serpentine tape
drive attached to the PDP 11/70 at the National Strong Motion Data Center in Menlo
Park. Software packages, developed by G. Maxwell, E. Cranswick, and C. Mueller, were
used to play back and process the data set.



FIELD SUMMARY—SOURCE, STATION, AND RECORDING SYSTEM
PARAMETERS FOR ACTIVE AND PASSIVE EXPERIMENTS

The occurrence of a magnitude 5+ earthquake on July 20, 1986 near Chalfant,
California stimulated the development of plans to record both aftershocks and the planned
controlled sources. The instruments were transported to the field site from Menlo Park,
California on July 20, with plans to deploy systems one day, early on July 21. The
main shock of magnitude 6.1 occurred approximately 15 minutes prior to arrival of the
instrumentation at the chosen field sites. Deployment of the systems to record aftershocks
commenced about 30 minutes after the occurrence of the main shock.

Station and Shotpoint Locations

A summary of all of the GEOS locations used during the course of the experiments is
shown in Figure 3 in relation to the two main deployment profiles and the shotpoints. The
controlled source experiments consisted of three deployments. The first deployment was on
the NS profile to provide in-line coverage of the sources detonated along the NS profile and
fan coverage for one shot detonated perpendicular to the profile. The second deployment
of GEOS involved extending the NS profile to provide fan coverage for each of the sources
detonated along the EW profile and additional on-line aftershock data. For the second
deployment, several of the locations used during the first deployment were repeated. The
third deployment involved moving all of the GEOS units to locations along the EW profile
to provide in-line coverage of the sources on the EW line that were detonated at the same
locations used earlier for the second deployment.

The locations of the segments of the profiles to be occupied by GEOS were selected to
emphasize the scientific objectives stated earlier for the controlled source experiments. In
regards to the aftershocks, the same locations were used with the intent of augmenting the
controlled source objectives with information on deeper upper-mantle structure as could
be inferred from the more distant aftershocks. The aftershocks occurred at a distance of
about 260 km from the closest GEOS instrument on the NS profile. The azimuth for the
deployment profile differed from that of the in-line source direction by about 10°. Choice of
the segments of the profile near the center of each of the main deployment lines permitted
colocation of the instrumentation used for the reflection studies as well as the refraction
studies. Data sets simultaneously recorded on each of the various types of instrumentation
at these sites together with calibration curves derived in situ at each GEOS location (see
later chapter) was obtained to facilitate calibration of the various types of instrumentation
and interpretations based on all of the data sets.

Bar graphs, indicating the time intervals during which each instrument was pro-
grammed to record earthquakes and chemical explosions, are shown for each deployment
(Figures 4a, 4b, and 4c). For each deployment, the chemical explosions were detonated
in three preselected ten-minute time intervals. As a result of the requirement to record
continuously during these intervals and the high degree of seismicity near Chalfant, CA,
the GEOS units were programmed a few hours before each shot sequence to record only
during the prescribed time intervals and not to trigger on earthquakes.

Timing at each of the stations was achieved using the automatic capability of the
recorders to synchronize to WWVB and to record timing corrections with respect to

6



WWVB at programmable time intervals. Timing accuracy for the events is within the
5 ms accuracy inherent in interpretation of WWVB signals. This accuracy level has been
confirmed by a number of previous experiments (Borcherdt et al., 1985) and was checked
during these experiments with an external master clock.

Parameters for Active Experiments

Information, regarding the identification numbers, time, location, size, and type of
explosive is presented in Table 1 for each of the chemical explosions detonated during the
experiments. The larger explosions were detonated for both the reflection and refraction
studies. The small explosions were detonated for near-vertical reflection studies.

For the controlled source experiments, the systems were programmed to record in pre-
set time mode for three consecutive ten-minute intervals. The two configurations of the
system that were used to record the data sets are summarized in Table 2. The majority of
the systems were programmed to record the three-channel output of the three-component
velocity transducers at 400 samples per-second per-channel for the first two deployments
and at 200 sps/channel for the third deployment. Corresponding corner frequencies for the
seven-pole Butterworth anti-aliasing filters were selected at 100 Hz and 50 Hz, respectively.
Gains were selected at 54 and 60 dB. For three sites used during the first deployment and
one site for the second and third deployments, the systems were programmed to record
signals on six-channels as detected by three-component force-balance accelerometers and
three-component velocity transducers. Sampling rates for this configuration were chosen
at 200 sps/channel with a 50 Hz corner for anti-aliasing filters. Gains for force-balance
accelerometer channels were chosen at 6 dB. The six-channel instrument configuration was
programmed for the units located near shotpoints 4, 8, and 11 during the first deployment
and near shot point 4 for the second and third deployments. The on-scale recordings at
shotpoints 8 and 11 were collected to compare the effectiveness of a new type of explosive.
Shotpoint 4 was selected as a site for near-source on-scale recordings to assist in calibrations
of the various shot points. Shotpoint 4 was selected because of its central location near
the intersection of the two profiles.

Parameters for Passive Experiments

Locations of the earthquake epicenters for the events detected at 3 or more recording
locations are shown on Figure 7. Locations for the aftershocks are tabulated in Table 6.
The occurrence time for each aftershock, as indicated on Figures 4, 5, and 6, shows which
instrument locations were occupied at the times of the events. Epicentral locations for the
events were derived from CALNET.

In summary, forty-six earthquakes in the Chalfant, California area were identified as
being recorded at three or more sites during the experiment. Of this number the largest
event was of magnitude 5.5, three of the events were in the magnitude range 4-5, 33 of the
events were in the magnitude range 3—4, and the remainder were of magnitude less than 3.0.
For several of the smaller events the background noise level was sufficiently high relative to
the size of this initial P-wave energy at the site, that the recording system did not trigger
until the arrival of the larger-amplitude signals (S, L, ?) later in the seismogram. Thirty
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events were recorded at three or more stations with triggering times occurring after the
initial onset of P-wave energy. Twenty events were recorded on three or more stations with
at least one station triggering at the time of the initial P-wave energy. Eight of the events

were recorded simultaneously at eight or more sites. Five stations recorded the largest
(M ~ 5.5) aftershock.

For the experiments to record the aftershocks, the instruments were programmed
to record the signals from three-component velocity transducers in trigger mode. The
instruments were programmed to record at 200 sps/channel, with 50 Hz corners for the
anti-aliasing filter, and at gains of 48-60 dB depending on level of local background noise.

Especially high levels of background noise occurred at various locations and times
during the experiment due to a large amount of vehicular traffic, compressors, vibroseis,
trucks, etc. required in execution of the various experiments. The levels were especially
high on the NS profile north of shotpoint 4. These high levels of noise reduced the number
of earthquakes that could be recorded above background noise levels and are indicative
of a significant logistic difficulty that should be considered in the execution of future
experiments designed to record both natural and controlled sources.

Instrumentation Performance

In regards to an evaluation of the design goals of the GEOS for use in coincident
active and passive experiments, improvements pertaining to deployment procedures were
recognized, but no fundamental changes in software or hardware were found to be needed
for routine use of the system for these types of experiments. A minor hardware problem
discovered during the first deployment and subsequently corrected was attributable to
high temperatures (>115°F) encountered during mid-afternoon in the northern Nevada
alluvial basins. The high temperatures, to which the units had not been before subjected,
caused the DC-DC converters on three of the units to fail during the first 24 hours due to
inadequate power specification for temperatures experienced. The converters have since
been replaced with converters having improved temperature specifications. During the
remainder of the experiment, deployment of the systems in the shade of a bush or canopy
solved the problem. Placement of the systems in styrofoam cases was found on the first
deployment to only prolong the cooling-down process of the units and to be unsatisfactory.
The high data return for the first test of the GEOS for coincident active and passive
experiments confirms the initial design goals of the system for such applications; however,
the real success of such experiments is due in large part to competent coordination and
execution of a vast array of complicated logistics by experienced personnel.

Aspects of the deployment procedures found to be in need of improvement included
installation of battery charging capabilities in deployment vehicles. Implementation of this
capability permits internal batteries of portable recorders to be charged during transport,
eliminates the need for external batteries, except for long-term deployments, and permits
all record parameters to be preprogrammed at the field office. Significant reductions in size
and weight of GEOS carrying cases (shipping boxes) also would facilitate frequent changes
in instrument locations often required in crustal imaging studies.

The GEOS architecture represents a general framework from which a variety of special-
purpose data acquisition systems can be developed. Configuration of special-purpose or
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limited-application systems may be practical, provided resources (financial and personnel
are available for development, construction and maintenance). As the GEOS was developed
for application in a variety of passive and active seismic experiments, it is of interest to
consider packaging changes to the GEOS that might improve its usefulness for crustal-
imaging studies, but decrease applicability for other applications.

Desirable system attributes for crustal imaging are small size and ease in operation.
A configuration of GEOS currently being implemented is that of extending the data buffer
module to a capacity of 2 Mbytes. This extension, which is easily implemented by adding
memory to the data-buffer module and changes in corresponding software modules, would
allow the system to be used without the tape cartridge and corresponding controller
modules. This configuration would allow reductions in size and weight of the system.
Further reductions can be achieved easily by reducing the number of input channels by
simply removing corresponding signal-conditioning cards. This would allow the system to
be packaged in a container not exceeding 8 x 9 x 13 inches. Weight of the system would
be reduced to less than 15 lbs.

Utilization of the expanded data buffer as a memory board for mass data storage
offers the advantage of increasing the operating-temperature range over that imposed by
the characteristics of magnetic tape. Implementation of such a board in some systems
is planned to allow use of the GEOS in cold environments, such as Alaska. However,
these proposed changes cannot be implemented without sacrificing beneficial attributes of
the system for other applications. Elimination of tape storage capability and exclusive
utilization of the memory board reduces data capacity, data accessibility, and data
transportability. Decrease in the number of channels can reduce the effective dynamic
range and the usefulness of the system for studies requiring two types of three-component
sensors, such as aftershock studies. Use of external batteries and external CPU for
operational-parameter change eliminates the self-containment attribute of the systems
and implies that full capability to reprogram the systems in the field would no longer
involve merely selection of menu mode via the field-data-acquisition system. Nonetheless,
repeated use of a large number of units for crustal imaging experiments could justify
modifying the modules to produce a subset of the GEOS for this dedicated application.
Fortunately, the microcomputer, together with modular hardware components, provides
a general framework from which special application systems with emphasis on particular
attributes can be easily made.

THREE-COMPONENT SEISMOGRAMS RECORDED FOR CON-
TROLLED SOURCES DETONATED DURING THE NORTHERN
NEVADA LITHOSPHERIC EXPERIMENTS

Time histories corresponding to the three components of ground velocity recorded at
each location from each of the twenty-seven explosions detonated during deployments 1, 2
and 3 are shown, respectively, in Appendicies A, B, and C. Time histories corresponding to
ground acceleration recorded at three shotpoints are shown at the end of Appendix A. The
velocity time histories are presented in a record-section format with each section showing
one of the three components of motion recorded from each explosion. The record sections
show analog traces for twelve seconds of the recordings, commencing about 1 second prior
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to arrival of the first energy. Continuous recordings, ten minutes in duration, are available
on 9-track tape as copied from the original cartridge tapes.

The velocity record sections are arranged in chronological order according to time
of the explosion and deployment interval. The record sections are identified by a capital
letter, a number, and a lower-case letter in parenthesis (e.g., Figure Al(a)), with exact
orientation for each component of motion identified in the caption. The capital letter
identifies the appendix or deployment, the number corresponds to the explosion listed in
Table 1 and the lower-case letters “a, b, and ¢” denote respectively the vertical, radial and
transverse components of motion. Exact orientations of sensors were determined, using a
Brunton compass as given in the figure captions. Computed source-station azimuths and
distances are given in Tables 3, 4, and 5.

