UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

EVALUATION OF THE SEISMICITY OF THE SOUTHERN GREAT BASIN AND ITS RELATIONSHIP TO THE TECTONIC FRAMEWORK OF THE REGION

by

A. M. Rogers, S. C. Harmsen, and M. E. Meremonte

Open-File Report 87-408

Prepared in cooperation with the Nevada Operations Office U.S. Department of Energy (Interagency Agreement DE-AI08-78ET44802)

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Company names are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.

Denver, Colorado 1987

CONTENTS

Pa	ıge
Abstract	1
Introduction	3
Acknowledgements	7
Hypocenter determination details	8
Magnitude estimation details	9
Focal mechanism details	14
The association of earthquakes and faults	18
Earthquakes in the vicinity of Jackass Flats Earthquakes in the vicinity of Mercury Valley Jackass Flats-Rock Valley-Mercury Valley areas Funeral Mountains Seismicity Earthquake activity near Lathrop Wells Striped Hills-Rock Valley Earthquakes Seismicity at Dome Mountain 1983 Earthquakes at Thirsty Canyon and vicinity Seismicity at Sarcobatus Flat 1981 through 1983 Earthquakes near Scottys Junction Seismicity in the vicinity of Slate Ridge and Mt. Dunfee Earthquakes in Indian Spring Valley Earthquakes in Indian Spring Valley Earthquakes in North Pahroc Range	18 33 33 36 37 10 13 14 18 18 18 2 2
Depth of focus distribution 1982-1983	5 5 0
Focal mechanisms and the regional stress field	0
Earthquake density in the southern Great Basin	0
Discussion of seismicity and tectonics	
earthquakes	1
of contemporary seismicity	
Summary	
References cited	
Appendix B. Station codes, locations, instrumentation and polarity reversals.	
ADDENDIX IS AUXUMD COOPS INCREMENT INSCRIPTION SOUTH TAIGHT FOUNTS IS	•

Appendix C. Input parameters to HYPO71	113
Appendix D. Catalog of August 1978 through December 1983 hypocenters keyed to maps of SGB quadrangle names	115
Appendix E. 1982-1983 focal mechanisms with table summarizing mechanisms computed 1979-1983	
Appendix F. Stereographic plots of southern Great Basin earthquake hypocenters at selected locations	187
ILLUSTRATIONS	
1	Page
Plate 1 Seismicity and focal mechanisms for the period August 1, 1978, through December 31, 1983 in the southern Great Basin	In pocket
Figure 1.— Map of generalized seismic zones and tectonic features in the southern Great Basin	4
Figure 2 Southern Great Basin seismograph stations	5
Figure 3 Ratio of free surface displacement amplitude for the converted $SV - P$ ray to the SV ray for vertical and horizontal components versus ray angle of incidence	10
Figure 4.— Scattergram of the predicted M_D plotted as a function of observed M_L^{SGB}	13
Figure 5.– (a), Scattergram of M_{ca} versus M_L for 250 digitally recorded SGB earthquakes (b), Comparison of M_{ca} station corrections with M_L^{SGB} station corrections	15
Figure 6.— The theoretical S to P amplitude ratios due to interface- and free surface effects for rays leaving the second and third layers of SGB velocity model	17
Figure 7 Regional seismicity, August 1, 1978 through December 31, 1983. Boxes indicate the areas shown in figures 10 through 16	20
Figure 8.— Regional seismicity for the calendar years 1982 and 1983. Boxes indicate the areas shown in figures 10 through 16	21
Figure 9 Historical southern Great Basin seismicity spanning the time period 1868 through August, 1978	22
Figure 10.— Seismicity and focal mechanisms in the southern NTS region, for the time period August 1, 1978, through December 31, 1983.	23
Figure 11 Faults, seismicity and location of drillhole G1 at Yucca Mountain	24
Figure 12 Seismicity and focal mechanisms in the northern NTS region for the period August 1, 1978, through December 31, 1983	25
Figure 13 Seismicity and focal mechanisms west of NTS for the time period August 1, 1978, through December 31, 1983	26
Figure 14 Seismicity east of NTS for the time period August 1, 1978, through December 31, 1983	27

Figure 15.— Seismicity in the Pahranagat shear zone for the time period August 1, 1978, through December 31, 1983	28
Figure 16.— Seismicity and focal mechanism in the vicinity of the Pahroc Valley and North Pahroc Range for the period August 1, 1978, through December 31, 1983	
Figure 17.— Map of regional seismicity for the period August 1, 1978 through December 31, 1983, with boxes outlining areas contained in following depth section figures.	30
Figure 18 (a), Depth sections for 1979-1983 seismicity of eastern Jackass Flats and Lookout Peak. (b), Depth sections for the earthquakes in the southern part of Jackass Flats	
Figure 19.— (a), Depth sections for 1979-1983 seismicity north of Mercury Valley. (b), Depth sections for 1979-1983 seismicity in Mercury Valley near the earthquake of 831211 with faults	35
Figure 20 Depth section of the 1980-1983 Funeral Mountains seismicity	38
Figure 21 Depth sections for 1979-1983 earthquake activity in the vicinity of the Lathrop Wells	39
Figure 22 Depth sections for 1979-1983 activity in the vicinity of the Striped Hills.	39
Figure 23 Epicenters and depth sections for earthquakes in the vicinity of Dome Mountain	41
Figure 24 Depth sections for 1979-1983 earthquakes in the vicinity of Thirsty Canyon	42
Figure 25.— Depth sections for activity during the period 1979-1983 in Sarcobatus Flat series c	45
Figure 26. Depth sections and a focal mechanism for activity in Sarcobatus Flat series b	46
Figure 27 (a), Depth section in Sarcobatus Flat series a. (b), Depth sections for Sarcobatus Flat series d	47
Figure 28 Depth sections for earthquakes in the Slate Ridge region, 25 km west of Scottys Junction.	49
Figure 29 Depth sections for earthquakes in the vicinity of Yucca Flat	50
Figure 30.— (a), Depth sections for earthquakes in the Indian Spring Valley and Spotted Range, just east of NTS. (b), Depth sections for earthquakes in the vicinity of the town of Indian Springs and Highway 95	51
Figure 31 (a) Pahranagat Shear Zone depth sections (b) Same data, different projection planes	53
Figure 32.— Depth sections for the North Pahroc Range	54
Figure 33 Distribution of focal depths for well-located SGB earthquakes for the calendar years 1982 and 1983	56
Figure 34 P-wave velocity, up, versus depth for 3 SGB velocity models	57

depth of focus, for the data plotted in Figure 33	58
Figure 36.— Probability of an earthquake occurring at a depth z using velocity model M0 and the same data as in Figure 33	59
Figure 37 Distribution of focal depths below mean station elevation obtained using velocity model M1 and HYPOELLIPSE	61
Figure 38.— Distribution of focal depths below mean station elevation obtained using velocity model M2 and HYPOELLIPSE	62
Figure 39.— Distribution of focal depths for (a) the eastern SGB (b) the central SGB, and (c) the western SGB with inset map showing the three regions	63
Figure 40.– (a), Intersection of pressure dihedra and tension dihedra for 29 southern Great Basin earthquake focal mechanisms. (b), Same as 40 (a) using only the 14 earthquakes having depth of focus, $z \le 6$ km. (c), Same as 40 (a) using only the 15 earthquakes having $z > 6$ km	65
Figure 41.— Inferred directions of principal stress components, σ_1 , σ_2 , and σ_3 , shown in Table 3	66
Figure 42 Thirty southern Great Basin earthquake focal mechanisms plotted in depth section over the meridional range of the SGB network	68
Figure 43.— Four models showing how vertical and horizontal stresses may be distributed with depth	69
Figure 44.— Distribution of number of earthquakes per unit area as a function of distance from Yucca Mountain.	71
Figure 45 Distribution of $\log_{10}(E)$, where E represents the cumulative earthquake energy release, as a function of epicentral distance from Yucca Mountain.	74
Figure 46.— Contours of earthquake energy release in the southern Great Basin of Nevada and California for the period August 1, 1978 through December 31, 1983	75
Figure 47.— Countours of earthquake energy release in the southern Great Basin of Nevada and California for the period 1865 through July, 1978	76
Figure 48.— Contours of earthquake energy release for the period August 1, 1978 through December 31, 1983 in depth section for earthquakes projected onto an east-west plane (a) and a north-south (b) plane.	78
Figure 49.— (a) Depth-of-focus distribution of August, 1978 through December, 1983, earthquakes projected onto an east-west plane. (b) Depth-of-focus distribution of the same earthquakes projected onto a north-south plane	80
Figure 50 Depth distribution of earthquake energy for the period August, 1978 through December, 1983.	84
Figure 51.— Schematic diagrams showing: (a), dextral slip along north-trending faults in the southern Great Basin and sinistral slip along north-trending faults at the eastern margin of the Great Basin; (b), dextral slip on north-trending faults and normal slip on north-northeast trending faults; (c), how north-south	

shortening and east-west extension in the southern Great Basin is accomodated by wrench faulting on northwest- and northeast- trending conjugate faults; and (d), a block-rotation model resulting from differential rates of strain in the northern Great Basin and Mojave block
Appendix A Illustrations
Figure A1. Frequency (amplitude) response of L4C into digital computer 105
Figure A2. Frequency (amplitude) response of S13Y into helicorder 106
Appendix D Illustrations
Figure D1. Quadrangle names in northeast quarter of southern Great Basin 116
Figure D2. Quadrangle names in southeast quarter of southern Great Basin 117
Figure D3. Quadrangle names in northwest quarter of southern Great Basin 118
Figure D4. Quadrangle names in southwest quarter of southern Great Basin, with location of a Bare Mountain chemical explosion
Figure D5. Seismograms from three Yucca Mountain stations recording a Bare Mountain chemical explosion of 1982-08-24
Appendix E Illustrations
Figure E1. Jackass Flats focal mechanism
Figure E2. Mercury Valley (Camp Desert Rock quadrangle) focal mechanism 169
Figure E3. Composite focal mechanism from several shallow Funeral Mountains (Big Dune quadrangle) earthquakes
Figure E4. Composite focal mechanism from several Funeral Mountains earth-quakes
Figure E5. Composite focal mechanism from several Funeral Mountains earthquakes
Figure E6. Lathrop Wells focal mechanism
Figure E7. Striped Hills focal mechanism
Figure E8. Dome Mountain (south flank of Timber Mountain) focal mechanism 175
Figure E9. Focal mechanism for earthquake 830217 in the Thirsty Canyon area. 176
Figure E10. Focal mechanism for earthquake 830224 in the Thirsty Canyon area. 177
Figure E11. Sarcobatus Flat (Springdale quadrangle) composite focal mechanism 178
Figure E12. Sarcobatus Flat focal mechanism
Figure E13. Sarcobatus Flat focal mechanism
Figure E14. Sarcobatus Flat composite focal mechanism
Figure E15. Scottys Junction focal mechanism
Figure E16. Another Scottys Junction focal mechanism
Figure E17. Mt. Dunfee (Gold Point quadrangle) focal mechanism 184
Figure E18. Indian Spring Valley focal mechanism

Figure E19. North Pahroc Range (Hiko NE quadrangle) focal mechanism	186
Appendix F Illustrations	
Figure F1. (a) Stereo projections of hypocenters in the northern Jackass Flats and adjacent regions; this region is the same as in Figure 18a. (b) Stereo pair for southern Jackass Flats earthquakes, same region as in Figure 18b	
Figure F2. Stereo pair for the Mercury Valley earthquakes, same region as in Figure 19	
Figure F3. Stereo pair for the Funeral Mountain earthquakes, same region as in Figure 20	
Figure F4. Stereo pair for the Lathrop Wells earthquakes, same region as in Figure 21	
Figure F5. Stereo pair for the Striped Hills earthquakes, same region as in Figure 22	190
Figure F6. Stereo pair for the Dome Mountain earthquakes, same region as in Figure 23	191
Figure F7. Stereo pair for the Thirsty Canyon-Black Mountain earthquakes, same region as in Figure 24	192
Figure F8. Stereo pair for the series b and c earthquakes at Sarcobatus Flat, same region as in Figures 25 and 26	192
Figure F9. Stereo pair for the series a and d earthquakes at Sarcobatus Flat, same region as in Figure 27	193
Figure F10. Stereo pair for the Slate Ridge earthquakes, same region as in Figure 28	193
Figure F11. Stereo pair for the Yucca Flat earthquakes, same region as in Figure 29	194
Figure F12. Stereo pair for the Indian Spring Valley earthquakes, same region as in Figure 30	194
Figure F13. Stereo pair for the Pahranagat Range earthquakes, same region as in Figure 31	195
Figure F14. Stereo pair for the North Pahroc Range earthquakes, same region as in Figure 32	195
Figure F15. (a) Stereo pair for the southern Nevada Test Site. (b) Depth sections for the western part of Figure F15a	196
Tables	
Table 1 HYPO71 earthquake location quality for 1982-1983 earthquakes	8
Table 2 Summary table relating seismicity and mapped faults	31
Table 3.– Principal stress directions resulting from minimizing variation in $\frac{\sigma_1-\sigma_2}{\sigma_1-\sigma_3}$ for SGB focal mechanisms	66

Table 4 Seismogenic areas in the vicinity of Yucca Mountain and the NTS	72
Table A1 Values of constants appropriate for SGB seismometers	102
Table C1 Southern Great Basin velocity model	118
Table C2 HYPO71 test variables as discussed in Lee and Lahr (1975)	118
Table E1 Table summarizing focal mechanisms computed for SGB earthquakes 1979-1983	167

Evaluation of the Seismicity of the Southern Great Basin and Its Relationship to the Tectonic Framework of the Region

by

A. M. Rogers, S. C. Harmsen, and M. E. Meremonte

ABSTRACT

Seismograph network recordings of local and regional earthquakes are being collected in the southern Great Basin to aid in the evaluation of the seismic hazard at a potential high-level radioactive waste repository site at Yucca Mountain in the southwestern Nevada Test Site. Data for 1522 earthquakes for the calendar years 1982 and 1983 are reported herein. In the period August, 1978 through December, 1983, 2800 earthquakes were located within and adjacent to the southern Great Basin seismograph network. Earthquake hypocenters, selected focal mechanisms, and other inferred seismicity characteristics are presented and discussed in relation to the local and regional geologic framework.

The principal features of hypocenters in the SGB are as follows. (1) Earthquakes are distributed in an east-west-trending band between 36° to 38° N. (2) Earthquakes display primarily strike-slip and normal-slip deformation styles over a depth range from near-surface to 10-15 km with an apparent preference for dextral slip on north-trending faults; a notable uniformity in the regional stress orientation is inferred, with the least principal stress oriented west-northwest. Approximately equal intermediate and greatest principal stress magnitudes are inferred throughout the seismogenic crust, and horizontal stress orientations are rotated clockwise in relation to the stress orientation existing in the surrounding regions. (3) It is commonly difficult to associate earthquake clusters with specific faults, particularly range front faults, although epicenter alignments and earthquake nodal planes are frequently subparallel to nearby structural grain. Two other characteristics of the seismicity have been noted, although further testing will be required to provide additional assurance that these features are not artifacts of data processing. (4) In some areas hypocenters appear to align within steeply-plunging cylindrical volumes of rock that may span depths from near-surface to 10-15 km; other hypocentral groups exhibit tabular shapes that are oriented north to northeast. (5) A seismicity minimum is observed between the depths of 3.5 to 4.0 km.

Although in many cases we are unable to relate specific earthquake activity to specific faults, we do observe correlations between earthquake epicenter lineations, focal mechanism nodal planes, and mapped Quaternary and pre-Quaternary structural grain. From these observations we conclude that faults in the region that strike from approximately north to east-northeast should be considered favorably oriented for activity in the current stress regime. Three styles of faulting are observed for focal mechanisms depending on fault orientation. These styles are dextral, sinistral, and normal faulting on north-, east-northeast- and northeast-trending faults, respectively. Dextral faulting appears to be the predominant deformation mode. Oblique faulting is observed on intermediate fault orientations having appropriate dip angles. From the proximate co-existence of this range of focal mechanisms, we conclude that the regional stress field is consistently axially symmetric both geographically and with depth. That is, the intermediate and greatest principal stresses have about equal magnitude throughout the brittle crust. This conclusion is not in accord with stresses measured by hydrofrac experiments at Yucca Mountain. The regional stress field orientation, as inferred from new and previously published focal mechanisms, is characterized by a gently westnorthwest-plunging minimum compressive stress and a gently north-northeast-plunging maximum compressive stress. Although this stress field is conducive to slip on north to east-northeasttrending faults, no faults on Yucca Mountain having these orientations experienced detectable

earthquakes during the 1982-1983 period. During the 1982-1983 time span, the nearest activity to the proposed repository was at Dome Mountain, about 15 km north of Yucca Mountain. However, from 1978, when regional monitoring began in this area, until 1983 one earthquake has occurred at Yucca Mountain.

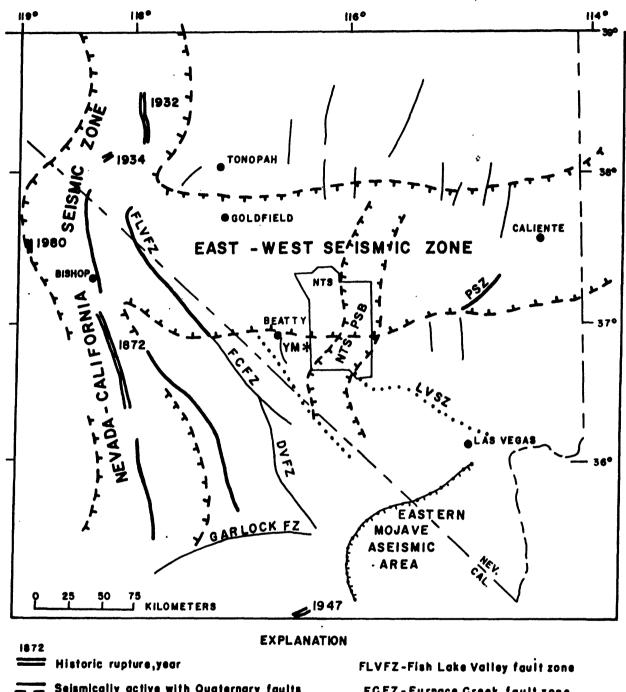
Earthquake energy release per unit area is 3 orders of magnitude lower in the vicinity of Yucca Mountain compared to the regional levels. The Yucca Mountain zone of quiescence extends to the west and is connected with a zone of low-level energy release paralleling the Furnace Creek-Death Valley fault zones. At least two interpretations of this observation are possible. First, Yucca Mountain and the zone to the west could be regions of low stress due either to some form of tectonic uncoupling or previous prehistoric seismic energy release. Second, this area could be analogous to a seismic gap, where stresses are high and faults are presently locked. The lack of seismicity in the Yucca Mountain block (i.e., the upper 4 km), the disparity between the inferred regional stresses and the hydrofrac measured stresses at Yucca Mountain, and the geologic data suggesting that Yucca Mountain is underlain by detachment faults are consistent with the conclusion that Yucca Mountain is uncoupled from the regional stress field; however, other interpretations are possible. This conclusion does not preclude the possibility of significant earthquake activity on faults underlying a detachment surface. Furthermore, earthquake activity is not precluded at some magnitude level on the proposed detachment or suggested listric faults that trend through Yucca Mountain and bottom in the detachment.

Research on the attenuation of ground motion in this region indicates that Q in the southern Great Basin is high relative to California, having values in the range of 700 to 900 over the frequency band 1 to 10 Hz. Peak amplitude attenuation functions derived from our data indicate that local magnitudes reported by California observatories for earthquakes in this region may be overestimated by as much as 0.8 magnitude units in some cases. Both of these factors affect the assessment of the earthquake hazard in this region.

Introduction

This report is the third in a series of addenda, updates, and revisions to earlier reports by Rogers and others (1981, 1983). Earlier reports presented earthquake data collected using the southern Great Basin (SGB) seismograph network, preliminary interpretations of the data and background information. Rogers and others (1983) also raised several issues regarding the seismicity and tectonics of the region. In this report, we add data collected during the calendar years 1982-83, reassess the data, and discuss some of the important consequential problems. The format of this report differs from the earlier ones in that it does not include the phase readings, durations, and first motions for each station (Rogers and others, 1983, Appendix D). Because these data are occasionally revised and because their publication requires considerable space, we believe they are best released in microfiche format at the conclusion of the study. This report does include an earthquake hypocenter list for the 1978-1983 reporting period, presenting the latest revised earthquake locations and magnitudes.

The principal intent of this report is to make data obtained by the network generally available, to indicate the progress of ongoing research, and to present preliminary interpretations of these data. Appendices A, B, C, D and E set forth the basic data related to earthquake parameters for the 1982 and 1983 calendar years. Earthquake origin times, epicenters, focal depths, magnitudes and information pertaining to the location quality for the period August, 1978 through December, 1983 are tabulated in Appendix D. A large body of data on teleseisms and regional earthquakes has also been archived by the network, but these data are not discussed herein. Locations in Appendix D and focal mechanisms in Appendix E are keyed to the geographical quadrangles (usually 7.5 by 7.5 minutes) shown in Figures D1-D4. The main body of this report presents and discusses these data, sometimes including past as well as more recent data in order to preserve continuity and perspective.


In 1979 a 47-station vertical-component seismic network was installed within a 160 km radius of Yucca Mountain to locate and study earthquakes. The network covers the tectonic features of greatest significance relative to seismic hazard assessment at NTS (Figure 1), including

- (1) Fish Lake Valley-Death Valley-Furnace Creek fault zones,
- (2) the apparent east-west belt of seismicity from 37° to 38° north latitude, and
- (3) the NTS "paleoseismic zone."

These and other features have been discussed in Rogers and others (1983); Carr (1984) reviewed the tectonics of the NTS region.

The locations of the current southern Great Basin network stations are shown in Figure 2. In May 1981, a six-station supplemental mini-net was deployed on Yucca Mountain to lower the detection threshold and to improve location accuracy for earthquakes at the proposed site. During the final half of 1984, horizontal component instruments were deployed at stations PRN, GMR, EPN, GMN, YMT4, LSM, and JON (the solid inverted triangles, Figure 2). These serve multiple purposes, including enhanced shear-wave arrival time detection, magnitude estimation for larger earthquakes, and earthquake-radiation-pattern determination.

The analog data from this seismograph network are continuously digitized ("sampled") by a PDP 11/34 computer, and the sampled data are then processed using time-domain digital processors designed to detect earthquakes and other seismic phenomena. When "events" are detected, the network digital data are stored on magnetic tape and later analyzed on a DEC PDP 11/70 computer. A discussion of the telemetry and electronics is given in Appendix A, where the frequency response curves for all systems in use are derived. The combined hardware-software package, including high-resolution graphics display terminals, results in accurate estimation of phase arrival

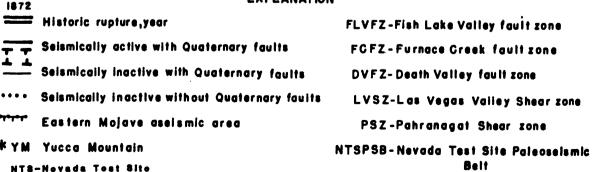
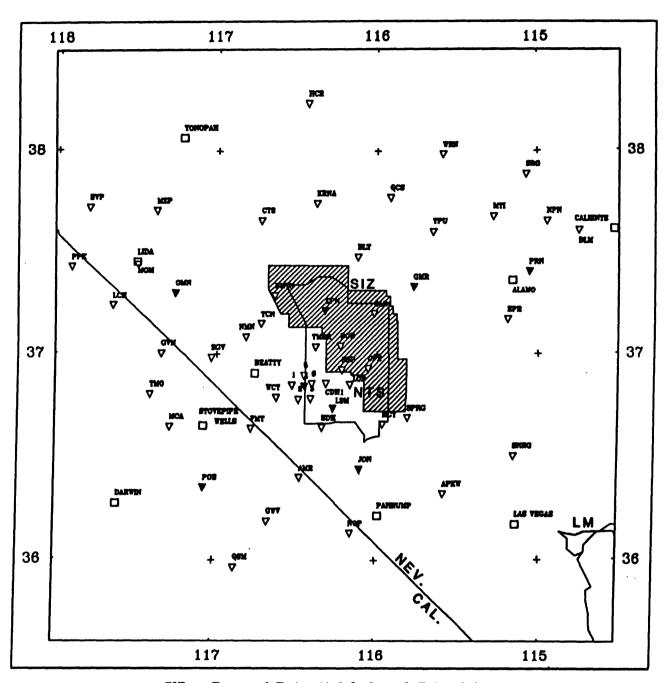



Figure 1.-Map of generalized seismic zones and tectonic features in the southern Great Basin.

SIZ - Zone of Potential Induced Seismicity; NTS - Nevada Test Site; LM - Lake Mead

0 20 40 60 80 100 KILOMETERS

Figure 2.— Southern Great Basin seismograph stations, with darkened symbols at sites where one or more horizontal component seismometers were installed in 1984. The shaded area extending around nuclear testing zones in the northern Nevada Test Site denotes a region where nuclear tests have influenced seismicity.

times, thus reducing one source of potential error in the hypocenter location process. The uniformly high station gains, combined with the processing tools now in use, give the network the capability of recording earthquakes having local magnitudes as low as $M_L = 0.0$, with region-wide sensitivity at $M_L = 1.0$. When the computer fails, due to computer malfunction such as tape write errors, Develocorder films serve as a backup by recording activity continuously. The 11/34 computer is occasionally taken off-line for system development work and for complete backups. The down-time during the 1982-1983 reporting period was about 5% to 6%, and the films were scanned for these time periods; thus, the catalog in this report should be essentially complete. Known mining blasts and nuclear tests have been removed from the catalog, but a few possible blasts near Bare Mountain have been retained and tagged in Appendix D.

ACKNOWLEDGMENTS

Field equipment maintenance and calibration was provided by Don Morgan of the Stanwick Corporation, under the direction of Dee Overturf and Tom Bice of the USGS, who were also responsible for equipment service and calibration at the recording facility in Golden, Colorado.

An automatic focal mechanism determination program that uses both first motion P polarities and S-to-P wavelet amplitude ratios was provided by Arthur Snoke of Virginia Polytechnic Institute and State University (Snoke and others, 1984). All of the mechanisms presented in this report were determined from potential solutions generated by this computer program.

We gratefully acknowledge the thorough reviews and discussions that have been provided to the authors by R. E. Anderson, K. F. Fox, W. J. Carr, D. M. Perkins, H. S. Swolfs, W. J. Spence, and G. C. P. King.

HYPOCENTER DETERMINATION DETAILS

The same crustal velocity model, program parameters, and hypocenter quality definitions that were reported in Rogers and others (1983) are used for the locations presented in this report (Appendix D). Earthquake hypocenters are computed using HYPO71 (Lee and Lahr, 1975). The coefficients for the local duration magnitude formula are different than in previous reports as discussed in the magnitude section below. The breakdown of 1982-1983 locations by quality is as follows:

Q	Number	Percent
A	25	1.6
В	442	29.0
C	792	52.0
D	263	17.4

Table 1. HYPO71 earthquake location quality for 1982-1983 earthquakes.

Shear wave (SV) arrivals were used to constrain locations for most of the events in this report. One potential problem in using S-phase arrivals is that they may be misidentified on vertical-component seismograms because of SV-to-P conversion at near-surface high-impedence contacts. This early arriving SV-to-P phase (SP) can in some cases be misidentified as the SVarrival (SS). Using the standard SGB velocity model, denoted here as M0, we examine the ratio of the free surface SP-to-SS displacement amplitudes on both vertical and horizontal components (Figure 3) (Young and Braile, 1976). This plot shows that the vertical component (solid curve) of the converted SP-phase has amplitude about 57% that of the SS or less, except near the critical angle of the reflected SP-phase, where the refracted SP has free surface amplitude about 75% that of the SS-phase. In practice the SS-phase is readily identified on the vertical component records in most cases. Identification of the SS-phase on horizontal records is even more favorable. as might be expected; in the worst case (i.e., all S-energy in SV and none in SH), the free surface SP-amplitude only becomes significant relative to SS for a narrow range of angles of incidence between 45° and 55° (Figure 3, dashed curve). Horizontal component seismographs in the network, installed during the last half of 1984, have rarely recorded SP- conversions this large, indicating that SH is also contributing substantial energy to the seismograms. The difference in arrival times of SP and SS due to a weathered layer having two km thickness, and a shear wave incident at 52° at its base, using model M0, is 0.82 seconds. An examination of many vertical and corresponding horizontal SGB seismograms reveals the presence of the SP-phase having about 50% to 60% the SS-amplitude, but we have never observed an SP-phase having more than about 60% the SSamplitude, where the SS-arrival was authenticated on horizontal seismograms. Since horizontal records have become available, vertical S-arrival times are now routinely checked against horizontal S-times at the same station or at a nearby station for consistency.

The assessment of the importance of misidentified S arrivals on hypocenter estimation is probably best conducted on an earthquake by earthquake basis. Generalizations are difficult because the influence of the S readings is dependent on station azimuth and distance, travel time residual, amount of data redundancy (most solutions are vastly overdetermined), adequacy of P and S velocity models, weights assigned by the analyst to the S arrivals, and other factors. A HYPO71 "A"-quality solution having 20 or more phase readings will be nearly unaffected if as many as 50% of the S arrivals are in fact SP converted phases given that the P phases are correctly scaled: arrival time residual weighing will automatically diminish the influence of those misidentified S arrivals to zero. A HYPO71 "C"-quality solution having 8 phase readings and 50% misidentified S phases may or may not show a non-trivial depth of focus bias, i.e., the likelihood is greater in this

case that the misidentified S readings will influence the final solution. We conducted numerical experiments by creating a phase arrival set that was in some ways typical of a very small earthquake on the edge of the SGB network: 6 P- and 2 S-arrivals were used, the P arrivals were assigned uniformly distributed random errors in the range ± 0.05 seconds, one or both of the S arrivals were assumed to be misidentified, and were thus 0.4 to 0.8 seconds early, the azimuthal gap was 180°, and the nearest station was slightly more than one focal depth from the epicenter. Using only the P data, the solution depth converged to within 2% of the true depth of focus (8.09 km). Adding two S-readings, one correct and the other 0.6 seconds early, did not significantly degrade the solution (4% error in estimated depth) when both were given equal weights (HYPO71 2) by the analyst; finally, by removing the S arrival that had the large negative (-0.57 second) residual, the analyst recovered the true solution (to within 1%). For shallow-focus earthquakes (1 to 3 km below sea-level), the presence of a mixture of SP and true S arrivals along with 6 accurate P arrivals was not deleterious to the depth estimates. The basic conclusion of these and many other experiments is that about 6 or more accurate P arrivals are usually sufficient to determine the true hypocentral parameters, even with mediocre azimuthal coverage (180°), at least when the velocity model closely corresponds to the local velocity structure, and the addition of a mix of welland mis-identified S readings tends at worst not to degrade the solution and often decreases the parameter error estimates, if down-weighting of phases having large residuals has been applied. From these considerations, we believe that adding horizontal-component seismometers at various locations throughout the SGB in mid 1984, and subsequently scaling S phases more accurately, has reduced the average standard error estimates associated with hypocenter parameter estimates, but has not had much effect on the parameter estimates themselves.

MAGNITUDE ESTIMATION DETAILS

The first step in the estimation of local magnitude in a given region is the determination of a region-dependent attenuation correction. In the past seismologists have generally assumed that the correction applied by Richter (1958) could be applied in any region in order to maintain consistency. This attenuation correction is called the "log A_0 " curve. Recent studies by Bakun and Joyner (1984) and Rogers and others (1987) have found that the log A_0 curve is regionally dependent and is related to the average crustal Q. Q values near 700-900 for 1 to 10 Hz S waves have been determined for the southern Great Basin (Rogers and others, 1987), and, in comparison, a Q determination for central California of Q = 135f, f in Hz, was found by Bakun and Joyner (1984) using a similar technique. (The ground motion frequency is specified by f). Operation of Wood-Anderson seismographs in the region is another requirement for the determination of local magnitude. Herrmann and Kijko (1983) and Rogers and others (1987) have demonstrated that a magnitude value closely approximating Richter magnitude can be calculated using the peak amplitudes from earthquakes recorded using the U.S. Geological Survey telemetered network. This magnitude value should be properly called M_{bLg} because calculation of the magnitude uses a formula that resembles the original M_{bLg} distance correction and because the peak amplitude used is the maximum value recorded in the shear-wave train on a vertical-component instrument. The computation of this magnitude is as follows (Rogers and others, 1987):

$$M_{bLg} = \log_{10}(PWA) - \log_{10}(A_0)$$
$$-\log_{10}(A_0) = 0.833\log_{10}(r) + 0.00164r + 0.88,$$

where r = hypocentral distance in km and PWA is a pseudo-Wood-Anderson peak amplitude multiplied by factors to correct the vertical component to an estimated peak horizontal motion

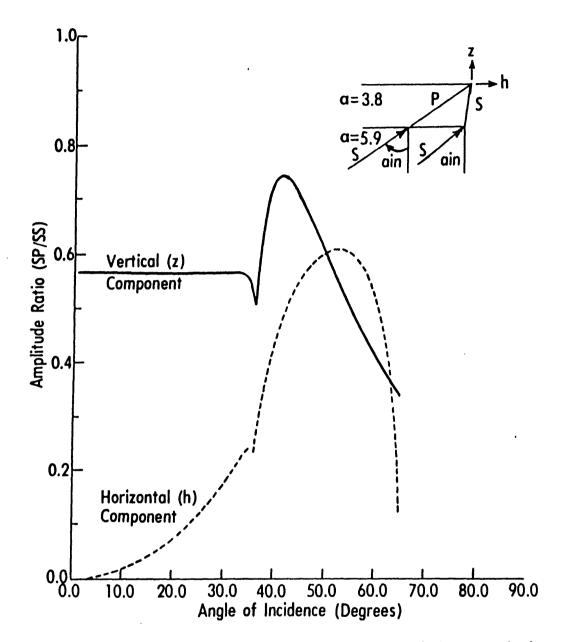


Figure 3.— Ratio of free surface displacement amplitude of the SVP to the SVSV ray for the vertical (solid) and horizontal (dashed) components plotted as a function of angle of incidence of a plane SV wave at the base of the weathered layer. The inset indicates the ray geometry. α is the P wave velocity (km/sec). Beyond 63°, the refracted P ceases to exist for the velocity model used here.

and a factor to correct a PWA amplitude for a residual instrument response effect (see Rogers and others, 1987 for details). The value of these factors are 1.75 and 1.41, respectively. When one or more peak amplitude readings are available for an earthquake, M_{bLg} is computed and reported in Appendix D.

The estimation of local magnitude, M_L or M_{bLg} , from coda duration and source-station distance has been found to be a practical alternative to magnitude estimation based on wavelet amplitude (Lee and others, 1972). This method first requires development of an empirical relationship between M_L and coda duration. The task is to find the best coefficients a, b, c, and possibly d in the expression

$$M_d = a \log_{10}(r) + br + c + dh + STA_k$$

= M_L + residual

where

 M_d = duration magnitude estimate,

 $M_L =$ a local magnitude estimate, preferably a true Wood-Anderson magnitude

or in this case a network M_{bLg} ,

 $\tau = \text{total coda duration in seconds}$,

r =source-station distance in km (epicentral or hypocentral),

h = earthquake depth of focus in km,

 $STA_k = k^{th}$ station magnitude correction,

and the ranges of independent variables over which these coefficients may be used. It has been recognized (Aki and Chouet, 1975) that regional variations in tectonics and attenuation affect the rate of decay of coda, and that total measured coda duration is a function of the passband of the instruments in use (e.g., Bakun and Lindh, 1977); therefore, we expect that any M_d formula should be unique to each local network, indeed, to each instrument type within a network. In the southern Great Basin, all instruments have similar responses, and differences are absorbed into station corrections.

In the following we assume that an accurate estimate of M_L for each event has been obtained by independent means. For the SGB network, M_L is an M_{bLg} value. We estimate coda r on a Tektronix graphics display screen or on Develocorder films. Epicentral or hypocentral distance, r, is routinely obtained from a standard local earthquake location program. The statistical parameters a,b,c, and STA_k , $k=1,\ldots,nsta$, are estimated from regression on the model above, using the constraint that $\left(\sum_{k=1}^{nsta} STA_k\right)=0.0$. In this study, we set d=0.0 and use hypocentral distances rather than epicentral distances. The linear nature of the regression curve above requires that the duration magnitude - local magnitude relationship be linear in the range in which the magnitude data are used. A non-linear relationship is observed between coda duration and M_L for events with less than ten second durations; thus, events having average coda length less than ten seconds are excluded from the regression analyses because M_L should always be available for these events (i.e., even the nearest stations to these earthquakes should not saturate so peak amplitudes may be scaled). In the regression which follows, M_{bLg} may be thought of as the observed response variable, and M_d as the predicted response. The regressions performed here minimized the quantity

$$\sum_{i,j} (\overline{M_{bLg}(i)} - M_d(i,j))^2,$$

where
$$\overline{M_{bLg}(i)}$$
 = average M_{bLg}

scaled at five or more stations, for the i^{th} earthquake, and where j indicates the j^{th} station having a coda duration reading for that earthquake.

The results of this regression are

$$M_d = 1.67(\pm 0.028) \log_{10} \tau + 0.00227(\pm .00011)r - 1.28 + STA_k(\pm ERRSTA_k)$$

where r = hypocentral distance (km). The regression is based on 133 earthquakes, 1903 duration readings, and 56 stations used. The resulting model standard deviation estimate = 0.2094, and the parameter standard error estimates are given in parentheses. The constant c = -1.28 has no error estimate because c was obtained by a posteriori application of the station constraint to the results of a regression analysis in which station terms were unconstrained and in which c was not explicitly included. The plot of M_d (predicted) vs. M_L (observed) (Figure 4), shows a linear fit for $0.5 \le M_L \le 2.5$. This duration magnitude formula was used for the duration magnitudes we report.

The plot of M_d vs. M_L suggests that the duration magnitude tends to underestimate M_L for $M_L > 2.5$ suggesting a non-linear relationship between M_L and $\log(\tau)$ for M_L values above 2.5. This relationship is difficult to evaluate because the entire seismograph network frequently records clipped peak amplitudes for events having $M_L > 2.7$. In networks that monitor seismicity having a larger range of magnitudes, with some lower gain stations available for scaling peak amplitudes, a pronounced non-linearity in the $\log(\tau)$ vs M_L relationship has been observed and is equivalent to non-linearity between M_L and M_d over large ranges of M_L (for example, Bakun and Lindh, 1977). The nonlinearity may be modelled by using a $(\log(r))^2$ dependence instead of a $\log(r)$ dependence in the regression, or alternatively, by fitting the M_d vs M_L relationship by two or more line segments. Although we have examined the applicability of both of these methods to our data set, the limited number of data points in the appropriate magnitude range prevent us from using them with confidence. Thus, at present we will use the expression above. (In 1986, amplifier gains at LSM horizontal component seismometers were lowered to 38 db, and gains at YMT4 horizontal component seismometers were lowered to 60 db, thereby increasing the network's effective dynamic range. LSM now records amplitudes on-scale for a 100 km distant $M_L = 4.0$ earthquake. Preliminary evidence from a few larger SGB earthquakes scaled at LSM indicates that the M_d formula above may underestimate M_L by about 0.5 units for a $M_L = 3.5$ earthquake. These details will be discussed in a future report.)

Finally, a third method of estimating magnitude has been discussed by Johnson (1979). This method is based on a measurement of the coda amplitude and the time after the P-wave arrival time that this amplitude occurs. This technique permits magnitude estimates even if the peak amplitudes on the record are offscale and/or the entire coda length has not been "saved" by the digital system. In order to apply this method we first compute an unnormalized magnitude value at station j using Johnson's equations and constants:

$$\overline{M_{cj}} = \overline{R(\tau)} - A_0(j) + q \log_{10}(\tau),$$

where

 τ = time after the P-wave onset,

 $R(\tau) = \log_{10}$ of the mean coda amplitude in a 5-second time window centered around τ ,

 $A_0(j)$ = a constant dependent on the gain at station j, and on site effects.

and q = 1.8 = a constant defining the shape of the coda.

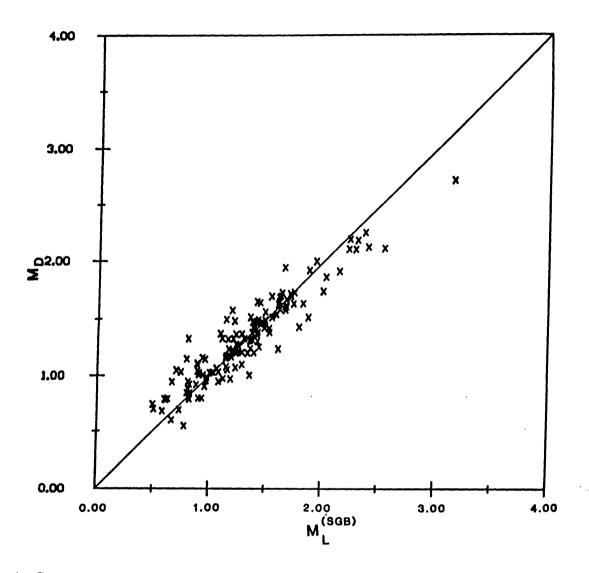
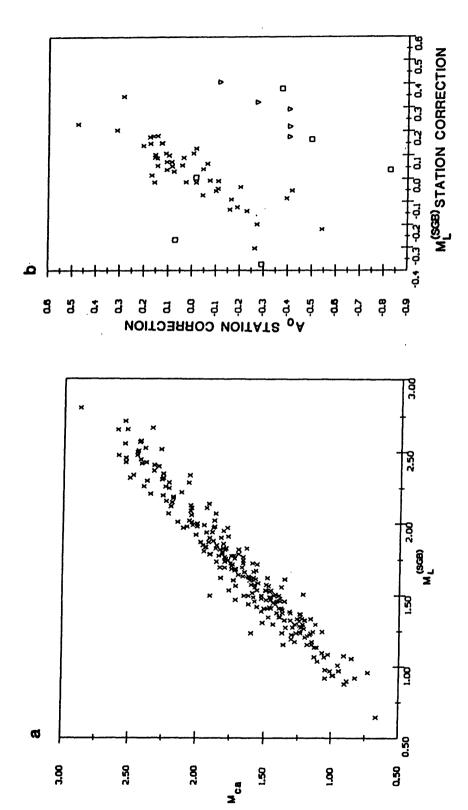


Figure 4.— Scattergram of the predicted M_D plotted as a function of observed M_L^{SGB} resulting from the regression of duration magnitude coefficients on M_L^{SGB} for 133 digitally recorded SGB earthquakes.

In principle q should be determined from the data for each region; however, in this case we determined that a reasonably stable magnitude value could be determined using the value of q determined by Johnson (1979). Generally, each station coda permits several M_{cj} estimates, one in each non clipped time window, which are then averaged. We compute $A_0(j)$ as the average station residual for a large catalog of event M_{cj} estimates. The initial M_{cj} value is calibrated against the local magnitude, M_{bLg} , by regression of $M'_{cj} = \overline{M_{cj} + A_0(j)}$ against M_{bLg} for a large number of earthquakes. Double averaging is here intended to indicate that several raw M_{cj} estimates at each station are obtained (one per unclipped 5 second time window), and then several stations are averaged to obtain the uncalibrated magnitude, M'_{cj} . For our data set, the coda-amplitude magnitude, M_{cg} , that closely approximates M_{bLg} is calculated from

$$M_{ca} = 0.85 M'_{cj} - 1.77$$

Figure 5 shows the correlation between resulting coda-amplitude magnitude, M_{ca} , and M_{bLg} , designated in the figure as M_L^{SGB} . The errors, discussed above, in linearly extrapolating the M_d formula beyond the observed M_{bLg} range are also present for the M_{ca} magnitude formula when it is used to estimate magnitudes higher than about M=2.5. Thus, the M_{ca} formula will also require revision in the future.


For reference, we also show, in Figure 5, the relation between the A_0 station corrections used to compute M_{cj} and the M_L^{SGB} station corrections. The strong correlation between the two station terms for a given instrument type and gain indicates the importance of site effects on station estimates of both magnitude types, M_{ca} and M_L^{SGB} .

A more detailed discussion of magnitudes and how our new scale relates to other network magnitude estimates is presented by Rogers and others (1987). In terms of earthquake hazard estimation, a significant result of this study is a reduction in magnitude values by as much as 0.5 to 1.0 magnitude units for a given earthquake when compared to previous estimates based on magnitude scales developed for California earthquakes. As a result of this study, magnitudes for all earthquakes recorded by this network for the period from August 1978 through December 1983 have been recomputed (Appendix D). Rogers and others (1987) also noted that magnitudes for historical earthquakes in this region reported by California observatories may be overestimated by as much as 0.8 magnitude units. The overestimation is the result of applying an inappropriate log A_0 curve, and is thus dependent on epicentral distance but independent of earthquake magnitude.

FOCAL MECHANISM DETERMINATION DETAILS

Nineteen individual and composite event focal mechanisms were computed from the 1982-1983 earthquakes of this report. Hypocenters and moment tensor data are summarized in Appendix E, Table E1. The polarity readings and other details for each mechanism are shown in Appendix E, Figures E1 through E19. Focal mechanisms in this report are referenced by the earthquake date (for example, 830528); composite mechanisms are referenced by the date of the largest earthquake in the composite; the origin time (UTC) in both cases is included when necessary to avoid confusion.

Some of these mechanisms include observed and theoretical $(SV/P)_x$ amplitude data (Kisslinger and others, 1981) as well as first-motion P-polarities. Six of the mechanisms presented in this report are relatively well-constrained by first-motion polarities alone; however, the $(SV/P)_x$ amplitude ratios are used in conjunction with polarities to further constrain 13 solutions, that is, to help select the mechanism having the closest observed-to-theoretical amplitude ratios from all the possible solutions having a maximum allowed number of polarity inconsistencies (usually zero or one). In some instances, due to the small size of the earthquakes being analysed and due to the relative sparseness of station coverage, the $(SV/P)_x$ ratios play a large role in constraining the solutions.

equals 0.97, for this data set. (b), Comparison of the station corrections $A_0(j), j=1,\ldots,n$ sta respectively. The \square stations on or above the imes station trend line are low gain stations. The ablaFigure 5.- (a), Scattergram of M_{ea} plotted as a function of M_L for 250 digitally recorded SGB with the M_L^{SGB} station corrections. \times, ∇ , and \Box represent L4C, S13O, and S13Y instruments, earthquakes having at least five amplitude and five duration readings per event. Predetermined station corrections were applied. The product correlation coefficient, $ho(M_{ca}, M_L^{SGB})$ and σ stations below the \times trend line are high gain stations.

Several assumptions, discussed in Kisslinger and others (1981), must be satisfied for the method to be valid. One assumption that was checked for the theoretical southern Great Basin velocity model is that the transmitted P-wave amplitude decays at a rate comparable to that of the transmitted SV-wave as the waves pass through crustal interfaces. The effect on the S- to P-ratio of one or two internal boundaries combined with the free surface is observed in Figure 6, in which the ratio of transmitted S-to-P body-wave amplitudes is plotted as a function of the rays' take-off angle, or angle of incidence, at the source. The compressional and torsional rays are assumed to follow identical paths. For earthquakes originating in the depth range one to three km below sea-level, the solid curve shows that the ratio is reasonably close to 1.0 for angles of incidence from 70° to 90°. For angles less than 55°, a nearly linear dependence of the ratio on angle of incidence is evident, and must be removed. This situation arises when the station's epicentral distance is on the order of 1 source depth or less. Also, for angles of incidence in the 55° to 70° range, no ratio data are usable, due to the instability resulting from free surface effects. For earthquakes originating at depths greater than three km below sea-level, the range of angles of incidence for which the SV-to-P ratio is near 1.0 is from about 77° to 90°. For angles less than 60°, the SV-to-P vertical component surface correction must be added to the observed ratio data. Because most stations are more than 3 to 4 source depths distant from the earthquakes being analysed, the majority of direct arrivals are in the range 75° to 90°, so the free surface effect is usually negligible for the data presented in this report. The relative constancy of the SV-to-P free surface particle-motion amplitude ratio over this fairly wide range of angles of incidence is a useful feature of the method, because the ray's angle of incidence is usually not very well resolved for most stations more than 2 to 3 source depths distant. Conversely, where the station is less than 1 to 2 source depths from the epicenter, the earthquake depth of focus is usually well-resolved, and the ray angle is less sensitive to errors in the velocity model; therefore, the correction for free-surface angle of incidence can be accurately determined.

Differences in anelastic attenuation for P- and S-waves could possibly affect the measured $(SV/P)_z$ ratios. Anelastic attenuation for compressional waves is not as great as for torsional waves, but this effect should be negligible for close-in (distance < 50 km) stations, since (a) the measured frequencies for the P-wavelet are frequently higher than for S, offsetting the effects of their higher velocity and Q ($Q_P \approx 2Q_S$ is often assumed) and (b) a recent investigation into the attenuation of shear waves in the SGB (Rogers and others, 1987) shows that the SGB is a high-crustal-Q region, in which neither S nor P will undergo much anelastic attenuation for stations within 50 km of the hypocenter. Quantitatively, we may assume $Q_S = 1000$ and $Q_P = 2000$, values appropriate to body wave propagation (geometric spreading coefficient, n = 1; Rogers and others, 1987, their Table 2). For P- and S-wavelets each having period 0.10 seconds (frequency 10 hz), $\alpha = 6$ km/sec, $\beta = \frac{\alpha}{1.7}$, a plausible path correction for anelastic attenuation is

$$-\log_{10}(\exp[-10\pi r(\frac{1}{1000\beta}-\frac{1}{2000\alpha})])=0.0027r,$$

where r is the source-station distance (km). For the focal mechanism data of this report, we did not consider the anelastic attenuation path correction to be large enough, given the various uncertainties involved, to be applied.

The sparsity of seismometers in many parts of the southern Great Basin requires that we often rely on amplitude ratio data to limit the range of focal mechanisms that may be associated with a given earthquake. An example of the benefits and limitations of using amplitude ratio data to aid in the determination of the earthquake focal mechanism is shown in Appendix E, Figure E16. The P-wave first-motion polarities for that earthquake (831110 13:17) are inadequate to constrain nodal plane strike, dip, or rake angle: normal, strike-slip, and even oblique-thrust slip

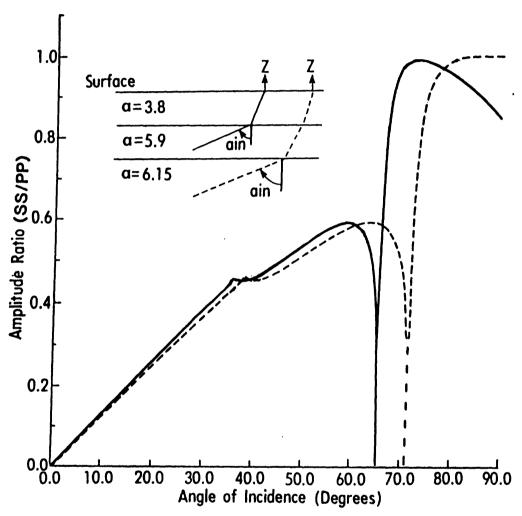


Figure 6.— The theoretical $S\dot{V}S\dot{V}/\dot{P}\dot{P}$ ratio of vertical component amplitudes at the free surface is plotted as a function of angle of incidence of the $S\dot{V}-$ or $\dot{P}-$ ray at the first layer boundary (solid curve), where the SV- and P-waves have the same amplitudes in the second layer. The theoretical $S\dot{V}S\dot{V}S\dot{V}/\dot{P}\dot{P}\dot{P}$ ratio of vertical component amplitudes at the free surface is plotted as a function of angle of incidence of the $S\dot{V}-$ or $\dot{P}-$ ray at the second layer boundary (dashed curve), where the SV- and P-waves have the same amplitudes in the third layer. The inset shows the ray geometry involved, for earthquakes originating at depths corresponding to the second or third model layer, for velocity model M0. Anelastic attenuation effects have not been included in the calculations. The ratio of P to S velocity equals 1.71 in all layers in velocity model M0.

mechanisms are possible with no polarity inconsistencies. However, by adding 9 amplitude ratio readings, only two classes of mechanisms having 3 or fewer gross amplitude ratio errors remain, shown by the solid and dashed nodal plane solutions, respectively. For the solid-line solution, 7 of the 9 amplitude ratios are within tolerance of their theoretical values, whereas only 6 of the 9 are within tolerance for the other solution. Therefore, a weak preference may be assigned to the solid line solution. Although the solutions of Appendix E, Figure E16 imply that different geological structures are active, they have very similar T axes, and associated with other focal mechanisms, they may both be fit by the same stress field (discussed below). In summary, augmenting polarity data with SV/P_z amplitude data may unambiguously constrain the most plausible solutions to extensional types, and may provide a quantitative method (minimum rms ratio error) to narrow the range to the one or two preferred solutions shown in Appendix E. In that the solution having minimum rms error is chosen from a class of solutions for which the rms error varies by about 10%, the preferred solutions should be thought of as approximations that are at least equally plausible as those for which strike, dip, or rake angles differ by about 10° .

THE ASSOCIATION OF EARTHQUAKES AND MAPPED FAULTING

A question in regard to estimating seismic hazard at the proposed repository site is whether earthquakes in the region can be associated with specific known or suspected faults. This problem is considered in the paragraphs that follow as part of a discussion concerning the relationship between seismicity and the mapped geology of specific areas. Where possible we have compared seismicity with known Quaternary faults. The regional Quaternary record, however, is still under study and is incomplete. In many cases, then, we can only compare earthquake patterns with mapped pre-Quaternary structural grain, a comparison that is less desirable. Reactivation of old structures is not unusual, however, lending some credibility to these comparisons. In some cases observed relationships result in an improved understanding of the active deformational processes in the region. In light of certain limitations of the data that have been discussed above, however, the interpretations suggested must be considered tentative. Certainly, greater numbers of earthquakes should be located than currently available, and improved velocity models and earthquake location procedures should be attempted before accepting these interpretations in any definitive tectonic analysis. On the other hand, preliminary attempts to conduct joint velocity-hypocentral inversions for selected regions (Chang, written comm., 1987) seem not to materially affect our conclusions. These results will be presented in a future report. The main points in the following discussions are summarized in Table 2.

Seismicity Overview

All earthquake epicenters (Appendix D) located by the SGB network through 1983 are plotted by magnitude range in Plate 1. Figure 7 shows the same epicenters plotted in Plate 1, with outlines of areas showing the locations of the detailed maps in Figures 9 through 14. Figure 8 shows the epicenters for 1982 and 1983 alone. Comparison of the 1982-83 (Figure 8) monitoring period with the period 1978-81 (Rogers and others, 1983) shows that many of the earlier active zones continue to produce clusters of earthquakes during this monitoring period. Comparison of the 1978-1983 monitoring period with the historic record (1868-1978; Figure 9) also leads to the conclusion that many of the earlier active regions continue to be active to 1983. In many cases, however, these zones are much more diffuse in the historic record because the accuracy of the locations is relatively low compared to the present data set. Both the historic and current seismicity maps show a band of seismicity crossing the SGB between roughly 36°N and 38°N that maybe somewhat discontinuous. That is, the east-west band may actually be the result of activity in a number of subzones across the SGB. The existence of earthquakes across this region before nuclear testing began suggests that this zone is not solely due to nuclear testing (Meremonte and Rogers, 1987). Although not

apparent in any of the figures in this report, the east-west seismic zone also exhibits a northerly extension into central Nevada at about 116°N.

Through 1983 Yucca Mountain has been within a zone of very low seismicity that extends to the west at least as far as 117°W. The historic and 1978-1983 records also show an apparent northeast-trending belt of seismicity that crosses Jackass Flats and Rock Valley about 20 km east of Yucca Mountain. This belt appears to be much more active in the 1978-1983 record, but this appearance is likely due to increased earthquake detection levels. The proposed site area at Yucca Mountain was seismically inactive during 1982-1983 (Figure 11).

Several new or previously unrecognized zones either became active or had significantly increased activity rates during 1982-83 compared to the 1978-81 monitoring period. Locations of the new activity are: earthquakes northwest of Alamo in the Pahranagat Valley; events on the southwest side of Indian Springs Valley (Figure 14) and events in the valley to the east of the Pintwater Range; events between Mt. Dunfee and Gold Mountain and earthquakes to the east of Mt. Dunfee (Figure 13); and a cluster in Death Valley near Stovepipe Wells (between stations FMT and MCA, Figures 2 and 7). Several zones experienced increased seismicity in the 1981-82 period that may have been active only before 1978, for example: a zone of concentrated seismicity in a region of exposed bedrock between the northern end of the Hiko Range and the southern end of the North Pahroc Range (Figure 16); southwest of Alamo in the Tickaboo Valley (Figure 14); near the California-Nevada border (Figures 10 and 7).

Examination of Plate 1 shows that microseismicity in this region is largely uncorrelated with range front faults in spite of the likelihood that some of these faults, particularly in the Walker Lane belt, may be late Quaternary or younger in age (M. Reheis, personal comm., 1987). This lack of correlation suggests that these earthquakes reflect effects of deformation processes other than those directly related to the basin and range topography. Small earthquakes occurring in central Utah are also uncorrelated with the fault boundary between the Colorado Plateau and the Great Basin (Arabasz and Julander, 1986), although abundant Holocene fault scarps occur along that zone. Thus, this lack of correlation should not be taken as evidence that range front faults are unlikely to be associated with large earthquakes in the SGB.

The tectonics and seismicity for the period 1978-83 of selected regions are shown in Figures 10 through 16. Figure 17 shows the areas discussed below for which detailed maps and cross sections are presented. Appendix F contains stereo pairs for each of the active zones shown in Figure 17. A detailed discussion of focal mechanisms and active earthquake zones follows.

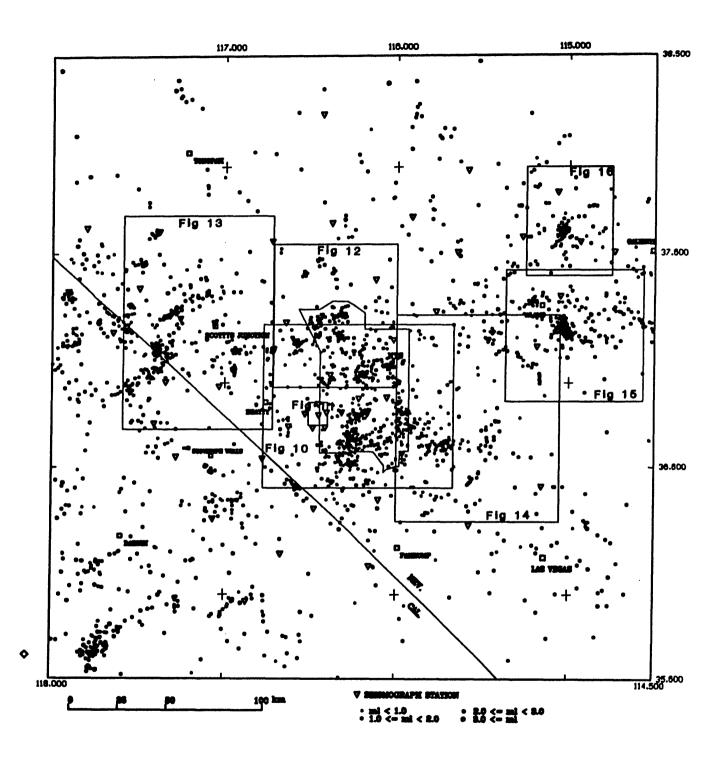


Figure 7.- Regional seismicity, August 1, 1978 through December 31, 1983. Boxes indicate the areas shown in figures 10 through 16.

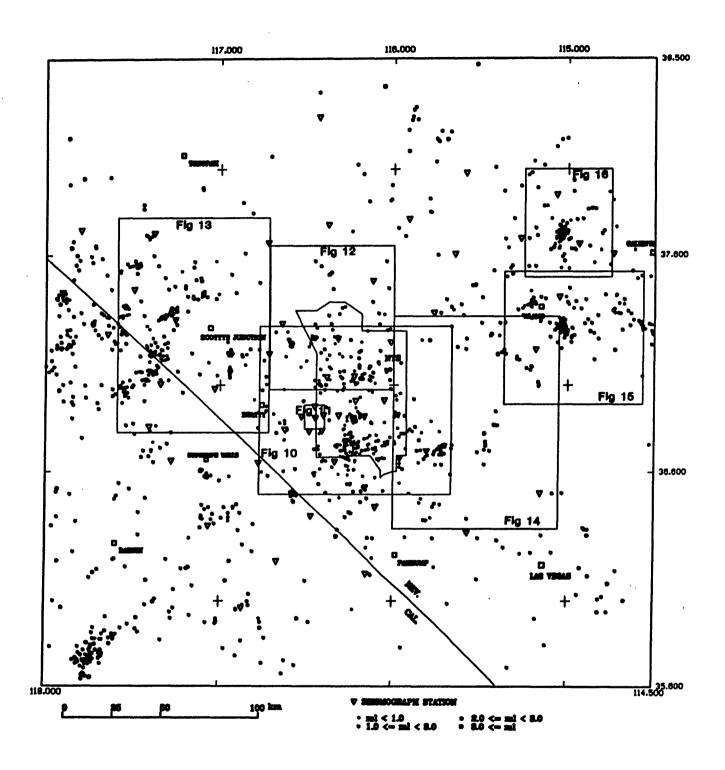


Figure 8.- Regional seismicity for the calendar years 1982 and 1983. Boxes indicate the areas shown in figures 10 through 16.

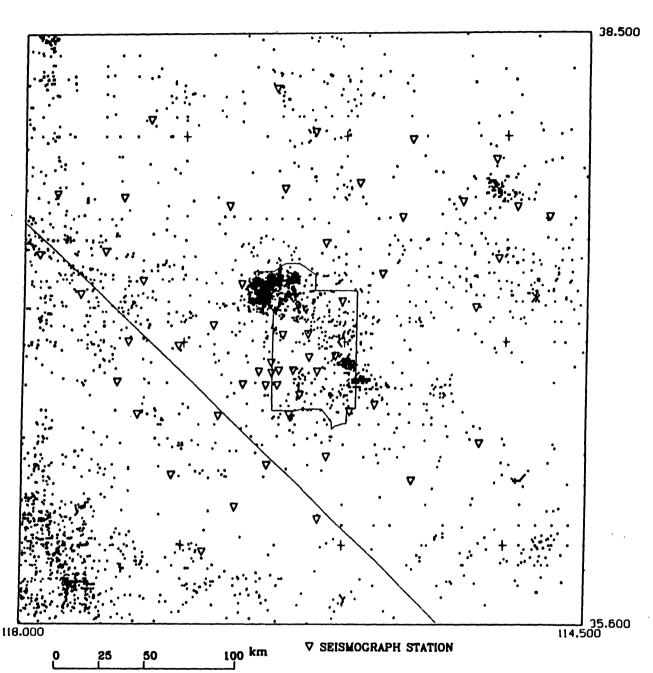


Figure 9.— Historical southern Great Basin seismicity spanning the time period 1868 through August, 1978. Because the locations in the historical record are often estimated to 0.1 degree, a single point on this plot often represents several dozen earthquakes.

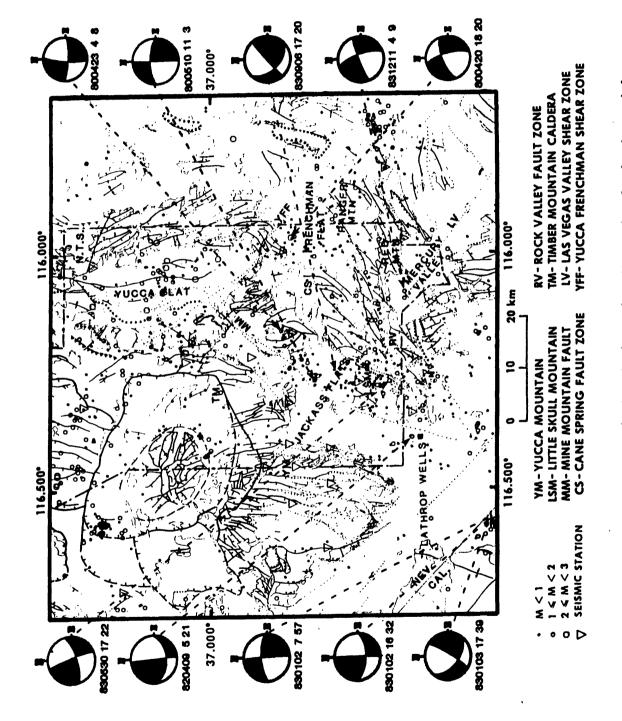


Figure 10.- Seismicity and focal mechanisms in the southern NTS region, for the time period August 1, 1978, through December 31, 1983. Faults from W. J. Carr (written comm., 1983).

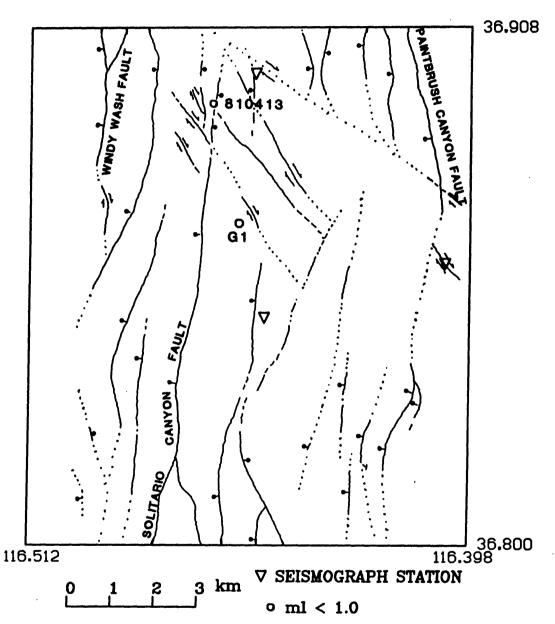


Figure 11.— Faults at Yucca Mountain (modified from USGS, 1984, their Figure 30). Solid lines indicate observed faults, whereas dashed and dotted lines indicate inferred faults. One earthquake (810413) was observed in this region during the time period August, 1978 through December, 1983. G1 - location of drillhole G1.

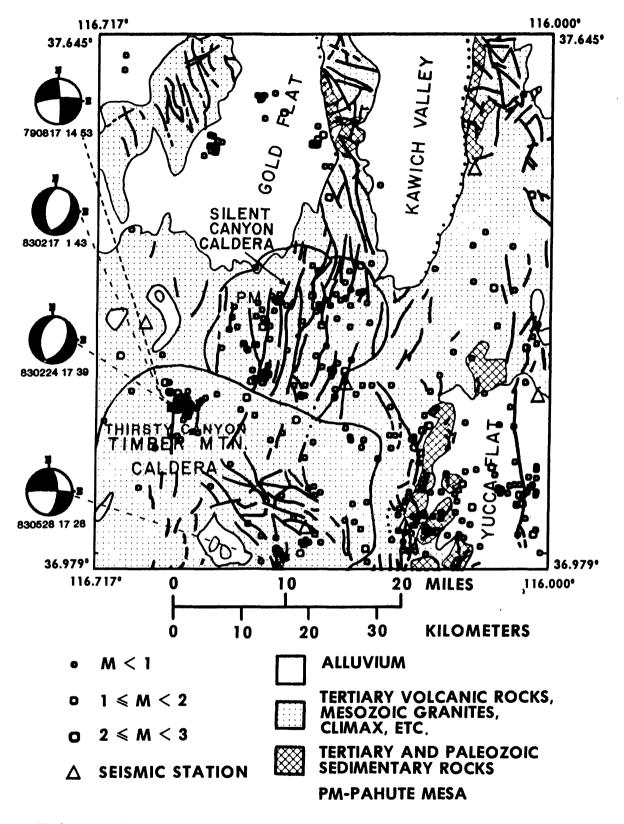


Figure 12.— Seismicity and focal mechanisms in the northern NTS region for the period August 1, 1978, through December 31, 1983. The geologic data are modified from Stewart and Carlson (1978).

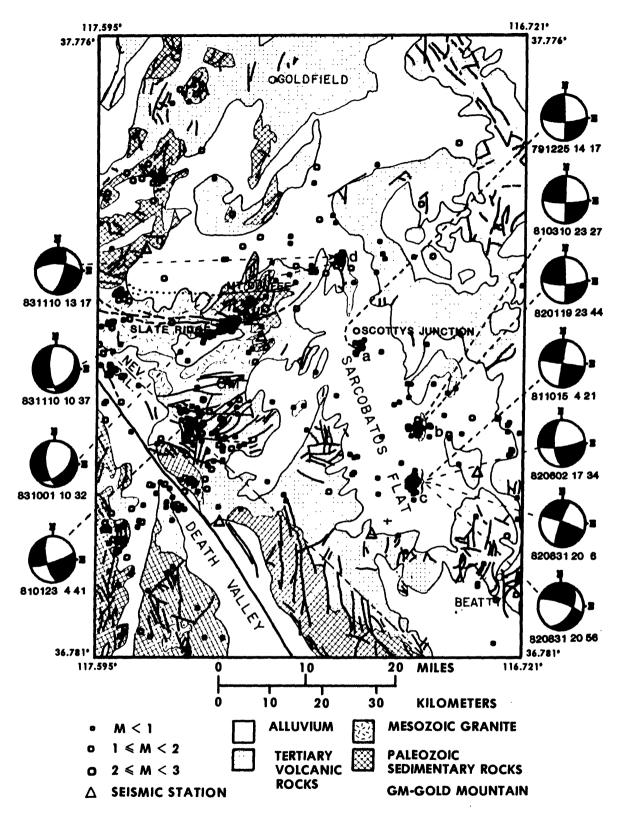


Figure 13.- Seismicity and focal mechanisms west of NTS for the time period August 1, 1978, through December 31, 1983. The geologic data are modified from Stewart and Carlson (1978).

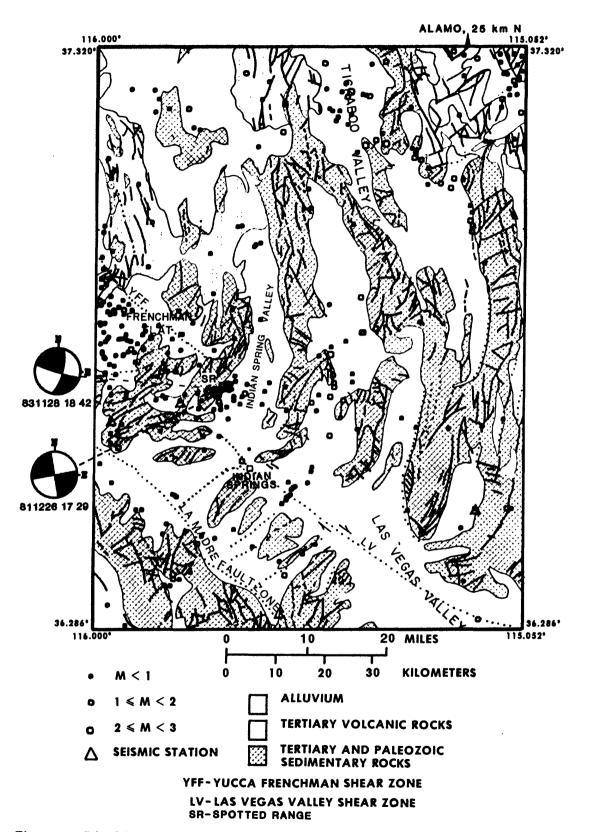


Figure 14.- Seismicity east of NTS for the time period August 1, 1978, through December 31, 1983.

The geologic data are modified from Stewart and Carlson (1978).

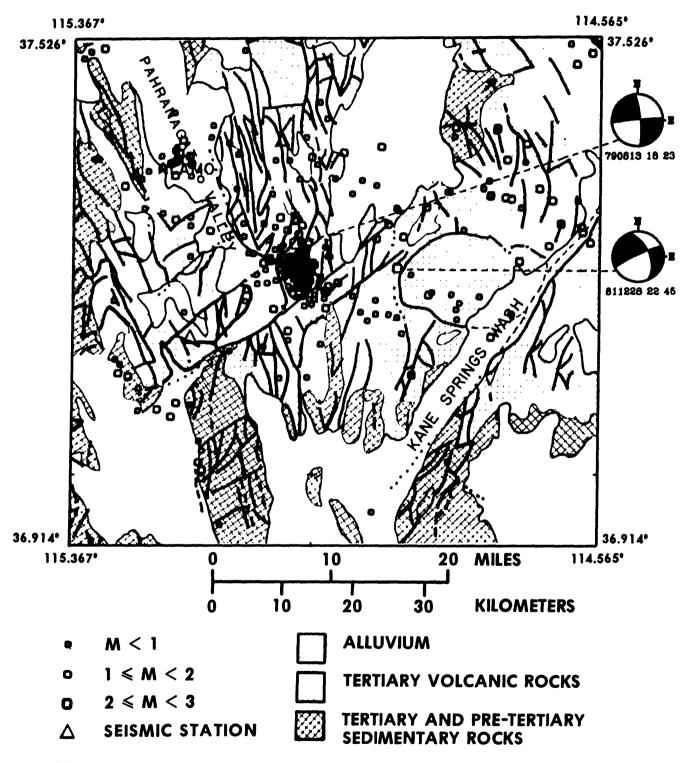


Figure 15.— Seismicity in the Pahranagat shear zone area for the time period August 1, 1978, through December 31, 1983. The geologic data are modified from Stewart and Carlson (1978).

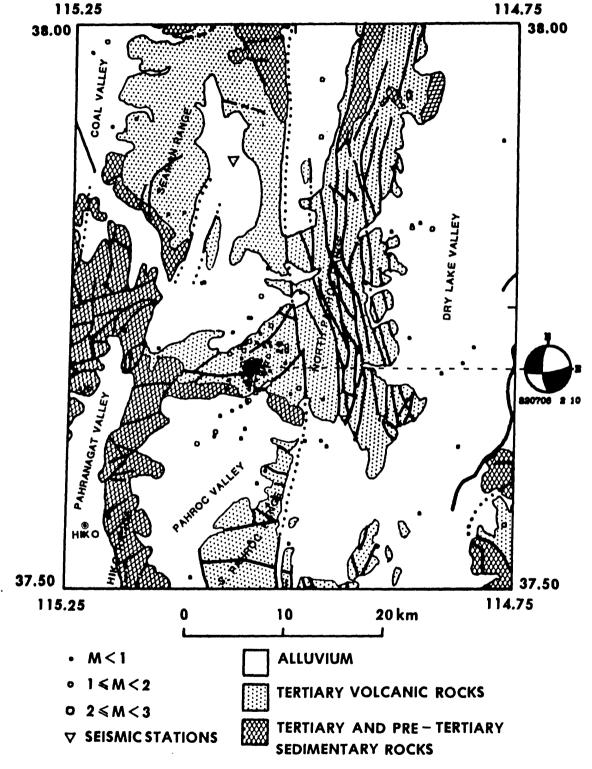


Figure 16.— Seismicity and focal mechanism in the vicinity of Pahroc Valley and North Pahroc Range for the period August 1, 1978, through December 31, 1983. The geologic data are modified from Stewart and Carlson (1978).

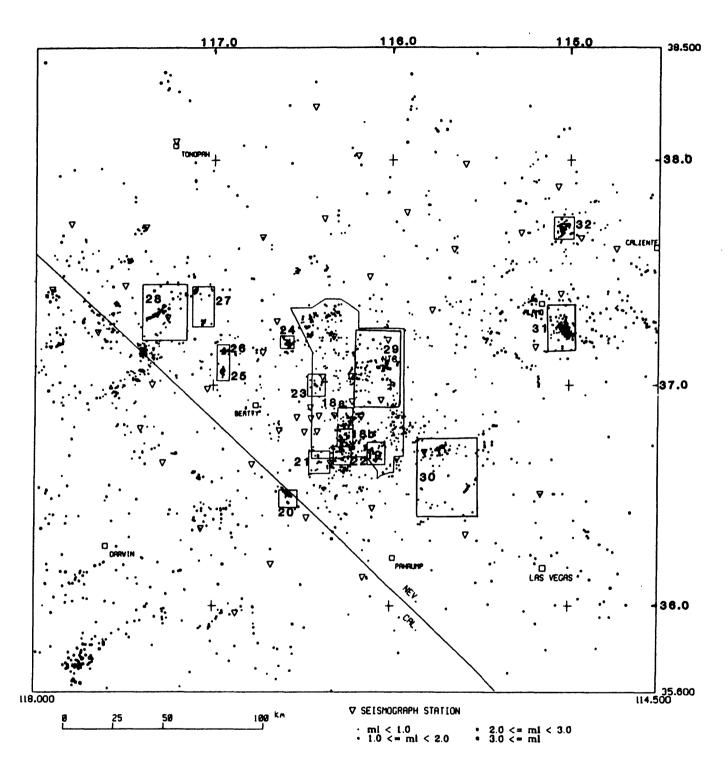


Figure 17.—Small rectangles enclose regions for which detailed epicenter and depth section plots are presented in the following figures. Numbers within or immediately adjacent to these rectangles correspond to figure numbers. The map shows the regional seismicity for the period August 1, 1978 through December 31, 1983.

Region	Activity	Trend, Dip, Slip	Data
Jackass Flats	1980 seismicity	E-W; -; -	plan view seismicity
		E-W; N; sinistral	focal mech. 800510
		N-S; vertical; dextral	focal mech. 800510
	'80-'83 seismicity	NE-SW; -; -	depth section plot
		NE-SW; steep; oblique sinistral	_
	pre-Quaternary faults		geologic maps
Mercury Valley	'79-'83 seismicity	E-NE; steep; -	depth section plots
		E-NE; vertical; sinistral	focal mech. 831211
Rock Valley &	Quaternary faults	E-NE; -; -	geologic map
Cane Springs	4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		1
Frenchman Flat &	'79-'83 Seismicity	N; W; -	Stereo plots
Massachusetts	'71&'73	N; steep; dextral	focal mechs. 710805
Mountain	earthquakes	11, 2005 F , 2000	730219
Funeral	1983 seismicity	NW-SE; steep-NE?; -	depth section plot
Mountains		N-S; vertical; oblique dextral	focal mechs, 830102
	ł	NE-SW; steep; oblique sinistral	focal mech. 830103
	pre-Quaternary &	N-N45°; -; -	Geologic maps
Lathrop Wells	'79-'83 seismicity	N-NE; -; -	Stereo plots
	'82 earthquake	N; vertical; oblique dextral	focal mech. 820409
Striped Hills-	'79-'83 seismicity	E-NE; -; -	Stereo plots
Rock Valley	'83 earthquake	E-NE; steep; sinistral	focal mech. 830530
, , , , ,	Quaternary faults	E-NE; -; sinistral	Geologic map
	pre-Quaternary faults	1	geologic map
Dome Mtn.	1983 seismicity	NW; -; -	Depth sections
	'83 earthquake	N; E; dextral	focal mech. 830528
	Quaternary? faults	N; E; -	Geologic maps
Timber Mtn.	regional setting	NW; -; -	Walker Lane
Thirsty Canyon	1979 seismicity	N; -; -	depth section plot &
Immoty Cumyon	1010 bellinierty	N; vertical; dextral	focal mech. 790817
	1983 seismicity	N-NE; W; normal	depth section plot &
,	1000 Beloninerty	11-11D, W, normal	focal mechs. 830217,830224
·	pre-Quaternary fault	N; W; normal	geologic map
Sarcobatus Flat	earthquake series a	N; W; -	
Darcopavus Plav	-	, , ,	stereo plots
Sarcobatus Flat	1979 earthquake earthquake series b	N; steep; dextral N; W; -	focal mech. 791225
Darcopatus Flat	1982 earthquake		depth section plot
		N; vertical; dextral	focal mech. 820119
Sarcobatus Flat	Quaternary faults	NNW; W; -	unpublished mapping
Sarconatus Fist	earthquake series c	N; steep-W?; -	depth section plot
	1983 earthquakes	N to N35°E; steep;	focal mechs.
	Quaternary faults	oblique dextral NNW; W; -	830831 20:06 & 20:56
Sarcobatus Flat	earthquake series d	N; steep-E; -	unpublished mapping
Dattonavus Flat	1983 earthquake		depth section plot
	1202 earindnake	N; steep-E;	focal mech.
	1002 aanth-mak-	oblique dextral	831110 13:17
	1983 earthquake	NE; SE; oblique normal	focal mech. 831110 10:37
	pre-Quaternary faults	N; E; -	geologic maps

Table 2. Summary of relationships of seismicity in the southern Great Basin to mapped faults (continued on next page). See the text for a complete discussion and references.

Region	Activity	Trend, Dip, Slip	Data
Slate Ridge	Feb.; '83 seismicity	N70°E; > 80°; -	depth section plot
	Feb.; '83 seismicity	N70°E; 55°; -	depth section plot
	pre-Quaternary faults	N10°E& E-W; -; -	Geologic maps
	Oct.; '83 seismicity	NE; -; -	depth section plot
	1983 earthquakes	NE; E-SE; oblique normal	focal mech. 831001
	Quaternary faults	NE; -; -	geologic maps
Yucca Flat	Yucca fault-Quaternary	N; steep-E; normal	Geologic maps
	'79-'83 seismicity	Varied (figure 26)	depth section & stereo plots
Indian Springs	'79-'83 seismicity	N; E; -	depth section fig. 30a
Valley &		N; -; -(rt. stepping en echelon)	stereo plots
Spotted Range	'81 & '83 earthquakes	≈N; vert. to steep E; dextral	focal mechs.
			811226 & 831128
	pre-Quaternary faults	NNE; -; -	geologic maps
near town of	'79-'83 seismicity	NE; N-NW; -	depth section fig. 30b
Indian Springs			
Spotted Range	pre-Quaternary faults	N-NE; -; -	state geology map
	Las Vegas Valley	NW; -; -	Quaternary geology maps
	Shear Zone		
Pahranagat	'79-'83 seismicity	NE; -; -; left-stepping	stereo plots
Shear Zone		N; -; -	stereo plots
1	1979 earthquake	N; steep; dextral	focal mech. 790813
	1981 earthquake	E-NE; steep; oblique sinistral	focal mech. 811228
,	pre-Quaternary faults	NE; -; -	geologic maps
	pre-Quaternary faults	N; W; -	geologic maps
	Quaternary faults	N; -; dextral	prelim. reconn.
North Pahroc Range	1982 seismicity	N; W; -(diffuse)	stereo plots
	1982 earthquake	N; steep-W; dextral	focal mech. 820706
	pre-Quaternary faults	N; -; - & E; -; -	geology map

Table 2 (continued).

