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PREFACE
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Part VIII: Anisotropic Characterization of 
Pierre Shale Preliminary Results

By

Henri S. Swolfs and Thomas C. Nichols, Jr. 

ABSTRACT

True triaxial compression tests, performed on a 10-cm (4-in.) cubical 
specimen of Pierre Shale, show that this thinly bedded rock is highly 
anisotropic. The Young's moduli, EX and E , measured in two orthogonal 
directions parallel to bedding are about three times greater than E Z measured 
normal to bedding. Poisson's ratios measured in directions parallel to 
bedding (vv.., v.. v , v,.v , and v,...) vary between 0.20 and 0.40 when loads are

A JF jr A £tj\ £y
applied along directions parallel and normal to bedding. When loads are 
applied parallel to bedding the Poisson's ratios measured normal to bedding
(vvr. and v.._) approach a value of 1.0. This sample of Pierre Shale may be x z y &
described as elastically orthotropic with a tendency toward transverse 
isotropy coincident with the principal material directions. Using the highly 
directional deformation properties of the shale, the gravity-induced stresses 
at shallow crustal depths are calculated to show that the horizontal stresses 
(ox and a ) in this anisotropic material are greater than the vertical stress 
component (a^ = pgh).

£i

INTRODUCTION

In the Earth's crust, geologic materials are subjected to three- 
dimensional states of stress (Swolfs, 1984). Thus for realistic simulation of 
the field conditions and development of constitutive models, it is appropriate 
to test rock specimens under truly triaxial states of stress. Multiaxial 
testing has been done to determine the shearing strength and faulting behavior 
of intact rocks (Mogi, 1971; Reches and Dieterich, 1983), the failure strength 
of jointed model materials (Reik and Zacas, 1978) and schistose rocks (Akai 
and others, 1970), and the constitutive behavior of coals (Ko and Gerstle, 
1976).

This report presents the results of two experiments conducted on a 
cubical specimen of Pierre Shale using a multiaxial testing apparatus at the 
University of Colorado. The experiments were designed to investigate the 
feasibility of determining the deformational properties of stiff, moisture- 
sensitive clay shales under confining pressures of up to 10 megapascals (MPa).

MATERIAL AND SITE DESCRIPTION

The sample used for these experiments was a 10-cm (U-in.) cube of 
horizontally bedded Pierre Shale. The bedding consisted of thin layers of 
dark grey mudstone with occasional fine layers of calcareous silt particles. 
The mudstone was dominantly a silty clay containing a large amount of mixed- 
layer smectites (swelling clays).



The sample was taken from an unoriented 18-cm- (7.1-in.) diameter core 
obtained at the Norden dam site, O'Neill Unit, located on the Niobrara River, 
27 km (16.7 mi) northwest of Ainsworth, Nebraska. The core hole, situated in 
the SE corner of Section 3^, T. 33 N., R.23 W. was drilled in December 1979. 
The core recovered from the drill hole was immediately wrapped in heavy gauge 
aluminum foil, coated with wax, sealed in 20-cm- (7.9-in.) diameter plastic 
pipe, and transported by truck to the U.S. Geological Survey laboratories in 
Denver, Colorado.

SAMPLE PREPARATION PROCEDURES

The core selected for triaxial testing was taken from a depth of 92 m 
(302 ft). It was chosen because of its uniform texture and lack of incipient 
fractures. To prepare the sample for testing, a piece of the 18-cm- (7.1-in.) 
diameter core was trimmed to a 10-cm (4-in.) cube by making six orthogonal 
cuts with a large rock saw blade. A mixture of water and water-soluble oil 
was used as a cutting fluid. The sample was wrapped with aluminum foil and 
waxed after each cut to avoid contamination and disintegration. By properly 
aligning the sample with respect to bedding during the trimming procedure, a 
suitable cube was obtained for testing.

EXPERIMENTAL PROCEDURES AND RESULTS

Equipment
The multiaxial testing apparatus, a novel piece of laboratory equipment, 

provides a means of testing rocks under uniaxial, biaxial, or triaxial 
compressive loads (e.g., Desai and others, 1982). It is designed to allow 
independent application of three principal stresses to achieve any stress path 
in principal stress space. With a capacity of 69 MPa (10,000 psi), the 
apparatus can be used to test cubical samples 102 mm (4 in.) on a side.