Two types of record sections are presented, depending on the orientation of the
deployment profile with respect to the source. For those sources located approximately
in-line with the source, the traces are spaced according to distance from the source
(shown on left-hand side of figure). For those sources located so that deployment profile
is approximately perpendicular to in-line source direction (i.e., fan profiles), the traces
are equally spaced with numbers on left-hand scale referring to maximum digital counts
of trace. Deployment locations (see Tables 2, 3, 4 and 5) for each trace are indicated.
Amplitudes of the traces are normalized to the maximum in each trace. Those traces
showing maximum digital counts can be converted to units of ground velocity (cm/sec)
using the conversion factor of 6 x 10~7 (cm/sec/digital cnts.).

The time axis is shown as “reduced-time,” using a velocity of six km/sec. The time of
detonation for each source is shown at the top of each record-section and the origin time
for the time axis is shown on the right-hand side of the figure (Greenwich mean time). A
low-pass filter with corner at 30 Hz has been applied, as indicated, to improve the apparent
signal-to-noise ratio for some of the analog record sections.

The record sections show each of the traces recorded at the approximate detonation
times for each of the sources regardless of the signal-to-noise ratios. For some of the
smallest detonations (e.g., Figure C10, shotpoint 4, 30 lbs.) the seismic radiation fields
generated by the source are not apparent about seismic background noise. They are shown
to provide a complete visual record of recorded data.

As indicated in Table 2, the controlled sources were recorded at each location during
the second and third deployment intervals at the same gain level of 60 dB. Use of this
gain together with the 16-bit resolution or 96 dB dynamic range of the recorder, permitted
the signals from the sources at distances greater than about 3 km to be recorded on-scale
without clipping near the highest resolution permitted by seismic background noise levels.
Observation of the entire data set at the same gain level facilitates interpretation especially
amplitude studies, while at the same time minimizing uncertainties in relative calibrations
between instruments. (Use of 12-bit recorders with gain ranging would have permitted
on-scale signals for those locations close to the sources for which the sensor did not clip,
but would have reduced recorded signal resolution at other locations.)

Inspection of the three-component data shows that for many of the sources the
energy recorded from the horizontal sensors was comparable in amplitude to that recorded
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on the vertical sensors. The three-component data is expected to assist in phase
identification, especially converted phases, and in inferences regarding structure and
composition inferrable from shear-wave energy.

Acceleration time histories, recorded at shot points 4, 11, and 8, during the first
deployment, are shown in Figures A9 through A12. The recordings at shot point 4
(Figure A9) were obtained to provide a set of on-scale recordings near the source for
calibration of shot size. The recordings at shot points 11 and 8 (Figures A10-12) were
obtained for purposes of comparing efficiency of two types of explosive.

THREE-COMPONENT SEISMOGRAMS RECORDED FOR EARTHQUAKES
THAT OCCURRED NEAR CHALFANT, CA AND A NUCLEAR
EXPLOSION IN SOUTH-CENTRAL NEVADA

Time series corresponding to the three components of ground motion recorded at
GEOS stations for seismic events that occurred during the passive part of the Northern
Nevada Lithospheric Experiments are shown in Appendicies D and E. To better illustrate
the nature of the recorded data sets, the time histories are shown at two different time
scales. The time series for twenty of the better-recorded events are shown at an expanded
time scale (20 seconds in length) in Appendix D. Of this number the time series for nine
of the events are shown at a reduced time scale (60 seconds in length) in Appendix E. The
expanded time scale is useful for examining the nature of the body wave arrivals associated
with the initial part of the seismograms. The reduced time scale is useful for examining the
relative amounts of surface wave and scattered energy arriving later in the seismograms
for attenuation studies.

The time series are presented in record section format similar to that discussed earlier
for the controlled source data (see previous chapter for details). Each section corresponds
to one of the three components of motion recorded for the earthquake and nuclear explosion
whose origin time is indicated in the figure caption. A listing of the fifty events recorded on
three or more stations is provided in Table 6. Of this set twenty events (listed in Table 7)
were considered to be in the “best recorded” category, because the events were of sufficient
size relative to the background noise level at the time of occurrence of the events that the
events were recorded on at least four stations with some of the stations in general recording
the onset of the initial P-wave motion. Record sections for the initial 20 seconds of these
events are shown in Appendix D. Record sections, 60 seconds in duration, are shown for
nine of the events in Appendix E.

Epicenter locations, depths, magnitudes, and quality of location were determined
from CAL-NET data by R. Cockerham (pers. commun., 1987) with the exception of two
events whose origin times were revised on the basis of a revised model by S. Marks (pers.
commun., 1987). Epicentral distances and azimuths for each of the twenty events shown
in Appendix D were computed with respect to GEOS station G69 (see Table 7). The
origin times for all of the events appear consistent with travel-times for earthquakes near
Chalfant, CA with the exception of event 205 15:05:51. The travel-times computed for this
event are based on reported origin time and location for a nuclear explosion in south-central
Nevada.
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Inspection of the record sections (Appendicies D and E) shows that the level of
background noise at the sites influenced both the times of onset and termination of the
recordings at some of the sites. With the GEOS programmed to utilize a trigger algorithm
based on the computed ratio of a short-term to long-term average, the systems did not
initiate recording, until the signal strength (short-term average) exceeded the background
level (long-term average) by a preselected amount. By the same token the present GEOS
algorithm is programmed to terminate recording once the signal strength falls below this
initial level for a preselected amount of time. This algorithm has proved especially useful
for recording local, regional and in some cases large teleseisms with associated variable-
signal duration chosen automatically by the recording system. Although the systems could
have been programmed to record for a preselected fixed amount of time, we elected to let
the systems automatically select event durations based on event size relative to background
noise level resulting in the shorter and variable record length apparent at some stations.

OBSERVED AND ESTIMATED TRAVEL-TIMES FOR THE
PROFILE EXTENDING FROM EPICENTRAL REGION NEAR
CHALFANT, CA TO REGION NEAR FALLON, NV

Eaton (1963) developed an average one-layer velocity model using data collected on
an unreversed profile extending from near Fallon, Nevada to Owens Valley (~350 km).
Assuming a single layer model he deduced an average thickness along the profile of about
31 km with an average P velocity for the upper layer of 6.02 km/sec. As an alternative, he
considered a model with an intermediate layer at 19 km depth with a velocity of 6.58 km/sec
and total crustal thickness of 34.5 km. Based on data from a transverse east-west profile
(Fallon-Eureka), his data indicated crustal thickening along the profile to 40 km and
44.9 km, respectively, for the one- and two-layer models in the vicinity of Owens Valley.
Prodehl (1979) reinterpreted these data to infer a continuous velocity gradient model from
Fallon to Mono Lake. He also provided a model based on a very limited data set (8 spreads
to 160 km) reversing the profile from Mono to Fallon. His interpretations indicate crustal
thickening from about 31 km south of Fallon to about 41 km near Mono Lake with relatively
steep velocity gradients within a few kilometers of the surface and at the base of the crust.

In an attempt to develop an average reference model, against which the earthquake
data could be checked and the events could be identified, we compared observed travel-
times for the initial P wave arrival and the onset of a prominent secondary phase with
those calculated based on models of Prodehl (1979), and preliminary models derived from
the controlled source data. The calculations were made assuming flat-lying layers with
linear gradients as could be specified by computer program R1D (Leutgert, 1983, pers.
comm.). Both the Fallon-Mono and Mono-Fallon models interpreted by Prodehl (1979)
were used, but were found to predict travel-times inconsistent with those observed. By
trial and error we found that maintaining the midcrustal velocities on Prodehl’s Fallon—-
Mono profile, extending the mid-crustal gradient, extending the thickness of the crust to
an average value of 38 km, and by using a Pn velocity of 7.9 with a gradient of 0.01
km/sec/km for upper mantle (see Figure 9a), we obtained a trial model which seemed
to be relatively consistent with the observed travel-times. This model is not proposed
as a final interpretation but instead as a reference model against which to identify the
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events and to check for obvious errors associated with origin times, instrumental timing
corrections, and event locations. The model as proposed (Figure 9a) is roughly consistent
with Eaton’s (1963) observations.

A ray diagram (Figure 9b), synthetic seismogram section (Figure 10a) and corre-
sponding amplitudes (Figure 10b) were computed for this model using program RAYAMP
initially developed by Spence et al., 1984 and adopted for the IBM PC by Crossley (1987).
For the model under consideration, the ray diagram depicts paths for Pps P, the direct wave,
P,, and the diving wave (Figure 9b). The synthetics for the model suggest at distances of
about 300 km the diving wave should slightly precede P, with larger amplitude arrivals
about 6 seconds later corresponding to Py P and the direct wave. For this model with the
source at a depth of about 15 km, the ray diagram suggests that the diving rays would
bottom at depths between about 45-50 km for the epicentral distance range 250-300 km
over which the earthquakes were observed. For the greater distances of about 370 km,
corresponding to the nuclear explosion in south-central Nevada that also was recorded
during the first deployment interval, the ray diagram suggests that the diving rays bottom
between 55-60 km. A more accurate model based on a thickened crust beneath:Chalfant
would predict somewhat deeper penetration for these rays.

The observed travel-times are plotted in Figures 11-15 for each of the events listed in
Table 7. Also shown in each of the figures are the theoretical travel-times computed for
the events using the depth for the event (see Table 7) and the preliminary velocity model
(Figure 9a). Comparison of the observed and estimated times was helpful in identifying
the events and in identifying origin time and location errors.

For several of the events the average model seems to predict the observed times
relatively consistently, while for others residuals as much as 1-2 seconds are apparent.
We have checked all of the event recordings for possible timing errors and have found that
the largest errors (not shown) were associated with either misidentification of the event
location or its origin time. We expect that complications in crustal thickening to the
west beneath the epicentral region and thinning to the north are accounting for some of
the apparent residuals in the Chalfant travel-times. We expect that errors in identifying
a consistent secondary arrival (e.g., Py P) are accounting for some of the scatter in the
secondary residuals and variations in apparent velocity for the arrivals indicted. Errors in
depth determinations and station residuals associated with varying thicknesses of alluvium
beneath the recording stations are also possible contributory factors. Applicability of the
model to the nuclear data is also in question. We think that the events presented are
correctly identified with respect to origin time and location as inferred from the referenced
models, however, the high level of seismicity at the magnitude 2.5-3.5 range in the Chalfant
region during the experiments allowed events in the Chalfant region to be easily confused
with events in surrounding regions. Consequently, detailed studies of these events should
examine carefully the identifications presented for the events.

SENSOR AND RECORDING SYSTEM RESPONSE AS
CALCULATED FROM SIGNALS RECORDED IN SITU

Calibration signals for the sensors and the recording equipment were recorded for each
deployment location with recording parameters as indicated in Table 9. These signals,
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automatically generated by GEOS, provide a basis for accurate inference of actual ground
motion as recorded at the GEOS locations. For those sites colocated with instrumentation
installed by other institutions and groups, these calibration signals together with source
signals are useful for inferring response differences in the various types of instrumentation.
Two signals, generated automatically by GEOS, are utilized as calibration for the data
recorded on the velocity transducers. Termination of a known DC voltage applied to
the main coil is used as a calibration signal for the complete sensor-recording system. An
impulse voltage applied at the input of the recording system is used to provide a calibration
signal for the recording system independent of the sensors. Utilization of both calibration
signals allows the system response for the recording system and the transducer-recording
system combination to be estimated. Fourier amplitude spectra computed for each of the
two types of calibration time histories as recorded at the field locations indicated in Table 9
are shown in Appendix F.