Earthquakes in the Vicinity of Jackass Flats

The seismicity in the time period 1979-1983 in eastern Jackass Flats (see Figure 10) is plotted in depth sections in Figures 18a and b. A weak east-west lineation defined by events that occurred in 1980 (Figure 18a) includes the 800510 earthquake ($M_d=1.2$) for which a mechanism was previously prepared (Rogers and others, 1983, p. 29). That focal mechanism has an east-west striking nodal plane dipping 70° to the north and a vertical north-south nodal plane. Although the map view of this cluster appears to have a rough east-west lineation (Figure 18a), examination of the stereo-pair for this cluster (Appendix F, Figure F1a), suggests that this event could be interpreted as being near the southern end of the easternmost of two subparallel northerly-trending epicenter lineations.

About four km south of this 1980 activity a spatially diffuse set of earthquakes occurred from 1980 to 1983. A focal mechanism is also available for this group (event 830906; Figure 18b; Appendix E, Figure E1). The hypocenter depth sections shown in Figure 18b do not help to resolve the fault plane for this focal mechanism. The dip of the northwest-trending plane is not well-constrained by first motions, and the amplitude ratio data used to constrain the dip may have poorly modeled take-off angles; HYPO71 treats the rays as refractions from a velocity discontinuity at three km, whereas the radiation pattern model being fit assumes the rays are direct. Earthquake 830906 lies about 3 km west of Skull Mountain, where the majority of mapped pre-Quaternary faults have a northeast orientation (McKay and Williams, 1964). The mapped Pliocene faults at Skull Mountain (Ekren and Sargent, 1965) also have a northeast orientation. A weak northeast epicenter lineation (four or five events including event 830906) can be seen here, but a northwest lineation is also possible. If a choice of preferred nodal plane is made primarily on the basis of the geological structural grain, the northeast-trending nodal plane is preferred. The indicated slip on this plane is oblique sinistral motion. Additional discussion of these earthquakes follows in the next section.

Earthquakes in the Vicinity of Mercury Valley

The Mercury Valley - Red Mountain - Ranger Mountain region produced few earthquakes $(M_L \leq 2.0)$ during the 1979-1983 monitoring period (Figure 9, Figures 19 a and b), but a focal mechanism for one earthquake (event 831211) was nevertheless computed. That shallow-focus earthquake $(M_L = 1.6)$, appearing in the center of AA' and BB' (Figure 19b), has a predominantly strike-slip focal mechanism (Appendix E, Figure E2). The earthquake occurred near the intersection of northeast-striking Quaternary faults and the northwest-striking Las Vegas Valley shear zone (Hinrichs, 1968). The left-lateral Rock Valley fault system, which trends east-northeast, is about 6 to 7 km north of the epicenter and is currently seismically active (Figure 19a). This earthquake is one of a weakly defined five-epicenter alinement that trends northeast (most easily seen in Figure 19 or Appendix F, figure F2), parallel to the Quaternary faults mapped by Hinrichs (1968). This lineation is subparallel to the group of earthquakes alining with the Rock Valley fault system to the north. Hence the northeast-striking nodal plane of earthquake 831211 is preferred. If these events, in fact, do lie on an east-northeast-trending fault, section BB' (Figure 19a) suggests that the fault dips steeply.

Jackass Flats-Rock Valley-Mercury Valley areas

The southern quadrant of NTS includes Jackass Flats, Rock Valley (RV), and Mercury Valley (Figure 10). We have plotted, in Figure F15, a stereo-pair showing the seismicity for this area. This view shows the complexity of seismicity in the southern NTS, and also suggests several trends that are not readily apparent in the other detailed views. In spite of the fact that some of the complexity may be related to location errors, we believe that several significant features are present

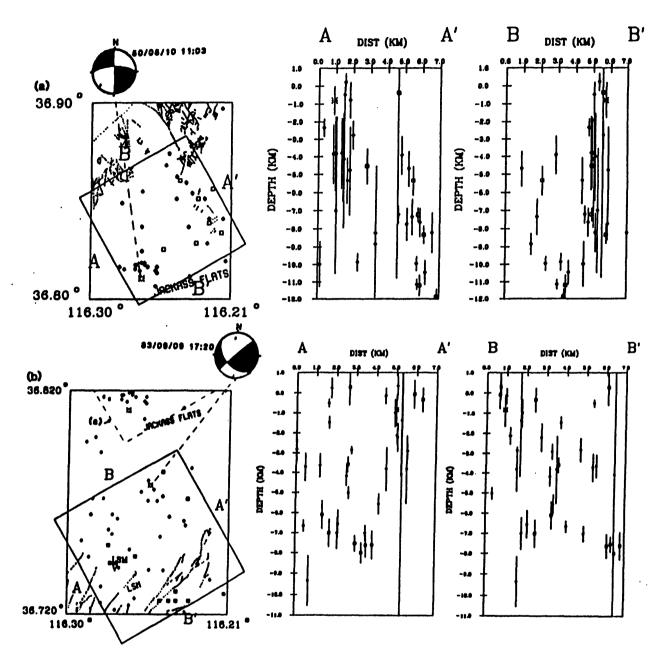


Figure 18.— (a) The 1979-1983 seismicity of eastern Jackass Flats is plotted with epicenter symbols keyed to magnitude. For this and all subsequent depth section plots, the magnitude symbols are small diamonds for $M_L < 1.0$, small squares for $1.0 \le M_L < 1.8$, small circles for $1.8 \le M_L < 2.6$, and larger circles for $M_L \ge 2.6$. Generally, hypocenters having focal mechanisms are plotted as stars. (b) The 1979-1983 earthquakes in the southern part of Jackass Flats and northern Little Skull Mountain (LSM). The vertical bar centered on each symbol in these and subsequent depth section plots represents $\pm 1\sigma$ standard error in the depth estimate (HYPO71). Depths-of-focus are plotted in cross section if at least five phase readings are included in the hypocenter determination; otherwise, depth-of-focus errors are not estimable. Also, in this and the following figures the cross sections and maps are plotted at the same scale. Thus, the cross section axes can be used to scale map distances. Faults from Michael J. Carr (written commun., 1987).

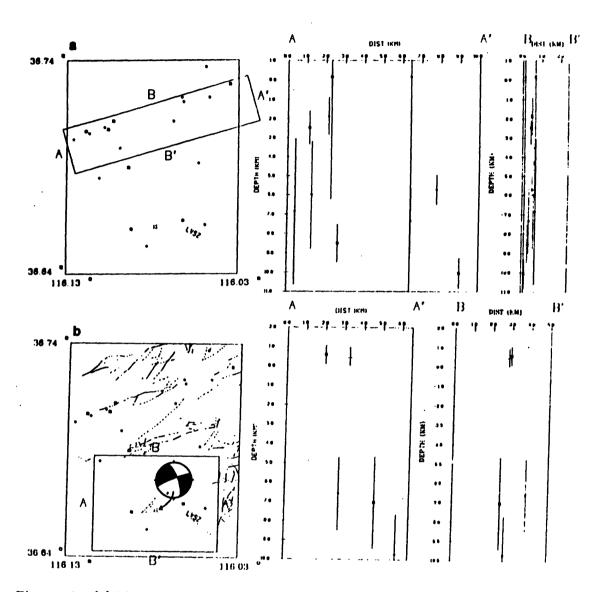


Figure 19.— (a) Maps and depth sections for 1979-1983 seismicity to the north of Mercury Valley.
(b) 1979-1983 seismicity in the neighborhood of earthquake 831211 (Appendix E, Figure E2).
LVSZ - northwest end of Las Vegas Shear Zone. Faults from Michael J. Carr (written comm., 1987).

in this map. In the southeastern part of this plot we recognize as many as 5 northeast- to east-northeast-trending zones of seismicity, which are at least partially confirmed on basis of mapped geology and focal mechanisms. These zones are sub-parallel to the Rock Valley and Cane Springs fault zones (Figure 10). The southwest terminus of these zones occurs in proximity to the inferred trace of the Las Vegas Valley shear zone or possibly the northern terminus of the Spring Mountain Range, giving the appearance of a diffuse northwest epicentral trend.

In the northeast quadrant of this stereo-pair map the earthquakes beneath Frenchman Flat form two sub-planar clusters that strike north along the east side of the flat. The easternmost cluster appears to be vertical or perhaps steeply dipping to the east. The westernmost cluster dips steeply to the west. These clusters appear to be discordant, however, with the structural trends that might be inferred to underlie Frenchman Flat, based on the general structural grain south of the Yucca-Frenchman flexure. Two earthquakes $(M_Lpprox 4)$ in this zone yield focal mechanisms that suggest strike slip on faults trending north-south or east-west (Frenchman Lake, Feb. 19,1973) to northeast-southwest (Massachusetts Mountain, August 5, 1971; Carr, 1974). There is no surface geologic evidence for north-south or east-west fault trends at Frenchman Flat, where the structural grain in the surrounding rock and alluvium trends about northeast-southwest. The Massachusetts Mountain aftershock locations, which were at depths greater than 6 km and occurred mostly south of the Cane Spring fault and the Yucca-Frenchman flexure, suggest a roughly north-northwesttrending fault plane. This orientation is also not corroborated by the geologic mapping. These data and our earthquake clustering suggest support for Carr's (1974) hypothesis that a buried north-northwest trending dextral slip fault zone could extend across the inferred trace of the Cane Spring fault. From the data of this study we further suggest that a series of deep-seated subparallel north-trending faults may extend south of the Yucca-Frenchman flexure beneath Frenchman Flat.

The activity in the western part of this stereo plot is even more complex than elsewhere in the area. The possibility that the seismicity in that region occurs on listric, shallow dipping, or detachment fault zones should be evaluated because such faults have been identified recently or suggested for some areas of the NTS (Scott, 1986; B. Meyers, personal commun., 1986). It appears, however, that no single gently dipping fault plane in this area can account for the observed distribution of seismicity which, instead, may represent slip within a shattered zone containing numerous faults. The distribution of earthquakes in the northern half of section BB' (Figure F15b) gives the appearance, possibly fortuitous, that the hypocenters are depth limited along a curved plane that dips to the southwest. As many as four faults may be indicated in the northern three-fourths of section BB', each having dip to the southwest. Focal mechanism 830906, which occurs at shallow depth (1.7 km) at the northern end of section BB' (Figure F15b), has a nodal plane that fits the strike and dip direction of this hypocentral trend. This result however, is at odds with the structural grain in the surrounding rocks, which mostly trends northeast to eastnortheast. Furthermore, a focal mechanism about 12 km to the south (event 830530; Figure 10, 6.8 km depth) has nodal planes that strike north-northwest or east-northeast. The latter nodal plane is more nearly aligned with the structural grain. These two focal mechanisms are not necessarily inconsistent, but they do demonstrate the complexity of activity in this zone.

Funeral Mountains Seismicity

Three groups of earthquakes were located during the period from January 1 through February 2, 1983 (figs. 10, 17, 20) about 2 km west of the California-Nevada border. The depth of focus for these earthquakes ranges from one km above sea level to twelve km below sea level (Appendix F, Figure F3), giving them the greatest depth range of any earthquake concentration in the study area. The southernmost cluster of earthquakes occurred contemporaneously with the northern groups. When plotted in depth sections (Figure 20), the southern group is seen to have deeper

average depth of focus, lying in a column suggesting steep southeasterly plunge (if these events lie on a common fault plane, the plane would dip steeply to the northeast). The two northern groups suggest a pair of en echelon northwest-trending alignments parallel to the Nevada-California border. Three composite focal mechanisms were computed from the two northern groups. For mechanism 830102 7:57 (Figure 20), first motion directions for the three most shallow-focus earthquakes in the two northern groups were combined (Appendix E, Figure E3). These events have depths of focus ranging from one km above to three km below sea level. Both nodal planes exhibit strike-slip motion on north-south- or east-west-trending nodal planes.

The composite mechanism 830102 16:32 (Figure 20; Appendix E, Figure E4) uses deeper focus earthquakes than mechanism 830102 7:57. Because pre-inspection of the first motion patterns from both the northern and southern groups revealed that many events in this zone had consistent focal mechanisms, first motion readings from two deeper earthquakes in both the southern and northern patches were combined. The resulting north-south or east-west nodal planes do not fit the northwest trend of the northern or southern earthquake groups.

Some earthquakes in this region, however, did demonstrate differing patterns. Mechanism 830103 17:39 (Figure 20; Appendix E, Figure E5) was constructed from four earthquakes whose epicenters lie within the easternmost of the northern earthquake clusters. The northwest-striking nodal plane approximately fits the epicentral trend, but the southwest dip of this plane does not coincide with the suggested steep northeast dip of the hypocentral cluster.

Interpretation of the stereo pairs (Appendix F, Figure F3) and focal mechanisms for this zone suggests that selection of the northerly-trending nodal planes would require activity on several parallel faults. These earthquakes occur in a region of the Funeral Mountains where that block exhibits numerous pre-Quaternary faults trending from $N20^{\circ}-45^{\circ}$ E (Carr, 1984, fig. 19) and one northerly-trending inferred fault of unknown age (Jennings and others, 1973). On this basis, then, we tentatively argue that the northerly trending nodal planes are preferred over those of eastwest or northwest trend. The three mechanisms, taken together, indicate the likelihood that the seismogenic structures in this area are steeply dipping en echelon north- to north- 30° east-trending faults in spite of the vague northwest epicentral trends.

Earthquake Activity near Lathrop Wells

Few earthquakes occurred near Lathrop Wells during the 1979-1983 monitoring period (Figures 10 and 21), however, a focal mechanism solution for a small ($M_L = 1.4$) earthquake in this region has been obtained (event 820409, Appendix E, Figure E5). Bedrock in this area is overlain by Quaternary alluvial deposits, and geologic maps (Swadley, 1983) provide few clues regarding fault orientations. The activity in this area (Figure 10; Appendix E, Figure E4) includes an event with a focal mechanism (820409) that is near the southern terminus of a group of 5 earthquakes forming a north-south trend, leading us to prefer the north-trending nodal plane. A more regional view of these events (Figure 9) suggests that this earthquake is within the northernmost lineation of two right-stepping epicentral alignments trending north-northeast. These alignments are parallel to the inferred fault that bounds the west side of Little Skull Mountain, although they are offset to the west of the inferred fault 2-3 km. The gravity data also support the interpretation of a north-trending fault to the east of Lathrop Wells (Healey and others, 1980).

Striped Hills - Rock Valley Earthquakes

A group of earthquakes occurred in the Rock Valley area between the Striped Hills and Little Skull Mountain (fig 10 and 22; Appendix F, Figure F5). The east-northeast trending trace of the Rock Valley fault is just south of this group of events. These may be occurring on assumed northern splays or sub-parallel faults of the Rock Valley fault zone (Sargent and others, 1970). Most of the mapped faults exposed in the nearby Striped Hills, Specter Range, and on Little Skull Mountain,

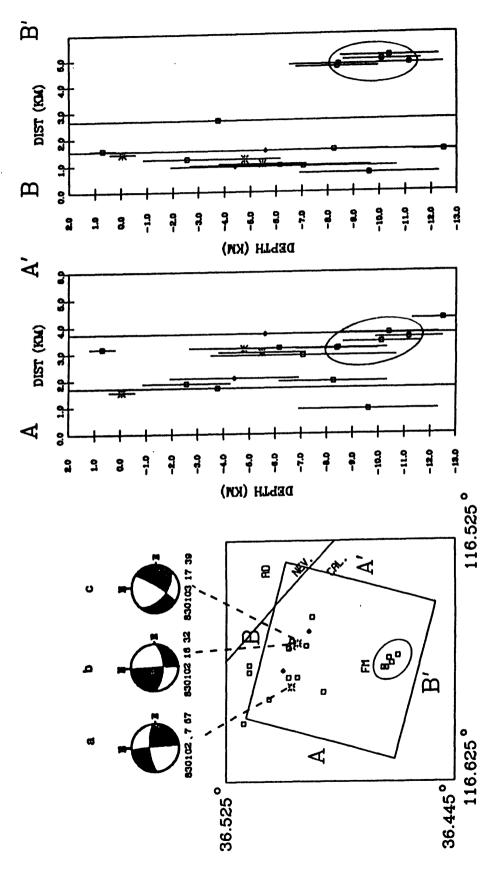


Figure 20.- The 1980-1983 Funeral Mountains seismicity in the vicinity of the earthquakes used to compute the three focal mechanisms shown. The events referred to as the "southern group" in the text are circled. FM - Funeral Mountains. AD - Amargosa Desert.

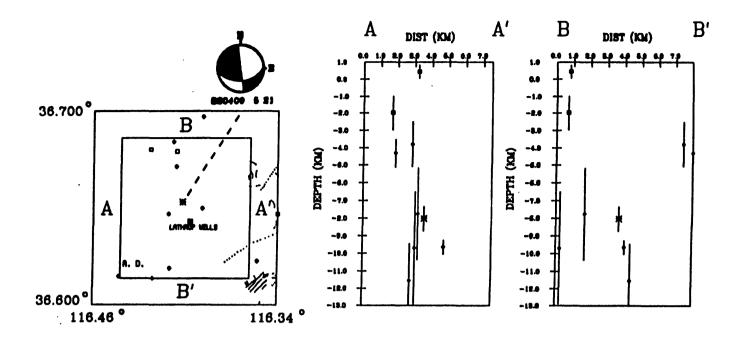


Figure 21.- 1979-1983 earthquake activity in the vicinity of the Lathrop Wells earthquake of 820409 (Appendix E, Figure E6). Faults from Michael J. Carr (written comm., 1987). A. D. - Amargosa Desert.

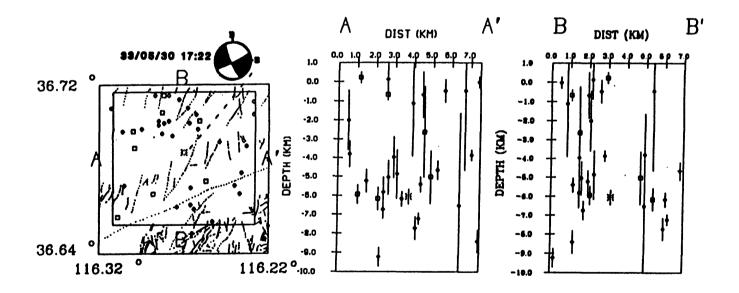


Figure 22.— Depth sections for 1979-1983 activity in the vicinity of the Striped Hills earthquake of 830530 (Appendix E, Figure E7). Faults from Michael J. Carr (written comm., 1987).

strike from about N 20° E to N 60° E. Association of these earthquakes with an east-northeast fault plane is supported by a focal mechanism (event 830530) from this group that exhibits an east-northeast trending nodal plane having sinistral strike slip (Figure 22 and Appendix E, Figure E7).

Seismicity near Dome Mountain in 1983

From May 28 to May 30, 1983, a series of eight earthquakes occurred near Dome Mountain, at depths ranging from 7 to 10 km below sea level (Figures 10 and 12; Appendix F, Figure F6; several events shown in the plots occur outside this time window). These hypocenters, 15 km north of drill hole G1 on Yucca Mountain, are plotted in depth sections (Figure 23). The first and largest earthquake of the 1983 series, (event 830528 $M_L = 1.9$), was one of the shallowest (7.8 km below sea level) and the easternmost of the series. Its focal mechanism (Appendix E, Figure E8) has northsouth and east-west striking nodal planes, having predominantly strike-slip motion. The epicenter of this event is within 1 km of a mapped east-dipping north-northwest striking fault (Byers and others, 1976), and the structural grain to the north and south of the earthquake activity is northnorthwest trending. This event could be considered distinct from the other events in this sub-area, which appear to form a cylindrical group of events plunging to the northwest. Christiansen and others (1977, p. 955) suggest that "a fundamental, probably deep-seated structural zone to which both the Walker Lane and Las Vegas Valley shear zone are related extends through the region beneath the [Timber Mountain] volcanic field." Such a zone would have northwest strike. Both the epicenter alinement and the occurrence of deeper earthquakes is consistent with the presence of a deep seated structure. An alternative interpretation, however, would combine event 830528 and the mapped surficial grain to conclude that all these events are occurring on a series of deep seated north-trending en echelon faults. With regard to the repository site, it is noteworthy that this activity could lie on an en echelon extension of the Paintbrush Canyon fault.

Earthquakes at Thirsty Canyon and Vicinity

The Thirsty Canyon region of Pahute Mesa experienced a swarm of small earthquakes in 1979 and another in February 1983 (Figure 12 and 24; Appendix F, Figure F7). The 1979 series appears to have a north-northeast-striking epicenter lineation, in agreement with a composite focal mechanism (event 790817; Rogers and others, 1983) for that swarm that has a north-trending dextral strike-slip nodal plane. Two composite mechanisms were constructed for the 1983 earthquakes (Figure 24 and Appendix E, Figures E9 and E10), both indicating normal faulting on either a west-dipping north-striking fault, or a southeast dipping northeast-striking fault. The two composite mechanisms are very similar and the separation into two mechanisms was based on slightly different amplitude ratio data. Depths of focus clustered in the range 4.2 to 6.6 km below sea level for the 5 earthquakes used in the composite mechanisms. The epicenters lie within one hundred meters of a mapped north-striking fault having a mapped length of about 9 km (O'Conner and others, 1966). The mapped dip on the segment of the fault nearest to the epicenters indicates that the west block is down. The geology, then, leads to a preference for the west dipping nodal plane. A slight westerly dip is also suggested in cross section AA' (Figure 24).

A variety of rupture styles in this region may be possible without requiring rotations of the principal stresses (Harmsen and Rogers, 1986). The same pattern of strike-slip and dip-slip mechanisms was observed for aftershocks of the Benham nuclear explosion along a fault striking north and bending to north-northeast, about 4 km east of these Thirsty Canyon earthquakes (Hamilton and Healy, 1969; McKeown, 1975). From the proximity of these 3 Thirsty Canyon mechanisms, we conclude that both dip slip and strike slip may occur on north- to northeast-trending faults, under the same regional stress conditions, depending upon the fault dip and strike.

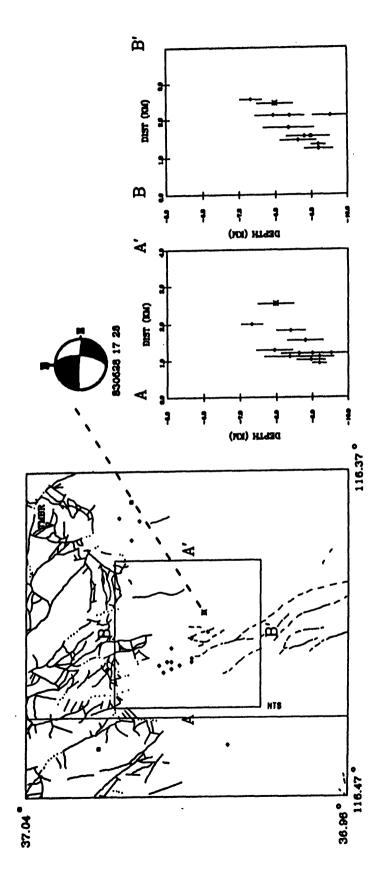


Figure 23.- 1979-1983 earthquakes in the vicinity of the Dome Mountain 830528 earthquake (Appendix E, Figure E8). Faults from Vergil Frizzell and Michael J. Carr (written comm., 1987). NTS - Nevada Test Site west boundary.

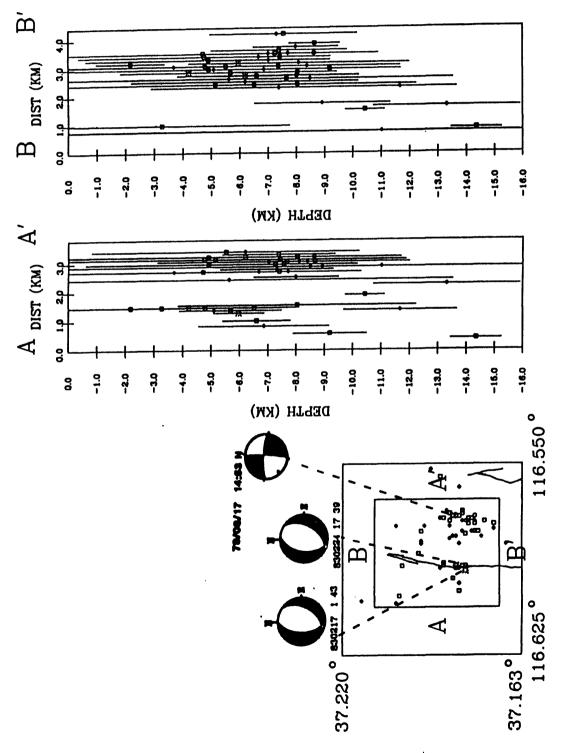


Figure 24.- 1979-1983 earthquakes in the vicinity of Thirsty Canyon. The eastern concentration occurred in 1979, and the smaller western concentration occurred in February, 1983. Faults from O'Conner and others (1966).

Seismicity at Sarcobatus Flat, 1981 through 1983

Four earthquake series (b,c, Figures 25, 26, a, d, Figure 27; Figure 13) have occurred in the Sarcobatus Flat region. Seismicity first noted by Rogers and others (1983) continued in the two southern clusters (b and c) in 1982 and 1983. The southernmost of these two series (c) that began October 15, 1981 and continued through November, 1981 began again with some intensity on August 31, 1982 and then decreased in 1983. The activity in this zone also tended to become shallower with time. The epicenter and hypocenter plots for cluster c activity in Figure 25 suggest that earthquakes there are occurring on short faults or short fault segments striking roughly north with nearly vertical dip (possibly west-dipping). These structures appear to maintain a steep dip to depths of about 11 km below sea level. Section AA' viewed along an assumed north strike shows that this zone has a width of about 2 km and, thus, may represent activity on more than one fault. Although other interpretations are possible, we suggest that these earthquakes are occurring on (Appendix F, Figure F8) a pair of right-stepping westerly dipping faults with the northern most segment striking north-northwest. Four focal mechanisms have been obtained for cluster c (Rogers and others, 1983; this report Appendix E, Figures E11, E12 and E13). The preferred nodal plane in these mechanisms trends from approximately north to N35E and indicates predominately rightlateral strike-slip motion. The mechanism in Appendix E (Figure E13), indicating a reversal in dip and oblique slip for the preferred nodal plane, suggests deformational complexity in this zone.

The Sarcobatus Flat earthquake cluster b occurs about 10 km north of cluster c (Figure 13, Figure 26). The activity in cluster b began in March, 1981, and intensified in January, 1982. Cluster b was mostly dormant in 1983. The cross sections (Figure 26) for this group of events suggest a steep (possibly west-dipping fault) plane in the depth range from near-surface to about 11 km. Although the composite focal mechanism for this group shows a vertical north-trending fault and is very similar to a previously determined mechanism (810310) for an earthquake in cluster b (Rogers and others, 1983), the dip of the north-trending nodal plane is not well constrained and may be west dipping (Appendix E, Figure E14).

The strike, dip, spatial position and focal mechanisms of clusters b and c could be interpreted as the occurrence of earthquakes on a common fault or fault system having a length of about 15-20 km. The occurrence of earthquakes near the end points of such a fault may have several differing implications. First, it is possible that this activity represents strain release due to stress concentrations occurring after slip on the central portion of the fault (Chinnery, 1963). This slip could have been the result of a main-shock earthquake or aseismic slip. Based on the distance between the two active zones, this interpretation suggests the possible occurrence of a pre-historic earthquake $(M \approx 6)$ with aftershocks continuing into the historic record. Second, Kellerher and Savino (1975) show that seismicity frequently occurs near the edges of the main rupture zone prior to the main shock suggesting the possible occurrence of such an event in the future. Both of these interpretations should be considered speculative. It is also possible that the occurrence of earthquakes in a steeply plunging cylindrical volume of rock, such as noted for these clusters and others in the region, could represent stress concentration that occurs at the intersection of two faults. This conclusion is likely to be correct in some active zones of the region, such as the activity that occurred on the eastern side of Lake Mead where cylindrical volumes of seismicity occurred near the intersection of the Indian Canyon and Fortification faults and the Mead Slope fault (Rogers and Lee, 1976). It is possible to speculate, for instance, that the activity in cluster c represents earthquakes occurring at the intersection of structures within the Walker Lane and younger more northerly-trending structures that may trend from the north into the Walker Lane (see Shawe, 1965, for instance).

Finally, it should be noted that recent but incomplete geologic studies in Sarcobatus Flat suggest that a north-northwesterly-trending Quaternary fault system may transect the eastern

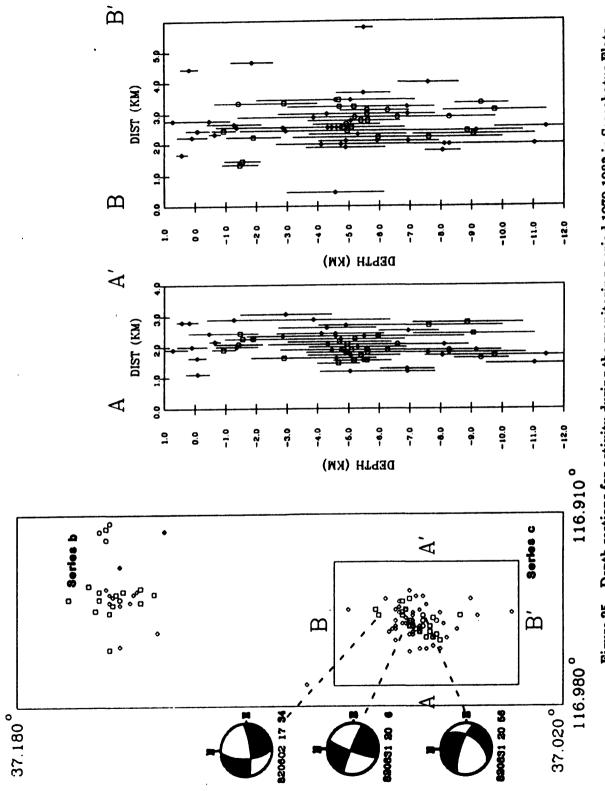
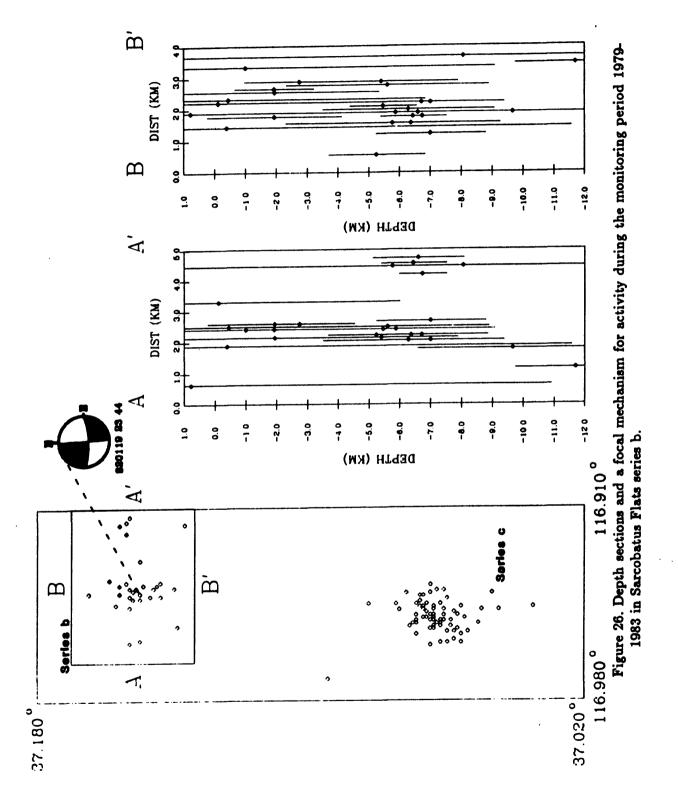


Figure 25.- Depth sections for activity during the monitoring period 1979-1983 in Sarcobatus Flats

side of the Flat (M. Reheis and J. Noller, personal commun., 1987). This system is composed of multiple strands of westerly dipping faults. Such a fault system would be consistent with most of the general patterns of seismicity that have been observed in Sarcobatus Flat (series b and c).

Earthquakes near Scottys Junction


Earthquake series a (Figures 13 and 27a; Appendix F, Figure F9) in the northern area of Sarcobatus Flat, unlike b and c, occurred before 1981. A distinct northeast epicentral trend in this series is apparent in Figure 27a, but the focal mechanism of the mainshock of this series (event 791225; Rogers and others, 1983) exhibits north- and east-trending strike-slip nodal planes. In recognition of the focal mechanism result, the stereo pairs (Appendix F, Figure F9) permit the interpretation of two north-trending fault planes that dip to the west. The lateral extent of epicenters also supports an interpretation of multiple parallel faults or, perhaps, a right-stepping en echelon fault system.

An earthquake series (Sarcobatus Flat series d) about 15 km north-northwest of Scottys Junction occurred in November, 1983 (Figure 13, Figure 27b). The events occurred in an area of short pre-Quaternary mapped faults (Stewart and Carlson, 1978) having northerly trends and east dip (Figure 13). Focal mechanisms for two earthquakes (831110 10:37 and 831110 13:17) in this series have been computed; the first event is predominantly normal slip and the second is predominantly strike slip (Appendix E, Figures E15 and E16). The stereo pairs for this cluster (Appendix F, Figure F9) also suggest two parallel north-trending faults, where the most easterly events dip to the east. Thus, the 831110 10:37 focal mechanism seems to be at variance with the mapped geology and hypocenter patterns because its northerly-trending nodal plane dips to the west, whereas its easterly dipping nodal plane has a northwest strike. The northerly-trending nodal plane of focal mechanism 831110 13:17 dips east, in closer correspondence to mapped geology and the stereo pair hypocentral distribution. This localized mixture of normal and wrench faulting was also noted above at Thirsty Canyon and at Pahute Mesa (e.g., Hamilton and Healy, 1969).

Seismicity in the vicinity of Slate Ridge

A series of 40 earthquakes was recorded from Feb 2, 1983 through Feb 5, 1983 about 25 km west of Scottys Junction and 10 km north of Gold Mountain (Figure 13). Figure 13 shows a northeast-trending epicenter lineation that crosses both the more easterly and the northerly-trending pre-Quaternary structural grain in the area. A small group of epicenters is located north of the east end of the main northeast-trending lineation. This entire group of earthquakes is plotted in depth sections along and perpendicular to the main northeast trend (fig 28; Appendix F, Figure F10). The depth distributions show that the small cluster of earthquake hypocenters is truly isolated from those of the main trend. The main trend of earthquakes may be described as a curved cylinder of events plunging N 70° E. The AA' depth section shows that the cylindrical volume has an elbow with a steeply plunging (> 80°) upper part from surface focus to about 5 km below sea level, and a lower part continuing to about 10 km below sea level, plunging $\approx 55^{\circ}$. Unfortunately, this series of earthquakes has not yielded a reliable focal mechanism.

It is possible that this cylinder of hypocenters represents failure near the intersection of two fault planes, where the rock is likely to be weaker. There are 2 mapped pre-Quaternary structural-grain orientations in the vicinity of the epicenters, one with strike of N 10° E and the other with strike approximately east-west. The intersection of 2 steeply-dipping planes ($\geq 80^{\circ}$) could account for the steeply-plunging hypocentral cylinder with the observed strike, but not account for the more shallow plunging events. If we are unconstrained by the surficial geological structures, an infinite number of intersecting fault planes could possibly produce the upper section of events, from faults with northwesterly strike and northeast dip to faults with easterly strike and north dip. The elbow in the cylinder might also result from the intersection of a curved or listric north-dipping

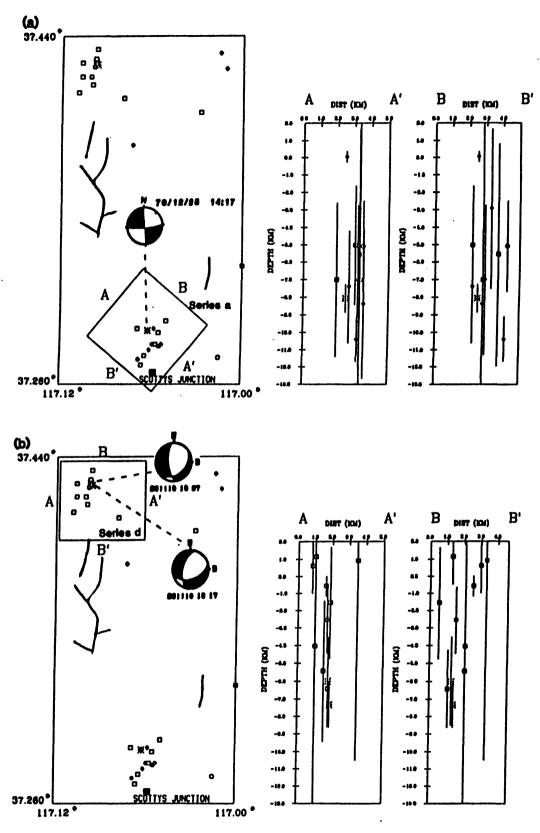
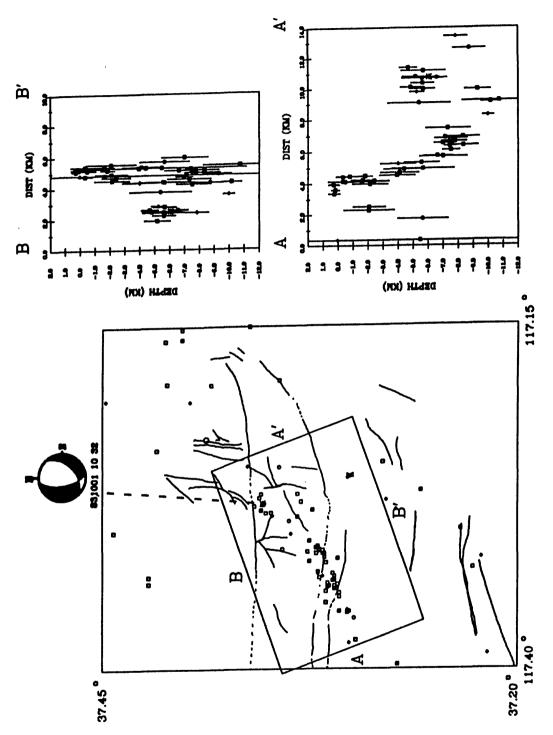


Figure 27.- (a) 1979-1983 earthquakes in Sarcobatus Flats series a, (b) and Sarcobatus Flats series d. Faults from Stewart and Carlson (1978).

east-striking fault with a vertical to southerly dipping northeast-striking fault. Recent preliminary mapping in this region (M. Reheis and J. Noller, personal comm., 1987) indicates the presence of northeast-trending Quaternary faults, lending credence to this last possibility. There are a number of other possibilities as well, but until a focal mechanism is obtained for earthquakes along this trend, full understanding of this cluster of events is not possible.

Seismicity along the main trend was dormant until October 1, 1983, at which time the group of 12 earthquakes commenced to the north of its northeast extent. These events were confined to depths greater than 4 km. As noted above, the depth sections show that the October series was spatially separate from the main trend. A composite mechanism (831001) of the first 4 of the events in this series (Appendix E, Figure E17) indicates oblique dip slip on both nodal planes. These events exhibit a weak northeast-epicenter lineation, having no distinct dip. Thus, we have a marginal preference for the nodal plane with northeast strike.


Earthquakes near Yucca Flat

Earthquakes in the Yucca Flat region are shown in Figures 10, 12, and 29. Although roughly 7-10 earthquakes could be associated directly with the Yucca Flat fault trace, many other events occur in a diffuse pattern, mostly to the east of the fault trace. The stereo pairs for this area (Appendix F, Figure F11) indicate that these events occur downdip of the Yucca Flat fault trace. Continuation of activity to the southeast from the southern tip of the mapped section of the Yucca Flat fault suggests that the fault may continue in that direction and merge with or intersect the Yucca-Frenchman shear zone. A short epicenter lineation in the middle of Yucca Flat is probably associated with the Carpetbag Fault. A north-trending lineation of epicenters also occurs along the western margin of Yucca Flat suggesting that the bounding fault on that side of the valley is active. Earthquakes in the Eleana Range west of Yucca Flat are very diffuse in character and do not display patterns that can be associated with mapped structure.

Yucca Flat is a nuclear testing area, and it is reasonable to assume that many of the earth-quakes shown are the result of the testing program. It is notable, however, that a high percentage of these events occur at depths greater than about 3 km (Figure 29, section AA'), which is considerably deeper than nuclear test depths. This behavior has also been noted in the Pahute Mesa testing area by Hamilton and others (1971) and Rogers and others (1977) and suggests that the nuclear tests act to relieve tectonic stress at depth by wave propagation effects. That is, elastic waves leaving the source produce enough additional shear stress or pore pressure on tectonically stressed faults that are near failure that this additional propagating wave-induced stress triggers fault rupture (Kisslinger, 1976).

Earthquakes in Indian Spring Valley

Figures 30a and b show maps and cross sections for earthquakes in the Indian Springs Valley area (Figures 10 and 14). The two focal mechanisms of Figure 30a are predominantly strike-slip motion; we marginally prefer the the north-south nodal planes as the slip planes given the nearby pre-Quaternary north-northeast structural grain (Stewart and Carlson, 1978) in the rocks of the Spotted Range bounding the west side of Indian Spring Valley (Rogers and others, 1983; Appendix E, Figure E18), and because the stereo pairs (Appendix F, Figure F12) weakly suggest a pair of subparallel north-trending faults. Figure 30a (section AA') shows that the north-trending east-dipping nodal plane is in agreement with an east-dipping hypocentral trend. A right-step may occur at the northern extreme of the easternmost lineation. The group of events to the southeast (Figure 30b), near the town of Indian Springs, appears to occur on a northeast-striking fault that dips to the north-northwest. This fault appears to transect the concealed trace of the Las Vegas Valley shear zone (Figure 14) at nearly right angles.

western lineation occurred during February, 1983, and the northeast activity from which the mechanism of Appendix E, Figure E17 was computed, occurred during October, 1983. Faults Figure 28.- 1979-1983 seismicity in the Slate Ridge region 25 km west of Scottys Junction. The (incomplete outside box AA'BB') from Albers and Stewart (1965).

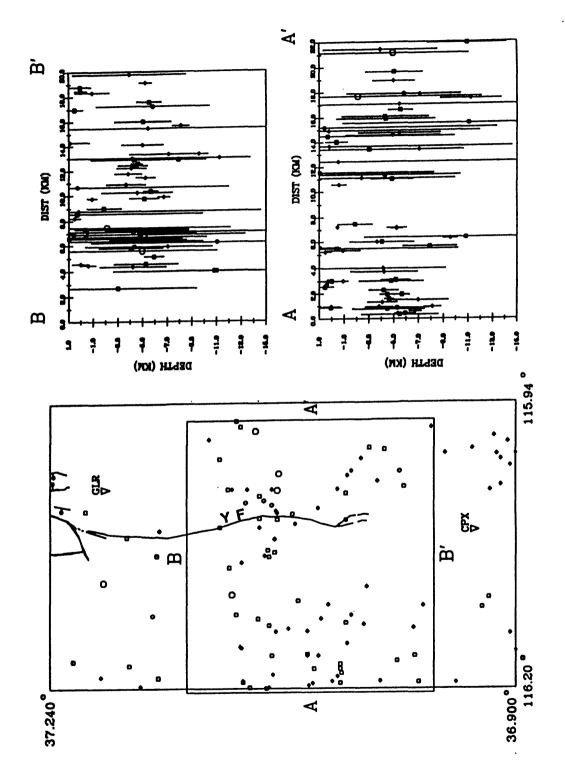


Figure 29.- Earthquakes in the vicinity of Yucca Flat, August, 1978 through December, 1983. Yucca fault (YF) from Stewart and Carlson (1978).

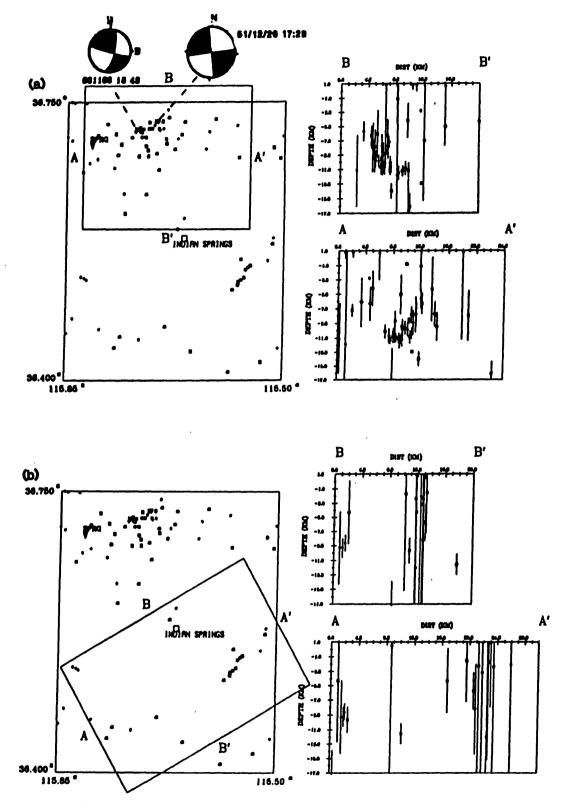


Figure 30.— (a) Depth sections and two focal mechanisms (Rogers and others, 1983; Appendix E, Figure E18) for earthquakes in the Indian Spring Valley and Spotted Range; (b) earthquakes in the vicinity of Indian Springs and Highway 95.

Earthquakes in the Pahranagat Region

Two different views of the seismicity in the Pahranagat Shear Zone (Figure 15) are shown in Figures 31a and b. One of the views (Figure 31b, BB') is along the main northeast-striking structural trend and the other (Figure 31a, AA') is along the secondary north-striking structural trend; the secondary trend is also parallel to the nodal plane strikes for the 2 focal mechanisms. Because of the diffuse nature of the seismicity no clear relationship can be observed between the faulting and epicentral patterns in map view. If the north-trending faults are active, then the cross sections indicate that the zone is complex and must consist of many subparallel faults that are so closely spaced as to be indiscernible given the accuracy of the hypocenter locations in this region. View AA' (Figure 31b) suggests that the activity in this zone plunges steeply to the southwest. This behavior, however, may be the result of fortuitous juxtaposition of several active zones. The stereo pairs (Appendix F, Figure F13) are somewhat more helpful in the interpretation of these events. This plot suggests evidence for the presence of 3 or 4 northeast-trending lineaments that offset a north-trending lineation in a left-stepping pattern. A cursory field reconnaissance in this region disclosed several Pliocene to Quaternary strike-slip faults having potential north trends (R. E. Anderson, U. S. Geological Survey, personal comm., 1986).

Earthquakes in North Pahroc Range

An earthquake series during July 1982 in the North Pahroc Range (Figure 16) is plotted in depth sections (Figure 32). Most of the earthquakes occur at depths less than 5 km below sea level. As this region is at the northeast edge of the network, location quality is not optimal. The mainshock ($M_d = 3.1$) of this series (820706 02:10) occurred about 21 km northeast of Hiko, Nevada, where it was felt. A focal mechanism indicating predominant strike slip was obtained for this earthquake (Appendix E, Figure E19). The pre-Quaternary bedrock structures near the epicenter (Ekren and others, 1977) exhibit predominantly east-trending fault orientations; five to ten kilometers to the east of the epicenter, however, the longest and most abundant exposed faults trend from north-northwest to north-northeast. Some of these north-trending faults appear to bound Quaternary alluvial valleys. The stereo pairs (Appendix F, Figure F14) suggest 1-3 north-trending faults that may dip steeply to the west. The epicenters also have a more elongate north-south than east-west extent. Although the epicenter of the focal mechanism event (830607) is about 2 km due east of a prominent east-west striking fault, we have a slight preference for the north-trending dextral-slip nodal plane. This interpretation would require the presence of unmapped north-trending faults in this region.

Earthquakes and Structure: Summary

The foregoing discussion demonstrates the difficulty of showing an unequivocal relationship between seismicity and known faults in this region. Because of the errors in the locations of the events and the unknown geometry of some faults at the depth of earthquake hypocenters, it is often difficult to directly associate given earthquakes and faults with any degree of confidence. The common association, however, of earthquake nodal planes with epicenter lineations and/or mapped structural grain in the surrounding rocks imparts some level of confidence that the faults that define the structural grain at the surface are likely to be active, and do, in fact, reflect the general structural pattern that exists at seismogenic depths. It is on the basis of these correlations that we suggest that faults in the region with azimuths ranging from about north to east-northeast should be considered favorably oriented for activation in the current stress regime. Exceptions to this conclusion are noted in the discussion section.

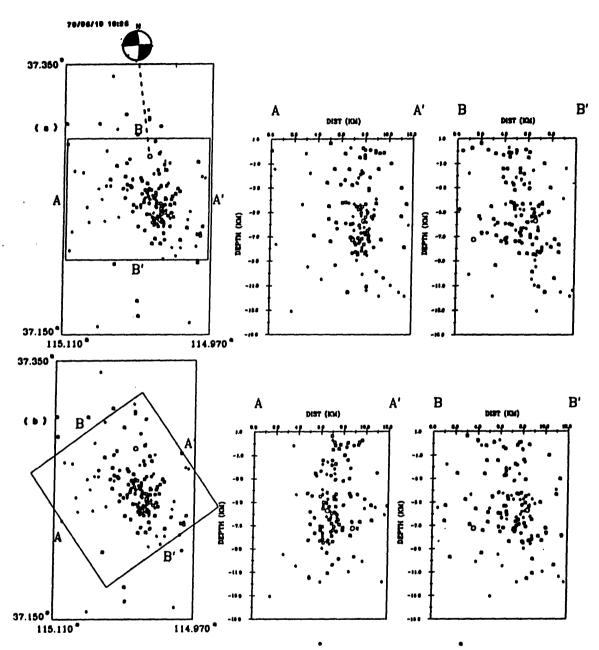


Figure 31.- (a) Pahranagat Shear Zone earthquakes plotted in depth sections for the period August 1978 through December, 1983. (b) Same data, different projection planes.

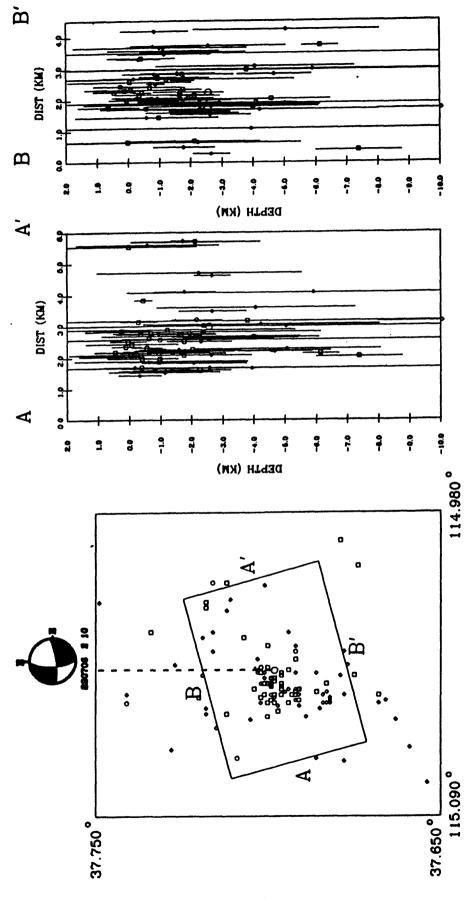


Figure 32.- Depth sections of 1979-1983 seismicity in the North Pahroc Range, including the series of July, 1982, from which the mechanism of Appendix E, Figure 19, was computed.

DEPTH OF FOCUS DISTRIBUTION, 1982-1983

For the period January 1, 1982 through December 31, 1983, all earthquakes having HYPO71 "A" or "B" quality solutions, having estimated depth error < 4.0 km, and located within the region 114.8 ° W < longitude < 117.8° W and 35.8° N < latitude < 38.2° N, are plotted in a depth histogram (Figure 33). There are 427 earthquakes meeting these criteria. The velocity model used to compute these locations (model M0) is plotted in Figure 34. The median depth is 4.9 km below sea level, and the median standard error is 0.9 km. The mean error in the depth of focus is plotted as a function of depth in Figure 35. The depth distribution appears to be bimodal, with peaks at about 1.0 km and 7.5 km below sea level, and with a pronounced minimum at 3.5 km below sea level. This pattern is similar to that for the period 1978 to 1981 reported by Rogers and others (1983). There is a moderate discontinuity in the velocity model at 3 km below sea level (P-velocity=5.9 km/sec above that depth, 6.15 km/sec below), which could be a factor in producing the observed assismicity just below that boundary. Others have noted (e.g., Caccamo and Neri, 1984) that the Geiger method, which is used to adjust hypocentral parameter estimates in the program HYPO71, is unstable for depths of focus that lie just above a velocity discontinuity.

We can combine the distribution of the standard error in depth and the distribution of depths to evaluate the probability density function of depth of focus (Figure 36). Here, depths are assumed to be random variables having normal distributions with means given by the estimated depths, and variances equal to the square of the depth error estimates. Comparing Figures 33 and 36 it can be seen that some of the irregularity in the depth distributions disappears when the depth is considered a random variable, however, the bimodality of the depth distribution is preserved. This result implies that the depth distribution of the hypocentral errors is not a factor in producing the observed bimodal behavior.

1982-1983 Relocations Using Velocity Gradient Models

All of the earthquakes for 1982-1983 period were relocated using the program HYPOELLIPSE (Lahr, 1979) and using velocity models containing a linear velocity gradient over a fixed halfspace velocity (Figure 34; models M1, M2) to determine if a gradient model would also produce a hypocentral depth distribution with a bimodal shape. The first velocity gradient model (M1) is specified by

$$v = \begin{cases} v_0 - kz, & \text{if } 0 \le z_{\text{sta}} \text{ km (above sea level);} \\ v_0 + kz, & \text{if } 0 \le z < 3 \text{ km (below sea level);} \\ v_h, & \text{if } z \ge 3 \text{ km (below sea level).} \end{cases}$$

Here $v_0 = 3.2$ km/sec, $v_h = 6.15$ km/sec, k = 0.783 /sec, and $z_{sta} =$ station elevation (km). Station residuals were obtained and used in the final locations. The depth histogram for A and B quality relocations having erz (standard error in depth) < 4 km, 35.8 < latitude < 38.2° N, 114.8 < longitude < 117.8° W (Figure 37) also shows the bimodal shape with a minimum 3.5 km below sea level. This result indicates that the depth distribution is not an artifact of the particular algorithm used to locate the earthquakes, nor is the result dependent on the presence of velocity discontinuities. The second velocity gradient model (M2) is specified by

$$v = \begin{cases} v_{shallow}, & \text{if } 0 \le z_{sta} \text{ km (above sea level);} \\ v_0 + kz, & \text{if } 0 \le z < 5 \text{ km (below sea level);} \\ v_h, & \text{if } z \ge 5 \text{ km (below sea level).} \end{cases}$$

Here, $v_{shallow} = 3.2 \text{ km/sec}$, $v_0 = 4.4 \text{ km/sec}$, $v_h = 6.15 \text{ km/sec}$, and k = 0.35 /sec. The program HYPOELLIPSE was used to relocate the 1982-1983 earthquake data. The resulting depth distribution (Figure 38) shows a less pronounced seismicity minimum that has now shifted to depths

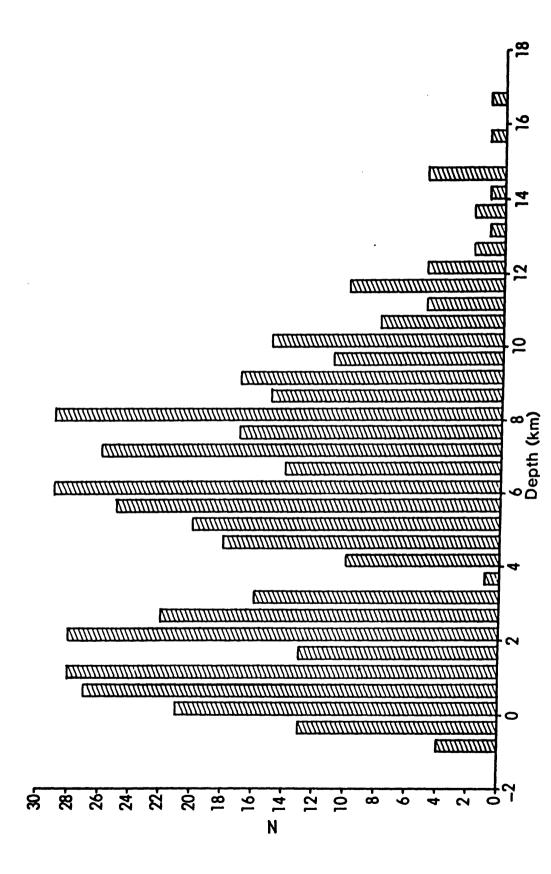


Figure 33.- Distribution of focal depths (< 0 above sea level, > 0 below) for well-located SGB earthquakes for the calendar years 1982 and 1983. The depth data are grouped into 0.5 km wide intervals.

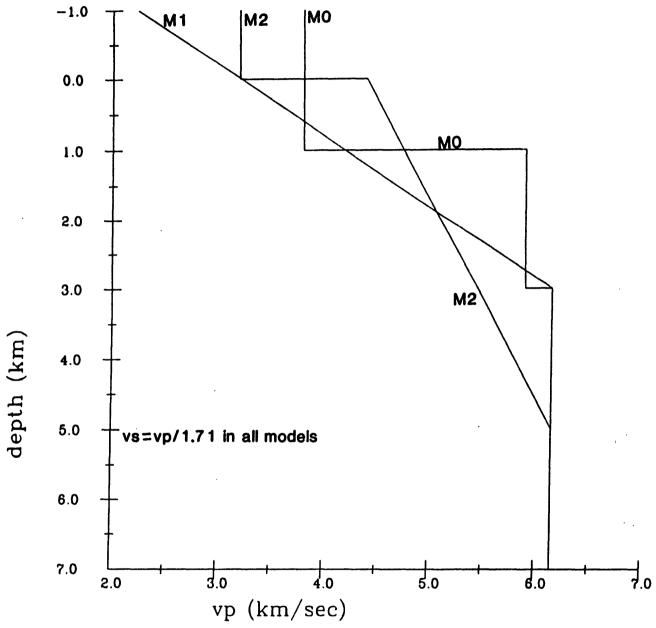


Figure 34.– P—wave velocity, vp, versus depth for three velocity models that fit known average properties of SGB crustal rock. Model M0 is used routinely to locate SGB earthquakes, and models M1 and M2 are variants that were used with the computer program HYPOELLIPSE to investigate the sensitivity of depth of focus estimates to relatively small changes in the velocity model. For all models, vs, the S—wave velocity, is assumed to equal vp/1.71 at a given depth.

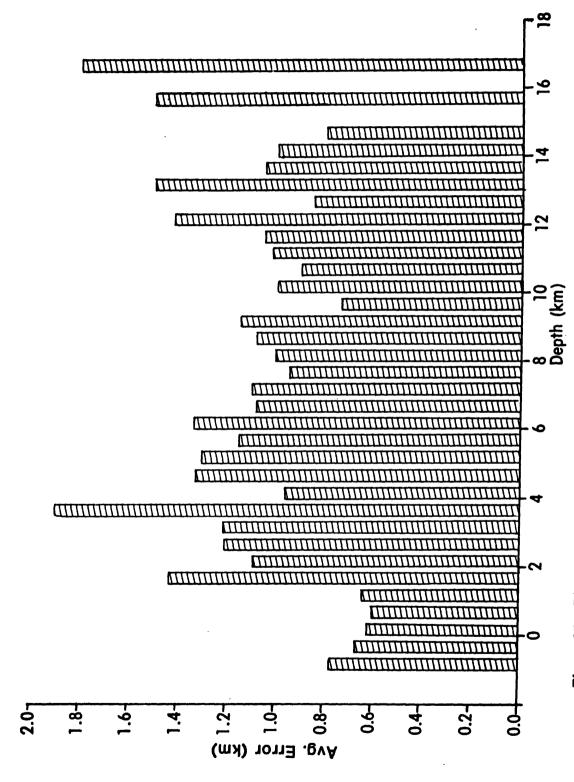


Figure 35.- Distribution of average standard error in depth-of-focus, as a function of estimated depth-of-focus, for the interval data plotted in figure 33.

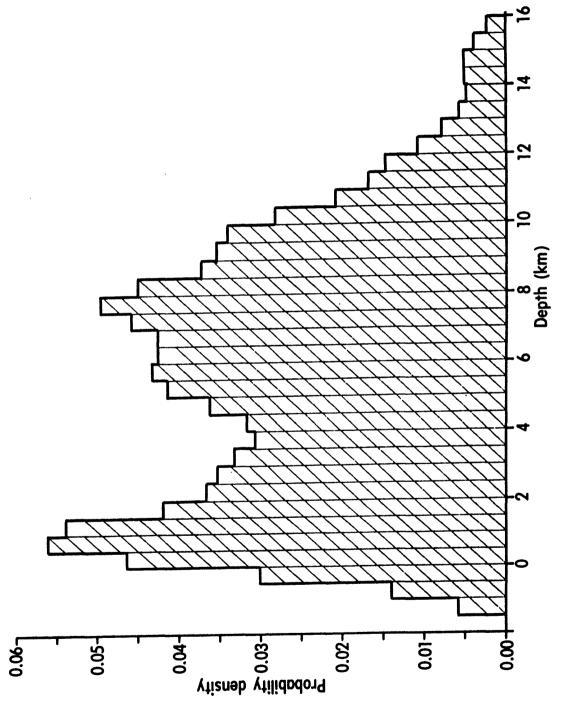


Figure 36.- Probability of an earthquake occurring at a depth z using velocity model M0, and the same data as in Figure 33. The calculations assume that each depth-of-focus estimate given by HYPO71 is a random variable having an independent gaussian distribution with mean and standard deviation equal to the depth estimate and depth error estimate, respectively. Probabilities within 0.5 km wide intervals were accumulated for depths from 1.5 km above sea level to 16 km below sea level. The total probability was then normalized to 1.0.

of 5-6 km, where the halfspace velocity begins. Thus, in all of the models, a relatively assismic zone appears just below the last shallow refracting horizon. Earthquakes with hypocenters below this horizon are recorded by the local seismograph network as direct upgoing arrivals. These tests suggest two possible interpretations. First, perhaps, the velocity models suffer from some inherent inaccuracy relative to the true mean regional earth structure. For instance, if there were actually one or more refracting horizons at shallow depths below the 3 km level, then it is possible that the location scheme, using a velocity model without these layers, might force earthquake depths to higher or lower levels. Second, perhaps a true minimum in seismic activity exists at some depth in the upper 5 km of the crust, but that the location of the minimum shifts as a function of the velocity model used to locate the earthquakes. The first interpretation was partially tested by adding a number of artificial layers below 3 km and relocating the earthquakes. The result of this experiment was to modify the bimodal distribution somewhat, but a relative minimum remains at about 4 km. Thus, at present, the second interpretation is preferred.

Geographic Variation In The Depth Distributions

For the period August 1, 1978 through December 31, 1983, the depth-of-focus distributions were plotted for three sub-regions of the southern Great Basin; the locations were obtained using velocity model M0 and the location program HYPO71. The depth distributions in these three regions (eastern, central, and western) are shown in Figure 39a, b, c. Although the general bimodal depth distribution and the full range of observed depths are found in each geographic region, the proportion of shallow-to-deep events is greater for the eastern region compared to the other two zones. The fact that the bimodal depth distribution occurs in all three regions leads to the conclusion that the shallow peak in the distribution can not be attributed solely to nuclear testing. The two most probable causes of the geographic variation in depth distribution are: (1) the effects of regional variations in velocity structure relative to the velocity model used to locate the earthquakes, and (2) the lack of sufficient observation time to determine the "true" geographic distribution of depths. The two western regions have similar depth distributions and are roughly contained within the broad Walker Lane Belt (Carr, 1984). In contrast, the eastern region, which has a different depth distribution, is contained largely within the basin and range subsection. In spite of the tentative conclusions above, this observation suggests the additional possibility that contrasting structural style or tectonic processes are related to the observed differences.

FOCAL MECHANISMS AND THE REGIONAL STRESS FIELD

A method proposed by Angelier (1979) to extract stress direction information from sets of focal mechanisms has been applied to our focal mechanisms including those reported earlier (Rogers and others,1983). The technique is to overlap the tension and pressure dihedra, independently, for all of the mechanisms on the focal sphere. If we assume that a regional stress field having constant principal stress directions activated all of the ruptures from which these mechanisms were derived, then the resulting focal area within the overlap of the tension dihedra must contain the direction of the minimum compressive stress, $\hat{\sigma}_3$, and the focal area within the overlap of the pressure dihedra must contain the direction of the maximum compressive stress, $\hat{\sigma}_1$ (McKenzie, 1969).

The result of superposing the SGB mechanism pressure and tension dihedra for all mechanisms of Rogers and others (1983) and this report is plotted in Figure 40a. There is a finite region of overlap of all 29 tension dihedral areas, and 28 pressure dihedra shared a finite common region of overlap. The regional stress tensor may therefore be partially described as having maximum compressive stress orientation in the range N 20° E to N 35° E and minimum compressive stress orientation in the range N 50° W to N 70° W. The remarkable aspect of the dihedral intersection result is that it yielded zones of zero or one inconsistency given 29 focal mechanisms ranging from

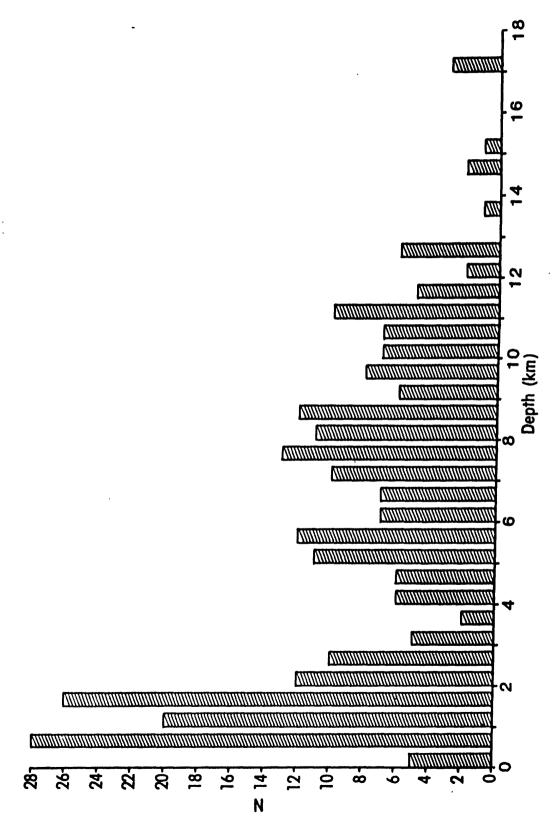


Figure 37.- Distribution of focal depths below mean station elevation (≈ 1.2 km. above sea level) obtained using velocity model M1 and HYPOELLIPSE.

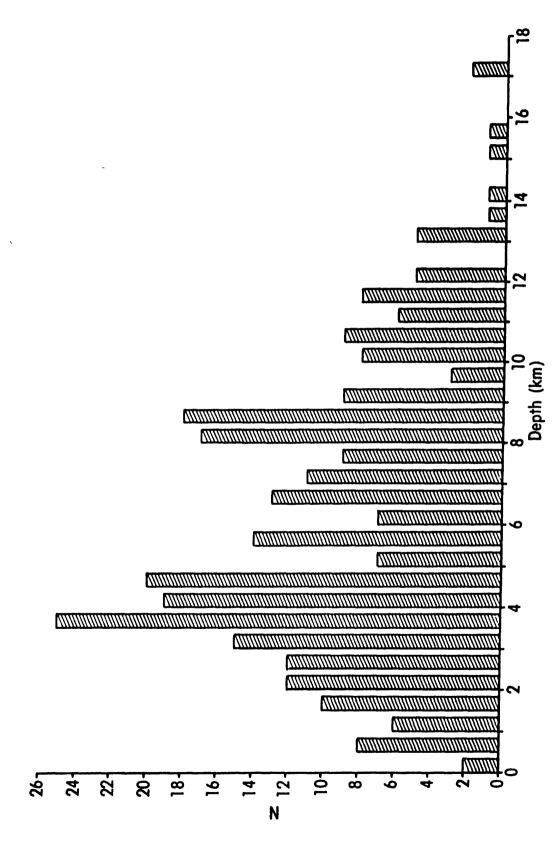


Figure 38.– Distribution of focal depths below mean station elevation obtained using velocity model M2 and HYPOELLIPSE.

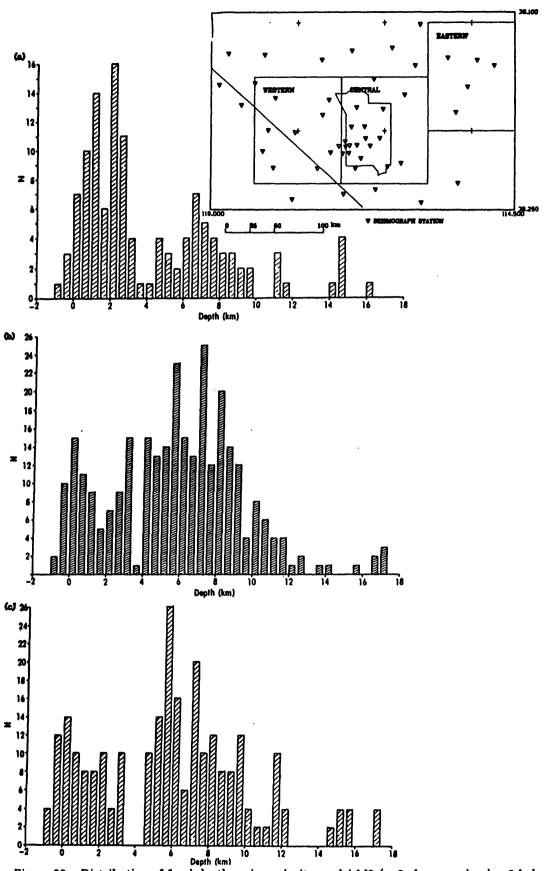


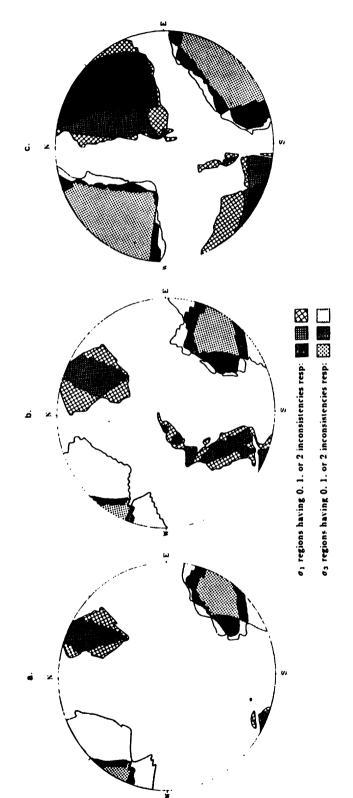
Figure 39.— Distribution of focal depths using velocity model M0 (< 0 above sea level,> 0 below) for three SGB regions for the period August 1, 1978, through December 31, 1983. The inset map outlines the three regions. (a) The eastern region is a one square degree area centered at 37°30′ N, 115°0′ W. (b) The central region is a one square degree area centered at 37°0′ N, 116°0′ W. (c) The western region is a one square degree area centered at 37°0′ N, 117°0′ W.

strike slip to normal slip. This degree of consistency for ∂_1 and ∂_3 directions is good evidence that these stress directions are fairly constant throughout the seismogenic portion of the crust. It is also notable that the full data set is most consistent with an orientation for these two stress directions that is oblique to the horizontal and vertical planes. This result suggests that the stress field may be modified by crustal geometry such as variable crustal thickness.

To explore the possibility that our focal mechanisms exhibit a systematic change with depth, we segregated them into those having depth of focus less than six km below sea level, and those having depth of focus greater than six km. Repeating the intersection of dihedra exercise described above on the 14 shallow-focus mechanisms resulted in the focal areas containing $\hat{\sigma}_1$ and $\hat{\sigma}_3$ shown in Figure 40b. For the 15 mechanisms from earthquakes at greater depths, the resulting focal areas containing $\hat{\sigma}_1$ and $\hat{\sigma}_3$ are shown in Figure 40c. These figures indicate orientations for $\hat{\sigma}_3$ that are similar for shallow and deep events. Both shallow and deep data sets show $\hat{\sigma}_1$ with a range of orientations between vertical and horizontal. Thus, these data provide no evidence that stress orientations giving rise to shallow earthquakes are different than the stress orientations giving rise to deep earthquakes.

In order to further evaluate the regional stress field from focal mechanism data we attempted to find a set of principal stress directions consistent with the slip directions \vec{X} or \vec{Y} of the focal mechanisms. Gephart (1985) showed that, in general, for a focal mechanism, at most one of the two slip vectors \vec{X} or \vec{Y} is consistent with a given set of principal stress directions. The method assumes that the direction of maximum shear on a given focal plane coincides with the slip direction and that the nodal plane orientations are known exactly. The method also assumes that microearthquakes are occurring on preexisting planes of weakness rather than breaking homogeneous, isotropic rock. From these assumptions, an important parameter $R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3}$ is computed for each slip direction \vec{X} and \vec{Y} by the coordinate transformation method of Gephart and Forsyth (1984). In this context, σ_1, σ_2 , and σ_3 represent the magnitude of the maximum, intermediate, and minimum principal compressive stresses, respectively. The nodal planes whose slip vectors produce R values such that $0 \le R \le 1$ are selected as the preferred focal planes.

This analysis, which uses the directions


$$\hat{\sigma}_i$$
, $i=1,2,3$

and the focal mechanism directions,

$$\vec{X}_{i}, \vec{B}_{i}, \text{ and } \vec{Y}_{i}, i = 1, 2, ..., 29$$

as input data, was performed for the mechanisms reported here and in Rogers and others (1983). We varied the directions $\hat{\sigma}_1$ and $\hat{\sigma}_3$ through the range of acceptable values indicated in Figure 40a and, for this analysis, ranked the quality of the assumed stress fields by the degree of similarity of the computed R values for the 29 mechanisms. Equivalently, for all allowable orientations of the principal stress ellipsoid implied by Figure 40a, we searched for that orientation for which the shape of the principal stess ellipsoid varied the least over the 29 mechanisms. Although this analysis is different from a formal inversion of mechanism data to obtain the stress tensor (as in Gephart and Forsyth, 1984), it provides a method to determine which nodal plane is the best choice for a given assumed stress field and, at the same time, gives an average value of R for all of the mechanisms, assuming constancy of principal stress directions.

The orientations of the principal stress components that minimize variance in R for the 1979-1983 southern Great Basin focal mechanisms are given in Table 3 below. For this stress field, whose principal axes are shown in Figure 41, $\bar{R}=0.34\pm0.21$,. This stress field gave R values in the physically acceptable range $0 \le R \le 1$ for 28 of the 29 mechanisms, and had marginally

tension dihedra for 29 southern Great Basin earthquake focal mechanisms. Locations where all, all but one, and all but two, tension quadrants overlapped are designated by the "regions of inconsistency" in the legend. Locations where all but one and all but two pressure quadrants overlapped are designated by the σ_1 "regions of inconsistency" in the legend. There was no of these regions of intersection is discussed in the text. (b), Same as 40 (a) except that we (c), Same as 40 (a) except that we intersect mechanism regions for the 15 earthquakes having common region of intersection of pressure dihedra for all of the mechanisms. The significance intersect mechanism regions only for the 14 earthquakes having depth-of-focus, $z \le 6$ km. Figure 40– (a), Equal-area, lower hemisphere projection of the intersection of pressure dihedra and



Figure 41.— Equal-area, lower hemisphere projection of the directions of the principal stress components, σ_1, σ_2 , and σ_3 , obtained by the method discussed in the text, and shown in Table 3.

less variance in R than any other stress field that could be fit to this many mechanisms. Thus, it is possible to find principal stress component orientations that satisfy the original assumption of constant R-value reasonably well. This result does not constitute proof that R is nearly constant, or that principal stress directions are regionally unvarying, but suggests that such assumptions are plausible.

	Azimuth	Plunge
σ_1	32.0°	18.2°
σ2	178.1°	68.0°
σ_{3}	298.0°	12.0°

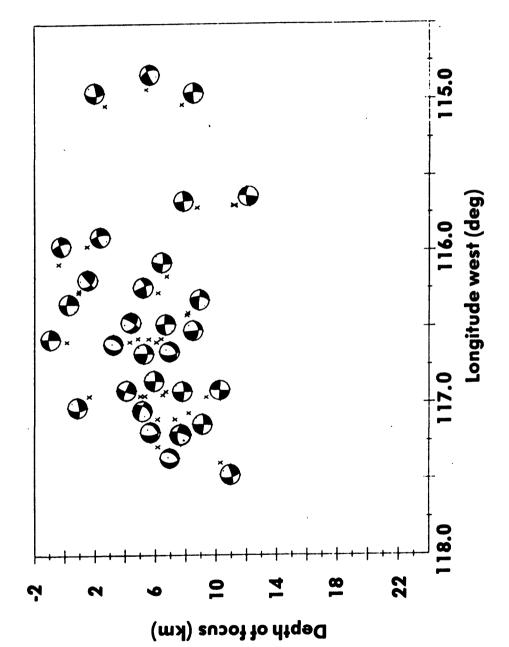
Table 3. Principal stress directions resulting from the minimization of the variance of $R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3}$ for 28 southern Great Basin focal mechanisms.

Harmsen and Rogers (1986) have shown that if a fixed stress field is controlling seismic slip, then the most likely conditions for the proximate coexistence of strike-slip and normal fault earthquakes is that the stress field be approximately axially symmetric. That is,

$$0.8 \le \sigma_2/\sigma_1 \le 1.0$$

 $0.0 \le R \le 0.3$

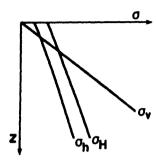
This conclusion is supported by the observation that both strike-slip and normal fault events are observed throughout the seismogenic portion of the crust (Figure 42) and is based on the assumption that slip will preferentially occur on pre-existing fault planes with orientations that are optimum for satisfying the Mohr-Coulomb criterion. An alternative interpretation suggested in the past-that the rate of increase in the vertical principal stress with depth is greater than the rate of increase of the greatest horizontal principal stress (Zoback and Zoback, 1980a, and Vetter and Ryall, 1983)—does not fit our observations. To satisfy this alternative, the focal mechanism types should display a depth dependence, such that strike-slip events would be restricted to shallow


depths and normal fault events would occur at greater depth. Hydrofrac data collected at Yucca Mountain (Stock and others, 1985) imply that

$$\sigma_H/\sigma_v \sim 0.65$$
 $\sigma_h/\sigma_v \sim 0.30$
 $R > 0.5$

where σ_v is the effective vertical stress, σ_H is the maximum effective horizontal stress, and σ_h is the minimum effective horizontal stress. Harmsen and Rogers (1986) have shown that, under application of the Mohr-Coulomb criterion to these stress directions, assuming the relative stress magnitudes given by the hydrofrac data, strike-slip is not possible on north-south or east-west oriented fault planes. We infer, then, that the stress conditions measured by hydrofrac techniques do not reflect the general critical stress conditions throughout the region and/or the stress conditions at seismogenic depths. Most state of stress measurements at the Nevada Test Site indicate that $\sigma_H \leq \sigma_v$, the only exception being one measurement at the Spent Fuel Test-Climax site, where the maximum principal stress was determined to strike and plunge at N. 56° E. and 29°, respectively, and to have about 1.66 the amplitude of the intermediate principal stress (Ellis and Magner, 1982). In the vicinity of the Climax stock, no earthquakes catalogued through 1983 have been large enough to provide reliable focal mechanisms to compare stress associated with earthquakes with that from surface measurements. It is possible, however, that the peculiar stress conditions obtained by Ellis and Magner are local.

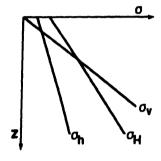
It is worth considering the implication of these results regarding the behavior of stress with depth. For instance, we can compare our results with several hypothetical models of stress-depth dependence. Figure 43 shows examples that have been discussed in the past. Jaeger and Cook (1969), among others, have suggested that the tectonic-gravitational model is a suitable model to explain tectonic behavior in an extensional regime. That is, normal dip-slip on faults trending perpendicular to the direction of least principal stress is driven by the gravitational (vertical) stress, which is assumed to be the maximum principal stress. The direction of least principal stress may vary over the region. This type of model would not generally permit strike-slip faulting unless coefficients of friction are very low on the wrench faults (Harmsen and Rogers, 1986; fig. 6). This model is similar to that suggested by the hydrofrac data collected at Yucca Mountain (Stock and others, 1985), in that horizontal stresses increase less rapidly with depth than the vertical stress, σ_z , which is assumed to equal the lithostatic load. The tectonic-gravitational model is based on the assumption of zero lateral displacement at the boundaries of the rock volume; thus, the tectonic stress release must occur slowly in order to avoid violating the principal assumption of the model. (If the boundary conditions are relaxed to allow material displacement through the boundary, the minimum compressive stress should decrease as the displacement occurs, so that model predicts increasing seismic slip with time.) Furthermore, the model predicts a large difference between the maximum and minimum principal stresses in dry rock at relatively shallow depths (when Poisson's ratio equals 0.25); this stress difference is more than adequate to initiate normal slip on steeply dipping surfaces whose stability is governed by the Mohr-Coulomb criterion. Because it is possible that fluid pore pressure is also high in an extensional tectonic regime, the tectonic-gravitational model suggests a degree of crustal instability that may not be plausible.


The Vetter and Ryall (1983) model requires a moderate amount of horizontal compressional tectonic stress in the direction parallel to the intermediate principal stress, such that $\sigma_v \leq \sigma_H$ at depths less than about 10-15 km. Although this model permits both normal and strike-slip faulting, each mode is confined to certain sections of the crust as noted above.

over the longitudinal range of the SGB network. Although this plot is in cross section, the Figure 42.- Thirty southern Great Basin earthquake focal mechanisms plotted in depth section focal mechanisms are lower hemisphere projections shown in map view.