The output signal recorded as a result of the termination in DC voltage to the sensor
coil is rich in low-frequency content. This input signal simulates a step-function in ground
acceleration applied to the mass of the seismometer. As the derivative of this input function
can be approximated by a delta function, the unit impulse response of the complete sensor-
recording system to ground velocity can be estimated from the Fourier transform of the
recorded time history multiplied by the square of angular frequency. Examples of the
Fourier amplitude spectra computed for each deployment location are shown for each of
the velocity transducer channels in the left-hand column of each figure in Appendix F.
These spectra emphasize that the recorded output signal is rich in low-frequency content
and is most useful for estimating the unit impulse response to ground velocity for the
sensor-recording system combination up to a high-frequency limit imposed by the corner
of the selected anti-aliasing filter and seismic background noise levels. Examination of
the computed spectra show that high background noise levels at the times the calibration
signals were recorded indicates that the computed high-frequency response is contaminated
by noise and not adequate for inferring actual instrument response.

The Fourier amplitude spectra computed from the output signal generated by the
impulse in voltage applied at the input of the recording system is shown for each channel
in the right-hand column of each figure in Appendix F. These spectra provide an estimate
for the amplitude response of the recording system to ground velocity. As the input signal
and resulting output signal are especially rich in high frequencies these spectra indicate
that the high-frequency response of the recording system can be estimated for frequencies
greater than some low-frequency limit imposed by the relative strength of the applied
impulse voltage for the selected gain setting relative to least-count instrument noise levels.

Utilization of the information contained in each of the recorded calibration signals
permits a rather detailed estimate of instrumentation response to be calculated for each
deployment location. Such estimates can be used to automatically correct data recorded
on GEOS for instrumentation response and to scale data recorded on colocated recording
instrumentation installed by other institutions. The long-period levels of the amplitude
response, computed for the GEOS, are dependent on the strength of the input signal,
gain setting, sampling rate, and, of course, the response characteristics of the sensor and
recording system. The amplitude responses computed for the recording system (right-
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hand columns; Appendix F) show a dependence on sampling rate, because the impulse
applied to the input of the recording system is chosen automatically by the GEOS to
be one sample in duration (e.g., compare Figures F1, F3, and F6 computed at 400 sps
with Figures F2 and F4 computed at 200 sps). The input signal, one sample in duration,
is useful for diagnosing system noise characteristics, but a more stable input signal for
routine calibration is expected to be that which might be developed using a random
number algorithm. Such a calibration algorithm has been implemented on the IM-6100
by Prothero (W. Prothero, pers. commun.). Time permitting, we hope also to implement
this algorithm on the GEQOS.

Inspection of the amplitude response curves for the recording systems (GEQOS) (right-
hand column of each figure; Appendix F') shows that the curves are quite consistent with
minor variations in the amplification level and the fall-off characteristics for the anti-
aliasing filters apparent for some of the systems. The curves computed from the input
signals recorded at 200 sps are in general more stable than those computed from signals
recorded at 400 sps due to the improved stability of the input signal. The lack of stability
at the higher sampling rate is not indicative of the response of the recording system
but instead the characteristics of the input signal as generated by the digital-to-analog
converter used for calibration purposes.

Comparison of the curves computed to estimate the sensor-recording system response
(left-hand column; Appendix F) shows variations for frequencies less than the natural
frequency of the sensors (nominally 2 Hz). The response of the sensor used at station G-79
(sensor #302, see Table 9) suggests that the radial component of the sensor was possibly
not performing properly to high frequencies. Irregularities in the response curves near the
corner frequency of the anti-aliasing filters are due to the level of seismic background noise
relative to that of the input signal.

The results of checking the time stamps for each block of each recording are
summarized in Table 10. These timing checks are determined by a computer program
developed by G. Maxwell to compare the computed time for each corresponding sample
with that recorded. The computed times are determined from the selected sample rate
and WWYVB times and timing corrections recorded by GEQS. The program is executed
to detect missing data as might be caused by dust particles on the tape or instrument
malfunction. The times for which the computed time varied by more than 0.3 percent from
that recorded are summarized in Table 10. These time variations are possibly significant
only for the recordings of a shot or earthquake that occurred during a time interval which
includes the indicated time. The computed and recorded time differences that varied
by more than 0.3% are summarized in Table 10. Timing of samples subsequent to the
indicated times for only the events including the tabulated times (Table 10) should be
corrected by the difference between the computed and actual differences.

FORMATS FOR ARCHIVAL AND DISTRIBUTION OF
DIGITAL TIME SERIES

The digital time series described herein are available in three formats. For processing
and analysis of the GEQS data at the U.S. Geological Survey, we conventionally use the
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data in what is termed NSMDC (National Strong Motion Data Center) format (also termed
“GEOS” or “DR-100” format). For analysis of the data set in conjunction with the data
collected using the analog cassette recorders developed at the U.S. Geological Survey (Healy
et al., 1982) the data is transferred to “Refraction” format. For distribution of the data
set by the IRIS Data Management Center and to facilitate its usage by other centers, we
also present the data in SEG-Y format (Barry et al., 1985). This chapter describes the
GEOS format and presents the mapping of the GEOS header information into the SEG-Y
header. For a detailed description of SEG-Y format the reader is referred to Barry et al.,
1985.

Data Format for GEQS Tape Cartridges

The GEOS recording unit writes data records onto a 1/4-inch digital magnetic tape
cartridge conforming to ANSI specification X3.55-1977. The tape drive writes four tracks
of data, one track at a time, in a “Serpentine” manner. When one track of data has been
completed, the tape-drive writes the subsequent track of data in the opposite direction.
The tape drives used for this study write data at a density of 1600 bits per inch.

Data on a tape cartridge are organized into events. An event is organized as one or
more records of data, followed by a tape file mark. Two types of events are recognized:
clock events which provide time standard information, and seismic data events, including
calibrations.

Each data record is composed of 512 16-bit words, or 1024 8-bit bytes. A seismic data
record contains a time stamp followed by a stream of multiplexed digitized samples from
all active channels. For example, a typical seismic data record for an event with channels
4, 5, and 6 active would be organized thus:

Word It Year (last two digits)
Word 2: Julian day of year
Word 3: Hour of day
Word 4: Minutes

Word 5: Seconds

Word 6: Milliseconds
Word 7: Channel 4 data
Word 8: Channel 5 data
Word 9: Channel 6 data
Word  10: Channel 4 data
Word 11: Channel 5 data

Word 508: Channel 4 data
Word 509: Channel 5 data
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Word 510: Channel 6 data

The time stamp in each data record is directly associated with the first sample in the data
record. Note that some words out of a data record may not be used; such free words may
be used for other purposes in future versions of the GEOS software.

The first data record of an event contains a special block of data, called an event
header.* When the GEOS begins writing data to the cartridge tape, it overwrites the
seismic data already sampled into the first part of the first data record with the event
header. The format of a GEOS event header as presently defined is given in Table 11.
With this method, the time stamp which precedes the event header applies to forty-nine
data samples which have been overwritten. In the data analysis procedures, this time is
adjusted to correctly reflect the time of the first sample which can be used from the first
data record.

National Strong Motion Data Center Format

Data recorded by GEOS currently are read and analyzed by a Digital Equipment
Corporation PDP-11/70 minicomputer which runs the RSX-11M-Plus operating system.
The data is demultiplexed and stored as disk-resident time series files which conform to a
data format (NSMDC format) developed initially by Jon B. Fletcher and Joanne Vinton.

Data File Organization. A single GEOS seismic event is converted to one or more
files under the NSMDC format. Each NSMDC format file contains digitized data from a
single motion component. Therefore, a single GEOS seismic event can generate between
one and six NSMDC format files.

Each NSMDOC file contains header information regarding the physical and electronic
aspects of the digitized data. Although this causes some redundant information to be
included with each component file from one seismic event, each component may be
processed separately and independently from all other components of the same event.

A file is composed of 16-bit signed integer values and 32-bit floating point values in
PDP-11 floating point format. Data may be represented in either integer or floating point
format, but only one format may be used in one file. GEQOS data is always stored in integer
format.

Each file is organized into 512-byte records. This record size was chosen because it
is the blocksize of a PDP-11 or VAX disk block. Data may then be processed by using
efficient read and write requests.

Each file is organized as follows:

Record 1: Header record (integer)
Record 2: Header record (floating point)
Record 3: Data record #1

*Event header information is subject to change in future releases of the GEOS software.
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Record 4: Data record #2

Record 2+n: Data record #n

The ability to define extra header records has been incorporated into the data format to
allow for storage of additional information. If used, these header records would follow the
floating point header record.

Data file naming convention. The NSMDC file format has a very rigid file naming
format. The file name is generated from the following information: the time the first
data sample in the file was recorded; the particular component the file represents; and the
three-character station name where the GEOS recorder or motion sensor was located.

Specifically, a NSMDC file name has the following form:
JJIJHHMMSC.STA

where “JJJ” is the Julian day of the year, “HH” is the hour in 24-hour format, “MM” is
the minute of the hour, “S” is a letter code from A to T which represents the three-second

interval of the minute, “C” is the component number, and “STA” is the 3-letter station
name.

Regarding specific fields of the file name, the following conventions have been
established. The time must be normalized to Coordinated Universal Time (Greenwich
Mean Time). By convention, components 1 through 3 are reserved for acceleration motion,
4 through 6 are used for velocity motion, and 7 through 9 are reserved for displacement.
Components 1, 4, and 7 represent the vertical component of motion or displacement; 2, 5,
and 8 represent the longitude component (typically true north); 3, 6, and 9 represent the
transverse component (typically true east). The exact orientation of each component is
specified within the header data for each file.

File header definitions. The header offsets which are utilized for data recorded
by GEOS are presented in Tables 12 and 13. Not all of these offsets are rectified
immediately when data files are created; headers are usually edited in subsequent
processing. Furthermore, data recorded by other instruments may not require the use
of some of these offsets in the headers. The absence of data in a particular header field
is indicated by the use of the “undefined value” in such fields. The “undefined value”
is usually the most negative integer which can be represented with 16 bits (—32768) or
the smallest reprsentable 32-bit floating point number in PDP-11 floating point format
(1.7 x 10%®).
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SEG-Y Header Format for NSMDC Format Files Created from GEQOS Data

This section describes the mapping used to transfer NSMDC header information into
SEG-Y format. The definition of the mapping is based on definitions of the byte fields for
SEG-Y headers as given by Barry et al., 1985. A list of the SEG-Y byte fields together
with the real (R) and integer (I) locations of corresponding information in the NSMDC
header (compare definitions of Barry et al., 1985 with Tables 12 and 13) is presented
in Table 14. For the byte fields with identification numbers less than or equal to 180,
definitions given for SEG-Y and NSMDC were interpreted to be equivalent. The SEG-Y
byte fields with larger identification members are used to store NSMDC header entries for
which there is no equivalent SEG-Y entry. Descriptions of the entries for the various byte
fields, as given in Table 14, are presented in the context of the NSMDC format.

The magnetic tapes (nine-track; 1/2 inch) containing the digital data reported herein
and submitted to the IRIS data management center are written at 1600 or 6250 bpi with
header entries as identified in Table 14. Each tape contains a reel-identification header
with information describing the tape and its contents. Part one of this header contains
alphanumeric text in a EBCDIC card image block; part two contains additional information
for various byte fields as identified in Table 14 in a binary coded block. Each digital time
series presented on the tape is preceded by a trace-identification header as described in
Table 14.

A difficulty encountered in presenting the GEOS data in SEG-Y format was the
requirement for the digital time series to be written into a single block. Several of
the earthquake recordings sampled with high resolution (400 sps) contained more digital
samples than that of maximum block sizes (32,767 bytes; VAX 11/785) easily interpretable
by standard computer systems. As IRIS-standard software had not been developed at this
writing (J. Scheimer, oral commun.); we partially circumvented this difficulty by selecting
block size of 32,256 for digital time series and 240-byte header as an upper limit to write
to tape. This block size accommodates 81.24 seconds of the digital time series at 200 sps.
For those events recorded at 400 samples per second the time series were filtered for
anti-aliasing with a 2-pole filter applied twice to yield zero phase-shift. These traces were
decimated to a standard sampling rate of 200 samples per second. Unfortunately, the sixty-
second interval is not sufficient to present the recordings of some of the larger earthquakes
in their entirety. Until a standard is adopted, access to the entire recording requires that
the user use the tapes written in NSMDC format.
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Table 1:

Master Shot List—Identification number, time, size and location param-

eters for chemical explosions detonated during Northern Nevada Lithospheric
Experiments—PASSCAL.

Shot Shot Date Latitude Elev Size

Number Point Shot Time Longitude (1t.) (Ibs.)

1 8 JUL 22, 1986 41 1.1660 4300 3000
204 5 0 0.016 117 43.0850

2 10 JUL 22, 1986 39 43.3254 3950 2000
204 5 4 0.009 118 17.6982

3 11 JUL 22, 1986 39 21.6223 3930 3000
204 5 6 0.010 118 32.8789

4 1 JUL 22, 1986 40 34.9624 3900 3000
204 5 8 0.008 119 27.5166

5 9 JUL 23, 1986 40 27.9109 4920 2000
204 7 0 0.008 117 51.7158

6 8 JUL 23, 1986 41 1.1660 6860 3000
204 7 2 0.011 117 43.0850

7 11 JUL 23, 1986 39 21.6223 3930 2200
204 7 5 56.986 118 32.8789

8 4 JUL 23, 1986 40 5.7737 4120 2000
204 7 8 0.009 117 59.4604

9 4 JUL 25, 1986 40 5.7737 4120 3000
207 5 0 0.010 117 59.4604

10 5 JUL 25, 1986 39 52.5652 4550 4000
207 5 2 0.009 117 31.8740

11 1 JUL 25, 1986 40 34.9624 3900 3000
207 5 4 0.130 119 27.5166

12 3 JUL 25, 1986 40 15.5601 4300 2000
207 5 6 5.848 118 28.4468

13 7 JUL 25, 1986 39 28.2034 6340 6000
204 5 8 0.012 116 32.5405

14 12 JUL 26, 1986 40 6.8945 4130 600
207 7 0 0.008 118 6.2925

15 8 JUL 26, 1986 41 1.1660 4300 2000
207 7 6 0.096 117 43.0850

16 13 JUL 26, 1986 40 8.8538 4800 500
207 9 0 0.010 118 9.7485

17 2 JUL 26, 1986 40 24.5386 4160 2000
207 9 4 0.320 118 54.6162

(Continued)
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Table 1:

Master Shot List—Identification number, time, size and location param-

eters for chemical explosions detonated during Northern Nevada Lithospheric
Experiments—PASSCAL (Continued).

Shot Shot Date Latitude Elev Size

Number  Point Shot Time Longitude (ft.) (Ibs.)

18 7 JUL 29, 1986 39 28.2034 6340 3000
211 5 0 0.008 116 32.5405

19 8 JUL 29, 1986 41 1.1660 4300 1500
211 5 2 0.012 117 43.0850

20 14 JUL 29, 1986 40 2.4404 3500 500
211 5 4 0.012 117 46.5786

21 1 JUL 29, 1986 40 34.9624 3900 6000
211 5 6 0.012 119 27.5166

22 15 JUL 29, 1986 39 56.2168 3760 500
211 5 8 0.011 117 41.2944

23 4 JUL 30, 1986 40 5.7737 4120 3000
211 7 0 0.008 117 59.4604

24 3 JUL 30, 1986 40 15.5601 4020 4000
211 7 2 0.012 118 28.4468

25 6 JUL 30, 1986 39 36.4834 6860 1000
211 7 6 0.008 116 54.4380

26 5 JUL 30, 1986 39 52.5652 4550 2000
211 7 8 0.009 117 31.8740

27 4 JUL 30, 1986 40 5.7737 4120 30
211 9 4 0.012 117 59.4604
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Table 2: Station identifications, station locations and instrument parameters used to record
the controlled sources for each of the three deployment intervals used for the Northern
Nevada Lithospheric Experiments.

STATION LATITUDE LONGITUDE UNIT SAMPLE RATE/ SENSOR-L22 ANTI-ALIAS FILTER
CHANNEL (SPS) NO. | GAIN CORNER FREQ.(HZ) COMMENTS

c64 40 08.29 117 56.70 7 400 191 54 100
G65 40 07.6 117 57.49 9 400 305 54 100
G66 40 06.93 117 58.25 S 400 186 54 100
c67 40 06.29 117 59.00 33 400 197 54 100 L-22 NO. UNCERTAIN
ce8 40 05.82 117 59.35 1S 200 198 54 S0 FBA NO. 38; 6DB, 50HZ
G69 40 05.05 118 00.31 36 400 304 54 100
G70 40 04.21 118 00.64 21 400 307 54 100
FIRST ¢n 40 03.71 118 01.66 17 400 162 54 100
G72 40 02.96 118 02.48 4 400 183 54 100
DEPLOYMENT G73 40 02.02 118 02.80 8 400 184 54 100
G75 40 00.95 118 03.97 24 400 303 54 100
c7? 39 59.79 118 05.35 10 400 200 54 100
G79 39 58.58 118 07.83 39 400 302 54 100
Gs1 39 56.67 118 08.74 12 400 160 54 100
G8s 39 53.66 118 13.38 16 400 201 54 100 L-22 NO. UNCERTAIN
c87 39 52.15 118 13.95 29 400 306 54 100
G89 39 50.63 118 14.37 22 400 308 54 100
G91 39 49.09 118 14.56 38 400 309 54 100
c93 39 47.63 118 15.13 34 400 311 54 100
G59 40 11.69 117 53.0 s 400 186 60 100
G61 40 10.32 117 54.47 38 400 183 60 100 L-22 NO. UNCERTAIN
G63 40 08.99 117 55.94 7 400 191 60 100
G65 40 07.6 117 57.49 22 400 3305 60 100
G67 40 06.29 117 59.00 33 400 198 60 100
G69 40 05.05 118 00.31 4 400 307 60 100
cn 40 03.71 118 01.66 17 400 162 60 100
SECOND G73 40 02.02 118 02.80 8 400 184 60 100
G75 40 00.95 118 03.97 24 400 303 60 100
DEPLOYMENT G77 39 59.79 118 05.35 10 400 200 60 100
G79 39 58.58 118 07.83 39 400 302 60 100
G81 39 56.67 118 08.74 12 400 160 60 100
G83 39 54.91 118 10.13 27 400 310 60 100
G8s 39 53.66 118 13.38 16 400 201 60 100 L-22 NO. UNCERTAIN
G8? 39 §2.15 118 13.95 29 400 306 60 100
(1] 39 50.63 118 14.37 15 400 308 60 100
Go1 39 49.09 118 14.56 34 400 309 60 100
G93 39 47.63 118 15.13 31 400 311 60 100
Gss 39 46.14 118 15.94 35 400 187 60 100 L-22 NO. UNCERTAIN
G34 40 07.44 118 07.36 4 200 303 60 5¢
G37 40 06.78 118 05.82 21 200 304 60 S0
G40 40 06.48 118 03.93 10 200 161 60 S0
443 40 06.19 118 02.12 24 200 307 60 so
446 40 05.90 118 00.31 12 200 302 60 S0
402 40 05.41 117 58.29 36 200 310 60 50
405 40 05.25 117 55.21 27 200 160 60 S0
408 40 04.73 117 52.55 22 200 184 60 S0
THIRD 411 40 04.44 117 50.13 17 200 200 60 50
414 40 04.55 117 47.96 15 200 306 60 50
DEPLOYMENT 417 40 02.83 117 47.19 7 200 191 60 S0 L-22 NO. UNCERTAIN
420 40 01.56 117 45.86 34 200 198 60 50 L-22 NO. UNCERTAIN
423 40 00.41 117 44.73 31 200 159 60 50
426 39 58.75 117 43.19 33 200 311 60 50
428 39 5§7.32 117 42.56 35S 200 305 60 50
431 39 56.15 117 40.81 38 200 187 60 50
434 39 5§5.67 117 39.10 16 200 186 60 S0
437 39 55.04 117 37.55 9 200 201 60 S0
440 39 54.25 117 35.80 29 200 183 60 S0
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Table 6: Origin time, location, depth, and size for earthquakes near Chalfant, CA, recorded
at three or more GEOS stations. (see text)