Models Of Stress Distribution With Depth

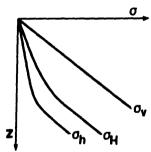
$$R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3}$$



R highly variable

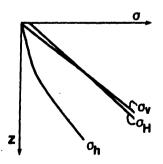
0 ≤ R ≤ 1

$$o_v = \varrho gz$$
, $o_H = o_\tau + \frac{\gamma}{1 - \gamma} o_z$, $o_h = \gamma o_\tau + \frac{\gamma}{1 - \gamma} o_z$


Tectonic - Gravitational Model (Jaeger and Cook, 1969)

R highly variable

0 ≤ R ≤ 1


Vetter and Ryall Model (1984)

At some shallow depth R becomes approximately constant

R > 0.5

Yucca Mountain Hydrofrac Data (Stock and others, 1985)

At some shallow depth R becomes approximately constant

 $R \approx 0.0 - 0.3$

Hypothetical model accounting for the existence of both strike - slip and normal fault events throughout the seismogenic crust.

Figure 43.- Four models showing how vertical and horizontal crustal stresses may be distributed with depth. Some consequences of such hypothetical stress distributions are discussed in the text. Symbols: $\rho = \text{rock}$ density, $\mathbf{g} = \text{acceleration}$ of gravity, $\mathbf{z} = \text{depth}$, $\gamma = \text{Poisson's constant}$, $\sigma_v = \text{magnitude}$ of vertical stress, $\sigma_H = \text{magnitude}$ of maximum horizontal stress, $\sigma_h = \text{magnitude}$ of minimum horizontal stress, and $\sigma_r = \text{magnitude}$ of regional horizontal tectonic stress, excluding its gravitational component.

Our focal mechanism data through 1983 are consistent with the interpretation that $\sigma_v \simeq \sigma_H$ throughout the upper 10-15 km of the crust, such that either minor stress perturbations or the presence of optimally oriented fault planes would permit both normal and strike-slip faulting. Furthermore, Harmsen and Rogers (1986) have demonstrated that, given axially symmetric stress conditions, dextral, sinistral, and normal slip are equally likely on north-, east-northeast-, and northeast-trending faults, respectively. A noteworthy implication of this model is that the horizontal component of tectonic stress increases with depth at a rate that consistently maintains the relationship between the vertical and horizontal principal stresses. This result is consistent with a basal shear acting horizontally along the base of the brittle crust or, perhaps, the lithosphere, as suggested by Hanks (1977).

Earthquake Density in the Southern Great Basin

All of the earthquakes located in the region from August 1978 through December 31, 1983 within 150 km of the point 36°51′ N, 116°27.5′ W (Yucca Mountain proposed site) were combined into a histogram showing earthquake frequency per unit area as a function of distance to Yucca Mountain (Figure 44). This point, also referred to as the Site, is approximately one minute (1.8 km) south of drill hole G1 (see Figure 11). Figure 44 emphasizes the relatively low level of seismicity within several kilometers of Yucca Mountain, and reflects the relatively high earthquake density that occurs in the Jackass Flats-Rock Valley region, 10 to 20 kilometers east of the Site. The plot also shows the relatively higher rates of seismicity for much of the Nevada Test Site compared with the rest of the region. Some fraction of this earthquake activity is triggered by nuclear testing. Although at present there is no unequivocal method for establishing which earthquakes within the region are tectonic and which are triggered by testing, research is underway to try to establish such a method. Table 4 lists those active areas contributing the largest number of events to the computed densities. Table 4 was prepared by computing the number of earthquakes in each annulus of 5 km width centered at the distance given in the table, and then dividing that number by the area of the annulus to obtain the earthquake density. The earthquake energy densities within the same annuli have been computed and are shown in Figure 45. This figure indicates that Yucca Mountain is in a region of energy release that is about 2 to 3 orders of magnitude less than the regional level and 4 orders of magnitude less than the nuclear testing zones. This decrease occurs within about 30 km of the Site. The plot also shows that the maximum energy release occurs in the annulus that includes the nuclear testing areas.

An energy release contour map using the data from this study is shown in Figure 46. The principal features of this map are: (1) the east-west-trending pattern of energy release crossing the region at about latitude 37°; (2) a region paralleling the Nevada-California border that includes portions of the Furnace Creek-Death Valley fault system and Yucca Mountain where energy release

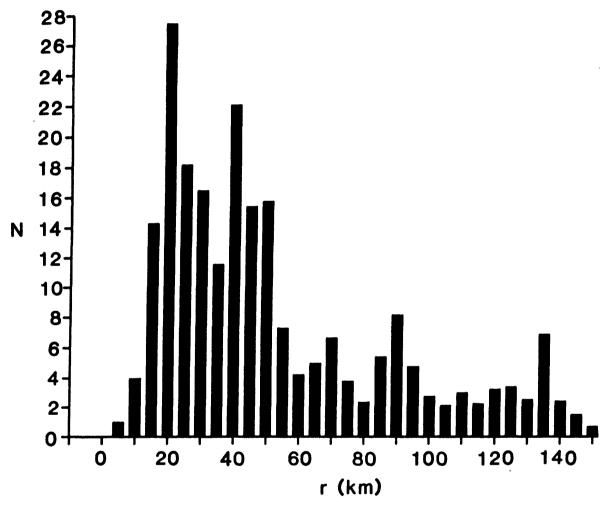


Figure 44.— Distribution of number of earthquakes per unit area as a function of distance from Yucca Mountain, from 0 to 150 km, for the time period August 1, 1978, through December 31, 1983 (Table 3). N is the earthquake frequency per unit area at epicentral distance r from Yucca Mountain.

distance (km)	no.	normalized eq. density (no./unit area)	Active areas at that distance range
0.0	eq.	0.00	distance range
5.0	1	1.00	Yucca Mtn. earthquake on 810413 at 20 21 (near YMT5)
10.0	8	4.00	Yucca Mountain, Crater Flat
15.0	43	14.33	Dome Mountain, Jackass Flats, Bare Mountain
20.0	110	27.50	Jackass Flats, Little Skull Mountain, Skull Mountain
25.0	91	18.20	Lookout Peak, Shoshone Mountain, Striped Hills
3 0.0	99	16.50	Rock Valley, Shoshone Mountain, Tippipah Spring
35.0	81	11.57	Rock Valley, Specter Range, Tippipah Spring
40.0	177	22.13	Thirsty Canyon, Funeral Mountains, Amargosa Desert
45.0	139	15.44	Frenchman Flat, Mercury Valley, Massachusetts Mountain
50.0	158	15.80	Sarcobatus Flat C, Pahute Mesa, Yucca Flat
55.0	80	7.27	Sarcobatus Flat B, Ranger Mountains
60.0	51	4.25	,
65.0	65	5.00	Mesquite Flat, Stovepipe Wells
70.0	93	6.64	Indian Spring Valley
75.0	57	3.80	Sarcobatus Flat A (Scotty's Junction)
80.0	38	2.38	, ,
85.0	92	5.41	Sarcobatus Flat D, Gold Mountain, Ubehebe Crater
90.0	147	8.17	Slate Ridge, Gold Mountain
95.0	91	4.79	
100.0	55	2.75	
105.0	45	2.14	
110.0	66	3.00	
115.0	5 2	2.26	
120.0	78	3.25	
125.0	85	3.40	
130.0	66	2.54	•
135.0	185	6.85	Pahranagat Shear Zone
140.0	68	2.43	
145.0	44	1.52	
150.0	20	0.67	

Table 4. Seismogenic areas in the vicinity of Yucca Mountain and NTS for the period August, 1978 through 1983.

values are generally 2-3 orders of magnitude lower than the high energy release zones; this zone appears to be connected with low energy release in the eastern Mojave Desert; (3) a broad zone of high energy release roughly centered on northern NTS that is comparable in level to other high regions throughout the area; (4) significant zones of quiescence in the northern portion of the map area; and (5) a quiescent zone in the southeast corner of the map area that includes, among other features, the northwest-trending Spring Mountains and the Desert Game Range where that range displays a north-northwest structural trend. As noted earlier by Rogers and others (1983) faults with northwest trend are not favorably oriented for slip given the stress field orientation that has been inferred from earthquake focal mechanisms for the SGB. This interpretation does not seem appropriate, however, for the Furnace Creek-Death Valley fault zone or other areas to the west of Death Valley due to the presence of abundant Holocene fault scarps in that region. There is geological evidence indicating not only vertical displacements, but significant horizontal displacements as well (Carr, 1984). The geologic data suggest that the Death Valley region is subject to a more easterly to east-southeasterly least principal stress and a greatest principal stress that is vertical or perhaps roughly equal to the intermediate stress (Zoback and Zoback, 1980b). This stress orientation is similar to that generated at the North American-Pacific plate boundary. Thus, significantly lower energy release in the Furnace Creek-Death Valley fault zone may be the result of either low stress levels due to previous prehistoric seismic energy release or a kind of intraplate seismic gap where stresses are high and the fault zone is locked. Carr (1984) has suggested that the Furnace Creek-Death Valley fault zone relieves shear stress generated by relative motions along the continental plate boundary and acts as a tectonic buffer suppressing the accumulation of stresses generated by plate motions in regions to the east and northeast of this fault system. Comparison of the Holocene slip record on this fault system with the focal mechanism inferred stress orientations to the east of the system suggests that a clockwise stress rotation occurs at or just to the east of the Furnace Creek-Death Valley fault system. A stress rotation could be taken as evidence that a high-stress locked-fault scenario for this fault system is not as likely as a relieved stress state. Presumably, a locked fault state would carry significant amounts of slip to the east of the Furnace Creek-Death Valley fault system that would have an orientation and style more like that at the continental plate boundary.

Comparison of energy release in the current record (Figure 46) and in the historic record (Figure 47) reveals a pattern that is similar in its gross features, but differs in detail. For instance, the east-west zone of energy release is present, but has a considerably broader north-south extent than indicated in the current record. Some areas of early high-energy release (Figure 47) remain relatively high in the current monitoring period; for example, at the NTS testing regions, an area just to the west of the Death Valley fault zone, and the Lake Mead area. Other areas that are active in the early record are no longer active; for example, the areas north-northwest of Caliente in the northern section of the North Pahroc Range and the Kane Springs region to the south-southeast of Alamo were active in the historic record but are relatively inactive today. This change in activity has the appearance of gap-filling in some zones such as the North Pahroc Range-Paranaghat-Kane Springs region and, to a lesser extent, in the western border of the map between latitudes 37.5°N and 38.5° N. Another notable feature of Figures 46 and 47 is that averaged over decades the active zones tend to produce about the same mean annual energy release rate, including the zones of induced seismicity at Pahute Mesa and Lake Mead. This result implies a long-term constant strain release rate across the region. Several large regions of low energy release exist for both time periods: (1) the Death Valley-Spring Mountains-Desert Game Range region, and to the east between Kane Springs and Lake Mead; (2) the region between Gold Flat and the northwest corner of the map area; and (3) the northeast corner of the map area.

In this report we make no attempt to resolve differences in observed energy release rates

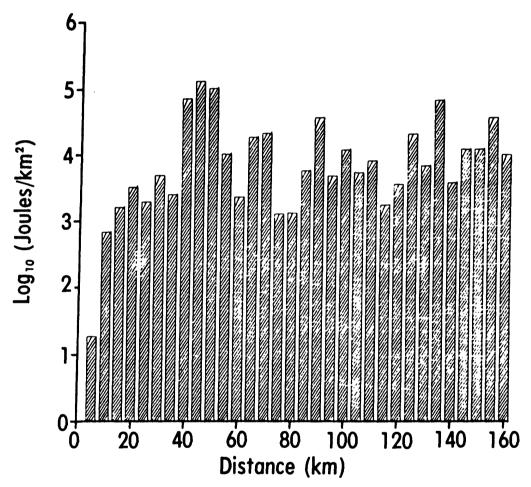


Figure 45.— Distribution of $\log_{10}(E)$, where E represents the cumulative energy release $(Joules/km^2)$ as a function of epicentral distance from Yucca Mountain, for the time period August 1, 1978, through December 31, 1983. The bars have width 5 km and are centered at the distances shown.

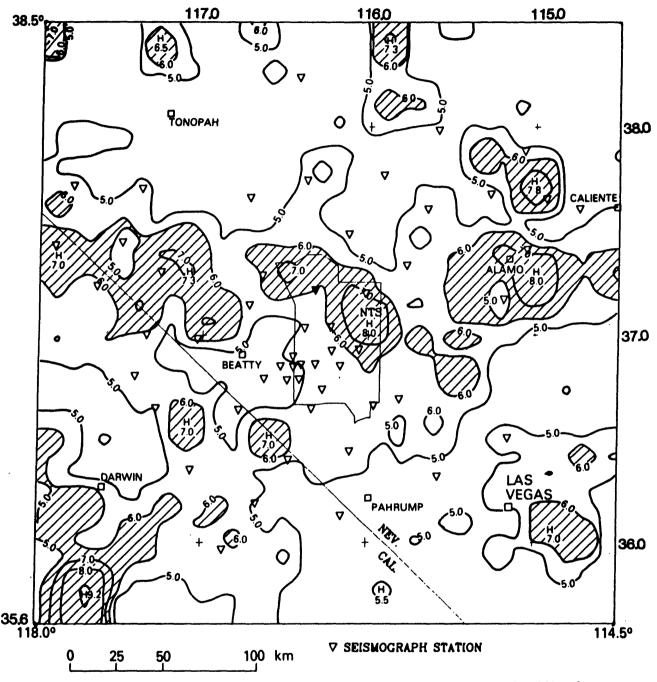


Figure 46.— The distribution of earthquake energy release in the southern Great Basin of Nevada and California is plotted as contours of energy release per unit area $\log_{10}(Joules/80km^2)$ for the seismicity during the period August 1, 1978 through December 31, 1983. The cumulative energy in each $0.1^{\circ}EW \times .08^{\circ}NS$ grid was tallied without regard to individual event depth-of-focus, and the gridded data were smoothed and contoured. All known nuclear tests were removed, but aftershocks of nuclear tests were not removed. This accounts for the remaining high rates of energy release in the Pahute Mesa-Yucca Flat-Rainier Mesa areas of NTS. Local magnitudes were converted to energy by the formula $E = 10^{[1.90M_L + 2.20]}$, E in Joules.

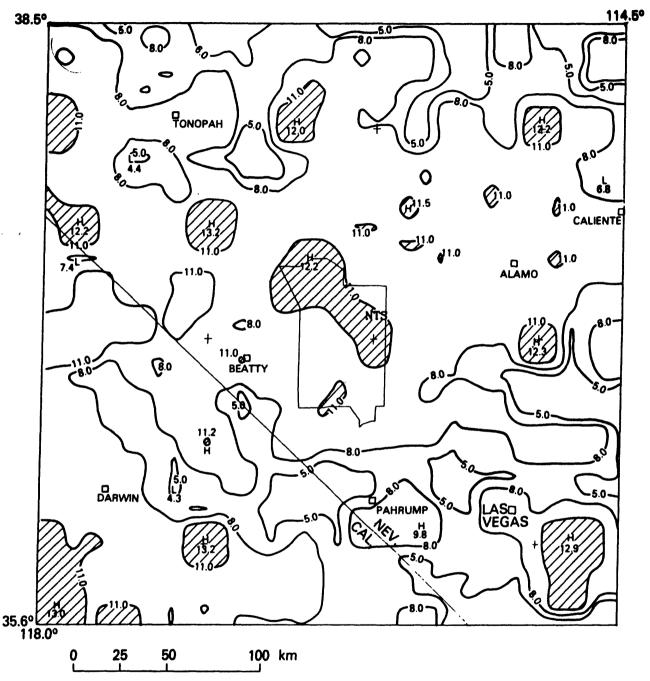


Figure 47.- The distribution of earthquake energy release in the southern Great Basin of Nevada and California based on a catalog of historical seismicity for the period 1865 through July, 1978 (Meremonte and Rogers, 1987). The contours are of the logarithm of the energy release per unit area ($\log_{10}(Joules/80km^2)$). All magnitudes in the historical record were converted to equivalent M_S , and energy was computed by the formula $E = 10^{[1.44Ms+5.24]}$, E in Joules.

between the monitoring period and the historic period, which shows considerably higher levels of energy release per unit area per year. We defer until a future report a through discussion of earthquake recurrence rates. These topics require careful evaluation in order to understand and account for the intermix of tectonic and nuclear test related seismicity and to account for possible biases in the magnitudes of historic events compared to current events.

Figures 48a and b show a contour of earthquake energy release for the region projected onto a vertical east-west and north-south section, respectively. These figures show that seismic energy is released mostly between depths of 1 and 12 km, is patchy between 12 and 25 km, and is sparse below 25 km. There is a suggestion that energy-release boundaries increase slightly in depth to the southwest. If such a depth increase were taken as evidence of a thickening brittle crust to the southwest, it would be at variance with interpretations of refraction data that indicate that the crust thickens to the north (Prodahl, 1970; Johnson, 1965). Because the energy release patterns are greatly influenced by small numbers of the largest magnitude events (as can be seen by comparing the energy release cross sections with the hypocenter cross sections shown in Figures 49a and b) whose locations can be influenced by geographic variations in crustal properties, it is unlikely that the energy release patterns reflect contrasts in brittle crust thickness. Note that, because the minimum in earthquake frequency that occurs at about 4 km depth (Figure 33) has a small vertical extent, it is nearly obscured by the smoothing process that is used to produce these energy-release plots.

DISCUSSION OF SEISMICITY AND STRUCTURE

In a review of the structural setting of the NTS region, Carr (1984) emphasized three structural subdivisions (called subsections), each having a different type of principal structure, structural fabric, and Neogene structural history. Structural complexity abounds in each subdivision. Principal Neogene structures include faults that bound cauldron complexes, range-bounding normal-slip and oblique-slip faults, dextral and sinistral strike-slip fault zones, and low-angle detachment faults. Though all types of principal structures may not exist in each subdivision, structural interactions along and across the structural zones that bound the subdivisions compound the structural complexity of the region as a whole. Crustal properties such as regional gravity gradients, heat flow, thickness, and Q are also variable in the region, and this variability adds an element of complexity to the structural framework. As a possible simplifying factor, not all types of structures in a subdivision are necessarily seismogenic. Nevertheless, it is within the context of an extraordinarily complex Neogene structural framework that the major aspects of seismicity must be understood. The most notable features of earthquakes in this region are: (1) An apparent eastwest-trending zone of earthquakes, termed the East-West Seismic Belt or the Southern Nevada Seismic Belt (Smith and Lindh, 1978), crosses the SGB roughly between 36° and 38° N. Although this zone may be somewhat discontinuous, and the rates of seismicity and appearance are no doubt influenced by induced seismicity at NTS, comparison of the pre-nuclear testing period with the present-day record suggests that this seismic zone can be associated with natural tectonic stress release (Meremonte and Rogers, 1987). (2) Dextral slip on northerly-trending faults is preferred, with fewer occurrences of both sinistral slip on east-northeasterly-trending faults and normal slip on north-northeasterly-trending faults. All slip styles occur from near-surface to 10-15 km. The inferred least principal stress orientation is west-northwest, implying notable geographic uniformity in the stress axes across the SGB. (3) Microseismicity emanates from cylindrical volumes of rock that generally plunge steeply and tend to lie in north- to northeast-trending panels. (4) A seismicity minimum occurs between 3.5- to 4.0-km depth (Figures 33 and 49). (5) The association of earthquake clusters with specific faults is commonly difficult, although epicenters and nodal planes may align with nearby structural grain. Little correlation exists between range front faults and

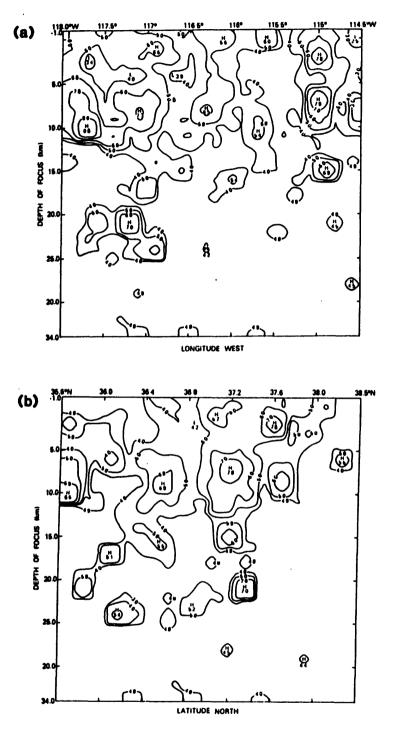


Figure 48.— (a) An east-west projection of earthquake energy release in the southern Great Basin of Nevada and California contoured as increments of $\log_{10}(Joules/9km^2)$ over the depth range 1 km above sea-level to 34 km below sea-level. Seismicity from the monitoring period August, 1978 through December, 1983. (b) A north-south projection of the same earthquake energy release data shown in Figure 48a.

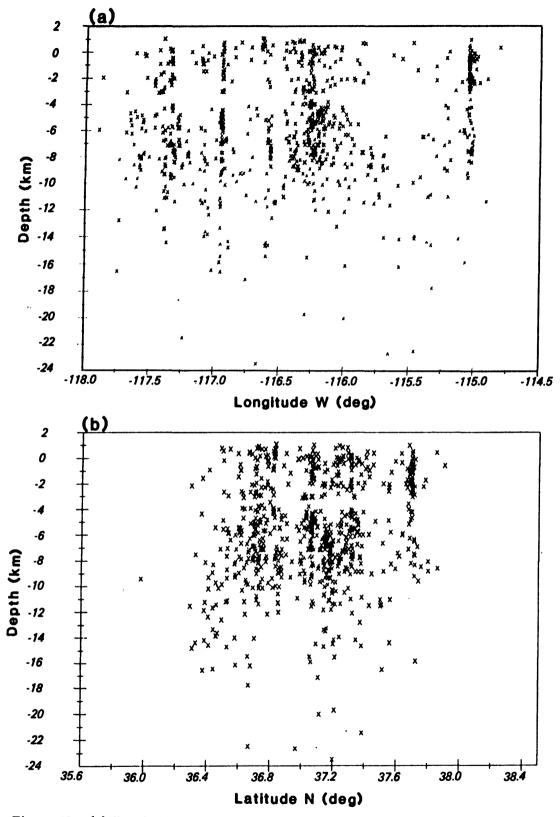


Figure 49.— (a) Depth-of-focus distribution for the period August, 1978 through December, 1983, for earthquakes having "A" or "B" location qualities and depth standard error estimates < 4.0 km, projected onto an east-west plane. (b) Depth-of-focus distribution for the same earthquakes projected onto a north-south plane.

contemporary seismicity. (6) Significantly lower seismic-wave attenuation than other regions of the Great Basin or California has also been noted (Rogers and others, 1987). These features may provide important evidence for evaluating suitable tectonic models that describe contemporary deformation in the SGB.

Given the varied and complex structural framework of the region, however, it is highly unlikely that a single tectonic model can explain all aspects of the Neogene geology and seismicity throughout the region. Deformation associated with extension, for example, is likely to be highly dependent on the position of lateral domain boundaries. Also, only in the past 15 years has it become clear that the continental crust can accommodate large-magnitude extension without rifting apart, and that low-angle normal faults or detachments play an important, if not fundamental, role in that extension. Only in the past few years has the concept of extensive large-displacement detachment faults in the SGB been recognized. Despite these advances, there is at present no consensus on the location or geometry of such faults or the nature of extensional accommodation in the deep crust. It is clear, therefore, that the modeling of deformation associated with extension is likely to be as dependent on ones choice of vertical domain boundaries as it is on lateral domain boundaries and that both must be prescribed in order to fully characterize the deformation.

The data reported herein may have some bearing on the resolution of these complex tectonic issues, but it would be unreasonable to expect a definitive tectonic model to evolve from these data alone. A complete review of all the geological, geophysical, and seismic data for this region is beyond the scope of this study, but some discussion regarding the relationship between seismicity and structure seems appropriate. Some of the following discussions are speculative and most involve considerable simplifications of the observations.

SGB Microearthquakes and Their Relevance to the Occurrence of Larger Earthquakes

Comparison of microearthquakes in the SGB with larger earthquakes and with induced seismicity reveal similarities. For example, it has been observed that the 1966 Clover Mountain earthquake (M = 6.1, USGS) occurred as a dextral strike-slip event on a north-trending fault similar to microseismicity in the study area (Smith and Lindh, 1978; Rogers and others, 1983; Wallace and others, 1983). Based on studies of both body and surface waves (Wallace and others, 1983; Lay and others, 1984; Wallace and others, 1985; Wallace and others, 1986) and geologic studies (Bucknam, 1969; Mckeown and Dickey, 1969) significant amounts of strike slip have occurred due to induced tectonic stress release associated with underground nuclear tests at NTS. This stress release is seen as surface displacements at the time of the event, as seismic energy release concurrent with the detonation, and as numerous aftershock earthquakes outside the zone of shattering (Hamilton and others, 1971; Rogers and others, 1977). At the Pahute Mesa nuclear test region and at Lake Mead (where increased pore pressures due to the lake impoundment acted to trigger tectonic stress release (Carder, 1945; Rogers and Lee, 1976)), focal mechanisms indicate that dextral strike slip occurred on north-trending faults, and normal faulting occurred on northnortheast-trending faults. In essence, the behavior at both Lake Mead and Pahute Mesa is typical of earthquake behavior throughout the monitored region and mimics, albeit at a smaller scale, the behavior of the Churchill Arc (Nevada Seismic Zone) in the northern Great Basin (Shawe, 1965). In the southern section of the Churchill Arc dextral strike slip is a significant component of the deformation where the structural fabric trends more northerly and intersects the central Walker Lane. The Fairview Peak, Cedar Mountain, and Rainbow Mountain earthquakes all exhibited geologic (Shawe, 1965) and seismic evidence (Doser, 1986; D. I. Doser, Univ. Texas, El Paso, 1987, unpublished manuscript and abstract) of dextral slip in this section of the Churchill Arc. The 1934 Excelsior Mountain earthquake exhibited geologic evidence for small amounts of sinistral strike

slip on a northeast-trending fault (Shawe, 1965), although seismic data indicate nearly pure normal faulting on a northeast-trending fault (D. I. Doser, Univ. Texas, El Paso, 1987, unpublished manuscript). Focal mechanisms from 1969 microearthquake activity in the Excelsior Mountains area, however, indicate strike-slip faulting (Gumper and Scholtz, 1971). In the northern section of the Churchill Arc, where structure trends more north-northeasterly, normal faulting also predominates (1915, Pleasant View earthquake). Other less compelling analogs in the two types of data are also present. For instance, the apparent coupling of adjacent seismic zones is observed in the southern Great Basin and the paleoseismic record of the Nevada seismic zone. These similarities were previously discussed by Rogers and others (1983). This comparison suggests that the driving mechanism producing crustal deformation is similar in at least some subprovinces of the Great Basin. We conclude that the similarities between microearthquakes in the study area and larger magnitude earthquakes in the Great Basin suggest a genetic association through the same or similar deformational processes and, thus, we consider the microseismicity to be of first-order tectonic significance.

This conclusion does not necessarily imply that large earthquakes (M > 7) can occur in the SGB. Although in the Churchill Arc numerous large earthquakes have occurred historically $(M \le 7.8)$, historic seismicity in our study area has been limited to $M \le 6.1$ (natural seismicity), $M \le 5.2$ (induced seismicity; Wallace and others, 1983). The conclusion that large earthquakes are possible in the SGB would require proof of the conditions needed for large events, such as the presence of stressed faults of sufficient length and favorable orientation for rupture in the contemporary stress field. It should be noted, in this regard, that Quaternary faults of sufficient length to produce large earthquakes include the Death Valley-Furnace Creek fault zone and various faults in the Mine Mountain-Spotted Range structural zone. The analogies between microearthquakes and the largest events in the Great Basin, thus, provide the basis for attempting to evaluate various models of Great Basin tectonic deformation in terms of the features of the earthquake data presented herein. In the discussions that follow, we consider these models and the extent to which the seismic data of this study support the application of a given model to the contemporary deformation of the SGB.

Seismicity and Local Structure at Yucca Mountain

A model that incorporates block and listric faulting above low-angle detachment surfaces (i.e., Stewart, 1978) permits extension across a broad region with transport of some essentially intact sections of the upper plate over large distances. This model also attempts to account for other sections that are intensely extended on faults that are rooted in the detachment (Wernicke, 1981). Major lateral faults are postulated to bound these extended zones against zones of lesser extension (Anderson, 1971; Wernicke, 1981); the bounding faults are predicted to exhibit dextral motion at one side of a zone and sinistral motion at the opposite side. Anderson (1971) and Wernicke (1983), for instance, suggest that such deformation has occurred in the SGB along the Lake Mead fault system and the Garlock fault (Davis and Burchfiel, 1973). There is also evidence of this type of deformation at several scales. An example of considerable geographic extent, for instance, is the west-dipping Sevier Desert detachment in Utah which may penetrate to depths of about 15 km beneath eastern Nevada (Allmendinger and others, 1983). Shallower detachments of lesser geographic extent such as one that underlies the Bullfrog Hills west of NTS have also been recognized. At some locales at NTS local detachments have formed between the Tertiary section and Paleozoic rocks (W. B. Myers, U. S. Geol. Survey, written comm., 1986). A question of significance is whether the observed seismic quiescence at Yucca Mountain is related to the presence beneath Yucca Mountain of one or more detachment surfaces (Scott, 1986), and, if present, could such detachment surfaces uncouple Yucca Mountain from the regional stress field? For instance a vertical strike-slip fault might intersect a detachment surface from below in such a manner that strike-slip motion on the deep fault could occur without deforming the upper plate. A structure of

this type might be important for several reasons: (1) geologic evidence for detachments at Yucca Mountain has been noted by Scott (1986); (2) lower seismic energy release is observed at Yucca Mountain in spite of the presence of faults that are favorably oriented for slip in the contemporary stress field (Figure 11); (3) the fact that the state of stress inferred from hydrofrac measurements in the Yucca Mountain block can be explained solely on the basis of a topographic effect and does not require a tectonic stress component (Swolfs and Savage, 1985); (4) several earthquakes have been located beneath Yucca Mountain, but these events have all been located more than 4 km below sea level; and, (5) two of these events, which occurred after the time period discussed in this report, demonstrate predominantly strike-slip focal mechanisms. Taken together, these data are largely consistent with an interpretation that Yucca Mountain is uncoupled from the regional stress field.

Other interpretations, however, argue against the uncoupling hypothesis. For instance, the low level of seismicity at Yucca Mountain and a larger area to the west (item 2) could be the result of locked faults, or, alternatively, a stress shadow zone. Lack of energy release in the upper part of the brittle crust alone would be a more favorable condition for a detachment hypothesis. This zone demonstrates a low rate of energy release at all depths relative to surrounding regions. The lack of seismicity at depths below 5 km must be unrelated to possible shallow detachments. It is also possible that Yucca Mountain overlies a shallow detachment fault beneath which exists a zone of locked faults. Such a model would account for the geologic evidence for shallow detachment faults and the seismic evidence for low energy release.

Other evidence that could argue against uncoupling is the fact that the least principal stress determined from hydrofrac measurements within the Yucca Mountain block has approximately the same orientation as the least principal stress direction (west-northwest) deduced from the regional focal mechanisms. If Yucca Mountain is underlain by an active detachment, the stress orientation within the block would likely be determined by the dip direction of the detachment and possibly the orientation of the topography. This situation could give rise to stress orientations in the upper detached plate differing from that within the underlying brittle crust. On the other hand, as a detachment forms within the framework of the acting regional stresses, it is possible, and perhaps probable, that the least principal stress orientation within the detached block will have the same orientation as the regional stress direction.

Regional Structure, Great Basin Tectonic Models, and the Characteristics of Contemporary Seismicity

Arabasz (1984) proposed a model for the eastern margin of the Great Basin that incorporates a seismogenic upper crust that is composed of a stack of brittle plates separated by low-angle detachment surfaces. The model permits minor block interior motion generating diffuse low magnitude seismicity, moderate earthquakes on steeply dipping intraplate faults that do not cross plate boundaries, and major earthquakes on steeply dipping range front faults extending to 15 km that do cross plate boundaries and sole into deep detachment surfaces and/or the uncoupling zone. Application of this model to the SGB has some appeal, but is inconsistent in some critical aspects. For instance, in the SGB the general occurrence of dextral slip on north-south-trending faults from near-surface to the base of the seismogenic zone argues against a stack of plates that are uncoupled except at major range front boundaries. This inconsistency is reinforced by the fact that the steeply plunging cylinders of seismicity that we observe do not appear to occur in association with range-front faults. Furthermore, the predominance of lateral motion in the SGB may not support a model that requires a more mixed combination of deformation styles. Whereas, the seismic data suggest that much of the lateral slip occurs on north-trending faults, this model would predict the occurrence of lateral slip preferentially on faults subparallel to the spreading direction. The

spreading direction at present is likely to be west-northwest. For these reasons this model does not appear to be consistent with seismic observations in this region.

More generally, do the data of this study support or deny the widespread occurrence of detachments throughout the region, such as has been suggested by Hamilton (1987)? A detachment model might be consistent with the seismic data of this study under certain conditions. These conditions are: (1) that slip on the detachment is aseismic, or releases too little energy for the events to be considered for focal mechanism computation, or that the network geometry is inadequate to discern sub-horizontal slip; (2) that the over-riding plate is not stress uncoupled to the extent that small earthquakes are not possible in that plate; (3) that the current direction of transport of the over-riding plate is to the south; and (4) that the over-riding plate is geographically large enough that the zone accommodating sinistral slip occurs outside the study area. These conditions are reviewed in the following discussion.

Condition (1) is required because no focal mechanisms computed through 1983 have slip on nodal planes that are subhorizontal. Furthermore, given the stress orientations for this region and applying a Mohr-Coulomb failure criterion with a coefficient of friction $\mu \approx 0.6$, low angle faults might never be selectively preferred for failure in the contemporary stress regime (Harmsen and Rogers, 1986) unless special pore pressure or lithologic conditions existed. Considerable study and debate is currently ongoing concerning the formation of detachment surfaces and conditions for slip on such features (see, for example, Lucchitta, 1985; Davis, 1985; Power, 1985), and the application of simple failure criteria may be found to be unrealistic.

Condition (2) is required because we infer, from earthquake data, similar stress characteristics throughout the upper 10-15 km of the crust. One could postulate that the seismic quiet zone near 4 km depth is associated with a detachment surface. In one scenario, the quiet zone would demonstrate a low angle detachment surface dipping to the south in order to provide a mechanism for producing the widespread occurrence of dextral slip on north-trending faults (see below). This feature is nearly horizontal, however, as shown by the east-west and north-south cross sections shown in Figures 49a and 49b. In a second scenario a set of detachment zones is postulated to exist at this level in the crust that do not, on average, exhibit any primary dip direction, but serve as lensoid structures, similar to the model suggested by Hamilton (1987), absorbing extension on numerous shallow listric faults of varying orientation. One questions, however, whether such a set of structures could produce the notably consistent slip style that has been observed in the earthquake record. The principal argument against a set of active structures of this nature is associated with the fact that earthquakes occur with similar slip style from near-surface to depths as great as 10 to 15 km. This result, if it can be verified, suggests that stress coupling exists throughout this range of the brittle crust. Thus, the proposed upper plate (i.e., in this case the zone above about 4.0 km) and lower plate are not uncoupled. In fact, a plot of total energy release in the region as a function of depth shows that a sizable fraction of the total energy release occurs in the upper 4 km (Figure 50).

The hypothesis that a zone of uncoupling may separate brittle and ductile sections of the crust in the Great Basin is closely related to detachment faulting concepts. The existence of the uncoupling zone is primarily based on the fact that very few earthquakes occur below about 15 km throughout the Great Basin. One possible interpretation of our data is that the uncoupling zone acts as a detachment surface. In this model the entire brittle crust in the SGB is mechanically coupled, permitting lateral deformation throughout and across previously active shallow detachments. The existence of dextral motion on a series of subparallel faults across the zone suggests transport of the entire brittle crust in this region to the south. On the western margin of this zone where the transported blocks abut the Walker Lane the dextral motion is taken up along the northwest

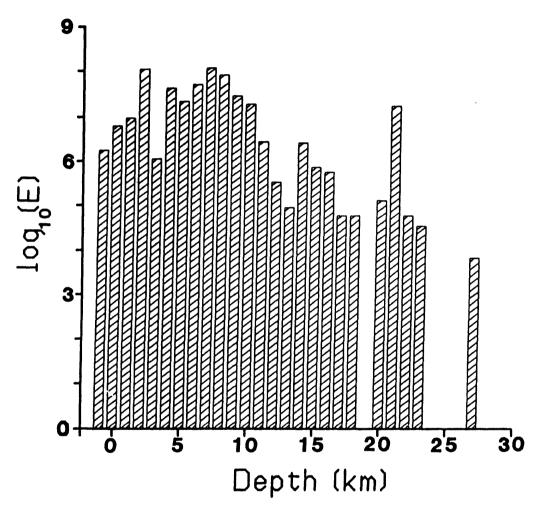


Figure 50.— Depth distribution of earthquake energy for August, 1978 through December, 1983 earthquakes having "A" or "B" location quality, and depth error estimates < 4.0 km. Energy release (joules) was computed from M_L by the formula $E = 10^{1.90 M_L + 2.20}$.

trends of that zone. On the eastern margin of the zone, where the blocks adjoin the Colorado Plateau, one would expect sinistral motion along north to northeast-trending faults. Under this model one could hypothesize that previously active shallow detachments are now largely inactive due to the cooled crust (Lucchitta, 1985) in the SGB.

Conditions (3) and (4), above, are required in order to satisfy geographical constraints on the observed slip directions from SGB focal mechanisms that show dextral slip on north-trending faults. A schematic model demonstrating this concept is shown in Figure 51a. In fact, some evidence exists in both the current seismic record and the late Cenozoic geologic record that significant components of strike-slip movement have occurred or are occurring along the Great Basin-Colorado Plateau boundary (Arabasz and Julander, 1986; Anderson and Barnhard, 1987). A number of earthquakes in the Colorado Plateau-Great Basin transition zone can be interpreted as sinistral motion on northeast trending faults (Arabasz and Julander, 1986). Focal mechanisms from the Sevier Valley region, for instance, exhibit both dextral and sinistral slip on parallel nodal planes (Arabasz and Julander, 1986); in addition, Anderson and Barnhard (1987) find geologic evidence that they interpret as southwest-directed lateral transport or rafting of crustal blocks. They suggest, however, that these blocks are limited in vertical extent to about 5 km. The model shown in figure 51a would require infilling of late Cenozoic intrusive rocks along the zone's northern boundary. In fact, Late Cenozoic igneous rocks do occur in an east-west band across the upper third of the SGB (Stewart, 1978).

The deformation suggested in Figure 51a could be directly related to the tectonic activity that has taken place in the southern subsection of the SGB. Extrusion or transport of crustal material to the southwest along the Lake Mead and other northeast-trending shear zones could have been accompanied by north-south closure of the transport zone as material was removed. North-south closure further requires crustal stretching or southerly transport to replace the crustal block that was removed, perhaps in the generalized fashion shown in Figure 51a. This concept was first suggested by Anderson (1984). The deformation idealized in Figure 51a could also be the result of driving forces in the ductile lower section of the lithosphere and upper mantle that are essentially internal to the Great Basin. The counterclockwise rotation of the Sierra Nevada block (Hamilton and Myers, 1966) and the clockwise rotation of the Colorado Plateau (Wright, 1976) could also play a role in inducing externally acting stress on the Great Basin, although these motions are more likely to be passive response to either plate boundary or intraplate stress.

Cenozoic wrench faulting in the Great Basin has been widely discussed (i.e., Shawe, 1965; Hamilton and Myers, 1966; Wright, 1976; Hill, 1982; see Stewart, 1978 for an overview). These faults occur primarily as steeply dipping northeast- and northwest-trending structures. It is important to examine whether any of the concepts that have been proposed to explain wrench faulting in Basin and Range Cenozoic rocks are relevant to the transcurrent deformation that is observed in the contemporary seismic record. Atwater (1970) assumes that the Great Basin is a soft zone that is extending and shearing in response to plate motions along the continental boundary and that some fraction of the plate motion is absorbed on major continental fault zones subparallel to the San Andreas such as the Walker Lane, the Las Vegas Valley shear zone, and the Death Valley-Furnace Creek fault zones. Normal slip is postulated on faults rotated clockwise from these trends, resulting in Great Basin extension.

The stress orientations and magnitudes that we infer from hydrofrac and focal mechanism data in the SGB are rotated clockwise relative to those at the plate margin (Zoback and Zoback, 1980b). Although the source of such stress changes is unknown, they can result from the remote-stress distributed-deformation process itself. In this process complex passive intraplate response occurs leading to distributed inferred stress orientations in an otherwise simple remote stress environment. Alternatively, stress changes can also result from the superposition of remote plate margin stresses

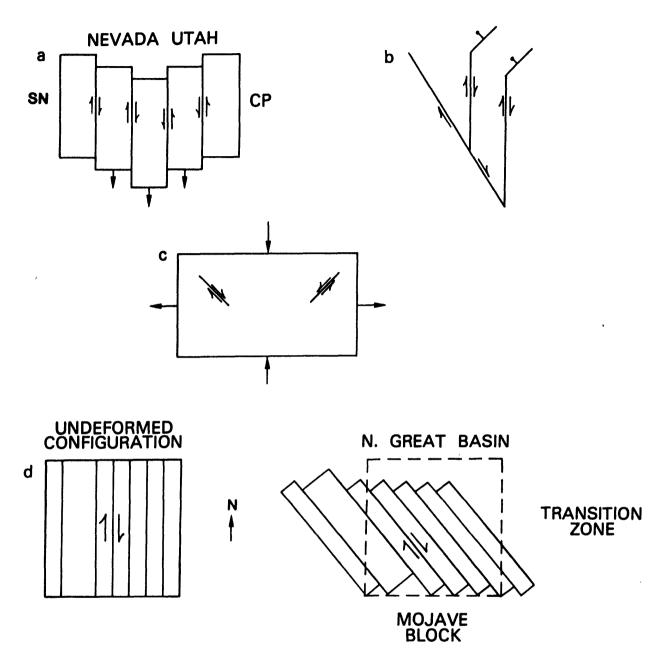


Figure 51.— (a) Schematic diagram depicting dextral slip along north-trending faults in the southern Great Basin, bounded by the Sierra Nevada block (SN), and sinistral slip along north-trending faults in the eastern margin of the Great Basin, bounded by the Colorado Plateau (CP). (b) Schematic diagram showing the relationship between dextral slip on north-trending faults and normal slip on north-northeast trending faults. The northwest-trending dextral slip fault could represent slip within the Walker Lane Belt and/or the Death Valley-Furnace Creek fault zones. (c) Schematic diagram showing how north-south shortening and east-west extension in the southern Great Basin may result in wrench faulting on northwest- and northeast-trending conjugate faults. (d) A schematic diagram showing one possible interpretation of Zoback and Zoback's (1980) suggestion that the SGB is a zone accommodating differential rates and amounts of extension between the northern Great Basin and the Mojave block. The drawing is adapted from the block-rotation models discussed in detail by Garfunkel and Ron (1985).

and stresses that are internal to the Great Basin. The concept depicted in Figure 51b is a modified version of Atwater's suggestion that would kinematically favor oblique strike slip on north-trending faults. However, because a clockwise rotation of the greatest principal stress does apparently occur in the Great Basin, relative to the plate margin stresses, pure dextral slip on north-trending faults is observed. Other kinematic inconsistency is apparent in this model that should lead to a wider range of slip style in the Great Basin than appears in the contemporary seismic record. Carrying components of strike slip into the Great Basin with a model of this type also requires significant rotations of crustal blocks across the region. Dextral slip requires counterclockwise rotation, and sinstral slip requires clockwise rotation (see for example, Figure 6b in Christie-Blick and Biddle, 1985; Garfunkel and Ron, 1985). At present evidence is lacking for block rotations across the Great Basin, although rotations are known to occur locally (Carr, 1984).

Other wrench models combine north-south shortening in response to compressional forces with east-west extension (Figure 51c) accommodated by lateral shear on conjugate faults trending roughly northwest and northeast in the directions of maximum shear stress. In other concepts it is assumed that wrench, detachment, normal and thrust faulting occur contemporaneously and are different manifestations of the same deformational processes (Anderson, 1971; Wernicke, 1984; King, 1983; Aydin and Nur, 1982).

Aydin and Nur (1982) suggest that transcurrent faulting is the principal mode of intraplate deformation and offsets in these transcurrent faults lead to secondary features such as basin and ridge formation. The basin formations have been termed pull-apart basins. This type of structure, for example, has been suggested as the mechanism leading to the formation of Death Valley (Burchfiel and Stewart, 1966; Hill and Troxel, 1966). The uniqueness of Aydin and Nur's (1982) model is that it permits faulting of virtually any style to occur in a predominantly strike-slip continental crust tectonic environment.

King (1983) also supports the view that in a continental crust setting, major strike-slip faults are the principal deformation mode, acting to accommodate lateral transport of crustal material and thereby thin the crust where disequilibrium occurs. King's (1983) model requires sets of primary and secondary faults of diverse orientations, from the smallest to the largest appropriate scale, to accommodate predominantly lateral motion. The fault orientation relative to the acting stress directions establishes the style of slip. A substantial fraction of the total deformation is taken up on the secondary faults. King's model, if applied to the SGB, would predict dextral faulting on a wide range of fault orientations; this feature, however, is not observed. We also see no evidence of reverse faulting or thrust events that would be expected on the basis of the Aydin and Nur model. Thus, the principal difficulty in relating the data of this study to these models is the uniformity of inferred contemporary fault orientations and slip modes that we observe across the entire region of our study. Such uniformity is not predicted by these models. On the other hand, the reverse and thrust faults predicted by these models might be much more infrequent, given that such faults, for instance, might store stress for greater periods of time and to higher stress levels before rupture. Some aspects of these models, however, are appropriate, as demonstrated by the probable pull-apart nature of Death Valley.

A wrench tectonic model suggested by Zoback and Zoback (1980b) for the SGB can be considered in relation to the seismic and geologic data of this region. This model would require differential rates of spreading between the northern Great Basin and the Mojave block as shown in Figure 51d. Figure 51d is adapted from Garfunkel and Ron (1985), who evaluated the general properties of such a model in detail. This model assumes that motion occurs on existing faults, with little internal block deformation, in response to north-south directed compressional forces. Thus, this representation is a special interpretation of the Zoback and Zoback (1980b) suggestion. They assumed the SGB has responded passively to extension to the north. This model's application to the

Cenozoic evolution of this region on the scale shown produces some shortcomings. These problems include the lack of significant counterclockwise rotation of crustal blocks in the central portion of the Great Basin compared to surrounding regions, the lack of a set of through-going north-trending lateral faults, the absence of contemporary sinistral faulting on east-west-trending faults, and the fact that the observed clockwise stress rotation in the SGB relative to surrounding regions (Rogers and others, 1986) is in a direction that is opposite to the predicted direction (Sbar, 1982). (Sbar's case, which was applied to the Great Basin as a soft zone deforming in response to motion on the plate boundary, can be applied on a smaller scale to the SGB by considering a mirror image of his model.) Zoback's wrench model, however, might be acceptable as a deformation mode of short duration and consequent, low-order block rotation. The appealing aspects of this model are the existence of limited dextral faulting on north-trending faults and the confinement of such events to an east-west zone.

The lack of observable north-trending transcurrent faults suggests that they would have to be deep-seated and hidden or that total slip is limited to the extent that it is not readily visible at the surface. In fact, for some regions of the Great Basin, evidence has been found suggesting that wrench faulting may be obscured by one or more overlying detachments (Hardyman, 1978; Molinari, 1984). Some of the larger earthquakes in the region demonstrate significant components of strike slip inferred from focal mechanisms and wave-form modeling (Doser, 1986), however, the surface faulting that accompanies these events frequently indicates a greater proportion of normal slip compared to strike slip. Similar behavior has been observed at Pahute Mesa in response to nuclear testing. As noted above, these events radiate significant components of strike-slip energy while producing surface scarps as great as 10 km long having maximum displacements exceeding 100 cm (Maldonado, 1977). Richter (1958) also noted slip inconsistency between geologic field observations and seismic data (indicating dextral slip along an north-northwest epicentral trend) for the 1947 M=6.4 Mannix earthquake. In each case, this behavior is suggestive of contemporary deep-seated strike slip that produces sets of reidel shears in an overlying partially detached plate. Structure of this type could be an additional complicating aspect of any of the models shown in Figure 51.

Another means of coping with discordance between contemporary deformation style and that in the Late Cenozoic geologic record is to argue that the region is presently subjected to a short-lived regional stress field (Eaton and others, 1978). In principal, either the orientation or magnitudes of the principal stresses may exhibit temporal variation. Stress changes (i.e., orientation) within the Late Cenozoic have been inferred from the geologic record in selected locales (i.e., Frizzell and Zoback, 1987; Anderson and Ekren, 1977), lending some credence to this possibility. Such changes could be related to the stress build-up and stress release on segments of major faults between the Great Basin and the continental plate margin, for example, the Death Valley-Furnace Creek fault system, the Garlock fault, or even the plate margin itself.

Models 51c and d are closely related because, as drawn, they represent response to north-south directed compression. In 51c and d both sinistral and dextral faulting are possible in adjacent subzones as suggested by Garfunkel and Ron (1985). The significant differences between these two cases is that model c assumes the breaking of intact rock, while d assumes pre-existing faults. Furthermore, the faults in model c lie along the directions of maximum shear, whereas, in model d, the faults may rotate out of the direction of maximum shear. The consistency between the least principal stress direction determined from both focal mechanisms and hydrofrac measurements indicates that faults have not rotated out of the direction of maximum shear. To that extent, model d appears to be less plausible.

It is possible that certain aspects of each of the kinematic patterns shown in Figure 51a-d are present in rocks of the SGB. Given the complexity of observed structures in the region, this

hypothesis may be the only acceptable one. For instance, block rotations may occur locally, as has been noted in the southern section of Desert Game Ranges (see Carr, 1984 for an overview), in the Hampel Wash area of the NTS (Frizzell and Zoback, 1987), and in the Lake Mead area (Ron and others, 1986). Motion along the Walker Lane, as in Figure 51b, is not inconsistent with the observations of Figure 51a along the southwest boundary of the transported zone. Even though features of models 51b-d may be consistent with some aspects of the geologic and seismic data, as a whole the seismic data appear to be most consistent with the principal deformation modes described by Figure 51a.

If model 51a has validity, it could have important implications regarding the assessment of the seismic hazard in this region. For instance, if the initiating process that occurred along the southern end of the zone is essentially complete, one could postulate that the southern transport depicted in Figure 51a has been halted or at least temporarily impeded. In this case major lateral displacements on the set of subparallel north-trending faults across the SGB might not be expected. Given such conditions the microseismicity in this zone could represent release of residual stress remaining on completion of the process. On the other hand, if the potential exists in this region for the occurrence of significant strike-slip earthquakes, a hazard computation based solely on the extensional slip rates reflected by mapped scarps would be underestimated.

The presence of shallow active detachments would further complicate the assessment of the regional seismic hazard (Anderson and others, 1983; Arabasz and Julander, 1986), particularly in a zone undergoing substantial deep-seated strike slip. If active detachment surfaces exist in the upper crust of this region, motions in the lower plate might not be wholly reflected in the upper plate or they might be translated to the upper plate in a complex fashion (Hardyman, 1978). For example, the orientation of faults in the upper and lower plates could differ. Furthermore, if active shallow detachment faults are widespread in the region, then our suggested associations between seismicity and mapped surface faulting could be fortuitous. This scenario, if unrecognized, would produce misleading estimates of the seismic hazard. Upper plate faults that cut the surface, for example, might be of such limited vertical extent that they could only produce moderate or small earthquakes and the greatest hazard would be due to deep-seated faults. Also, listric faults that bottom in detachment zones and have strikes considered favorable for lateral slip or normal faulting could be kinematically unsuited for slip in the present stress regime and contemporary crustal conditions. This hypothesis is difficult to explore in detail, however, because little is known about the mechanics of detachment faulting. The principal characteristics of earthquakes in this region, however, do not seem to support the existence of active shallow detachment faults in the southern Great Basin.

Summary

- •Many earthquakes or earthquake clusters cannot be related to specific faults, and little correlation exists between range front faults and seismicity in the current monitoring period. In some cases, however, earthquake lineations and nodal planes appear to be associated with fault zones of certain orientations or with mapped structural grain.
- •Earthquakes in some zones tend to occur in cylindrical rather than planar or tabular shaped clusters; other zones exhibit tabular north-south elongations. They plunge steeply and sometimes extend to 10-15 km depths. Two cylindrically-shaped clusters are curved or linearly segmented as a function of depth. We suggest that these distributions occur along the intersection of major faults; the concentration of seismicity along the locus of intersection is attributed to the presence of weaker rock in the vicinity of such fault intersections. Further testing of the location process, however, is required to establish that these distributions are not an artifact of the location process or the velocity model.
- •For earthquakes for which focal mechanisms could be determined, a large percentage are strikeslip. Weak to fairly distinct north-south epicenter elongations suggest a preference for dextral strike slip on northerly-trending faults.
- •The greatest number of earthquakes are confined to the upper 15 km; however, there appear to be two principal zones of energy release within the upper 25 km of the crust. The shallower zone occurs above about 15 km, and a deeper zone occurs below about 20 km. The energy release zones and the low between them appears to dip to the southwest. Zones of relatively high energy release in the upper 5 km compared to the regional values are not confined to the nuclear testing areas of the NTS.
- •The depth distribution of earthquake foci is bimodal with maxima at 1.5 and 9 km, and a minimum at 4 km. Although several tests have been conducted to determine whether this effect is an artifact of the location process, this question is not yet satisfactorily resolved.
- •There is no depth-dependent pattern for the occurrence of strike-slip or normal fault events. In some cases, strike-slip and normal fault events occur within the same cluster at about the same depth.
- •Mapped faults of approximately north to east-northeast trend should be recognized as favorably oriented for slip in the current stress regime in spite of the apparent lack of association of specific earthquakes with specific faults. Listric faults could be an exception to this conclusion because, given the regional stress field orientation, such faults may not be favorable for slip even if they exhibit the requisite strike. At present too little is known about the mechanics of listric faulting to resolve this question.
- •From a comparison of the late Quaternary geologic record along the Death Valley-Furnace Creek fault zone (DV-FC) and the contemporary seismic record to the east of DV-FC, we infer that a clockwise rotation of the principal stresses occurs in the SGB relative to areas to the west of the DV-FC. A speculative interpretation of this observation is that the SGB is partially uncoupled from the continental plate boundary stresses. This uncoupled state could be due to previous stress release along the DV-FC fault zone, but may also reflect some intrinsic or fundamental crustal boundary that exists at the DV-FC fault zone-Walker Lane boundary.
- •Based on focal mechanisms, two zones of seismicity 25 km apart in Sarcobatus Flat could be interpreted as strain release at the end points of a common fault.

- •Comparison of the energy release maps for the pre-1978 and post-1978 periods shows that, averaged over a given time period, the active zones appear to have about the same strain release rates across the region, including the areas of induced seismicity. The active zones also appear to shift with time in some areas, in a manner that has the appearance of gap filling.
- •Energy release maps and seismicity maps for the current and the historic record show that seismicity in this region forms an east-west band of energy release across the SGB. The seismicity, however, occurs in distinct zones across the region that gives the east-west seismic zone a discontinuous appearance.
- •Yucca Mountain lies within a seismic energy release low connected to the Furnace Creek-Death Valley and Mojave Desert lows.
- •Focal mechanisms imply that σ_1 , the maximum compressive stress, is roughly horizontal, but also that if a single fixed stress field is acting throughout the region, the principal stresses are rotated slightly out of the horizontal and vertical planes.
- •The stress orientations inferred from the dihedral intersection method indicate that north-trending and east-northeast-trending nodal planes are the preferred fault planes for focal mechanisms having steeply dipping nodal planes. Dextral slip on steeply dipping north-trending planes, and sinistral slip on steeply dipping east-northeast-trending planes are consistent with the directions of maximum shearing stress on those planes. Normal and oblique slip are preferred on planes with strikes intermediate to these two directions.
- •Continued low seismicity levels at Yucca Mountain and vicinity and the disparity of the Yucca Mountain hydrofrac stress measurements with the focal mechanism inferred principal stress attributes are consistent with the conclusion that Yucca Mountain is uncoupled from the regional stress field. Geologic data, which suggest that one or more detachments underlie Yucca Mountain, also support this conclusion. Alternate interpretations, however, are possible.
- •While some of the data and interpretations may favor the existence of detachment faults at Yucca Mountain many of the characteristics of earthquakes in active zones throughout the region do not support an interpretation of detachment faulting as a regional pattern of deformation. The active zones indicate a predominance of lateral faulting on en echelon or parallel north-trending faults.
- •The remarkable uniformity across the region in the occurrence of dextral, sinistral, and normal faulting on north-, east-northeast-, and northeast-trending faults, respectively, is interpreted to be consistent with an axially symmetric stress field having about equal intermediate and greatest principal stresses throughout the seismogenic crust. These slip styles are equally likely in this stress field if pre-existing faults of any orientation are available for slip. The observation that a preponderance of dextral slip on steeply dipping north trending faults occurs may reflect the fact that faults in this region have that preferential orientation. Also, it is important to note that this uniformity in deformation style occurs across a region that has experienced a variety of tectonic styles during the Cenozoic and that the contemporary style is markedly different from that of the recent geologic past.
- •The uniformity in deformation style supports the conclusion that the driving mechanism producing crustal deformation is similar in at least some subprovinces of the Great Basin.
- •Based on our interpretation from earthquake focal mechanisms of an axially symmetric regional stress field, we suggest that the stress conditions measured by hydrofrac techniques do not reflect the general critical stress conditions throughout the region and/or the stress conditions at seismogenic depths.

- We observe that the contemporary principal horizontal stresses are also rotated clockwise relative to the contemporary stress orientations to the north or east of the SGB.
- •Our inference that the greatest and intermediate principal stresses are equal further implies that the horizontal component of tectonic stress is increasing with depth. This result may be consistent with a horizontal basal shear acting along the base of the brittle crust or, perhaps, the lithosphere.
- •At present no single tectonic model satisfactorily accounts for all the critical features of the seismicity in the SGB.
- •In another study, summarized in this report, we determined (Rogers and others, 1987) that attenuation of ground motion in the SGB is much lower than other parts of the Great Basin. This finding affects magnitude estimation for both current and pre-1978 earthquakes and also has an impact on the manner in which strong ground motion estimates will have to be computed in an earthquake hazard assessment of this region.

References Cited

- Aki, K., and Chouet, B., 1975, Origin of coda waves: Source, attenuation, and scattering effects: Journal of Geophysical Research, v. 80, p. 3322-3342.
- Albers, J. P. and Stewart, J. H., 1965, Preliminary geologic map of Esmeralda County, Nevada: U. S. Geological Survey Mineral Investigations Field Studies Map MF-298.
- Allmendinger, R. W., Sharp, J. W., Tish, D. V., Serpa, L., Brown, L., Kaufman, S., Oliver, J., Smith, R. B., 1983. Cenozoic and Mesozoic structure of the eastern Basin and Range province, Utah, from Cocorp seismic-reflection data: *Geology*, v. 11, p. 532-536.
- Anderson, R. E., 1971, Thin-skinned distension in Tertiary rocks of southeastern Nevada: Geological Society of America Bulletin, v. 82, p. 43-58.
- Anderson, R. E., Zoback, M. L., and Thomson, G. A., 1983, Implications of selected subsurface data on the structural form and evolution of some basins in the Northern Basin and Range Province, Nevada and Utah: Geological Society of America Bulletin, v. 194, p. 1055-1072.
- Anderson, R. E. and Ekren, E. B., 1977, Late Cenozoic fault patterns and stress fields in the Great Basin and westward displacement of the Sierra Nevada block: Geology, v. 5, p. 388-389.
- Anderson, R. E., 1984, Strike-slip faults associated with extension in and adjacient to the Great Basin [abs.]: Geologic Society of America Abstracts and Programs, v. 16, no. 6, p. 429.
- Anderson, R. E. and Barnhard, T. P., 1987, Neotectonic framework of the central Sevier Valley area, Utah, and its relationship to seismicity, in Assessment of regional hazards and risk along the Wasatch Front, Utah, ed. P. L. Gori and W. W. Hays, U. S. Geological Survey Open-File Report 87-585, p. F1-134.
- Angelier, Jacques, 1979. Determination of the mean principal directions of stresses for a given fault population, *Tectonophysics*, v. 56, p. T17-T26.
- Arabasz, W. J., and Julander, D. R., 1986, Geometry of seismically active faults and crustal deformation within the Basin and Range-Colorado Plateau transition in Utah: Geological Society of America Special Paper on Extensional Tectonics, no. 208, p. 43-106.
- Atwater, T., 1970, Implications of plate tectonics for the Cenozoic tectonic evolution of western North America, Geologic Society of America Bulletin, v. 81, p. 3513-3536.
- Aydin, A., and Nur, A., 1982, Evolution of pull-apart basins and their scale independence: *Tectonics*, v. 1, p. 91-105.
- Bakun, W. H. and Lindh, A. G., 1977, Local magnitudes, seismic moments, and coda durations for earthquakes near Oroville, California: Seismological Society of America Bulletin, v. 67, p. 615-629.

- Bakun, W. H., and Joyner, W. B., 1984, The ML scale in Central California: Seismological Society of America Bulletin, v. 74, p. 1827-1843.
- Bucknam, R. C., 1969, Geologic effects of the Benham underground nuclear explosion, Nevada Test Site: Seismological Society of America Bulletin, v. 59, no. 6, p. 2209-2220.
- Burchfiel, B. C., and Stewart, J. C., 1966, "Pull-Apart" origin of the central segment of Death Valley, California: Geological Society of America Bulletin, v. 77, p. 439-442.
- Byers, F. M., Jr., Carr W. J., Christiansen, R. L., Lipman, P. W., Orkild, P. P., and Quinlivan, W. D., 1976, Geologic map of the Timber Mountain caldera area, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-891.
- Caccamo, D. and Neri, G., 1984, A new analytic procedure to determine hypocentral parameters of local seismic events: Seismological Society of America Bulletin, v. 74, p. 669-688.
- Carr, W. J., 1974, Summary of tectonic and structural evidence for stress orientation at the Nevada Test Site: U. S. Geological Survey Open-File Report 74-176, 53 p.
- Carr, W. J., 1984, Regional structural setting of Yucca Mountain, southwestern Nevada, and late Cenozoic rates of tectonic activity in part of the southwestern Great Basin, Nevada and California: U.S. Geological Survey Open-File Report 84-854, 109 pages.
- Carder, D. S., 1945, Seismic investigation in the Boulder Dam area, 1940-1944, and the influence of reservoir loading on earthquake activity: Seismological Society of America Bulletin, v. 35, no. 4, p. 175-192.
- Chinnery, M. A. 1963. The stress changes that accompany strike slip faulting, Seismological Society of America Bulletin, v. 53, p. 921-932.
- Christiansen, R. L., Lipman, P.W., Carr, W.J., Byers, F. M., Jr., Orkild, P.P., and Sargent, K. A., 1977, Timber Mountain-Oasis Valley caldera complex of southern Nevada: Geological Society of America Bulletin v. 88, p. 943-959.
- Christie-Blick, N., and Biddle, K. T., 1985, Deformation and basin formation along strike-slip faults, in Biddle, K. T., and Christie-Blick, N., eds., Strike-slip deformation, basin formation, and sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication No. 37, p. 1-34.
- Davis, G. A., and Burchfiel, B. C., 1973, Garlock fault: an intracontental transform structure, southern California: Geological Society of America Bulletin, v. 84, p. 1407-1422.
- Davis, G. H., 1985, Metamorphic core complexes—expression of crustal extension by ductile-brittle shearing of the geologic column, in Conference on Heat and Detachment in Crustal Extension on Continents and Planets, 1985, Proc.: Houston, Texas, Lunar and Planetary Institute, Contribution No. 575.
- Doser, D. I., 1986, Earthquake processes in the Rainbow Mountain-Fairview Peak-Dixie Valley, Nevada region 1954-1959: Journal of Geophysical Research, v. 91, p. 12572-12586.

- Eaton, G. P., 1975, Harmonic magnification of the complete telemetered seismic system, from seismometer to film viewer screen, U. S. Geological Survey Open-File Report 75-99, 22 p.
- Eaton, G. P., Wahl, R. R., Prostka, H. J., Mabey, D. R., and Kleinkopf, M. D., 1978, Regional gravity and tectonic patterns—Their relation to late Cenozoic epeirogeny and lateral spreading in the Western Cordillera: in Smith, R. B., and Eaton, G. P., eds., Cenozoic tectonics and regional geophysics of the Western Cordillera: Geological Society of America Memoir 152, p. 51-91.
- Ekren, E. B., Orkild, P. P., Sargent, K.A., and Dixon, G. L., 1977, Geologic Map of Tertiary Rocks, Lincoln County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-1041.
- Ekren, E. B., and Sargent, K. A., 1965, Geologic Map of the Skull Mountain Quadrangle, Nye County, Nevada: U. S. Geological Survey Quadrangle Map GQ-387.
- Ellis, W. L. and Magner, J. E., 1982, Determination of the in situ state of stress at the spent fuel test-Climax stock, Nevada Test Site: U. S. Geological Survey Open-File Report 82-458.
- Frizzell, V. A. and Zoback, M. L., 1987, Stress orientation determined from fault slip data in Hampel Wash area, Nevada, and its relation to contemporary regional stress field: *Tectonics*, v. 6, p. 89-98.
- Garfunkel, Z., and Ron, H., 1985, Block rotation and deformation by strike-slip faults.

 2. The properties of a type of macroscopic discontinuous deformation: Journal of Geophysical Research, v. 90, p. 8589-8609.
- Gephart, J. W. and Forsyth, D. W., 1984, An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence: Journal of Geophysical Research, v. 89, p. 9305-9320.
- Gephart, J. W., 1985, Principal stress directions and the ambiguity in fault plane identification from focal mechanisms: Seismological Society of America Bulletin, v. 75, p. 621-626.
- Gumper, F. J. and Scholz, C., 1971, Microseismicity of the Nevada seismic zone: Seismological Society of America Bulletin, v. 61, p. 1413-1432.
- Hamilton, R. M., and Healy, J. H., 1969, Aftershocks of the Benham Nuclear Explosion: Seismological Society of America Bulletin, v. 59, p. 2271-2281
- Hamilton, R. M., Smith, B. E., Fischer, F. G., and Papanek, P. J., 1971, Seismicity of the Pahute Mesa area, Nevada Test Site, 8 December 1968 through 3l December 1970: U.S. Geological Survey Report USGS-GD-474-138, 170 p.; available only from U.S. Department of Commerce National Technical Information Service, Springfield, VA 22161.
- Hamilton, W., and Myers, W. B., 1966, Cenozoic tectonics of the Western United States: Reviews of Geophysics, v. 4, p. 509-549.

- Hamilton, W., 1987, Crustal extension in the Basin and Range Province, southwestern United States: Geological Society London Special Publication 28.
- Hanks, T. C., 1977, Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions: Pure and Applied Geophysics, v. 115, p. 441-458.
- Hardyman, R. F., 1978, Volcanic stratigraphy and structural geology of Gillis Canyon quadrangle, northern Gillis Range, Mineral County, Nevada: Reno, Nevada, University of Nevada, unpub. Ph.D. thesis.
- Harmsen, S. C., and Rogers, A. M., 1986, Inferences about the local stress field from focal mechanisms: applications to earthquakes in the southern Great Basin of Nevada: Seismological Society of America Bulletin, v. 76, p. 1560-1572.
- Healey, D. L., Wahl, R. R., and Oliver, H. W., 1980, Death Valley sheet of complete Bouguer gravity map of Nevada: Nevada Bureau of Mines and Geology, Map sheet 68, scale 1:250,000.
- Herrmann, R. B., and Kijko, Andrzeij, 1983, Modeling some empirical vertical component Lg relations: Seismological Society of America Bulletin, v. 73, p. 157-171.
- Hill, D. P., 1982, Contemporary block tectonics: California and Nevada: Journal of Geophysical Research, v. 87, p. 5433-5450.
- Hill, M. L., and Troxel, B. W., 1966, Tectonics of Death Valley Region, California: Geological Society of America Bulletin, v. 77, p. 435-438.
- Hinrichs, E. N., 1968, Geologic Map of the Camp Desert Rock quadrangle, Nye County, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ-726.
- Jaeger, J. C. and Cook, N. G. W., 1969, Fundamentals of Rock Mechanics: London, Methuen, 515 p.
- Jennings, Charles W., R. G. Strand, T. H. Rogers, M. C. Stinson, J. L. Burnett, J. E. Kahle and R. Streitz, 1973, State of California Preliminary Fault and Geologic Map (South Half), California Division of Mines and Geology, Prelim. Report 13.
- Johnson, C. E., 1979, I. CEDAR: An approach to the computer automation of short-period local seismic networks. II. Seismotectonics of the Imperial Valley of Southern California,: Pasadena, Calif., California Institute of Technology, unpub. Ph. D. thesis, 332 p.
- Johnson, L. R., 1965, Crustal structure between Lake Mead, Nevada, and Mono Lake, California: Journal of Geophysical Research, v. 70, p. 2863-2872.
- Johnston, Arch C., 1987, Air blast recognition and location using regional seismographic networks: Seismological Society of America Bulletin, v. 77, p. 1446-1456.
- Kellerher, J. and Savino, J., 1975, Distribution of seismicity before large strike slip and thrust-type earthquakes, Journal of Geophysical Research, v. 80, p. 260-271.

- King, G., 1983, The accommodating of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: The geometrical origin of b-value: Pure and Applied Geophysics, v. 121, p. 761-815.
- Kisslinger, C., 1976, A review of theories of mechanisms of induced seismicity: Engineering Geology, v. 10, p. 85-98.
- Kisslinger, C., Bowman, J. R., and Koch, Karl, 1981, Procedures for computing focal mechanisms from local (SV/P_z) data: Seismological Society of America Bulletin, v. 71, p. 1719-1729.
- Lahr, John C., 1979, HYPOELLIPSE: A computer program for determining local earth-quake hypocentral parameters, magnitude, and first motion pattern: U.S. Geological Survey Open-File Report 79-431, 53 p.
- Lancaster, D., 1975, Active-filter cookbook: Indianapolis, Indiana, H. W. Sams and Company, 240 p.
- Lay, T., Wallace, T. C., Helmberger, D. V., 1984, The effects of tectonic release on short-period P-waves from NTS explosions: Seismological Society of America Bulletin v. 74, p. 819-842.
- Lee, W. H. K., Bennett, R. E., and Meagher, K. L., 1972, A method of estimating magnitude of local earthquakes from signal duration: U.S. Geological Survey Open-File Report, 28 p.
- Lee, W. H. K., and Lahr, J. C., 1975, HYPO71 (revised): A computer program for determining hypocenter, magnitude, and first-motion pattern of local earthquakes: U.S. Geological Survey Open-File Report 75-311, p. 1-116.
- Lee, W. H. K., and Stewart, S. W., 1979. Principles and applications of microearthquake networks: New York City, N. Y., Academic Press, 293 p.
- Lucchitta, I., 1985, Heat and detachment in core-complex extension: in Conference on Heat and Detachment in Crustal Extension on Continents and Planets, 1985, Proc.: Houston, Texas, Lunar and Planetary Institute, Contribution No. 575.
- Maldonado, F., 1977, Composite postshot fracture map of Pahute Mesa, Nevada Test Site, June 1973 through March 1976: U.S. Geological Survey Report USGS-474-243, 8 p.; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22161.
- McKay, E. J. and Williams, W. P., 1964. Geology of the Jackass Flats quadrangle, Nye County, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ-368.
- McKenzie, D. P., 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses: Seismological Society of America Bulletin v. 80, p 591-601.
- McKeown, F. A. and Dickey, D. D., 1969, Fault displacements and motion related to nuclear explosions: Seismological Society of America Bulletin, v. 59, no. 6, p. 2253-2269.

- McKeown, F. A., 1975, Relation of geological structure to seismicity at Pahute Mesa, Nevada Test Site, Seismological Society of America Bulletin, v. 65, p. 747-764.
- Meremonte, M. E. and Rogers, A. M., 1987, Historical catalog of southern Great Basin earthquakes 1868-1978, U.S. Geological Survey Open-File Report 87-80, 203 p.
- Molinari, M. P., 1984, Late Cenozoic geology and tectonics of Stewart and Monte Cristo valleys, West-Central Nevada: Reno, Nevada, University of Nevada, unpub. M.S. thesis, 124 p.
- Navarro, R., and Overturf, D., 1970, Investigation of the shake-table calibration of the S-13 system and the L-4A system: Environmental Services Administration, Coast and Geodetic Survey Report CGS-746-6, March 12, 1970, 26 p.
- O'Conner, J. T., Anderson, R. E., and Lipman, P. W., 1966, Geologic map of the Thirsty Canyon quadrangle, Nye County, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ-524.
- Power, W. L., 1985, Low-angle normal faults-low differential stress at mid crustal levels? in Conference on Heat and Detachment in Crustal Extension on Continents and Planets, 1985, Proc.: Houston, Texas, Lunar and Planetary Institute, Contribution No. 575.
- Prodahl, C., 1970, Seismic refraction study of crustal structure in the Western United States: Geological Society of America Bulletin, v. 81, p. 2629-2646.
- Richter, C. F., 1958, Elementary seismology: San Francisco, Calif., Freeman, 768 p.
- Rogers, A. M., and Lee, W. H. K., 1976, Seismic study of earthquakes in the Lake Mead, Nevada-Arizona region: Seismological Society of America Bulletin, v. 66, p. 1651-1681.
- Rogers, A. M., Wuolett, G. M., and Covington, P. A., 1977, Seismicity of the Pahute Mesa area, Nevada Test Site, 8 October 1975 to 30 June 1976: U.S. Geological Survey Report USGS-474-184, 61 p.; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, VA, 22161.
- Rogers, A. M., Harmsen, S. C., and Carr, W. J., 1981, Southern Great Basin Seismological Data Report for 1980 and Preliminary Data Analysis, U. S. Geological Survey Open File Report 81-1086, 148 p.
- Rogers, A. M., Harmsen, S. C., Carr, W. J., and Spence, W., 1983, Southern Great Basin Seismological Data Report for 1981 and Preliminary Data Analysis: *U.S. Geological Survey Open-File Report* 83-669. 240 p.
- Rogers, A. M., Anderson, R. E., and Harmsen, S. C., 1986, Strike slip seismicity in the Great Basin: Transactions of the American Geophysical Union, v. 67, p. 1236.
- Rogers, A. M., Harmsen, S. C., Herrmann, R. B., and Meremonte, M. E., 1987, A study of ground motion attenuation in the southern Great Basin, Nevada-California, using several techniques for estimates of Q_s , $\log A_0$, and coda Q: Journal of Geophysical Research, v. 92, p. 3527-3540.

- Ron, H., Aydin, A., and Nur, A., 1986, Strike-slip faulting and block rotation in the Lake Mead fault system: Geology, vol. 14, no. 12, p. 1020-1023.
- Sargent, K. A., McKay, E. J., and Burchfiel, B. C., 1970, Geologic Map of the Striped Hills quadrangle, Nye County, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ-882.
- Sbar, M. L., 1982, Delineation and interpretation of seismotectonic domains in western North America: Journal of Geophysical Research, v. 87, p. 3919-3928.
- Scott, R. B., 1986. Extensional tectonics at Yucca Mountain, Southern Nevada: Geological Society of America Abstracts with Programs, v. 18, n. 5, p. 411.
- Shawe, D. E., 1965, Strike-slip control of Basin-Range structure indicated by historical faults in western Nevada: Geological Society of America Bulletin, v. 76, p. 1361-1378.
- Smith, R. B., and Lindh, A. G., 1978, Fault plane solutions of the Western United States: a compilation: in Smith, R. B., and Eaton, G. P., eds., Cenozoic tectonics and regional geophysics of the Western Cordillera: Geological Society of America Memoir 152, p. 107-109.
- Snoke, J. A., Munsey, J. W., Teague, A. G., and Bollinger, G. A., 1984, A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data: Earthquake Notes, v. 55, p. 15.
- Stewart, J. H., 1978, Basin-range structure in western North America: A review, in Smith, R. B., and Eaton, G. P., eds., Cenozoic tectonics and regional geophysics of the Western Cordillera: Geological Society of America Memoir 152, p. 1-31.
- Stewart, J. H., and Carlson, J. E., 1978, Geologic map of Nevada: U.S. Geological Survey and Nevada Bureau of Mines and Geology map, MF-930, Scale 1:500,000.
- Stock, J. M., Healy, J. H., Hickman, S. H., and Zoback, M. D., 1985, Hydrolic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field: *Journal of Geophysical Research*, v. 90, p. 8691-8706.
- Swadley, W. C., 1983. Map showing surficial geology of the Lathrop Wells quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-1361.
- Swolfs, H. S., and Savage, W. Z., 1985, Topography, stresses, and stability at Yucca Mountain, Nevada: Proceedings, 26th U.S. Symposium on Rock Mechanics, p. 1121-1129. USGS (U.S. Geological Survey) (comp.), 1984, A summary of geologic studies through January 1, 1983, of a potential high-level radioactive waste repository site at Yucca Mountain, Southern Nye County, Nevada: U.S. Geological Survey Open-File Report 84-792, U.S. Geological Survey, Menlo Park, California, 103 p.
- Vetter, U., and Ryall, A. S., 1983, Systematic change of focal mechanism with depth in the Western Great Basin: Journal of Geophysical Research, v. 88, p. 8237-8250.
- Wallace, T. C., Helmberger, D. V., and Engen, G. R., 1983, Evidence of tectonic release from underground nuclear explosions in long-period P- waves: Seismological Society of America Bulletin v. 73, p. 593-613.

- Wallace, T. C., Helmberger, D. V., and Engen, G. R., 1985, Evidence of tectonic release from underground nuclear explosions in long-period S-waves: Seismological Society of America Bulletin, v. 75, p. 157-174.
- Wallace, T. C., Helmberger, D. V., and Lay, J., 1986, Reply to comments by A. Douglas, J. B. Young, and N. S. Lyman and a note on the revised moments for Pahute Mesa tectonic release, Seismological Society of America Bulletin, v. 76, p. 313-318.
- Wernicke, B., 1981, Low-angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen: *Nature*, v. 291, p. 645-648.
- Wernicke, B., Spencer, J. E., Burchfiel, B. C., and Guth, P. L., 1983, Magnitude of crustal extension in the southern Great Basin: Geology, v. 10, 497-502.
- Wright, Lauren, 1976, Late Cenozoic fault patterns and stress fields in the Great Basin and westward displacement of the Sierra Nevada block: Geology, v. 4, p. 489-414.
- Young, G. B. and Braile, L. W., 1976, A computer program for the application of Zoeppritz's amplitude equations and Knott's energy equations: Seismological Society of America Bulletin, v. 66, p 1983-2001, December 1976.
- Zoback, M. L., and Zoback, M. D., 1980a, Faulting patterns in north-central Nevada and strength of the crust: Journal of Geophysical Research, v. 85, p. 275-284.
- Zoback, M. L., and Zoback, M. D., 1980b, State of stress in the conterminous United States: Journal of Geophysical Research, v. 85, p. 6113-6156.

APPENDIX A

System frequency response curves and calibrations

Appendix A

Derivations of the frequency response curves of the seismograph instrument packages used in this study are presented below. The individual components are first described as analog or digital filters. The complete systems are then described, and finally, figures of some representative southern Great Basin system calibrations, from seismometer to playout, are shown.

Seismometer Response

For both S13 and L4C seismometers, the frequency response is written as the ratio of seismometer voltage out, E_s , to ground displacement (meters) input, Y_f . The complex transfer function $H_1(f)$ is

$$H_1(f) = E_s/Y_f = 2\pi f_n G_{ls} \frac{f/f_n}{1 - (f_n/f)^2 + 2i\lambda (f_n/f)}$$

where $i = \sqrt{-1}$. The values of the effective loaded motor constants, G_{le} , the seismometer natural frequencies, f_n , and the ratios of actual to critical damping, λ , corresponding to the different seismometers, which appear in the above equation, are shown in Table A1.

Seismometer	Gie (voltsxsec)	f _n (Hs)	λ
L4C	126.5	1.0	0.71
S130	377.8	1.0	0.70
S13Y	368.0	1.0	0.73

Table A1. The values of constants appropriate for SGB seismometers.

Tricom 649 Amplifier/VCO

The frequency response of the Tricom 649 amplifier is modeled using a second-order Bessel low pass filter (-12 db/octave) cascaded with a third-order Butterworth high pass filter (-18 db/octave). Because this amplifier is broadband, it is designed by overlapping high and low pass filters. Letting $H_L(f)$ = the low pass filter, and $H_H(f)$ = the high pass filter, the complex transfer function $H_2(f)$ is written as

$$H_2(f) = AH_L(f)H_H(f),$$

where $A = 10^{(g/20)}$, g = amplifier gain (dB),

$$H_L(f) = \frac{1}{1 - (f/f_1)^2 + id_1(f/f_1)},$$

where $f_c = 16$ Hs (nominal -3 dB point), $f_1 = 1.274 f_c$, $d_1 = 1.732$, and

$$H_H(f) = \frac{f/f_2}{(1+i(f/f_2))} \frac{(f/f_3)^2}{(1-(f/f_3)^2+id_2(f/f_3))},$$

where $f_c = 0.1$ Hs (nominal -3 dB point), $f_2 = 1.0 f_c$, $f_3 = 1.0 f_c$, and $d_2 = 1.0$. The filter design constants in these and the following formulas are from Lancaster (1975).

Tricom 642 Discriminator

The Tricom 642 discriminator is analytically modeled by a fifth-order Bessel low pass filter having dropost of 30 db/octave. This is factored into a first-order and two second-order filters, having the complex transfer function $H_3(f)$ as follows:

$$H_{S}(f) = \frac{1}{(1+i(f/f_{1}))(1-(f/f_{2})^{2}+id_{1}(f/f_{2}))(1-(f/f_{3})^{2}+id_{2}(f/f_{3}))},$$

where $f_1 = 1.613 f_a$, $d_1 = 1.775$, $f_2 = 1.819 f_c$, $d_2 = 1.091$, $f_3 = 1.557 f_c$, and $f_c = 14.1$ Hs.