CHALFANT EARTHQUAKES RECORDED AT THREE OR MCRE GEOS STATIONS

TIME LAT. LONG. DEP. MAG. RATING
(@m) (degrees) =)
202 20:36:04.54 37-31.69 118-26.42 11.0 3.7 BER|AC
202 21:08:41.21 37-35.09 118-27.36 8.3 3.4 CR|AD
202 21:51:44.35 37-36.12 118-25.79 5.2 3.2 ER |AB
%202 22:07:16.70 37-29.40 118-25.74 19.5 5.5? -D-
202 22:39:17.94 37-36.67 118-34.48 0.1 2.7 DR |DC
202 23:43:05.93 37-35.83 118-28.14 9.4 3.2 BR|BA
(203 00:09:53.21 37-36.70 118-25.64 3.8 3.5 DR |DD)
203 00:09:53.23 37-36.53 118-25.77 4.8 -?- BC|AB
203 02:21:31.02 37-36.06 118-28.77 8.7 3.0 BR|BA
203 03:02:10.26 37-35.04 118-28.40 8.3 3.5 BR|BA
203 03:17:41.84 37-36.82 118-29.61 8.7 2.8 R |DC
203 03:18:47.63 37-31.89 118-26.12 10.1 3.2 CR|AD
203 03:47:09.53 37-33.32 118-26.53 11.2 2.9 AR |AA
203 03:51:04.16 37-28.27 118-22.25 11.7 3.0 CR|BD
203 04:11:34.53 37-34.81 118-28.00 8.8 2.8 AR |AA
203 04:22:46.99 37-34.33 118-29.17 12.8 2.8 CR|AD
203 05:05:20.68 37-35.59 118-25.49 5.6 3.2 BR|BB
(203 05:24:04.76 37-33.06 118-18.11 0.8 3.2 DR |DD)
203 05:24:07.42 37-33.22 118-25.12 6.9 ? BC|AB
203 05:40:43.79 37-32.21 118-28.61 0.9 3.5 CR|DB
203 06:21:52.32 37-27.00 118-23.10 13.3 3.7 AR [AA
203 06:33:38.68 37-32.00 118-25.96 12.0 3.2 BR|CA
203 06:43:26.43 37-32.00 118-26.03 12.6 2.9 AR |AA
(203 06:57:59.89 37-29.26 118-21.88 6.1 3.6 CR |AD)
203 06:58:10.64 37-36.65 118-28.13 9.2 ? AC|AA
203 07:55:28.78 37-35.59 118-27.04 8.9 2.6 CR |AD
203 08:29:15.22 37-31.99 118-24.86 4.2 3.4 CR|BC
203 09:34:15.65 37-27.21 118-22.60 10.0 3.3 AR |AA
203 12:15:47.03 37-36.57 118-28.08 10.6 2.9 ER|CA
203 12:24:49.57 37-31.60 118-28.36 11.8 3.9 ER|BA
203 13:33:59.35 37-32.03 118-28.36 11.3 3.7 ER |BA
203 13:48:44.21 37-26.29 118-24.40 11.3 4.0 LR | DD
203 13:48:46.29 37-34.59 118-33.19 9.6 4.1 DR |DC
203 13:48:59.21 37-31.82 118-28.47 11.5 -?- AC|AA
203 13:57:34.23 37-31.83 118-28.46 12.6 3.2 CR|AD
203 17:12:00.55 37-30.22 118-28.35 5.3 3.2 BR|AB
203 17:17:20.92 37-30.94 118-25.94 11.4 3.6 CR|AD
%203 18:29:43.13 37-29.58 118-22.98 8.7 4.1 -C-
205 01:17:09.22 37-34.61 118-28.39 9.8 3.2 AR |AA
205 02:43:10.35 37-36.16 118-28.06 4.0 3.5 ER |AB
205 06:10:04.67 37-27.71 118-21.50 9.3 3.5 CR|AD
205 09:22:30.19 37-33.99 118-25.57 6.1 3.0 DR |DD
205 11:34:50.82 37-32.73 118-25.79 13.3 3.1 BR |AB
205 14:58:44.34 37-29.35 118-22.60 8.6 3.3 CR|AD
n205 15:05:00.09 37-08.56 116-04.27 0.4 4.4 -
205 16:44:39.77 37-33.64 118-24.83 11.6 3.3 CR|BC
205 19:03:25.25 37-28.30 118-21.76 10.0 3.5 CR|AD
206 06:10:30.40 37-31.45 118-28.60 13.4 3.1 BR |AB
206 09:31:38.37 37-31.62 118-26.09 10.5 2.8 AR |AA
206 10:11:03.94 37-34.88 118-28.76 9.0 3.0 BR|CA
210 07:11:58.18 37-32.88 118-26.26 10.1 3.6 BR |AB
210 09:57:56.47 37-35.76 118-27.45 12.1 3.9 CR|AD

* = egarthquakes timed and located from a different listing
( ) = origin times and locations that are uncertain



Table 7: Twenty of the better recorded events, with seismograms shown for 20 second
duration in Appendix D, with distances and azimuths computed with respect to station

G69.

202
*202
203
203
203
203
203
203
203
203
203
203
203
*203
205
n205
205
206
210
210

TIME
(@MT)

21:51:44.35
22:07:16.70
00:09:53.23
02:21:31.02
03:02:10.26
05:05:20.68
05:40:43.79
06:21:52.32
06:33:38.68
08:29:15.22
12:24:49.57
13:33:59.35
13:48:59.21
18:29:43.13
02:43:10.35
15:05:00.09
19:03:25.25
10:11:03.94
07:11:58.18
09:57:56.47

NIS shot

LAT

37-36.12
37-29.40
37-36.53
37-36.06
37-35.04
37-35.59
37-32.21
37-27.00
37-32.00
37-31.99
37-31.60
37~32.03
37-31.82
37-29.58
37-~36.16
37-08.56
37-28.30
37-34.88
37-32.88
37-35.76

LONG.

(degrees)

118-25.79
118 25.74
118-25.77
118-28.77
118-28.40
118-25.49
118-28.61
118-23.10
118-25.96
118-24.86
118-28.36
118-28.36
118-28.47
118-22.98
118-28.06
116-04.27
118-21.76
118-28.76
118-26.26
118-27.45

earthquakes timed and located

DEP. MAG. AZIM.

(iam)
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EPI /HYPO-DIST.

278
290
277
279
280
279
286
294
286
285
287
286

(ian)

.43
.78
.68
.14
.94
.35
.17
.74
.04
.85
.24
.45

286 .86
289.92
278.81
367.67
292.13
281.30
284 .48
279.42

from a different listing

278.37
290.71
277.61
279.08
280.87
279.20
286.10
294.67
285.97
285.79
287.17
286.38
286.79
289.90
278.75
367.57
292.06
281.24
284.41
279.35
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Table 8: Nine of the better recorded events, with seismograms shown for 60 second duration
in Appendix E, with distances and azimuths computed with respect to station G69.

CHALFANT EARTHQUAKES (60 SECOND TIME SERIES)

TIME LAT. LONG. DEP. MAG. AZIM. EPI/HYPO-DIST. RATING
(cu1) (degrees) (iam) (deg.) (am)
202 21:51:44.35 37-36.12 118-25.79 5.2 3.2 8 278.43 278.37 BR|AB
%202 22:07:16.70 37-29.40 118 25.74 19.5 5.5? 7 290.78 290.71 -D-
203 02:21:31.02 37-36.06 118-28.77 8.7 3.0 9 279.14 279.08 BR|BA
203 03:02:10.26 37-35.04 118-28.40 8.3 3.5 8 280.94 280.87 BR|BA
203 06:21:52.32 37-27.00 118-23.10 13.3 3.7 7 294.74 294.67 AR|AA
203 12:24:49.57 37-31.60 118-28.36 11.8 3.9 8 287.24 287.17 BR|BA
203 13:48:59.21 37-31.82 118-28.47 11.5 -?- 8 286.86 286.79 DR|CD
n205 15:05:00.09 37-08.56 116-04.27 0.4 4.4 332 367.67 367.57 -
210 09:57:56.47 37-35.76 118-27.45 12.1 3.9 8 279.42 279.35 CR|AD
* = earthquakes timed and located from a different listing
n = NTS shot
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Table 9: GEOS recording parameters used to record in-situ calibration signals.

CALIBRATIONS WITH SPECTRA IN APPENDIX E

STATION LATITUDE LONGITUDE UNIT SAMPLE RATE/ SENSOR-L22  ANTI-ALIAS FILTER
CHANNEL (SPS) NO. | GAIN CORNER EREQ. (HZ)

G61 40 10.32 117 54.47 36 400 183 60 100
G63 40 08.99 117 55.94 7 200 191 54 50
G64 40 08.29 117 56.70 7 400 191 54 100
G65 40 07.6 117 57.49 22 200 305 54 50
G67 40 06.29 117 59.00 33 400 197 54 100
G68 40 05.82 117 59.35 15 400 198 54 100
G69 40 05.05 118 00.31 36 400 304 54 100
G70 40 04.21 118 00.64 21 400 307 54 100
G71 40 03.71 118 01.66 17 400 162 54 100
G73 40 02.02 118 02.80 8 400 184 54 100
G75 40 00.95 118 03.97 24 400 303 54 100
G79 39 58.58 118 07.83 39 400 302 54 100
G8l 39 56.67 118 08.74 12 400 160 54 100
G83 39 54.91 118 10.13 27 200 310 54 50
G85 39 53.66 118 13.38 16 400 201 54 100
G87 39 52.15 118 13.95 29 200 306 54 50
G89 39 50.63 118 14.37 22 400 308 54 100
G911 39 49.09 118 14.56 38 400 309 54 100
G93 39 47.63 118 15.13 31 200 311 54 50
G95 39 46.14 118 15.94 35 200 187 54 50
402 40 05.41 117 58.29 38 200 310 60 50
405 40 05.25 117 55.21 27 200 160 60 50
414 40 04.55 117 47.96 15 200 306 54 50
417 40 02.83 117 47.19 7 200 191 54 50
420 40 01.56 117 45.86 39 200 198 54 50
423 40 00.41 117 44.73 31 200 159 54 50
426 39 58.75 117 43.19 33 200 311 54 50
431 39 56.15 117 40.81 36 200 187 60 50
440 39 54.25 117 35.80 29 200 183 60 50
443 40 06.19 118 02.12 24 200 307 60 50
446 40 05.90 118 00.31 12 200 302 60 50
G37 40 06.78 118 05.82 21 200 304 60 50
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Table 10: Summary of timing checks with differences greater than 0.3%

CHEMICAL EXPLOSIONS

Station Time at error Exp. Diff Actual Diff
G67 204:05:04:24.804000 0.310000 0.420000
G71 204:07:08:09.730000 0.352500 0.420000
G8l 204:07:01:41.873000 0.107500 0.420000
G69 207:05:06:10.783000 0.420000 0.000000
G79 207:05:04:38.093000 0.420000 0.840000
G89 207:05:06:45.012000 0.420000 0.840000
G911 207:05:01:18.635000 0.420000 0.840000
G65S 207:07:07:25.676000 0.267500 0.420000
G73 207:07:00:10.008000 0.420000 0.422000
G77 207:07:09:43.357000 0.420000 0.840000
G79 207:07:06:22.850000 0.157500 0.420000
G85 207:07:01:12.793000 0.107500 0.420000
G91 207:07:00:53.570000 0.420000 0.840000
G59 207:09:05:19.142000 0.420000 0.840000
207:09:05:19.562000 0.840000 0.420000
G89 207:08:59:59.008000 0.420000 0.422000
207:09:00:20.009000 0.420000 0.422000
G93 207:08:59:53.129000 0.382500 0.381000
207:09:00:00.689000 0.420000 0.840000
207:09:00:01.109000 0.840000 0.420000
G37 211:05:00:11.912000 0.840000 2.520000
211:05:00:12.752000 2.520000 0.840000
423 211:07:08:08.026000 0.840000 1.680000
211:07:08:08.866000 1.680000 0.840000
G34 211:07:01:25.468000 0.840000 2.520000
211:07:01:26.308000 2.520000 0.840000
EARTHQUAKES
G72 0:00:00:00.000000 0.420000 AAkAARAL
202:22:08:40.812000 0.000000 bbb bbb
G65 203:00:11:51.263000 0.420000 1.260000
203:00:11:51.683000 1.265000 0.420000
G67 203:02:22:14.015000 0.115000 0.420000
G71 203:03:03:21.652000 0.302500 0.420000
203:03:03:29.632000 0.420000 0.840000
G72 203:05:41:48.284000 0.420000 1.260000
203:05:41:48.704000 1.265000 0.420000
G79 203:05:41:53.763000 0.090000 0.420000
G8l 203:06:23:24.712000 0.392500 0.421000
G73 203:13:36:17.298000 0.420000 0.840000
203:13:36:17.718000 0.842500 0.420000
423 210:07:12:57.634000 0.840000 1.680000
210:07:12:58.474000 1.680000 0.840000
420 210:07:13:49.389000 0.840000 1.680000
210:07:13:50.229000 1.680000 0.840000



Table 11: GEOS seismic event header description.

Word 1: Year (last two digits)
Word 2: Julian day of year

Word 3 Hour of day

Word 4: Minutes

Word 5: Seconds

Word 6: Milliseconds

Word 7: Station number

Word 8: Experiment number
Word 9: GEOS serial number
Word 10: Event sequence number
Word 11: Event type code

Word 12: Lowest active channel no.
Word  13: Highest active channel no.
Word  14: Channel 1 sensor type

Word  15: Channel 1 amplifier gain (db)
Word  16: Channel 1 anti-alias filter (Hz)
Word 17: Channel 2 sensor type

Word 18: Channel 2 amplifier gain (db)
Word  19: Channel 2 anti-alias filter (Hz)
Word  20: Channel 3 sensor type

Word 21: Channel 3 amplifier gain (db)
Word  22: Channel 3 anti-alias filter (Hz)
Word 23: Channel 4 sensor type

Word  24: Channel 4 amplifier gain (db)
Word  25: Channel 4 anti-alias filter (Hz)
Word  26: Channel 5 sensor type

Word 2T: Channel 5 amplifier gain (db)
Word  28: Channel 5 anti-alias filter (Hz)
Word  29: Channel 6 sensor type

Word  30: Channel 6 amplifier gain (db)
Word  31: Channel 6 anti-alias filter (Hz)
Word  32: Aggregate sample rate (Hz)
Word  33: Number of pre-event records
Word  34: Number of samples per record
Word  35: Time standard code

Word  36: Clock correction block (8 words)

Word  44: - (Remaining free correction words)
Word  45: Trigger channel number

Word  46: Trigger short term average interval
Word  4T: Trigger long term average interval
Word  48: Trigger short term/long term ratio

Word  49: Battery voltage (encoded)
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Table 12: Definition of GEOS header offsets for first header record.

NN NN
B> N
N N N’ N’

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(27)
(28)
(29)
(30)

(31)
(32)
(83)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43-49)
(50)
(51)

First Header Record: 256 16—Bit Integers

Number of optional integer header records in use

Number of optional ASCII header records in use

“Undefined value” used to flag unused offsets

Data type flag: if positive, data are in floating point format;
if negative, data are in integer format. The absolute value of
this offset specified the number of bytes per data point. Special
cases: if 1, then 32-bit floating point format; if “undefined,”
then 16-bit integer format.

Year of the event

Julian day

Hours

Minutes

Seconds

Milliseconds

Microseconds

Sample number of first time mark

Detection amplitude of tickmark

Number of tickmarks detected

Serial number of recording unit

Event sequence number

Number of first active channel recorded by unit

Recorder channel number used for this component

Number of active channels recorded by unit

Number of components recorded under this component’s sta-
tion name

Number of data records (excluding headers)

Index of the last sample in the last data record

Total samples per data record recorded by unit

Playback program identification code

Playback program major version number

Playback program minor version number

Recording unit type identification code

Major version number of recording unit software

Minor version number of recording unit software

Sensor serial number

Vertical orientation, in degrees

Horizontal orientation, in degrees

Sensor model ID (14 ASCII characters)

Station location number

Experiment or tape number



(52)

Trigger algorithm identification code

(53) Trigger short-term average interval (tenths of seconds)
(54) Trigger long-term average interval (seconds)
(55) Trigger STA/LTA ratio (powers of 2)
(56) Trigger channel number
(57) Pre-event memory size (tenths of seconds)
(58) Post-trigger record duration (seconds)
(101-200) Processing history (ASCII)
(208) Data file directory I.D.
(209) Data file sub-directory I.D.
(210-216) ASCII filename
(217-219) ASCII study name

Notes:

The GEOS does not record tickmarks.
Header record 1, offset 41: vertical orientation is expressed as a number
from 0 to 90, with 0 representing true vertical and 90 representing true

horizontal.

Header record 1, offset 42: horizontal orientation is expressed as a number
from 0 to 359, with 0 representing true north, and 90 representing true east.
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Table 13: Definition of GEOS header offsets for second header record.

Second Header Record: 128 32-Bit Floating Point Values

(1) Number of optional reel header blocks in use

(2 “Undefined value” to flag unused offsets

( 5) Component sampling rate, in samples per second

( 6) Component sample lag, in seconds

(39) Transducer type (four ASCII characters)

(40) Sensor latitude (decimal degrees)

(41) Sensor local x-coordinate (meters)

(42) Sensor longitude (decimal degrees)

(43) Sensor local y-coordinate (meters)

(44) Sensor elevation (meters)

(45) Sensor local z-coordinate (meters)

(46) Digitizing constant, digital counts per volt

(47) Anti-alias corner frequency

(48) Poles of anti-alias filter

(49) Sensor natural frequency (hertz)

(50) Sensor damping coefficient

(51) Sensor motion constant (volts per motion-unit)

(52) Amplifier gain

(60) Clock correction

(61) Seconds since last clock correction

(62) Instrument battery voltage

(63) Desired trigger algorithm STA/LTA ratio

(64) Actual STA value at trigger moment

(65) Actual LTA value at trigger moment

(66) Maximum value of STA/LTA ratio during event
Notes:

Header record 2, offset 48: filter roll-off equals 6 db per pole indicated.
Header record 2, offset 52: gain expressed in dB if Header record 1, offset
5 is equal to one (1); otherwise, gain expressed as an algebraic factor.
Header record 2, offset 60: the clock correction is subtracted from the
time specified in Header record 1 to generate the corrected time.
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Table 14: SEG-Y Header format for including NSMDC Header
entries created for GEOS data.

SEG-Y Byte No.

Reel Identification Header, Part 2

NSMDC Header Description

3205-3208
3209-3212
3213-3214
3215-3216
3217-3218
3221-3222
3225-3226

3227-3228
3255-3256

SEG-Y Byte No.

- Line number

- Reel number

- Number of data traces per
record (always 1)

- Number of auxiliary traces
per record (always 0)

R(5) Sample interval, microseconds

I(31,32) Maximum number of samples in
a data trace on this reel
((1(31)%256)+1(32))

- Data format (always 3, fixed
2-byte format)

- CDP fold

- Measurement system (always 1,
meters)

Trace Identification Header

NSMDC Header Description

1- 4
9- 12
13- 16
26— 30

35— 35
41- 44
69- 70
71- 72
81- 84
85— 88
89— 90
115-116

117-118
119-120

- Trace sequence number
I(50) Original field location number

1(28) GEOS channel number
1(255) Trace identification code (1(255)*10)

(stored as component number times 10)
- Data use (always 1, production)
R(44) Receiver Surface elevation
- Elevation scaler (always —100,
elevation in centimeters)
- Coordinates scaler (always —100,

hundredths of seconds)
R(42) Group coordinate X
R(40) Group coordinate Y

Coordinate units (always 2,
seconds of arc)

I(31,32) Number of samples in this
trace ((1(31)*256)+1(32)(10°/R(5))
R(5) Sample interval (microseconds)

Gain type (always 1, fixed)

3%



Trace Identification Header (Continued)

SEG-Y Byte No. NSMDC Header Description

121-122 R(52) Amplifier gain

141-142 R(47) Anti-alias corner frequency

143-144 R(48) Alias filter slope (R(48)*6)

157-158 I(10) Year data recorded

159-160 I(11) Day of year

161-162 I(12) Hour of day

163-164 I(13) Minute of hour

165-166 I(14) Second of minute

167-168 I(14) Time basis (always 2, GMT)

181-184 1(15),1(16) Milliseconds, microseconds,
and sample lag time (in
microseconds)
(I(15)%1000-+1(16)-+R(6)*10¢)

185-186 R(60) Clock correction in milli-

seconds (subtract from re-
cording time) (R(60)%1000)

187-188 1(20) GEOS serial number

189-190 I(21) GEOS event sequence number

191-192 1(29) No. channels recorded by GEOS

193-194 1(30) No. channels in this component
group

195-196 1(38),I(39) Recorder version number

197-198 I(41) Sensor vertical orientation
(degrees from vertical up)

199-200 I(42) Sensor horizontal orientation
(degrees from north)

201-202 1(43) Sensor type (1 = FBA, 2 =
L-22, 3 = L—4, 4 = Dilatometer,
5 = other)

203-204 I(51) Experiment or tape number

205-206 R(49) Sensor natural frequency

207-208 R(50) Sensor damping coefficient
(times 100) (R(50)*100)

209-212 R(51) Sensor motion constant
(microvolts per motion-unit)

213-216 R(46) Digitizing constant (counts
per volt times 1000)

217-218 I(53) Trigger algorithm short-term-
average interval (tenths of seconds)

219-220 I(54) Trigger algorithm long-term-
average interval (seconds)

221-222 1(55) Trigger threshold, STA to
LTA ratio

223-224 1(56) Trigger component number




Figure 1. Side and front panel view of the General Earthquake Observation System
(GEOS) together with a WWVB antenna and two sets of three-component sensors
commonly used to provide more than 180 dB of linear, dynamic range.
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Figure 4(a): Bar graphsindicating deployment intervals for GEOS station locations together
with the occurrence times and magnitudes for Chalfant earthquakes recorded at three or
more stations for the first part of the first deployment interval. Time intervals for GEOS
recorders programmed to record earthquakes in “ trigger mode” and to record shots in “ pre-
set time mode” are indicated by solid and dashed lines, respectively.
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Figure 4(b): Bar graphsindicating deployment intervals for GEOS station locations together
with the occurrence times and magnitudes for Chalfant earthquakes recorded at three or
more stations during the second part of depioyment interval 1. Time intervals for GEOS
recorders programmed to record earthquakes in “ trigger mode” and to record shots in “pre-

set time mode” are indicated by solid and dashed lines, respectively.
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Figure 5: Bar graphs indicating deployment intervals for GEOS station locations together
with the occurrence times and magnitudes for Chalfant earthquakes recorded at three or
more stations during the second deployment interval. Time intervals for GEOS recorders
programmed to record earthquakes in trigger mode” and to record shots in “pre-set time

mode” are indicated by solid and dashed lines, respectively.
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Figure 6: Bar graphs indicating deployment intervals for GEOS station locations together
with the occurrence times and magnitudes for Chalfant earthquakes recorded at three or
more stations during the third deployment interval. Time intervals for GEOS recorders
programmed to record earthquakes in “ trigger mode” and to record shots in “pre-set time
mode” are indicated by solid and dashed lines, respectively.
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Figure 8: Map showing epicenter locations corresponding to Chalfant earthquakes for which
three component seismograms are presented in Appendix D.
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Figure 13: Observed travel-times for earthquakes identified by origin time (see Table 7) and
travel-times estimated using an average velocity model (Fig. 9(a)) for the Chalfant-Fallon

profile.
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Figure 14: Observed travel-times for earthquakes identified by origin time (see Table 7)
and travel-times estimated using an average velocity model (Fig. 9(a)) for the Chalfant-
Fallon profile. Travel-times for event 205 15:05 correspond to those for a nuclear explosion
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Figure A3(a), shot point 11: 12 second velocity record. Positive vertical motion is to right.
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reduced by 6 km/sec. Shot time is indicated.
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Figure A3(b), shot point 11: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure A3(c), shot point 11: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A4(a), shot point 1: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5:3%5 =~ 6 x 10~7 to get cm/sec). Times are

reduced by 6

km/sec. Shot time is indicated.
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Figure A4(b), shot point 1: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 523%5 =~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure A4(c), shot point 1: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5332 &~ 6 X 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A5(a), shot point 9: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A5(b), shot point 9: 12 second velocity record. Positive N16E motion is to right.

Abscissa is distance to shot point. Top of trace is labeled with station

reduced by 6 km/sec. Shot time is indicated.
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Figure A6(a), shot point 8: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A6(b), shot point 8: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure A6(c), shot point 8: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure A7(a), shot point 11: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A7(b), shot point 11: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A8(a), shot point 4: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 553%5 = 6 X 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A8(b), shot point 4: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 35}%% & 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure A8(c), shot point 4: 12 second N106E velocity record. Abscissa is labeled with
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Figure B1(a), shot point 4: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 7242z &~ 6 X 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B1(b), shot point 4: 12 second N16E velocity record. Abscissa is labeled with

maximum counts in record (multiply by 77425 ~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B1(c), shot point 4: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 3582 =~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.