Geotech 4250 Amplifier/VCO

The mathematical filter simulating this broadband amplifier is written as a second-order Bessel low pass filter (-12 db/octave) cascaded with a second-order Butterworth high pass filter (-12 db/octave). Letting $H_L(f)$ and $H_H(f)$ represent the low and high pass filters, respectively, and letting $H_4(f)$ represent the amplifier response, we have

$$H_A(f) = AH_L(f)H_H(f),$$

where $A = 10^{g/20}$, g = amplifier gain (db),

$$H_L(f) = \frac{1}{1 - (f/f_1)^2 + id_1(f/f_1)},$$

where $f_c = 20$ Hs (nominal -3 db point), $f_1 = 1.274 f_c$, $d_1 = 1.732$, and

$$H_H(f) = \frac{(f/f_1)^2}{1 - (f/f_1)^2 + id_1(f/f_1)},$$

where $f_c = 0.2$ Hs (nominal -3 db point), $f_1 = 1.0f_c$, and $d_1 = 1.414$.

Geotech 4612 Discriminator

This component is modeled with a third-order Paynter low pass filter having a corner frequency, f_c , at 22.5 Hs. The complex frequency response, $H_b(f)$, is given by

$$H_{\delta}(f) = \frac{1}{(1 - (f/f_{01})^2 + id_1(f/f_{01}))(1 + i(f/f_{02}))},$$

where $f_c = 22.5$ Hs (nominal 3 db point), $f_{01} = 1.206 f_c$, $f_{02} = 1.152 f_c$, and $d_1 = 1.203$. This filter was preferred to that specified by the manufacturer (Butterworth third-order low pass with $f_c = 25$ Hs), because the Paynter filter better approximated the observed response of the discriminator.

Playout gain/shape - Analog Develocorder

The Develocorder is modeled as a second-order low pass filter having complex frequency response $H_6(f)$ given by

$$H_6(f) = \frac{A}{1 - (f/f_1)^2 + 2id_1(f/f_1)},$$

where $A = 17.730 \cdot 10^{-3}$ meters/volt, $f_1 = 16$ Hs, and $d_1 = 0.8$.

Playout gain/shape - Helicorder

The Helicorder has a variable gain, g, and is modeled as a fourth- order low pass filter. Its complex response, $H_7(f)$, may therefore be written as

$$H_7(f) = 10^{(6-g)/20} (H_6(f))^2$$

where g = Helicorder playout gain (dB), and $H_0(f)$ is defined above, except that, for the Helicorder, $f_1 = 35.0$ Hs, and $d_1 = 0.48$.

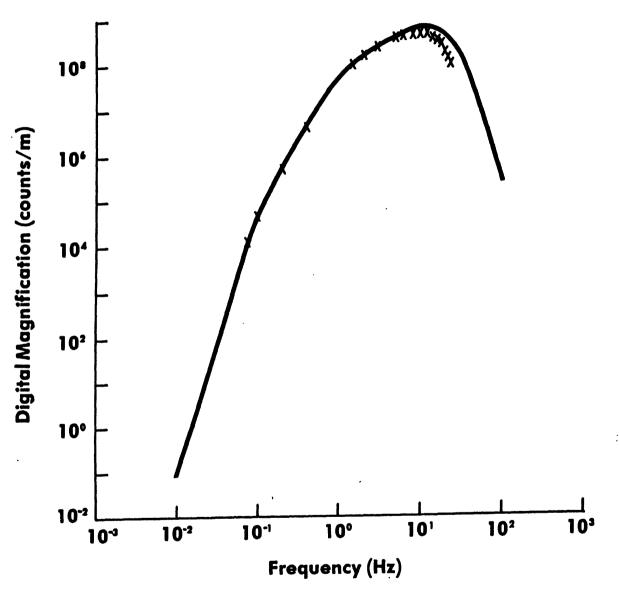
The PDP 11/34 Digital Computer Response

The frequency response of the 12-bit analog to digital converter, PDP AD/11K, and the subsequent components on the digital computer, including magnetic tape and software, is flat for input signals having frequencies between 0 and 50 Hs, the Nyquist frequency. The system output is in digital counts, such that ± 1 volt input results in ± 409.6 counts output, respectively, for all frequencies below the Nyquist frequency. Letting $H_8(f)$ be the system response of the PDP 11/34 computer, we have

$$H_8(f) = 409.6 \text{ counts/volt}, \quad 0 \le f \le 50 \text{ Hs}, \text{ and } -5 \le \text{volts in } \le 5.$$

SGB Seismograph Systems

The entire system from ground motion input to playout has a frequency response, H(f), that may be described by


$$H(f) = II_1(f)H_2(f)H_3(f)H_j(f)$$
 for system L4C,
 $H(f) = H_1(f)H_2(f)H_3(f)H_j(f)$ for system S13O, and
 $H(f) = H_1(f)H_4(f)H_5(f)H_j(f)$ for system S13Y,

where j=6,7, or 8 depending on the medium on which the playout occurs (Develocorder, Helicorder, or digital computer, respectively) and the parameters G_{le} and λ are chosen for the proper seismometer (Table A1). S13O refers to S13 instruments other than those on Yucca Mountain, and S13Y refers to S13 instruments on Yucca Mountain.

The constants, G_{le} , are computed knowing the manufacturer's nominal motor constants, the circuit design, shunt resistance, and input impedance to the amplifier. The proper equations have been derived by Eaton (1975). The constants, λ , have been measured in the lab.

Calibration

Although each component of these seismograph systems has been individually calibrated and compared with its ideal or theoretical performance, in the following we show only several representative examples of calibrations of the frequency response of complete systems. The first example, shown in Figure A1, is for the Mark Products L4C seismometer-Tricom amplifier system, having nominal gain of 48 dB, with playout being sampled by a DEC PDP 11/34 digital computer. The lack of agreement between the theoretical response (solid curve) and the observed system amplification (x symbols) above about 10 Hs is believed to be due to interaction (induction) between the L4C calibration coil and main coil, and does not represent the actual system response. This interpretation is supported by the fact that shake table calibrations of the L4C do not show this discrepancy (R. Navarro and D. Overturf, 1970; S. Morrisey, written commun., 1986). That this difference arises in the seismometer and not in subsequent electronics-telemetry was established by examining the seismometer response alone. The second example, shown in Figure A2, compares theoretical (solid curve) and observed (x symbols) frequency responses for the Teledyne Geotech S13 seismometer-Geotech amplifier system, with playout on a Helicorder paper record.

i i

Figure A1. Amplitude response of L4C system into PDP 11/34 digital computer (theoretical, solid curve, observed ×s) for a nominal amplifier gain of 48 db.

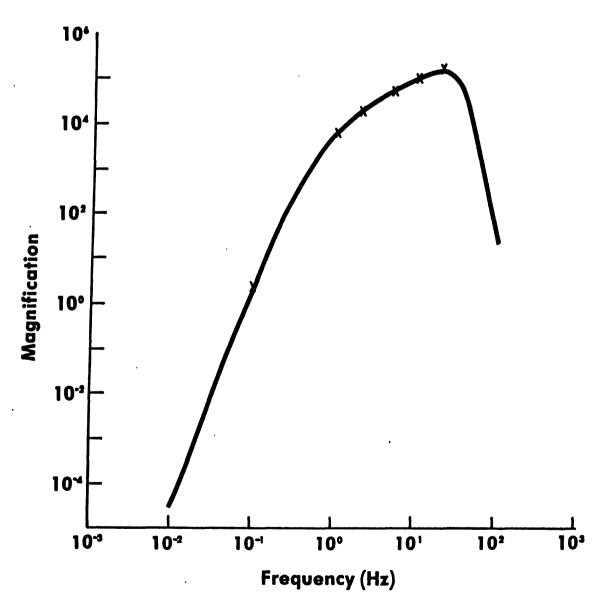


Figure A2. Amplitude response of S13Y system into helicorder for a nominal amplifier gain of 48 db.

APPENDIX B

Station codes, locations, instrumentation, and polarity reversals

STATION INFORMATION

30	STATION	PERIOD OF OPERATION (DAY/MONTH/YEAR)	LATITUDE (DEG MINUTES)	(DEG MINUTES)	ELEVATION (METERS)	SEISMOMETER MODEL	(08)
¥	Amargosa, Cal.	24/07/78-present	36 23.86 N	116 28.45 W	720) -1 C	80 4
· ξ	Angels Peak, Nev.	15/06/75-05/08/83•	36 19.17 N	115 34,46 W	2680	S-13 to 21/3/81 L-4C 21/3/81-end	1 nd 84
PKW	Angels Peak, Nev.	05/08/83-present•	36 19.19 N	115 35.22 W	2512	7-40	8 0
8	Big Butte, Nev.	23/01/79-present	37 02.27 N	116 13.66 W	1720	L-4C	8
ĭŢ	Beited Range, Nev.	30/05/79-present	37 28.93 N	116 07.35 W	1829	L-4C	8
5	Black Mountain, Nev.	26/02/80-01/04/83	37 17.02 N	116 38.74 W	2191	L-4c	8
N L	Black Mountain, Nev.	01/04/83-present	37 17.35 N	116 38.43 W	1988	L-4c	8
980	Bare Mountain, Nev.	28/11/78-08/04/81	36 45.76 N	116 37.52 W	926	_4c	80 4
E	Calico Hills, Nev.	96/92/89-18/11/81	36 51.62 N	116 19.05 W	1387	L-1-3DS (vert.) L-4C 18/11/81-pr) 90 pr 84
COHS	Calico Hills, Nev.	96/92/89-18/11/81	36 51.62 N	116 19.05 W	1055	L-1-3DS (horiz.) 108) 108
X Cb	CP-1, Nev.	-//77-01/03/80•	36 55.80 N	116 03.33 W	1285	NGC-21 to 5/8/88 L-4C 5/8/88-pr.	'88 ∴ 84
CTS	Cactus Peak, Nev.	24/04/79-present	37 39.40 K	116 43.54 W	1890	L-4C	8
700	Delamar Mountains, Nev.	08/06/78-present•	37 36.35 N	114 44.33 W	1730) -1 C	8 0
N. ED	Echo Peak, Nev.	82/89/75-present	37 12.85 N	116 19.42 W	2285	S-13 to 25/4/80 L-4C 25/4/80-pr	36 or. 84
ENE	Echo Peak, Nev.	86/86/84-present	37 12.85 N	116 19.42 W	2285	L-4C horizontal	al 78
æ	East Pahranagat Rg, Nev	sv 23/01/79-present•	37 10.12 N	115 11.19 W	1300) -	8
1	Funeral Mountains, Cal	1. 28/11/78-present	36 38.38 N	116 46.73 W	1925	3+−1	€
33	Groom Lake Road, Nev.	20/11/75-present.	37 11.96 N	116 01.06 W	1435	- 1 0	₩
3	Gold Mountain, Nev.	13/07/79-present•	37 18.01 N	117 15.58 W	2155	-1 0	\$
3	Gold Mountain, Nev.	30/07/84-present	37 18.01 N	117 15.58 W	2155	L-4C horizontal	a1 78

8	Groom Range, Nev.	23/01/79-present	37 20.03 N	115 46.27 W	1580	r-4c	84
SPERIE T	Groom Range, Nev.	89/89/84-present	37 20.03 N	115 46.27 W	1580	L-4C	84
8	Grapevine, Cal.	28/11/78-present	37 00.09 N	117 20.55 W	865	L-4C	84
CNI	Greenwater Valley, Cal.	24/07/78-present	36 11.20 N	116 40.24 W	1540	L-4C	48
Ę	Hot Creek Range, Nev.	21/87/81-present	38 14.02 N	116 26.18 W	2030	1-40	48
Š	Johnnie, Nev.	24/07/78-present•	36 26.39 N	116 96.18 W	926	1-40	48
SON	Johnnie, Nev.	22/86/84-present	36 26.39 N	116 06.18 W	920	L-4C horizontal	78
X.	Kawich Range, Nev.	30/05/79-23/04/80	37 42.37 N	116 20.07 W	2570	-4c	84
KRNA	Kawich Range, Nev.	23/04/80-present	37 44.47 N	116 22.80 W	1980	74-40	8
CH	Last Change Range, Cal.	13/07/79-present•	37 14.08 N	117 38.84 W	1455	1-40	48
LEE	Leeds, Utah	01/01/71-01/06/80	37 14.58 N	113 22.60 W	1967	Benioff	
9	Lookout Peak, Nev.	23/01/79-present	36 51.25 N	116 18.05 W	1695	L-4C	48
78	Little Skull Mt., Nev.	13/12/79-present•	36 44.40 N	116 16.37 W	1140	S-13	8
LSMN	Little Skull Mt., Nev.	17/87/84-present	36 44.40 N	116 16.37 W	1140	L-4C horizontal	78
LSME	Little Skull Mt., Nev.	17/87/84-present	36 44.49 N	116 16.37 W	1140	L-4C horizontal	78
LSN	Little Skull Mt., Nev.	19/02/79-13/12/79	36 45.21 N	116 15.57 W	1979) -1 0	2
N CA	Marble Canyon, Cal.	23/81/79-present	36 38.89 N	117 16.85 W	300	L-40	8
K CX	Mercury, Nev.	15/86/77-07/03/80	36 39.37 N	115 59.45 W	1160	5-13	8
Ķ	Mercury, Nev.	07/03/80-present	36 39.70 N	115 57.73 W	1285	5-13	*
Ę	Magruder Mountain, Nev.	. 13/07/79-present•	37 26.47 N	117 29.79 W	2166	9+1	\$
1 5	Mount Irish, Nev.	08/06/79-present•	37 48.68 N	115 16.36 W	1525	L-4C	8
dZM	Mantezuma Peak, Nev.	13/07/79-present	37 42.84 N	117 22.98 W	2375	L-4C	8
NEL	Nelson, Nev.	01/01/71-01/06/80	35 42.73 N	114 50.62 W	1052	Benioff	
3	Nasa Mountain, Nev.	28/11/78-01/11/83	37 84.85 N	116 49.09 W	1500	- 	2
d N	Nopah Range, Cal.	24/07/78-present	36 07.68 N	116 89.16 W	976	L-4C to 25/4/89 S-13 25/4/89-pr	2 2

N.	North Pahroc Rg. Nev.	08/06/79-present•	37 39.16 N	114 56.22 W	1650	7 -1 c	84
PCE	Panamint Range, Cal.	28/11/78-present•	36 20.93 N	117 03.95 W	1850	7-40	4
E	Panamint Range, Cal.	11/10/84-present	36 20.93 N	117 03.95 W	1850	L-4C horizontal	78
βğ	Piper Mountain, Cal.	13/07/79-present•	37 25.58 N	117 54.43 W	1830	- -	84
g X	Pahroc Range, Nev.	21/01/72-present。	37 24.42 N	115 02.99 W	1470	NGC-21 to 19/6/80 S-13 19/6/80-pr. 84	4
PRNH	Pahroc Range, Nev.	28/08/84-present	37 24.42 N	115 02.99 W	1470	L-4C horizontal	78
SSS	Queen City Summit, Nev.	08/06/79-present	37 46.07 N	115 54.98 W	1890) -1 C	48
MSD	Queen of Sheba Mine, Ca	28/11/78-present	35 57.93 N	116 52.10 W	679) -1 0	84
RVE	Reveille Range, Nev.	68/66/79-26/61/81	38 01.18 N	116 11.51 W	2290) -1 0	84
NOS	Striped Hills, Nev.	24/07/78-present	36 38.73 N	116 20.29 W	1055	J#-7	84
SGV	South Grapevine Mts, Ca	28/11/78–15/06/81	36 58.87 N	117 01.94 W	1565	L-4C S-13 15/06/81-pr	8 8 4
SHRG	Sheep Range, Nev.	22/05/79-present	36 30.27 N	115 89.31 W	1645	7-10	\$
SPRG	Spotted Range, Nev.	28/05/79-present	36 41.64 N	115 48.56 W	1235	r-4c	84
SRG	Seaman Range, Nev.	08/06/79-present•	37 52.93 N	115 04.08 W	1645	L-4C	48
SS	Shoshone Peak, Nev.	10/10/73-present•	36 55.50 N	116 13.11 W	2065	NGC-21 to 25/5/80 L-4C 27/5/80/pr. 84	8 8
SVP	Silver Peak Ronge, Nev.	13/07/79-present•	37 42.90 N	117 48.05 W	2620	J+-1	4
TCN N	Thirsty Canyon, Nev.	02/11/84-present	37 88.80 N	116 43.52 W	1469	7-40	₩
TABR	Timber Mt., Nev.	19/02/82-present	37 02.05 N	116 23.13 W	1758	r-4c	84

9	Tin Mountain, Cal.	28/11/78-present	36 48.32 N	117 24.48 W	2195	L-4c	84
2	Tonopah, Nev.	31/08/64-02/19/82	38 84.92 N	117 13.08 W	1931	Benioff	
¥	Talicha Peak, Nev.	11/06/79-12/02/80	37 16.11 N	116 48.26 W	2080	L-4C	84
2	Tempiute Mountain, Nev. 08/06/79-present	. 08/06/79-present•	37 36.30 N	115 38.95 W	1915	L-4C	8
īC.	Wildcat Mountain, Nev.	08/04/81-present	36 47.53 N	116 37.60 W	1000	L-4C	8
Z.	Worthington Mts., Nev.	68/66/79-present	37 58.90 N	115 35.30 W	1760	L-4c	*
TAMT 1	Yucca Mountain, Nev.	05/03/81-present.	36 51.20 N	116 31.80 W	1200	S-13	8
NMT2	Yucca Mountain, Nev.	05/03/81-present•	36 47.12 N	116 29.19 W	1220	5-13	*
YNT3	Yucca Mountain, Nev.	05/03/81-present•	36 47.23 N	116 24.79 W	1656	5-13	4 8
YMT4	Yucca Mountain, Nev.	01/04/81-present•	36 50.83 N	116 27.07 W	1256	5-13	%
YNAAN	Yucca Mountain, Nev.	29/86/84-present	36 50.83 N	116 27.07 W	1256	L-4C horizontal	78
THAE	Yucca Mountain, Nev.	29/06/84-present	36 50.83 N	116 27.07 W	1256	L-4C horizontal	78
YNTS	Yucca Mountain, Nev.	01/04/81-present•	36 53.90 N	116 27.23 W	1350	5-13	8
YMT6	Yucca Mountain, Nev.	01/04/81-present•	36 51.51 N	116 24.26 W	1150	S-13	8

. INDICATES STATION HAVING POLARITY REVERSAL (SEE FOLLOWING TABLE).

POLARITY REVERSALS (PERTAINS TO DEVELOCORDER FILMS ONLY)

CODE	STATION	PERIOD OF REVERSE POLARITY
		(DAY/MONTH/YEAR)
APK	Angels Peak, Nev.	21/3/81 - 05/08/03
APKW	Angels Peak, Nev.	05/08/83 - present
CDH1	Calico Hills, Nev.	30/3/81 to 3/8/81; also 1/12/81 to present
СРХ	CP-1, Nev.	5/8/80 to 13/12/80
DLM	Delamar Mts., Nev.	28/6/79 to 29/8/79
EPN	Echo Peak, Nev.	1/11/78 to 01/05/80
EPR	East Pahranogat Range, Ne	v 10/12/79 to 20/2/80
GLR	Groom Lake Road, Nev.	1/11/78 to 22/2/79
GMN	Gold Mountain, Nev.	28/6/79 to 29/8/79; also 5/8/80 to 17/12/80
JON	Johnnie, Nev.	1/11/78 to 22/2/79
LSM	Little Skull Mtn., Nev.	17/07/84 to present
LCH	Last Change Ronge, Nev.	28/6/79 to 29/8/79
MGM	Magruder Mountain, Nev.	28/6/79 to 29/8/79
MTI	Mount Irish, Nev.	28/6/79 to 29/8/79
MZP	Montezuma Peak, Nev.	28/6/79 to 29/8/79
NPN	North Pahroc Range, Nev.	28/6/79 to 29/8/79
PGE	Panamint Range, Cal.	11/10/84 to present
PPK	Piper Mountain, Cal.	28/6/79 to 29/8/79
PRN	Pahroc Range, Nev.	10/12/79 to 20/2/80; also 28/08/84 to present
QCS	Queen City Summit, Nev.	28/6/79 to 29/8/79
QSM	Queen of Sheba Mine, Nev.	28/6/79 to 29/8/79
RVE	Reveille Range, Nev.	28/6/79 to 29/8/79
SRG	Seaman Range, Nev.	28/6/79 to 29/8/79
SSP	Shoshone Peak, Nev.	28/6/79 to 01/06/80
SVP	Silver Peak Range, Nev.	28/6/79 to 29/8/79
TPK	Tolicha Peak, Nev.	11/06/79 to 29/8/79
TPU	Tempiute Mountain, Nev.	28/6/79 to 29/8/79
WRN	Worthington Mts., Nev.	28/6/79 to 29/8/79
YMT1	Yucca Mountoin, Nev.	05/03/81 to present
YMT2	Yucca Mountain, Nev.	05/03/81 to present
YMT3	Yucca Mountain, Nev.	05/03/81 to present
YMT3	Yucca Mountoin, Nev.	05/03/81 to present
YMT4	Yucca Mountain, Nev.	01/04/81 to present
YMT5	Yucca Mountoin, Nev.	01/04/81 to present
YMT6	Yucca Mountain, Nev.	01/04/81 to present

APPENDIX C

Input parameters to HYPO71

Hypocenter Parameters Used for Earthquake Location Procedure

Routine earthquake location from phase data obtained from the southern Great Basin network is done using the computer program HYPO71 (Lee and Lahr, 1975). Their program has been modified to compute theoretical travel times of seismic rays to actual seismograph station locations, rather than to some mean reference ground level, as in the original computer program. This modification was necessary because SGB station elevations vary from 300 meters above sea level (station MCA) to 2620 meters above sea level (station SVP). Since most station elevations are greater than 1000 meters, we allow earthquake depth of focus to rise to -1.2 km, where negative depths (actually elevations) represent foci above sea level. Test variables 14 and 15 in HYPO71 have been assigned values to invoke the variable surface layer thickness option (see Table C2 below).

A second modification to the HYPO71 program computes local earthquake magnitudes according to the methods discussed in this report in the section "magnitude estimation details." Test variables 16 and 17 in HYPO71 have been assigned values for determining M_{ca} , the coda amplitude magnitude developed by Carl Johnson (1979). Three event magnitudes, M_L , M_d , and M_{ca} may be obtained for each earthquake. The reported magnitude is computed from the formula

$$M = \frac{1}{2}[M_L + \frac{1}{2}(M_d + M_{ca})],$$

or by a similar average if fewer magnitude estimates are available for a given earthquake.

The P- and S-wave velocity model (in text, called M0) used to locate earthquakes is shown in table C1 below.

Depth to top of layer (km)	P-wave velocity (km/sec)	S-wave velocity (km/sec)
Station Elevation	3.8	2.22
1.0	5.9	3.45
3.0	6.15	3.60
24.0	6.9	4.04
32.0 (halfspace)	7.8	4.56

Table C1. Southern Great Basin P and S velocity model. Sea level = 0.0 km.

The values of test variables employed in HYPO71 are given in table C2 below.

TEST(1) = 0.1 sec	TEST(2) = 30.0 km	TEST(3) = 0.5
TEST(4) = 0.05 km	TEST(5) = 5.0 km	TEST(6) = 1.0
TEST(7) = -1.276	TEST(8) = 1.666	TEST(9) = 0.00227
TEST(10) = 100.0 km	TEST(11) = 8.	TEST(12) = 0.5
TEST(13) = 1.0 km	TEST(14) = -1.2 km	TEST(15) = 999
TEST(16) = 0.852	TEST(17) = -1.766	

Table C2. HYPO71 test variables as discussed in Lee and Lahr (1975).

Pertinent control card options are ZTR = 5.0 km, XNEAR = 10.0 km, XFAR = 220 km, and POS = 1.71.

APPENDIX D

August 1978 through December 1983 hypocenter summary and quadrangle maps to which events are keyed

Hypocentral parameters for all local earthquakes cataloged by the U. S. G. S. for the period August 1, 1978, through December 31, 1983 are listed. Pre-1982 locations from previous open-file reports are repeated with revised magnitudes. The column headings for appendix D are nearly self-explanatory. For clarity, UTC is Universal Coordinated Time, azi gap is the azimuthal gap (HYPO71), horizontal error is the epicentral standard error, $\sqrt{sdx^2 + sdy^2}$, where sdx and sdy are the standard errors in longitude and latitude (HYPO71), respectively, vertical error is the standard error in depth of focus, MD is duration magnitude, and Mblg is the local magnitude calibrated for southern Great Basin crustal paths and stations (Rogers and others, 1987). An asterisk after the depth estimate indicates that the depth-of-focus error estimate was very large ($\geq 100 \, \mathrm{km}$). Two asterisks after the depth estimate indicate that HYPO71 fixed the depth at 7.0 km (our default value, used when too few phase readings are available to provide a focal depth estimate). Pre-digital data (before October, 1981) tend to have fewer phase readings per event, and less precision, explaining the greater percentage of depth-of-focus problems for those hypocenters.

Chemical explosions at Bare Mountain and elsewhere

For the 1982-1983 reporting period, probable and possible blasts in the Bare Mountain quadrangle, just west of Yucca Mountain, are tagged in appendix D by a darkened circle (•) for probable blasts, and an open circle (o) for possible blasts, just to the left of the quadrangle name. Fourteen probable blasts and one possible blast were recorded in the Bare Mountain quadrangle in 1982-1983. The determination of probable blast was based on several factors. These include the fact that a mine was operating at Bare Mountain during 1982-1983, observations of only compressional first-motion polarities on local station seismograms, logical times for blasting (weekdays during standard working hours), shallow estimated depth of focus, and often the presence on several seismograms of an energetic phase at the time of a predicted sonic boom or air-coupled Raleigh wave (Johnston, 1987). Figure D5 shows digital seismograms that record a Bare Mountain chemical explosion of 820824. YMT1 and YMT2, on the west flank of Yucca Mountain, are usually the only SGB network stations that record the slow-moving ($v \approx 0.32$ km/sec), air-coupled Raleigh wave generated from Bare Mountain blasts. Note that the Rayleigh wave is especially well-developed at YMT2, having greater amplitude than the body wave at that site (at YMT1 the relative amplitudes are unknown, since both arrivals are clipped). Station YMT4, only two km more distant from the epicenter than YMT2, did not visibly record the Raleigh wave, probably because YMT4 is topographically shielded from the advancing shock front. Most of these observations are possible on digital seismograms, but several are not clear on analog records such as develocorder films. Thus, we do not annotate potential Bare Mountain blasts before 1982. Event 831222 was a poorly recorded potential blast that may have been mislocated in the Bare Mountain mining region.

Although chemical blasts on Yucca Mountain occurred during 1982-1983, these events were confirmed as blasts by Department of Energy personnel and were not included in appendix D. A few Yucca Mountain blasts prior to 1982 are included here, but are tagged as blasts. Elsewhere in the southern Great Basin, known blasts are not included in appendix D, but some blasts may have been inadvertently included.

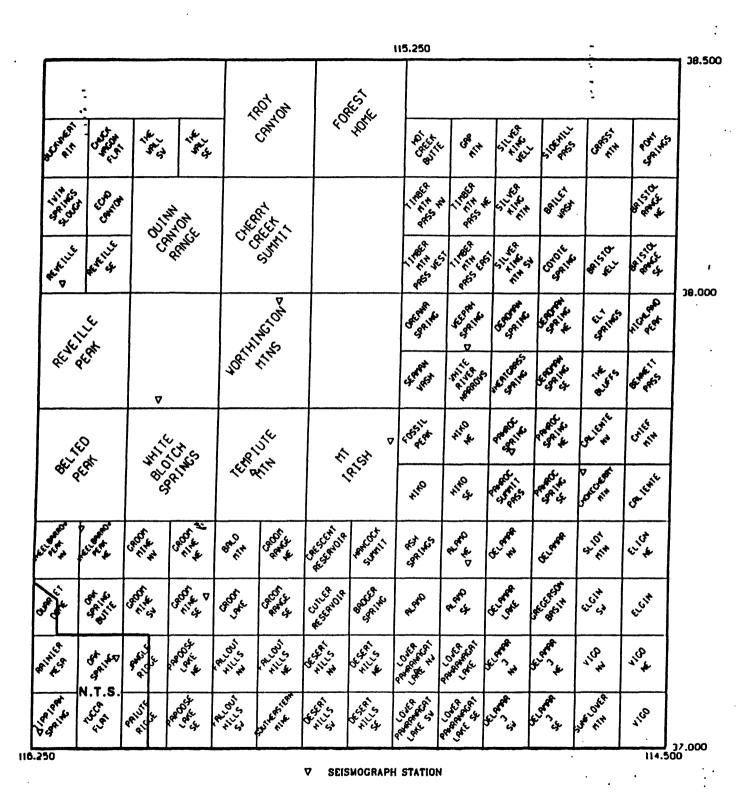


Figure D1. Quadrangle names in northeast quarter of southern Great Basin.

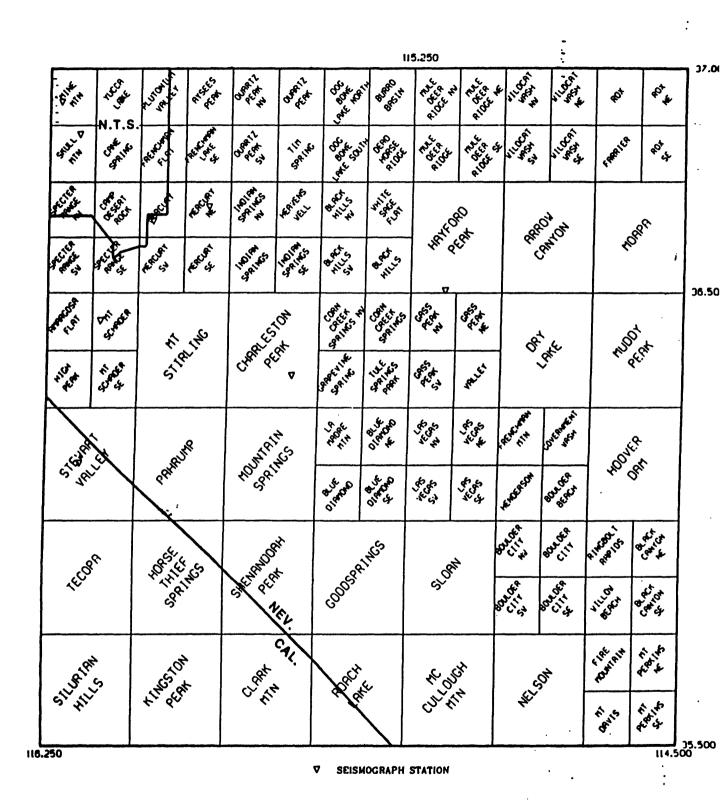


Figure D2. Quadrangle names in southeast quarter of southern Great Basin.

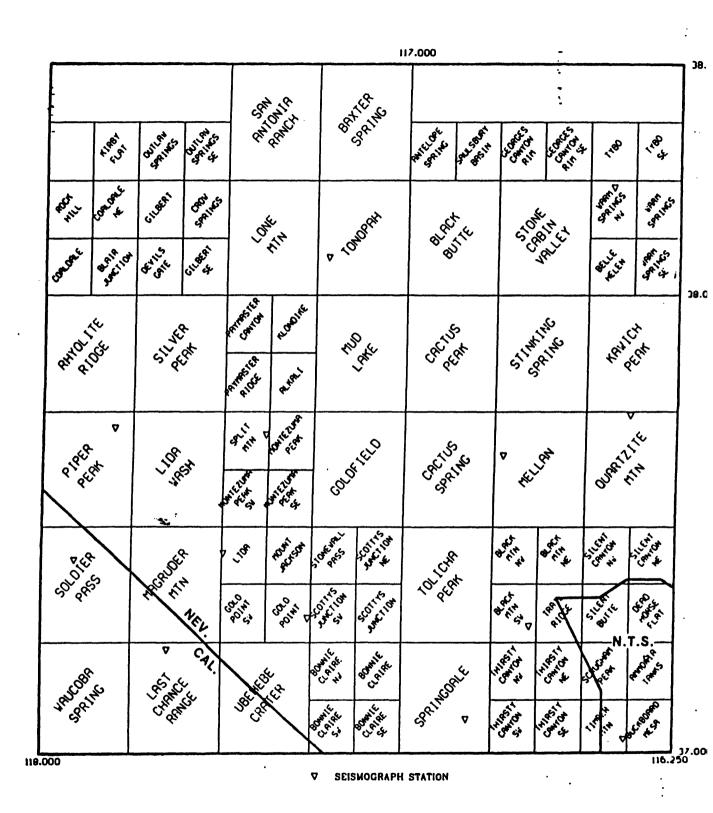


Figure D3. Quadrangle names in northwest quarter of southern Great Basin.

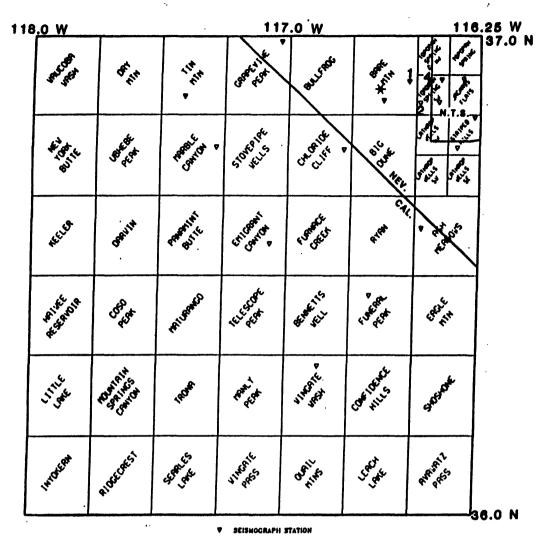


Figure D4.— Quadrangle names in the southwest quarter of the southern Great Basin. The star represents the location of the Bare Mountain chemical explosion of 820824 22:51, for which seismograms from stations YMT1, YMT2, and YMT4 (labeled) are shown below.

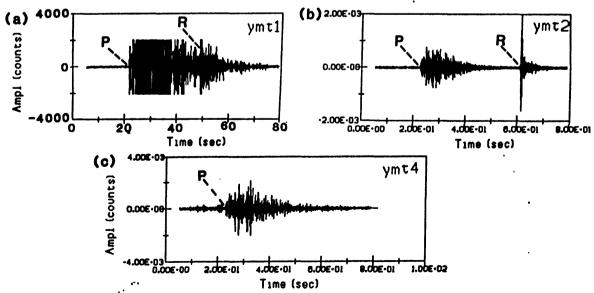


Figure D5.- Event 820824 22:51 seismograms, with compressional (P) and air-coupled Raleigh (R) phases labeled where evident, for (a), station YMT1, (b), station YMT2, and (c), station YMT4.

1978 LOCAL HYPOCENTER SUMMARY

					HORIZ		VERT	AZI				
(E - TIME (UTC)	(DEG. N)	LONGITUDE (DEG. W)	ERROR (KM)	DEPTH (KM)	ERROR (KM)	GAP (DEG)	QUAL	Mđ	Mblg	QUADRANGLE
AUG			38.572	115.519		7.00••		252	AD	1.4		INDIAN SPRINGS SE
	3		37.474 37.271	114.730 116.027	8.6 0.1	-0.72 8.86	7.5 0.1	315 184	DD AD	1.5		SLIDY MTN OAK SPRING BUTTE
			37.347	115.119	0.9	14.03	0.9	157	AC	1.2		ALAMO SE
	•	10:45:50	38.238	115.230		7.00 • •		310	80	1.5		TIMBER MTN PASS NW
	1 6	19:34: 6	37.512	115.108		4.15		263	AD	1.7		HIKO SE
	12	3: 9: 4	36.011	116.905	16.3	7.19	8.9	302	DD	0.9		BENNETTS WELL
	14		36.255	116.672	0.3	7.00	6.5	216	DD	2.0		RYAN
	17	• • • • • •	37.358 37.319	116.468 116.325	2.0 7.9	3.06• 7.00	5.5	260 264	CD DD	1.5		SILENT BUTTE DEAD HORSE FLAT
	17		37.302	116.323	7.5	7.00 • •		282	80	1.4		DEAD HORSE FLAT
	17		36.471	114.299		-0.75		294	80	1.8		REGIONAL
	25	8:42:49	36.737	116.176	0.0	2.81	2.0	77	AB	0.8		SPECTER RANGE NW
	28		38.829	116.225	0.5	7.74	0.9	142	AC	0.8		SKULL MTN
	28		36.742	116.175	1.2	7.13	3.2	142	BC	0.7		SPECTER RANGE NW
	31 31		37.311 37.309	116.367 116.363	3.1	-0.75 7.00••	2.5	267 272	CD	1.4		DEAD HORSE FLAT
SEP			37.988	116.567		7.00••		356	AD CD	1.4		DEAD HORSE FLAT STINKING SPRING
	13		37.247 37.31 6	116.371 116.419	14.7	7.00 • 1.19	6.9	332 271	DD DD	1.2		AMMONIA TANKS Silent Butte
	14		36.308	114.969	7.2	3.63•		263	00	0.9		DRY LAKE
	23	14: 0:54	35.887	115.968	4.3	2.96.		261	CD	1.1		HORSE THIEF SPRINGS
	23	14:28:44	36.191	115.182	1.5	10.41	5.9	260	CD	1.4		LAS VEGAS NW
	24	8:31:43	36.720	115.578		7.00••		148	AD	0.9		HEAVENS WELL
	25	0:37:22	37.197	116.340	1.9	1.25	1.6	218			0.2	AMMONIA TANKS
oct		11:59: 1	36.616	116.243	1.3	2.50	3.3	102	88	1.2		SPECTER RANGE SW
	10	18:52:37 16:12: 4	36.007 36.367	115.445 116.852	19.8	5.30 • 10.82	7.3	300 246	DD CD	1.3		BLUE DIAMOND Furnace Creek
NOV		8:34: 0	37.295	116.504	0.6	7.50	1.4	228		2.1		TRAIL RIDGE
	29	11:19:56	36.632	116.224	1.5	4.35	6.4	173	CC	0.5		SPECTER RANGE NW
	29	16:19:22	37.174	116.198	1.6	4.16	7.7	149	CC	0.8		RAINIER MESA
	30	13:50:27	37.673	117.445	3.9	9.23	1.3	295		1.4		SPLIT MTN
	3 8	14:38:23 22: 4:19	36.040 35.981	117.865 116.963	18.3 5.5	2.09• 1.67•		300 270		1.3 6.7		HAIWEE RESERVOIR WINGATE WASH
DEC	1	17: 7:30	37.624	116.947	1.7	-0.86		234		2.5		YUCCA FLAT
	2	12:41: 8	37.104	116.132	4.4	10.84	8.2	252		1.2		TIPPIPAH SPRING
	3	0:43:30	36.129	117.426	5.5	3.68+		271	DD	1.1		MATURANGO
	3	12:58:42	36.119	117.763	12.5	3.20•		293		1.3		HAIWEE RESERVOIR
	5	9:43: 6	37.339	116.326	2.5	5.15.		291		1.3		DEAD HORSE FLAT
	6	22:20:54 21: 2: 2	36.350	116.954		16.49		148		1.2 1.1		FURNACE CREEK Trona
	10	11:19:52	35.986 35.974	117.283 117.278	1.8	3.43• 3.37•		261		1.4		TRONA
	10	13:35:30 21:44:56	36.401 36.468	116.105 117.066	0.8	5.64 13.51	1.9	264 141		2 . 1 1 . 1		MT SCHADER Emigrant Canyon
	12	6:37:35	36.684	116.408	0.8	9.70	3.2	174				LATHROP WELLS NW
	12	7: 7:15	36.679	116.406	0.4	-0.45	0.4	161	AC	1 . 4		LATHROP WELLS NW
	13			117.255		18.69		266	AD :			TRONA
	13	21:46:26	36.750	115.845	1.9	1.20•		269	CD	9.7		FRENCHMAN LAKE SE
	13	23:29:17		115.943	6.6	3.28•		296		9.7		HORSE THIEF SPRINGS
	14	0:31:59			2.0	5.58	8.9	259				WINGATE WASH
	14	12:18:12 20:17: 1		115.177 116.557	83.6	8.85• 4.73•		329 262				LAS VEGAS NW Thirsty canyon ne
	17		37.575	116.439	20.4	7.00		315				QUARTZITE MTN
	18	6:43:28	37.360	116.378		-0.22•		292				SILENT BUTTE
	18	7:27:44	37.195	116.546	4.2	2.08•		272	CD 1	1.1		THIRSTY CANYON NE
	22	1: 4:22	36.100	117.793		3.02		338	AD 1	1.0		HAIWEE RESERVOIR
	23	2:35: 2		117.206	3.9	5.06	8.4					BONNIE CLAIRE SW
	23 23	12:12: 4 23:49:48	35.811 36.219	116.551 117.397	3.6 5.5	1.42 •	8.5					CONFIDENCE HILLS MATURANGO
	25		36.622	116.249	1.3	5.41	3.9					SPECTER RANGE SW
	26	22:16: 5	35.929	116.995	3.4	2.48•		278	CD 1	1.1		WINGATE WASH
	27		36.603	116.263	0.3		0.7		AD 1	.5		LATHROP WELLS SE
	29	4:27:53		117.566			3.9					DRY MTN
	36	1:38:22		117.597	8.8							COSO PEAK Frenchman MTN
	31	15:54:53	JG. 136	114.940		3.50		335	AD 1	• •		FRENCHMAN MIN

(E - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)		OUAL	Md	Whia	OHADBANCI E
	•	010)	(DEG. N)	(DEG. W)	(~ m)	(KM)	(N M)	(DEG)	QUAL	m u	MbIg	QUADRANGLE
JAI			37.547	117.761	1.8	7.00	1.9	323		. 2		PIPER PEAK
	5		36.3 09 37.283	116.888 116.496	0.8 2.3	14.70 3.34•	1.8	161 285		. 8 . 1		FURNACE CREEK Silent Butte
	9		36.015	117.821	1.7	3.29•		298		. 3		HAIWEE RESERVOIR
	1 0	16:36:21	36.413	117.893	2.0	8.77	1.5	302	BD 1	. 3		KEELER
	1 6	8:59:57	38.697	116.389	0.6	2.91	1.3	118	AB 8	. 5		LATHROP WELLS NW
	17	2:52:12	37.130	117.379	1.3	6.63	1.6	257	8D 1	. 4		UBEHEBE CRATER
	18		36.228	117.002	0.9	8.88	2.1	232		. 0		TELESCOPE PEAK
	21 22		35.966 36.469	116.951 115.690	3.8 0.9	2.86+ -0.52+		260 198		. 4 . 8		WINGATE WASH Charleston Peak
FEE			37.321	114.072	22.2	4.55	7.5	310		. 1		GREGERSON BASIN
	7	8: 4:56	36.815	115.807	0.9	2.15.		147	CC 1	. 1		FRENCHMAN LAKE SE
	7	10:19:36	36.437	117.008	2.4	10.30	4.7	196	88 8	. 6		EMIGRANT CANYON
	8		36.163	117.924	1.8	5.74	3.3	302	8D 1	. 6		HAIWEE RESERVOIR
	8	23: 9:19	37.184	116.062	0.9	0.53	9.6	139		. 4		OAK SPRING
	10	11:17:16 3:55:26	36.815 36.729	115.811 115.429	0.9 0.9	-0.76 7.80	1.8 5.1	147 172		. 4 . 4		FRENCHMAN LAKE SE BLACK HILLS NW
	15	4:23:11	37.172	116.887	0.7	2.11	1.4	216		. 3		SPRINGDALE
	20	13:52:20	37.001	116.012	1.1	5.45•		136	CC 9	. 8		YUCCA FLAT
MAR	1	0: 5:16	36.590	117.645	4.0	12.70	0.9	319	CD 0			NEW YORK BUTTE
	3	15: 2:42	37.234	117.299	1.0	5.71	3.0	253				UBEHESE CRATER
	;	1: 6:31 19:13: 3	35.941 37.280	116.976 116.509	2.4 1.0	6.14 7.79	2.5 4.0	264 227	8D 1.	_		WINGATE WASH Trail ridge
	4	21:28:25	37.372	115.909	1.7	2.64	1.8	199				GROOM MINE SW
	8	10:12:36	35.969	116.941	1.7	3.00+		260	CD 1.	. 3		WINGATE WASH
	0	16:25:40	36.897	117.545	4.4	17.72	2.2	287	DD 1.	8		DRY MTN
	9	15:27:17 16: 5:37	36.472 35.969	114.697 116.766	0.8 2.6	3.35 2.13	2.3 9.4	259 255	BD 1.			DRY LAKE Wingate Wash
	,	23:50:18	36.813	117.332	0.7	9.25	1.4	153	AC 0.			TIN MTN
	10	0:56:36	35.807	116.647	1.9	8.05	2.9	268	BD 1.	9		CONFIDENCE HILLS
	19	1:29:20	36.703	116.261	0.3	2.64	2.4	118	88 1.			STRIPED HILLS
	11	4:20:30	36.726	116.248	0.4	-0.29	0.9	120	AC 1.			SPECTER RANGE NW
	15	11:23:14 21: 3:41	36.699 37.221	116.262 117.509	0.7 1.0	0.68 6.58	1.2 3.1	118 295	AB 0. BD 0.	-		STRIPED HILLS LAST CHANCE RANGE
	16	7:40:59	35.601	116.627	3.8	2.95	9.0	277	CD 1.	2		CONFIDENCE HILLS
	17	23: 3:18	36.612	116.243	1.2	2.91	2.6	146	BC 0.	2 .		SPECTER RANGE SW
	18	8: 6:45	36.943	117.653	3.1	23.49	0.9	297	CD 1.			DRY MTN
	25 25	15:16:57 15:20:21	36.129 36.141	117.760 117.767	1.6 2.0	6.6 0 6.01•	1.2	293 293	8D 1.			HAIWEE RESERVOIR
	25	16:32: 4	36.267	117.535	1.8	11.06	2.0	292	BD 1.			DARWIN
	25	16:36:16	36.152	117.715	2.1	10.10	1.5	290	80 1.			COSO PEAK
	25	20:46:42	36.149	117.739	1.0	10.16	1.1	291	BD 1.	3 .		COSO PEAK
	26	5:28: 0	36.085	117.344	2.3	2.12	6.0	268	CD 1.	2 .		MATURANGO
	31	13: 0:38	36.466	115.795	1.9	17.04	3.2	245	BD 0.			MT STIRLING
APR	2	3:27:36 9:19:24	36.756 36.400	116.672 117.749	1.1	1.03 16.21	4.5 3.2	124	BB 0. CD 0.			BARE MTN Darwin
	3	7:17: 1		118.028	4.7	3.96	3.0	325	CD 1.	_		· · · REGIONAL · · ·
	3	7:55:32	37.052	118.021	2.4	3.31	4.5	321	BD 1.	0 -		· · · REGIONAL · · ·
	3	9: 3: 6	37.043		14.7	1.90.		323	DD 1.			· · · REGIONAL · · ·
	4	11: 0: 5 7:55:47	36.158 36.429	117.737 117.063	2.1 0.6	9.69 4.21•	2 . 0 	291	BD 1.			COSO PEAK Emigrant Canyon
	9	3:15:56	37.141	115.301	0.5	0.95	0.8	194	AC 1.			DESERT HILLS NE
	9	17:47:31	35.729	117.690	2.1	11.16	1.5	300	8D 1.	5 -		RIDGECREST
	10	7:49:22	37.026	116.022	3.9	3.42	4.2	321	CD 1.	3 -		· · · REGIONAL · · ·
	10	9:27:18		117.391		11.73		266	AD 1.			MATURANGO
	11	21:38:17 19:43:36	37.211 37.170	116.386 117.383	0.8 1.5	4.50+ 6.80	6.6	264 275	CD 1.			SCRUGHAM PEAK Ubehebe Crater
	15	20:51:59	37.178	117.411	3.2	2.82	9.7	269	CD 1.	0 -		UBEHEBE CRATER
	16		37.163	117.393	1.2	5.98	2.9	265	BD 1.			UBEHEBE CRATER
	16	10:36:36	37.159	117.378	1.5	11.69	4.5	275	BD 0.	-		UBEHEBE CRATER
	16		37.164	117.393	0.6	6.95		265	80 1.			UBEHEBE CRATER
	16 16		37.179 37.156	117.411	3.6 2.2	2.94. 5.30		266 258	CD 1.			UBEHEBE CRATER UBEHEBE CRATER
	18	23:54:34	36.106	117.800	1.5	5.54	1.1	299	80 1.	7 -		HAIWEE RESERVOIR
	18		36.434	117.241	9.2	7.00		219	DD 1.			EMIGRANT CANYON
	21	6: 3:24	37.182	117.415	2.9	2.71	8.7	283	CD 0.1	_		UBEHEBE CRATER

1979 LOCAL HYPOCENTER SUMMARY

				' '	,,,	AL HIPUL	ENIER	DUMMAR	•			
ı		E – TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUAL	Md	Mbig	QUADRANGLE
AP	R 21			117.424	1.2	8.28	2.7	278	BD	1.0		UBEHEBE CRATER
	22		36.091	117.837	1.4	2.93	1.6	302	80	1.9		HAIWEE RESERVOIR
	29		36.579	116.323	0.4	9.17	1.4	97	AB	1.0		LATHROP WELLS SE
MA'			35.951	116.971	1.8	3.29	7.8	262	CD	1.4		WINGATE WASH
	2		35.780	116.545	1.5	19.51	3.6	263	80	0.9		CONFIDENCE HILLS
	4	14:48: 6	36.918	117.443	1.1	7.10	2.1	266	80	0.9		TIN MTN
	7		36.415	117.912	0.9	3.13+		288	CD	8.8		KEELER
	7		36.737	116.178	0.3	4.95	2.0	140	AC	1.0		SPECTER RANGE NW
	9		36.782	115.913	0.5	0.49	1.8	140	AC	1.2		FRENCHMAN FLAT
	11		36.804 36.185	115.928 117.495	0.6 1.6	4.74 7.00•	7.9	136	CC	1.1		FRENCHMAN FLAT
	22		37.543	116.455	1.4	11.19	5.0	287 238	CD BD	1.1		MATURANGO Quartzite min
			07.010	1101100				230	00			GOARTZITE MIN
	24 24		35.687 35.694	116.683	3.7	2.42+		287	CD	8.7		LEACH LAKE
	28		36.035	117.118 117.717	2.1 1.8	26.16 8.27	1.9	303	8 D	1.3		WINGATE PASS
	28		37.295	114.772	1.3	7.87	1.1 8.9	295 277	8 D 8 D	1.4		COSO PEAK Gregerson Basin
	30		35.930	117.431	2.5	8.98	1.2	276	CD	2.1		TRONA
	30		37.318	115.231	2.5	5.25•		146	CC	0.8		ALAMO
JUN	1	19: 1:26	36.814	115.895	9.5	8.79	1.5	101	AC	0.9		ERPHOUMAN PLAT
704	. 3		37.384	116.364	0.6	8.12	6.8	168	BC	0.5		FRENCHMAN FLAT
	5		35.753	118.824	1.6	7.00	1.1	308	-	1.7		DEAD HORSE FLAT
	5		35.257	115.439	3.3	4.56+		328		1.1		· · · REGIONAL · · ·
	8	4:12:33	36.649	117.816	2.7	4.31	5.1	287		1.4		HAIWEE RESERVOIR
	8	22:41:11	37.159	114.959	2.1	3.11+		203		1.8		DELAMAR 3 NW
	8	23:56:12	37.164	115.038	0.5	5.78	3.6		8C			
	•	14:21:29	37.104	115.104	1.1	1.43	2.7	160 171		1.4		LOWER PAHRANAGAT LAKE Lower Pahranagat Lake
	18	8:49: 0	37.277	115.010	1.2	5.54	5.0	155		0.9		ALAMO SE
	11	16:11:23	37.293	116.455	0.4	-1.18+		93		1.5		SILENT BUTTE
	11	17: 7:49	37.290	116.449	0.7	-0.65+		92		1.7		SILENT BUTTE
	11	20:26:59	37.384	116.457	1.0	7.80+		189	CD	2.7		SILENT BUTTE
	12	19:55:20	36.775	115.503	0.9	7.00	7.9	101	СС			TIN CREING
	14	7:45:34	35.789	117.987	2.5	-0.46	2.1	306		1.0		TIM SPRING LITTLE LAKE
	16		35.938	117.276	2.0	3.28+		268		1.4		TRONA
	23	8:27:11	37.128	116.271	0.4	2.89	0.9	69		1.4		BUCKBOARD MESA
	25	12:30:20	37.476	116.787	0.6	7.17	3.9	173		1.2		TOLICHA PEAK
	27	5:38:26	37.568	116.469	0.5	5.32	7.3	175	CC	1.2		QUARTZITE MTN
	27	21:19:25	36.277	114.824	3.0	3.16+		297	CD	1.3		DRY LAKE
	28		36.851	115.937	0.7	0.48	1.6	57		1.8		FRENCHMAN FLAT
	28	15:49:23	37.700	114.329	3.9	3.01.		316	CD	1.6		+++REGIONAL+++
	29	1:56:50	37.165	116.133	8.9	-0.67•		151		1.9		RAINIER MESA
	29	2:11:48	37.201	116.103	8.4	7.00	5.0	99		_		OAK SPRING
	30	12: 7:39	37.039	117.437	1.4	1.78	1.8	228	BD	1.0		UBEHEBE CRATER
JUL	1		35.638	117.005	1.8	18.75	3.5	294	BD	1.3		MANLY PEAK
	4		37.274	117.561		11.31	7.6	255				MAGRUDER MTN
	5	23:25:30	37.407	115.417	0.8	8.14	4.6	172				CRESCENT RESERVOIR
	6	6:37:18	37.570	114.612	1.1	1.31	1.6	315				CALIENTE
	6 7	6:38:34 9:30:58	37.784 37.988	115.028 115.206	0.1 0.7	1.62 1.57	0.4 2.4	146	AC -			WHITE RIVER NARROWS OREANA SPRING
	•	2.30.30	37.300	113.200	0.7	1.57	2.4	100	,	0.4		UNEANA SPRING
	7		37.341	115.865	0.6	4.22	2.0					ALAMO SE
	9		36.442	115.508	2.4	2.10	7.2					CHARLESTON PEAK
	10	3: 9:24	37.451	115.484	8.7	7.02	4.2					CRESCENT RESERVOIR
	12	7:22:41	37.153	115.139	0.8	9.89	8.8					LOWER PAHRANAGAT LAKE NW
	14		37.723 37.215	114.867 114.984	1.6 3.8	7.05 11.53	6.5 5.0					PAHROC SPRING NE Delamar 3 NW
	. •						J. U					estruct y tr
	14		35.610	116.319		11.77+						AVAWATZ PASS
	14		37.154	117.410 115.487		7.00 • •						UBEHESE CRATER
	15 15		37.481 37.397	113.48/	0.1 2.1	17.73 0.97						CRESCENT RESERVOIR Stonewall pass
	15		37.384	117.204	1.3	3.62•						SCOTTYS JUNCTION NE
	16		36.955	114.908	1.8	2.10.						WILDCAT WASH NW
					• •	0.34						MELLAN
	18		37.503 37.497	116.541 116.552	0.4 1.0	9.31 2.45						MELLAN Black min ne
	18		37.507	116.536	0.5	8.72						MELLAN
	18		37.513	116.523		11.94						MELLAN
	10		37.605	116.879	2.6	2.08						MELLAN
	18		37.522	116.542		11.84						MELLAN

								•			
				HORIZ		VERT	AZI				
	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR					
(1	UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAI	L Md	Mbig	QUADRANGLE
JUL 18	13: 5: 4	37.508	116.543	0.3	1.94	2.9	107	8 C	0.4		MELLAN
18	22:52:50	38.168	116.163		3.22		308	AD	1.0		TWIN SPRINGS SLOUGH
19	3:19:38	37.508	116.536	9.5	7.08	3.9	106	80	0.8		MELLAN
19	3:21:12	37.589	116.535	0.3	8.72	2.2	186	80	1.1		MELLAN
19	8:39:44	37.505	116.532	0.5	5.63	5.5	107	CC	0.8		MELLAN
19	23:28:26	37.561	115.362	1.2	14.27	3.0	111	88	1.0		MT IRISH
26	10:39:35	37.379	116.731	4.1	19.65	6.6	284	CD	2.4		BLACK MTN NW
26	21:17:54	37.244	116.124	1.5	4.62	8.4	191	CÇ		9.1	OAK SPRING
27	5:39:47	36.523	116.855	0.9	7.55	1.7	164	AC	0.1		CHLORIDE CLIFF
AUG 2	18:34:39	37.306	115.108	0.7	1.43	2.5	138	BC	1.2		ALAMO SE
2 3	19:46:56	36.445	116.355	1.4	9.16	3.5	211	80	0.7		ASH MEADOWS
3	12:37:45	36.940	115.139	0.2	4 . 87	2.7	156	BC	0.6		MULE DEER RIDGE NW
3	15:43:39	37.896	116.919		7.00 • •		189	80	1.0		YUCCA FLAT
3	17:20:43	37.086	116.061	1.3	-1.20+		161	CC	1.1		YUCCA FLAT
3	22:38:35	37.110	116.819		7.00 **		188	AD	1.1		YUCCA FLAT
4	11:40: 7	37.384	117.192		11.96		313	AD	1.3		STONEWALL PASS
4	17:48:22	37.572	116.467	0.6	6,91	5.8	181	CD	0.6		QUARTZITE MTN
5	18:13:55	37.199	116.395	0.7	5.25	1.0	184	AD	0.3		SCRUGHAM PEAK
_	01.55:51	30 000	444		0 10		0.4.0				Amu 110F
6	21:55:54	36.255	114.777	2.3	0.16	1.2	262	80	1.4		DRY LAKE
7	5: 1:21 23:21: 1	37.561 36.806	117.882 115.830		2.32 7. 80••		233 227	AD	0.7		PIPER PEAK
9	3: 6:12	37.124	115.973	4.3	3.28+		271	AD CD	0.0 0.4		FRENCHMAN LAKE SE Paiute Ridge
9	10: 1:25	37.201	114.783	3.1	3.23+		233	CD	9.8		DELAMAR 3 NE
9	10:30: 6	36.782	116.267	8.6	-0.48+		84	CB	0.7		STRIPED HILLS
•				• . •			• •		• • •		.,
1 7	5:19: 3	37.692	114.830		1.26		185	AD	0.2		PAHROC SPRING NE
12	0: 0:29	37.042	116.322		7.88 • •		215	AD	1.0		BUCKBOARD MESA
12	4:14:52	37.013	115.991	0.5	5.00	1.7	218	AD	0.9		PAIUTE RIDGE
12	18:54:58	37.259	115.046	1.8	-0.46+		168	CD	1.7		ALAMO SE
12	11:31:20	37.251	115.014	0.9	3.21	2.4	216	80	2.6		ALAMO SE
12	11:48:49	37.271	115.100		1.05		198	AD	0.9		ALAMO SE
12	11:50:16	37.260	115.047	1.5	1.44	3.4	188	80	1.5		ALAMO SE
12	11:55:26	37.270	115.092		0.42		203	80	0.8		ALAMO SE
12	12:18:46	37.250	115.034		7.00		241	AD	8.8		ALAMO SE
12	12:19:49	37.258	115.054	1.4	2.57	3.4	185	60	1.6		ALAMO SE
12	12:53: 2	37.246	115.037	0.6	2.35	1.8	191	AD	2.0		LOWER PAHRANAGAT LAKE
12	13:47:14	37.248	115.034	2.4	2.78+		192	CD	1 . 4		LOWER PAHRANAGAT LAKE
		37 040			7.00 • •		248	CD	9.6		ALAMO SE
12 12	14:14:10	37.262 37.239	115.011 115.031	0.5	7.05	2.1	155	BC	1.2		LOWER PAHRANAGAT LAKE
12	15:46:36	37.119	115.009	4.0	1.12	6.6	265	CO	2.5		LOWER PAHRANAGAT LAKE SE
12	15:51: 7	37.225	115.015	1.0	5.01	3.9	200	80	1.4		LOWER PAHRANAGAT LAKE
12	15:55:16	37.362	115.168		7.00		211	DD		0.2	ALAMO
12	16:18: 7	37.242	115.016	1.6	5.82	4.3	198	80	1.1		LOWER PAHRANAGAT LAKE
			_								
12	17:19:14	37.260	115.070		1.52		220	AD	0.9		ALAMO SE
12	17:50:35	36.472	116.898	0.5	6.24	3.9	81	8C	9.4		FURNACE CREEK
12 12	18: 3:52 18:18: 8	37.375 37.233	115.188 115.016	0.7	7.00 • • 8.26	1.5	218 199	DD AD	0.7 1.2		ASH SPRINGS Lower Pahranagat Lake
	18:32:17		115.025	1.1	8.95	1.9	211	80			LOWER PAHRANAGAT LAKE
	19:49:18		115.060		7.00++		213		0.6		ALAMO SE
	20:53:37		115.036	0.6	5.87	3.1	152		1.3		ALAMO SE
	22:21:43		115.916	1.4	4.62	6.6	210		9.8		LOWER PAHRANAGAT LAKE
	23: 7:59		115.022	1.5	6.29	3.9	197		0.8		LOWER PAHRANAGAT LAKE
	0: 0:13		115.024	0.9	8.49	1 . 8	198		1.3		LOWER PAHRANAGAT LAKE
	6:43:40		115.031	0.8	2.61+		153		1.2		ALAMO SE
13	8:15:30	37.257	115.030	0.5	7.10	2.4	154	BC	1.9		ALAMO SE
13	8:30: 8	37 177	116.572	0.3	5.84	2.4	56	BC	1.6		THIRSTY CANYON NE
13	9: 0:59		115.179		10.72		254				GASS PEAK NW
13	9:13:37		115.017	0.6	8.49						LOWER PAHRANAGAT LAKE
13	9:58: 2		115.023	0.3	7.54	1.4	156				LOWER PAHRANAGAT LAKE
	10:33:19		115.023	0.4	6.05		155		1.5		ALAMO SE
13	15: 8: 5	37.246	115.015	0.7	6.50		198		1.3		LOWER PAHRANAGAT LAKE
_											
		37.247	115.022	1.0	7.39		197		1.3		LOWER PAHRANAGAT LAKE
	16:44:54		115.015		11.06		199		1.3		LOWER PAHRANAGAT LAKE
	17:35: 5		115.188		7.00 • •				0.5		ALAMO
		37.238	115.029		7.60				2.7		LOWER PAHRANAGAT LAKE
	18:35:18 19:21:18		114.999		18.37				1.6		DELAMAR 3 NW Lower Pahranagat Lake
13	19:41:12	31.233	115.026	0.9	4.52	3.9	212	90	9		LUNGE FAREARAUAT LAKE

				HORIZ		VERT	AZI				
	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP			445.1	0440044015
(0	TC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	UUA	. Md	Mblg	QUADRANGLE
AUG 13	26:33:34		116.555	0.4	8.75	2.4	166	80	1.4		THIRSTY CANYON NE
13 13	20:56: 8 22:42:19	37.381 36.888	115.039 117.485	7.7	4.66 -0.18	4.7	281 282	AD DD	1.0		ALAMO NE Tin mtn
13	23:28:24	37.177	116.576	0.4	7.46	2.4	162	BC	1.5		THIRSTY CANYON NE
13	23:32:29	37.247	115.629	1.0	8.38	2.0	196	80	2.0		LOWER PAHRANAGAT LAKE
13	23:37:45	37.184	116.578		7.86		200	AD	8.4		THIRSTY CANYON NE
13	23:37:58	37.227	115.033	1.6	11.52	3.0	213	BD	1.3		LOWER PAHRANAGAT LAKE
14	1:19:44	37.233	115.086	3.4	13.07	2.4	195	CD	0.8		LOWER PAHRANAGAT LAKE
14	1:35:36	37.241	115.618	0.4	6.52		157	CC	1.8		LOWER PAHRANAGAT LAKE
14 14	2:54:58	37.269 37.235	115. 0 20 115.019	1. 6 9.5	4.54 5.72	8.8 1.7	154 175	CC AC	1.6 2.8		ALAMO SE Lower Pahranagat Lake
14	3:12:48	37.175	116.572	0.3	8.65	0.9	58	AC	1.7		THIRSTY CANYON NE
14	3:53:21	37.178	116.573	0.3	7.26	1.4	83	AC	1.2		THIRSTY CANYON NE
14	4:16:27	37.683	116.381	~	7.86		166	DD	0.3		TIMBER MTN
14	4:13:47	37.153	116.565		11.26		182	AD	6.0		THIRSTY CANYON NE
14	4:31:21	37.182	116.576	0.4	3.69	6.6	198	CD	0.4		THIRSTY CANYON NE
14 14	4:31:56 4:35:17	37.186 37.195	116.574 116.589	0.8	8.49 7.60••	4.6	106 206	BC AD	0.8 6.3		THIRSTY CANYON NE THIRSTY CANYON NE
	4.33.17	37.193	116.56		7.0000		200	70	V .J		ININSTIT CANTON NE
14	4:51:55	37.539	114.170	9.6	11.50	2.8	299	DD	2.0		REGIONAL
14 14	4:55: 5 5:12:42	37.228 37.176	115.614 116.578	0.9 0.3	7.20 7.99	2.1 1.5	201 109	BD AC	1.3 8.7		LOWER PAHRANAGAT LAKE THIRSTY CANYON NE
14	5:43:34	37.236	115.039	1.6	4.24	8.4	216	CD	1.4		LOWER PAHRANAGAT LAKE
14	5:49: 6	37.178	116.576	0.2	7.71	1.2	109	AC	6.6		THIRSTY CANYON NE
14	6:22:16	37.238	115.016	8.7	5.78	2.2	198	80	6.9		LOWER PAHRANAGAT LAKE
14	7:15:28	37.178	116.576	0.4	4.71	4.9	169	BC	1.3		THIRSTY CANYON NE
14	8:22:54	37.183	116,559		10.18		197	AD	6.5		THIRSTY CANYON NE
14 14	8:41:57 8:53:25	37.668	116.826	26.5	39.11•	4.6	184	DD	6.7		SPRINGDALE
14	9: 3:26	37.189 37.257	116.571 115.056	9.7 1.5	7.39 -6.12•	4.5	166 192	BC CD	6.7 1.0		THIRSTY CANYON NE Alamo se
14	9: 4:33	37.246	115.614	0.5	3.09.		158	CC	1.8		LOWER PAHRANAGAT LAKE
14	10:29: 3	37.182	116.572	9.6	8.39	3.3	168	ВC	6.5		THIRSTY CANYON NE
	11:39:52	37.188	116.571	0.3	2.69		111	CC	1.7		THIRSTY CANYON NE
	11:45:13	37.179	116.571	0.4	7.43	1.8	58	AC	1.2		THIRSTY CANYON NE
	12:59:11	37.168	116.581	0.3	6.73	1.1	192	BD	0.4		THIRSTY CANYON NE
	14:58:57 16:55:29	37.213 37.172	115.3 64 116.573	0.5	3.99 7.56	2.6	2 6 8 110	BD BC	0.8 1.7		DESERT HILLS NE THIRSTY CANYON NE
	10.33.29	37.172	110.373	•.5	7.30	2.0		00	1.,		
	19:15:49	37.195	116.576		11.05		205	AD	1.0		THIRSTY CANYON NE
	22:58: 5	37.185	116.578	1.4	0.69•		133	CC	1.0		THIRSTY CANYON NE
15 15	2:11:38 16: 3:17	36.810 37.186	114.021 116.579	7.9 9.8	2.61 5.63	4.1 7.9	284 106	DD CC	2.3 0.7		***REGIONAL*** THIRSTY CANYON NE
	16:47:44	37.225	114.986		1.63		246	AD	6.7		DELAMAR 3 NW
15	17: 1:42	37.236	115.615	0.6	5.13	2.3	266	8 D	6.9		LOWER PAHRANAGAT LAKE
15	26: 5:28	37.244	115.022	0.4	1.86	1.6	156	AC	2.9		LOWER PAHRANAGAT LAKE
	21:13: 5	37.236	115.020	0.7	8.18	1.5	199		1.2		LOWER PAHRANAGAT LAKE
	21:56:33	37.233	115.016	1.4	2.97•		221		1.1		LOWER PAHRANAGAT LAKE LOWER PAHRANAGAT LAKE
16 16	1: 6:49	37.233 37.178	115.018 116.570	1.2	6.24 8.64	3.1	214 58		1.1		THIRSTY CANYON NE
16	2:47:25		116.576	0.3	6.68	1.8	108	-	6.9		THIRSTY CANYON NE
16	3: 3:21	37.182	116.569	0.5	7.38	2.6	138	AC	1.3		THIRSTY CANYON NE
18		37.256	115.613	0.6	7.39	1.4	197		1.3		ALAMO SE
16	3:37:46	37.244	115.041	0.6	2.74	4.6	207				LOWER PAHRANAGAT LAKE
16	4: 5: 2	37.234	115.024	1.5	7.11	2.6	220				LOWER PAHRANAGAT LAKE
18	5:28: 8	37.232	115.022	0.6	4.39	2.6	235				LOWER PAHRANAGAT LAKE Delamar 3 NW
18		37.241	114.990	2.9	8.34•		217				DEFUMUL 2 UL
16		37.195	116.581	1.5	13.32	2.6	266				THIRSTY CANYON NE LOWER PAHRANAGAT LAKE
		37.233 37.192	115.015 116.552	0.8 1.3	6.49 11.33	2.2 3.1	199				THIRSTY CANYON NE
	3:26:51	37.239	115.017	0.9	6.83	2.4	198				LOWER PAHRANAGAT LAKE
16 1	5:49:57	37.258	115.029	0.5	5.94	2.3	154	BC	2.3		ALAMO SE
16 1	16: 2: 9	37.246	115.025	1.5	2.63•		232	CD	1.1		LOWER PAHRANAGAT LAKE
16 1	9:10: 4	37.247	115.022	0.7	4.76	3.1	197	BD	1.0		LOWER PAHRANAGAT LAKE
		37.072	116.222		17.65		269		1 . 4		TIPPIPAH SPRING
16 2 17	23:47:19 8: 1: 7	37.143	116.442 115.024	0.5	7.00 • • 2.16					6.2 	SCRUGHAM PEAK Alamo se
17		37.250	116.588	0.5 0.5	6.20						THIRSTY CANYON NE
17	1:32:34		115.667						0.9		LOWER PAHRANAGAT LAKE

1979 LOCAL HYPOCENTER SUMMARY

	1979 LUCAL HTPOCENTER SUMMART											
					HORIZ		VERT	AZI				
- (BIAD	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR					
	(1	UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	OUAL	Md	Mbla	QUADRANGLE
	•	·	,	,	• •	` '	• •	• •			•	
AU	3 17	1:37:23	37.250	115.829	0.6	5.34	2.1	195	BD	1.1		ALAMO SE
	17	2:37:38	37.184	116.570	0.3	8.05	1.4	57	AC	1.5		THIRSTY CANYON NE
	17	2:39:45	37.183	116.581		7.00 • •		200	AD	0.6		THIRSTY CANYON NE
	17	2:39:48	37.188	116.571	0.6	5.15	5.6	106	CC	1.3		THIRSTY CANYON NE
	17	4:11: 8	37.180	116.573	0.4	4.91	4.3	108	BC	1.5		THIRSTY CANYON NE
	17	4:31:29	37.181	116.577	0.3	2.83.		88	CC	1.4		THIRSTY CANYON NE
	17	8: 1:34	37.172	116.575	0.3	7.31	2.0	111	AC	0.5		THIRSTY CANYON NE
	17	8:58:57	37.186	116.569	0.5	2.92+		106	CC	1.2		THIRSTY CANYON NE
	17	10:28:43	37.194	116.574	0.6	8.92	2.4	104	8 C	0.8		THIRSTY CANYON NE
	17	13:41:33	37.181	116.572	0.8	8.10	3.9	108	BC	0.4		THIRSTY CANYON NE
	17	14:53: 7	37.185	116.570	0.3	6.20	2.2	57	BC	1.9		THIRSTY CANYON NE
	17	16:10:29	37.238	115.021	1.9	4.74	3.7	220	80	1.1		LOWER PAHRANAGAT LAKE
	17	22:36:50	37.230	115.020	1.3	7.91	1.9	221	80	1.0		LOWER PAHRANAGAT LAKE
	18	2:22:23	37.260	115.066		7.00**		221	AD	0.7		ALAMO SE
	18	2:40: 9	37.238	115.011	0.8	5.37	2.9	199	80	1.3		LOWER PAHRANAGAT LAKE
	10	4:40:14	37.246	115.009	0.9	5.26	2.2	221	80	1.3		LOWER PAHRANAGAT LAKE
	19	20:56:10	37.180	116.572	0.2	7.03	1.2	108	AC	0.6		THIRSTY CANYON NE
	19	21:21:21	37.182	116.568	8.4	5.52	4.7	57	8 C	1.4		THIRSTY CANYON NE
	19	22:14:58	37.324	114.075	0.8	7.35	2.7	217	80	1.4		DELAMAR LAKE
	20	10:37: 9	37.103	116.578	0.6	4.91	6.8	107	CC	1.1		THIRSTY CANYON NE
	28	11:20:35	37.078	116.019	5.7	3.63+		191	DD	0.8		YUCCA FLAT
	20	12:17:56	37.053	117.443	0.5	2.82+		145	CC	0.9		UBEHEBE CRATER
	20	14:33:46	37.178	116.572	0.6	7.01	3.9	109	BC	0.9		THIRSTY CANYON NE
	20	15:21:42	37.106	116.572	0.5	7.66	3.0	65	8 C	1.1		THIRSTY CANYON NE
	28	15:29:35	37.234	115.015	1.3	8.56	1.7	221	BD	1.1		LOWER PAHRANAGAT LAKE
	20	15:51:11	37.179	116.571	0.3	4.76	4.4	56	8 C	1.3		THIRSTY CANYON NE
	20	23:55: 9	37.246	115.014	1.1	6.91	1.2	221	8 D	1.2		LOWER PAHRANAGAT LAKE
	22	14:20:37	37.044	116.208	0.5	7.00	1.0	03	AA	1.0		TIPPIPAH SPRING
	25	8:54:53	37.040	116.209	0.5	7.00	0.9	73	AA	2.2		TIPPIPAH SPRING
	25	23:33:43	37.047	116.205	0.7	7.00	1.2	9 0	AA	0.6		TIPPIPAH SPRING
	26	1:22:50	37.051	116.197	0.3	6.74	0.5	93	AB	0.7		TIPPIPAH SPRING
	27	5:17:31	37.031	115.018	0.8	7.66	1.7	201		1.3		LOWER PAHRANAGAT LAKE
	27	23:52: 3	37.235	114.992	9.9	10.96+		202		1.0		DELAMAR 3 NW
	28	21:17: 6	36.386	114.970		7.00 • •		342		1.2		DRY LAKE
	29	4:17:52	37.678	115.236	0.9	7.00	1.4	126		1.4		FOSSIL PEAK
	29	7:45:57	37.143	116.733		0.25		229		0.1		THIRSTY CANYON NW
										• • •		• • • • • • • • • • • • • • • • • • • •
	29	10:45:11	37.164	116.728	0.6	0.25•		66	CC	1.1		THIRSTY CANYON NW
	29	14:18: 9	37.149	116.244		7.00 • •		218	AD	1.2		RAINIER MESA
	29	15:45:45	37.116	116.053	1.7	3.02+		135	ÇB	1.5		YUCCA FLAT
	31	2:55:51	37.160	116.754	0.8	6.13	3.0	131		0.7		SPRINGDALE
	31	12:57:24	37.251	115.024	0.3	4.75	2.4	155				ALAMO SE
	31	13: 3: 2	37.242	115.013	1.0	6.34	1.7	221	AD	0.9		LOWER PAHRANAGAT LAKE
		23.48. 8	17 177	115 704	0.8			218	AD	0.8		PAPOOSE LAKE NE
SEP	31	23:45: 5 4:36:40	37.177 37.214	115.784 114.9 9 9	1.5	10.51 3.17•	1.8	203				DELAMAR 3 NW.
366	3	10:19:16	37.174	115.771	1.4	5.32+		184				PAPOOSE LAKE NE
	4	11: 3:48	36.900	115.987		6.80		150				PLUTONIUM VALLEY
		13:57:54		115.976	0.4	6.19	1.3	154		0.7		PLUTONIUM VALLEY
	5	6:16:42		115.009	1.2	7.90	2.7	200				LOWER PAHRANAGAT LAKE
		15:30: 7	37.087	116.045	0.5	0.80+		113	CC	1.6		YUCCA FLAT
	10	12:29:32	37.261	115.050	1.2	7.39	3.0	186	8 D	1.4		ALAMO SE
	10	21: 4:56	37.849	116.203	1.0	6.31	1.5	90				TIPPIPAH SPRING
	11		36.856	116.205	2.3	0.72	0.4	258				SKULL MIN
			37.047	116.214	0.7	7.00	1.0	102				TIPPIPAH SPRING
	13	17: 2:14	37.351	114.986	3.3	10.58	6.7	203	CD	0.7		DELAMAR LAKE
	16	14: 5:45	37.083		14.0	7.88+		154	DD	1.0		THIRSTY CANYON SW
	18		37.070	116.651 117.020		6.47		134				BONNIE CLAIRE SE
			37.209	116.880		7.00++		307				SPRINGDALE
	22		37.176	117.386		11.00	0.9	117				UBEHEBE CRATER
	23		36.351	117.068	8.5	7.00	4.1	173				EMIGRANT CANYON
	24		36.351		14.6	7.00+		173				EMIGRANT CANYON
								-	- '	-		
			37.107	116.019		5.69		188				YUCCA FLAT
			37.058	117.477	0.6	5.85	3.3	155				UBEHEBE CRATER
	26		37.404	117.935	0.6	5.14	3.1	249				SOLDIER PASS
			37.238	116.337		11.29	2.5	103				AMMONIA TANKS
	27		36.800	117.384	6.5	0.24+		296				TIN MTN
	2 B	3:13:32	36.823	117.534	0.7	6.79	1.5	206	AD 1	1.2		DRY MTN

DAI	TE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)		QUAI	L Md	Mblg	QUADRANGLE
SEP 2	28 17:23:58	37.229	116.345	0.7	9.93	0.4	89	'AA	.1.1		AMMONIA TANKS
	8 20:38:17		116.228	1.8	4.07+		84	CC	9.7		SPECTER RANGE NW
	9:25:52		116.338	8.8	3.11.		119	CC	1.0		DEAD HORSE FLAT
QCT	1 14:34:53	37.144 37.198	115.641	9.6	4.95		111	CC	9.7		FALLOUT HILLS NW
	2 4:59:41 2 5:42:16	37.198	116.392 116.389	0.5 0.4	6.39 7.43	1.4 1.0	98 98	AB AB	0.6 0.7		SCRUGHAM PEAK Scrugham Peak
	2 14: 3:53	36.486	117.903	2.1	2.92	8.2	274	CD	1.3		KEELER
	2 17:51:38	36.369	115.842	0.5	11.73	2.4	150	BC	0.8		MT STIRLING
	2 20:43:14 3 2:21:60	37.197 37.288	116.394 116.286	0.6 5.0	6.29 4.40	1.5 2.7	98 285	AB DD	1.0		SCRUGHAM PEAK Dead Horse Flat
	4 2:22: 1	37.222	116.347	0.6	0.48	0.5	67	BA	1.5		AMMONIA TANKS
	4 3:31:29	36.368	115.830	0.2	1.47	0.8	152	AC	0.8		MT STIRLING
	4 5:36:4 5 9:52:27	37.229	116.343	0.8	0.12	0.5	76	AA	1.0		AMMONIA TANKS
	5 9:52:27 7 2:39: 2	36.874 37.078	116.162 115.266	0.5 2.4	7.00 6.06	0.7 6.4	75 193	AA CD	0.6 0.7		SKULL MTN Desert Hills se
	7 19:54:24	37.255	115.447	0.8	2.79•		100	CC	0.8		CUTLER RESERVOIR
	9 9:46:30	36.919	116.020	1.3	9.57	1.4	188	BD	0.3		YUCCA LAKE
	9 17:32:42	37.145	116.757	0.4	7.00	6.6	45	cc	1.2		SPRINGDALE
1:		37.013 37.251	115.876 115.025	1.6	2.91 · 4.53	3.2	135 227	CC BD	0.6 1.3		PAIUTE RIDGE Alamo se
1		37.251	115.052	0.8	4.49	2.3	186	BD	1.6		ALAMO SE
1.		37.208	115.003	1.0	11.84	1.3	227	80	0.8		LOWER PAHRANAGAT LAKE
1:		37.876 37.075	116. 0 64 116.038	0.4 0.6	8.53. 5.46	3.3	135 146	CC BC	9.6 9.6		YUCCA FLAT Yucca flat
1 9	5 10:41:12	37.074	116.040	1.9	4.94	3.8	177	ВС	0.6		YUCCA FLAT
18		37.151	115.128	1.9	5.10	2.4	214	BD	1.2		LOWER PAHRANAGAT LAKE NY
10		36.900	116.166	0.4	7.41	0.5	119	AB	0.6		MINE MTN
16		37.844 37.730	115.812 116.305	0.7 0.6	4.43 2.83+	4.0	185 168	BD CC	0.8	0.2	•••QUAD. NOT LISTED••• QUARTZITE MTN
17		36.740	115.873	0.5	-0.84	0.6	120	AB	0.6		MERCURY NE
17		36.739	115.862	0.9	2.18	2.2	129	88	0.5		MERCURY NE
21		37.005 37.244	115.686 115.037	9.7	14.77	3.2	143 329	BC AD	0.9 1.0		FALLOUT HILLS SW Lower Pahranagat Lake
24		37.905	115.191	0.3	4.51	0.8	207	AD	1.4		OREANA SPRING
25		36.506	115.157		7.00		136	80	0.8		HAYFORD PEAK
27	17:13: 5	37.250	115.074	0.6	0.17	10.0	210	CD	0.8		ALAMO SE
NOV 2		37.241 37.152	115.045 117.403	1.0	5.83 7.16	3.2 1.6	188 186	BD AD	1.7		LOWER PAHRANAGAT LAKE UBEHEBE CRATER
3		37.132	117.396	4.5	14.84	5.5	267	CD	1.8		UBEHEBE CRATER
4		37.145	117.401	9.7	5.46	3.3	207	80	1.7		USEHESE CRATER
4		37.154	117.405	0.7	1.94	1.4	205		1.1		UBEHEBE CRATER
4	20:27:53	37.160	117.405	0.6	5.89	3.5	184	BD	1.3		UBEHEBE CRATER
4		37.144	117.403	0.3	7.88	1.0	189	AD			USEHEBE CRATER
5 5		37.152 37.166	117.401 117.403	0.5 0.7	5.64 5.54	3.3 3.7	166 182		1.7		UBEHEBE CRATER UBEHEBE CRATER
5		37.239	115.028	1.8	4.32	8.4	231				LOWER PAHRANAGAT LAKE
	1:22:59		116.393	0.4		1.5	85				SILENT BUTTE
6	9:21:42	37.286	116.923	1.7	6.54	4.2	274	BD	0.1		TOLICHA PEAK
6		37.223	116.955	0.6	6.23	3.1	148			0.2	SPRINGDALE
7		37.566 37.486	116.463 115.383	0.2 0.7	0.97 2.25•	1.6	131 81				QUARTZITE MIN Crescent reservoir
8		36.844	116.341		1.02		231				JACKASS FLATS
9		36.635	116.330	0.3	3.84	0.5	188				STRIPED HILLS
9	3: 2:37	36.406	117.818	1.8	11.76	1.6	250	BD	0.9		KEELER
9		36.690 36.691	117.210 117.234	0.3 0.8	7.68 18.01	0.7 1.4	73 88				STOVEPIPE WELLS STOVEPIPE WELLS
10		36.772	116.088	0.5	7.95	1.8	100				CANE SPRING
10	1:36:59	36.689	117.208	0.6	5.89	1.5	74	AB	1.0		STOVEPIPE WELLS
10		37.023	116.159	1.6	4.17	5.0	108				TIPPIPAH SPRING
14		37.679	116.266	0.9	5.96•		166				QUARTZITE MTN
15		37.484	116.360		7.00 • •		193			0.2	SILENT CANYON NE
18 18		36.694 36.691	117.207 117.204	0.5 0.3	7.81 7.48	1.1	72 73				STOVEPIPE WELLS
18		36.689	117.213	0.3	7.67	0.5	73				STOVEPIPE WELLS
28	2:13:54	37.217	115.020	0.8	8.27	1.6	200	AD	1.0		LOWER PAHRANAGAT LAKE
28	3: 0:49	37.214	116.938	1.3	1.97	1.5	125	88	1.3		OAK SPRING

1979 LOCAL HYPOCENTER SUMMARY

DATE - TIME	LA	TITUDE	LONGITUDE	HOR I Z ERROR	DEPTH	VERT ERROR	AZI GAP				
(utc)	(D	EG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	OUAL	Md	Mblg	OUADRANGLE
NOV 20 3:38	:16 3	7.234	115.071	1.6	9.48	2.1	199	BD	8.9		LOWER PAHRANAGAT LAKE
20 6:43	: 19 3	7.237	115.056	0.7	10.46	1.0	282	AD	0.9		LOWER PAHRANAGAT LAKE
20 10:28	:21 3	7.244	115.068		10.72		188	AD	0.9		LOWER PAHRANAGAT LAKE
28 18:42	: 28 3	7.214	115.007	2.6	3.93+		224	CD	8.9		LOWER PAHRANAGAT LAKE
20 11:14	:57 3	7.348	116.122	9.5	3.08+		164	CD	8.6		OAK SPRING BUTTE
20 16:35	: 23 3	7.186	115.265		0.51		182	AD	0.9		DESERT HILLS SE
21 3:6		6.698	117.223	0.4	6.72	1.0	99	AB	0.9		STOVEPIPE WELLS
22 18:45		6.655	115.939	0.6	2.93+		142	CC	0.6		MERCURY
25 0: 2		7.341	114.943	0.3	0.39•		197	CD	0.3		DELAMAR LAKE
27 11:41		8.802	115.444	1.6	7.00•		206	CD	0.7		DOG BONE LAKE SOUTH
28 16:24		7.837	116.427	5.1	2.25+		257	00	1.0		KAWICH PEAK
29 2:41	:24 37	7.865	116.227	1.0	8.19	0.8	219	BD	0.4		TIPPIPAH SPRING
29 16:37	: 4 30	8.985	116.883	0.6	5.63	4.6	147	BC	2.5		YUCCA LAKE
30 2: 8	:50 37	7.205	115.019	1.6	10.08	1.6	284	0 D	0.9		ALAMO SE
30 14: 0	: 37 37	7.501	116.533	0.5	11.40	1.2	106	AC	1.5		MELLAN
DEC 1 8:47		7.2 3 2	115.021	3.3	5.29	7.2	237	CD	0.9		LOWER PAHRANAGAT LAKE
2 1: 6:		3.789	116.268	0.7	1.11	2.8	129	88	0.3		STRIPED HILLS
2 8:47	: 36 37	7.267	114.979	2.9	11.64	3.2	211	CD	1.1		DELAMAR LAKE
3 13:31:	50 37	7.624	116.677	3.2	12.19	5.0	127	CB	0.9		MELLAN
9 8:28:	4 37	7.431	117.015	0.7	8.46+		195	CD	0.6		SCOTTYS JUNCTION NE
11 12:26:	31 37	.501	116.534	0.4	6.05	4.8	106	BC	1.6		MELLAN
13 14:38:	8 38	. 023	115.638	11.0	4.16	6.1	241	DD	1.0		CHERRY CREEK SUMMIT
14 11:45:	9 36	. 632	116.237	1.6	6.32	5.8	71	CB	0.4		SPECTER RANGE NW
17 8:40:	34 37	1.174	116.467	0.4	10.93	1.1	109	AB	0.3		SCRUGHAM PEAK
17 12:53:	35 37	. 451	117.022	0.5	10.82	3.5	148	BC	0.5		SCOTTYS JUNCTION NE
19 14:59:		. 586	116.532	8.7	2.91.		187		1.0		MELLAN
21 19:13:		. 124	117.471	12.7	2.88+		256		8.9		MATURANGO
22 2:29:		.516	116.339		-0.87		201		8.4		LATHROP WELLS SE
22 9:53:		. 206	115.015	2.1	11.38	2.3	226	80	1.0		LOWER PAHRANAGAT LAKE
23 12:41:	54 37	. 509	116.543	0.3	11.31	1.3	127	AC	6.9		MELLAN
23 16:34:	53 37	. 0 4 8	116.195	1.6	4.57	2.9	154	BC	8.3		TIPPIPAH SPRING
24 14:54:		.678	115.507	7.7	17.73	6 . B	152		1.0		HEAVENS WELL
25 14:17:		. 268	117.862	0.3	6.00	0.6	67		2.8		SCOTTYS JUNCTION
25 14:24:		. 278	117.866	0.7	5.69	2.6	92		1.9		SCOTTYS JUNCTION
25 14:27:	41 37	. 288	117.054	0.2	2.04.		102	CC	8.9		SCOTTYS JUNCTION
25 14:29:	33 37	. 281	117.057	1.0	7.00•		67	c c	1.1		SCOTTYS JUNCTION
25 15:19:		. 281	117.059	0.3	7.08	4.3	89		0.9		SCOTTYS JUNCTION
25 15:24:		. 275	117.064	0.5	5.57	6.4	8.8		1.1		SCOTTYS JUNCTION
25 16:15:		. 278	117.061	0.5	2.92	4.6	175		0.9		SCOTTYS JUNCTION
25 17:36:		. 273	117.068	0.2	10.38	1.3	173		0.6		SCOTTYS JUNCTION
25 23:36:		. 280	117.055	0.3	6.37	4.3	67		0.9		SCOTTYS JUNCTION
26 2:13:		. 236	115.021	8.4	5.06	2.1	157		1.7		LOWER PAHRANAGAT LAKE
26 6:25:		. 243	115.018		-0.10	1.6	198		1.2		LOWER PAHRANAGAT LAKE
26 14: 7:	10 37	. 281	117.053	0.3	2.60+		75	CC	8.7		SCOTTYS JUNCTION.

1986 LOCAL HYPOCENTER SUMMARY

		TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)		QUAL	. Md	Mblg	QUADRANGLE
JA	N 6	4:22:19	36.533	116.384	6.8	2.84+		166	cc	8.7		LATHROP WELLS SW
	8		37.292	117.621	8.4	8.51	0.5	100	AB	1.3		MAGRUDER MIN
	0	16: 6: 8	37.297	117.624	0.0	7.60	1.7	183	AB	1.1		MAGRUDER MTN
	8	16:37:58	36.762	115.849	0.8	-6.68	1.4	144	AC	8.8		FRENCHMAN LAKE SE
	8		36.749	115.846	1.6	4.18	4.7	146	8 C	0.7		MERCURY NE
	9	4:34:22	37.286	116.340	6.7	0.23	6.4	148	AC	8.6		AMMONIA TANKS
	9	19: 6:28	37.159	117.397		5.98	2.9	113	BC	6.8		HAPUPAS ABATES
	11		36.668	116.237	6.4 4.4	0.46	4.2	309	CD	0.4		UBEHEBE CRATER Specter range NW
	11		37.577	114.279	15.7	6.24+		298	00	1.1		· · · REGIONAL · · ·
	11		36.815	116.268	2.7	7.60	3.5	185	CD		8.1	JACKASS FLATS
	12	11:48:68	36.815	116.258	6.5	8.77	1.8	186	AB	0.9		JACKASS FLATS
	12	19:13:26	36.819	116.265	1.8	4.14	3.8	109	88	8.8		JACKASS FLATS
									_			
	13		36.819	116.265	0.3	0.47	6.7	169	AB	8.4		JACKASS FLATS
	13		36.016	116.278	0.3	2.32	6.5	174	AC		6.2	JACKASS FLATS
	13	7:14:23 7:48:50	36.814 37.098	116.257 117.354	1.5 3.9	4.76 7.00	2.5 5.7	165 360	8 C	0.6	0.1	JACKASS FLATS UBEHEBE CRATER
	14	2: 4:33	37.240	115.457	0.3	13.61	2.3	99	88	0.0		DESERT HILLS NW
	15	8:49:53	37.289	117.069	0.3	7.00	4.4	89	8C	1.2		SCOTTYS JUNCTION
	15		37.861	116.050	0.6	-6.19.		113	CC	0.6		YUCCA FLAT
	15	14:21:11	37.533	116.371	0.3	8.13.		123	CC	0.5		QUARTZITE MTN
	15	28:26:21	36.183	117.654	3.3	5.06	2.5	251	CD	2.6		COSO PEAK
	16 20	17:56:42 19: 4:53	37.288 36.874	117.662 116.168	0.2	-6.06 7.80·•	0.3	142 215	AC	0.9		SCOTTYS JUNCTION
	21	20:46:46	37.267	115.188		7.60 • •		208	AD AD	8.4	e.2 	SKULL MTN Alamo
	• •		• • • • • • • • • • • • • • • • • • • •			,			~~	• • •		~ C~~~
	23	23:50:24	37.267	115.477	0.5	-0.87	2.0	167	AC	1.4		DESERT HILLS NW
	24	6:34: 1	37.196	115.465	0.5	5.01	8.1	117	CC	0.7		DESERT HILLS NW
	24	6:59:40	37.076	115.529	2.2	24.87	1.4	253	80	0.7		SOUTHEASTERN MINE
	25	11:48:11	36.610	116.365	1.8	10.55	1.3	187	80		6.2	LATHROP WELLS SE
	26 26	3: 7:11 3:27:53	36.721	116.234	0.5	5.18	1.1	65	AA	0.0		SPECTER RANGE NW
	20	3:27:53	36.533	116.363	6.6	-1.16+		184	CC	0.7		LATHROP WELLS SE
	28	17:22:21	37.223	117.858	2.7	13.65	3.7	210	CD	6.8		WAUCOBA SPRING
	28	16: 4: 1	36,748	116.271	8.3	1.47	0.3	115	AB	0.9		STRIPED HILLS
	38	0:33: 5	37.165	117.467	6.9	18.58	3.7	127	6 D	8.4		UBEHEBE CRATER
	30	9: 2:29	36.020	115.889	0.7	15.57	1.2	313	AD	0.3		FRENCHMAN FLAT
	30	11:31: 8	36.563	115.365	0.7	9.20.		144	CC	1.3		BLACK HILLS
	30	14:26:33	36.629	116.288	0.5	7.56	0.8	209	AD	6.5		STRIPED HILLS
	31	14:20:48	37.281	117.649	0.4	5.09	0.8	126	AB	1.4		MAGRUDER MTN
FEB		15:47:49	37.578	117.895	0.2	4.17	1.4	205	AD	0.4		PIPER PEAK
	2	4:49:36	37.161	117.406	0.7	11.03	1.8	167	AD	0.7		UBEHEBE CRATER
	2	7:37: 9	36.826	116.213	3.0	9.92	4.2	163	CD	8.2		SKULL MTN
	4	5:56:34	36.619	116.257	6.6	4.68	0.3	275	AD	8.5		LATHROP WELLS SE
	4	14: 5:55	37.196	115.469	6.8	6.37	7.1	113	CC	1.0		DESERT HILLS NW
	4	16:21:19	36.629	116.326	0.4	2.99	0.7	126	AB	1.3		STRIPED HILLS
	5	4:36:15	37.069	116.261	~	5.96		128		0.3		TIPPIPAH SPRING
	6	5:56:16	37.203	116.574	6.6	11,02+		209			8.2	THIRSTY CANYON NE
	6	6:49:16	37.203	116.605		19.43		261	AD	0.1		THIRSTY CANYON NE
	6	9: 0:55		116.326		2.62	0.7	127		0.9		STRIPED HILLS
	6	11:49:15	36.624	116.317	0.6	2.44	0.8	182	AD	0.5		LATHROP WELLS SE
	17	2:42:24	37.160	116.056	0.9	13.14	1.4	169	AC	0.3		OAK SPRING
	19	2:42:24	37.100	117.285	1.7	6.30	2.7	152		8.6		GOLD POINT
	20	1:41:33	37.728	115.666		15.77	1.5	116		8.4		HIKO NE
	20	2:52:52	37.279	117.278	1.8	7.00	1.6	84		8.4		GOLD POINT
	21	4:44:18	36.957	117.809		11.88	0.5	259		1.0		WAUCOBA WASH
	21	4:51:68	36.964	117.746	2.1	-1.06	2.7	214	80	8.9		DRY MTN
	22	3:37:52	37.372	115.638	0.6	4.37	8.3	118		6.9		GROOM LAKE
	24	5:56:24	36.425	116.337	2.6	4.33	7.3	211			8.2	ASH MEADOWS
	24	16:23:56 20:36:57	37.826 37.253	117.497 117.600	1.5	18.62 7.51	2.9 1.6	168 139		9.1	0.2	UBEHEBE CRATER MAGRUDER MTH
	26	4: 5:27	37.253	117.172	0.2	9.99	0.6	143		6.0		BONNIE CLAIRE NW
	28	12:27:19	36.786	117.172	0.2	7.57	0.9	208	_	0.0 0.8		TIN MTN
					- · -					J - -		
	28	19: 3:48	37.185	117.193	0.3	8.36	1.8	94	AB	1.3		SONNIE CLAIRE NW
MAR	1	7:36:13	37.258	115.617	8.9	3.85+		92				GROOM RANGE SE
	3	3:18:51	37.517	117.717	0.9	3.13.		132				LIDA WASH
	3	16:59:55	37.515	116.530	0.9	8.41	5.5	143				MELLAN MINCATE BASS
	6 7	7:45:27 16:50: 7	35.629 37.336	117.173	3.2 0.2	9.38 9.99	6.9	292 192		6.0	0.2 	WINGATE PASS GOLD POINT
	,	.0.54: /	57.330	117.302	9.4	-	J. 7		~ 0			

D.	ATE	- TIME	LATITUDE	LONGITUDE	HORIZ	DEPTH	VERT ERROR	AZ I GAP				
	(1	UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUA	L Md	Mblg	QUADRANGLE
MAR	7 8	18:12:11 16: 4:15	37.759 37.511	115.795 115.342	0.1 0.5	-0.71 10.64	3.8 2.0	121 129	8 C 8 D		 0.2	•••OUAD. NOT LISTED••• MT IRISH
	12	10:28:48	37.242	117.149	1.8	11.99	1.1	176		-0.1		BONNIE CLAIRE NW
	14	1:34:21	36.544	116.392	1.5	8.13.		115	CC			LATHROP WELLS SW
	14	11:12:39	37.204	116.664	0.4	23.39	1.8	105	AB	1.0		THIRSTY CANYON NW
	14	20:52:52	36.612	118.264	1.3	7.00	2.3	157	80	0.4		LATHROP WELLS SE
	15	3:39:48	37.517	117.743	1.3	16.42	3.1	124	88		0.2	LIDA WASH
	15	4:48:25	36.818	115.999	8.5	1.77	1.7	110	80	2.1		FRENCHMAN FLAT
	17	19:17:16	36.364 37.874	116.573 117.183	0.7 1.8	5.01 7.00+	4.3	112 313	8 B CD	0.7 1.1		RYAN Mud lake
	19	4:24:53	37.307	117.615	0.5	-0.83	0.9	108	AB	0.4		MAGRUDER MTN
	22	3: 5:54	37.286	117.546	0.5	1.51	1.3	289	AD	0.2		MAGRUDER MTN
	25	22:48:44	37.599	117.649	0.8	3.23.		194	CD	0.9		LIDA WASH
	26	3:13: 7	36.868	116.177	1.0	7.00	2.1	119	80		0.2	SKULL MTN
	26	5:15:42	37.248	117.646	0.4	22.92	6.2	251	AD	0.4		LAST CHANCE RANGE
	27	20: 1: 7	37.113	117.367	0.6	7.03	2.1	129	88	0.0		UBEHESE CRATER
	28 28	2: 8:44 21: 3:37	36.328 36.706	116.375 116.263	0.2 0.2	7.38 5.41	0.7 0.4	102 127	AB AB	1.1 0.4		ASH MEADOWS Striped Hills
	31	13: 3:57	36.871	116.171	0.4	8.37	0.7	73	AA	0.8	~	SKULL MTN
APR	2	14:15:11	36.893	116.319		36.89		290	AD	0.0		TOPOPAH SPRING
	2	17:56:30	36.904	115.998	1.2	10.78	4.6	150	80	6.5		PLUTONIUM VALLEY
	2	18:13: 5	36.836	115.989	3.5	10.86	9.1	216	CD	0.4		FRENCHMAN FLAT
	2	18:20:41 21:14:54	36.860 36.874	115.961 115.982	0.3 0.6	1.30+ 8.71	1.9	55 54	CC	2.2 1.2		FRENCHMAN FLAT Frenchman Flat
	3	2:18: 9	36.899	115.999	0.7	10.56	3.1	176	BC	0.7		PLUTONIUM VALLEY
	3	6:48:44 15:22:36	36.851 36.857	115.967 115.961	9.5 9.2	6.26 5.39	4.5	161 151	BC AC	9.7 9.9		FRENCHMAN FLAT Frenchman Flat
	3	17:15:13	36.855	115.957	9.4	-0.07+		126	ĈĈ	9.9		FRENCHMAN FLAT
	š	23:47: 9	37.052	116.169	9.7	5.15	1.2	175	AC	1.2		TIPPIPAH SPRING
	4	18: 9:49	36.976	115.636	1.0	15.19	4.7	164	BC	8.5		QUARTZ PEAK NW
	5	2:27:45	36.853	115.957	9.6	0.92+		91	cc	1.2		FRENCHMAN FLAT
	5	2:29: 6	36.864	115.948	8.1	0.99	1.4	199	AD	0.6	~	FRENCHMAN FLAT
	5	17:29:58	36.839	115.891	9.1	15.44	0.2	207	AD	0.2	~	FRENCHMAN FLAT
	8	1:35:21	36.554	116.342	0.9	2.82	3.2	94	BC	9.7		LATHROP WELLS SE
	8	2:11:31 7:39:22	36.877 37.289	115.939 117.858	0.6 0.9	7.03 7.39	3.1 3.2	164 294	BC BD	1.0 0.3		PLUTONIUM VALLEY SCOTTYS JUNCTION
		7.39.22	37.209	117.030		,	3.2	207	50	9. 5		3001113
	11	9:48: 4	36.862	116.319		7.80**		241	DD	9.8		JACKASS FLATS
	14	13:54:23 16:55: 4	37.200 37.164	116.307 117.421	9.4 9.8	2.97• 7.00	3.5	114 189	CC BD	1.0 0.4		AMMONIA TANKS UBEHEBE CRATER
	15	10:33: 4	37.514	117.716	9.6	2.99•		191	CD	9.8		LIDA WASH
	15	12:42:57	36.929	118.117		7.00		216	AD	1.3		YUCCA LAKE
	15	12:44:56	36.819	115.981		3.89		235	AD	0.7	~	FRENCHMAN FLAT
	15	21:30: 2	36,911	115.992	8.8	1.93	1.5	123	AB	0.7		PLUTONIUM VALLEY
	16	11:25:35	37.267	115.461	0.4	14.02	1.7	61	AB	2.2		DESERT HILLS NW
	16	21:41:27	37.211	115.484	9.5	-0.64+ 5.15	2.3	84		1.3		DESERT HILLS NW DEAD HORSE FLAT
	21 23	2:27:39 4: 0:40	37.319	116.317 116.162	9.4 9.5	6.09	9.9	85 65	BC BA	1.4		SKULL MIN
	23	5:24:30		116.257	0.5	2.75	0.8	99	• • •			JACKASS FLATS
2	23	11:37:37	36.826	116.253	0.4	4.52	1.0	58	AB	1.8		JACKASS FLATS
			37.301	117.381		-0.03•		124	CC	0.7		GOLD POINT SW
	24		36.818	116.271	8.7	3.79	2.1	121	88	0.6		JACKASS FLATS
	24	6: 2:69	36.818	116.279	9.7	3.79	2.1	121	88	9.5 9.6		JACKASS FLATS Jackass Flats
	24 24	7:20:50 11: 9:49	36.819 37.332	116.267 114.598	9.6 9.8	3.78 9.67	2.0 0.5	117	AB AD			ELGIN
	25		36.042	116.107	1.9	3.53+		229	CD			STEWART VALLEY DEAD HORSE FLAT
	25 26		37.326 36.816	116.299 116.271	9.3 9.5	-0.28• 3.82	1.7		CG AB			JACKASS FLATS
	27		37.045	117.471	1.9	2.61	3.2	265	8 D			USEHEBE CRATER
	27		37.254	116.417		-0.95	0.4	149	AC			SILENT BUTTE
	29		36.830	115.860	9.3	7.57	1.8	155	AC			FRENCHMAN LAKE SE
	29		36.817	116.263		-0.22	0.5		AB			JACKASS FLATS
	50		36.641	115.999		12.05	1.0		AB			MERCURY
MAY	2 3		36.818	116.265 117.949	9.8 9.7	4.08 13.74	2.5 1.6		BB AB			JACKASS FLATS Emigrant canyon
			37.167	117.419	0.7	5.02	2.4		ac			UBEHEBE CRATER
1			36.974	116.267	0.6	0.00	9.8	58				JACKASS FLATS

		• `				· · · · · · · · · · · · · · · · · · ·	•			
			HORIZ		VERT	AZI				
DATE - TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR					
(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	OUAL	. Md	Mblg	QUADRANGLE
• •	•	•		, ,		•			_	
MAY 11 9:28:54	36.576	116.344	0.4	8.13	1.4	136	AC	8.7		LATHROP WELLS SE
13 2:33:43	36.789	116.090	2.0	8.61	4.2	178	ВC		0.1	CANE SPRING
14 8:33:32	36.845	116.206	0.6	7.00	1.0	145	AC	0.5		SKULL MTN
15 1:30:38		115.894	1.5	7.00	4.1	230	80	0.5		MERCURY SW
16 18:49: 8		116.653	0.7	7.87	3.6	162	8C	8.9		YUCCA FLAT
18 1:43:11		116.236	1.3	8.23	3.7	149	BC	0.4		SKULL MTN
10 1140111	00.072			0.25	• • •		-	0.4		JRULL WIN
18 17:56:25	36.911	116.016	2.4	32.46	4.3	196	80	0.3		YUCCA LAKE
19 4:16:35		117.072	0.9	11.24	2.5	64	BA	1.8		BONNIE CLAIRE SE
JUN 3 9: 4:28		116.003	0.5	7.98	3.5	149	BC	0.7		YUCCA LAKE
4 19:54:36		116.458	0.9	4.59+		88	CC	1.1		QUARTZITE MIN
8 19:43:17		115.739	1.5	2.49 •		200	CD	8.6		QUARTZ PEAK NW
7 2: 8:55		116.977		8.00		151	80	1.1		BULLFROG
				• • • • • • • • • • • • • • • • • • • •						
7 12: 0:33	36.617	116.264	0.3	7.74	0.6	152	AC	8.8		LATHROP WELLS SE
7 12: 1:41	36.617	116.256	0.2	5.53	0.6	148	AC	0.5		LATHROP WELLS SE
7 12:21:54		116.261		5.17		153	AD	0.2		LATHROP WELLS SE
8 11:40: 4		114.794	1.5	8.09	1.0	302	80	1.0		GREGERSON BASIN
9 7:53:32		115.984	1.1	7.00	5.2	155	CC	1.0		FRENCHMAN FLAT
9 12:29:18	36.872	116.334		7.00		181	AD		0.2	JACKASS FLATS
									•••	
19 15:19: 5	37.156	117.339	0.4	7.00	1.3	188	AD	1.0		UBEHESE CRATER
15 1:17:38	36.823	115.999	1.1	6.23	3.7	192	8D	0.4		FRENCHMAN FLAT
18 17:57:11	36.712	115.623	0.3	-0.81.		116	CC	1.0		HEAVENS WELL
19 2:33:21	36.697	116.283	0.8	-0.13	1.0	130	88	0.8		STRIPED HILLS
19 4: 4: 8	36.535	116.374	0.8	1.18	3.3	108	80	0.6		LATHROP WELLS SE
20 20:40:58	36.671	116.406	1.2	7.75	2.6	182	BD	0.5		LATHROP WELLS NW
			_		_					
JUL 3 2:52:10	36.873	116.181	1.4	11.38	5.8	153	CD	0.3		SKULL MTN
3 21:15:42	36.317	114.893	2.3	4.14	2.4	254	80	1.2		DRY LAKE
4 7: 3: 3	36.696	116.277	0.5	4.86	1.3	69	ĀĀ	0.6		STRIPED HILLS
4 8:21:39	36.828	116.685	0.4	4.19	3.3	97	88	0.6		BARE MTN
5 13:26: 8	36.765	116.627	2.7	8.25	3.0	106	CD	0.7		SARE MTH
7 15:13:14	36.748	115.821	2.0	11.15	4.9	191	BD	0.7		MERCURY NE
								• • •		
9 0:38:58	36.935	118.452	23.8	7.00	8.0	334	DD	1.4		REGIONAL
9 2:13:48	37.252	115.030	1.5	2.75	6.2	186	CD	1.7		ALAMO SE
9 15: 5:51	36.856	116,169	2.1	10.73	3.1	154	BC	0.4		SKULL MTN
11 13:22: 4	36.758	116.277	0.3	7.00	0.6	58	AA	1.2		JACKASS FLATS
11 13:20:10	36.757	116.277	0.5	7.00	0.8	71	AA	0.3		JACKASS FLATS
11 13:37:58	36.750	116.277	0.4	7.00	0.7	67	AA	0.7		JACKASS FLATS
11 14:53: 2	36.755	116.275	0.4	6.55	0.7	70	AA	0.5		JACKASS FLATS
11 15:10:21	37.699	115.046	0.4	1.59	1.3	116	AC	1.1		HIKO NE
12 17:10:20	36.702	116.282	0.4	5.05	0.9	63	AA	1.0		STRIPED HILLS
13 13:58:20	37.397	115.210	0.8	0.44	3.3	134		1.2		ASH SPRINGS
13 16: 2:18	36.888	115.934	0.4	5.66	2.3	175	BC	1.0		FRENCHMAN FLAT
13 16:51: 8	36.774	115.980		12.48		224	AD	0.8		FRENCHMAN FLAT
14 2:18:23	36.772	115.978		7.00 • •		235	AD	0.3		FRENCHMAN FLAT
14 2:51:48	36.814	115.932	1.8	7.23	6.2	199	CD	0.9		FRENCHMAN FLAT
14 2:57:15	36.758	115.957		24.98		234	AD	0.6		FRENCHMAN FLAT
14 12: 4:29	37.115	116.205	2.3	14.86	3.4	200		0.9		TIPPIPAH SPRING
14 12:12:42		116.193	0.5	-0.03		113	_	0.7		TIPPIPAH SPRING
14 12:44:29		116.147		0.18		180		0.7		TIPPIPAH SPRING
14 16:42:50	36.896	115.947	1.0	8.89	1.9	193	AD	0.4		FRENCHMAN FLAT
15 12: 3:21		115.954	2.4	26.29	2.2	162			0.2	MERCURY
15 14:23:33		115.921	0.2	11.60	0.5	203				FRENCHMAN FLAT
15 23:16:16	36.896	116.815	0.5	-0.05+		123	CC	1.3		BULLFROG
16 6:37:38		115.435	1.7	2.33	1.9	295				LA MADRE MTN
17 14:16: 3	36.765	115.911	0.8	0.69		188				FRENCHMAN FLAT
	• • • • • •									, .
17 22: 3:14	37.086	115.188		7.46		228	80	0.5		LOWER PAHRANAGAT LAKE SW
	37.099	116.194	0.7	5.28	2.6	93				TIPPIPAH SPRING
18 15:18:53		116.292	0.7	9.33	1.2	150				JACKASS FLATS
18 15:39:44		116.303		7.21		226			0.1	JACKASS FLATS
19 10: 1:46		116.177	0.5	7.50		154				SKULL MIN
19 21:49: 4		114.457		7.00 • •		327				***REGIONAL***
			_			J				
19 21:49:36	36.836	115.281	5.5	6.98+		246	DD	0.6		DEAD HORSE RIDGE
20 1:49:59	37.030	116.019		7.00 • •			AD			YUCCA FLAT
20 9: 7:55		116.007		11.24						YUCCA FLAT
20 9:47:19	37.020	116.003	0.4	7.12				0.8		YUCCA FLAT
	36.709	116.313	3.0	7.00		201		0.2		STRIPED HILLS
21 2: 8:48	36.832	115.988		7.00		254		0.2		FRENCHMAN FLAT
	- -			-						

				HORIZ		VERT	AZI				
DATE	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP				
(utc)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	L Md	Mblg	QUADRANGLE
JUL 21	4: 7:59	37.077	116.187	1.5	6.99	2.4	142	8 C	0.7		TIPPIPAH SPRING
22	10:50:14	36.970	115.649	1.5	22.54	3.0	126	BB	1.2		QUARTZ PEAK NW
22	14:11:42	36.806	115.691		16.36		206	AD	6.8		QUARTZ PEAK SW
22		37.383	115.556		7.00 * *		193	AD	1.0		GROOM RANGE NE
22		36.973	115.646		21.91		125	AD	0.9		QUARTZ PEAK NW
23		36.709	115.772	6.4	6.30	2.3	165	BC	1.9		MERCURY NE
	10. 0.50	30.705	110177	U. V	0.50	2.0	105	-			mc
23	10: 5:49	36.703	115.673		12.49		185	AD	0.8		INDIAN SPRINGS NW
			115.524		15.47•			DD			
23		37.037		13.6			105		1.0		SOUTHEASTERN MINE
24		37.057	116.236	0.4	6.59	0.6	175	AC	0.6		TIPPIPAH SPRING
25		37.261	116.469	8.4	0.03+		48	CC	2.3		SILENT BUTTE
25		37.261	116.465	0.3	-0.26+		50	CC	2.2		SILENT BUTTE
25	23:10:40	37.262	116.487	0.8	2.83•		77	CC	2.6		SILENT BUTTE
26	5: 0: 4	37.242	116.315		31.05		164	AD	0.5		AMMONIA TANKS
26	17:19:58	36.690	115.678	8.8	6.35.		166	CC	1.2		INDIAN SPRINGS NW
26	18:33: 7	37.696	115.677	1.0	16.92+		109	CD	1.0		FALLOUT HILLS SW
27	9:42: 9	36.649	115.287	2.9	9.51+		129	CC	1.1		WHITE SAGE FLAT
27		36.868	115.482		7.00		226	AD	6.5		DOG BONE LAKE SOUTH
28	5: 0:29	36.914	115.987	0 . B	4.33	8.1	180	CD	0.7		PLUTONIUM VALLEY
••	0. 0.20	30.517		٠.٠	7.00	• • • •	100	75	0.7		TEOTONIUM TACCET
28	14:48:47	37.200	115.436		7.00 • •		283	40			DESERT HILLS NW
28	18:55:56	36.721	115.967					AD	6.6		MERCURY
	19:38:11	37.234		1.8	-0.61	0.6	227	BD	9.6		
28			115.404	9.5	2.63		154	ÇÇ	1.6		DESERT HILLS NW
31	3:46:10	36.767	115.801	0.4	7.18	0.8	95	AB	1.0		MERCURY NE
31	19:22:16	37.097	116.031	2.6	7.00.		141	CC	2.0		YUCCA FLAT
31	19:26:16	37.073	116.005	1.3	2.12	10.0	121	CC	2.7		YUCCA FLAT
AUG 6	3:42: 4	37.068	116.145	0.6	-0.52	0.5	148	AD	6.7		TIPPIPAH SPRING
6	9:37:34	37.262	116.465	6.7	0.71+		74	CC	1.5		SILENT BUTTE
7	3:21:59	36.438	115.648	0.6	11.54	1.4	87	AB	1.2		CHARLESTON PEAK
7	9:53:37	37.313	116.291	0.6	2.56	3.2	120	BC	1.2		DEAD HORSE FLAT
8	9:51:35	37.038	116.476		22.57		167	DD	0.9		TIMBER MTH
ğ	2:21:22	36.535	116.396		4.14		271	AD	0.7		LATHROP WELLS SW
•					7.,7			~•	•		CATHROL MECCO ON
9	2:21:40	36.617	116.281	1.1	11.41	2.2	161	80	0.4		LATHROP WELLS SE
11	8:14:30	37.149	117.409	0.7		4.0	134	BC	6.5		UBEHEBE CRATER
					6.21						
11	8:19:44	37.143	116.294	0.3	7.61	0.7	178	AC	0.2		AMMONIA TANKS
12	4:53:14	36.487	116.806	0.4	-0.89	1.0	67	AC	1.1		FURNACE CREEK
14	8:20:27	36.329	116.239	0.4	6.67	3.5	129	BC	9.7		HIGH PEAK
15	9: 0: 1	37.100	116.163		7.80 • •		274	AD	0.7		TIPPIPAH SPRING
						_					
15	18:15:37	35.975	115.241	3.5	4.29	3.5	256	CD	1.7		SLOAN
15	23: 9:50	36.477	116.920	0.6	16.64	2.6	78	88	1.1		FURNACE CREEK
17	17:48: 9	36.996	117.534	0.8	6.75	1.6	186	AD	1.5		DRY MTN
18	B: 8:43	37.198	115.197		1.28		148	AD	1.3		LOWER PAHRANAGAT LAKE NW
19	8:33: 4	36.916	115.971	0.9	3.50+		186	CD	0.5		PLUTONIUM VALLEY
20	11:58:16	36.728	115.613	0.3	7.94	3.4	133	BC	1.0		HEAVENS WELL
•						• • •	. • •				
20	16: 5:20	36.792	116.282		7.00 • •		165	AD	0.3		JACKASS FLATS
21	3:24: 2	37.200	116.526	6.3	11.23	0.6	112	AB	1.7		THIRSTY CANYON NE
21	12:30:48	36.810	115.970		1.37		252	AD	6.0		FRENCHMAN FLAT
22	1:11: 2	36.511	116.466	1.2	13.67	3.0	291	BD	6.6		LATHROP WELLS SW
23	3:37:51		117.012	0.6	4.62	6.4	114				BONNIE CLAIRE
	10:34:23		115.973	0.3				CC	0.1		FRENCHMAN FLAT
24	10:34:23	30.007	110.9/3	U .3	5.24	0.5	250	AU -	• •		PRENCHMAN PEAT
- 4	11.40. 4	14 077	116.154		10 11		272				SKULL MTN
24	11:40: 6			1.1	10.37	6.6	230			0.2	
	23: 7: 2		116.080	6.5	8.44	1.0	134				CAMP DESERT ROCK
25	6: 7:49		116.437	0.3	5.44	2.7	91	BC			SILENT BUTTE
25	B: 9:29	37.303	116.43B	0.1	11.88	0.1	193	AD	0.7		SILENT BUTTE
25	8:32:36		116.435	0.3	6.77	1.8	91				SILENT BUTTE
25	9:27: 4	37.314	118.433	0.3	5.16	2.6	90	BC	1.4		SILENT BUTTE
25	13:32:26	37.314	116.432	0.3	6.79	1.9	90	AC	0.8		SILENT BUTTE
	15:12:22		116.432	0.3	4.81	3.5	91	BC			SILENT BUTTE
26	1: 0:10		116.432	0.4	6.91	2.3	90				SILENT BUTTE
26	1:28:56		116.427	6.4	8.20	2.1	90				SILENT BUTTE
26	2:40:29		116.466		10.05	2.1	135		0.8		SILENT BUTTE
	10:15:45		116.430		5.18	2.1	214				SILENT BUTTE
20	10:10:40	37.324		0.4	3.10	4.5	417	00	y. o		SIEFUL BOLLE
~4		34 415	114 200		0 70	0.4	105	4.0			ACH MEADOWS
	11:18:14		116.289	0.1	9.78	0.4	185				ASH MEADOWS
	11:18:56		110.256		7.00			AD			JACKASS FLATS Mercury
28	2:10:26		115.977		7.00 • • 2.86 •		227	AD			CAME SPRING
26 29	17:12:28		116.024	1.0			92 92		0.7		BARE MIN
29 29	5: 1:30		116.729	0.4	8.92	1.2			1.1		FRENCHMAN FLAT
4.	5:54:32	J9.0J5	115.979	1.5	5.70	5.5	208	CU	0.3		FRENCHMAN FEAT

								4.5.4				
	DATE	- TIME	LATITUDE	LONGITUDE	HORIZ	DEPTH	VERT ERROR	AZI Gap				
		UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	. Md	Mblg	OUADRANGLE
AU	G 29	20:48: 3	36.098	117.712	1.1	1.29	2.1	262	80	1.7		COSO PEAK
	30	19:18: 7	37.130	117.411	0.7	7.78	3.2	142	BC	1.3		UBEHEBE CRATER
SEI		1:31:18	37.192	117.579	0.5	7.96	0.9	148	AC	1.1		LAST CHANCE RANGE
	5	5:11:51	36.712	116.342	0.8	5.11	1.2	191	AD		0.2	STRIPED HILLS
	5	11:42:38	36.849	116.288		1.96		218	AD	0.0		JACKASS FLATS
	11	14:59:60	36.974	116.178	8.6	-0.02	0.5	133	AB	1.6		MINE MTN
	11	20:50: 3	36.593	116.149	3.2	11.89+		143	CC	0.9		SPECTER RANGE SW
	11	22:19: 6	36.628	116.336	0.4	4.59	1.1	184	A8	1.2		STRIPED HILLS
	12	2:21:34	36.744	115.429	8.6	4.69+		171	CC	1.9		BLACK HILLS NW
	12	7:41:56	37.278	114.983	1.1	5.33	2.6	196	80	1.8		DELAMAR LAKE
	13	5:54:25	37.143	116.314 115.802	0.7	8.32	1.7	161	AC	1.3		AMMONIA TANKS
	13	10:48:38	37.564	113.062	2.5	4.61•		182	cc	1.3		WHITE BLOTCH SPRINGS
	13	14:50:19	37.183	115.443	0.7	0.69	1.6	139	BC	1.5		DESERT HILLS NW
	14	14:19:18	36.830 38.056	115.941 116.227	0.5	4.31+ 3.20+		135 270	CC	0.9		FRENCHMAN FLAT
	17 18	4:48:40	36.978	116.559	1.4	7.81	6.7	211	CD	0.8		REVEILLE Bare min
	19	18: 0:44	36.789	116.942	0.5	-0.88	1.1	154	AC	1.8		CHLORIDE CLIFF
	19	18: 0:48	36.432	116.953	5.2	2.34+		214	00	1.7		FURNACE CREEK
	22	17:22:51	37.254	116.479	8.6	0.04+		76	CC	1.8		SILENT BUTTE
	22 22	19: 6:49 21:28:48	36.900 37.257	116.815	0.5	4.18 1.57	8.5 2.9	110 155	CC BC	1.2		BULLFROG TRAIL RIDGE
	23	12:28:38	36.858	116.521 115.919	0.8 1.3	11.21	3.5	206	80	8.6		FRENCHMAN FLAT
	24	6:17:26	36.759	115.769		7.00 • •		183	CD	1.1		FRENCHMAN LAKE SE
	25	9:33:50	35.476	116.979		7.60 • •		368	DD	1.8		REGIONAL
		40.50.50				0.00.						1.4.TUBOR WELLE NW
	26 27	18:59:50 9:18:46	36.703 36.663	116.438 115.964	0.2 16.3	2.96* 7.00	8.8	166 182	CD DD	0.3 1.8		LATHROP WELLS NW MERCURY
	28	15: 6:15	36.864	115.966		2.06		236	80	0.5		PLUTONIUM VALLEY
	29	21:25:54	36.854	116.013	2.9	0.08+		192	CD	8.7		CANE SPRING
OCT	2	1:48:15	37.274	117.815	1.4	9.01	8.9	254	80	2.0		SCOTTYS JUNCTION
	2	6:13:41	36.996	115.983	8.4	5.03	2.3	129	88	1.0		PLUTONIUM VALLEY
	2	20:15:47	36.447	114.485	6.6	2.94	3.7	296	DD	1.9		···REGIONAL···
	2	20:15:57	37.016	114.793		20.58		289	DD	1.5		DELAMAR 3 SE
	3	5:25: 3	37.230	116.348	0.5	-0.14	0.4	94		1.5		AMMONIA TANKS
		11:50:55	37.316	115.885	3.7	18.82	3.8	169		0.6		GROOM MINE SW
	3	17:52: 6 17:52:41	37.409 36.786	114.767 115.810		3.09 7.00••		254 291		1.1		DELAMAR Frenchman lake se
	•	17.52.41	30.700	113.010		,,,,,,,,			-	0.5		THEROTIMAN EARL SE
	4	2:23:46	35.622	117.588	2.2	6.18	0.9	299		1.6		RIDGECREST
	6	19:48:31	37.287	117.055	0.3	5.03	3.4	87		1.1		SCOTTYS JUNCTION
	8		37.324	114.684	4.5	11.40	1.3	305		2.1		ELGIN SW
	9	2:19:22 10: 3:39	36.778 36.783	115.937 115.927	0.7 0.2	-0.22+ 2.00	0.7	166 168		1.8		FRENCHMAN FLAT Frenchman Flat
	12	2:47:41	37.284	117.106		2.43		282				SONNIE CLAIRE
	12	5:40:44	36.841	115.634		10.02		324		1.3		OUARTZ PEAK SW
	12 12	14:52:14	37.043 37.403	117.211 116.184	0.4	2.03 29.57	0.3	273 163		1.2		BONNIE CLAIRE SW Wheelbarrow Peak Ne
	13	10:57:31	37.256	116.481	8.9	0.09+		99		1.0		SILENT BUTTE
		14:52:15	37.079	117.068	0.6	5.87	3.2	135		0.9		BONNIE CLAIRE SE
		16:27:24	37.502	115.358	0.5	10.91	2.1	95				MT IRISH
	15	4:53:22	37.229	114.993	1.8	0.99	6.6	220	CD	1.4		DELAMAR 3 NW
			37.317	116.357	1.7	4.70	6.5	192		8.9		DEAD HORSE FLAT
	15		37.235	116.447		8.65		141		1.2		SCRUGHAM PEAK
	17	19:21:37	35.934	117.404	5.1	8.96	1.7	283		1.3		TRONA
	17		37.216 37.356	116.864		36.12		185		8.7		SPRINGDALE OUARTET DOME
	19	4:33:18	37.330	116.184		2.68		195	AD	1.4		OUARIEI DOME
	20		37.406	116.666	1.9	7.00+		207		1.1		BLACK MTH NW
	28		37.324	116.340	0.6	1.87**	2.2	118		1.3		DEAD HORSE FLAT
	21 23		36.703 36.240	115.692 114.748	0.6 4.5	13.95 12.95	1.0	143 264		1.4		INDIAN SPRINGS NW Hoover dam
	23		37.461	116.272	1.7	7.37+	2.6	184		1.7		SILENT CANYON NE
	24		37.007	115.981		4.89		136		1.3		PAIUTE RIDGE
	24	19:25:38	37.116	115.991	1.2	19.91	1.9	92	88	1.5		PAIUTE RIDGE
	_		37.116	116.025	0.8	4.35	4.8	134				YUCCA FLAT
	25		38.350	117.267	3.2	4.61	1.4	256				SAN ANTONIA RANCH
	25	0:30:60	37.750	116.306	0.3	8.34	0.6	173				KAWICH PEAK
	25		37.343	114.707	9.5	2.52		286				GREGERSON BASIN
	27	13:22:51	36.795	116.311	0.3	3.34	3.4	129	88	1 . 3		JACKASS FLATS

ı		TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HOR12 ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)		QUAL	МФ	Mblg	QUADRANGLE
00	T 27	29: 2:28	36.004	115.066	2.0	2.16	1.8	274	80	1.5		LAS VEGAS SE
00	31	0:40:33	36.707	115.964	1.6	8.50	2.1	99	CB	1.4		MERCURY
	31	18:11: 9	37.223	116.175	0.4	0.78+		146	CC	1.2		RAINIER MESA
	31	10:11:49	37.182	116.179	1.3	8.78•		178	CD	1.2		RAINIER MESA
	31	18:15:51	37.211	116.282	1.4	15.43	2.7	101	88	1.1		AMMONIA TANKS
	31	18:40:57	37.149	116.253	1.3	8.18	2.8	103	88	1.3		AMMONIA TANKS
	31	10:43: 3	37.211	116.297	1.9	19.61	2.5	109	88	1.3		AMMONIA TANKS
	31	19:18:11	37.101	115.962	12.0	7.00+		238	00	1.2		PAINTE RIDGE
	31	19:46:11	37.184	116.252	0.9	2.29+		95	CC		0.2	AMMONIA TANKS
NDV	_	23:59:37	37.293	117.050	1.6	1.00+		125	CD	1.1		SCOTTYS JUNCTION
	3	2:17:27 3:30:26	37.541 36.637	115.3 0 2 116.276		15.98 24.32		129 195	AD AD	1.1		MT IRISH
	,	3.30.20	30.037	110.270		24.32		193	~0	1.2		STRIPED HILLS
	3	9:10:24	36.586	116.005	2.4	17.67	1.5	239	80	2.1		SPECTER RANGE SE
	3	14: 8:30	36.690	116.094		2.95		153	AD	1.3		CAMP DESERT ROCK
	4	6:49:50 7:39:51	37.669 36.255	114.963	1.0	2.20	1.5	131 264	88	1.7		PAHROC SPRING
	4	9: 6:41	36.798	117.115 116.070	1.3	12.74 4.55	0.6 5.5	123	BD DC	1.5		EMIGRANT CANYON CANE SPRING
	5	9:46:12	37.217	114.747		3.07		348		1.2		VIGO NW
	6	5:52:32 10:41:21	36.798 36.702	115.988 115.931	1.9 1.3	4.20+ 7.00	2.2	194 119		0.7 0.6		FRENCHMAN FLAT Mercury
	8	22:27:18	37.243	115.871	1.3	14.17	3.4	136	-	1.1		PAPOOSE LAKE NE
	9	2:25:29	36.130	116.129		7.00		261		1.4		STEWART VALLEY
	9	7: 8:45	37.777	116.303	0.9	0.91•		202		1.7		KAWICH PEAK
	9	13:58:36	36.788	115.998		7.88 • •		231	AD	0.7		FRENCHMAN FLAT
	11	1:43:51	36.739	116.254		7.80 • •		166	AD	0.5		STRIPED HILLS
	11	8:33: 3	37.313	116.464	0.9	10.88	1.4	125		1.8		SILENT BUTTE
	11	11: 4:59	37.308	116.501	0.9	8.47	5.2	128		1.3		TRAIL RIDGE
	11 12	12:36:13 9:44:44	36.715 37.322	116.279 116.442	0.8	7.00 · · 0.55 ·		156 96		0.9 1.1		STRIPED HILLS SILENT BUTTE
	13	19: 7:44	37.884	116.229	1.3	5.89	1.7	167		0.9		TIPPIPAH SPRING
	14	17:10:26	37.084	116.029	2.7	11.07*		144		2.0		YUCCA FLAT
	14	17:15:35 3:15: 9	37. 090 37.143	115.966 116.584	1.4 0.5	4.96 14.55	6.1 2.7	91 87		3.0 1.3		PAIUTE RIDGE Thirsty canyon ne
	19	8:43:56	37.227	115.633	0.6	11.65	5.3	196		1.2		FALLOUT HILLS NW
	19	0: 2:41	36.609	116.275	4.8	10.48	8.7	220		0.9		LATHROP WELLS SE
	20	2:50:19	37.673	116.346	15.9	17.89	3.9	311	DD	0.8		QUARTZITE MTN
	21	3:35:28	37.381	115.869		7.00		310	AD	1.2		ALAMO NE
	21	3:52:56	37.426	116.952		2.78		208		1.3		TOLICHA PEAK
	22	4:58:54	36.517	116.580	0.4	2.89 •		163		1.1		BIG DUNE
	22 22	19:16:26 22: 6:32	36.519 36.531	116.643 115.826	1.1	5.00 9.28	3.3 5.0	265 118		1.2 8.9		BIG DUNE Mercury se
	23	1:11:45	37.196	114.699	3.2	7.00+		212		1.0		VIGO NW
	23	2:57:25	36.530	115.564	0.3	3.12+		98		1.3		INDIAN SPRINGS SE
	23 23	4:40:29 12:13:22	36.521 36.540	115.574 115.562	0.6 2.7	5.69 12.00•	2.6	136 86		1.2 1.1		INDIAN SPRINGS SE INDIAN SPRINGS SE
	23	15:15:28	36.551	115.526	0.7	2.07 •		157		9.9		INDIAN SPRINGS SE
	25	0:38:31	36.679	115.574	0.6	16.09	1.8	149		1.3		HEAVENS WELL
	26	4: 7: 5	37.899	117.336	1.1	-0.88+		123	CD (9.9		UBEHEBE CRATER
	26	11:12:42	36.013	117.547	15.7	-0.46+		292	00 1	1.4		COSO PEAK
	26	11:24:34		116.351		7.80		150	-	9.9		SILENT CANYON NE
	27	10:15:13		115.587	9.6	10.08	1.2	107		. 0		CHARLESTON PEAK
	27 20	22: 2: 2 11: 8:20	36.674 36.869	116.250 115.926	2.9	5.17 4.24•		222 231).5).5		JACKASS FLATS Frenchman Flat
	29	4:56:53	36.762	116.272	0.2	2.85	0.2	198		0.6		JACKASS FLATS
				,,,,,,								
	29		36.857	115.816		7.00 • •		302				FRENCHMAN LAKE SE
	29 30		36.713 36.2 0 3	116.273		8.37 17.56	7.8	143		1.1		STRIPED HILLS TELESCOPE PEAK
DEC	1		36.203	117.071 115.319	14.6	17.56	0.7	267 123		1.4		WHITE SAGE FLAT
	2	6:31: 3	36.791	115.894	3.5	4.30•		219	CD 6	. 8		FRENCHMAN FLAT
	4	0:40:35	38.264	117.144	1.4	7.00	1.5	240	BD 1	. 8		BAXTER SPRING
	6	6:46:35	37.388	115.117	1.0	5.89	2.0	112	88 1	. 5		ALAMO NE
			36.792	115.476		7.88 • •		158				DOG BONE LAKE SOUTH
	10	19:34:46	38.311	117.265	7.8	7.00	3.7	260				SAN ANTONIA RANCH
	10		36.766 37.385	114.774 116. 060	0.8	7.80•• 8.98	1.4	281 75				WILDCAT WASH SE WHEELBARROW PEAK NE
	14		37.385 37.186	116.754	0.5	17.82	1.0	105		. 4		SPRINGDALE

1988 LOCAL HYPOCENTER SUMMARY

	- TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	OUAL	ма	Mblg	QUADRANGLE
DEC 14	11:12:54	36.541	116.631	1.0	-0.62	2.0	163	AC	1.1		BIG DUNE
15	2:34:47	36.646	115.417	0.3	9.41	1.0	105	AC	1.5		SLACK HILLS NW
16	2:34:47	37.205	115.417	e. 3	7.00**		303	AD	0.9		PAPOOSE LAKE NE
17	7:28:51	37.203	116.211		2.64		196	AD	1.1		TIPPIPAH SPRING
17	15:23:52	37.326	116.211	0.7	-0.30+		48	CC	2.2		
17	15:25:32	37.326	116.319	0.7	2.15		54	CC	2.2		DEAD HORSE FLAT DEAD HORSE FLAT
"	13:23:43	37.353	116.319	v.•	2.13*		34	CC	2.3		DEAD HORSE PLAT
17	15:51:31	37.387	117.232	0.3	21.35	0.3	83	AA	2.7		STONEWALL PASS
17	16: 1:18	36.958	115.747	0.6	4.66+		84	CC	2.5		QUARTZ PEAK NW
18	0:30:11	38.067	116.838	3.2	15.14	1.9	220	CD	1.6		SLACK SUTTE
19	14:47:33	36.354	116.308		7.00 • •		137	AD	1.2		ASH MEADOWS
19	19:10:34	36.939	116.713	0.2	7.94	1.2	119	AC	1.1		BARE MTN
20	0:37:59	38.546	117.528	8.3	0.51	7.8	310	DD	2.3		· · · REGIONAL · · ·
20	0:47:54	36.527	115.569	1.1	2.27•		165	CC	1.3		INDIAN SPRINGS SE
20	1:46:17	36.525	115.573	1.0	8.18	6.2	87	CC	1.5		INDIAN SPRINGS SE
20	6:24:28	36.751	116.080	0.3	6.17	1.1	124	AB	1.0		CANE SPRING
20	18:10:43	36.515	115.583	1.6	1.51	5.7	86	CC	1.4		INDIAN SPRINGS SE
20	18:32:27	36.553	115.569	1.2	1.70+		152	CC	1.1		INDIAN SPRINGS SE
21	14:54:45	37.431	114.902	1.4	0.47+		178	CC	1.3		DELAMAR NW
21	22:13:45	36,785	116.231	1.1	0.32+		100	CD	0.3		SKULL MTN
22	1:34:17	36.545	115.554	0.4	2.34+		151	CC	1.1		INDIAN SPRINGS SE
22	1:35:27	37.009	115.430		9.71		221	AD	0.6		DESERT HILLS SW
22	11:42:54	37.317	116.333	1.3	-0.23+		86	CC	1.2		DEAD HORSE FLAT
22	14:42:25	37.222	114.828	3.6	15.17	1.3	263	CD	1.9		DELAMAR 3 NE
23	1:14: 4	36.770	115.991	1.9	0.73•		227	CD	0.4		FRENCHMAN FLAT
23	9: 5:25	36.969	117.748	2.1	2.61	3.6	265	80	1.8		DRY MTN
25	17:35:58	37.354	116.369	1.4	2.14+		88	CC	1.7		DEAD HORSE FLAT
26	3:21:45	36.663	115.094	22.1	7.00+		282	DD	1.4		HAYFORD PEAK
26	7: 1:18	36.666	115.454	0.6	22.38	0.6	103	AB	1.4		BLACK HILLS NW
28	8:46:31	36.692	116.329		3.97		191	AD	8.9		STRIPED HILLS
30	12: 9:23	36.616	116.289		13.08		167	AD	0.5		LATHROP WELLS SE
30	19:45:27	37.316	115.931	9.8	5.45	2.5	298	80	1.0		ALAMO SE

	TOOL BOOKE IN COLUMN COMMAN											
				HORIZ		VERT	AZI					
DATE	E - TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP					
	(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	L Md	Mblg	QUADRANGLE	
	, ,	(0000)	(0.201)		, ,	, ,	,,					
JAN 2	2 15: 3: 8	35.975	118.345	8.4	8.50	3.9	283	DD	2.5		· · · REGIONAL · · ·	
	6: 3:57	36.786	115.503	0.8	1.80	3.7	218	80	1.0		HEAVENS WELL	
	16:18:44	37.479	115.676	23.6	14.30 •		257	DD	2.4		BALD MTN	
	16:19:36	37.821	115.263	0.5	3.37	3.0	127	8 C	2.6		QUAD. NOT LISTED	
3		36.697	115.691	0.5	1.12	3.5	73	BC	1.4		INDIAN SPRINGS NW	
4		37.811	115.251	1.2	3.03	6.9	156	CC	1.6		QUAD, NOT LISTED	
· ·								•••			THE STATE OF THE S	
4	11:30:52	37.821	115.297	1.4	-0.01.		189	CD	1.3		***QUAD. NOT LISTED***	
		36.448	116.516	0.3	0.30	5.0	111	88	2.0		RYAN	
		36.437	116.535	0.6	5.51	3.3	111	80	1.1		RYAN	
		37.156	116.757	0.6	4.86	5.0	135	80	1.7		SPRINGDALE	
		37.310	116.349	3.0	2.34•		194	CD	1.3		DEAD HORSE FLAT	
	6: 8:26	37.159	116.936	0.6	7.00	1.8	170	AD	1.6		SPRINGDALE	
•	. 0. 0.20	37.139	110.930	0.0	7.00	1.0	170	AU	1.0		SPRINGUALE	
•	20.40.45	38.389	117 287	2.2	2 00	2 2	247				64W 4W50W14 64W0W	
			117.283		2.90	2.2	267	80	2.4		SAN ANTONIA RANCH	
9		36.102	117.778	4.8	0.60•		261	CD	1.5		HAIWEE RESERVOIR	
9		36.771	116.286	1.6	0.97•		181	CD	0.7		JACKASS FLATS	
16		37.439	117.566	4.8	0.58•		238	CD	2.3		MAGRUDER MTN	
12		36.421	114.654	5.1	7.00	2.0	289	DD	2.5		MUDDY PEAK	
16	0:14:40	37.231	115.024	0.3	8.32	1.1	157	AC	2.7		LOWER PAHRANAGAT LAKE	
					44 44							
23		37.148	117.387	0.2	10.20	0.5	110	AB	2.7		UBEHEBE CRATER	
28		37.152	117.386	0.6	9.23	2.0	125	98	1.7		UBEHEBE CRATER	
28		37.156	117.386	0.4	5.89	1.3	123	AC	1.7		UBEHEBE CRATER	
FEB 8		36.472	115.187	3.1	1.88	2.3	229	CD	1.9		GASS PEAK NW	
12		30.302	117.203	9.6	4.18	6.0	272	DD	1.9		BAXTER SPRING	
1 3	10: 0: 0	36.971	116.194	0.6	-0.07	0.9	67	88	1.7		MINE MTH	
15		38.318	117.259	1.7	5.86	0.7	281	80	2.0		SAN ANTONIA RANCH	
16		36.275	114.268	5.4	-0.66	8.7	280	DD	2.2		· · · REGIONAL · · ·	
22		36.241	115.058	3.3	7.00	2.1	259	CD	1.6		LAS VEGAS NE	
22		35.004	114.839	4.6	0.28	4.0	304	CD	1.9		BOULDER CITY SE	
26		36.506	115.076	9.1	5.86	2.4	241	DD	1.8		HAYFORD PEAK	
20	3:23:54	37.169	114.781	1.1	5.68•		199	CD	1.9		DELAMAR 3 NE	
MAR 2	15:28:24	37.185	117.846	0.7	5.29	2.2	223	80	1.8		WAUCOBA SPRING	
3	23:14:32	37.267	115.052	2.4	5.55	4.5	182	80	1.8		ALAMO SE	
5	19:41:52	36.532	116.364	0.4	-1.14*		104	CC	1.5		LATHROP WELLS SE	
10	23:27:56	37.155	116.917	0.3	6.50	0.8	51	AC	2.2		SPRINGDALE	
14	1: 9: 5	36.534	116.369	0.4	0.81•		106	CC	1.4		LATHROP WELLS SE	
16	13:10:59	36.543	115.558	0.3	-0.92	8.9	87	CC	2.4		INDIAN SPRINGS SE	
28	23:11:16	37.078	116.170	0.9	4.78	2.6	97	88	1.6		TIPPIPAH SPRING	
29	11:19:45	36.538	117.974	3.0	2.56	3.6	241	CD	1.8		NEW YORK BUTTE	
APR 2	19:40: 2	38.343	117.296	3.2	2.74	3.3	257	CD	2.3		SAN ANTONIA RANCH	
3	0:53:43	30.293	117.239	6.0	2.56	6.1	257	DD	2.0		BAXTER SPRING	
3	10:43:58	37.571	116.465	2.1	6.64.		127	CC	1.7		QUARTZITE MTN	
5	16:34:17	36.042	117.740	7.9	2.58.		272	DD	2.0		COSO PEAK	
				•								
6	18:19:48	36.440	114.473	4.1	3.55	2.2	273	CD	2.2		· · · REGIONAL · · ·	
7	23: 3:28	37.155	116.919	0.2	7.74	2.1	75	8 C	2.0		SPRINGDALE	
0	4:38:32	37.156	116.914	0.3	5.83	1.7	79	AC	1.9		SPRINGDALE	
8	4:44:53	37.155	116.911	0.5	6.08	1.6	75	AC	2.0		SPRINGDALE	
9	13:36: 6	36.825	116.267	0.4	5.34	1.3	72	AB	0.9		JACKASS FLATS	
9	23:44:36	37.062	116.051	0.7	-1.12.		113	CC	1.7		YUCCA FLAT	
10	11:56:59	36.925	116.126	0.8	1.05	2.8	99	88	1.2		MINE MTN	
11	1:37:48		116.379	0.5	4.30	6.9	135		1.6		LATHROP WELLS SW	
12	5:33: 9	36.603	116.041	0.3	5.33	1.3	127	AB	1.3		SPECTER RANGE SE	
12	8:15:24		116.233	0.5	0.33	0.6	61		1.8		SKULL MTN	
13	20:21:20		116.471	0.5	4.49	0.7	135		0.7		TOPOPAH SPRING NW	
17	1:23:40		115.634	1.3	0.10	0.8	112		2.1		TEMPIUTE MIN	
				· · •	- · · ·	- · ·						
17	1:42:10	36.524	116.374	0.6	-0.15.		101	СС	1.5		LATHROP WELLS SE	
17	2:15:25		115.636	1.0	0.20	0.7	137		1.8		TEMPIUTE MIN	
17		37.155	117.379		11.68		121				UBEHEBE CRATER	
17	8:30:33		116.728	0.4	2.60+		89		1.3		BLACK MTN SW	
19	2: 3:32		115.155		5.03		194		1.1		ASH SPRINGS	
20		36.944	117.633	0.8	2.64	2.3	221				DRY MIN	
2.0				. · ·	2.07		'	55	3		ent mili	
20	18: 7:24	37 650	115.651		7.00 • •		250	CD	1.0		TEMPIUTE MTN	
21		36.666	115.774	0.9	2.81						MERCURY NE	
21			115.774	1.9	8.65	4.4	176				TEMPIUTE MIN	
21			117.406	0.5		1.2			2.2		UBEHEBE CRATER	
					5.49	1.3	169					
24	10:35: 5		116.141	0.4	1.42		72				SPECTER RANGE NW	
24	16:39:19	36.725	116.140	0.4	-0.23•		71		1.6		SPECTER RANGE NW	

1981 LOCAL HYPOCENTER SUMMARY

					HORIZ		VERT	AZI				
D	ATE	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR					
•		UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	DUAL	Md	Mblg	QUADRANGLE
	٠,	0.0,	(525. 11)	(500)	(1)	("")	(~~ /	(520)	40/12			40000000000
APR	25	15:28:49	36.788	116.887	0.5	0.60+		86	CC	1.8		CANE SPRING
AFR								43	BC			
	26	28:34:29	36.714	116.141	0.4	5.22	2.1			1.8		SPECTER RANGE NW
	28	19:13:39	36.905	116.254	2.4	16.07	3.2	191	BD	0.8		TOPOPAH SPRING
	38	16:55:23	36.717	116.144		-0.01		172	AD	1.0		SPECTER RANGE NW
MAY	2	21:53:43	37.120	117.334	0.4	7.07	1.5	111	AB	1.6		UBEHEBE CRATER
	3	14:47:34	37.307	117.358	0.5	2.09	1.1	132	AB	1.8		GOLD POINT
	3	15:38:12	36.647	116.340	1.3	7.00	1.6	178	BC	1.2		STRIPED HILLS
	3	16:49:50	37.302	117.357		7.00 • •		180	BD	1.0		GOLD POINT
	3	16:56:42				0.95		164	CD			
	3		37.272	117.397						1.2		GOLD POINT SW
	_	17: 6:17	37.290	117.363	0.5	5.65	1.7	110	88	2.0		GOLD POINT
	3	17: 8:52	37.325	117.322		1.92		333	AD	1.6		GOLD POINT
	3	17:16:60	37.341	117.313		5.69		178	AD	1.2		GOLD POINT
	4	1:29:48	36.991	115.702		7.00 • •		191	AD	1.7		QUARTZ PEAK NW
	5	7:52: 9	37.297	117.379	1.0	5.47	5.7	121	CB	1.7		GOLD POINT SW
	5	13:59: 6	36.377	110.092	3.7	4.65	1.7	283	CD	2.7		REGIONAL
	5	14:34:53	36.387	118.062	1.8	3.05	1.8	253	BD	2.6		REGIONAL
	5	20: 9:17	37.315	117.352		2.54		143	AD	1.1		GOLD POINT
	5	20:30:17	37.302	117.359		7.00		181	80	1.1		GOLD POINT
	•	20.30.17	37.302	117.300		,		,,,	50	, , ,		OULD FOIRT
	•	4.00.60										UDCUCOO 00.000
	7	4:29:50	37.122	117.337	0.6	5.01	3.0	156	BC	1.4		UBEHEBE CRATER
	7	14:48:27	37.417	117.240	0.5	0.33•		215	CD	1 . 5		STONEWALL PASS
	10	17:28:48	37.139	117.415	0.8	7.66	2.1	149	BC	2.0		UBEHEBE CRATER
	12	0:40:55	35.951	117.322	2.0	6.16	2.6	261	BD	1.8		TRONA
	12	11:55: 4	37.139	110.600	0.5	5.68	6.5	174	CC	1.3		THIRSTY CANYON NE
	12	13:20:36	37.029	117.445	0.8	2.68	2.3	182	80	1.8		UBEHEBE CRATER
	18	18:46:18	36.690	116.299	0.4	-0.23	0.3	115	AB	1.1		STRIPED HILLS
	19	12:35:58	36.671	116.266		4.77		251	AD	0.8		STRIPED HILLS
	20	8:50:17	38.621	116.021	5.1	2.74	9.6	226	DD	1.5		SPECTER RANGE SE
									_	-		
	23	13:34:36	36.756	116.221		7.00		226	AD	0.8		SKULL MTN
	23	18:50:22	36.156	117.848	3.5	8.90	1.4	265		2.5		HAIWEE RESERVOIR
	25	4:59:20	36.102	117.934	2.7	5.97	0.8	285	CD	2.5		HAIWEE RESERVOIR
	25	19:39: 1	36.154	117.818	7.6	8.36	3.2	268	DD	2.3		HAIWEE RESERVOIR
	28	13:22:54	37.132	117.286		2.71		132	AD	1.6		UBEHEBE CRATER
	29	5:22:54	36.664	115.703	0.3	12.93	0.2	293		1.0		INDIAN SPRINGS NW
	29	9:13:16	37.149	117.403	0.7	5.42	4.6	132		1.6		UBEHEBE CRATER
	29	11: 7:55	38.655	116.329		2.56		128		1.0		STRIPED HILLS
	30	6:15:16	37.322	115.399	0.5	6.38	2.9	145	BC	2.5		CUTLER RESERVOIR
									••			AUR. 50 05050
	31	2:55: 3	37.328	115.377	0.6	2.45.		134		2.5		CUTLER RESERVOIR
JUN	2	0:31:19	37.990	117.112	0.9	28.57	0.6	216		1.3		MUD LAKE
	3	13:19:50	37.134	115.422	1.1	21.68	0.3	196		1.3		DESERT HILLS NW
	4	3: 0: 2	36.585	115.991	0.5	16.32	0.4	173	AC	1.9		MERCURY SW
	4	11: 5:23	36.707	116.283	0.3	0.66	0.3	75	AA	1.4		STRIPED HILLS
	4	12:53:41	37.346	115.414	0.7	3.13.		172	CC	2.0		CUTLER RESERVOIR
			-					_				
	6	13: 5: 8	36.462	116.025	2.1	-0.09.		259	CD	1.1		MT SCHADER
	6	15:39:57	37.194	117.236		3.99		153				BONNIE CLAIRE NW
	7	18:24: 0	36.631	116.279	38.4	4.39•		285				STRIPED HILLS
	-											
	. 8	14:44:20	36.951	116.962	0.5	-0.31	0.4	148				BULLFROG
	10	7:31:35	30.414	117.246	0.3	0.67	3.1	227	BD			EMIGRANT CANYON
	10	19:52:10	37.156	117.408	1.3	7.98	7.1	131	CD	1 . 4		UBEHEBE CRATER
	11	0:30:34	37.164	117.399		5.28	0.2	125	AD	1.1		UBEHEBE CRATER
	11	18: 0:19	38.380	115.898	2.1	16.40	1.7	254	BD :	2.8		QUAD. NOT LISTED
	13	17:47: 2	37.308	116.302	1.5	4.04	7.4	114	CC	1.1		DEAD HORSE FLAT
		17:57:58		116.276	0.4	6.09	0.7	73	AA	1.2		STRIPED HILLS
	16	5:25:29		116.255	0.4	3.61	1.1	91				JACKASS FLATS
	17	1:46:52		116.250		0.98	0.7	77				JACKASS FLATS
	. ,	1.40.32	50.778	114.236	0.3	U. ¥0	0.7	, ,	~~ '			AUGUST LEGIS
				444 6			•					110V100 P1170
	17	3:26:35		116.252	0.2	2.11	0.4	90				JACKASS FLATS
	17	9: 4:41		110.262	0.3	0.50	0.2	184	AB (STRIPED HILLS
1		15: 1:20		117.150	0.6	0.46.		163	CC			SCOTTYS JUNCTION SW
1	18	17: 8: 8	36.987	116.175	0.5	-0.53	0.7	77	88 1	1.7		MINE MTN
1	19	4:48:28	36.769	115.398	0.4	3.45+		113	CC	1.2		DOG BONE LAKE SOUTH
	21	4:51:35		116.141		-0.88	1.6	208				TIPPIPAH SPRING
•	-		• •						- '	-		
	22	5:33:42	36.849	117.470	1.0	5.60	1.5	197	AD 1	1.2		TIN MTN
	22	9:22:39		115.630		3.03		151				BALD MTN
		10:31:44		116.265	0.4	4.17		174				STRIPED HILLS
		15:17:31		117.047				219	AD 8			BONNIE CLAIRE SE
	24	1:11:49		116.455	0.4	9.22	2.1	90	BC 1			QUARTZITE MIN
2	25	15:46: 5	35.477	115.887	0.6	9.64	2.4	136	BC 1	.2		MT STIRLING

,		- TIME	LATITUDE	LONGITUDE		DEPTH	VERT ERROR	AZ I GAP				
	(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	Mbig	QUADRANGLE
JU	N 26	7:15:11	36.615	116.259		7.00**		216	AD	0.4		LATHROP WELLS SE
	27	13:44:33	36.834	116.190	1.1	6.29	1.2	236	8 D	0.5		SKULL MTN
	27	20:43:21	36.862	116.197	0.6	4.17	0.9	61	84	1.2		SKULL MIN
	27 27	21:50: 5 23:50:29	36.736 37.148	116.169 116.943	2.6	0.35 2.09	3.9	3 0 2 226	A CD	0.6		SPECTER RANGE NW Springdale
	20	2:42: 9	36.968	115.903	0.4	4.98	5.4	146	cc	1.3		PLUTONIUM VALLEY
	20	23:49: 3	36.691	117.708	2.4	7.00	1.5	262	80	1.6		COSO PEAK
	29 29	7: 9:43 22:17:50	37.321 36.722	117.000 115.786	0.3 2.7	-0.30+ 6.03	3.3	72 213	CC	1.5		SCOTTYS JUNCTION MERCURY NE
	30	0: 1: 1	36.584	116.166		7.00 • •		333	80	0.3		SPECTER RANGE SW
	30	8:29:37	36.604	115.662		7.00		342	80	0.6		INDIAN SPRINGS
	30	12: 6:59	36.613	116.320	0.6	7.43	0.8	201	AD	0.8		LATHROP WELLS SE
JUI		10:31:52	37.148	116.590	0.3	8.62	4.2	103	BC	1.5		THIRSTY CANYON NE
	4	0: 4:46 5: 2:29	37.327 37.153	116.298 116.946	0.3 0.7	2.86 9.66	1.6 3.1	78 118	AC BC	1.7		DEAD HORSE FLAT Springdale
	4	5:31:55	37.167	116.707	5.4	34.52	6.9	212	DD	0.6		THIRSTY CANYON NW
	4	5:53:24	37.154	116.937	0.5	1.93	2.2	121	80	0.6		SPRINGDALE
	4	11:25:38	37.137	116.916	1.7	8.06+		83	CC	0.8		SPRINGDALE
	5	16:10:44 17:36:14	36.610 36.113	115.756 115.423	0.3 1.5	-0.33 · 0.23 ·		118 272	CC	1.1		MERCURY SE Blue Diamond
	12	2:42:31	37.150	116.943	0.3	7.00	2.4	120	80	1.1		SPRINGDALE
	14	15:47:36	37.161	117.407	0.4	5.99	2.1	129	BC	1.5		UBEHEBE CRATER
	14	17: 8:49	37.159	117.405	0.3	6.04	0.8	111	AC	1.5		UBEHEBE CRATER
	15	1:41: 4	36.531	116.606	0.2	14.59	0.9	121	AB	1.8		BIG DUNE
	15	2:23:31	36.519	116.601	0.9	2.45+		235		1.6		BIG DUNE
	15 15	4:37:16 5:12:31	36.532 36.536	116.607 116.611	0.2 0.5	11.03 8.53	0.7	120 120		1.5		BIG DUNE
	16	15:11:34	37.415	117.703		11.07	2.5	167		1.2		BIG DUNE Magruder min
	10	15:15: 4	37.070	116.033	1.1	-0.58+		232		2.0		YUCCA FLAT
	10	21:22: 8	35.813	117.901	11.6	7.00	4.9	289	DD	1.6		LITTLE LAKE
	21	15:36:30	38.723	116.063	0.4	-0.16+		124		0.9		CAMP DESERT ROCK
	22 22	2:31:20 4: 7:59	37.228 37.190	115.062 116.989	0.3 0.3	2.06 6.61	0.7 2.0	154 87		0.6 1.6		PAPOOSE LAKE NE Springdale
	24	12: 2:28	37.355	117.697	0.6	1.09	3.2	132		2.3		MAGRUDER MIN
	24	20:47:59	36.712	116.066	0.8	0.23+		124		1.0		CAMP DESERT ROCK
	27	10:45:31	36.705	115.650	2.3	0.19•		271	CD	0.7		MERCURY NE
	27	20:20:32	36.424	115.535	1.7	5.04	8.1	122		1.3		CHARLESTON PEAK
	28	0: 3:56	37.677	116.286	2.1	14.98	6.0	269		9.7		QUARTZITE MTN
AUG	28	7:49:10 4:26:41	36.636 36.703	115.949 116.265	0.8 0.4	8.46 5.83	1.2	149 78		9.6 9. 8		MERCURY STRIPED HILLS
~00	2	12:37:35	37.079	115.906	0.6	4.19+		146		9.6		PAIUTE RIDGE
	2	21:52: 2	37.222	117.319		0.12		136		1.0		UBEHEBE CRATER
	5	16:56:11	35.346	116.602	11.1	7.00	3.8	298	DD :	2 . 2		+++REGIONAL+++
	0	11:25:31	36.835	116.179	0.5	4.89	2.8	141				SKULL MTN .
	6 7	10:57:40 9:39:48	36.626 37.156	116.255 116.323	1.5 0.3	5.11 · -0.62 ·		220 132		1.3 1.1		STRIPED HILLS AMMONIA TANKS
	ŕ		36.657	116.309		8.47		316		1.2		STRIPED HILLS
	13	20:31:56	37.224	116.962		11.79		244				SPRINGDALE
	16	0:16: 9	36.710	116.325	0.6	2.60	1.4	111			0.2	STRIPED HILLS
	16	11:24: 9	36.499	116.300		0.86		175				ASH MEADOWS
	23 25	2: 9:17 18:43:30	37.156 38.670	116.941 117.102	0.3 2.2	6.37 4.87	2.5	80 264				SPRINGDALE •••REGIONAL•••
	20	4:10:21	36.716	117.326	2.9	1.53	6.1	172	CD -			MARBLE CANYON
	26	5:10:35	36.692	116.053		-0.44•		143	CC 6	9.9		CAMP DESERT ROCK
	20	10:10: 6	36.384	117.566		24.62•		250				DARWIN
	26 27	16:37:40 9:30:18	36.672 37.245	116.240 115.922	1.7 1.0	6.53 5.31	4.9	97 157				SPECTER RANGE NW Jangle Ridge
SEP	1	0: 3:19	37.655	115.651		7.00 • •		249				TEMPIUTE MIN
	1	16:19:36	37.422	117.338	0.4	4.64	2.3	156	8C 1	. 2		MOUNT JACKSON
	7	3:51:52	37.358	115.023	2.1	3.62	3.2	203	BD 1	. 3		ALAMO SE
	9	10:46:11	38.752	117.085	4.2	4.08	3.0	278				REGIONAL
	12	1: 1:55	36.764	116.275		39.08 14.27	5.3	172 200			0.2 	JACKASS FLATS Wingate Wash
	12 15	21:23:35	35.995 37.012	116.768 116.385	4.9 0.2	5.34	1.6	116				TIMBER MIN
	15	6:17:27	37.017	116.364	0.3	7.64	1.8	106	AB 6	. 6		TIMBER MIN
	15	6:44:50	37.013	116.388	0.2	4.94	2.1	107	8C 6	. 7		TIMBER MTN