Y1



<<<+39:52.57—-117:31.87>>> TIME=TIME—RANGE/06.00 LOW—PASS=30.00" cz
0 1 2 3 4 5 6 7 8 9 10 1 12 Z20O
lllIIIIII]T]IIIHII]II””III|l|lll||l|||IlII|IIl]|l||||l”lllHllll |l”ll|||| ‘lllll l||ll |l||||||l||llll]|l|lll l m
§ i | () Oi
e mX
<M
Y Z
o m
Nt oo
290
= O
2
> a0
< L
3 ;o1
‘ o C
<O
A
N
= (2]
N V 8
<0
N
& 2 O)
S
™ | 1 [
004 n
| | 2N
3 I *9 :
3 9 +
| ~
<
3 lo —
| 16
§ 8 ° o
O
@ it A | o [\)
O i [¢ ]
\ w
-< ° L4
O
d | e
: O
= (2] —
[Teg (o]
O
<
Sl WA \l 12
! \ [#]
I ‘ | k

v Fl

Figure B2(a), shot point 5: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 3#%5 ~ 6 x 1077 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B2(b), shot point 5: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 35i2s =~ 6 X 107 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B2(c), shot point 5: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5425 ~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B3(a), shot point 1: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by ;,-}2—2; &~ 6 x 10”7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B3(b), shot point 1: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 342 =~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B3(c), shot point 1: 12 second N106E velocity record. Abscissa is labeled with

maximum counts in record (multiply by 7825 =~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B4(a), shot point 3: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 742 =~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B4(b), shot point 3: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5,—;‘-2—2; ~ 6 X 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B4(c), shot point 3: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 553%5% ~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B5(a), shot point 7: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5825 &~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B5(b), shot point 7: 12 second N16E velocity record. Abscissa is labeled with

maximum counts in record (multiply by 358% ~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B5(c), shot point 7: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 75425 &~ 6 X 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B6(a), shot point 12: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by zxi%5 &~ 6 X 1077 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B6(b), shot point 12: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 378%;5 =~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B6(c), shot point 12: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5325 &~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B7(a), shot point 8: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B7(b), shot point 8: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B7(c), shot point 8: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B8(a), shot point 13: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5525 ~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.

06



<<<+40:08.85—118:09.75>>> TIME=TIME—RANGE/06.00 LOW—PASS=30.00"

0] 1 2 3 4 L) 6 7 8 9 10 11 12
LLRRLRA AR R AR R RN RN R RN RN RN R AR R AR RN A RN AR RN N RN R R RN RN R RN AR RN R R RN RN AR E R RN RN R RN RN ARRERRRNR]
— &
o
* &
o
<
-
o 2}
©1 o
©
<
-
o [
e 4
<
o
o g
o
<
-
> [
001 N
o
<
©
N <
N
<
-
o o
O [~
©
<
- |
N [ | ()
(X3 I Lo
| ‘ =
<
o o
N by i [+
“
<
-
b o
O 00
o
<
e 2
h 00
N
<
Sy o
o 00
©
<
N 9]
o ©
“
<
(9]
©
o
<
papatvenabeeronnneedonavosreedoaneonnobeonsnnnetdonrapnneadayneaenuabounnnnnna¥esppantiedonoaasonaboneyovnralariosiinn

[N M 4

Q3NI430—NN
GBKFVWHON

0/060
—

c0+/L0C*x98

o
*

00

0L0 00

Figure B8(b), shot point 13: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5x#%5 = 6 X 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B8(c), shot point 13: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 55325 &~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure B9(a), shot point 2: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 358%s5 =~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B9(b), shot point 2: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by z5#%5% & 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure B9(c), shot point 2: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by #2355 =~ 6 x 107 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C1(a), shot point 7: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C1(b), shot point 7: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.

3



<<<+39:28.20-116:32.54>>> TIME=TIME—RANGE /06.00 LOW—PASS=30.00"

0 1 2 3 4 5 6 7 8 9

e

JONVY 201

0Ll

SLi

smmm i

'0Z1

0¥l el 0g | 'STL

Svl

:
%é

10

1

cz
12 ZO
|
L OZ
Pm>
<M
=5
- BU
~
B
<o
aLD
le
@)
8T
L
5
0
s
@)
_<
2 x*
<
A NO
12—
»
;4
<
» __F_
1<
@)
8
<N

1
°
L4

00

S
o

N oo o
<
NG
B

o
<O
T °

o (O
Xy

4

< __N
2 12

w

~
<O
nj

(%]

Es

<

Figure C1(c), shot point 7: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C2(a), shot point 8: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 35325 = 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C2(b), shot point 8: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 5x#% = 6 X 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C2(c), shot point 8: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 334255 =~ 6 X 1077 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C3(a), shot point 14: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 4% = 6 X 1077 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C3(b), shot point 14: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 35825 =~ 6 x 1077 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C3(c), shot point 14: 12 second N106E velocity record. Abscissa is labeled with

maximum counts in record (multiply by 3732 =~ 6 X 1077 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C4(a), shot point 1: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.

)2



‘orl

‘g9l ‘091

‘0L

91

i Sl JONVY 'GCl

‘051

'S5 1

<<<+40:34.96-119:27.52>>> TIME=TIME—RANGE/06.00 LOW—PASS=30.00
0 1 2 3 4 5 6 7 8 9 10 11 12

IR R R AR AR RRRARERER] LR RN R R R DR R R R R R R R RN R R R R R R R R R R RN RN RN R RRRRREREEE]

A¥ED
INI43A=NN
a3ZITVYWYON

0/060 @
&

A'ZOv A9PF ACYY AOVD

A'GO¥

T
- T T
ANlLly A'80V

SO+ 1 1Lcg*x98 «

ANCZY NOZy ALLY

90

.
.

e _

ANBZYNICTY

ANLEY

0.0 00

A0V

r
[N

Figure C4(b), shot point 1: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C4(c), shot point 1: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C5(a), shot point 15: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 55—312—2-5 ~ 6 X 1077 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C5(b), shot point 15: 12 second N16E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 774255 =~ 6 X 107 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C5(c), shot point 15: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 534255 =~ 6 X 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C6(a), shot point 4: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 4% =~ 6 x 10~7 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C6(b), shot point 4: 12 second N305E velocity record. Abscissa is labeled with

maximum counts in record (multiply by 3425 %~ 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C6(c), shot point 4: 12 second N35E velocity record. Abscissa is labeled with

maximum counts in record (multiply by 35#%5; a5 6 x 10~7 to get cm/sec). Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C7(a), shot point 3: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C7(b), shot point 3: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C7(c), shot point 3: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C8(a), shot point 6: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C8(b), shot point 6: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicatad.

134



GL

o

0'06

‘00l

Sl

0 1 2 3 4 5 6 7 8 9 10 1M 12

JONVY  ¥°/9

008

0'56 0's8

‘501

0Ll

gLl

<<<+39:36.48—116:54.44>>> TIME=TIME—RANGE/06.00 LOW—PASS=30.00"

b

AOVY

APy

A'9ZY A'BZY

ALy AYLP ALLY AOZY ASCY

[O+ 11298 ™o/ ey

A'BOY

°
*

90

4% 4
.
.

A9YY

010 00

AVYED ALED AOPO

Figure C8(c), shot point 6: 12 second velecity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C9(a), shot point 5: 12 second velocity record. Positive vertical motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C9(b), shot point 5: 12 second velocity record. Positive N16E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C9(c), shot point 5: 12 second velocity record. Positive N106E motion is to right.
Abscissa is distance to shot point. Top of trace is labeled with station number. Times are
reduced by 6 km/sec. Shot time is indicated.
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Figure C10(a), shot point 4: 12 second vertical velocity record. Abscissa is labeled with
maximum counts in record (multiply by 53425 & 6 X 1077 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure C10(c), shot point 4: 12 second N106E velocity record. Abscissa is labeled with
maximum counts in record (multiply by 7425 ~ 6 X 1077 to get cm/sec). Times are

reduced by 6 km/sec. Shot time is indicated.
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Figure D1(a): Earthquake record section for 20 seconds of vertical motion recorded at
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(6 x 10=7 cm/sec/digital count) are indicated along abscissa.
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Figure D1(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D1(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D2(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D2(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x10-7
cm/sec/digital count) are indicated along abscissa.
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Figure D2(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6x10-7
cm/sec/digital count) are indicated along abscissa.
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Figure D3(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D3(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
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cm/sec/digital count) are indicated along abscissa.
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Figure D3(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D4(a): Earthquake record section for 20 seconds of vertical .motion.r?corded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
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Figure D4(b): Earthquake record section for 20 seconds of N16E motion reccrded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10-7
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Figure D4(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10-7
cm/sec/digital count) are indicated along abscissa.
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Figure D5(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 X 10~7 cm/sec/digital count) are indicated along abscissa.

|54



91z 891 134 ¥81 Ze! 812

%

po¢

082

Y6 0G

A'169

1 2 3 4 5 6 7 8

el
Ly

—

9

10

11 12 13 14 15 16 17

18

19 20

A %99
INI43d—=NN
A3ZITVYNYON

ALLD
HJ/060 @
—_—

ANZLO

A'18D

cO+ST02*9Q °

Figure D5(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D5(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D6(a): Earthquake record section for 20 seconds of vertical motion‘r('ecorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D6(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 107
cm/sec/digital count) are indicated along abscissa.
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Figure D7(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
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Figure D7(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
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Figure D8(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts

(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D8(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D9(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 X 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D9(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x10-7
cm/sec/digital count) are indicated along abscissa.

L1



|

W*MMWWWW’«WWM@
st
oAU
W\(’!MMWW W’WW *"‘&***WWW«‘#M

Ov/ BLYE:90+50C*98 =/ giibe

Ml

Figure D9(c): Earthquake record section for 20 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.

| 6%



192 [$X4 _go¢ 1184 LT iy {81l Y0¥ A:14

9LS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

!

A¥39
J3NI430-NN
Q3ZIVNYON

AL9D

N/ LHD
——

ALLD

Q0+50Z*9g «

A'SLD

.
*

XA

A L8O
L]
.

C/C G

A'689

Figure D10(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D10(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D10(c): Earthquake record section for 20 seconds of N10BE motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D11(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D11(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abecissa.

173



‘o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T

Q3NI430—-NN
A3ZIMYNYON

(3
< ~ Q
>
<
§_ A 0O
oy :‘8
<\I
'®)
I
~ (@X]
':l o
S
'<CX)
@)
% 3*
<N
O
5 o (N
o
x
—_—
8 N

AN6LO

z8L

1

1

{
S¢

(9]
@
.—...
N
. ~J
» (2
O (» ]
N
<0
—
e O
[#]
O

A'689

MWWWWWWWMWMNW

Figure D11(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D12(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D12(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D12(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D13(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 em/sec/digital count) are indicated along abscissa.
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Figure D13(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D13(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 em/sec/digital count) are indicated along abscissa.
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Figure D14(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D14(b): Earthquake record section for 20 seconds of N18E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D14(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 107 cm/sec/digital count) are indicated along abscissa.
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Figure D15(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D15(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6x10-7
cm/sec/digital count) are indicated along abscissa.
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Figure D15(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.

(%0



o

0¥9

£es

6G

1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16 17 18 19 20

Q3NI43d—NN
d3ZINVYNION

A'S99

A L99

(4%

8¢

£LT

L0¥

ATLO

G1+G0C*98 </

ANELD
L 4
*

=10

119G 1 G

A'689

.