1981 LOCAL HYPOCENTER SUMMARY

													_								
											HOR	I Z			VERT	AZI					
DA	ITE -	T	ME	:	LA	TITL	10 E	LO	NG	JOUT	ERR	OR	0 6	PTH	ERROR	GAP					
	(UT	C)			(0	EG.	N)	(0	EG	. W)	(KM	1)	(K	(M)	(KM)	(DEG)	QUA	\ L	Md	Mblg	QUADRANGLE
SEP	15	7 :	52	: 49		7 . 0 1				385	€.	3	2	. 70	0.7	117	AC		0.6		TIMBER MTN
	16	4:	15	: 55	3	7.01	1	1	16	368	0.	2	4	. 09	2.8	108	80	;	0.7		TIMBER MTN
	16	11:	B	: 23	3	7.01	4	1	16.	391	0.	5	7	.51	3.1	160	BC	;	0.6		TIMBER MTN
	21	4:	59	: 25	31	7 . 0 1	4	1	16	379	0.	3	5	. 97	1.5	117	AC	;	1.0		TIMBER MTN
	21	5 :	16	: 18	3	7.01	6			384	0.			. 56	3.7	224	80			0.2	TIMBER MIN
	23			:40		7.18				077	0.			. 26	1.0	121	AB		0.9		BONNIE CLAIRE SE
		• •			-		•				• •	•	_	. • •					• • •		
	24	2:	24	: 43	3.7	7.22	3	1	16.	989		_	2 A	. 23		206	AO	1	0.5		SPRINGDALE
	24			: 55		7.19				978	0.			. 82	4.5	68	BC		1.3		SPRINGDALE
				: 44		7.88				925	6.1			. 24 •		263	00		1.4		CACTUS PEAK
				:53		3.69				628	4.			. 38 •		282	CD				
				: 36		7.70				402				. 00			80		0.9		INDIAN SPRINGS NW
											0.1				1.0	183			1.5		SPLIT MIN
	28 1	, .	+0	: 31	3 /	7 . 7 1	•	•	٠,,	399	0.1	•	•	. 44	1.1	177	BC		1.4		SPLIT MTN
		• •										_		4.0	• •						****
						. 70				385	2.1			. 12	2.4	229	CD		1 . 4		SPLIT MTN
OCT				: 31		. 13				213	0.3			. 34	2.2	76	80			2.0	RAINIER MESA
				: 7		. 14				214	0.3			. 76	0.8	124	AC			0 . B	RAINIER MESA
				: 4		. 14				215	0.3			. 62	1.0	121	AC		0.6	0.9	RAINIER MESA
				: 28		. 14				218	0.2			. 20	0.7	121	AC			0.9	RAINIER MESA
	.6	1:	2 4	: 4	37	. 10	5	1.1	17.	369	21.5	5	7	.00•		214	00	•	0.8		UBEHEBE CRATER
	•																				
	6			: 31		. 80				942				. 94		318	CO	1	1.0		FRENCHMAN FLAT
				. 0		. 64				215		-	7	. 00 • •		246	AD	1	1 . 2		HAYFORD PEAK
				16		. 13		- 11	7.	33B	0.6	5	5	. 86	2.0	196	BD	6	8.3		UBEHEBE CRATER
	7 1	2:	54:	3	37	. 10	1	11	6.	162	0.9	•	4.	. 21	2.7	158	BC	•	8.2		TIPPIPAH SPRING
	8 1	2:	19:	27	38	. 0 1	9	- 11	3.	255		-	2	. 90		336	AD	1	1.8		* * * REGIDNAL * * *
	8 1	6:	B:	58	36	. 48	9	11	6.	717	86.4		7.	. 00 •		350	DO	e	3.6		RYAN
	9	2:	?7:	30	36	.78	4	11	5.	984	0.6	3	11.	. 27	0.8	237	AD	•	3.3		FRENCHMAN FLAT
				0		. 17				999	2.7			. 2 2	0.9	276	CO		1.0		FRENCHMAN MIN
				59		. 33				731	1.1			. 61	1.2	246	80		9.6		ELGIN SW
				43		. 37				691	84.6			. 01 •		107	OC		3		BALO MTN
1				56		. 12				478	52.5			94.		288	00		3.3		UBEHEBE CRATER
				54		. 86				951	0.3			27	1.5	142	AC		. 6		SPRINGDALE
•		•••	•	••	•		•	• • •	• • •		0.5	•	υ.	• • •	1.5	172	~~	-	0		37 KINODALE
4	3 1		٠.	50	17	. 064				47	8.4			73		94					CORINCOLIC
															2.1		BC		. 1		SPRINGDALE
				14		. 062				45	0.4			45	0.7	9.4	AC		. 0		SPRINGDALE
				16		. 067				50	0.3			11	0.5	95	AC		. 7		SPRINGDALE
				12		. 059				951	0.2			27	0.7	45	AB	_	. 2		SPRINGDALE
				12		. 061				40	8.4			86	2.5	147	BC	_	. 4		SPRINGDALE
1	4 .);1	1:	42	37	. 062	4	11	6 . I	51	0.3	-	₽.	73	0.5	94	AC	•	. 7		SPRINGDALE
													_					_	_		
		: 3				. 864				51	0.3			88	1.2	63	AC		. 5		SPRINGDALE
		: 4				. 059				51	0.2			59	0.9	62	AC		. 9		SPRINGDALE
):1				. 065				51	0.2			92	0.4	63	AC		. 9		SPRINGDALE
		2:2				. 050				58	0.2			98	0.9	118	AB		. 0		SPRINGDALE
1		5 : 5				. 864				51	0.2			45	1.2	63	AC		. 9		SPRINGDALE
1	4 2	: 5	7:	4	36.	682		111	5.7	69	60.6		7.	90.		322	00	-0	. 2		MERCURY NE
1		: 2				. 054		11	6 . 9	55	0.3			47	0.9	72	AB	- 1	. 1		SPRINGDALE
1	5 ():2	7:	19	36.	442		11	6.4	83			7.			256	AD	-		0.2	ASH MEADOWS
1	5 (: 5	2:	58	37.	895		11	6.9	72	0.2		5.	25	0.9	106	AC	0	. 8		SPRINGDALE
1	5 2	: 2	3:	49	37.	. 866		111	6.9	45	0.4		9.	0.6	2.0	50	BB	1	. 6		SPRINGDALE
1	5 4	: 2	1:	9	37.	855		111	6.9	55	0.3		9.	20	0.9	64	A B	2	. 5		SPRINGDALE
1				5		862		110			0.3		5.		1.2	189		0			SPRINGDALE
1	5 7	: 2	2 : 5	50	37.	869		110	6.9	49	0.3		8:	11	0.8	64	A B	1	. 1		SPRINGDALE
1	5 16	: 4	3 :	13	37.	858		110	8.9	55	0.2		5.	17	0.7	52	AC	1	. 3		SPRINGDALE
1						964		110	6.1	50	72.6			03.		228	00		. 2		MINE MTN
1	5 21	: 5	9 : :	36	36.	612		110	6.6	55	64.6		7.	00.		345	00	0	. 1		CHLORIDE CLIFF
1		: 4				865		110			0.2		0.		0.4	66	AC		. i		SPRINGDALE
1		: 3				529		111			0.4		9.		1.3	133	AB		. 3		MERCURY SE
•	•		•	•				•					•					•			
1		:	٠.	1.3	17	847		110	A 0	41	0.3	-	0.	10	0.3	143	AC	1	. A		SPRINGDALE
10		: 3				243		110			1.6		2.		5.4	264	ĈD	i			STONE CABIN VALLEY
1						851		110			0.4		7.		1.0	88	88		. 8		SPRINGDALE
1		: 5				448		110			0.3		έ.		8.9	78	AB				FURNACE CREEK
1						442		110			8.6		3.		1.4	84	AB		. 3 . 8		FURNACE CREEK
11																64	AC				SPRINGDALE
11		: 3		<i>.</i> .	3/.	869		110	. y	30	0.2	,	1.	₩ •	1.6	•	A C	6	. 0		arn I NOVALE
				•	3.4					4.0				0.7			AC	^	. 5		LATHROP WELLS SE
11						615		110			0.3		5.		0.9	150					SPRINGDALE
11	-	: 4				864		110			0.3		1.		1.7	93	AC				
11		: 3				283		110			0.3		6.		0.9	74	A B				DEAD HORSE FLAT
11		: 4				118		115			45.4			88•		268	00				LOWER PAHRANAGAT LAKE SE
11						987		116			82.7			00+		146			. 5		TOPOPAH SPRING NW
20		: 5	3:	5	38.	525		116	5 . 6	8 3	1.3	-	0.1	91	1.1	26B	80	2 .	. 3		· · · REGIONAL · · ·

1981 LOCAL HYPOCENTER SUMMARY

			HORIZ		VERT	AZI				
DATE - TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR					
(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	DUAL	. Md	MbIg	QUADRANGLE
OCT 28 5:12:45	37.041	115.172	0.4	5.01	2.4	147	BC	2.0		LOWER PAHRANAGAT LAKE S
20 9:28:53		115.168	0.4	5.30	2.7	148	BC	1.2		LOWER PAHRANAGAT LAKE S
21 22:18:19	35.478	116.333	99.9	16.61+		348	DD	0.7		· · · REGIONAL · · ·
22 19:10: 4	37.064	116.946	0.4	2.85	1.2	94	AC	1.0		SPRINGDALE
22 23:35:29	35.452	118.194	1.8	2.61	1.1	369	BD	1.8		· · · REGIONAL · · ·
23 6:16:45	37.706	115.149	9.6	5.47	2.3	127	BC	9.8		FOSSIL PEAK
24 1:45:14	37.671	116.953	6.2	8.65	8.6	126	AB	6.9		SPRINGDALE
24 4:45:15	36.579	115.517		12.77		312	AD		0.1	INDIAN SPRINGS SE
24 16:29:11	37.823	115.533	0.2	-0.81	5.7	99	CD	1.2		WORTHINGTON MINS
24 16:56:15	36.715	116.287	0.6	9.23	0.5	249	AD	0.1		STRIPED HILLS
24 21:34:46	37.061	116.949	0.3	6.58	0.9	94	AB	2.0		SPRINGDALE
25 22:18:31	37.000	117.505	0.5	7.87	2.1	176	BC	0.7		LAST CHANCE RANGE
26 1:25: 8	36.748	116.192	0.3	0.84+		104	CB		0.2	SPECTER RANGE NW
26 4:50:29 26 15:18:15	36.759 37.658	116.234 116.727	8.7 	3.82 7.88**	1.7	103	AB	0.1		SKULL MTN
26 15:23:26	37.663	115.632		2.09		289 173	DD ·	-0.1 0.0	,	MELLAN Tempiute mtn
27 0:24:14	37.068	116.944	0.2	6.93	1.0	64	AB	1.0		SPRINGDALE
27 0:27: 4	36.696	115.811	48.8	11.84+		184	DB	1.0		MERCURY NE
27 0:31:18	36.659	115.697	0.5	2.87	3.3	179	BD	0.3		QUARTZ PEAK SW
27 3:16: 8	36.186	117.626	0.7	5.97•		266	CD	1.4		COSO PEAK
27 15:24:14	37.521	116.537		7.88		198		-0.4		MELLAN
28 5: 9:56	36.999	116.193	0.3	8.11	0.7	148	AC	0.2		MINE MTN
20 15: 8:47 29 1:47:42	37.953 36.858	117.009 116.183	9.5	7.00 • • 6.43	6.6	294 120	AD BA	0.0 0.4		MUD LAKE Skull min
1.47.42	30.030	110.103	0.5	0.43	0.0	120	~0	•. •		SKOCL MIN
29 13:50:60	36.592	116.218	0.4	-0.48	0.6	78	AC	0.3		SPECTER RANGE SW
29 17:49:34	38.005	115.185	0.8	10.24	1.3	237	AD	1.0		TIMBER MTN PASS WEST
30 6:42:60	37.078	116.221	9.9	7.12	0.8	184	AD	0.7		TIPPIPAH SPRING
30 12:27:56	37.253	117.586	9.4	7.77	0.6	92	AB	1.2		MAGRUDER MTN
30 15:19:14	36.787	117.087		7.00**		350	DD	0.7		GRAPEVINE PEAK
NOV 2 5:50:30	35.906	117.063	4.0	17.18	2.2	277	CD	1.7		MANLY PEAK
5 1:39:42	36.032	117.698	6.5	5.99	ė. s	266	AD	1.5		COSO PEAK
5 2:11:42	36.947	116.404	3.7	28.88	1.4	313	ĈĎ	8.7		TOPOPAH SPRING NW
5 8:42:50	37.156	115.076	0.7	7.17	0.7	265	AD	8.7		LOWER PAHRANAGAT LAKE
6 6:52:30	37.500	118.029	1.2	5.23	1.8	268	80	1.0		· · · REGIONAL · · ·
6 21:12:24	37.116	117.337	0.3	9.54	1.1	113	AB	9.6		UBEHEBE CRATER
7 13:26:14	36.373	117.917	0.5	13.50	0.6	245	AD	1.5		KEELER
0 6: 9:43		115 000	0.2		3.7	403	80			WT 271811WC
0 6: 9:43 8 14:42: 3	36.335 37.057	115.968 116.954	0.4	4.51 2.89	1.1	123 85		1.1		MT STIRLING Springdale
9 9:24:55	37.026	116.216	0.7	4.39	1.0	84		9.9		TIPPIPAH SPRING
9 3:34:37	37.185	117.062	0.5	8.47	2.1	100		1.1		BONNIE CLAIRE SE
9 15:48:16	36.521	118.003	1.6	2.64	4.5	262	CD	2.1		***REGIONAL***
10 15:45:39	37.277	115.051	1.0	-0.65	0.9	211	CD	1.4		ALAMO SE
10 23:42:20	37.070	116.952	0.3	4.89	1.3	64		1.0		SPRINGDALE
11 1:34:19 11 6:49:13	37.069 37.044	116.952 116.178	0.2 0.3	8.27 -0.30	2.5 0.5	64 103		0.7 	9.1	SPRINGDALE Tippipah Spring
11 20:15:52	37.083	116.079	9.6	2.42	7.5	106		0.7		YUCCA FLAT
11 20:24:31		116.036		-0.22+				0.6		YUCCA FLAT
11 20:37:16	37.076	116.076	0.3	4.27	6.1	107		1.3		YUCCA FLAT
11 21:29:55		116.019		4.33	2.0	99		0.4		OAK SPRING BUTTE
12 2:24:45		116.074		-0.96	9.2	187		1.5		YUCCA FLAT
12 15:23: 2 12 21:28:10		117.333 116.080	0.5 0.3	-1.11* 4.87	1.7	72 186		1.3		MOUNT JACKSON Yucca flat
13 0:47:54		117.480		7.95	0.7	286		0.7		TIN MTN
	36.896	116.365		29.87	3.0	287		8.6		TOPOPAH SPRING
							-			-
13 21:16:43	37.209	114.778		11.45		199		1.2		DELAMAR 3 HE
14 5:45:53		116.410	0.3	3.79				0.9		LATHROP WELLS SW
14 12:13:39		116.443	0.3	6.27	2.6	134		8.8		LATHROP WELLS SW
14 14:17: 6		115.149	0.4	2.76	1.5	126		0.5		FOSSIL PEAK
14 20:17:45 14 20:24: 6		114.526 114.567	1.3	8.08 7.00••	0.8	261 321		1.4		CALIENTE CALIENTE
17 20:24: 0	37.337	117.30/		/ . UU • •		J	~~			
15 4:33:55	37.564	115.281	0.4	10.98	1.1	134	AB ·		0.1	HIKO
15 14:30:20		116.953	0.2	5.06	1.4	63	AC	1.0		SPRINGDALE
16 0:84:27	37.512	114.565	8.8	5.90	2.9			1 . 6		CALIENTE
17 3:18: 6		114,610	1.3	8.70	2.0			8.7		CALIENTE
10 0:45:16		114.798		15.58	1.9	255	80	0.9		DELAMAR 3 NE
18 18:30:44	37.235	115.411	0.5	8.62	2.1	179	8U 1	0.8		DESERT HILLS HW

					HORIZ		VERT	AZI				
(- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP				
	(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	Mblg	QUADRANGLE
NO	V 19	10:10:44	37.306	115.077	0.4	6.84	1.7	178	AC	1.9		ALAMO SE
	19	19:56:31	36.660	116.603	0.4	15.33	1.1	155	AC	0.9		81G DUNE
	19	21:40:53	37.057	116.949	0.2	1.41	9.8	62	AC	2.5		SPRINGDALE
	19	21:44:28	37.059	116.953	0.3	9.74	1.7	69	A8	1.2		SPRINGDALE
	19	21:56:52	37.065	116.951	0.3	9.15	0.8	66	AB	1.0		SPRINGDALE
	19	22: 1:55	37.060	116.955	0.2	5.59	0.8	68	AB	1.4		SPRINGDALE
	19	23: 1:43	37.060	116.959	0.3	6.92	6.9	67	AB	0.0		SPRINGDALE
	20	1:31:45	36.527	115.817	0.3	8.59	1.1	135	AC	0.7		MERCURY SE
	20	4:10:51	36.197	115.407	1.3	0.73+		230	CD	0.5		LA MADRE MIN
	20	4:20:58	37.668	115.049	0.3	1.57	1.1	184	AC	9.7		HIKO NE
	2 9 2 9	6:42:17 9: 6: 4	37.849 37.864	114.540	1.3 0.3	7.82 4.69	1.4	294 63	BD AC	1.4		BENNETT PASS Springdale
	20	. .	37.004	110.00	V . 3	4.00	1.5	•5	~~	0.7		STATRODALE
	21	1:50:56	36.444	117.018	0.8	16.35	1.6	112	A8	0.8		EMIGRANT CANYON
	21	4:44:19	37.065	116.954	0.2	0.06	0.3	63	AC	9.8		SPRINGDALE
	21	18:44:20	37.066	116.950	0.2	5.28	1.6	64	8C	1.0		SPRINGDALE
	21 21	22:29:17 23:59:50	37.542 37.062	114.658 116.952	0.5 0.2	1.70 5.61	0.8 0.9	245 63	AD AC	1.2		CHOKECHERRY MTN Springdale
	22	12:50:12	37.145	117.523	0.7	1.97	2.2	177	80	0.5		LAST CHANCE RANGE
	-											
	22	18:27:10	37.245	115.491	9.5	11.67	2.2	143	8C	0.9		DESERT HILLS NW
	22	22:23:49	36.670	116.327	0.4	2.54	0.5	129	A8	8.4		STRIPED HILLS
	2 Z 2 Z	22:51:26 1: 0:27	37.322 37.064	115.901 116.950	0.5 0.2	5.39 1.35	1.6 9.7	143	AC AC	0.4		GROOM MINE SW Springdale
	23	3:18:49	37.056	116.959	9.2	5.05	1.8	62	AC	1.0		SPRINGDALE
	23	4:35:58	36.812	117.770	0.8	1.66+		222	CD	1.0		WAUCOBA WASH
							_					
	23	6:14:42	37.337	115.563	9.3	0.36	0.4	86	ĄC	1.3		GROOM RANGE SE
	23 23	6:28:13 9: 5:10	37.317 36.681	115.567 117.603	0.7 1.3	2.66 11.66	6.0 5.0	164 253	CC	0.8 1.3		GROOM RANGE SE New York Butte
	23	18:26: 4	37.014	116.360	0.3	8.65	0.6	99	AB	0.4		BUCKBOARD MESA
	23	19:18:14	37.066	116.948	0.1	0.63	0.2	95	AC	0.7		SPRINGDALE
	23	23:29:51	37.236	115.009	0.6	4.76	2.7	214	80	1.0		LOWER PAHRANAGAT LAKE
	24	12:14:50	37.836	114.549	1.6	11.60	6.5	293	CD	1.6		BENNETT PASS
	24	20:49:30	37.064	116.949	0.3	4.32	1.5	63	AC	0.9		SPRINGDALE
	25	4: 2:50	37.064	116.951	0.2	4.83	1.1	63	AC	1.4		SPRINGDALE
	26	3:46:30	37.466	117.600	0.2	4.85	1.0	72		1.0		MAGRUDER MTN
	28 29	1:15:40 10:11:21	37.680 36.784	114. 90 5 110.120	0.5 0.2	1.69 12.03	1 . 2 9 . 7	152 98		0.9 0.5		PAHROC SPRING Cane Spring
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30.704	110.120	V. 2	12.00	•.,	••	~~	0.5		CARE STRING
	30	16:39:56	36.496	116.307	0.2	9.74	0.6	62		1.1		ASH MEADOWS
	30	17:43:53	36.417	117.198	0.5	6.55	1.1	195		0.7		EMIGRANT CANYON
DEC	1 2	19:49:33 23: 6:49	36.827 37.862	116.437 110.953	0.3 0.2	-0.138L 5.39	8.3 1.3	141		0.8 1.7		TOPOPAH SPRING SW SPRINGDALE
	3	3:36:50	37.063	116.952	0.2	4.92	1.1	63		1.3		SPRINGDALE
	4	7:22:48	37.619	115.862	0.3	7.55	1.0	71		1.1		WHITE BLOTCH SPRINGS
	_											
	5	13:43:38	37.620	115.869	0.3 0.5	7.52 2.12	1.3	70		1.0 0.5		WHITE BLOTCH SPRINGS WHITE RIVER NARROWS
	7	2:51:56 20:58:53	37.771 37. 0 27	115.102 116.227	0.5	5.37	9.5	138 128		0.6		TIPPIPAH SPRING
	8	8:24:49	37.074	116.378	0.5	8.24	1.2	103				BUCKBOARD MESA
	8		37.659	115.065	0.4	1.92	1.0	99				HIKO NE
	9	15:52:42	36.545	117.814	1.4	5.85+		244	CD	1.6		NEW YORK BUTTE
	9	23:21:17	36.036	116.492	2.4	27.318L	1.7	125	88	0.9		TOPOPAH SPRING SW
	10	0:49:19		115.335	0.3	10.75	1.5	111				HANCOCK SUMMIT
	10		36.703	116.126	0.7	6.84	3.8	111				SPECTER RANGE NW
	10	2:25:10		116.148	1.4	20.80	0.6	304				TIPPIPAH SPRING Springdale
	10	23:30:53 4: 4:38	37.056 37.069	116.956 116.951	0.2 0.5	4.67 4.74	0.7 2. 0	62 64				SPRINGDALE
	• •	** *****	37.144	*******	***	****		••	••			
	12	0:19:49	36.830	116.635	0.3	-1.198L	0.4	129				BARE MIN
	13		36.435	117.956	4.9	9.29	1.5	282				QUAD. NOT LISTED
	15		37.145	116.938	0.5 0.5	5.60 0.12+	3.3	77 129				SPRINGDALE Yucca Flat
	16 17	21: 5: 0 6:19:24	37.382	115.328		14.50	1.6	110				HANCOCK SUMMIT
	19	14:13:36		116.287		-0.25	0.5	116				JACKASS FLATS
	19		37.321	115.446		16.52	2.7	146				CUTLER RESERVOIR SILENT BUTTE
			37.284 36.725	116.444 115.698	0.3 0.7	5.21 7.80	2.0	59 85				INDIAN SPRINGS NW
	21		37.184	117.389	0.4	9.25	1.1	113				UBEHEBE CRATER
	22		37.256	115.032	0.4	-0.27	0.7	154	AC -		9.2	ALAMO SE
	22	10:11:59	36.740	115.690	0.5	5.65	1.3	185	AD €	.7		INDIAN SPRINGS NW

1981 LOCAL HYPOCENTER SUMMARY

	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	OUAL	Md	Mblg	QUADRANGLE
DEC 22	21:55: 1	36.821	116.463	0.1	-0.848L	2.3	94	88	0.5		OTOPOPAH SPRING SW
23	0:32:19	36.730	115.688	0.4	6.29	1.4	75	88	1.1		INDIAN SPRINGS NW
23	1: 8:32	37.333	115.480	0.7	5.06	8.6	128	CC	1.0		CUTLER RESERVOIR
23	7:14:20	37.233	116.362	0.4	-1.08	0.4	43	BA	1.3		AMMONIA TANKS
23	22: 8:42	36.716	115.697	0.7	7.76	1.6	74	88	0.6		INDIAN SPRINGS NW
23	23: 6:49	36.819	116.465	0.4	-0.248L	0.7	96	AB	0.5		TOPOPAH SPRING SW
25	9:44:41	36.719	116.025	0.5	4.09	2.1	97	88	0.7		CAMP DESERT ROCK
25	15:22:22	36.714	115.702	1.2	8.92	1.7	114	88	0.9		INDIAN SPRINGS NW
26	5:42:55	37.175	117.379	0.3	6.61	1.1	169	AC	1.0		UBEHEBE CRATER
26	6: 4:18	37.899	117.512	0.9	5.44	7.4	229	CD	1.6		SILVER PEAK
26	17:29:44	36.725	115.708	0.2	8.60	0.4	73	AB	1.7		INDIAN SPRINGS NW
28	11:57:19	36.528	116.129	0.3	5.40	0.9	109	AB	1.1		SPECTER RANGE SW
28	22:45:43	37.222	114.928	0.6	5.20	1.6	129	8 C	2.1		DELAMAR 3 NW
29	0:41:25	37.195	114.886	0.4	5.87	1.0	181	AD	1.7		DELAMAR 3 NW
29	9:16:13	37.191	114.873	0.4	8.99	0.7	218	AD	1.6		DELAMAR 3 NE
29	10:42:52	37.188	114.918	1.2	6.16	5.1	216	CD	1.4		DELAMAR 3 NW
30	0: 5:13	37.196	114.906	0.6	2.61	2.1	214	80	2.2		DELAMAR 3 NW
3 0	9:56:29	37.213	114.986	0.3	11.25	1.2	177	AC	1.3		DELAMAR 3 NW
30	10:48:56	37.172	114.865	0.7	10.39	1.6	225	AD	1.2		DELAMAR 3 NE
30	16: 9:13	37.198	114.929	0.6	5.28	4.7	174	8 C	1.7		DELAMAR 3 NW
30	16:44: 0	37.386	115.233	0.3	8.77	1.1	89	AB	1.1		ASH SPRINGS
31	3:18:34	37.258	115.020	0.3	7.18	1.4	155	AC	1.6		ALAMO SE
31	13:10:24	35.988	117.269	0.8	6.61	4.0	265	80	1.3		TRONA

								•			
				HORIZ		VERT	AZI				
DATE -	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP				
(U1	TC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	Mbig	QUADRANGLE
•	•		•							-	
JAN 3	9:14:48	37.115	116.748	0.3	-1.14+		105	CC	1.1	1.1	THIRSTY CANYON SW
	19:29:36	36.309	115.147	2.9	18.53	2.1	268	DD	1.3		GASS PEAK SW
5	4:25:42		115.476	0.4	9.86	1.3	98	AC	1.9		BLACK HILLS NW
5											FURNACE CREEK
_		36.436	116.922	0.8	8.81	3.2	92	BB	0.8	1.0	
5	5: 8: 1	36.635	115.476	1.8	6.69•		157	CC	1.2		BLACK HILLS NW
5	5:38:22	37.282	117.726	1.6	1.93	3.1	182	BO	1.0	1.1	MAGRUDER MTN
5	15:31:37	36.741	115.472	0.5	11.26	3.9	107	BC	1.0	1.3	BLACK HILLS NW
5	20: 9:57	36.720	115.469	2.0	2.60+		207	CD	1.0	1.4	BLACK HILLS NW
8	1:47:22	36.726	115.705	0.3	7.81	1.1	73	A8	1.1	1.2	INDIAN SPRINGS NW
8	8:32: 1	36.461	115.848	0.4	11.32	1.8	115	AC	0.4	1.1	MT STIRLING
ě	9: 0:18	37.973	115.229		-1.02		214	AD	0.8	0.9	OREANA SPRING
	13:41: 1	37.280	117.729	1.1	0.97+		164	ĈĊ	1.3	1.5	MAGRUDER MIN
•	13.41.	37.200	117.729		0.5/4		104	CC	1.3	1.3	MAGRODER MIN
	00.21. 0	14 777	444 400				070	4.0			70000111 0001110 0W
	22:23: 0	36.777	116.429		0.31		230	AD	0.6		TOPOPAH SPRING SW
	12:10:32	37.288	117.735	0.8	4.87	2.5	164	BC	1 . 4	1.5	MAGRUDER MTN
10	0:30:34	36.301	116.328	0.3	-0.45•		107	CC	1.4	1.5	ASH MEADOWS
10	4:15:49	37.329	116.057	0.9	4.52	6.0	112	CC	0.9	1.0	OAK SPRING BUTTE
11	6:37:14	35.901	116.768	1.6	-0.76+		241	CD	1.3	1.3	WINGATE WASH
11	23:52:14	36.333	116.320	0.8	1.07	2.2	172	BC	1.2	1.1	ASH MEADOWS
					• • • •			- •		• • •	
12	6:47:54	37.080	116 237	0.8	7.76	• •	101	A D			
			115.237			1 . 4	193	AD	1.3	1.4	LOWER PAHRANAGAT LAKE SW
12	9:31:12	35.692	115.331	9.2	2.06		316	DD	1.5	1.6	ROACH LAKE
	20:43:11	37.156	116.938	0.2	2.30 •		80	CÇ	1.1	1.3	SPRINGDALE
13	5:53:33	36.989	110.286	0.3	6.40	0.7	168	AC	0.9	1.0	TOPOPAH SPRING
1 4	4:22: 3	37.250	115.028	1.2	6.47	3.0	204	BD	0.6	1.0	ALAMO SE
14	8:35:40	37.012	117.861	2.4	5.69 •		266	CD	1.2	1.4	WAUCOBA SPRING
14	19:43:55	36.303	116.328	0.5	2.02.		92	CC	1.6	1.8	ASH MEADOWS
	21: 9:56	36.879	110.207	1.5	4.12	3.0	141	ac	0.8	0.8	MINE MTN
15	2:36:15	37.234	117.702	1.2	5.04.		201	CD	1.2	1.3	LAST CHANCE RANGE
16	5:47:44	37.507	114.578	2.8	5.33	4.5	281	CD	1.7	1.6	CALIENTE
	11:56:30	36.639	115.964	0.6	11.07	1.0	143	AC	0.4	0.9	MERCURY
17	5: 2:10	37.186	117.427	0.6	1.60	1.9	126	AC	0.9	1.0	UBEHEBE CRATER
18	17:38: 8	37.831	115.141	0.3	-0.20	9.4	115	CB	1.1	1.1	SEAMAN WASH
19	11:53:56	37.556	117.830	1.6	4.08	9.8	163	CC	1.3	1.2	PIPER PEAK
	14:24:16	37.438	115.214		7.00 • •		206	AD	0.5	0.8	ASH SPRINGS
	14:45:51	37.262	116.021	0.6	11.97	4.7	126	88	0.8		OAK SPRING BUTTE
	15:24: 4	37.257									
			116.037	0.7	-0.27	0.6	120	AB	1.3	1.2	OAK SPRING BUTTE
19	23:44:43	37.151	116.948	0.2	6.39	0.8	69	AB	2.1	2.3	SPRINGDALE
	11: 8:10	37.151	116.939	0.2	5.46	1.1	69	AC	1.7	2.1	SPRINGDALE
20	11:14: 3	37.153	116.939	0.3	5.87	2.0	79	AC	0.9	1.1	SPRINGDALE
20	18:46:25	37.149	116.938	0.2	0.44	6.4	75	CC	1.7	1.7	SPRINGDALE
20 2	22:47:16	37.152	116.943	0.4	6.28	2.8	76	B C	1.2	1.3	SPRINGDALE
21	2: 7:42	37.146	116.939	0.3	1.92	1.3	75	AC	1.2	1.1	SPRINGDALE
		37.152	116.940	0.2	0.54.		176		1.0	1.1	SPRINGDALE
			********					••			55 <u>5</u>
			444 040					80			SPRINGDALE
	15:34:41	37.147	116.942	0.5	1.94	3.4	172		1.1	1.0	
		36.647	116.222	0.4	4.84	2.4	114		0.3	1.0	SPECTER RANGE NW .
23	0: 7:17	36.822	116.647	0.4	-0.31BL		92		1.1		BARE MTN
23	7:30:48	37.080	116.142	0.3	0.41	9.8	96	CB	1.1	1.0	TIPPIPAH SPRING
23 1	11:45:41	37.322	116.378	0.4	5.47	7.5	113	CC	1.2	1.2	SILENT BUTTE
24 1	15:43:59	37.402	117.941	0.7	9.70	0.3	231	AD	2.9	2.1	SOLDIER PASS
24 1	15:48:45	37.419	117.931	1.1	8.26	0.8	233	80	1.3	1.6	SOLDIER PASS
		37.247	115.018	1.5	6.67		200		1.5		LOWER PAHRANAGAT LAKE
						3.8					
		37.423	117.894	1.6	5.64	1.3	139		1.5		SOLDIER PASS
	6:48:21	37.375	117.921	1.0	4.58	0.9	228		2 . 1	2.3	SOLDIER PASS
	₹0: 6:44	37.425	117.892	0.9	5.84	1.0	129			1.7	SOLDIER PASS
25	2:38:46	37.397	117.937	1.2	6.79	0.8	234	80	2.3	2.5	SOLDIER PASS
25 1	4:27:28	37.066	118.945	0.4	3.03.		183	CD	0.9	1.2	SPRINGDALE
		37.394	117.905	2.5	3.44	1.8	268			1.4	SOLDIER PASS
		37.396	117.871	0.5	1.83	1.1	166			1.8	SOLDIER PASS
											· · · REGIONAL · · ·
		37.159	114.408	2.2	6.41	1.4	273				
	8:29:58	37.191	114.515	1.1	8.64	0.6	240			2.1	VIGO NE
29 1	3:16:14	37.109	116.090	0.5	-0.12•		73	CC	1.6	1.4	YUCCA FLAT
	_	_								_	
29 1	4:17:12	37.157	116.945	0.3	0.38•		101			1.1	SPRINGDALE
		37.218	115.582	0.4	1.20	4.6	100	8C	1.7	1.4	FALLOUT HILLS NE
		37.240	117.557	0.5	5.25	1.4	96	AB '	1.1	1.6	LAST CHANCE RANGE
		37.249	117.565	1.0	4.73	2.5	94			1.4	LAST CHANCE RANGE
		37.239	117.570	0.4	8.91	0.6	103			1.6	LAST CHANCE RANGE
		36.298	115.929	2.0	1.35	3.8	231			0.7	MT STIRLING

DAT	E - TIME	LATITUDE	LONGITUDE	HOR I Z ERROR	DEPTH	VERT ERROR	AZ I GAP			٠	
	(utc)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUA	L Md	MbIg	QUADRANGLE
FEB 1		37.238	117.567	0.3	8.07	0.6	189	A8	1.4	1.6	LAST CHANCE RANGE
	1 9:16: 4 2 2:51:58		116.126 117.567	7.0 0.4	2.26 5.74	3.9 0.9	265 9 0	DD AB	1.5	1.3	STEWART VALLEY
	2:51:50		117.989	1.3	6.33	1.1	218	BD	1.6	1.5	MAGRUDER MTN Soldier Pass
	10:26:17		116.993	0.3	8.02	1.6	154	AC	1.3	1.5	FURNACE CREEK
	10:24:13		117.670	0.5	6.93	1.1	214	AD	1.4	1.2	WAUCOBA SPRING
	14:32: 6	37.297	117.725	0.7	0.46+		100	cc	1.3	1.1	MAGRUDER MIN
		36.634	115.723	0.4	5.02	2.7	124	80	1.2	0.9	INDIAN SPRINGS NW
:		37.260	114.686	6.3	11.86	4.9	213	00		1.4	ELGIN SW
9			117.887	0.7	2.81	1.0	192	AD		2.0	SOLDIER PASS
7		36. 0 98 35.931	116.962 117.165	0.7 1.8	16.61 9.80	0.6 1.2	191 266	AD BD	1.8	2.6 1.8	BENNETTS WELL Manly Peak
9											6
•		37.065	116.692 116.938	0.8 0.5	-0.38+ 2.94	1.5	148 76	CC AC	0.4 1.1	0.7 1.2	SPRINGDALE
		37.063	116.940	0.2	1.26	0.9	65	AC	0.0	1.0	SPRINGDALE
9		36.202	116.118		6.41		198	AD	0.7	1.2	STEWART VALLEY
9	20:1B:42	36.742	116.100	0.5	6.54	2.1	91	80	0.6	1.0	CAMP DESERT ROCK
11	20:24:42	36.039	116.650	1.0	1.068L	4.5	135	88	0.7	0.7	BARE MIN
11		37.741	115.046	0.1	9.43	0.4	126	AD	0.8	1.1	HIKO NE
12		37.360	116.301	0.3	-0.10+		59	CC		1.5	DEAD HORSE FLAT
12		37.226	116.452	0.3	-0.70+		123	CC	1.3	1.1	SCRUGHAM PEAK
12 12		37.229 37.211	116.472 115.839	0.2 	3.00• 7.00••		93 193	CC AD	1.4	1.1	SCRUGHAM PEAK Papoose lake ne
12		37.211	116.473	0.5	-1.89+		193	CC		0.8 1.5	SCRUGHAM PEAK
13				0.4	• • •			-			
13		37.224 37.220	116.447 116.452	0.3	5.16 -0.26•	1.6	89 87	AC CC	1.5	1.2	SCRUGHAM PEAK Scrugham Peak
13		37.225	116.459	0.3	-6.25	9.5	72	CC	1.4		SCRUGHAM PEAK
13		37.268	116.444	1.2	9.54	2.2	204	80	1.3	1.1	SILENT BUTTE
13	12:58:37	38.140	115.009	2.0	5.39	1.7	243	8 D	1.4	1.2	TIMBER MTN PASS NE
14	0:32:59	37.173	117.940	1.6	6.03	8.7	264	80	1.5	2.7	WAUCOBA SPRING
14	3: 5:47	37.291	115.107	0.6	-0.06•		164	CC	1.3	1.0	ALAMO SE
15	11: 2:33	36.477	117.683	5.6	1.54.		275	00	1.0	1.3	DARWIN
. 15	20:55: 4	37.321	117.565	0.2	-0.82	4.6	74	8 C		1.8	MAGRUDER MTN
16 10	0:11:33 0:20:40	37.322 37.313	117.562 117.564	0.3 1.0	-0.53 0.27•	8.0	73 115	CC		1.7	MAGRUDER MTN Magruder MTN
16	0:26:55	37.320	117.572	0.2	-0.43	5.3	76	CC		1.9	MAGRUDER MTN
16	1:27: 8	37.397	115.699	1.9	6.00•		198	CD	0.8	1.3	BALD MTN
16	5:23: 8	36.104	115.070	2.9	5.52	4.0	235	CD		1.8	TIMBER MTN PASS EAST
16	6:23:54	37.196	117.644	0.6	5.93	2.6	232	80	1.0	1.4	WAUCOBA SPRING
16	10:23:34	37.178	117.878	0.8	0.60		209	CD		1.6	WAUCOBA SPRING
16	20:27: 4	36.304	116.324	0.5	-0.65+		105	CC		1.7	ASH MEADOWS
16	23: 4:51	37.316	117.648		3.00		118	AD	0.8		MAGRUDER MTN
17	0:53:42	37.319	117.568	0.2	0.59	4.4	75	BC		1.9	MAGRUDER MTN
18	5: 6: 7	35.754	117.723	2.5	6.84	0.8	282	8 D		2.7	MOUNTAIN SPRINGS CANYON
18	6:18: 2	36.661	115.824	0.5	7.00	8.3	141			1.2	MERCURY NE Camp desert rock
18	8:58:45 19:31:24	36.708	116.1 0 6 116.388	0.2	-0.16 7.00**	6.4	49 242	CC 80		1.7	TOPOPAH SPRING NW
	19:52:42		117.541	0.9	-0.98+		79		0.8	1.1	MAGRUDER MTN
18	21:15:40	36.692	115.518	2.7	4.88+		258	CD	1.3	1.1	HEAVENS WELL
19	0:35:53			0.6	6.03	0.9			0.7		WAUCOBA SPRING
19	1:24:57			1.5	5.33	1.0		80	2.0	2.5	INYOKERN
19	1:56:28				-0.77	0.6	224		0.5		MERCURY NE
19	2:24:40		115.785		14.87		168		0.9		MT STIRLING
19	4:26:41	35.603	116.631	3.1	2.63•		275	CD	1.6	1.7	LEACH LAKE
20	0:29:40			0.4	4.67				0.7		JACKASS FLATS
20 20	1:46:59 1:56:33		115.758 115.814		-0.63 -0.79	3.6 0.8	280 135		0.9		MERCURY NE Mercury ne
20	12:12:50			71.9	7.00+		296		0.7		HAIWEE RESERVOIR
20	16:10: 0		117.528		-0.14		95		0.4		MAGRUDER MTN
20	21:20:16			1.6	5.77	1.6	221		0.8		OREANA SPRING
21		37.926	116.015	0.4	5.64				1.2		REVEILLE PEAK
	23:14:47		115.197		10.25				0.5		TIMBER MTN PASS WEST
21		37.286	115.070	1.8	1.76				1.0		ALAMO SE Specter range sw
23 23		36.548 36.707	116.242 116.119	0.2 0.3	2.92* 2.47	0.9	97 80		1.0		CAMP DESERT ROCK
23			116.117	0.5	5.99		108		0.8		CAMP DESERT ROCK
				-		-	-				

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUAI	L Md	Mblg	QUADRANGLE
. FEB 23 22:53:38	35.918	115.177	2.5	6.43	1.0	268	CD	1.9	2.0	SLOAN
25 5:19:58		116.546	1.0	14.06	1.1	224	AD		2.3	CONFIDENCE HILLS
26 4:39:40	37.768	114.951	8.6	4.57	3.0	173	BC	1.1	1.0	WHEATGRASS SPRING
26 23:59:14	37.068	116.946	0.4	5.92	1.7	66	88	1.0	1.2	SPRINGDALE
27 20:40:37 28 17:31:40	37.926 37.139	116.015 116.953	0.6 0.4	5.60 • 11.70	2.0	128 116	CC AB	1.3	1.1	REVEILLE PEAK Springdale
MAR 1 8: 9:22 2 18:52: 1	35.849 37.343	117.756 117.169	3.8 0.3	6.35 -0.13	1.4 0.4	266 67	CD AB	2.0	2.8 1.3	INYOKERN Scottys Junction SW
2 22:17:47	35.797	115.117	12.2	6.74	3.6	300	00	1.5	1.5	SLOAN
3 4: 3: 7	37.552	116.196	1.6	0.41	5.3	260	CD	2.0		+++REGIONAL+++
4 2:44:30	36.997	117.777	0.9	0.34+		206	CD	1.3	1.5	WAUCOBA WASH
4 15: 8:54	37.567	117.735	0.5	6.13	1.2	116	AC	1.5	1.3	LIDA WASH
5 22:21:28	36.344	114.907	3.4	6.09	1.9	259	CD	1.2	1.6	DRY LAKE
6 3:40: 4	35.896	117.074	5.5	2.62+		275	DD	1.2	1.4	MANLY PEAK
6 9:15:27 7 7:43:56	37.976 36.874	116.179	0.4 0.6	2.91 · 0.30		126	CC	1.2	1.5	REVEILLE PEAK
7 8:42:12	36.919	118.032 117.703	0.0	5.62	4.8 2.3	236 197	80	1.4	1.3	+++REGIONAL+++ DRY MTN
7 8:52: 0	37.760	115.035	0.7	0.16+		135	CC	1.5	1.5	WHITE RIVER NARROWS
7 21:44:36 7 22:29:7	35.689 35.728	117.766 117.833	7.7 7.6	7. 39 2.72	2.4 4.5	305 292	00 00	1.7	1.5 2.3	I NYOKERN I NYOKERN
6 2:25:7	37.215	116.455	0.3	1.19	1.6	83	AC	1.2	1.2	SCRUGHAM PEAK
8 4:23:56	37.330	116.317	0.5	2.46+		130	CC	1.2	0.9	DEAD HORSE FLAT
8 5:10:23	35.764	117.731	3.1	7.76	1.0	261	CD	1.6	2.5	MOUNTAIN SPRINGS CANYON
8 7: 1:45	35.846	117.607	8.6	11.76	3.5	291	DD	1.0		MOUNTAIN SPRINGS CANYON
8 14:41:45	35.645	117.731	2.2	9.51	0.6	266	80	3.7		RIDGECREST
6 19:32:38	37.113	117.968	0.6	3.06+		244	CD	0.9	1.1	WAUCOBA SPRING
8 21: 0:47 9 0:46:19	36.774 35.820	117.492 117.666	2.7 5.3	9.12 10.96	1.5 1.5	261 295	CD	0.6	1.1	TIN MIN
9 12:26:28	35.823	117.702	3.8	7.59	1.6	284	CD	1.3	1.5	MOUNTAIN SPRINGS CANYON MOUNTAIN SPRINGS CANYON
9 17: 6:32	36.627	116.262	1.1	5.56	2.4	142	BC	0.7	0.8	STRIPED HILLS
9 19:39:49	37.594	115.035		-0.66		169	DD	0.9		HIKO SE
9 21:29:39	35.747	117.746	2.5	7.00	0.9	263	CD	1.4	2.7	RIDGECREST
10 3:36:27	37.279	114.641	2.7	2.66+		251	CD	1.2	1.3	ELGIN SW
10 17:25:37	36.602	115.977	0.4	2.65		112	CC	8.9		FRENCHMAN FLAT
10 20:13:33 10 22:32:52	37.694 36.105	115.160 115.513	2.2	7.00 • • 10.49	2.0	164 237	AD BD	1.0	1.9	FOSSIL PEAK Mountain springs
					2.0		-		•••	
11 6:56:30	36.947	116.196	1.9	8.07	0.7	263	80	1.4	1.2	· · · REGIONAL · · ·
11 11:52: 7 11 23:59:53	37.240 36.439	114,509 116.974	2.0 0.6	6.67 5.05	1.1	269 129	BD BC	2.2	1.4	VIGO NE Furnace Creek
13 9:19:1	38.267	115.892	1.3	3.69	2.8	215	80	1.9	1.9	THE WALL SW
13 10:14:47	35.595	117.812	6.4	5.34	2.3	296	DD	2.0	2.1	INYOKERN
13 11: 9:52	36.505	116.579	0.3	4.40	2.5	106	BC	0.6	0.7	BIG DUNE
13 19:44: 7	36.709	116.108	0.3	1.66	1.0	130	AC	0.4	0.7	CAMP DESERT ROCK
13 22:17:53	37.422	116.316	3.2	0.63	8.9	262			1.3	· · · REGIONAL · · ·
14 0:14:59 14 9:35:13	36.665	116.111	1.7	3.09+	1.0	90		0.8	0.7	CAMP DESERT ROCK Fossil Peak
14 9:35:13 14 12:12:16	37.676 36.697	115.226	0.3	3.91 7.15		148		1.2		BLACK HILLS NW
14 16:11:52		117.765	4.3	6.76	1.5	363		1.9		INYOKERN
14 10:31:55	35.799	117.707	7.2	7.52	3.1	266	DD	2.8	2 1	MOUNTAIN SPRINGS CANYON
	36.342	117.111		34.27	J. I	219		1.5		EMIGRANT CANYON
15 1:50:49	35.846	117.667	6.9	13.16	2.4	293	DD	1.7	2.0	MOUNTAIN SPRINGS CANYON
	37.240	115.437	0.4	5.33	2.6	53		1.9		DESERT HILLS NW
15 17:33:46 15 17:58: 9	36.705 37.231	116.456 115.444	0.3 0.5	4.66 1.26	1.4	73 100		1.1	1.1	LATHROP WELLS NW Desert Hills NW
15 20:42:53	36.577	117.080	0.3	5.69	2.0	117			1.9	STOVEPIPE WELLS
	37.161 36.560	117.404 117.082	0.3 0.3	5.79 8.98	2.2 0.6	110		1.6	1.0	UBEHEBE CRATER Stovepipe Wells
	36.595	117.077	0.3	1.35	1.3	110			1.3	STOVEPIPE WELLS
16 7:21:25	36.583	117.064	0.3	7.60	1.8	116	AC	1.2		STOVEPIPE WELLS
10 7:23:10	36.581	117.086	0.4	6.67	2.1	117	8 C	1.4		STOVEPIPE WELLS
16 8:47: 1	36.580	117.061	0.2	7.99	0.7	116	AC	2.5		STOVEPIPE WELLS
	36.581	117.075		-0.64+		114			1.3	STOVEPIPE WELLS
	36.585	117.064	1.9 0.3	3.17+ 5.47	2 4	115 116		0.7 1.7	1.1	STOVEPIPE WELLS
	36.580 36.582	117.063 117.073		5.47 -0.19	2.4 9.2	113		1.7		STOVEPIPE WELLS
	36.583	117.062	0.4	2.90•		115		1.2		STOVEPIPE WELLS

1982 LOCAL HYPOCENTER SUMMARY

				HORIZ		VERT	AZI				
	TIME	(DEG. N)	LONGITUDE (DEG. W)	ERROR (KM)	DEPTH (KM)	ERROR (KM)	GAP (DEG)	QUAL	L Md	MbIg	QUADRANGLE
MAR 18	10:38: 4	36.829	116.232	0.3	0.35+		49	CB	1.2	1.4	SKULL MTN
18			116.947	9.4	3.84+		91	CC	1.4	1.2	SPRINGDALE
18		36.726	115.698	0.5	-0.92•		122	CC	1.0	1.0	INDIAN SPRINGS NW
18		37.730	115.188		7.00**		163	DD	1.2	1.6	FOSSIL PEAK
19		37.155	115.381	0.4	2.40		142	CC	1.6	1.7	DESERT HILLS NW
19	1:32:59	37.167	115.367	0.5	0.85+		130	CC	1.2	9.9	DESERT HILLS NE
19		37.412	117.168	0.5	0.33+		187	CD	1.1	1.1	STONEWALL PASS
19		37.116	117.318	0.5	0.18•		104	CC	1.5	1.2	UBEHESE CRATER
19		37.060	117.453	0.2	4.65	1.0	146	AC	1.1	1.2	UBEHEBE CRATER
19 20		36.457 37.083	115.761 117.462	0.4 0.6	9.63 2.93+	1.7	92 149	AC CC	1.1	1.8	MT STIRLING Ubehede Crater
20		38.136	115.839	4.5	1.87	7.7	241	CD	1.5	1.4	TIMBER MIN PASS NE
•	4.44.4										
21 21	1:46: 4 10:27: 7	36.644 37.5 0 3	117.382 115.353	0.4 0.4	7.52 2.24•	0.7	183 51	AD CC	1.6	1.9	MARBLE CANYON
21	10:47:36	37.144	116.937	0.3	2.74	1.8	75	AC	1.5	1.5	MT IRISH Springdale
21	11:12:38	37.144	116.942	0.3	5.40	2.5	76	ê C	1.4	1.2	SPRINGDALE
21	15:26:38	35.655	117.779	16.5	3.99	4.6	315	DD	1.7	1.7	INYOKERN
21	22:19:44	37.140	116.939	0.3	0.99	8.1	188	CC	1.5	1.5	SPRINGDALE
22	2:46:39	38.279	115.880	1.3	3.86	3.4	218	80	1.5	1.7	THE WALL SW
22	5:43:11	36.614	115.946	0.3	6.52	0.7	80	AA	1.1	1.3	MERCURY SW
22	20: 1:32	36.974	116.325	0.2	0.88•		98	CB	0.5	0.7	TOPOPAH SPRING
24	19: 8:23	37.155	116.201	0.4	-0.66.		122	CC	1.0	1.2	RAINIER MESA
25	3:21:35	36.506	115.031	11.9	13.64	6.3	254	DD	1.7	1.5	HAYFORD PEAK
25	4:23:58	37.133	116.250	0.3	1.88	1.1	106	AC	1.0	0.9	AMMONIA TANKS
25	19:37:27	37.549	115.229		17.72		226	AD	1.0	1.3	HIKO
25	22: 3:24	35.592	115.606	5.5	14.84	1.9	297	DD	1.6	1.5	CLARK MTN
29	22:32:23	37.041	114.569	3.6	2.45+		264	CD	1.5	1.6	VIGO
30	18: 5:36	36.756	117.792	2.3	6.03+		249	CD	1.4	1.7	WAUCOBA WASH
APR 1	15:47:10 23:49: 6	38.038 36.726	115.762 116.232	0.4 0.2	-0.60+ 7.60	9.7	175 67	CC AA	1.3	1.5	QUINN CANYON RANGE Specter range NW
Ara 1	23.40. 0	30.720	110.232	0.2	7.00	0 .,	67	~~	1.3	1.3	SPECIER RANGE NW
2	8:13:26	36.726	116.239	0.2	7.98	0.5	6.6	AA	1.0	1.3	SPECTER RANGE NW
2	13:57:26	36.730	116.239	0.2	7.61	0.6	59	8.4	1.2	1.2	SPECTER RANGE NW
3 3	2: 0:25 8:45:45	37.177 35.786	117.876 117.962	0.6 2.2	6.64 5.79	2.4 9.9	216 327	8D	0.9 1.7	1.5	WAUCOBA SPRING LITTLE LAKE
3	10:31: 7	36.851	116.245	0.4	3.98	1.1	83	A8	0.4	0.5	SKULL MIN
3	13:17:49	37.175	117.879	0.5	6.12	1.2	221	AD	1.7	1.8	WAUCOBA SPRING
3	17:13: 9	36.731	115.992	1.3	4.65	3.6	118	88	1.0	0.9	MERCURY
4	1:29: 2	37.172	117.884	0.7	6.66	1.6	232	60	1.8	1.7	WAUCOBA SPRING
4	8:22:14	37.168	117.913	1.1	1.88	4.3	227	80	1.8	1.9	WAUCOBA SPRING
4	8:25:27	37.186	117.859	9.6	8.60	1.4	212	AD	1.7	1.5	WAUCOBA SPRING
4	12:19:37	37.250	115.008		-0.05	0.7	158	AC	1.7	1.9	ALAMO SE
4	18:27:26	37.176	117.878	0.5	6.89	1.2	217	AD	1.4	1.4	WAUCOBA SPRING
4	23: 0:11	37.712	115.053	0.4	7.37	1.4	117	AB	1.3	1.4	HIKO NE
5	8:13:47	35.803	117.748	5.0	9.41	3.6	307	DD	1.8	1.6	MOUNTAIN SPRINGS CANYON
5	14:38:23	37.852	116.146		-0.58	0.7	185			1.6	REVEILLE PEAK
6	15:13: 7 8:52:58	37.405	115.200		-0.18	0.4	88 232			1.4	ASH SPRINGS
9	5:21:18		117.863 116.402	0.4	14.32 8.03	1.8	61			1.4	WAUCOBA SPRING Lathrop Wells NW
•	3.21.10	30.033	110.402	•••	0.03	0.,	••	•	,		
9	7: 6:29		116.195	0.2	4.48	0.4	83			1.1	TIPPIPAH SPRING
9	9:23:33		115.021	1.4	1.58	2.6	211			1.0	LOWER PAHRANAGAT LAKE
10 10		35.749 37.028	117.751 116.178	1.6	5.82 4.20	0.9 1.2	301 98		1.4		INYOKERN Tippipah spring
10	21:32: 4		116.045	8.5	4.05	3.3	99			1.0	BELTED PEAK
12		37.773	115.312	0.9	3.02+		163		1.4	1.4	QUAD. NOT LISTED
12	10:23:26	37.376	114.996	0.4	1.18	1.4	175	AC	9.9	1.0	DELAMAR NW
13	5: 5:31	36.943	117.778		18.54	1.5	220			1.6	WAUCOBA WASH
13		37.734	115.023	9.4	6.79	0.7	133		1.5		HIKO NE
14		35.723	116.619	1.3	1.76	3.5	277	80	1.4	1.6	LEACH LAKE
15	1: 3:24	37.385	115.005	0.4	2.26	0.7	178			1.6	ALAMO NE
15	4:40: 6	36.739	116.246	0.3	7.00	0.4	115	AB	0.9	0.6	SPECTER RANGE NW
15	18:54:20	37.034	116.193	0.8	3.83	1.1	215	AD	0.7	0.9	TIPPIPAH SPRING
16		37.232	115.395	0.3	6.34	1.3	98			1.8	DESERT HILLS NW
	11:54:11	37.027	116.186	0.3	4.63	0.4	118			1.1	TIPPIPAH SPRING
16		37.047	116.182	0.5	5.67	0.6				1.0	TIPPIPAH SPRING
16		37.281	117.250	0.7	8.45	0.7	143			1.4	GOLD POINT
17	2:15:57	36.694	117.395	1.1	0.74	1.0	238	80	0.6	0.7	MARBLE CANYON

			19	82 LOC	AL HYPO	CENTER	SUMMAR	Y			
	E - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUA	L Md	Mbla	QUADRANGLE
			410 400		4 4						
APR 17		37.028 37.024	116.182 116.023	0.3 0.8	4.49 4.30	0.6 3.5	87 119	AA BC			TIPPIPAH SPRING Yucca Flat
17		37.024	116.189	6.5	4.69	1.2	94	88			TIPPIPAH SPRING
18		35.722	117.776	1.5	5.81	1.6	302	80			INYOKERN
19		36.669	117.452	2.3	0.56	1.9	246	BD			MARBLE CANYON
20	12:19:19	38.136	115.696	1.7	5.39	2.2	233	80	1.9	2.5	CHERRY CREEK SUMMIT
21 21		37.218 37.318	117.682 117.846	0.3 1.3	9.58 14.58	0.6 1.0	169 268	AC BD	1.4	1.8 1.3	LAST CHANCE RANGE SOLDIER PASS
22		36.712	116.229	0.2	0.02	0.3	141	AC	6.9	0.8	SPECTER RANGE NW
22		37.049	116.238	0.8	2.93	0.7	241	AD	0.9	0.7	TIPPIPAH SPRING
23		37.113	116.505	0.4	9.16	2.8	89	B C	0.7	0.9	THIRSTY CANYON SE
23		36.982	116.017	0.5	5.53	1.0	172	AC	1.2	0.9	YUCCA LAKE
24 24		35.773 37.958	117.700	0.6	7.58 0.47	0.4 0.6	292	AD	2.2	2.0	MOUNTAIN SPRINGS CANYON
24		38.128	117.788 115.746	0.8 0.8	0.19	0.8	245 194	AD 8D	2.1	2.0 1.6	RHYOLITE RIDGE Cherry Creek Summit
25		36.728	117.304	0.3	11.25	0.4	146	AC	1.4	1.3	MARBLE CANYON
25		36.510	117.937	1.3	0.72	1.1	256	80	1.7	2.0	NEW YORK BUTTE
25	3:45:21	36.580	117.077	0.4	13.88	1.0	115	AB	1.3	1.4	STOVEPIPE WELLS
25		35.655	117.777	0.9	6.51	0.4	293	AD	2.8	3.4	INYOKERN
25	4:26:25	35.708	117.742	0.5	7.46	0.4	304	AD	1.8	1.9	RIDGECREST
25 25	0: 1:21 23:56:12	37.627 36.739	114.810 115.994	0.8 0.3	-0.51 9.58	1.0 0.5	149 157	AC	0.9	0.9 0.5	PAHROC SPRING NE MERCURY
27	15:42:37	35.597	117.801	1.0	8.60	0.6	296	AD	2.3	3.3	INYOKERN
27	17:34: 1	35.741	117.740	0.6	7.00	0.6	290	AO	2.3	2.4	RIDGECREST
20	10:21:33	36.942	117.529	0.5	4.76	3.2	196	BD	1.3	1.5	DRY MTN
20	12: 8:30	38.019	115.140	1.0	-0.12	0.8	221	AD	1.2	1.7	TIMBER MIN PASS WEST
20 20	17: 3:16 19:41: 2	37.332 37.042	116.090 116.136	0.2 0.4	4.72 3.67	1.6 1.6	112 178	AC	1.0	1.2 0.9	OAK SPRING BUTTE Tippipah spring
20	21:17:18	36.337	114.899	1.4	5.05	3.2	263	80	1.6	1.9	DRY LAKE
28	22:58:26	37.202	115.061		15.24		336	AD	1.1	1.4	LOWER PAHRANAGAT LAKE
28	23:23: 4	38.139	115.760	0.6	2.46	2.7	195	BD	1.3	1.6	OUINN CANYON RANGE
20 29	23:35:29 4: 0: 1	38.132 36.874	115.751 116.777	0.5 0.3	4.97 9.19	3.9 0.9	219 49	8 D A B	1.4	1.4	OUINN CANYON RANGE Bullfrog
MAY 1	1:12:41	37.161	116.198	0.3	7.09	0.7	103	AB	1.4	1.4	RAINIER MESA
2	7:19:42	35.728	117.743	0.6	8.61	0.5	295	AD	2.3	2.5	RIDGECREST
2	10: 2:23	36.190	117.929	0.6	3.39•		281	CD	1.5	1.5	HAIWEE RESERVOIR
5	7:31:50	37.093	116.856	0.2	-0.43	0.3	88	AA	1.0	1.0	SPRINGDALE
5	20:28:21 11:35:48	36.822 37.288	117.499 114.985	0.8 2.3	5.99 9.30	0.9 3.0	197 208	AD BD	1.2	1.3	TIN MTN Delamar lake
6	16:37:43	35.976	117.981	0.5	2.92	0.5	269	AD	2.0	2.3	LITTLE LAKE
7	0:12:14	35.828	117.626	3.1	10.43	4.0	296	CD	1.6	2.1	MOUNTAIN SPRINGS CANYON
7	6:50:30	36.723	116.047	0.2	5.72	0.8	96	AB	0.8	0.8	CAMP DESERT ROCK
7	14:45: 4	35.987	115.679	0.8	7.09	0.9	270	AD	1.6	1.9	SHENANDOAH PEAK
7	15:43:44 18: 6:43	35.959 36.293	116.897 115.771	0.3	7.00**	0.9	266 162	AD	2.1	1.9 1.5	WINGATE WASH MT STIRLING
8			115.731	0.8	0.34	0.9	203		1.7		CHERRY CREEK SUMMIT
	10:40: 0		116.061		5.86	1.2	. 0		0.0		CHUCK_WAGON FLAT
8	21:49:41	35.728	117.775	1.9	5.93	0.9	312	80	1.9	2.2	INYOKERN
9	2:12:29		115.428	0.5	5.16	5.0	113		1.1		MT IRISH
9 10	8:58:20 6:22:37	37.074	116.046 117.730	0.5 2.4	0.39 7.00	0.9 2.4	130	AC CD	1.2	1.4	YUCCA FLAT Mountain Springs Canyon
12		35.733	117.716	1.1	7.59	0.8	302	80	2.1	2.6	RIDGECREST
12	1:22:58	35.760	117.798	2.0	3.06+		310	CD	2.1	2.2	LITTLE LAKE
12	19:29:25	37.282	115.029	0.3	7.24	0.6	169	AC	3.0	3.3	ALAMO SE
12		37.293	115.024	0.5	4.75 6.69	2.6	152	BC	2.0	2.0	ALAMO SE Alamo se
12		37.272 37.309	115.021 115.030	0.4 1.0	5.27	0.7 1.3	192 179	AD AC	2.0 1.3	1.8	ALAMO SE
12	20: 9:10	37.253	115.026	6.2	2.59+		227	00	1.0	0.8	ALAMO SE
12		37.266	115.037	1.3	0.17	1.6	152	8 C		1.6	ALAMO SE
12		37.234	114.964	2.1	3.68+		247	CD	1.1	1.1	DELAMAR 3 NW
		37.237	115.006	1.1	9.85	2.2		80		1.5	LOWER PAHRANAGAT LAKE
		37.223 37.258	114.980 115.077	2.3	7.87 4.36	4.1 5.5		80 CD		1.3	DELAMAR 3 NW Alamo se
		37.254	115.004	1.0	0.16	1.1		CC	1.7	1.6	ALAMO SE
13	0:12:27	37.280	115.048	5.8	2.09+		181	DD	2.4		ALAMO SE
13	11:25:29	37.246	115.044	2.1	6.34	7.4	153	CC	2.3		LOWER PAHRANAGAT LAKE

DA		- TI	ME			IITUDE [g. n)			31TUD: 3. W)	E I	IOR I ERRO (KM)	R		PTH	E	ERT RROR KM)	AZI GAP (DEG	•	QUAL	. Md	Mblg	QUADRANGLE
MAY	1.3	14.	49.4		37	. 252			3.887		0.5		4	. 29		2.1	269	1	80	1.2	1.3	ALAMO SE
	13	17:				. 248			. 668		2.4			. 69		1.7	213		80	1.2		LOWER PAHRANAGAT LAKE
1	13	21:	24:5			. 256	1	115	. 000		0.3			. 12		0.4	159		BC	1.8		ALAMO SE
	4		11:2			.247			. 020		1.3			.75		2.4	266		BD	1.4		LOWER PAHRANAGAT LAKE
	14		0:3 0:2			.268 .226			. 618		8.2 1.7			. 32 . 64		0.3 2.7	156 213		AC BD	1.6		ALAMO SE Lower Pahranagat Lake
					• •								_									**************************************
		19:				. 633			.826		1.8			.76 .15		5.1 0.6	127 302		CB AD	2.0	1.6 2.1	BENNETTS WELL INYOKERN
	4	20:				.773			.768		8.8			. 64		0.8	284		AD	2.0		LITTLE LAKE
	5		24:5			. 276			. 015		0.4			. 69		1.6	155		AC	1.5	1.5	ALAMO SE
	5	5:	50:5			.715 .275			. 858		0.3 1.1			. 36 . 9 9		1.1 1.6	116 186		AB BD	1.0	1.3	HIKO NE Alamo se
			-																			
		21:				.313			. 052		0.7			. 55 . 10		1 . 4	184		AD	1.4	1.4	ALAMO SE
	5		0:3			.015			.013		8.6 8.7			. 32		D.6 1.9	186		AD AD	1.3	1.6	ALAMO SE Lower Pahranagat Lake Sw
		21:				. 224			.963		8.7	•		. 00		3.0	284		80	1.2	1.6	DELAMAR 3 NW
		23:				.771			. 200		9.2			. 01		9.3	75		AA	9.9	0.9	JACKASS FLATS
1	7.	12:	6:	1	37	. 963	,	16	. 0 4 1		e . 3	•	- 0	. 32•	•		146		CC	1.4	1.4	YUCCA FLAT
		12:5				. 310			. 838		9.4			. 56		3.7	289		AD	1.5	1.5	ALAMO SE
		14:				. 251			. 033		1.4			. 25		1.7	203		BD	1.0	1.2	ALAMO SE
1		22:1				. 284 . 756			.020		0.7 0.2	•		. 25 . 44).6 .1	183		AD AC	1.7	1.6	ALAMO SE Skull mtn
	é		5:5			. 298			. 041		0.5			. 66		. 7	184		AD	1.3	1.2	ALAMO SE
1			11:			. 255			. 923		0.4			. 46		4	199		AD	1.2	1.3	ALAMO SE
2	2	21:5	5:1	2	36	. 362	1	17	. 031		e . 4		4	. 25	•	. 4	84		AA	1.2	1.3	EMIGRANT CANYON
2	3	8:3	5:1	5	35	.716	1	17	.764		1.0			. 13		9	302		BD	1.9	2.2	INYOKERN
2		13:5				. 650			. 389		0.3			. 65		. 4	111		84	1.0	1.0	LATHROP WELLS NW
2 2		15: 17:3				.408 .546			. 493 . 428		1.0 0.2			. 87 • . 26		. 3	146		AC	1.3	1.4	CRESCENT RESERVOIR LATHROP WELLS SW
2		23:5				. 283			. 456		0.2			. 50		. 9	60		ĀČ	1.8	1.3	SILENT BUTTE
2	6	17:1	7:	•	37	. 269	•	15	. 025				•	95	_		198		AD	1.2	1.1	ALAMO SE
2			2:4			. 266			.976		1.0			05		. 5	203		8D		1.0	DELAMAR LAKE
2		10:5				.712			. 103		8.3			50		. 0	137		AC	1.3		CAMP DESERT ROCK
2		12:3 10:3				. 052 . 255			. 170		9.3			92		. 4	92		88	1.1	9.9	TIPPIPAH SPRING
3:		1:2				. 7 83			. 031 . 945		1.8 9.7			96 81		. 3	225 242		8 D	1.8	1.3 2.0	ALAMO SE Horse thief springs
3	8	8:2	9:44	•	37.	124	1	15.	. 296	(9.4		2.	88	1	. e	152		AC	1.6	1.8	DESERT HILLS SE
30	-	14:2				265	1	15.	. 966		1.3			89	1	. 7	188	-	6 D	1.3	1.0	ALAMO SE
30	-	10:2				346			. 656		1.9			26+			284		CD	1.2	1.3	ELGIN SW
3		3:2 15:4	7:31			245 598			. 0 17 . 411).8).1			34 98•		. 6	2 09 315		8 D D D	1.3	1.3 3.0	LOWER PAHRANAGAT LAKE
JUN			8: 8			717			746		1.5			65		. 0	302		BD		1.8	RIDGECREST
,	1	8:3	7:29		37.	254	•	15.	. 936	,	2.0		4.	19	7	. 1	201		CD		1.2	ALAMO SE
		11:				948			819		. 9			23		. 9	268		80	1.7	2.3	BOULDER CITY
1	2 1	10:5	9:24			368			253	•	. 4			79		. 4	105	- (BD		1.8	BADGER SPRING
		11:2				237			897		. 7			38		. 5	227		BD		1.4	QUINN CANYON RANGE
		13:3 17:2				981 968			421		.6			96 98		. 8 . 9	269 135		BD AC	1.0	1.4	TRONA Springdale
	2 1 1	17:3 7:4				074 135			947).2).6			54 84		. 6 . 8	53 160				1.5	SPRINGDALE Desert Hills ne
		0:5				260			013		. 3			12		. 1	156			2.4		ALAMO SE
		2:4				247			005		. 7			41		. 4	211				1.4	LOWER PAHRANAGAT LAKE
5		9:5				637			858		. 9			15		. 3	200			2.5		PIPER PEAK
5	3 2	23:	5:48) ;	37.	055	11	6.	950	€	. 5	1	5.	36	1	. 5	146	•	AC		8.8	SPRINGDALE
9		4:3				083			945		. 2			56		. 6	66				0.9	SPRINGDALE
		9:4				636			984 983		. 3		5. 5.	87 77		. 5 . 1	112				1.0	HIKO NE HIKO NE
ě		3:4				269			617		. 4		4.			. 6	88				1.1	MAGRUDER MTN
7		0:13							022		. 0		4,			. 7	206		_		1.1	LOWER PAHRANAGAT LAKE
6	1	8: :	1:21	3	7.	230	11	4 .	978	1	. 1		4 . :	35	6	. 2	246	C	CD		1.3	DELAMAR 3 NW
		8:15							867		. 9			65		. 9	272				1.9	WINGATE WASH
9		4: (860		. 2			68+			254				1.4	NEW YORK BUTTE
9		4:20				967 932			549 893		. 3 . 5		9.: 9.	50 10		. 4 . 2	182 144				1.4	DRY MTN Bullfrog
12		0:53							851		. 5) .) . :			9	121				0.8	SPRINGDALE
12		1:30				135			875		. 3		. (2	48			1.9		SPRINGDALE

		- TIME UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUAL	. Md	Mbig	QUADRANGLE
JUN	1 13	23:39:40	36.869	116,195	0.4	4.36	0.8	58	AA	1.5		SKULL MTN
	14	6:11:36 10:22:41	37.203 36.397	114.982 117.935	1.0 0.8	11.49	1.7 1.2	232 259	AD AD		1.3	DELAMAR 3 NW Keeler
	15	1:20:25	36.968	116.124	0.2	5.23	0.5	104	AB		0.5	YUCCA LAKE
	16 17	6:38:43 16:55:50	35.870 37.072	117.475 116.941	11.3 0.2	6.18 -0.43	6.5 0.2	292 64	DD AC		1.5	TRONA Springdale
	18	9:14:55 9:48:21	37.335 37.334	117.686 117.684	0.3 0.2	6.02 2.96	0.9 1.5	134 134	A8 AC		1.3	MAGRUDER MTN MAGRUDER MTN
	18	18:52:42	37.121	116.387	0.4	8.58	1.4	185	AD		8.8	TIMBER MTN
	1 B 1 9	20: 5:13 9:36:29	37.077 35.751	116,362 117.756	0.7 7.8	7.83 -1.88	2.0 4.6	161 3 8 1	AC DD		8.7 1.8	BUCKBOARD MESA Little lake
	19	22:50:13	36.605	117.112	0.3	5.72	1.7	116	AC		1.4	STOVEPIPE WELLS
	20	0: 3: 1	36.611	117.110	0.3	5.90	2.0	113	8 C		1.0	STOVEPIPE WELLS
	20	1:51:26 3:34:47	36.199	117.603	0.5	6.77	0.6	263	AD		1.7	COSO PEAK
	20 20	3:34:47	36.663 36.661	116.266 116.264	0.4 0.2	7.72 7.23	0.6 0.3	127 186	A 8 A 8		0.7 0.6	STRIPED HILLS Striped Hills
	20	11:46:53	36.101	117.418	4.1	15.44	1.9	292	CD	2.1		MATURANGO
	21	10:31:57	36.608	117.106	0.2	0.82	0.3	113	AC		1.2	STOVEPIPE WELLS
	22	9:22:53	37.141 36.604	116.877 117.186	0.3	2.11	1.7 1.6	49	AB		1.4	SPRINGDALE
	22	15:29:59 19:44:13	37.075	116.945	0.4 0.2	7.59 1.46	9.6	115 65	AC		1.0	STOVEPIPE WELLS Springdale
	22	21:14:48	37.085	116.372	0.4	0.63	0.7	107	A8		0.7	BUCKBOARD MESA
	22 23	21:59:45 13:27:53	37.168 36.604	116.830 117.114	0.3 0.2	9.79 8.85	1.1 0.7	128 117	AC AB		1.2	SPRINGDALE Stovepipe Wells
	23 23	13:31:56 14: 9:49	36.605 36.605	117.111 117.189	0.2 0.3	0.36 5.66	0.3 1.4	115 115	AC AC		1.2	STOVEPIPE WELLS STOVEPIPE WELLS
	23	15:20:14	36.607	117.104	0.5	4.09	6.1	113	CC		1.2	STOVEPIPE WELLS
	23 24	22:43:21 7: 7:60	36.607 36.610	117.101 117.099	0.3 0.2	4.78 8.88	2.7 0.4	112 111	BC AC		1.2 9.8	STOVEPIPE WELLS STOVEPIPE WELLS
	25	19:10:41	37.084	117.358	0.2	0.64	0.3	120	AB		1.2	UBEHEBE CRATER
	28	10:41:35	37.509	117.654	9.3	3.12+		83	CC		1.4	LIDA WASH
	28	12:51:40	36.837	116.267	0.3	9.85	0.5	105	AB		0.4	JACKASS FLATS
JUL	3 8 3	16: 5:10 6: 7:36	37.718 38.081	115.051 115.918	0.3 11.2	7.49 7.00+	1.1	119 166	A8 DD	2.5	0.9	HIKO NE Quinn Canyon Range
300	3	9:10:57	37.009	116.107	0.4	2.71+		141		0.9		YUCCA FLAT
	3	12:27:51	37.265	115.045	2.9	9.34	5.5	188	CD	2.2		ALAMO SE
	4	7:23:24	37.699	115.043	0.3	-0.05	0.6	117			1.4	HIKO NE
	4	7:30:59 7:38: 8	37.698 37.654	115.046 115.078	0.3 1.5	0.74 11.71	0.6 5.0	116 103			1.2	HIKO NE Hiko ne
	4	8: 0:28	37.846	114.468	3.1	3.50+		300			1.4	+ + + REGIONAL + + +
	4	12:44: 3	35.757	117.717	4.4	8.38	1.4	284			2.8	MOUNTAIN SPRINGS CANYON
		14:34:18	35.773	117.672	10.1	2.96	5.8	287	DD	2.1	2.0	MOUNTAIN SPRINGS CANYON
	5 5	7: 8:49 17:54: 3	37.986 35.400	117.106 116.447	0.3 4.0	9.48 9.58	0.4 3.1	167 318			1.6	MUD LAKE
	5	21:30:45	37.252	116.153	0.2	4.11	1.3	112			0.B	QUARTET DOME
	5	23:45: 7	37.219	114.825	1.7	2.22	7.0	229			1.2	DELAMAR 3 NE
	6	2:10:43 2:15:43	37.698 37.668	115.037 115.046	0.2 0.6	2.56 0.70	0.6 0.9	119 154		3.1 	1.3	HIKO NE HIKO NE
	6	2:19:26	37.686	115.645	0.7	0.40	1.1	113			1.2	HIKO NE
	6	2:30: 0	37.691	115.048	0.4	0.93	0.6	114			1.2	HIKO NE
	6	2:33:16	37.677	115.035		-1.11	0.9	114			1.0	HIKO NE
	6	2:36:52 2:37:17	37.678 37.781	115.030 115.038	0.6 0.6	3.19 5.03	5.1 9.3	160 119			8.9 1.8	HIKO NE HIKO NE
	6	2:43: 6	37.699	115.848	1.0	0.93	1.5	118			0.9	HIKO NE
	•	2:49:49	37.683	115.045	0.6	1.00	2.8	113			1.1	HIKO NE
	6	2:51:25 2:53:27	37.694 37.691	115.037 115.050	0.9 0.7	1.22 0.17	4.1	118 113			1.3	HIKO NE HIKO NE
	6	4: 5:22	37.696	115.038	0.5	-0.26	0.9	118	BC -		1.4	HIKO NE
	6	4: 8:16 4:17:57	37.891 37.782	115.844 115.038	0.5 .0.7	0.83 2.38	0.9 1.8	115 119			0.9 1.2	HIKO NE HIKO NE
	6		37.699 37.692	115.042 115.028	0.7 0.6	2.52 4.05		118			0.9 0.8	HIKO NE
	6	4:36:16	37.696	115.046	0.3	1.67	0.9	116	AC -		1.3	HIKO NE
	6		37.682 37.696	115.049 115.039	9.3 9.6	1.13	1.2 1.0				0.8 1.4	HIKO NE
	6		37.684	115.049	0.4	1.15					1.1	HIKO NE

				HORIZ		VERT	AZI				
DATE	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR					
(1	UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	. Md	Mblg	QUADRANGLE
•											
JUL 6	5:10:11 5:11:55	37.692 37.678	115.045 115.046	0.4 0.7	0.93 0.83	0.5 1.1	115	AC BC		1.2 0.8	HIKO NE
6	5:19:51	37.694	115.044	0.2	0.63	0.3	116	AC		0.9	HIKO NE
6	5:24:53	37.682	115.046	0.4	8.79	0.7	112	AC	0.8	1.1	HIKO NE
6	5:29:27	37.692	115.033	1.2	3.78	6.6	119	CB	1.2	1.2	HIKO NE
6	5:38:40	37.727	115.035	0.7	1.64	2.3	127	8 C	0.5	0.8	HIKO NE
6	5:49:56	37.699	115.043	0.3	2.29	1.0	117	AC	0.9	1.2	HIKO NE
6	6:14:29 6:42:56	37.698 37.386	115.040 116.124	0.3	1.65 7.00•	1.1	118 169	AC DC	1.2	1.5	HIKO NE
6	6:56:54	36.815	117.540	9.7	7.88 • •		325	80	1.5		WHEELBARROW PEAK NE Dry min
6	9:48:41	37.136	117.331	8.1	-0.14+		107	DC	1.1		UBEHEBE CRATER
6	10: 5:19	37.674	114.999	6.3	7.00	5.3	274	DD	1.9		PAHROC SPRING
_											
6	14:56: 7	37.698	115.049	0.3	0.97	0.6	115	AC		1.4	HIKO NE
7	0:21:15 10:14:31	37.670 37.067	115.070 116.942	2.1 8.5	3.1 3• 7.60	2.4	176 96	CC	0.9	1.8	HIKO NE
ź	16:40:27	37.700	115.049	0.6	-0.65	1.0	116	AC		1.3	SPRINGDALE Hiko ne
ż	19:43:35	37.273	115.669	0.7	3.01+		126	CC		1.1	GROOM LAKE
0	1:50:49	37.702	115.036	0.3	2.16	8.8	128	AC		2.0	HIKO NE
											_
9	2:33: 6	37.701	115.046	0.4	0.56	0.5	117	AC		1.2	HIKO NE
8	6: 6:37 19:32:40	37.277 37.696	117.644 115.644	0.4 0.3	6.12	0.6 0.5	121	AB		1.2	MAGRUDER MTN
9	13:23:19	37.450	114.993	0.8	-0.12 0.40	1.2	116 174	A C		1.3	HIKO NE Delamar nw
9	10:37:17	36.336	114.884	1.8	6.43	1.6	263	80		1.5	DRY LAKE
1 0	6:31:15	36.721	116.203	0.2	1.62	4.5	128	88		0.4	SPECTER RANGE NW
	_										
10	8:57:21	37.386	115.190	0.9	5.79	3.0	154	BC		1.4	ASH SPRINGS
10 11	18: 5:46 10: 2:28	37.36 3 35.795	115.212 117.727	1.6 3.7	9.58 0.60	3.4 3.0	165 296	BC CD		1.2 1.5	ALAMO Mountain Springs Canyon
13	21:31:39	37.699	115.848	0.3	1.94	0.6	116	AC		2.3	HIKO NE
14	10: 9:27	37.227	117.327	0.3	7.45	6.7	69	AB		1.1	UBEHEBE CRATER
14	22: 2:32	37.696	115.042	0.2	1.76	0.5	117	AC		1.4	HIKO NE
15	5:24:51	37.691	115.044	0.4	1.73	1.4	115	AC		1.4	HIKO NE
15	19:35:32	37.073	116.423	0.3	0.17	0.1	261	AD		0.9	TIMBER MIN
15 16	19:45:50 16:11:43	36.129 37.690	115.750 115.047	1.1 0.4	1.01 1.36	2.5 1.7	236 116	BD AC		1.0	QUINN CANYON RANGE HIKO NE
17	0:50:15	37.065	116.941	0.4	8.86	1.8	96	AB		1.2	SPRINGDALE
17	9:53:56	36.789	116.213	0.3	0.52	0.4	135	AB		1.0	SPECTER RANGE NW
17	11:26: 9	37.700	115.036	0.4	0.26	0.6	128	AC		1.3	HIKO NE
17 19	16: 0:38 7:30:51	38.176 37.347	115.920 114.742	1.3	5.44 5.71	3.2 2.6	221 232	80	1.8	1.6	QUINN CANYON RANGE Elgin Sw
19	7:51:50	37.336	114.708	1.3	1.85	3.4	209	80		1.6	ELGIN SW
19	11:35:53	37.467	117.645		7.00		150	AD	1.8		SOLDIER PASS
20	20:20:54	37.716	115.014	0.5	-0.02	2.2	132	88		1.9	HIKO NE
											MAAU 511858
21 21	9:14:44	30.526 37.036	117.931 116.736	10.8	32.23· 25.92	2.1	257 222	00 80	2.3		NEW YORK BUTTE THIRSTY CANYON SW.
22	9:24:52	37.122	114.849	0.7	5.53	4.8	232			1.4	DELAMAR 3 SE
23	23:47:57	36.137	117.722	1.5	3.75	3.9	258		2.0	2.2	COSO PEAK
24	0: 5:24	36.152		1.0	2.47	2.9	247	80	1.6	1.6	COSO PEAK
24	0:16:13	37.696	115.846	0.4	-0.46	0.7	115	AC	1.5	1.7	HIKO NE
9.4	3.30.40	17 60.	117 001			4 4	224	e o			WALLCORA CREING
24 24	3:30:12 22:54:27		117.9 0 1 117.002	1.3 0.3	1.16 9.67	4.3	225 97			1.5	WAUCOBA SPRING Stovepipe Wells
25		37.699	115.842	0.5	0.63	9.9	118			1.3	HIKO NE
25	1:52:46		117.678		-0.47	3.6	295			1.6	MOUNTAIN SPRINGS CANYON
25			116.211	0.3		0.4	83			1.0	TIPPIPAH SPRING
25	9:34:56	37.609	116.862	0.3	7.30	8.0	175	AC .		1.3	CACTUS SPRING
27	12:17:52	36.231	117.839	1.3	1.32	2.2	258	80		1.5	HAIWEE RESERVOIR
	12:47:36		115.005	1.0	4.33	4.3	134		1.8		HIKO NE
29	1:31:27	36.604	116.633		10.51	1.1	203			0.5	BIG DUNE
29	4:35:10	37.595	117.744	0.4	6.05	1.5	171			1.5	LIDA WASH
29	4:42:31	37.576	117.806	1.8	1.38	5.6	154			1.1	PIPER PEAK
29	15:52:33	37.372	115.232	0.9	0.37	3.4	93	BC		1.3	ALAMO
30	22:35:41	37.895	114,764	1.1	3.60•		256	CD		0.9	DEADMAN SPRING NE
31		35.663	117.778	2.3	5.29	1.3	293			2.2	INYOKERN
31	6:42:18	35.420	116.301	1.3	6.66	2.1	307	80	2.2	2.3	· · · REGIONAL · · ·
		37.377	115.219	0.3	0.32	0.4	95			1.8	ASH SPRINGS
	17:55:12		117.663	6.9	0.57	5.7	267			1.6	MOUNTAIN SPRINGS CANYON HAYFORD PEAK
31	19:46:20	36.506	115.085	2.4	-1.15	1.1	245	0 ·			HALL VILD FEAR