Figure D16(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 X 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D16(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D16(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D17(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D17(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D17(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 107 cm/sec/digital count) are indicated along abscissa.
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Figure D18(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 107 cm/sec/digital count) are indicated along abecissa.
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Figure D18(b): Earthquake record section for 20 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure D18(c): Earthquake record section for 20 seconds of N106E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D19(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D19(b): Earthquake record section for 20 seconds of N30SE motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D19(c): Earthquake record section for 20 seconds of N35E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated a.long ubscma.
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Figure D20(a): Earthquake record section for 20 seconds of vertical motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D20(b): Earthquake record section for 20 seconds of N3O5E motion recorded at
GEOS stations. Origin time for record section, station ID, and maximum digital counts
(6 x 10~7 cm/sec/digital count) are indicated along abscissa.
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Figure D20(c): Earthquake record section for 20 seconds of N35E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E1(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7

cm/sec/digital count) are indicated along abscissa.

202



0123456789012343678222224220283053343683533%2343a43305334656%59

099

¥€¢

0S¢

ANCTLD

L6

i
e
=

a2

TTTTTrTTrT Ty T T T T T T T I T T Ty I T T T T T T T T T T T T T T T TP TI T T U T T I T TR I I 1T1

A'999

AN L99

| Z+207%98 T/

NELD

[ O ¢ C

rrrrrery ey e rer e e e e ey d el

ZG

d4dNI43d—NN
d3ZINVYINSON

L]
°

*
°

Figure E1(b): Earthquake record section for 60 seconds of N16E motion recorded at GEO§
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~
cm/sec/digital count) are indicated along abscissa.
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Figure E1(c): Earthquake record section for 60 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7

cm/sec/digital count) are indicated along abecissa.
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Figure E2(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS

stations. Origin time for record section, station ID, and maximum digital counts (6x1
cm/sec/digital count) are indicated along abecissa.
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Figure E2(b): Earthquake record section for 60 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E2(c): Earthquake record section for 80 seconds of N108E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x10-7

cm/sec/digital count) are indicated along abscissa.
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Figure E3(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E3(b): Earthquake record section for 60 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E3(c): Earthquake record section for 60 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7

cm/sec/digital count) are indicated along abscissa.
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Figure E4(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.

211



cz
01234567890123436782222242628330 33383828333 123434A38055346565589 Z O
TTTTTTTT T T T T i T A I T P T T T I T T o I T i v I T T T T T I T v T T T T IR T T T I T T I T I T I ITId I A
o<l
. m >
e oL
s Z N
<m
0O
. 3
@ e
<5
T
N
w !
;' { 1"}' ‘ i i | gm
1 i N
<O
. NO
© SO
| 0
<
3 o
N U ! o
e

o
.

A L8O

¢ 0

.
3

11T
A'689

ovo ov

662
A LB

L g abe vy v g e epr g et ed bty tirrige

Figure E4(b): Earthquake record section for 60 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E4(c): Earthquake record section for 60 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E5(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E5(b): Earthquake record section for 60 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7

cm/sec/digital count) are indicated along abscissa.
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Figure E6(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6x10~7

cm/sec/digital count) are indicated along abscissa.
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Figure E6(c): Earthquake record section for 60 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7

cm/sec/digital count) are indicated along abscissa.
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Figure E7(a): Earthquake record section for 60 seconds of vertical motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 107

cm/sec/digital count) are indicated along abecissa.
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Figure E7(b): Earthquake record section for 60 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x10-7

cm/sec/digital count) are indicated along abecissa.
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Figure E7(c): Earthquake record section for 60 seconds of N106E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7

cm/sec/digital count) are indicated along abscissa.
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Figure E8(a): Earthquake record section for 60 seconds of vertical motion recorded at GEO?
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~
cm/sec/digital count) are indicated along abscissa.
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Figure E8(b): Earthquake record section for 60 seconds of N16E motion recorded at GEOS
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~7
cm/sec/digital count) are indicated along abscissa.
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Figure E8(c): Earthquake record section for 60 seconds of N106E motion recorded at GEOS
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Figure E9(a): Earthquake record section for 60 seconds of vertical motion recorded at GEO§
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~
cm/sec/digital count) are indicated along abscissa.
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Figure E9(b): Earthquake record section for 60 seconds of N3O5E motion recorded at GEO§
stations. Origin time for record section, station ID, and maximum digital counts (6 x 10~
cm/sec/digital count) are indicated along abscissa.
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cm/sec/digital count) are indicated along abscissa.

22y



207:00:15 STATION=G61
0-0]§ L l"lllll' Ll Illllll' L] lllfllll
- upP
0.0015
107" E
= -
U -
1075
107%
10'7 i 1 |114111| 1 11111111 1 |-||n||
0.1 1 10 100
HZ
0-01% T T lllllll T l111l'll 1 Illlllll 3
E H=0
0.001f E
5107 F E
F 3
107 E
10-6 1 1 Illllll 1 llllllll d llljllll
0.1 1 10 100
HZ
0.01; ¥ Al ll\l“il L] A] l‘||||' \ 1““!“ %
E H=90 :
9.0015— E
-4
5 10 3 .
107 E
10-6 1 llllllll L Illl‘lll 1 llllllll
0.1 1 10 100

HZ

1074

107°

51078

10”7

1075

CM

1076

1077

1074

107°

CM

107

1077

207:00:16 STATION=(G61

L] llllll] T

3 T IlIlur] 3
3 3
= P 3
L -
E E
- 3
E-
=
-
-
-
- —
E 3
C 3
1 IlJllll ] lJllllJl
10 100
HZ
- L] Tlllll' L] T lllllll j
B ]
- s
== —
- 3
- 3
o 3]
-
- -
11l 1l
10 100
HZ
E 1 lllll‘l L] T‘Tll"l -
3
C =890 I3
L B
- -
= =
o 3
- -
- -
- .
- -
[~ 1
r—
| llllll| 1 1 lllllll

10 100

HZ

Figure F1: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F2: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F3: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F4: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated

at top. (See text for interpretation.)
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Figure F5: Amplitude response curves computed from in-situ recordings of step function in
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ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F6: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F7: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F8: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
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sponding to vertical, radial and transverse components of motion recorded at station indicated

at top. (See text for interpretation.)
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Figure F9: Amplitude response curves computed from in-situ recordings of step function in
ground acceleration (left column; seismometer mass release from rest due to applied DC volt-
age) and delta function in voltage applied to recorder input (right column) for channels corre-
sponding to vertical, radial and transverse components of motion recorded at station indicated
at top. (See text for interpretation.)
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Figure F10: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F11: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F12: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)

240



CM

CM

CM

203:01:51 STATION=G81 203:01:52 STATION=G81

0-01% T |l|||lll T ||1'|'|I L lllr]l'l lo-u :llllll‘l T IIIYIIII E
- up " 3
0.0015- i N
E 107° 3 E
" - ;
10 §— 3 (}_:, - .
s ] 10°® |
107° = = X
i i : ﬂ
10_8 ILIIIIIII 1 1 Illllll 1 llllllll 10-7 lll‘llll ] IJJlllll
.1 1 10 100 10 100
HZ HZ
0.015 T |||||||l T |]||l||' | T “1]]]] é lo-u - I"lll]lll 1 ll’ll"l B
g H=0 3 : :
0.001F E 3 §
1 107k E
» - ]
10 3 E 35 S -
- i I
- . 107 |
107° & = s .
10-6 i llllllll 1 Illlllll 1 Illlllll 10-7 lllllll' 1 IIIlJlll
.1 1 10 100 10 100
HZ -~ HZ
0-015 T |IIIII1I T ||TT1||I L] 'l"r]ll E lo-u - III‘IIII T I'llllll
: H=90 3 : H :
. . i ]
0.001F 3 i il
- 51 107° | -
C . E 3
i " ]
10 3 _.;: (}_:) - :
B 1 10t
107° ¢ E -
10-5 Lol vl vl 10—7 v 0 11l L4 i aaaul
.1 1 10 | 100 10 100
HZ HZ

Figure F13: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F14: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column, seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F15: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F16: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station

indicated at top. (See text for interpretation.)
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Figure F17: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F18: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F19: Amplitude response cufves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F20: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F21: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F22: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F23: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC

voltage) and delta function in voltage applied to recorder input (right column) for channels

corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F24: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F25: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F26: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F27: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels

corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F28: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)

250



=
(65

12{1:20:22 STRATION=4YO 211:20:22 STATION=4YQ

lo—q L L LIIly Illlll

L] l'll'1| Ll 1 Tl“"] il T LER IR 3 I E
0.001f i ]
- 107° £ =
107 g g ]
107° 3 5107 b .
10°° é- E E
F 107 =
10-7 E - g
10-8 [ 1 1 llllJll 3 IJIIJLll 1 L1 L il 10‘8 |]_|_[]||l ] 14‘|||]I
0.1 1 10 100 10 100
HZ HZ
0.01 T LR R R T T T T T T 1717 lo-u = 3
- 0 3
0.001 X i
107" 107° | -
. - 5
107 ¢ S s )
107 & 10°% | .
1077 3 5 ]
10-8 [ b o el Lo vl SR 10-7 v g vl L1 o1 ataul
0.1 1 10 100 10 100
HZ - HZ
D.OI:F T ll"l'll 1 ||l||'|l ] l'lll‘g 10-q - lllllll :
F H=90 3 H=90 1
0.001;— k| - ]
107k 5 1070 F E
10°° 3 = i i
107% ¢ 107° | .
1077 E C ]
10-8 i v syl L0 el L3 3 11t 1-7 L 1 1 tanl Lt s eaaed
0.1 1 10 100 10 100
HZ HZ

Figure F29: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F30: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)
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Figure F31: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station
indicated at top. (See text for interpretation.)

754



CM

CM

CM

211:01:17 STRTIBN=G37

0-01 T T lll‘f!] T L] IITll" T T 1 T 1717

0.001
1074

107°

CM

1078

107’

10“8 1 ||l|||l| 1 iJlllIIl 1 P T N N

1 10 100
HZ

llllllll T lllllII] T T T TTrT

H=0

o
—

o
o
—

sl ¢ o

Illllml ljlllm! Illlun! 111t
CM

—
<
~

1 IIllIlll 1 llllllll 1 1 1 1 111
1 10 100

HZ ~
0101 T i lllll'] T 1 IIIlll‘ T L LA

—
o
|

2]

P
o
1
[o/]
o
:_. "T'TTTTITI] xnum' 1”""1' Inrm![ rulm'lr LRRL

0.001
1074

107°

CM

1078

1077

10-8 1 1 Illllll 1 1 lillllll 1 1 L1111

0.1 1 10 100
HZ

1074

107°

1078

1077

1078

1074

107°

1076

107’

1074

107°

1078

1077

211:01:18 STATION=G37

fl1‘!|ll‘ Ll llllllll E
: up
llllllll 1 llllllll

10 100
HZ
E;T_llilll T Illlllll E
E H=0 1
5 a
IIIJALJ_Il 1 Illlllll
10 100
HZ
i_“ ‘llll' 1 I|l|||l' E
- H=80 1
llllllll i 1 I_lllljl
10 100
HZ

Figure F32: Amplitude response curves computed from in-situ recordings of step function
in ground acceleration (left column; seismometer mass release from rest due to applied DC
voltage) and delta function in voltage applied to recorder input (right column) for channels
corresponding to vertical, radial and transverse components of motion recorded at station

GPO 788-002/79L75

indicated at top. (See text for interpretation.)
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