DATE -		LATITUDE	LONGITUDE	HORIZ	DEPTH	VERT ERROR					
. (UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	. Md	Mbig	QUADRANGLE
JUL 31 2:	2:17:29	37.357	114.928		0.86		268	DD	1.0	1.0	DELAMAR LAKE
	9:53:36 7:23:17	37.227 36.919	117.920 117.565	0.7 0.4	2.19 4.95	2.2 3.4	224 208	80 80		1.6	WAUCOBA SPRING DRY MTN
	1:30:60	37.692	115.038	0.4	1.58	1.2	117	AB		i.i	HIKO HE
	3:46	35.773	117.738	3.8	0.66	2.8	288	CD		1.8	MOUNTAIN SPRINGS CANYON
2 1	38:54	37.628	114.614	0.9	-0.96	0.7	292	AD		0.8	CHIEF MTN
2 1	:56:55	37.679	115.039	0.8	5.06	3.0	114	88		0.5	HIKO NE
	8:58:50	38.753	116.169	0.5	10.03	1.0	118	AB	0.5	0.9	SKULL MTN
	3:45:51	35.918	117.274	1.9	2.23	6.2	276	CD		1.8	TRONA
	7:57:11	37.718	115.012	0.9	2.12	2.1	133	88		1.4	HIKO NE
	3:4 6 : 4 3:20:19	37.632 37.692	114.982 115.048	0.3	0.22 -0.78	0.2	151 204	AC AD	0.8	0.5 1.0	PAHROC SPRING Hiko ne
			,,,,,,,		••••			7.0		•••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	:58:22	37.665	115.026		-0.72		200	80		0.7	HIKO SE
	5:50:17 5: 2:50	37.716 37.719	115.023 115.025	1.4 9.2	2.23 2.65	3.3	145	8 D		1.0	HIKO NE
	:33: 6	37.719	115.039		0.96	0.6	145 232	AD .		0.7 0.9	HIKO NE HIKO NE
	:49: 7	37.704	115.044	0.6	0.97	1.1	118	AC		1.2	HIKO NE
7 9	: 0: 2	36.891	117.697	0.0	2.70	2.4	198	80	1.4	1.4	DRY MTH
7 13	: 30:59	36.722	116.273	0.3	3.71	0.7	76	AA		0.7	STRIPED HILLS
	:49:30	30.724	116.265	0.3	3.64	0.6	72	AA		1.6	STRIPED HILLS
	:37:13	37.698	115.646	0.3	4.58	1.9	116	AC		1.2	HIKO NE
	:36:22	37.189	117.866	2.7	9.42	4.4	245	CD		1.0	WAUCOBA SPRING
	:50:55	37.338 37.683	114.731 115.049	1.8	3.31 · 1.11	1.8	235 112	CD AC	0.9	1.4	ELGIN SW Hiko ne
, .,		37.003	113.045	0.5	,	1.0	***	~~	v. y	0.0	HINO NE
	: 6:38	37.024	116.369	0.2	8.93	0.2	134	AB	8.4	0.8	BUCKBOARD MESA
	:21:38	37.703	115.033	0.4	2.66	1.1	121	AC		0.6	HIKO NE
	:54:44	36.697 37.114	116.216 117.336	0.6 0.8	-0.49 8.93	0.4 1.7	141 196	AC AD		0.7 0.9	MINE MTN UBEHEBE CRATER
	:55:48	36.597	116.450	0.4	5.37	1.4	105	AC		0 . B	LATHROP WELLS SW
13 5	:44:10	37.164	117.336	9.2	5.61	1.4	104	AC		1.3	UBEHEBE CRATER

	:47:30 :30:40	37.117 37.700	116.749 115.042	0.4 0.2	4.03 4.10	1.4	123 144	BB AC	1.0	1.0	THIRSTY CANYON SW Hiko ne
	:44: 2	36.725	116.281	0.4	2.81	0.6	113	_		0.8	STRIPED HILLS
	: 1:49	36.748	116.636	0.6	3.85	0.6	191	AD		0.5	SIG DUNE
	:11:58	37.203	116.189		3.09		261			8.8	RAINIER MESA
14 4	: 6:52	37.022	116.455	0.2	9.39	0.3	157	AC		1.0	TIMBER MTH
14 4:	: 26 : 27	36.296	116.147	0.8	2.06	1.8	159	AC		1.0	HIGH PEAK
	41:11	36.294	116.117	1.1	0.98	1.2	171			1.2	MT SCHADER SE
	:45: 2 :45:21	36.295 37.401	116.143 114.240	1.1	5.55 3.68	2.7 2.4	161 296			0.9 2.1	HIGH PEAK ***REGIONAL***
	37:57	37.515	114.497	2.4	2.56	2.3	296			1.4	· · · REGIONAL · · ·
16 4:	14:21	35.711	117.676	5.7	4.04	3.2	300	DD -		1.7	RIDGECREST
10 4:	19:46	37.175	117.908	1.2	2.28	4.7	228	80		1.3	WAUCOBA SPRING
	26:29	37.692	115.046	0.3	1.02+		150			1.2	HIKO NE .
	7:12	36.959	117.803	0.7	3.29.		183	CD .		1.5	DRY MTN
	22:12	36.903	116.733	0.3	5.02	1.5	146			0.9	BARE MTN
	1:24	36.7 6 0 36.222	116.019 115.269	1.2 5.7	6.34 1.95•	4.0	207 306	-		0.3 0.8	CANE SPRING Blue Diamond Ne
/ :	JJ			5.,	1.554		300			J.J	DESC DIVINGUE UE
	13:57	37.199	117.376		10.16	1.5	123			1.0	UBEHEBE CRATER
	43:60	35.349	116.472	2.5	3.75	3.3	314			1.6	REGIONAL
	32:56 11:40	35.949 36.021	114.766 114.794	1.1	3.53 3.30	0.7 0.9	299 284			1.3	BOULDER CITY Boulder Beach
	13:49	37.666	117.848	2.1	6.73	1.4	206		2.0		PIPER PEAK
	7: 6	37.219	116.468		10.27	0.7	158			0.8	SCRUGHAM PEAK
21 21:	10:27	38.770	118.201	1.2	3.09	1.8	265	BD -		1.6	REGIONAL
	41: 7	37.100	116.085	0.4	0.60	0.6	102			1.0	YUCCA FLAT
22 4:	57: 5	36.479	115.839	1.0	15.39	0.7	253	AD -		0.9	MT STIRLING
		35.780	116.967	1.1	8.98	0.9	279			1.9	WINGATE WASH
		36.161 36.778	115.762 115.478	0.7 0.3	5.11 3.00	5.3 2.0	220 101			0.9 2.5	PAHRUMP DOG BONE LAKE SOUTH
		37.474	116.776	0.3	4.79	2.4	86			1.6	TOLICHA PEAK
		36.625 37.196	116.651 116.480	0.5 0.2	-0.488L 0.36	0.7 0.3	79 46		1.5	1.0	DBARE MTN Scrugham Peak
		35.874	117.717	1.7	4.79	1.7	288			1.9	MOUNTAIN SPRINGS CANYON
		37.194	117.544	9.2	5.50	3.1	144			1.7	LAST CHANCE RANGE
		37.228	117.831	0.5	7.47	1.2	202	AD -		1.4	WAUCOBA SPRING

	ATE (U	- T TC)	i Mi	E			TITU EG.				1 TUD! . W)	E 1	HORI: ERROI (KM)	R C	EPTI	H	VERT ERROR (KM)	AZI GAP (DEG)	QUA	L Md	мь	l g	QUADRANGLE
AUG		28					7.85				. 948		0.4		4.69		1.7	79	BC	1.5			SPRINGDALE
	27	20					5.72				. 760		4.7	1	2.00		3.4	310 344	CD AD	1.4			INYOKERN •••REGIONAL•••
	29 29	17	: 12 : 17				5.29 7.52				. 584 . 225		1.1		2.53		6.5	154	CC		-8.6		GOLDFIELD
	30		: 46				7.14				349		0.1		6.99		0.5	112	AC				USEHESE CRATER
	31		: 3			36	5 . 15	8	1	14	925		6.4		2.46	•		273	DD	1.4	1.6	6	FRENCHMAN MTN
	31	1	: 14	: 4	4	36	3.00	9	1	14	817		1.7		0.37	,	1.3	288	80		1.7	7	SDULDER SEACH
	31	19					. 77				899		0.3		3.03			137	CC		0.6		WHITE RIVER NARROWS
	31 31	2 8 2 8					7.06 7.06				948		8.4 8.2		4.91		2.6 0.7	55 45	BC AC	1.5	1.3		SPRINGDALE Springdale
	31	21					. 63				946		8.1		5.49		8.3	148	AC		1.1		SPRINGDALE
SEP	1		29				. 48				475		1.4		7.60		3.1	292	8 D		1.6	3	REGIONAL
	2	14:	32	: 2	7	37	. 69	1	1	15.	044		0.2		4.67		1.2	151	AC	1.2	1.6	•	HIKO NE
	2	18					. 73				281		0.3		6.64		0.3	90	AA		0.9		STRIPED HILLS
	3	12:					. 58				682		0.4		2.67		2.3	100	80	1.1	0.9		LIDA WASH
	3	14:					. 94				978 945		3.2 0.5		5.34 4.11		3.0 1.5	306 185	CD AD	1.3	1.2		DEADMAN SPRING SPRINGDALE
	5		35				. 13				311		0.2		9.47		0.5	99	AB		8.8		UBEHEBE CRATER
	12	12:	26	: 13	3	37	. 36	8	1	8.	454				2.94			338	AD		1.5	3	···REGIONAL···
	12	16:					. 51				857		2.2		1.97		4.7	163	DC		0.5	,	SPECTER RANGE SE
	12	18:					. 69				040		6.5		0.36		0.8	118	AC		1.5		HIKO NE
	14 14	17:	-		-		. 401				013 648		0.4		5.60 1.19		0.5	219 118	AD BA	1.0	0.8 0.9		ALAMO NE BARE MIN
	16	13:					. 17				928		6.9		9.27		0.7	227	AD		1.6		WAUCOBA SPRING
	17	6:	7	: (8	35	.740	3	11	6.	898		1.3	:	3.12	•		283	CD		1.6		QUAIL MTNS
	19	13:				35	.744	ŀ	11	7.	668		2 . 1		9.66		1.1	299	80		1.9		RIDGECREST
	19	22:					. 409				113		1.3		1.54		1.3	279	8D		1.9		· · · REGIONAL · · ·
	19 19	22:					.403				686 243		7.9 0.4		9.22 2.19		8.5 0.7	177 113	DD BA		1.3		SOLDIER PASS SKULL MTN
	20	23:				_	. 456				966				2.89			328	BD		1.6		REGIONAL
	22	10:	13	: 2 1)	35	. 925	3	11	7.	646		1.3	,	1.30		3.2	286	80		1.7		MOUNTAIN SPRINGS CANYON
		12:					.712				005		9.5		5.23		1.1	133	AB		1.6		HIKO NE
		23:					. 253				494		1.2		3.15 3.24		0.8	244	8D	2.8	1.0		•••REGIONAL••• Delamar lake
		23: 23:					.359 .258				969 484		D.5 1.7		2.26		0.6 4.7	270 274	AD BD		1.5		· · · REGIONAL · · ·
	2 4		55				. 282				579		9.5		.02		4.6	278	80		1.4		ELGIN
2	2 4	4:	42	28	ì	37	. 358		11	5.	263	:	2 . 1	2	2.02		3.5	239	80		1.0		BADGER SPRING
	25		19:				. 847				149		1.7		. 26		2.3	304	8 D		1.4		· · · REGIONAL · · ·
	25 25		30: 40:				.927 .254				436 516		9.8 2.2		. 68 . 97		2.2	162 316	BC CD		1.0		TIN MTN Elgin
		16:					. 660				943		3		. 28	•	1.6	117	AC		1.1		SPRINGDALE
2	25	16:	58	11		37	. 295		11	4.	590	•	. 8	6	. 25	•		261	CD		1.4		ELGIN
2	2 5	20:	33:	18	ļ	37	. 286		11	4.	329	(. 7	9	. 79		0.6	248	80		1.5		ELGIN
		22:					. 485				308		9 . 4		. 97		1.8	179	AC		8.7		ASH MEADOWS
		23: 23:					. 352 . 483				961 126		?.2 !.7		. 97		7.3	286 232	CD BD		2.4		KEELER Panamint Butte
	86	1;					263				554		9		. 43		1.9	297	AD		1.2		ELGIN
	7	8;					. 924		11	8.	156	-			. 46			328	DD	8.9			REGIONAL
2	2 9						454				82	•	1.4		. 55		3.5	71	BC		1.8		FURNACE GREEK
		16:					697				52		. 5		.39		0.8	114	AC		1.3		HIKO NE
	10 10	9:					636 574				779 971		. 9		.11		0.5	298 209	AD AD		2.1		INYOKERN Stovepipe Wells
		13:					168				102		. 2		. 64		0.5	113	AB		1.3		SCRUGHAM PEAK
3	8	22:	10:	57		36.	841		11	6.2	224	e	. 4	7	. 64		0.8	71	84		1.0		SKULL MIN
oct		6:					717				29		. 6		. 33		2.0	301	DD		2.3		RIDGECREST
	1	6:3					831				159 181		. 3		.00+		1.6	252 300	DD CD		1.5		MATURANGO Mountain Springs Canyon
		10:3					284				31		. 9		.00			248	CD		1.8		ELGIN
	1	11:	4:	5 1	:	36.	196				05		. 6		. 04		0.7	289	CD		1.3		MATURANGO
	1	12:1	9:	35	:	35.	802		11	7 . 6	24	4	. 2	10	. 05		1.0	284	CD		2.4		MOUNTAIN SPRINGS CANYON
		12:3					262		110			_	. 6		. 98		0.6	296			1.4		FURNACE CREEK
		3 : 1 4 : 2					845 760		111				. 9 . 6		. 93		2.5	291			1.9		MOUNTAIN SPRINGS CANYON
		4:3					736		111			13			.11		2.0 4.5	288 361		3.8	2.5		MOUNTAIN SPRINGS CANYON RIDGECREST
	2	4:	3:	39	3	15.	891		117	7 , 5	19	10	. 5	16	.58		3.5	292	DD		2.0		MOUNTAIN SPRINGS CANYON
	2	4:	0:	35	3	5.	836		117	. 0	85	0	. 2	21	. 12	•		300	AD		2.8		MOUNTAIN SPRINGS CANYON

DATE - TIME	LATITUDE	LONGITUDE	HORIZ ERROR	DEPTH	VERT ERROR		OUAZ	11 4	. Whia	QUADRANGLE
(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	M C	Mbig	COADRANGLE
DCT 2 10:17:28		114.517	3.2	2.82		269	CD			ELGIN
2 10:27:51		114.566	4.0	2.31 • 20.95	0.7	264 288	CD CD			ELGIN Trona
2 13:42:29 2 14: 2: 5		117.461 117.729	2.7 3.0	7.03	1.1	287	CD			MOUNTAIN SPRINGS CANYON
2 16: 1:27		117.375	13.8	7.00+		272	DD			TRONA
3 7:17:36	37.252	114.453	2.3	8.19	1.0	276	80		2.2	+++REGIONAL+++
3 9:47:47	35.922	117.471	3.1	18.49	1.0	287	CD		2.1	TRONA
3 12:47: 6		118.054	5.5	-0.64+		298	DD		_	+++REGIONAL+++
3 16:10:60		114.572		2.31		309	AD			ELGIN
4 0: 6:38 4 15:33:35		117.343 118.067	3.8	0.90 -1.13+		189 278	AD CD	2.8		MARBLE CANYON +++REGIONAL+++
7 3:36:11		115.731	8.9	6.40	0.9	211	AD			GROOM LAKE
9 6:35:15	37.304	115.819	1.1	2.52	2.8	214	BD		1.7	ALAMO SE
12 8:22:47		117.717	5.8	6.96	1.9	296	DD			MOUNTAIN SPRINGS CANYON
13 2:47:45		118.012	3.5	0.60+		263	CD			REGIONAL
15 4: 4:29 15 0:13:13		116.615 115.964	0.4 0.5	5.08 18.20	0.5 1.1	136 151			1.0	THIRSTY CANYON NE Mercury Sw
17 3: 9:54		114.699		4.21		291			1.3	ELGIN SW
17 9:10:20	37.848	116 074	1.2	2.91+		225	CD			CACTUS PEAK
18 1:59:31		116.874 117.152		2.16		259			1.4	TELESCOPE PEAK
18 6: 0:16	36.250	116.154		7.88.4		193	BD	0.9	0.9	HIGH PEAK
19 19:33:14		114.592		3.08		307			1.2	ELGIN Striped Hills
20 12:53:47 21 0:31:24		116.279 115.046	0.5	3.98 0.55	1.1	89 204			1.0 1.1	HIKO NE
21 8:58:19 21 9:11:52		115.907 115.492	7.9	4.20 5.27+		264 333			0.3 1.3	MERCURY SW Grapevine Spring
22 5:34:33		115.045		0.14		148			1.1	HIKO NE
22 5:39:56		116.145		8.47		183			1.2	SPECTER RANGE NW
24 18:10:24 24 18:11:24	37.024 37.020	110.140 116.133	0.6 0.3	7.91 9.58	2.2 0.6	157 1 8 2		1.4	-0.4	TIPPIPAH SPRING Tippipah spring
24 10.11.24	37.020	110.133	U .J	3 .30	0.0	102	~~	1.4	-0.4	TEFTERN SERVING
25 7:48:55 27 18:21:28	37.859 36.738	114.741 116.201	0.8	7.00 • • 0.01 •		265 98		0.7	-0.8	THE BLUFFS Specter range NW
30 1:43:39	36.876	115.990	0.8	0.93+		121			1.4	PLUTONIUM VALLEY
30 3:20: 9	37.216	116.325	0.5	23.13	0.7	259	80		1.8	AMMONIA TANKS
30 20:48:52 NOV 2 4:54:43	37.305 37.236	114.623 117.880		2.37 7.00**		304 235			1.3	ELGIN Waucoba Spring
4 3:54:52 4 6:24:49	36.825 36.828	116.125 116.130	0.2 0.9	0.72 -0.05+	9.2	113 192			1.0	SKULL MTN Skull mtn
4 16:35:12	36.794	116.614	7.9	1.878L	6.2	193				BARE MTH
4 10:39:14	36.582	116.173	0.9	2.25	2.6	137			0.8	SPECTER RANGE SW
7 5:22:14 7 0:29:28	37.816 37.837	117.444	0.6	6.17 4.17	3.5	2 0 5 221			1.4	PAYMASTER RIDGE PAYMASTER RIDGE
										.,
8 7:45:25 10 0:11:33	37.511 37.511	116.375	0.3 0.6	5.05 6.29	3.8 7.0	74 132			1.4	QUARTZITE MTN QUARTZITE MTN
11 4:40:14	37.632	116.379 114.964		0.27		150			0.8	PAHROC SPRING
11 12:22:28	36.737	116.049	0.7	-0.76+		134			0.9	CAMP DESERT ROCK
	37.381	114.706 116.942		3.23 0.36		275 289	AD -		1.8	SLIDY MTN Springdale
12 20:48:26	37.133	110.942		0 .30		209	AU .		1.0	3FR I NODALE
12 21:46:34	37.511	116.373	0.2	2.69+		74			1.5	QUARTZITE MTN
13 1:43:57 14 1:12:52	37.150 37.153	116.958 116.959	1.8	8.14+ -8.78+		237 237			1.1	SPRINGDALE Springdale
14 5:25:50	35.601		21.5	2.03+		323			1.6	LEACH LAKE
14 21:30:56	36.952	115.986		-0.34	0.6	182			0.9	PLUTONIUM VALLEY
16 7: 2:58	36.513	116.227	1.0	4.91	5.6	200	CD -		1.1	SPECTER RANGE SW
16 7:20:49	36.251			-8.57+		335			1.3	TULE SPRINGS PARK
16 9:14:56 18 18:22:20	37.689 37.707	115.054 115.025		0.36 7. 00••		115 139			1.1	HIKO NE HIKO NE
16 23:35:25			27.1	2.87+		314			1.6	HENDERSON
17 7:56:55	37.494	114.601	0.4	6.37	0.2	300	AD -		1.5	ELIGN NE
18 2:14:20	36.698	117.440		10.29		262	AD -		1 . 4	MARBLE CANYON
18 9:16:51		~116.026	0.6	0.39+		73			1.9	REGIONAL
19 3:32:18		117.909		7.00++		351			1.3	SOLDIER PASS
19 14: 5:12 20 22:56:14	37.221 35.873	115.023 117.568	0.6	7. 00++ 19.95	0.2	239 296			1.5	LOWER PAHRANAGAT LAKE Mountain Springs Canyon
21 5:25:31	37.698	115.841	0.3	2.13	0.8	118	AD -		1.5	HIKO NE
21 9:20:32	35.730	117.726	3.5	7.00	1.3	302	CD -		2.3	RIDGECREST

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUAL	ИА	Mbig	QUADRANGLE
•	(020. 11)	(520. ")	(~-,	(~~/	(~~)	(525)	447.			4000 MARIO DE
NOV 21 16: 6:34		117.667		5.02		367	AD		1.7	MOUNTAIN SPRINGS CANYON
22 4: 0:57 22 5:44:		114.636 114.718	3.4	14.18 6.05	1.3	254 296	AD CD		1.4	ELGIN SW Hoover dam
22 16:57:12		115.963	8.9	3.93	4.6	198	BD	8.7	0.7	PLUTONIUM VALLEY
22 18:11:24		115.046	0.1	0.04	2.6	123	BD		1.9	HIKO NE
23 10:38:58	37.575	115.023		7.00**		256	AD	1.1		HIKO SE
23 18:13: 4	36.781	115.843	1.1	-9.96	1.8	172	80		0.9	MERCURY NE
25 18:35: 7		115.030	0.3	1.77	1.0	126	AD		0.8	HIKO NE
25 18:30:15		116.265	0.6	2.25	1.3	95	AB		1.0	JACKASS FLATS
26 8:24:11		114.794		7.00 • •		294	AD		1.1	PAHROC SPRING NE
20 10:31:22 27 5:12:56		115.054 115.344	0.4	2.26 7.53	1.0	114 267	AD AD		1.2	HIKO NE Mt Irish
	0,,,,,,,					•			• • •	,
27 19:13:38		115.014	6.7	3.17+		268	CD		1.5	ALAMO SE
29 6:14:59 29 8:14:23		115.002 116.398	1.1 6.3	7.26 -0.86	2.5 0.4	208 84	BD AB		1.4	ALAMO SE Topopah spring NW
30 4:17:25		116.236	0.4	-6.11+		154	ĈĈ		0.6	SPECTER RANGE NW
30 5:34:56		115.036	0.9	0.27 •		119	CB		2.1	HIKO NE
30 5:55:58	37.679	114.996		12.17		153	AD		1.2	PAHROC SPRING
30 6: 0:13	37.663	115.055		7.00**		178	AD		1.0	HIKO NE
DEC 1 1:41: 8		115.042	0.3	3.99	2.1	118			1.5	HIKO NE
2 8:47:20		115.289	0.6	4.94	8.7	106	CC		1.5	BADGER SPRING
2 13:41:12 3 6:23:59		116.828 115.159		7.60 • • 7.00 • •		173 197	AD AD	1.1	1.1	WINGATE WASH ALAMO
3 14:17: 0		114.567	1.0	3.47	3.6	234			1.6	ELGIN
1 10.00.89	10 100	118.072	• .		• •	064				***REGIONAL***
3 18:26:53 3 18:30:25		115.072	3.4	3.97 7.00**	3.4	254 284	CD AD		2.0 1.2	QUAD. NOT LISTED
5 2:25:48		117.484	0.7	2.73	2.3	151			1.5	USEHESE CRATER
5 19:57:56		115.054		7.00		205	AD		1.1	HIKO NE
5 22:33:60 6 15:39:17		117.422 116.818	1.0	6.25 2.38•		128 244			1.1	USEHEBE CRATER Cactus Peak
0 10.00.17	57.750	110.010	•••	2.50			•••			ondido Fenk
7 1:48:24		116.423	0.4	1.99	1.8	145			1.1	LATHROP WELLS NW
7 2:40:49 7 9:43:52	37.122 36.120	117.303 114.870	2.8	7.00 * * 6.04	1.0	177 275			0.8 2.7	UBEHEBE CRATER Henderson
7 10:11:17	36.552	115.961		29.67		185			0.8	MERCURY SW
10 20: 0: 7	36.854	116.395	0.4	7.88BL	0.7	69			1 - 1	OTOPOPAH SPRING SW
13 10:59:60	36.393	116.950	0.7	5.86	2.5	144	8 C		1.4	FURNACE CREEK
14 2: 4:20	38.471	115.529	10.0	11.77	4.2	286	DD		2.1	TROY CANYON
14 20:21:16	37.124	117.344	0.4	6.69	1.8	115			1.3	UBEHESE CRATER
15 10:54:38 10 8:15:15	37.802 37.163	118.057 117.969	9.9	2.90 • 3.24		295 263			1.6	+++REGIONAL+++ Waucoba Spring
17 20:17:47	36.725	116.304		7.00 • •		141			0.9	STRIPED HILLS
18 4: 8:24	37.459	117.203	0.6	3.07 •		93	cc ·		1.1	STONEWALL PASS
19 4:31:15	37.074	116.020	1.8	0.79+		47	DC :	3 . 1		YUCCA FLAT
19 17:38:48	36.619	115.423	0.4	3.61	5.7	117		2.5		DOG BONE LAKE SOUTH
19 17:41:54	36.881	115.412		7.00 • •		295	AD .		1.6	DOG BONE LAKE NORTH
19 18:14:19	38.817	115.405	0.6	7.00+		113			1.7	DOG BONE LAKE SOUTH
19 19:18:55 19 22:21:47	36.672 36.817	117.410 115.409	9.4	25.30 2.93+		221 113			1.4	MARSLE CANYON Dog bone lake south
				2.00			••		•••	
20 18:14:50	37.709	115.069	0.8	0.97•		111			1.6	HIKO NE
20 19:47:47 20 20:14:59	37.375 37.214	115.614 116.610	0.6 1.4	0.35 • -0.17	1.8	114			1.7	GROOM RANGE NE THIRSTY CANYON NE
21 9: 3:51	36.443	115.770	0.6	4.29	8.4	97			1.6	MT STIRLING
21 19:14:30	37.180	115.634	1.1	4.88+		115			1.2	FALLOUT HILLS NW
21 22:38:28	36.813	117.369		7.00 • •		150	AD 6	9.7	1.1	TIN MTN
22 5: 2:26	36.869	115.988	0.4	4.05	3.0	145	BC -		1.7	FRENCHMAN FLAT
22 14:47:49	36.188	116.941		24.45		313	AD -		2.4	BENNETTS WELL
22 16:10:53	36.869	115.969	4 2	3.48		227			1.0	FRENCHMAN FLAT
23 18:19:60 24 0: 2:55	35.603 37.558	117.930 114.757	4.2	2.62* 2.03		319 220			2.1	INYOKERN Pahroc Spring Se
24 3:58:55	35.538	117.966		6.67		315			2.3	INYOKERN
20 1:54:44	35.720			1 24	2.9	292	DD -		2.5	INVAVERN
20 1:54:44	35.729 35.822	117.803 117.601	6.1	3.26 13.81		292 301			2.5	INYOKERN Mountain springs canyon
20 12: 8:54	37.696	115.043		0.07		116			1.4	HIKO NE
26 12:13: 9	37.694	115.049		1.91		149			1.5	HIKO NE
26 10:45:30 27 8:40:28	36.701 37.629	117.395 115.1 0 3		4. 0 7 7. 0 0++		234 187			1.0	MARBLE CANYON HIKO NE
2. 0.74.20	37.027						~v -			HING ME

1982 LOCAL HYPOCENTER SUMMARY

DATE - T (UTC)		LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUAL	. Md	l Mblg	QUADRANGLE
DEC 27 8	:56:33	37.448	117.293	0.1	0.69	4.1	133	BD		1.0	STONEWALL PASS
27 23	: 22:25	36.822	116.628		-9.54BL		244	AD		9.7	BARE MTN
27 23	:38:14	36.715	116.282		7.00 • •		197	AD		1.0	STRIPED HILLS
28 0	:38:45	36.855	115.994		7.00 • •		205	AD		1.0	FRENCHMAN FLAT
28 1	:18: 4	36.777	115.938	0.4	4.36	3.8	169	BC		1.1	FRENCHMAN FLAT
28 2	: 26:43	37.258	117.864	1.0	5.39	3.7	207	BD		1.8	SOLDIER PASS
	:20:22		117.815	3.9	6.81	1.4	303	CD			INYOKERN
	: 42:23		116.316	5.6	1.65	1.1	312	DD			LATHROP WELLS SE
	: 0:54	36.698	116.182	2.3	12.25	3.4	243	BD			SPECTER RANGE NW
	:39:13	35.711	117.614	39.1	-1.05•		330	DD			INYOKERN
28 23	:27:43	35.967	117.259		11.32		292	CD			TRONA
29 13	:12: 0	37.552	117.463		1.93		124	AD		1.4	MONTEZUMA PEAK SW
	: 52 : 55	37.552	117.467	0.2	4.76	1.1	109	AC			MONTEZUMA PEAK SW
	:17: 1	37.553	117.466	9.6	1.94	1 - 4	109	AC			MONTEZUMA PEAK SW
	: 8:22	37.575	117.493		3.89		195	AD			MONTEZUMA PEAK SW
	: 0:20	37.555	117.476	0.4	-0.89•		114	CC			MONTEZUMA PEAK SW
	: 6:39	37.564	117.465	0.3	5.67	1.6	86	AC			MONTEZUMA PEAK SW
29 22	:11: 9	37.552	117.596		7.00**		217	AD		1.2	LIDA WASH
	:15:20	37.555	117.469	0.4	0.38•		110	CC			MONTEZUMA PEAK SW
	:55:32	37.551	117.466	9.2	4.38	1.5	109	AD			MONTEZUMA PEAK SW
	:23:13	37.553	117.469	9.4	2.46	1.0	106	AD			MONTEZUMA PEAK SW
	:18:58	37.554	117.462	1.1	4.01	9.2	124	CD		1.3	MONTEZUMA PEAK SW
	:31:26	37.553	117.467	9.2	2.17	0.6	118	AC		1.3	MONTEZUMA PEAK SW
36 7	: 36 : 51	37.558	117.467	0.3	-0.82	7.9	84	CC		1.6	MONTEZUMA PEAK SW
	54: 6	37.561	117.537	6.5	10.83	6.6	237	DD		1.1	LIDA WASH
	29: 5	37.559	117.483	1.3	5.27	4.1	187	BD		1.4	MONTEZUMA PEAK SW
	27:28	37.545	117.475	0.5	4.07	3.1	107	BC		1.2	MONTEZUMA PEAK SW
	36:20	37.749	115.012		4.00		233	AD		1.1	HIKO NE
	39:36	37.686	115.069		-0.37		159	AD		1.1	HIKO NE
30 14:	12: 3	37.551	117.467	0.4	2.46	0.9	110	AC		1.4	MONTEZUMA PEAK SW
30 15:	11: 1	37.549	117.524	7.4	11.16	7.7	228	DD		1.4	LIDA WASH
	20:10	37.545	117.483	1.5	5.03	3.8	184	BD		1.4	MONTEZUMA PEAK SW
	5:56	37.555	117.478	4 . 8	5.37•		200	CD		1.4	MONTEZUMA PEAK SW
	9:29	37.517	117.482		7.00		195	AD		1.1	MONTEZUMA PEAK SW
	13:17	37.560	117.484		7.00		265	AD		1.5	MONTEZUMA PEAK SW
39 18:	19:32	37.549	117.465		1.37		123	AD		1.5	MONTEZUMA PEAK SW
	45:41	37.550	117.479		7.00**		199	AD		1.1	MONTEZUMA PEAK SW
31 1:	27:24	37.554	117.462		3.95		124	AD		1.4	MONTEZUMA PEAK SW
31 2:	8:10	35.787	117.802		5.03		309	AD		1.9	LITTLE LAKE
31 15:	43:16	37.174	117.307	0.4	5.17	2.5	93	BC		1.0	USEHESE CRATER
31 16:	30:57	36.009	117.364		7.00 • •		270	AD		1.7	MATURANGO
31 19:	50: 7	35.717	117.802	7.0	8.18	2 . 1	303	DD	3.0		INYOKERN
31 19:	52:33	35.859	117.649	6.2	2.66	4.1	292	DD	3.2	9.8	MOUNTAIN SPRINGS CANYON
	57:15	36.781	115.839		11.95		239	AD	0.3	-9.7	FRENCHMAN LAKE SE
		24	# * *								

c		- TIME utc)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)	AZI GAP (DEG)	QUAL	ма	Mbig	QUADRANGLE
JAN	1 1	21:47:55	36.467	116.576	0.5	10.11	1.5	269	AD		1.4	RYAN
	1	22:21:19		117.725	1.6	4.63.		304	CD			MOUNTAIN SPRINGS CANYON RYAN
	2	0:36:27 0:46:27		116.573 116.570	0.9 0.5	18.48 7.86	1.9 3.6	27 0 105	AD BC			BIG DUNE
	2	3:51:58		116.574	0.5	11.16	1.3	269	AD		1.6	RYAN
	2	5:16:39	36.503	116.582	0.3	2.54	1.7	106	AC		1.3	BIG DUNE
	2	5:35:10	36.491	116.568	1.1	3.75•		262	CD		1.1	RYAN
	2	7:57:50		116.586	0.3	0.05**	0.5	109	AC		1.4	BIG DUNE
	2	16:32:20		116.569	0.2	5.47	1.7	95	AC			BIG DUNE BIG DUNE
	2 3	19:38:35 5:58:60		116.567 116.577	0.4 1.6	6.15 4.44	3.5 9.8	152 233	B C C D		1.4	81G DUNE
	3	7:21:46		117.011	0.8	4.37	4.2	282	80		1.7	MANLY PEAK
	3	9: 9:58	35.915	117.013	1.6	8.75	7.8	271	CD		1.7	MANLY PEAK
	3	10:31:47		117.014	0.8	1.77	1.1	282	AD		1.6	MANLY PEAK
	3	17:39:44	36.500	116.568	0.2	4.77	1.4	8.	AC		2.4	BIG DUNE
	3	19:10:41		116.327 117.761	●.7 6.1	-0.95 -1.18	0.7 4.4	128 312	A B	0.0	1.1	STRIPED HILLS Inyokern
	- ;	6:38:31		117.672	3.0	13.10		312	0	0.0		COALDALE NE
	4	13:17:43		117.079 116.582	0.3 0.3	-0.92• 8.23	2.1	133 119	CD BC		1.2 1.3	SCOTTYS JUNCTION NE BIG DUNE
	7	20: 2: 7		116.269	0.6	6.81	0.8	186	AD		-1.3	BUCKBOARD MESA
	5	8:45:45		117.389	1.9	10.40	1.7	240	80	0.9		USEHESE CRATER
	5 7	9:17:15 17:59:49	37.601 37.699	117.825 114.970	1.0	7.71 4.20	2.2 1.1	169 250	BC AD	1.2	3.2 1.2	PIPER PEAK Deadman Spring
	·				•••	*****					• • •	
	6	3:37:19	37.446	116.353	0.2	8.92	0.9	102	AC		1 . 8	SILENT CANYON NE
	8	6:52: 1 14:54:10	37.863 36.497	116.311 116.569	0.5 0.3	6.21 -0.71	0.8 0.5	226 196	AD AC		1.1	BUCKBOARD MESA Ryan
	8	19:31: 6	36.661	110.092	0.3	-0.59	0.5	99	AC		1.5	CAMP DESERT ROCK
	8	20:57:51	37.165	116.941	0.2	5.24	1.6	130	AC		1.3	SPRINGDALE
	9	23:12:28	36.495	116.557	•.4	12.49	1.2	126	AC		1 . 4	RYAN
	10	15:12:54	36.409	117.040	•.3	12.25	0.5	124	AB		1.6	EMIGRANT CANYON
	10	19:51:41	36.851	116.194	0.7	8.78	0.9	130			1 - 1	SKULL MTN
	10	19:53:57	36.72 0 37.153	116.334 117.386	0.9 0.5	-1.05 13.35	1.2	135 124	AB AB		1.0 1.3	STRIPED HILLS Ubehebe Crater
	10	23:27:46	36.083	114.759	3.9	3.48	2.6	272			2.3	BOULDER BEACH
	11	18:36:11	36.196	117.688	6.3	7.11+		279	DD		1.5	COSO PEAK
	11	23:28:45	36.583	116.722	1.2	9.45	4.3	331	80		1.6	BIG DUNE
	12	0:36: 5	37.357	117.551	0.3	0.01	0.7	71			1.5	MAGRUDER MTN
	13 13	6:51:30 6: 2: 4	37.183 37.357	116.591 117.551	0.2 0.4	5.10 5.08	1.1	105			0.9 1.7	THIRSTY CANYON NE Magruder mtn
	13	8:58: 6	37.369	117.549	0.5	7.68	1.1	188			1.3	MAGRUDER MIN
	16	7:33:43	37.370	117.555	0.5	6.93	1.0	165	AD		1.0	MAGRUDER MTN
	16	19:12:58	37.666	115.048	1.1	1.99	1.7	252	80		8.9	HIKO NÉ
	17	19:57:32	30.529	116.169	0.4	6.92	1.4	161			0.9	SPECTER RANGE SW
	17	20: 0:13	36.863	116.319		7.00 • •		319	,,,,		0.8	JACKASS FLATS
	17 20	20:28:20 21: 6:47	36.521 36.976	116.160 116.756	0.6 0.7	11.07	1.2	172			1.4	SPECTER RANGE SW Bullfrog
	21	7:13:18	37.178	117.364	0.6	10.99	1.7	140		0.9	1.3	UBEHEBE CRATER
	21	8:46:35	37.286	117.598	0.4	10.79	0.6	164	AD -		1.1	MAGRUDER MTN
	24	12: 5:40	36.537	116.168	0.2	3.05•		157			1.5	SPECTER RANGE SW
	24	12:19:20	36.533	116.174	0.5	2.63	1.7	162			0.8	SPECTER RANGE SW
	24 24	12:26: 1 22:16: 2	36.533 36.537	116.17 0 116.152	0.4	5.76 5.73	1.5	160 176		• . 6	1.3	SPECTER RANGE SW Specter range SW
	25	5:22:14	36.514	116.183	2.7	8.86	1.5	280			1.2	SPECTER RANGE SW
	25	21: 4:56	37.087	117.633	A •	1 AA.		254	CD -		1.6	WALLONGA CORINO
	26	20:31:39	37.087 37.711	117.633	0.9	3.06• 7. 00••		250 231			1.5	WAUCOBA SPRING Belted Peak
	28	2:31:55	36.096	116.501	6.7	23.54+		302	00 -		1.6	FUNERAL PEAK
	28	23: 2:55	36.725	116.323		-0.49	2.0	227			1.0	STRIPED HILLS
	30 31	2: 7:52 16:13:10	38.021 36.226	116.215 115.206	0.6 6.3	7.00 6.13•	5.6	134 338			1.7	REVEILLE Las vegas nw
FEB	1	6:24:11 17:40:40	37.175 35.000	115.039 117.752	1.4	4.97 5.69	4.1	238 260			1.6	LOWER PAHRANAGAT LAKE LITTLE LAKE
	1	28:47:52	30.496	116.563	0.3	5.59	9.3	104		1.5	6.3	RYAN
	1	23:24: 0	36.015	116.028	0.6	0.66BL	0.4	114	AB '	1 . 0	0.4	BARE MTN
	1 2	23:42:14 2:57:29	36.944 3 0 .469	110.194 116.578	0.7	7.00 6.43	1.9	214 269			1.0	MINE MTN Ryan
								- 			· · ·	

1983 LOCAL HYPOCENTER SUMMARY

	E - TIME	LATITUDE	LONGITUDE		DEPTH	VERT ERROR	AZI GAP	OUAL M	4 Whia	CUADRANCES
	(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL M	d Mblg	QUADRANGLE
	2 3: 4:5		116.578	0.6	8.37	1.6	269	AD		RYAN
	2		117.328 117.344	1.1 0.5	7.00 2.14	1.6	145 99	BC		GOLD POINT GOLD POINT
	2 13:33:2		117.345	8.3	-0.16	0.3	135	A8		GOLD POINT
	2 13:39:2		117.330	0.6	5.56	1.2	141	AC		GOLD POINT
;	2 13:44:	8 37.000	115.208	0.6	4.92	1.7	154	AC	- 2.1	LOWER PAHRANAGAT LAKE SW
:	2 13:46:1	4 37.006	115.167	9.6	2.49•		291	DD	- 1.5	LOWER PAHRANAGAT LAKE SW
:	2 14:28:17	7 37.310	117.340	0.3	8.48	0.6	90	AB	- 1.4	GOLD POINT
	2 14:35: (117.316	0.3	7.44	0.4	150	AC		GOLD POINT
	2		117.336 117.279	0.2 1.0	1.02 9.28	0.5 0.9	128 210	80		GOLD POINT Gold Point
	15:59:50		117.339	0.5	0.33	1.0	136	AC		GOLD POINT
2	16:18:41	36.996	115.168		-0.48		292	AD	1.5	MULE DEER RIDGE NW
2			117.273		5.81		228	AD		GOLD POINT
2			117.333	8.5	4.10	1.3	144	AC		GOLD POINT
3			117.261		7.00 • •		195	DD		GOLD POINT
2			117.131 117.875	0.8 1.0	17.96 6.38	0.8 1.6	285 196	AD		STONEWALL PASS SOLDIER PASS
•	19.10.2.		117.673	1.0	0.30	1.0		AU	1.0	SOLDIER PASS
2			117.331	0.8	4.40	1.4	146	AC		GOLD POINT
2 2			117.341 117.331	0.3 0.5	2.41 4.00	1.0 1.2	99 156	A8		GOLD POINT GOLD POINT
2			117.627		7.00		267	AC		MAGRUDER MIN
2			117.298	8.8	18.16	0.7	199	AD		GOLD POINT
2	22:16:35	37.321	117.312	8.1	7.14	0.1	167	AD	1.3	GOLD POINT
3	2:29:40	37.319	117.334	1.0	5.65	2.1	154	8C	1.2	GOLD POINT
3			117.333		2.85		152	AD		GOLD POINT
3			117.424	4.9	0.84	7.1	98	DC		GOLD POINT SW
3 3			117.340 117.319	0.3 0.5	1.65 7.52	0.8 0.6	99 156	A8	1.5 1.2	GOLD POINT GOLD POINT
3			117.311	0.9	8.32	1.1	167	AC	1.3	GOLD POINT
3	4. 1.11									COLD BOLLET
3			117.314 117.338	0.6 0.3	7.77 8.33	0.8 0.5	163 188	AC	1.4	GOLD POINT GOLD POINT
3		37.326	117.315	0.7	7.52	1.1	172	AC	1.4	GOLD POINT
3		37.310	117.336	0.5	0.80	0.9	99	AB 1.3	1.4	GOLD POINT
3	7: 1:10	37.319	117.313	0.2	7.50	0.2	164	AC	1.0	GOLD POINT
3	7: 4:14	37.308	117.339	0.2	1.60	8.7	. 98	A8	1.7	COLD POINT
3	7:51:22	37.301	117.358	0.7	2.06	1.7	129	86	1 - 4	GOLD POINT
3	8:14:21 10: 3:12	37.325 37.317	117.307	0.9 0.2	7.33	1.5	176 168	AC	1.4	GOLD POINT GOLD POINT
3	10: 3:12	37.317	117.314 117.342		7.56 -0.30	0.3 0.3	73	AC	1.3	GOLD POINT
3	15:31:31	37.310	117.335	0.6	3.94	1.2	143	AC	1.1	GOLD POINT
3	17:46:29	36.777	115.954	0.4	7.56	1.2	153	AC	1.1	FRENCHMAN FLAT
3	18:19:43	37.321	117.316	0.5	6.98	0.6	165	AC	1.0	GOLD POINT
3	19:35:33	37.315	117.323	0.9	6.63	1.0	154	AD	1.8	GOLD POINT
3	20:55: 2	37.309	117.342		-0.26	0.4	98	AB	1.3	GOLD POINT
4	19:23:32	37.311 37.268	115.211	0.7 	8.94 27.59	2.4	123	68	1.5	ALAMO Elgin
5		37.317	117.316	8.7	8.34	1.0	168	AC	• • •	GOLD POINT
5	19:13:29	37.387	117.348	0.4	-0.25	8.4	134	A8	1.0	GOLD POINT
5	20:47:53	37.815	116.229	0.7	2.99	0.8	161	AC	8.6	TIPPIPAH SPRING
6	5:14:59	37.542	114.998		7.00**		278	AD	1.0	PAHROC SUMMIT PASS
6		37.568	114.852		7.00		317	BD	0.6	PAHROC SPRING SE
6 7	12:31:57 7:45:55	37.701 36.543	114.806 116.246	0.4	7. 00•• 4.12	4.4	294 193	AD	0.6 0.8	PAHROC SPRING NE Specter range Sw
7	14: 3:49 16:46:24	37.049 37.170	117.941 115.586	2.2 8.4	11.44	7.4	237 150	CD	1.7	WAUCOBA SPRING Fallout Hills Ne
	9: 2:36	37.176	117.953	1.2	1.54	4.8	244	BD	1.6	WAUCOBA SPRING
ě	9:54:29	37.252	114.873		15.08	0.8	231	AD	2.6	GREGERSON BASIN
8	14:41:19	37.684	115.046	4.7	2.06	1.7	200	CD	8.8	HIKO NE
9	20:14:58	36.713	116.204		15.76		302	AD	1.1	SPECTER RANGE NW
10		37.932	117.869	5.8	2.75+		293	DD	1.5	RHYOLITE RIDGE
10	22:44:14	36.548	117.577	3.5	8.14.		267	CD	1.2	USHESE PEAK
11	7:39:58	36.413 37.143	116.243 117.388	0.4 0.4	9.20 13.25	1.3	120 136	AB	1.5	AMARGOSA FLAT Ubehebe crater
ii	23:43: 0	36.956	117.551		11.96		201	AD	1.5	DRY MIN
12	0:20:35		116.254	0.3	7.08		185		1.7	ASH MEADOWS

DA1	TE - TIME	LATITUDE	LONGITUDE	HOR I Z ERROR	DEPTH	VERT ERROR	AZ I GAP				
	(UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)		QUAL	Md	мьід	QUADRANGLE
FEB 1	2 0:24:54	36.113	117.744	6.9	-0.29	5.7	311	DD		1.8	COSO PEÁK
	3 10:39: 0		116.591	0.4	5.68	1.8	106	AC		1.1	THIRSTY CANYON NE
	3 17:20:24 3 17:34:19		116.222 116.590	0.3	11.88	0.5	107 105	AB AC		1.3	SKULL MTN Thirsty Canyon Ne
	3 17:34:19 3 23:41: 8		118.585	0.4 0.3	2.18 10.43	1.2 0.7	168	AC		1.2	THIRSTY CANYON NE
	4 1:41:15		116.276	0.5	4.49	1.8	272	AD		1.2	ASH MEADOWS
1	4 2:56: 5	37.148	117.166	0.5	9.94	2.0	130	A8		1.0	SONNIE CLAIRE NW
	4 19:17: 4		116.598	0.8	3.27 •		256	CD		1.3	THIRSTY CANYON NE
	6 1:21:26		116.253	0.3	4.66	0.5	243	AD		0.7	STRIPED HILLS
	6 8:26: 6 6 15:19:56		114.669 115.089	3.7 6.1	3.15 -0.58+	1.5	293 296	CD DD		2.6 1.8	HOOVER DAM Las vegas ne
	7 1:43: 5	37.181	116.592	0.2	5.97	0.9	96	AC		1.5	THIRSTY CANYON NE
1	7 5: 2:35	37.088	116.136	0.2	4.06	2.6	117	88		1.1	TIPPIPAH SPRING
1		37.182	116.590	8.4	4.79	2.3	105	BC		1.0	THIRSTY CANYON NE
1	7 12:46:12	36.481	116.151	0.1	5.68	0.2	203	AD		1.0	AMARGOSA FLAT
1			116.595	0.3	6.60	1.2	105	AB		1.2	THIRSTY CANYON NE
1		36.684	116.220	1.5	5.82	1.2	285	BD		0.6	SPECTER RANGE NW
1		36.825	116.649	0.7	-0.948L	0.5	215	AD		1.2	BARE MIN
1		36.838 37.420	116.372 114.785	0.4	6.81 7.29	0.7 	111 288	AB AD		0.4 1.4	JACKASS FLATS Oelamar
2		36.481	117.105		17.00		182	AD		1.2	EMIGRANT CANYON
2	0 14:20:59	37.071	115.215	6.1	0.65	4.1	279	DD		1.4	LOWER PAHRANAGAT LAKE SW
2		36.782	117.283		31.98		235	CD		1.3	TIN MTN
2		37.064	117.245	2.3	2.10	2.1	210	80		1.1	BONNIE CLAIRE SW
2		37.133	116.625		2.05		282	AD		0.7	THIRSTY CANYON NW
2:	-	37.183 37.643	116.597 115.050	0.5 1.3	6.86 1.94	2.3	103 182	88 80		0.8 0.9	THIRSTY CANYON NE HIKO NE
2		37.884	115.794	0.3	8.68	0.6	146	AC		1.4	***QUAD. NOT LISTED***
2		37.801	115.786	0.3	7.93	0.7	138		1.3		QUAD. NOT LISTED
2	7:12:36	37.805	115.791	0.6	5.18	4.2	92	80	1.5	0.3	OUAD. NOT LISTED
2		36.856	115.973	2.7	4.10+		231			0.7	FRENCHMAN FLAT
2:		37.891	115.044	0.6	1.58	1.8	115			0.8	HIKO NE
2 4		37.697 37.188	115.050 116.590	0.6 0.5	0.61 6.51	1.0	115 142			0.7 1.0	HIKO NE Thirsty canyon ne
2		36.964	116.425	0.4	1.98	2.1	167			0.4	TOPOPAH SPRING NW
24		37.184	116.590	0.4	4.21	2.4	186	8 C		1.4	THIRSTY CANYON NE
24		36.691	116.233	0.2	3.86	0.3	264			0.9	SPECTER RANGE NW
25		36.848	117.847	2.1	3.02+		269			1.3	WAUCOBA WASH
27		36.576 38.060	116.103 116.714		10.80		276 311		0.8 1.8	0.3	SPECTER RANGE SE Stone Cabin Valley
MAR 2		35.959	116.228		1.03		254		0.7		TECOPA
5		36.953	117.546	0.6	1.40	1.1	184			1.4	DRY MTH
5		36.951	117.550	0.6	4.16	4.4	182			1.6	DRY MTN
7		36.797	116.290	0.3	5.77	0.6	124			0.8	JACKASS FLATS
7		37.214 36.380	116.604 115.823	0.4 1.5	1.97 8.37	1.1	173			1.0	THIRSTY CANYON NE
	20:51:13		115.055	0.7	3.93•		115		1.1		HIKO NE
1 6		30.754	116.248	0.4	5.56	0.5	123			1.0	SKULL MTN
11		37.702	115.049	0.2	2.63	1.3	116	,,,		1.0	HIKO NE
11		36.374	117.824	3.5	8.48•		274			1.7	KEELER
11		36.814 37.515	117.542 115.321	2.0 0.3	6.49 6.53	2.6 1.5	272 92			1.0	DRY MTN MT IRISH
11		36.742	116.227		5.35		340			1.0	SPECTER RANGE NW
13		36.855	116.267	0.6	8.84	0.6	165			0.8	JACKASS FLATS
16		37.147	116.316	0.6	6.73	0.8	149			0.9	AMMONIA TANKS
1 0 1 6		37.228 36.717	116.325 116.327	0.3 1.4	2.69 -0.95	0.3	126 269			1.4	AMMONIA TANKS 1 Striped Hills
17		37.900	115.370		-0.95 11.48	0.1	237			1.2	QUAD. NOT LISTED
18		36.745	116.087	0.2	8.38	0.8	122			1.2	CAMP DESERT ROCK
20		38.011	115.421	0.6	4.81	3.8	217			1.5	QUAD. NOT LISTED
21		37.259	116.355	0.7	2.74	0.4	325			0.9	DEAD HORSE FLAT
21		36.859	116.239	0.2	9.94	0.4	92			0.7	SKULL MTN
22 28		37.319 37.400	117.928 114.676	0.9 1.3	4.62 11.10	1.6	312 248			1.9	SOLDIER PASS SLIDY MTN
20		37.570	117.151	0.9	3.18+		294			1.6	GOLDFIELD
29			118.203	0.3	6.20	1.4	112			1.1	RAINIER MESA

1983 LOCAL HYPOCENTER SUMMARY

		****		LONGLINGS	HORIZ	DEPTH	VERT ERROR	AZ I GAP				
		- TIME UTC)	(DEG. N)	LONGITUDE (DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	Mblg	QUADRANGLE
MAR	30	16:58:50	36.525	117.518	1.3	2.93	4.2	261	80		1.3	UBHEBE PEAK
	31	3:15: 2	36.767	116.137	0.3	7.66	0.6	142	AC		0.6	SKULL MTN
	31	3:40:40	37.516	116.371	0.2	1.90	0.9	191	AC		1.2	QUARTZITE MTN
APR		17:59:20	37.037 37.419	116.123 117.197	0.3 0.7	5.23 4.04•	0.8	126 138	AB CC		0.8 1.3	YUCCA FLAT SCOTTYS JUNCTION NE
	2	0:45:30 13:45: 1	37.402	117.152	0.3	4.54	2.5	85	BC		1.5	STONEWALL PASS
	4	11:30: 3	36.510	116.591	0.7	9.61	2.7	118	BC		1.5	BIG DUNE
	4	18: 2: 5	37.167	116.778	0.6	10.43	0.7	202	AD		1.2	SPRINGDALE
	5 5	0:23:47 1:16:14	37.166 36.699	117.341 116.295	0.1 6.4	9.22 5.23	0.4 0.6	105 115	A8 A8		1.5 8.9	UBEHEBE CRATER Striped Hills
	5	1:35:55	37.419	117.101	0.5	5.44	4.0	137	80		1.4	SCOTTYS JUNCTION NE
	5	11: 5:18	37.211	115.795	0.2	7.63	1.3	60	AB		2.1	PAPOOSE LAKE NE
	6	23: 9:14	37.522	116.363	0.3	8.69	1.7	121	AC		1.6	QUARTZITE MTN
	13	10: 6: 6 15:15:51	37.4 9 2 36.546	117.159 116.259	0.3 0.6	0.71 6.78	0.4 1.0	137 197	AC AD		1.2	STONEWALL PASS Lathrop wells se
	13	14:38:32	37.701	115.040	9.5	2.39	1.6	118	AC	1.0	1.2	HIKO NE
	14	18:56:17	36.826	116.627	0.6	-0.55BL	0.6	116	AB	1.2	0.9	BARE MTN
	15	8:36:49	35.895	117.017	0.6	4.54	2.1	284	80		1.2	MANLY PEAK
	15	15: 7:39	37.197	117.596	0.3	9.54	0.6	154	AC		1.8	LAST CHANCE RANGE
	15 15	15:31:27 15:37:59	37.195 37.197	117.692 117.691	0.5 0.4	18.19 9.78	0.7 0.7	159 155	AC BC		1.8 1.7	LAST CHANCE RANGE Last Chance Range
	15	15:48:46	37.295	117.619	0.7	11.20	1.2	180	8C		1.3	LAST CHANCE RANGE
	15	15:53:30	37.197	117.595	0.3	9.55	0.7	153	AC		1.5	LAST CHANCE RANGE
	15	16: 4: 3	37.326	117.673	3.9	12.22	7.2	156	CC		1.1	MAGRUDER MTN
	15	16:46:45	37.702	115.042	0.9	2.28	3.2	141	8 C		0.9	HIKO NE
	15	21:10: 9	36.997	117.574	0.4	2.99	1.5	182	AD		1.4	DRY MTN
	16 16	4:33:49 9: 0:44	36.724 37.449	116.148 116.031	0.5 0.3	8.09 -0.52	1.4 9.3	167 103	AC AB		0.5 1.4	SPECTER RANGE NW Wheelbarrow Peak Ne
	16	16: 6: 1	37.967	116.946	6.3	5.96	2.8	93	88		1.5	SPRINGDALE
	16	10:46:52	37.056	116.946	0.5	4.57	2.6	146	BC		1.0	SPRINGDALE
	17	15:36:58	37.283	117.738	9.0	0.03	5.8	279	00		1.0	MAGRUDER MTN
	17	17:32: 5	37.292	117.732	0.3	0.39	0.5	162	8C		1.9	MAGRUDER MTH
	19 20	21:39: 6 3:36: 0	36.389 36.544	117.197 116.263	0.3 0.3	11.12 9.28	9.8 8.8	174 200	AC AD		2.0 1.0	EMIGRANT CANYON Lathrop Wells Se
	20	11:51:29	37.374	117.732	0.6	12.69	1.5	140	ÃC		1.0	MAGRUDER MTH
	21	2:46: 6	36.698	116.300	9.2	5.94	0.5	100	AB		1.2	STRIPED HILLS
	21 21	18:13:37	35.712	116.748		2.05 4.33		303			2.0	LEACH LAKE
	21	22:37:28 22:30:53	37.278 37.2 9 4	117.734 117.785	1.5	4.33 0.96	4.8	166 287		1.2	1.1	MAGRUDER MTH Soldier Pass
	21	22:50:37	37.257	117.721		7.00		208			1.1	MAGRUDER MTN
	22	10:17:39	37.529	114.628		7.00		299			1.4	CHOKECHERRY MTN
	22	23: 9:40	36.826	116.657		-0.44BL		282	AD	1.0	0.9	BARE MTN
	23 23	1:25:57	37.504	114.523 115.672	0.2	6.71	0.6	316			1.5	CALIENTE
	23	6: B:51 9:49:57	36.590 36.431	117.085	1.4	4.30 18.63	4.4	334 155			1.2	INDIAN SPRINGS Emigrant Canyon
	25	2:20:55	35.872	116.759	1.1	4.29	4.8	304			1.2	WINGATE WASH
	25	3:21:26	35.827	116.735		7.00 • •		314	80		1.5	CONFIDENCE HILLS
	25	5:40:25	35.998	116.834	1.3	4.56	2.2	185	80		1.2	WINGATE WASH
	25	11:19:53	37.550	115.188	8.4	3.02+		216			1.0	HIKO
	25 26	13:36:56	37.556	116.425	0.1	2.63	3.2	279			1.2	QUARTZITE MIN
	26	0:44: 4 12:14:30	35.918 36.860	116.765 116.243	0.8 0.3	3.95 5.34	2.5 0.8	284 146			0.8 1.3	WINGATE WASH Skull mtn
	26	13: 1:60	36.862	116.245	0.5	7.34	1.0	111			0.6	SKULL MIN
	26	14: 5:21	37.087	117.999	8.3	7.00•		245			1.6	WAUCOBA SPRING
MAY	1	20:50:29	37.833	115.123		5.24		185			1.0	WHITE RIVER HARROWS
	2	6:53:4B B:23:55	37.140 36.614	116.374 116.565	4.8	1.56 7.91	0.9 5.0	327 152			0.9 1.3	AMMONIA TANKS Big dune
	6	1:17:49	37.370	114.678		7.00 • •		288			9.9	SLIDY MIN
	6	4:42:59	37.771	114.917	0.2	4.81	0.9	187	AD .		1.1	WHEATGRASS SPRING
	6	6:21:49	36.699	116.099		7.00**		177	AD .		0.6	CAMP DESERT ROCK
	6	11: 1:13	37.426	117.107		-1.15	1.6	197			1.4	SCOTTYS JUNCTION NE
	7	1:55:56 2: 4:51	37.415 37.411	117.100 117.109	9.4 9.8	0.56 -0.62	0.6	89 119			1.4	SCOTTYS JUNCTION NE SCOTTYS JUNCTION NE
	ŕ	3:18:49	36.839	116.052	9.2	-0.62 7.98		245			9.7	CANE SPRING
	7	17:41:10	37.134	117.462	2.0	8.89		170			1.3	UBEHEBE CRATER
	7	23:47:53	36.788	115.892	1.1	13.48	3.2	187	80 -		0.8	FRENCHMAN FLAT

				HORIZ		VERT	AZI			
	TIME	(DEG. N)	LONGITUDE (DEG. W)	ERROR (KM)	DEPTH (KM)	ERROR (KM)		QUAL N	d Mbl	g QUADRANGLE
MAY B	13:51:48	36.441	117.862	0.8	18.57	0.9	169	AD	- 1.2	EMIGRANT CANYON
		37.698	115.047	0.2	0.63	0.3	116	AC		HIKO NE
10 13		37.150 37.699	116.929 115.048	8.7 0.3	0.11 1.75	5.9 1.2	277 116	DD		SPRINGDALE HIKO NE
13		36.761	115.968		7.88++		237	AD		FRENCHMAN FLAT
14	3:10:21	37.164	117.576	0.6	9.82	1.3	190	AD		LAST CHANCE RANGE
15		37.700	115.042	0.5	2.92	1.2	118	AC		HIKO NE
15		36.964	117.536	0.6	5.00	5.9	195	CD		DRY MTN
17 17		35.701 37.067	116.559 116.947	1.8 0.3	3.06 • 1.89	0.9	279 64	CD		LEACH LAKE Springdale
17	22:39:30	36.804	116.782	1.9	1.83	2.6	319	8D 1.		BULLFROG
18	1:59:10	37.682	115.047	0.9	2.56	2.5	114	80		HIKO NE
18	5:26:19	37.543	115.043		3.07		268	80	•	HIKO SE
18 18	6:57:44 7:55:53	37.148 37.703	117.850 115.037	0.7 0.6	9.41	2.3 2.1	217 130	8D		WAUCOBA SPRING
18	21: 7:25	37.183	116.600	0.4	10.05 9.19	1.3	103	80 AB		HIKO NE Thirsty Canyon Ne
19	6:42:54	36.233	116.811		7.00 • •		173	AD	•	BENNETTS WELL
19	6:49:43	37.355	117.530	0.6	1.86	1.5	94	AC	- 1.4	MAGRUDER MIN
20	3:37: 9	37.108	117.409	0.3	6.03	1.6	150	AD		UBEHEBE CRATER
20 20	9:51: 5 14:50:41	37.647 37.370	114.876 117.550	0.7 1.1	3.86 7.44	0.8 2.0	194 181	8D		PAHROC SPRING Magruder min
21	11: 2:36	36.161	117.176	0.4	0.02•		216	CD 2.		TELESCOPE PEAK
21	11:33:33	36.156	117.187	2.1	3.28.		225	CD		TELESCOPE PEAK
21	18: 5:55	37.137	117.347	0.2	6.13	1.0	114	AC	- 0.6	UBEHEBE CRATER
22	2:21: 2	36.154	117.215	1.5	3.13.		268	CD		TELESCOPE PEAK
22 23	10:40: 1 19: 0:45	36.910 36.927	117.841 116.256	1.4 2.1	7.00 4.29	9.6 3.3	234 150	CD		WAUCOBA WASH Topopah Spring
24	8:53: 1	35.875	116.758		7.00 • •		302	AD 1.		WINGATE WASH
26	11:13:33	36.386	115.576	0.4	14.08	0.5	108	AB		CHARLESTON PEAK
28	0:36:60	36.443	116.922	0.8	9.79	2.2	159	BC	- 1.1	FURNACE CREEK
28 28	17:20:38 17:33:20	36.996 37.002	116.414 116.430	0.2 0.8	7.99 8.37	0.5 0.7	34 199	AA		TOPOPAH SPRING NW Timber mtn
28	17:45:41	36.999	116.428	0.5	7.95	0.5	194	AD		TOPOPAH SPRING NW
26	17:47:38	36.999	116.422	0.5	6.46	8.4	205	AD	6.3	TOPOPAH SPRING NW
26 28	17:51:51 17:54:44	36.999 37.006	116.429 116.432	0.5 0.2	9.53 9.19	0.5 0.2	196 223	AD		TOPOPAH SPRING NW Timber mtn
20										
28 28	18: 0:27 18: 6:49	37.005 37.004	116.429 116.431	0.5 0.3	8.63 8.96	0.5 0.4	193 202	AD 0.7		TIMBER MTN Timber mtn
28	18:19:45	37.004	116.429	0.4	9.00	0.5	201	AD		TIMBER MTN
28	19:25:41	36.995	116.420	0.2	7.33	0.3	51	AA 0.7		TOPOPAH SPRING NW
28 28	19:53:53 20:10:49	37.007 37.004	116.430 116.425	0.3 0.3	9.20 8.80	0.4 0.5	205 197	AD		TIMBER MTN Timber mtn
30 1 NU 1	17:22: 9 19:58:29	36.688	116.270	0.2	6.05	0.4	81	AA		STRIPED HILLS STOVEPIPE WELLS
JUN 1 3	13:17:44	36.584 36.719	117.052 116.433	0.4 0.2	7.93 7.03	2.5 0.4	107 193	8C		LATHROP WELLS NW
3	17: 5:32	36.629	116.273	0.5	6.29	0.8	205	AD		STRIPED HILLS
4	1:23: 4	36.991	117.537	1.1	14.11	1.9	189	80		DRY MTN
4	3:26:59	37.381	115.196	0.7	6.74	1.9	101	AB	2.2	ASH SPRINGS
4	3:28:52	37.383	115.207	0.5	5.50	3.6	97	BC		ASH SPRINGS
4	11:37:41 11:49:45	37.389 37.378	115.207 115.216	0.3 3.2	4.12 1.78•	1.6	94 104	AC		ASH SPRINGS ASH SPRINGS
Ä	11:52: 8	37.409	115.158		15.65		190	8D 1.2		ASH SPRINGS
4	12:19: 5	37.385	115.210		7.00 **		183	AD 1.0		ASH SPRINGS
4	13:15:60	37.380	115.211	0.3	4.89	2.6	96	8C 1.5	1 . 7	ASH SPRINGS
4	15:28:48	37.149	115.359	0.6	6.15	1.8	136	AC	2.5	DESERT HILLS NE
4	16:45:53	37.377 37.003	115.187 116.735	0.7	8.12 7.00••	1.9	106 191	AB 1.6		ASH SPRINGS Thirsty Canyon Sw
8	12:53:29	36.707	115.930		7.00 • •		262	AD 0.6		MERCURY
9	1:27:37	36.612	116.227	0.9	2.80	1.1	307	AD	1.1	SPECTER RANGE SW
9	1:29:24	36.614	116.421	0.4	4.31	0.8	297	AD	8.7	LATHROP WELLS SW
9	11:51:40	36.701	116.161	0.2	5.52	1.1	145	AC	6.8	SPECTER RANGE NW
10 12	15:45:35	37.292 37.017	115.360	0.6	7.65	3.1	86 179	8C	1.2 0.6	BADGER SPRING Tippipah spring
14		37.017	116.247 116.947	0.3	7.04 1.84	0.7	143	AU	1.0	SPRINGDALE
16		36.882	116.736	0.2	0.47BL	0.3	104	AC	1.3	BARE MTN
16		37.504	118.001		7.00		261	AD 1.0		REGIONAL

	- TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	HORIZ ERROR (KM)	DEPTH (KM)	VERT ERROR (KM)		QUAL	Md	Mblg	QUADRANGLE
•											*****
JUN 16	19:34: 8	36.386	117.099		23.79 7.00**		185 292	AD AD	1.9		EMIGRANT CANYON Quartz Peak Sw
17	5:16:37 6: 7:54	36.786 37.402	115.736 115.131		7.00**		260	AD	1.1		ASH SPRINGS
1 9	5: 0:38	37.189	116.591	0.8	11.67	2.0	106	AB		0.9	THIRSTY CANYON NE
18	12:35:10	37.202	116.602	0.5	14.35	0.9	106	AB		1.1	THIRSTY CANYON NE
18	15:17:10	37.260	117.409		7.00 • •		191	AD	0.7		GOLD POINT SW
18 20	23:45:40	37.351 36.453	115.659 115.731		7.00**		159 178	A D A D	0.6 0.7		GROOM LAKE Charleston Peak
22	5: 0:20	36.729	116.035	0.4	10.04	0.6	141	AC		1.3	CAMP DESERT ROCK
22	12: 4:56	37.392	115.211	0.3	2.78+		114	CC	1.3		ASH SPRINGS
23	7:24:14	36.696	115.811		4.71		196	80	1.2		MERCURY NE
23	7:54: 2	36.726	114.526		7.00 • •		356	CD	1.5		MOAPA
24	3:52:14	36.698	115.864		9.23		152	DD	1.0		MERCURY NE
24	3:59:53	36.696	115.763		7.00 • •		342	80	1.0		MERCURY NE
24	4:44:32	37.648	117.720		7.00		183	AD	1.3		LIDA WASH
24	10:56:38	37.020	117.298		11.90		153	80	0.9		UBEHEBE CRATER
25	2:37:44	36.698	116.306	9.5	2.01	1.6	109	AB	0.7		STRIPED HILLS
25	12:54:14	36.964	117.216	4.5	1.28	7.3	219	CD	1.1		GRAPEVINE PEAK
26	3:54:32	36.683	115.768	3.0	4.16	2.4	228	CD	1.3		MERCURY NE
27	5:12:46	37.915	115.179		7.00		273	AD	1.1		OREANA SPRING
20	4: 1:36	37.181	116.490		-1.00		334	AD	0.9		SCRUGHAM PEAK
JUL 4	2:32:54	37.235	117.543	0.2	0.14	0.4	104	AB		1.5	LAST CHANCE RANGE
5	9:26:25	37.152	116.423	0.5	11.67	0.5	216	AD		1.0	SCRUGHAM PEAK
7	0:12:57	37.210	115.796	2.2	9.69	1.7	227	80		1.1	PAPOOSE LAKE NE
7	7: 4:40	36.672	116.305	0.4	3.80	0.7	134	AB		0.6	STRIPED HILLS
7	11:20:29	36.653	116.220	1.0	3.50	3.0	292	80		0.6	SPECTER RANGE NW
7	15:23:50	37.020	117.520	0.7	4.84	6.9	177	CC		1.2	LAST CHANCE RANGE
7	15:58:25	37.238	117.572	0.5	7.91	1.0	110	AB		1.4	LAST CHANCE RANGE
1 0 1 0	7:39:39 18:42:57	37.390 37.864	114.956 115.798	0.9 0.3	0.97 8.47	0.0 0.9	181 160	AD AC		1.2	DELAMAR NW ***QUAD. NOT LISTED***
	10.42.57	37.804	113.700	0.5	5.47	0.5		~~		• • •	TOTAL NOT ETSTEDITO
10	19:31:57	37.688	117.397	0.5	2.59	0.5	128	AB		1.6	SPLIT MTH
11	4:32:14	37.914	117.107	0.8	0.23	8.7	217	AD		1.3	MUD LAKE
11	22:34:41	36.826	116.649	0.3	-0.728L	0.3	93	AB		1.0	BARE MIN
12 13	5:44:19	37.609 36.726	115.937 116.243	0.8 0.2	1.87 7.53	2.6 0.4	98 70	88 AA		1.4	WHITE BLOTCH SPRINGS Specter range NW
15	18:52:57	37.290	114.664	0.8	5.89	3.2	226			1.9	GREGERSON BASIN
				•							
15	22:26:58	37.639	117.717	1.1	2.06	3.8	180	BC		1.1	LIDA WASH
16 16	1:51:56	36.034	116.216 116.089	0.3	8.32 5.32	0.5 0.7	143 163	AC AC		1.1	SKULL MTN MT SCHADER
16	8:53:44	36.452 37.236	117.537	0.9 1.9	1.60	7.6	122			1.0	LAST CHANCE RANGE
10	9:44:44	36.841	116.215	1.0	8.20	1.1	278	80		0.3	SKULL MTN
16	15:13:28	36.449	117.102		-0.73		160	AD		1.1	EMIGRANT CANYON
											TIRRIBAN CRAINC
	19:13: 0 19:56:57	37.094 37.257	116.199 115.033	0.3 0.9	5.94 1.44	0.8 1.4	148			1.0	TIPPIPAH SPRING Alamo se
17	1:33:29	36.980	117.618	0.7	8.26	2.2	219			1.0	DRY MTH
18	2:21:20	37.741	115.049	0.5	9.48	0.8	141	AC	2.4		HIKO NE
	18:53:32		117.421	0.6	1.66	1.0	153	AD		1.0	SPLIT MTH
10	20:33:10	36.980	116.632		0.98BL		343	AD		0.5	BARE MTN
19	9: 9:15	37.284	116.083	0.3	2.36	0.8	146	AC		0.9	OAK SPRING BUTTE
	10:55:28		117.411	0.0	9.15	4.3	168			0.0	SPLIT MTH
		36.587	116.265		-0.06	0.9	241			0.5	LATHROP WELLS SE
	10:48:11	37.482	117.111	0.5	3.28	8.1	105				SCOTTYS JUNCTION HE
	10:51:15		117.117	1.5	2.91.		162				SCOTTYS JUNCTION NE
20	10:54:43	37.401	117.028		3.23		198	AD	1.3		SCOTTYS JUNCTION NE
20	13: 0:11	37.162	116.079		3.02		216	AD	1.1		OAK SPRING
		37.700	115.020	0.2	0.44	0.3	122			1.0	HIKO HE
22	16:26:51	37.391	118.159	1.3	4.15	1.2	280	80		1.7	REGIONAL
	0:23:58	36.742	116.033	0.4	6.85	0.8	172	-		1.0	CAMP DESERT ROCK
23 24		36.693	116.249	0.8	0.47	0.6	255	-		0.5	SPECTER RANGE HW Bonnie Claire se
4.	1:51:13	37.104	117.068	0.3	0.52	0.8	100	AC ·		1.0	SUMMIE CENTRE SE
24	21:30:42	37.763	114.990	0.7	6.24	0.7	167	AD -		0.9	WHEATGRASS SPRING
		36.975	117.924		11.37	5.5	249			2.2	WAUCOBA WASH
25		36.737	117.384		4.73		198				MARBLE CANYON
25		37.069	117.965	3.8	2.81+		267			1.4	WAUCOBA SPRING Hiko ne
	10:10:19 19: 4:23	37.606 37.675	115.038	6.3 0.3	2.56· 3.46	1.9	206 112			0.6 1.2	HIKO NE
2.5		J J. J		3.3	5.43			~ .		• • •	TING NE

1983 LOCAL HYPOCENTER SUMMARY

				HORIZ		VERT	AZI			
DATE	- TIME	LATITUDE	LONGITUDE		DEPTH	ERROR	GAP			
	UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)		OUAL Md	Mbla	QUADRANGLE
	010,	(500. 11)	(500. ")	(~-)	(~-/	(~~)	(500)	00AL #0	morg	4000MANOEC
JUL 25	22:27:31	37.572	116.456	0.3	7.68	2.6	99	BC	1.0	QUARTZITE MTN
26	23:53:50	37.142	117.359	0.3	10.59	0.8	117	AB	1.0	UBEHEBE CRATER
27	0:14: 2	36.729	116.212	0.3	4.83	0.9	76	A8	1.2	SPECTER RANGE NW
28	9:43:25	37.324	115.259	1.1	1.65	3.8	112	8C 1.5		BADGER SPRING
28	22:44:58	36.859	115.937	0.8	5.34	1.5	257	AD	1.1	FRENCHMAN FLAT
29	11:30:31	36.809	115.876	0.6	7.96	1.5	205	AD	1.4	FRENCHMAN FLAT
2.9	11:30:31	30.009	113.676	v . 0	7.50	1.5	203	AD	1.4	FACRONMAN FEAT
29	17:46: 3	36.382	117.049	0.7	11.75	0.8	122	AB	1.3	EMIGRANT CANYON
29	23:24:31	36.798	115.906	0.4	3.02+		185	CD	0.8	FRENCHMAN FLAT
30	16:31:38	37.257	115.027	0.6	7.53	1.6	225	AD	1.5	ALAMO SE
31	4:39:38	37.701	115.040	2.0	2.34	3.8	209	8D	0.7	HIKO NE
31	13:41: 8	37.314	115.188	9.0	7.00		130	DC	1.0	ALAMO
AUG 1	7:35:53	36.647	116.411	2.3	11.54	2.1	268	BD	0.6	LATHROP WELLS NW
AUG 1	7:35:33	30.047	110.411	2.3	11.54	2.1	200	0D	0 .0	CATHROP WEELS NO
1	10:28: 3	37.198	117.377	0.3	7.93	1.1	108	8B 1.4	1.6	UBEHEBE CRATER
i	21:21:41	37.712	115.015		5.39		233	AD	0.8	HIKO NE
2	0:21: 1	37.683	115.842	0.2	6.14	0.5	116	AB	1.4	HIKO NE
ŝ	12:11: 1	36.975	116.144	1.7	0.17	1.4	236	80	0.6	MINE MIN
3	14:17:56	37.313	117.644	0.5	5.50	1.4	116	A8	1.2	MAGRUDER MIN
3	18:17:47	37.393	115.213	1.5	2.77	6.8	249	CD	1.1	ASH SPRINGS
۲	10.17.47	07.000	110.210			0.0	440	U D	, , ,	ASII SI KINGS
5	3:22:46	36.623	116.353	1.3	6.15	0.6	267	BD	0.0	LATHROP WELLS SE
5	16:23:19	37.316	117.654	0.4	4.56	1.4	122	AB	1.3	MAGRUDER MIN
6	2:14:41	37.062	117.484		2.94	2.1	131	88 1.7		UBEHEBE CRATER
6	2:17:39	37.062	117.391	0.3	2.35	8.9	127	AD 1.2		UBEHEBE CRATER
6	4:42:10	37.023	117.344		8.98		232	8D 1.1		UBEHEBE CRATER
6	7:28: 9	36.360	116.805	0.5	5.74	5.7	119	CC 1.6		FURNACE CREEK
•	7:20: 7	36.368	110.000	0 .5	3.74	3.7	119	CC 1.6		PURNACE CREEK
6	10:47:42	37.048	117 704		3 60		4.6.1	40 4 0		USEHESE CRATER
6			117.386 117.466		3.52		151	AD 1.0		
	11:23:41	36.310		4.0	2.15+		265	CD 1.5		PANAMINT BUTTE
6	14:29:15	37.058	117.393		-1.06		154	AD 0.9		USEHESE CRATER
6	15:37:58	37.067	117.406	0.6	1.45	2.9	131	8B 1.3		USEHESE CRATER
6	16: 6:46	37.062	117.389	0.3	-0.02	8.1	128	CB 1.2		USENESE CRATER
6	16: 7:32	37.065	117.393	0.4	4.19	1.9	127	AB 1.2		USEHESE CRATER
	4.42.44									
	6:53:29	36.745	116.262	0.3	3.58	0.4	103	A8	1.1	STRIPED HILLS
	18:40:48	37.545	117.156	0.4	8.84	2.5	127	BC	1.1	GOLDFIELD
	19:16:55	37.315	117.586	0.4	10.39	0.5	242	AD	0.9	MAGRUDER MTN
9	15:20:58	36.986	117.575	0.5	8.50	2.2	282	8D	1.8	DRY MTN
9	15:47:43	37.692	115.044	0.2	1.79	0.6	115	AC	1.1	HIKO NE
9	18:32:50	37.701	115.006	0.1	1.73	0.4	147	AD	1.0	HIKQ NE
10	18:36:16	36.835	115.784	1.6	16.42	2.1	275	BD	0.8	FRENCHMAN LAKE SE
10	21:34:30	37.718	115.053	0.2	9.11	0.5	118	AB	0.9	HIKO NE
11	14:30:28	36.788	117.403	1.0	7.00	0.7	191	AD	1.1	TIN MTN
11	17:26:15	37.964	117.635	0.5	3.83	8.7	255	CD	1.8	SILVER PEAK
11	17:57:47	37.067	117.421	0.9	0.44	0.8	288	AD	0.9	UBEHEBE CRATER
12	6:37:44	37.487	117.144	0.5	5.69	4.3	105	8C	1.4	STONEWALL PASS
12	7:30:21	36.379	115.809	0.6	8.43	2.4	177	8C	1.1	MT STIRLING
13	3:39:58	37.159	117.376	0.2	0.77	0.4	105	AC	1.5	UBEHEBE CRATER
13	6: 8:52	37.070	117.412		-0.07		132	AD	1.6	UBEHEBE CRATER
13	9:37:32	37.000	116.392		-0.12	0.4	152	AC	1.3	TIMBER MTN
13	14: 1:25	37.045	116.404	2.4	0.97	1 . 8	287	BD	0.9	TIMBER MTN
14	13:23:24	37.366	117.537	0.5	5.91	1.4	178	AC	0.9	MAGRUDER MTN
14	21: 0:49	37.068	117.371	0.6	1.75	2.2	137	BC	1.1	UBEHEBE CRATER
15	6:41:24	36.783	116.247	0.6	0.06	0.7	88	AB 1.1		SKULL MTN
16	16:42:58	37.358	117.540	0.6	0.19	1.0	99	88	1.5	MAGRUDER MTN
16	19: 2:46	37.031	116.297		-1.01	1.3	237	BD	1.0	BUCKBOARD MESA
17	9:44:21	37.734	114.723		7.00 • •		288	AD	0.8	CALIENTE NW
17	16:17:23	37.040	116.307	1.4	2.70	1.6	278	BD	0.7	BUCKBOARD MESA
17	20:30:23	37.372	117.547	0.6	7.57	1.4	180	AC	1.3	MAGRUDER MIN
17	23:40:29	37.720	115.047	0.5	8.21	1.2	121	A8	1.3	HIKO NE
18	2: 8:25	36.851	116.227		10.45	0.7	112	A8	0.8	SKULL MTN
18	7:43:25	37.194	117.605	0.6	7.75	0.2	161	AD	1.0	LAST CHANCE RANGE
18	15:16:50	36.774	118.259	8.4	0.14	0.4	97	AB	0.7	JACKASS FLATS
18	20:55:51	37.065	116.288	1.0	2.85	1.0	267	AD	1.1	BUCKBOARD MESA
19	15:50:33	36.854	116.235		11.13	0.3	165	AC	0.6	SKULL MTN
19	16: 5:59	36.851	116.231		11.19	0.6	120	A8	1.0	SKULL MTN
22	5:52:50	37.146	115.404	0.3	6.29	1 . 8	8 0	AC 2.4	2.5	DESERT HILLS NW
22	6:32:54	36.706	116.229	0.6	8.41	0.6	217	AD	0.6	SPECTER RANGE NW
22	9: 7:38	37.529	117.575	2.0	2.65	6.3	272	CD	1.2	LIDA WASH
22	23:48: 8	37.159	117.407	0.2	9.03	0.5	138	AC 8.B	1.0	UBEHEBE CRATER

					HORIZ		VERT	AZI				
		- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP				
	(1	UTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	. Md	Mbig	QUADRANGLE
	G 23	2:43:15	37.522	117.578		7.00**		301	AD	1.1	1.2	LIDA WASH
~	23	3: 3:19	37.335	117.802	1.3	24.87	0.8	168	BC	0.9	1.2	SOLDIER PASS
	23	19:40:33	37.695	117.429	0.6	8.05	0.9	168	AC		1.3	SPLIT MTN
•	25	16:22:40	36.418	117.466	5.5	-0.13	3.8	283	DD		1.3	PANAMINT BUTTE
	26	10:43: 6	36.643	115.854	1.6	8.09	1.2	332 300	BD AD		0.6 1.0	MERCURY NE Thirsty Canyon Se
	28	1: 4:34	37.885	116.536	0.6	12.88	0.6	300	AU		1.0	INIKSII CANION SE
	26	16:14:45	38.226	115.869	0.6	2.81	2.6	227	80		1.1	QUINN CANYON RANGE
	29	4:56:35	38.222	115.902	0.7	7.00	5.6	259	CD		1.8	QUINN CANYON RANGE
	29	8:37:36	36.662	116.274	0.5	6.16	0.4	252	AD	0.8	0.7	STRIPED HILLS
	29 29	15:46:24 17:22:23	36.725 37.134	115.663 116.297	2.5 0.5	9.44 5.07	1.9 0.8	328 294	CD AD		1.1 0.7	INDIAN SPRINGS NW Ammonia tanks
	29	19:38:39	36.414	116.949	0.3	14.45	0.5	100	AB		1.7	FURNACE CREEK
	30	10:23:31	37.048	117.413	0.9	4.40	3.6	185	80		1.1	UBEHEBE CRATER
	30 31	10:26:36 7:44:47	37.068 36.663	117.400 115.964	0.3 2.4	-1.15 7.00	0.5 1.3	129 182	A8 BD		1.3	UBEHEBE CRATER MERCURY
	31	10:20:50	37.627	114.958		6.44		244	AD		0.9	PAHROC SPRING
	31	22:46:37	36.839	116.224	8.2	7.23	8.4	58	AA		1.3	SKULL MTN
SEF	• 1	0:28:25	37.685	115.051	0.5	0.32	0.7	158	AC		0.7	HIKO NE
	1	23: 2:16	37.198	117.304	0.2	7.92	0.6	89	AB		1.7	UBEHEBE CRATER
	ż	2: 5: 1	36.701	116.285	0.3	6.74	0.5	119	AB		0.7	STRIPED HILLS
	3	8:37:52	36.986	117.548	0.6	2.75	3.2	194	BD		1.1	DRY MTN
	3	1: 6:13	36.970	117.558	0.5	5.28	4.5	200	BD		1 . 6	DRY MTN
	5	15:40:56	36.837	116.237	0.3	7.21	0.5	123	AB		0.8 1.7	SKULL MTN
	5	16:18: 8	37.491	114.299	2.3	5.98	2.3	295	BD		1.7	···REGIONAL···
	5	17: 9:28	37.456	114.294	1.5	7.12	5.8	333	CD		1.7	REGIONAL
	5	18:31:25	37.305	114.887	1.5	16.58	2.0	269	BD		1.2	DELAMAR LAKE
	5	20: 4:57	36.761	116.235	0.4	2.98	0.4	185	AD		0.5	SKULL MIN
	5 6	23:34:29 2:21:26	36.772 37.091	116,247 117,366	0.3 0.6	1.37 14.32	2.8 1.0	172 134	8C AB		0.7 1.0	SKULL MTN UBEHEBE CRATER
	6	17:20:16	36.777	116.254	0.3	0.63	0.8	82	ÂA		1.6	JACKASS FLATS
	10	12:45:42	35.900	116.479	5.4	11.67+		252	DD	1.9		SHOSHONE
	11	23:15:24 7:38:42	37.080 36.595	116.199 116.459	0.5 0.7	5.35 4.61	0.3 2.0	281 285	AD AD		0.9 1.0	TIPPIPAH SPRING LATHROP WELLS SW
	12	B:28: 3	37.044	117.019	8.5	0.20	0.7	177	AC		0.8	BONNIE CLAIRE SE
	12	12:27:55	37.235	115.017	0.5	5.40	2.6	213	. BD		1.6	LOWER PAHRANAGAT LAKE
	13	6: 4:54	36.946	117.844	0.8	2.82	2.1	231	8 D		1.3	WAUCOBA WASH
	14	17.70.74	17 880	117 750		2 40 4		• •				MONTETHINA BEAU CE
	15	13:36:34 12:13:43	37.552 37.324	117.358 115.602	0.3 2.0	2.68+ 0.07	1.3	84 257	CC 8D	1.4	1.2	MONTEZUMA PEAK SE Groom range se
	16	8:39:15	37.764	118.116	2.2	4.75+		302	CD		1.3	***REGIONAL***
	16	19:28:48	37.202	116.959	0.7	5.98	2.9	251	BD		1.0	SPRINGDALE
	16	19:56:37	37.076	118.113	2.9	2.22+		288			1.7	•••REGIONAL•••
	17	8:41:46	37.191	117.322	0.4	1.90	1.0	95	AC	1.3		UBEHEBE CRATER
	19	8:57: 8	37.288	115.391	2.0	2.46+		281	CD	1.3		CUTLER RESERVOIR
	20	0:48:59	37.108	116.589	1.3	8.04	4.2	254			1.1	THIRSTY CANYON NE
	21	1:16:32 7: 3:26	37.694 36.998	115.023	1.3	5.90	6.0	144			1.1	HIKO NE Tin mtn
	21 21		36.494	117.499 117.592	0.7 6.5	6.10 19.71	3.5 4.3	266	-		1.4	DARWIN
	22	0:30:59	37.816	114.889	1.4	9.45	2.5	215			1.0	WHEATGRASS SPRING
	23	18:47:29	37.244	114.852		7.00 • •		264		1.6		DELAMAR 3 NE
	25 25	2:40:53 19:51:40	37.821 37.416	114.866 114.723	1.3	9.14 4.19•	3.8	224 272			1.1	DEADMAN SPRING SE SLIDY MTN
	26	7: 2:25	37.597	117.385	0.7	8.50	1.4	161			1.5	MONTEZUMA PEAK SW
	26	11:42:52		117.817	1.2	10.45	2.3	152			1.3	PIPER PEAK
	27	16:55:45	36.990	117.508	0.7	7.93	2.0	179	AC		1.1	DRY MIN
	28	1:37:42	37 052	117.367	0.6	4.13	1.6	140	AD		1.2	UBEHEBE CRATER
		5:26:41		115.478	5.6	2.46+		317			1.7	BLACK HILLS NW
			36.601	116.760	1.7	10.29	8.6	289		0.7	1.2	CHLORIDE CLIFF
ОСТ		21:23:26	37.167 37.353	114.729	1.2	10.62	2.3	258			2.0	VIGO NW Gold Point
061	1	10:32:54 10:33:59		117.280 117.253	0.2 0.7	6.67 8.74	0.7 1.1	58 116		2.4 2.1	2.5	GOLD POINT
	•		-,	. , , , , , , ,		4			~~	- · ·		
	1	10:47:46	37.352	117.280	0.2	6.57	0.7	58			2.4	GOLD POINT
			37.348	117.287	0.3	5.68	0.8	61			1.8	GOLD POINT
		16:54:58	37.337 37.353	117.293 117.281	0.5 0.5	5.39 5.61	2.1	95 69			1.9	GOLD POINT GOLD POINT
	i		37.362	117.252	6.9	7.85	0.8	254			0.9	GOLD POINT
	1	19:55:53	37.354	117.285	0.6	5.63	0.8	187	AD ·		1.8	GOLD POINT

	DATE	- TIME	LATITUDE	LONGITUDE	HOR I Z ERROR	DEPTH	VERT ERROR	AZ I GAP				
		JTC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	Mblg	QUADRANGLE
• oc	T 1	20:35:12	37.347	117.289	0.3	5.25	0.5	211	AD		0.9	GOLD POINT
	1	21:20:34	37.351	117.287	0.2	4.82	0.7	117	AB		1.4	GOLD POINT
•	1	21:40:35 23:30:12	37.321 37.44 3	117.442 117.300	8.7 3.5	11.96 1.56	1.8 4.9	144 258	AC CD		1.2 1.2	GOLD POINT SW Mount Jackson
	2	5:29:47	37.001	117.682	1.0	6.83	5.6	199	CD		1.4	LAST CHANCE RANGE
	3	14:17:59	36.888	116.288	8.3	6.16	0.6	94	AB		1.3	STRIPED HILLS
	3	21:56:28	37.354	117.273	0.2	4.88	0.5	119	AB	1.4		GOLD POINT
	4 5	2: 4:44 19:18: 1	37.355 37.419	117.276 114.721	0.6 0.8	5.68 3.89•	1.5	119 272	A8 CD	1.4	1.1	GOLD POINT SLIDY MTN
	5	12:57: 4	37.496	117.321	1.2	18.88	1.8	179	BC		1.4	MOUNT JACKSON
	6	9: 1:33	37.702	115.047	8.4	2.03	1.5	117	AC		1.4	HIKO NE
	9	12: 6:55	37.187	117.623	1.3	10.05	1.6	207	80		1.3	LAST CHANCE RANGE
	11	9:30:50	37.140	117.411	0.6	8.37	2.0	138	BC		1.0	USEHESE CRATER
	11	9:38:41 13:17:52	37.137 37.134	117.385 117.399	0.7 0.6	8.00 5.10	3.0 4.2	129 136	8 B B C		1.3	USEHEBE CRATER USEHESE CRATER
	12	9:25:54	37.187	117.400	0.3	6.67	1.4	118	AC		1.1	USEHEBE CRATER
	12	13:54:15	36.295	117.174	8.9	3.94	2.4	241	80		8.4	EMIGRANT CANYON
	12	15:27:30	36.922	117.851	0.6	11.13	3.4	267	6 D		1.5	WAUCOBA WASH
	12	18: 9:36	37.323	117.285	2.6	10.72	2.5	194	CD		1.2	GOLD POINT
	13 13	6:46:48 6:34:42	37.285 36.926	116.362 117.896	0.4 3.1	-0.94 7.00+	0.6	74 252	AC CD		1.7	DEAD HORSE FLAT Waucoba Wash
	13	8:51: 8	37.227	116.344	1.1	7.92	2.3	317			8.9	AMMONIA TANKS
	14	13:26:22	36.978	116.294	0.9	5.42	2.2	193			1.4	TOPOPAH SPRING
	14	20:10:38	37.298	115.495	1 . 9	1.26	4.2	257	8 D		1.7	CUTLER RESERVOIR
	15	10:33:30	37.857	116.024	0.9	2.97	5.8	111			1.1	REVEILLE PEAK
	17	3:24:32	30.780 36.674	116.677	0.3	4.72	0.8	113		1.1	1.1	BARE MTN Striped Hills
	17 19	6:23:36 1:14:13	36.472	116.257 116.364	8 · 4 2 · 8	5.02 4.03•	1.4	120 327			1.3	ASH MEADOWS
	19	12:36:21	36.970	117.546	0.7	3.17+		196	CD		1.1	DRY MTN
	19	19: 6:35	37.553	115.323	8.6	5.22	3.4	157	8 C		1.5	MT IRISH
	29	0:14:45	37.465	115.531	0.8	8.53	2.7	134	BC -		1.6	GROOM RANGE NE
	29	6:59:43	37.703	115.038	0.8	4.22	3.8	120			1.1	HIKO NE
	20 21	8: 6:22 2:25:43	37.542 37.462	115.333 115.534	0.8 1.1	0.86 2.49•	1.2	163 122		1 . 4	8.7	MT IRISH Groom range ne
	22	9: 5:24	37.059	117.982	1.3	5.21•		287			1.3	WAUCOBA SPRING
	23	21:13:20	37.385	117.560	1.0	8.95	2.3	186	8D -		1.9	MAGRUDER MTN
	24	5:26:29	37.001	117.438	0.5	3.60	1.1	151	AC -		1.1	USEHEBE CRATER
		18:45: 9	36.294	115.511	1.7	10.48	9.3	296			1.4	CHARLESTON PEAK
	26 27	11:44:14	36.653 37.195	116.083 116.342	6.5 0.9	6.58 7.75	1.9 1.9	104 314			8.5 8.8	CAMP DESERT ROCK AMMONIA TANKS
	27	15:57:31	37.397	114.899	2.3	6.84+		255			1.5	DELAMAR NW
	27	22: 5:36	37.211	116.405	1.5	3.78•		325	CD .		0.8	SCRUGHAM PEAK
	28	8:27:13	37.462	115.549	1.2	8.15	5.3	136			1.3	GROOM RANGE NE
	29 29	11: 4:51 11: 9:40	37.019 37.025	117.413 117.419	1.5	-0.96 2.88	1.6	140			0.9 0.8	USEHEBE CRATER
	29	15:39:17	37.023	117.433	0.5	0.80	8.5	146			1.4	UBEHEBE CRATER
	29	15:42: 1	37.028	117.435	0.3	-0.26	0.5	146	AC -		1.3	UBEHEBE CRATER
	29	16:30:54	37.027	117.427	8.7	5.05	3.2	144	BC -		1.2	UBEHEBE CRATER
	29	20:33:36	37.066	116.227	1.9	13.67	2.7	271			1.0	TIPPIPAH SPRING
	30 30	0: 9:51 7:22: 6	37.512 37.728	110.938 115.976	2.5 1.0	6.86+ 2.95	4.8	179 183			1.3	CACTUS SPRING WHITE BLOTCH SPRINGS
	30	13:39:54	37.023	117.450	2.2	5.32	6.9	152				UBEHEBE CRATER
	30	13:52:30	36.162		21.9	1.18+		267				COSO PEAK
	30	21:24:15	37.018	117.425	0.6	2.95	1.1	144	AC -		1.0	UBEHEBE CRATER
NOV	2 3	16:39:34 B:19:47	36.817 36.745	116.281 116.288	1.0	9.96 1.11•	1.3	151			0.5 0.8	JACKASS FLATS STRIPED HILLS
	-		37.358	117.202	0.4	5.16	0.9	120			1.2	GOLD POINT
	5	9:41:38	37.354	114.733	1.1	4.90•		244	CD -		1.8	ELGIN SW
	7	16:11:45	35.948	117.278	2.4	3.35•		273			1.2	TRONA
	7		37.818	114.843	3.2	11.13	6.9	229			1.1	DEADMAN SPRING SE
			37.823 37.411	114.857 117.191	1.3	4.04* -0.01	0.7	227 84			1.0	DEADMAN SPRING SE STONEWALL PASS
			36.721	116.062	8.8	7.33		159			0.6	CAMP DESERT ROCK
	10	10:37:15	37.426	117.098	0.2	6.01	2.5	92	AC 1	. 9	2.0	SCOTTYS JUNCTION NE
			37.424	117.699	8.4	2.54					2.2	SCOTTYS JUNCTION NE
	10	13:17:33	37.425	117.097	0.2	7.33	1.3	92	AB 1	. 7	1.5	SCOTTYS JUNCTION NE

1983 LOCAL HYPOCENTER SUMMARY

					HORIZ		VERT	AZI				
DA		- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP				011.05.1101.5
	((ITC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	MPIG	QUADRANGLE
NOV	11	5:29:51	36.583	116.453	1.3	6.48	2.5	297	80	0.4	0.7	LATHROP WELLS SW
	11	17:56:49	37.345	118.139	1.0	6.39	3.2	263	80	1.0	1.6	· · · REGIONAL · · ·
•	12	4:16:43	38.171	115.678	4.4	4.67+		363	CD		1.5	CHERRY CREEK SUMMIT
	12	4:31:48	37.184	115.957	1.6	10.97	3.2	157	80		1.1	PAIUTE RIDGE DEADMAN SPRING SE
	12	15:23:51 3: 9:41	37.819 36.856	114.866 116.169	2.3 1.7	1.16 3.90	4.9 2.4	223 171	BD BC		0.9	SKULL MIN
		3. 3.41	50.000		• • •	5.00		• • • •			•••	5
	13	3:21:42	36.376	116.949	1.0	16.47	1.8	124	88		8.8	FURNACE CREEK
	13	7:46:52	37.433	117.897	8.7	1.55	3.2	93	8C		1.6	SCOTTYS JUNCTION NE
	14	21: 0:51	37.678	115.360	1 . 4	-0.25	1.1	97	CB		1.5	MT IRISH
	15	1:37:27	37.059	116.120	1.6	1.89	1.4	255	80 80		1.4	YUCCA FLAT Bare min
	16	2:29:23 16:15:28	36.837 37.860	116.628 116.818	2.4 0.7	4.01 3.28•	3.1	248 183	CD		1.4	REVEILLE PEAK
				,,,,,,,	• • • •	0.20			-			
	19	3:58:53	36.610	116.257	0.4	5.39	1.8	154	AC		8.9	LATHROP WELLS SE
	19	11:58:20	36.414	116.883	2.8	15.62	6.6	343	CD		1.3	FURNACE CREEK
	2 8 2 9	10:54:33	36.716 36.705	115.704 115.731	1.0 0.7	10.30 11.28	8.8 8.4	282 278	AD AD		1.3	INDIAN SPRINGS NW INDIAN SPRINGS NW
	28	11: 2:37 13:17:18	36.716	115.715	1.3	9.60	8.9	281	80		1.2	INDIAN SPRINGS NW
	21	2: 7:17	36.682	116.193	2.6	-0.44	1.8	282	CD		0.7	SPECTER RANGE NW
	21	4:51:25	36.705	115.747	1.3	10.10	0.9	275	BD		1.3	INDIAN SPRINGS NW
	21 21	5:22:12 9:28:25	36.711 36.932	115.731	1.4	8.70 7.41	1.3 2.3	278 268	80		1.2	INDIAN SPRINGS NW Plutonium Valley
	21	13:55:42	36.712	115.982 115.741	1.0	10.70	1.0	276	8D 8D		1.8	INDIAN SPRINGS NW
	21	14:50:18	36.728	115.711	6.8	9.86	0.9	281	AD		1.6	INDIAN SPRINGS NW
	22	0: 2; 8	37.020	110.431	3.0	5.85	3.1	252	CD		0.3	TIMBER MTN
	22	15:31:46 19:42:57	37.391	117.459	1.4	7.00	2.5	144			1.1	LIDA
	22 23	1: 2:52	36.580 37.458	116.946 117.284	1.4 0.3	8.40 5.29	1.9 2.7	284 86			0.0	CHLORIDE CLIFF Mount Jackson
	24	11:35:17	37.258	117.271	0.6	7.08	8.8	120			1.1	GOLD POINT
	27	0:21:54	36.329	116.892	0.7	14.27	1.1	150			1.2	FURNACE CREEK
	27	2:58:29	36.708	115.667	1.3	7.76	1.7	287	80		1.3	INDIAN SPRINGS NW
	27	9:54: 5	36.716	115.720	0.9	9.42	1.0	280	AD		1.3	INDIAN SPRINGS NW
	27	14:32:28	36.724	115.719	1.3	9.72	1.0	288			1.4	INDIAN SPRINGS NW
	27	23:39:33	36.765	115.731	0.6	10.63	8.7	191	_		1.3	INDIAN SPRINGS NW
	28	0:36:39	36.713	115.722	0.0	10.26	0.6	279			1.3	INDIAN SPRINGS NW
;	28	5:58:46	37.142	117.378	0.5	8.63	1.8	173	AC		1.2	UBEHEBE CRATER
:	28	18:42: 5	36.715	115.739	0.3	11.22	1.0	117	AB		1.7	INDIAN SPRINGS NW
	28	10.43.47	34 441					120		•		146444 PB#146P AW
	2 8 2 8	18:43:47 19:25: 1	36.081 37.199	115.720 117.914	2.3 1.8	11.16 4.72•	1.0	329 254			1.0	INDIAN SPRINGS NW Waucoba Spring
	28	19:29: 2	36.712	115.733	0.7	10.23	8.6	295			1.1	INDIAN SPRINGS NW
-	29	20: 5:58	36.747	115.853	0.8	9.40	1.1	188			1.4	MERCURY NE
:	3 0	5: 4: 1	37.363	115.672	0.5	8.74	1.0	165	AC -		1.2	GROOM LAKE
3	30	5:44:30	36.703	116.432	0.3	1.04	1.2	205	AD .		0.9	LATHROP WELLS NW
,	3 0	17:19:33	36.308	114.885	2.4	-0.79	1.6	265	80 -		2.1	DRY LAKE
	1	12:45: 2	36.716	115.720	0.7	10.59	8.7	280			1.2	INDIAN SPRINGS NW
	2	0:14:27	37.082	116.200	0.7	5.50	3.1	250			1.1	TIPPIPAH SPRING
	2	9:44: 7	37.165	117.338	0.5	7.77	2.1	159	8C -		0.7	UBEHEBE CRATER
	2	21:47:46	36.935	115.884	0.9	6.30	1.3	330			1.9	PLUTONIUM VALLEY
	4	0:36:13	36.681	115.735	4.4	24.00		74	DA	1.7		INDIAN SPRINGS NW
	5	4:48:19	37.272	117.581	0.4	8.75	8.7	71	AA -		2.0	MAGRUDER MIN
	5	10:52:35	36.705	115.725	0.8	11.03	0.7	219			1.5	INDIAN SPRINGS NW
	7	18:46:21	36.726	116.140	0.7	1.54+		128			0.9	SPECTER HANGE NW
	9	2:40: 6	36.779	116.255		-0.36	0.7	157	AC -		0.6	JACKASS FLATS
	1	4: 9:30	36.662	116.678		-0.51	0.5	95			1.8	CAMP DESERT ROCK
1	1	6:14:48	36.715	115.729	0.3	18.96	0.6	172	AC -		1.6	INDIAN SPRINGS NW
1	2	4:43:47	36.665	116.062	0.8	7.04	2.4	105	88 -		1.1	CAMP DESERT ROCK
		12:23:23	37.848	117.119	0.9	7.18	0.5	202			i . i	SONNIE CLAIRE SE
		19: 3:59	37.120	115.281	0.6	8.72	0.8	241	AD -		1.4	DESERT HILLS SE
		23:42:58	37.256	117.882	1.6	4.93	6.7	241			1 - 1	SOLDIER PASS
	3	0:52:21	37.029	116.237	4.0	0.90	3.2	304			9.8	TIPPIPAH SPRING
•	3	1:40:57	37.083	116.228	1.7	5.36	1.7	298	8D -		0.9	TIPPIPAH SPRING
1	3	6:31:22	37.211	116.251	9.1	23.70+		317	00 -		1.1	AMMONIA TANKS
		18:48:46	37.003	115.748		38.53		195	AD -		1.5	TEMPIUTE MTN
		21:54:39	37.711	115.011	1.3	0.58					1 . 0	HIKO NE
1			37.379	117.725		15.00					1.0	MAGRUDER MIN
;			35.982 37.325	116.868 114.829	0.3 0.8	9.32 8.26					9.0 1.8	WINGATE WASH Gregerson Basin
•	-						* • •				•	

1983 LOCAL HYPOCENTER SUMMARY

					HORIZ		VERT	AZI				
D	ATE	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP				
	(u	ITC)	(DEG. N)	(DEG. W)	(KM)	(KM)	(KM)	(DEG)	QUAL	Md	Mblg	QUADRANGLE
DEC	20	8:14: 6	36.663	116.049	1.4	9.73	2.1	118	88	0.8	0.5	CAMP DESERT ROCK
	20	12:44:51	37.363	116.285	0.9	11.20	3.8	295	8 D		1.0	DEAD HORSE FLAT
•	20	23:28:32	37.574	117.028	0.5	5.82	2.5	217	80		1.0	GOLDFIELD
	21	10:23: 4	36.950	117.618	1.0	7.99	2.5	217	80		1.1	DRY MTN
	21	22:56:47	36.694	115.724	1.6	11.49	0.9	326	80		1.3	INDIAN SPRINGS NW
	21	22:56:55	36.689	115.721	1.4	11.22	0.7	327	80		1.1	INDIAN SPRINGS NW
	22	1:56:47	36.685	115.707	1.3	10.83	0.9	303	BD		1.1	INDIAN SPRINGS NW
	22	16:39:22	36.926	116.516		34.47BL		237	80		1.6	OBARE MIN
	22	17:40:57	36.990	116.454	8.8	6.42	1.3	207	AD		0.8	TOPOPAH SPRING NW
	22	21:10:56	36.691	116.212	1.7	0.6B	1.7	233	80		0.7	SPECTER RANGE NW
	23	5:12: 7	37.368	114.420	8.9	2.18+		299	DD		1.6	···REGIONAL···
	. 23	23:43:35	37.427	116.913	0.4	0.84	0.5	121	AC		1.5	TOLICHA PEAK
	24	6: 9:56	36.989	117.547	0.8	1.56	2.4	178	BC		1.5	DRY MTN
	24	6:27: 4	38.345	116.435	3.5	0.34	2.6	301	CD		1.6	TYBO
	24	10: 6: 6	36.464	116.186	0.8	8.64	0.9	216	AD		1.1	AMARGOSA FLAT
	25	10:29:15	36.9B6	117.567	9.6	5.49	4.9	183	BD		1.4	DRY MTH
	26	8:38:47	36.988	117.570	0.6	4.33	7.5	201	CD		1.4	DRY MTN
	26	10: 0:27	36.986	117.578	0.7	2.94	3.2	204	80		1.6	DRY MTN
	26	10: 3:12	37.012	117.561	1.2	2.85	4.6	236	80		1.1	LAST CHANCE RANGE
	26	19:56:32	37.188	117.861	0.4	3.17 •		215	CD		1.8	WAUCOBA SPRING
	26	22:28:35	37.188	117.938	1.2	1.36	2.6	230	80		1.3	WAUCOBA SPRING
	27	18:39:25	37.428	117.098	0.3	6.43	2.2	92	8 C		1.4	SCOTTYS JUNCTION NE
	29	3:23:52	35.819	117.332	1.3	3.22 •		291	CD		1.7	TRONA
	36	2:36:15	37.247	116.682	0.5	11.23	1.8	129	AB		1.4	THIRSTY CANYON NW
	30	20:26:36	36.769	116.099	0.6	5.56	1.8	166	AC		0.6	CANE SPRING
	30	23:34:30	36.507	116.307	1.2	8.51	0.6	276	BD		1.0	LATHROP WELLS SW
	30	23:55:18	37.423	117.011	0.3	2.02	2.2	132	8 C		8.9	SCOTTYS JUNCTION NE
	31	14:52:60	36.788	115.920	0.4	9.63	1.2	147	AC		1.3	FRENCHMAN FLAT

APPENDIX E

1982-1983 Focal mechanisms with table summarizing mechanisms computed 1979-1983

The fault plane solutions of Appendix E were obtained by selecting the best-fitting solution(s) from the application of the computer program "FOCMEC" (Snoke and others, 1984) to the ray data generated by HYPO71, and in some instances, to amplitude data. We plot data on the lower focal hemisphere using the equal-area projection (Lee and Stewart, 1979). The symbols represent first-motion P-polarities, and their positions represent the points where the HYPO71-determined raypaths intersect the focal hemisphere. The darkened circles represent impulsive compressional arrivals, the + symbols represent emergent compressionals, the open circles represent impulsive dilitationals, the - symbols represent emergent dilitationals, and the × symbols represent indeterminate or nodal readings. In the following figures the P and T symbols represent the pressure and tension axes, respectively. The X and Y symbols represent slip vectors for each nodal plane, and B is the null axis. Primed symbols are the respective vectors for alternate (dashed) solutions when they are presented. Some mechanisms are composited using data from several events that are clustered in time and space. Composite solutions are noted in each figure.

For several mechanisms, the information contained in P-wave polarities was not adequate to effectively constrain the nodal planes. In these instances, first motion P- and SV- amplitude data were gathered at selected stations, indicated by a large \square symbol around the polarity symbol. The observed and theoretical $\log_{10}(SV/P)_z$ ratios and the difference between the logarithms of observed and theoretical ratios are computed for hundreds of potential solutions whose nodal planes conform to P-wave first-motion polarities. The theoretical values shown in each figure are for the "optimum" solution shown, having the lowest rms error and fewest polarity inconsistencies. If the difference between observed and theoretical values is greater than a specified limit, err_{max} , that station's amplitude data are not used in the solution and an asterisk is placed by its name in the solution table. We always set $err_{max} \leq 0.3$, corresponding to a maximum factor between theoretical and observed amplitude ratios of 2.0.

We reiterate here that the use of amplitude ratios obtained from vertical-component seismograph records is a procedure that is fraught with difficulties, especially that of correctly identifying the S-wave onset. A second difficulty is that observed P-wavelet amplitudes for raypaths approximately parallel to a nodal plane are rarely as weak or "nodal" as is suggested by simple radiation pattern theory (for example, see Figure E13). One possible explanation of the larger-than-expected P-wave amplitudes near nodal planes is that near-source heterogeneity may be significant, resulting in a smearing or averaging of compressional energy that heavily samples the fault zone (thus increasing nodal and near-nodal P-amplitudes and decreasing slightly less nodal P-amplitudes). Those mechanisms which rely on amplitude ratio information to constrain nodal plane locations are identified in the captions.

Southern Great Basin Focal Mechanisms 1979-1983

St. strike of nodal plane; Dp, dip of nodal plane; Rk, rake of slip vector; Tr, trend of axis; Pl, plunge of axis. ML, local (SGB) magnitude; Other, D=coda duration magnitude calibrated against ML(SGB); Tsm, type of source mechanism: 1, single event focal mechanism; 2, composite focal mechanism. Nodal planes: *, designates inferred fault plane. Rmk: Remarks, designated by *, means that (SV/P) z amplitude ratios were used to constrain or help determine the focal mechanism. Ref, Reference: 1, Rogers and others (1983).

Southern Great Basin Focal Mechanisms 1979-1981

4					Focal						H			Nodal plane	lanes				P.	rincipa	al axe			
/ S ol	Origin time (UTC)	(UTC)	North	West	depth			Mari	nitude	Moment	•		191	1	2	pq	ı	٩	١	Н	Į	m	ı	8
×	Date	Time	latitude	longitude	(km)	qm	MS	ML	Oth	(dyne-cm)	g	Sŧ	Dp		St		Rk	Ë	Pl	Ţ	ы	Ļ	PI	Ref 1
	1979-08-13	1823:38	37.238		7.6	:	:	:	2.70		64	355	80	L	264		07-	219	٥	310	S	88	80	_
~	1981-12-28	2245:42	37.222	114.928	5.2	:	:	:	2.1D	•	-	338	54	-172	244 84		-37*	195	30	297	20	51	53	-
_	1981-12-26	• •	36.725		9.0	:	:	:	1.70	:	61	80	06		170		180*	35	0	125	0	0	8	-
_	1979-08-17		37.185		6.3	፥	i	:	1.9D	•	61	266	79		357	•	.169*		13	131	+	32	78	-
	1980-04-02				1.3	:	:	:	2.2D	:::::::::::::::::::::::::::::::::::::::	-	248	2		345		-159		78	116	-	52	62	-
•^	1980-04-23				9.9		:	:	1.3D	•	-	93	80		184		-170		14	318	0	227	16	-
	1980-05-10	1103:33			0.8	÷	:	:	1.2D	:	-	269	70	0	359		-160		14	132	14	359	70	7
_	1981-01-23				10.2		:	፧	2.7D	•	~	166	89		73		-22*		23	121	60	227	99	-
_	1979-12-25				8.0		i	:	2.8D	:	~	88	7.4		357	•	.164	;	a	312	13	167	7.	7
0	1981-03-10				6.5		:	i	2.2D	:	-	80	80		179	•	170	ŧ	۲	314	7	179	80	-
_	1981-10-15				9.3	i	:	i	2.5D	:	61	188	06		86		0	53	0	143	0	0	8	-

Southern Great Basin Focal Mechanisms 1982-1983

le:	8	4	L																		
	_	Ref	:	:	i	:	į	:	:	i	:	į	÷	į	:	:	į	:	i	:	į
		 H	<u>,</u>					٥.			vo	e	9		<u>.</u>	•	73	12	9	2	12
	_	Δ,	7 4	-	-	5	0	4	0	0	2	~ Q	o o	*	•	•	186 2	ب	8	80	35
Ş	İ	E	23	ಹ	*	17	8	17	7	Z	5	200	7	8	8	ă	18	45	51	Ξ.	ä
rincipal axe	ل	盂	32	80	12	ន	67	ရှ	188	18	10	•	2	2	=	•	87	9	0	=	•
rinc		Ë	101	298	129	310	86	28	294	322	286	88	133	155	346	312	285	143	285	33	131
		٦	36	18	16	13	46	ဓ္ဓ	80	23	7	80	78	64	43	11	28	4	20	2	24
	4	Ë	354	204	222	6	343	49	78	226	ą,	20	37	65	242	Į	41	237	30	237	39
	ı	Rk	43*	-161*	-20-	150*	-141*	-45	161	-152	-71	-76	-152*	80	-137	-14.	-63	210	-155	10	-23
	pu;	Dρ	87	8	87	81	8	8	8	3	23	9	78	8	72	83	88	7	00	3	7.8
anes	7	St	228	249	356	359	32	174	330	273	183	8	82	201	288	178	175	15	171	105	83
Nodal plane		Rk	175	-1	177	က	-12	0	1.		113*	-104	-14	174*	-34	-179	-138	-22-	.136*	175*	-167
Γ	36	Dp	11	=	2	õ	22	53	1	22	2	9	63	22	9	76	જ્ઞ	62	4 5	11	69
	1		١.	7	39	91	8	84		S	33	30	78	8	34	80	8	274	94	13	111
ļ.		E	_	~	7	64	7	-		-	64	64	7	-	-	64	64	-	19	64	-
	Moment	dyne-cm)		******	:	•	•	:		******	:::::::::::::::::::::::::::::::::::::::	• • • • • • • • • • • • • • • • • • • •	:	•	•	:	•••••	•	•		
	tude	Oth (:	1.8D	:	:	:	1.5D	:	÷	:	;	÷	1.5D	1.9D	2.1D	1.9D	1.70	2.4D	÷	3.10
	Kagnitude	ML	1.6	1.8	1.4	5.6	2.4	1.4	1.5	1.9	1.5	1.4	1.5	1.3	7.4	2.3	5.0	1.5	2.5	1.7	:
	~	MS	:	:	:	i	:	:	:	፧	:	:	:	:	:	:	:	:	:	:	:
		qu	:	÷	:	:	:	:	:	:	:	:	i	i	:	:	:	:	:	:	:
Focal	depth		_	-0.51	0.05	5.47	4.77	8.03	6.05	7.99	5.97	4.21	1.54	4.91	5.19	6.39	6.01	7.33	6.07	11.22	2.56
	West	longitude	116.254	116.078	116.586	116.569	116.568	116.402	116.270	116.414	116.592	116.590	116.947	116.948	116.947	116.940	117.098	117.097	117.280	115.739	115.037
	North	latitude	36.777	36.662	36.502	36.502	36.500	36.653	36.688	36.996	37.181	37.184	37.074	37.066	37.061	37.151	37.426	37.425	37.353	36.715	37.698
	(UTC)	Time	1720:16	0409:30	0757:58	1632:20	1739:44	0521:18	1722:09	1728:38	0143:05	1739:22	1734:54	2006:27	2056:36	2344:43	1037:15	1317:33	1032:54	1842:05	0210:43
	Origin time (UTC)	Date	1983-09-06	1983-12-11	1983-01-02	1963-01-02	1983-01-03	1962-04-09	1983-05-30	1963-05-28	1963-02-17	1983-02-24	1962-06-02	1982-08-31	1962-08-31	1982-01-19	1983-11-10	1983-11-10	1963-10-01	1963-11-28	1982-07-06

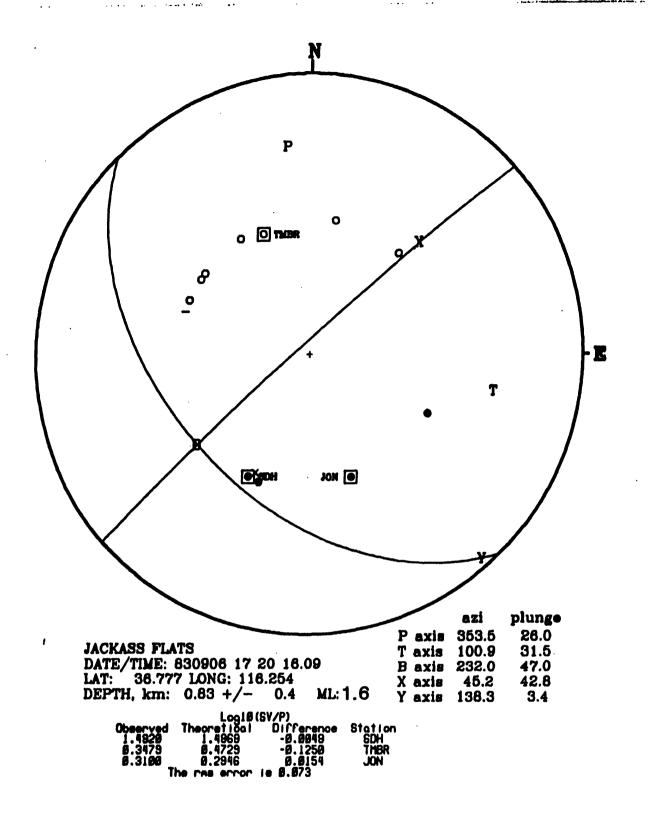


Figure E1. This focal mechanism is not well-constrained without the the $(SV/P)_x$ amplitude ratio data shown. Because 830906 17:20 is a very shallow-focus earthquake, the phase arrivals shown are probably refractions. No path corrections for potentially different SV-to-P attenuation along refractor interfaces have been applied, adding to the uncertainty of this solution.

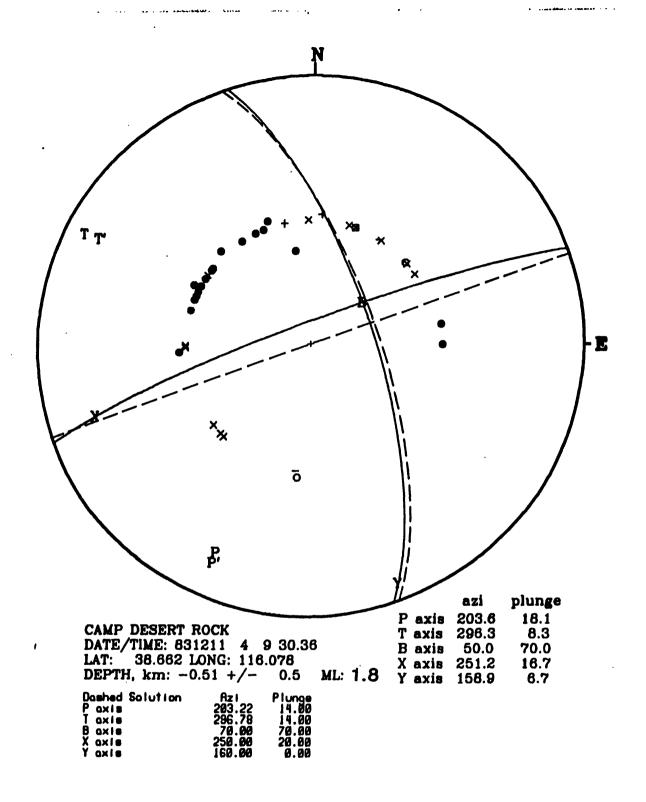


Figure E2. Only first motion P-polarities were used for this mechanism. The dashed-line nodal planes represent an equally suitable solution.

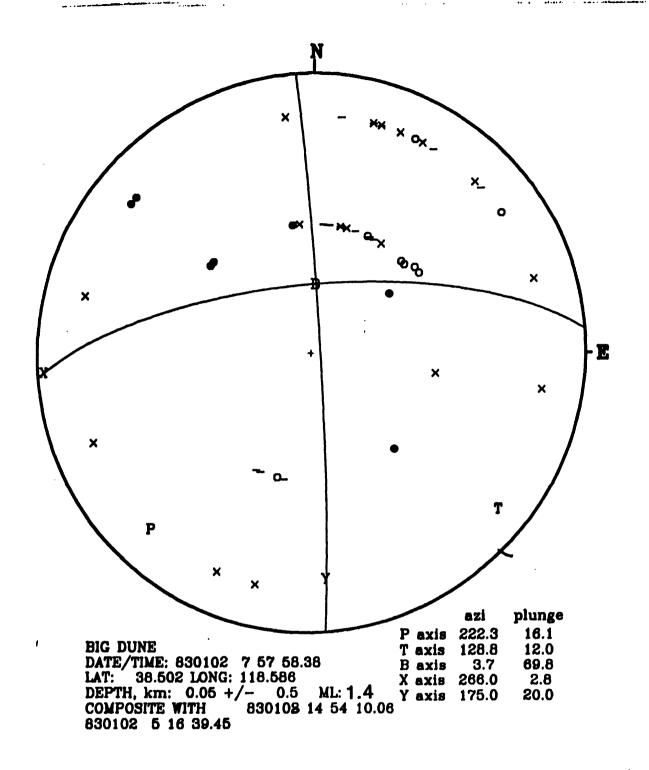


Figure E3. This focal mechanism uses data from several shallow Funeral Mountains earthquakes.

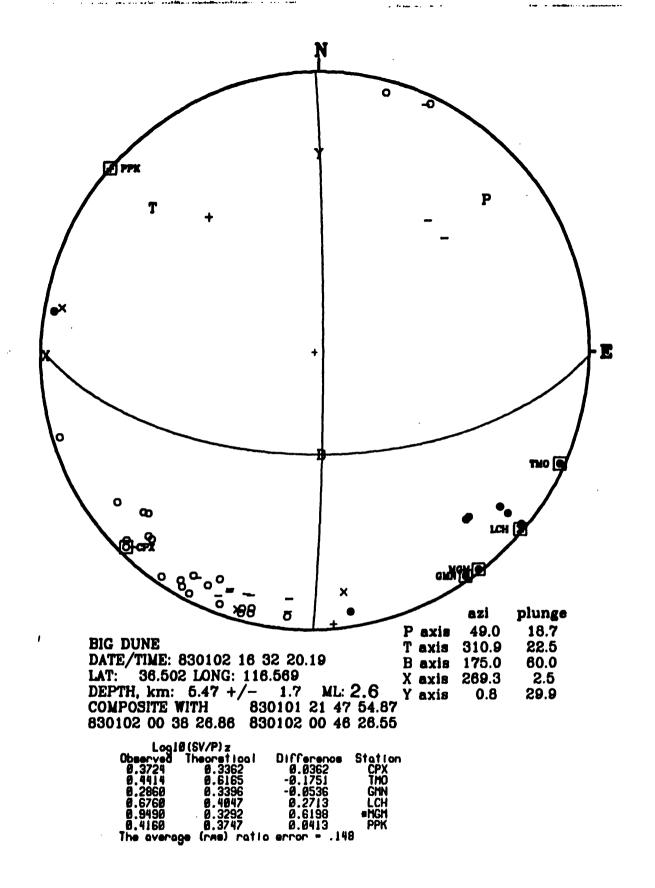


Figure E4. This focal mechanism uses amplitude ratio data from one of the component Funeral Mountains earthquakes.

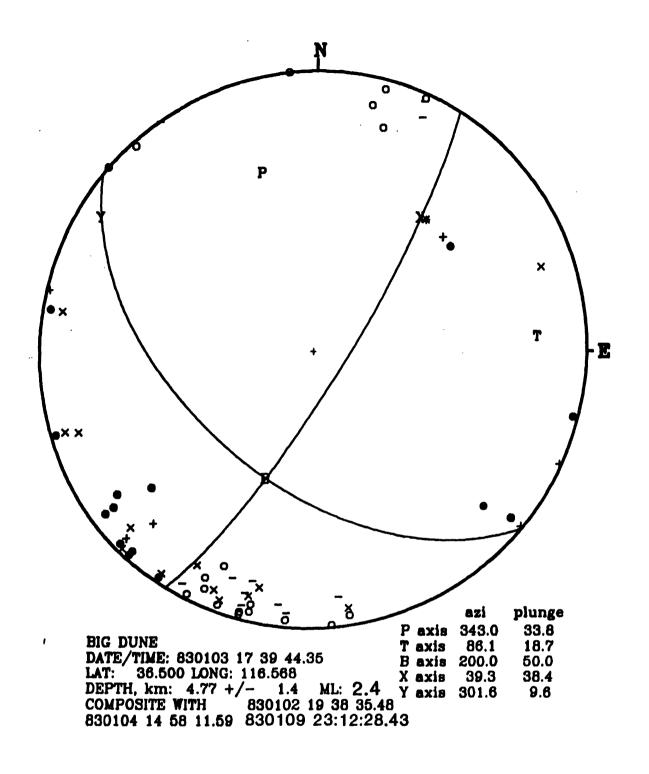


Figure E5. Data from four Funeral Mountains earthquakes were used for this focal mechanism.

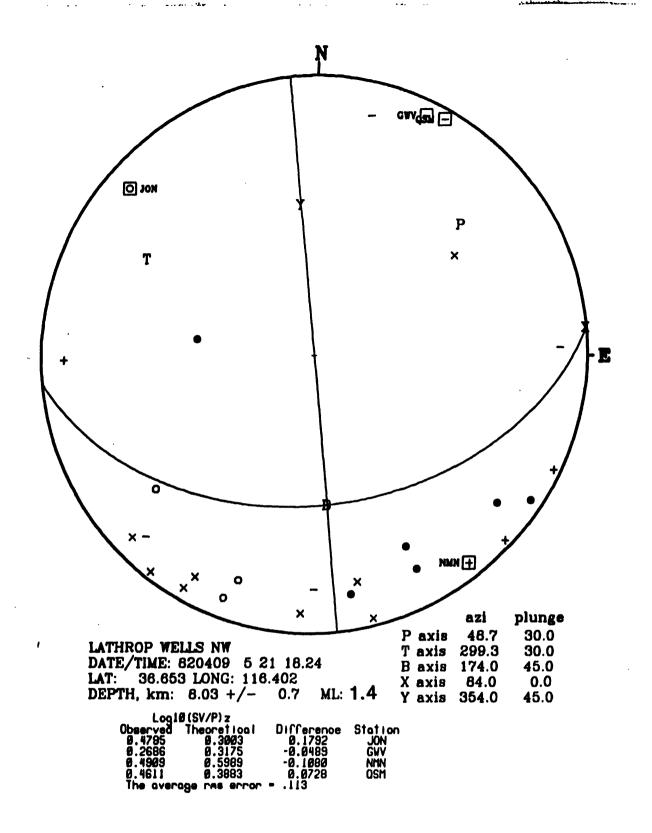


Figure E6. This focal mechanism requires the information contained in the amplitude ratios to be well-constrained.

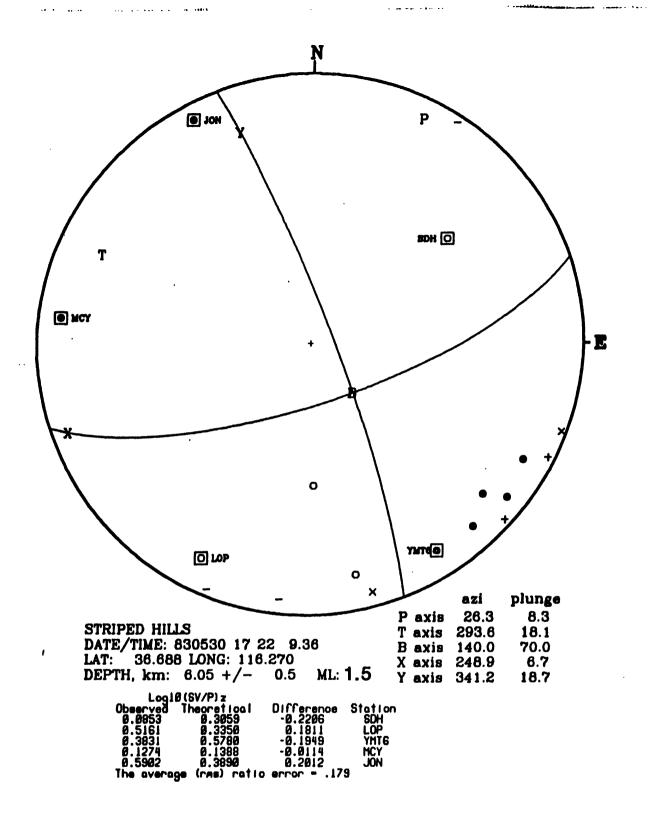


Figure E7. This focal mechanism requires the information contained in the amplitude ratios to be well-constrained.

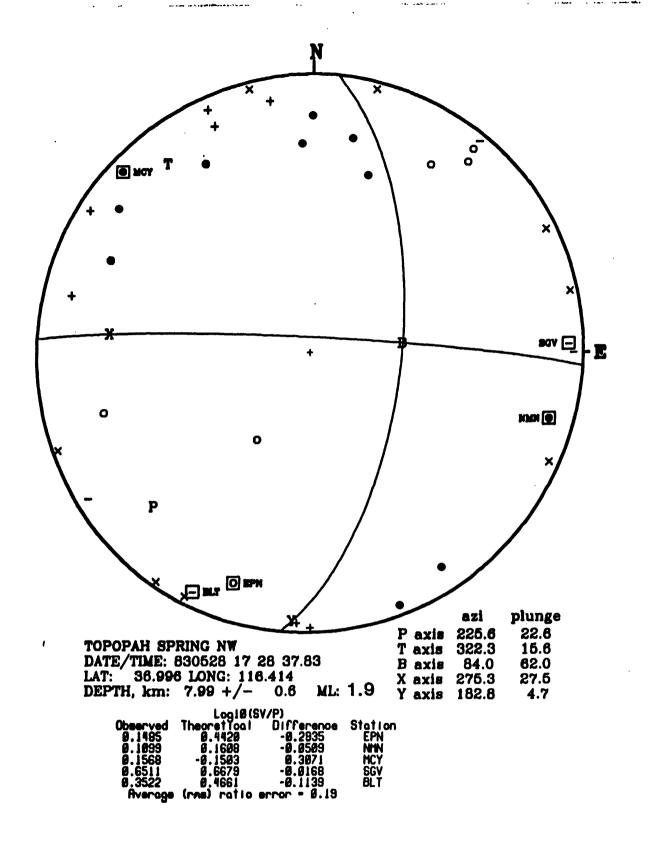


Figure E8. This focal mechanism is for an earthquake on Dome Mountain, on the south flank of Timber Mountain. The strike and dip of the north-south plane are well-constrained on the basis of polarity data alone. The amplitude data help constrain the dip of the alternate east-west nodal plane.

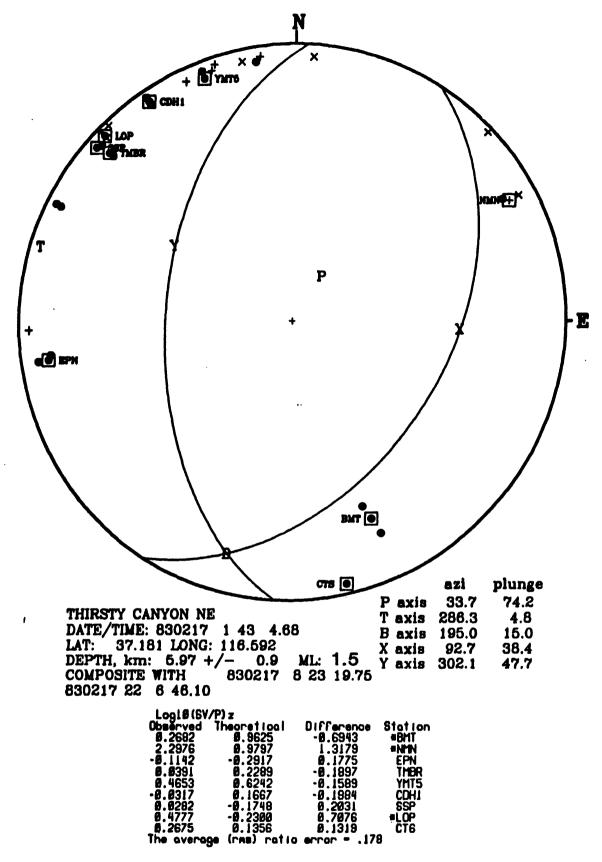


Figure E9. Although all P-wave first-motion polarities are compressional, S-wave amplitudes are larger than P-wave amplitudes for this event, indicating that it is probably a predominantly normal-slip earthquake, not an explosion. $(SV/P)_s$ amplitude ratio data are helpful in constraining the strike and dip of nodal planes.

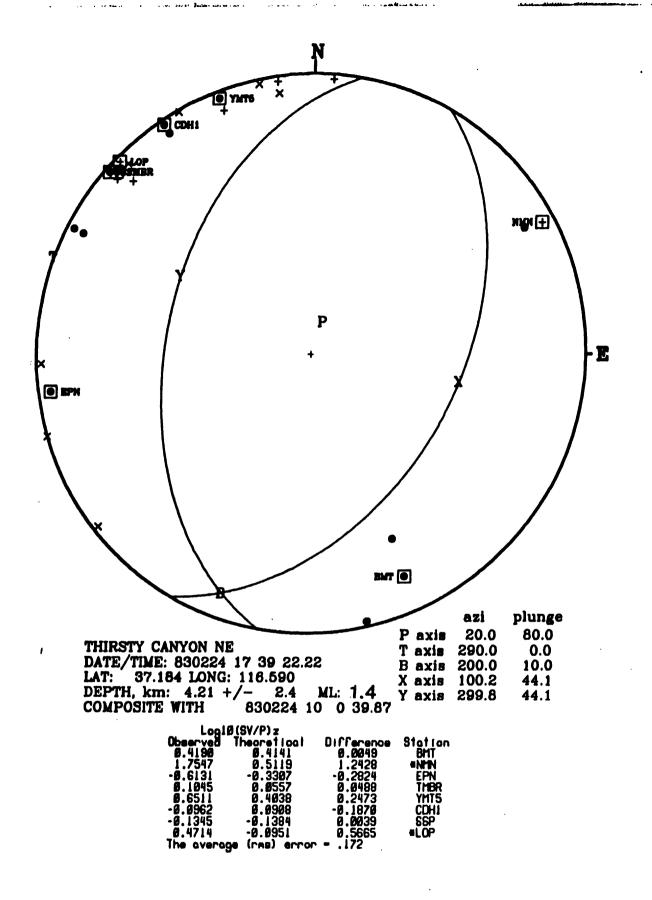


Figure E10. As in Figure E9, all P-wave first motions are compressional, and $(SV/P)_s$ wavelet amplitude ratios are helpful in constraining the strike and dip of the nodal planes.

Figure E11. Composite- of first motions and $(SV/P)_x$ amplitude ratios are required to constrain these earthquake nodal planes. Note, however, as in Figure E1, HYPO71 modeled the arrivals as refractions, but the amplitude ratio method assumes they are direct.

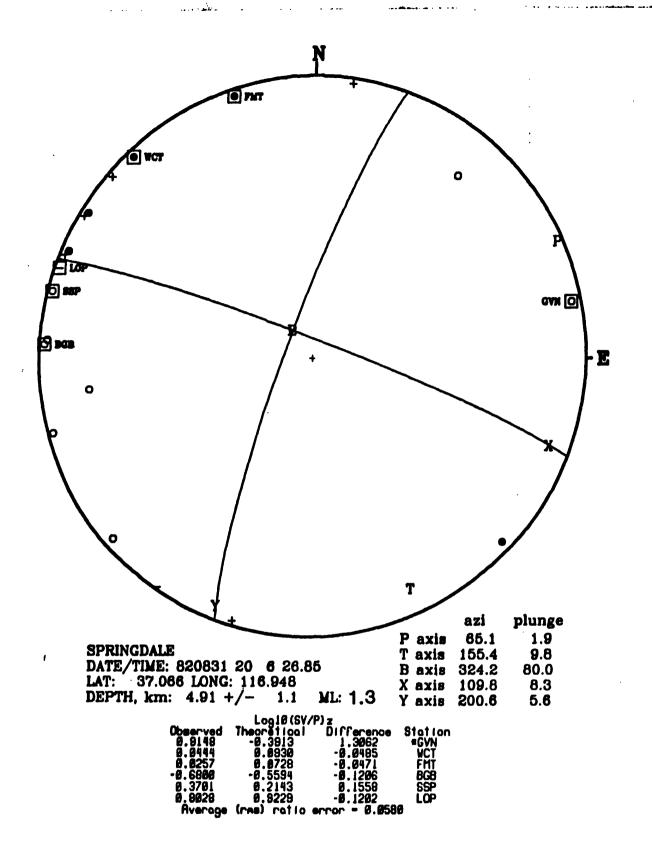


Figure E12. Fault plane strikes are better constrained than their respective dips from first motions; amplitude ratio data are helpful in constraining the dip of the nodal planes.

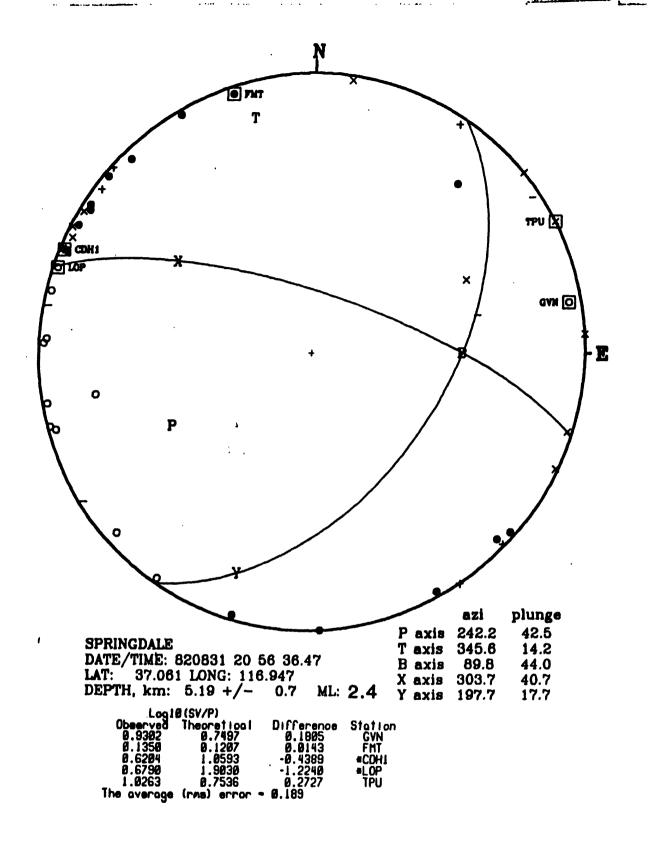


Figure E13. This focal mechanism does not require the information contained in the amplitude ratios to be well-constrained. The amplitude ratio data are included as a check on the method. The two stations that appear to have inconsistent amplitude data, CDH1 and LOP, are near a nodal plane.

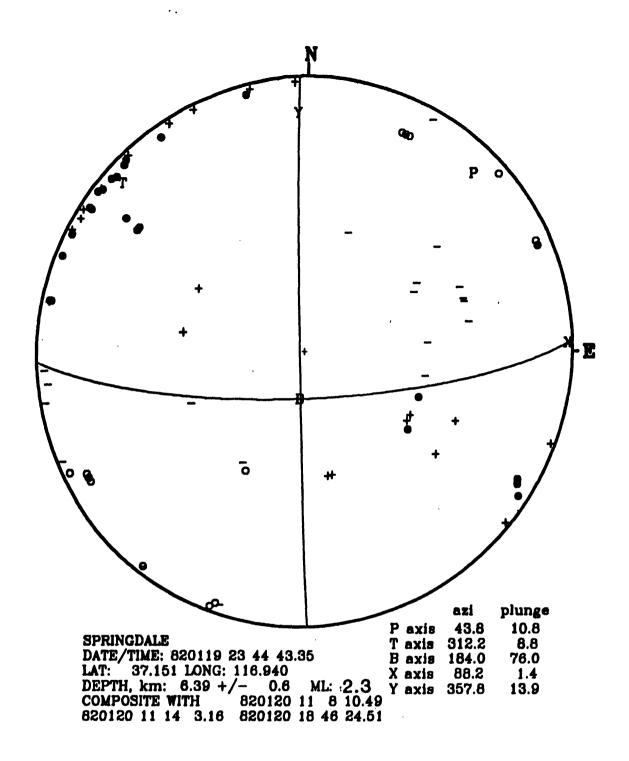


Figure E14. This Sarcobatus Flat composite focal mechanism is well constrained on the basis of polarities alone.

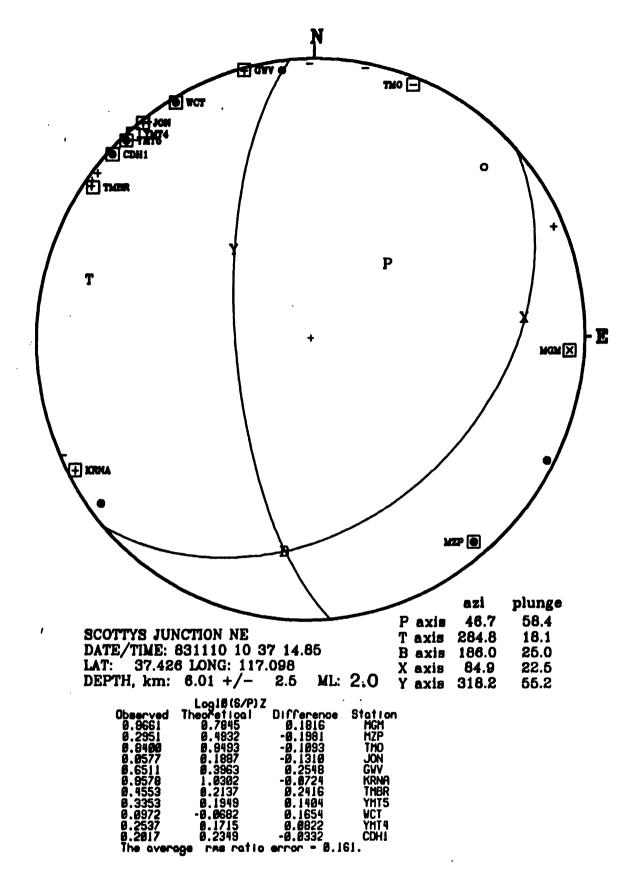


Figure E15. Amplitude ratios are helpful in constraining the strike and dip of the nodal planes.

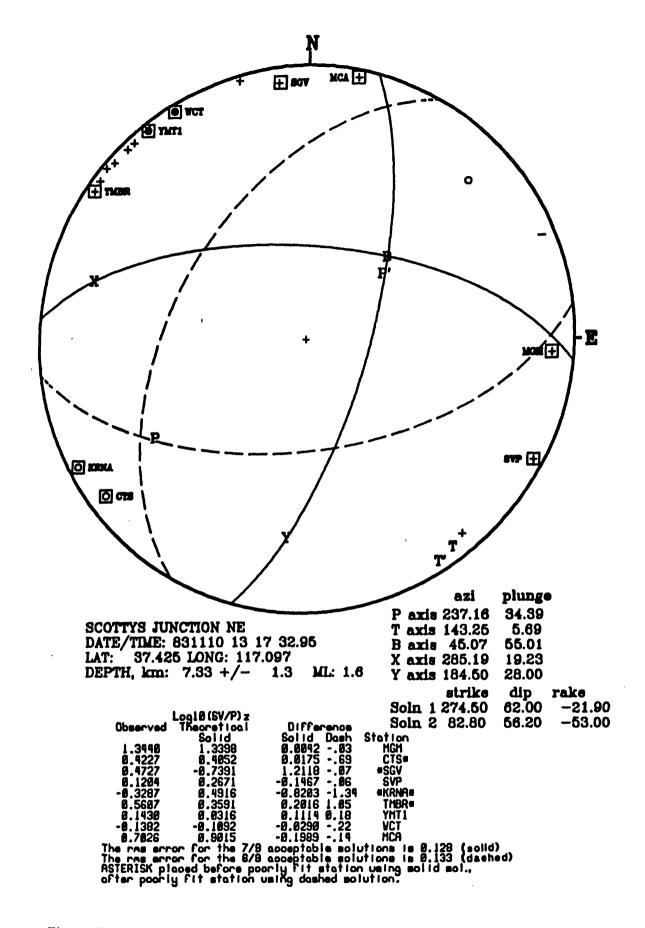


Figure E16. These focal mechanisms require the information contained in the amplitude ratios to constrain the solutions to the range shown by the solid-line and dashed-line nodal plane solutions.

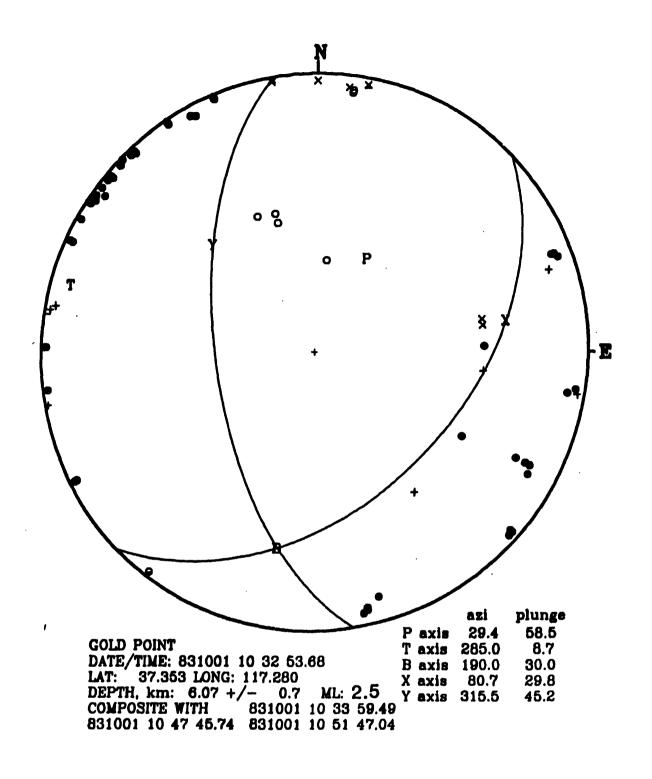


Figure E17. Although this mechanism is a composite, the wide range of azimuths of compressional arrivals for the mainshock (831001 10:32) constrain the solution to predominantly normal slip.

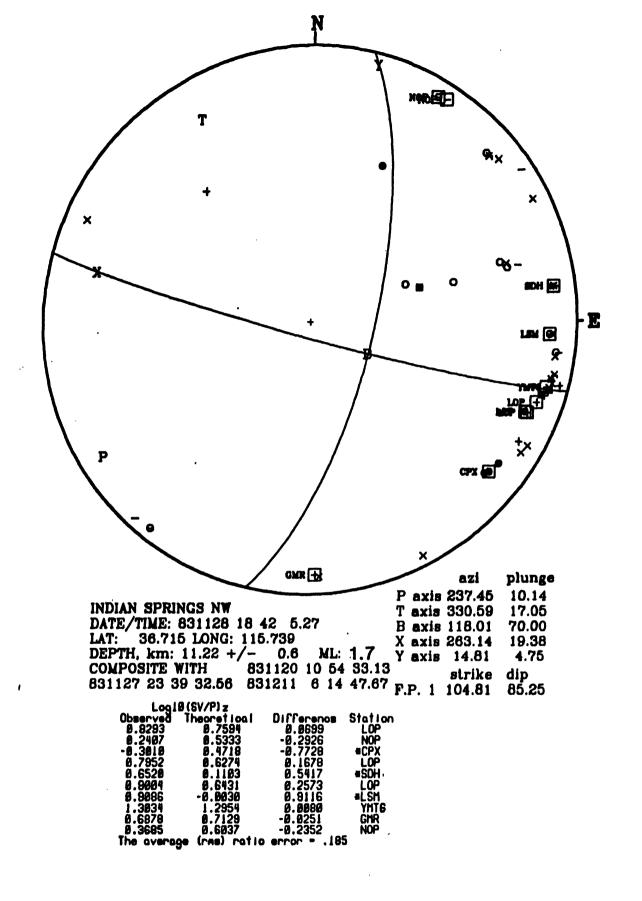


Figure E18. This composite mechanism is fairly well constrained without the amplitude data.

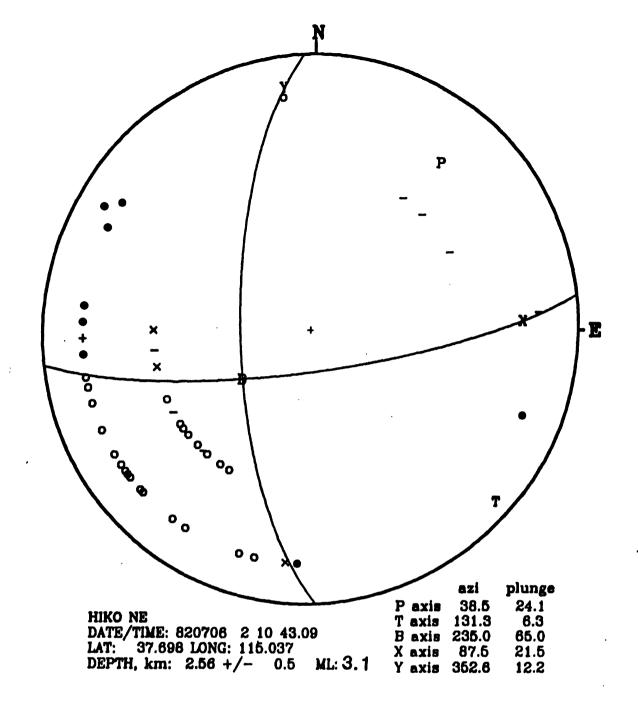


Figure E19. This mechanism is constrained by first-motion polarities alone.

APPENDIX F

Stereoplots of southern Great Basin earthquake hypocenters at selected locations

For all stereographic plots in appendix F: (1) The two views are separated by a stereo angle of 1.75 degrees from positions 50 km above sea-level; (2) All hypocenters, regardless of depth error estimate, for the time period August 1, 1978, through December 31, 1983, are plotted as "x"s (feathered if a focal mechanism for that earthquake exists); (3) Edges of a hypocenter-containing box whose surface is at sea-level and whose base is at 10 km are dotted or dashed to help the reader establish a depth perspective; and (4) The page is at sea-level; shallower-focus earthquakes "float" above the page. Some figures contain faults and/or cultural features, plotted in all cases at a perspective 1 km above sea-level. Seismograph stations are designated as inverted triangles, towns as darkened squares, and roads and highways as double lines. Faults are plotted regardless of age. They are dashed where inferred or uncertain, dotted where concealed. For some figures, noted in the captions, we have not attempted to include all known faults.

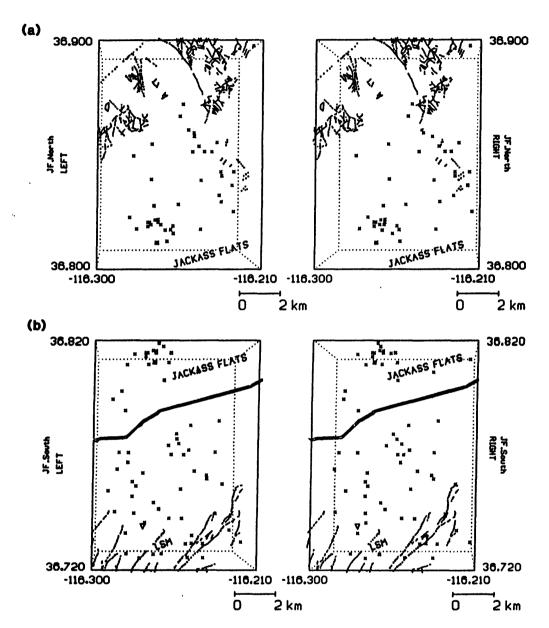


Figure F1. (a) Stereo projections of hypocenters in northern Jackass Flats and adjacent regions. This region is the same as in main text, Figure 18 (a). (b) Stereo pair for southern Jackass Flats and Little Skull Mountain (LSM). Same region as in main text, Figure 18 (b). Faults from Michael J. Carr (written comm., 1987).

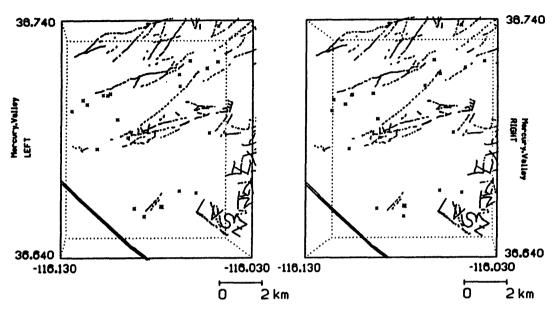


Figure F2. Stereo pair for Mercury Valley hypocenters. Same region as in Figure 19. Faults from Michael J. Carr (written comm., 1987). LVSZ - Las Vegas Shear and Flexure Zone.

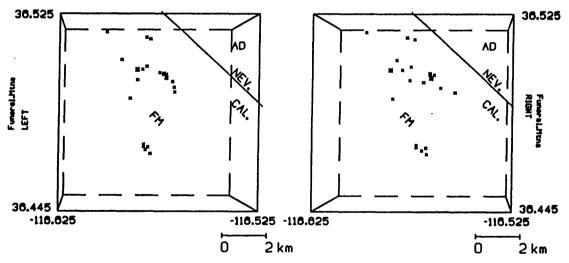


Figure F3. Stereo pair for Funeral Mountains hypocenters. Same region as in Figure 20. FM - Funeral Mountains. AD - Amargosa Desert.

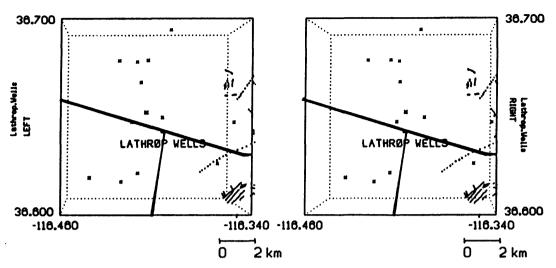


Figure F4. Stereo pair for Lathrop Wells hypocenters. Same region as in Figure 21. Faults from Michael J. Carr (written comm., 1987).

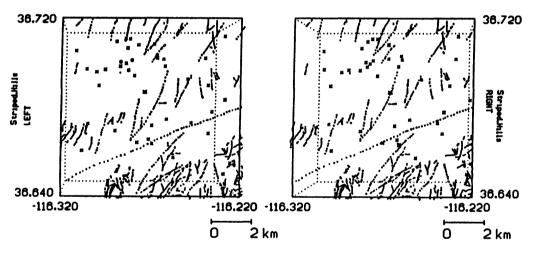


Figure F5. Stereo pair for Striped Hills hypocenters. Same region as in Figure 22. Faults from Michael J. Carr (written comm., 1987).

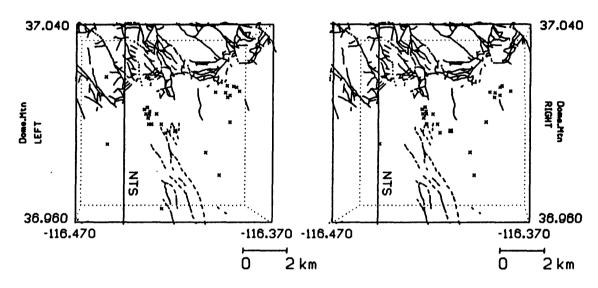


Figure F6. Stereo pair for the Dome Mountain hypocenters. Same region as in Figure 23. Faults from Vergil Frizzell (written comm., 1987). NTS - Nevada Test Site west boundary.

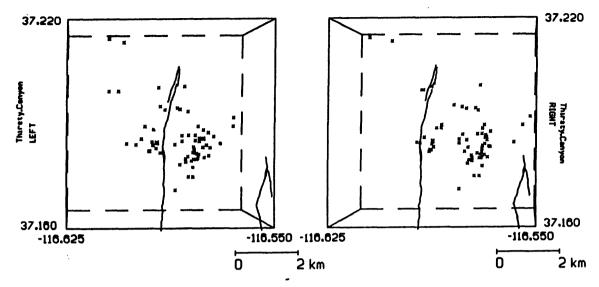


Figure F7. Stereo pair for the Thirsty Canyon - Black Mountain hypocenters. Same region as in Figure 24. Faults from O'Conner and others (1966).

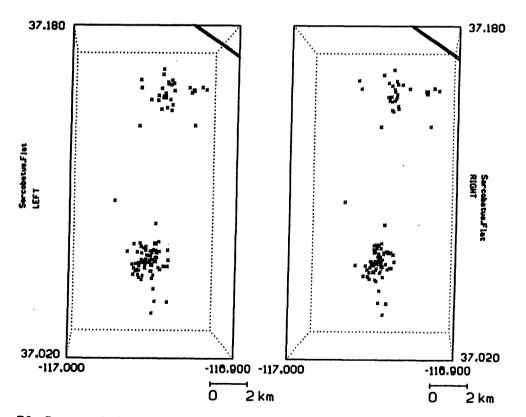


Figure F8. Stereo pair for the Sarcobatus Flat hypocenters, series b and c. Same region as in Figures 25 and 26.

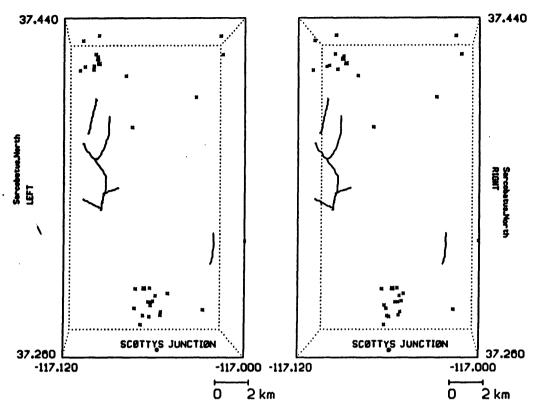


Figure F9. Stereo pair for the Sarcobatus Flats hypocenters, series a and d. Same region as in Figure 27. Faults from Stewart and Carlson (1978).

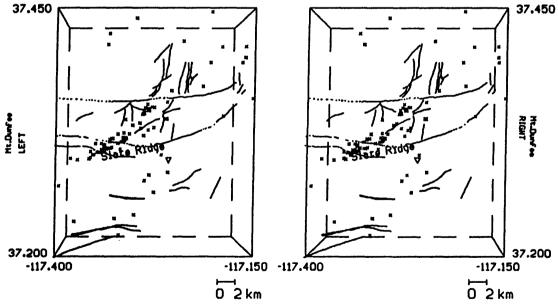


Figure F10. Stereo pair for the Slate Ridge - Mt. Dunfee hypocenters. Same region as in Figure 28. Faults from Albers and Stewart (1965). Faults shown are incomplete outside the immediate area of Slate Ridge - Mt. Dunfee.

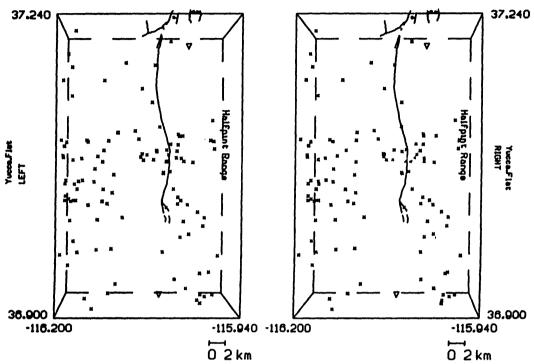


Figure F11. Stereo pair for the Yucca Flat hypocenters. Same region as in Figure 29. Yucca Fault from Stewart and Carlson (1978).

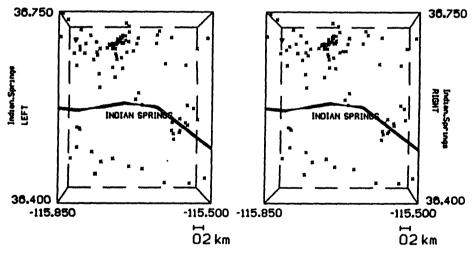


Figure F12. Stereo pair for the Indian Spring Valley hypocenters. Highway 95 is shown. Same region as in Figure 30.

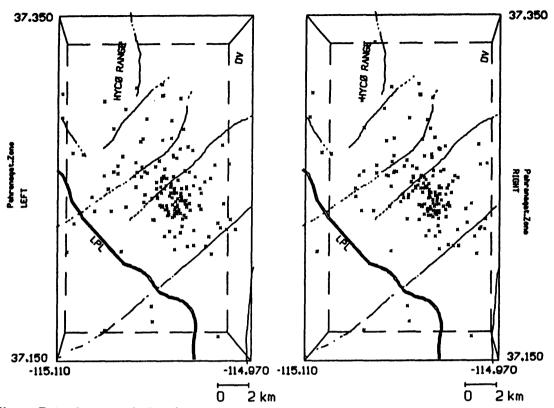


Figure F13. Stereo pair for the Pahranagat Range hypocenters. Same region as in Figure 31.

Northeast trending faults from Ekren and others (1977). North trending faults, though numerous in this region, are not shown (see Ekren and others, 1977, or Figure 15, this report).

LPL - Lower Pahranagat Lake. DV - Delamar Valley. Highway 93 is shown.

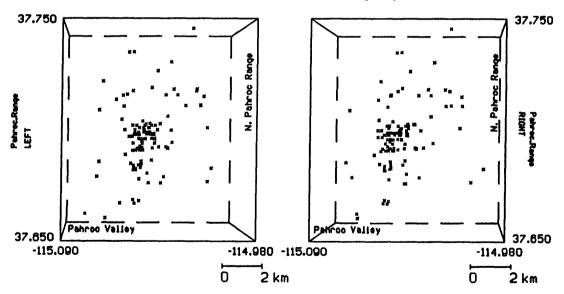


Figure F14. Stereo pair for the North Pahroc Range hypocenters. Same region as in Figure 32.

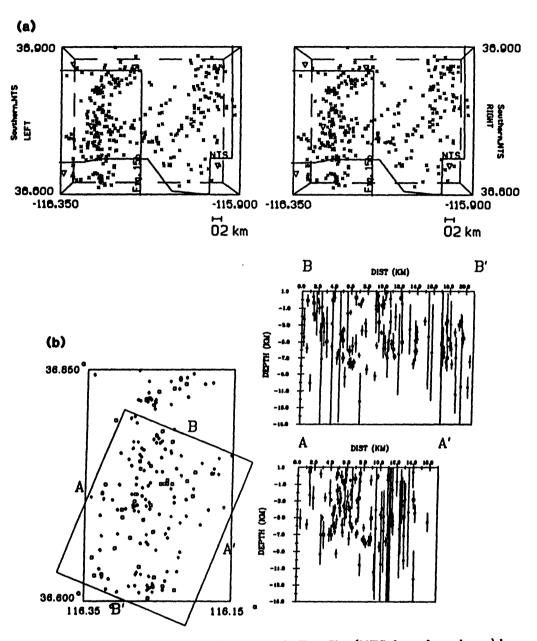


Figure F15. (a) Stereo pair for the southern Nevada Test Site (NTS, boundary shown) hypocenters for the 1978 - 1983 monitoring period. (b) Depth sections for hypocenters in the western part of Figure F15(a).