The device consists of a rigid steel frame with six aluminum detachable 
walls. Three pairs of hydraulically pressured fluid bags or cushions are used 
to apply compressive loads to the sides of the cubical sample and three hand 
pumps provide hydraulic pressure. The flexible latex cushions are mounted on 
the walls that are, in turn, bolted to the massive test frame. An expanded 
view of one of the six loading systems is shown in figure 1. Using flexible 
cushions, rather than rigid steel platens, to apply loads results in uniform 
and known boundary stresses across all six faces of the cubical sample. End 
effects that are commonly associated with standard triaxial testing apparatus 
are, therefore, reduced to a minimum. The surface deformations of the six 
faces of the test sample are measured in each of the three principal 
directions by a set of three proximity transducers mounted on each wall behind 
the fluid cushions. These transducers measure the relative distance between a 
conductive brass target on the faces of the test sample and a coil embedded in 
the transducer tip. Both normal and shear strains can be determined as 
loading takes place (Desai and others, 1982).
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Figure 1. Expanded view of the multiaxial testing apparatus, the compression 
loading systems and other components. (Modified after Desai and others, 
1982).



Experimental Results
The cube of Pierre Shale was tested in the multiaxial device at two 

confining pressures of 6.9 and 10.3 MPa (1,000 and 1,500 psi). The cube of 
shale was oriented in the testing device such that bedding was horizontal in 
the x-y plane and perpendicular to the vertical z-direction. In the first 
sequence of tests, the sample was initially subjected to a hydrostatic 
confining pressure of 6.9 MPa. This served as the reference pressure for 
subsequent deformation experiments along three principal stress directions. 
From this reference pressure, the pressure in the x-direction, parallel to 
bedding, was increased in steps of 0.34 MPa (50 psi) to a maximum of 9.0 MPa 
(1,300 psi) and then decreased in similar steps, while the pressure in the 
other two directions (y and z) were maintained at the reference level. 
Complete stress and displacement data were obtained at each step. Separate 
loading in the y- and z-directions was carried out in the same manner. The 
entire testing procedure was repeated at the higher confining pressure of 10.3 
MPa (1,500 psi) and sequential loading tests were conducted in each direction 
to 12.4 MPa (1,800 psi).

The test results are summarized in Table 1. A slight dependence of the 
Young's moduli on confining pressure is apparent. Otherwise, the data sets 
obtained at two confining pressures are consistent and reproducible. Note the 
two high values for vxz and vyz characterizing the strain response 
perpendicular to bedding to loading in the bedding plane. These values are 
acceptable because elastic orthotropic materials have ranges of Poisson T s 
ratios v xz and v given by:

and < yz

These ranges are based on thermodynamic considerations of strain energy and 
symmetry requirements (Amadei and others, 1987).



TABLE 1. Deformation Properties of Pierre Shale. 
[Leaders (  ) indicate no data]

Applied Young's Poisson's
Stress Modulus Ratio
(MPa) (GPa)

ax ay az Ex Ey Ez v xy vxz vyx vyz v zx vzy

9.0 6.9 6.9 0.63       0.33 0.83   

6.9 9.0 6.9    0.45          0.20 1.15   

6.9 6.9 9.0       0.19             0.34 0.3'

12.4 10.3 10.3 0.65       0.33 0.80   

10.3 12.4 10.3    0.50          0.21 1.11   

10.3 10.3 12.4       0.24             0.40 0.3'

* Vji denotes the strain in the j direction due to stress in the i direction,



DISCUSSION

Constitutive Relations
The elastic behavior of Pierre Shale can be characterized by a compliance 

matrix relating strains to stresses. For an orthotropic material, this 
relation is:
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the Poisson's ratios, and G... ^ the shear
The notation for the shear compliance 1/G means, for example, the 

shear strain response Yyz to the shear stress T yz . Similarly, the Poisson's 
ratio v yx characterizes the extensile strain response in the x-direction to a 
compressive stress in the y-direction.

The experimental results listed in Table 1 may be used to compute the 
numerical values of the diagonal and off-diagonal terms in the upper lefthand 
quadrant of the compliance matrix. Determination of the shear moduli Gyz , 
Gv<7 , and G YV requires additional tests on three separate cubes of shale, each

j fof which is rotated 45° about each of the material axes (Ko and Gerstle, 
1976). Thus, to determine the shear modulus G a new cube should be prepared 
with the y- and z- axes of the material rotated 45° about the x-axis in the 
bedding plane. None of these additional cubes of shale were available for 
testing in this feasibility study.



State of Stress
Consider the stress field induced in anisotropic Pierre Shale under the 

effect of gravity and vanishing horizontal displacements (Amadei and others, 
1987). The crustal environment envisioned here is a tectonically quiescent 
setting in which the rock mass is homogeneous, linearly elastic and 
orthotropic. The constitutive model of the shale is described by the stress- 
strain relation given in the previous section. If the lateral strains vanish, 
that is e = e =0, and the vertical stress component o = pgh, the stress- 
strain relation reduces to the two equations for the two unknowns o and o ,'

e

e

x

y

0 -

0 -

0

E

a

x

X

y
Ey

V

E

V

yX n
0
yy

xy  
' E u x

x

vzx

E z

v zy
Ez

or equivalently ,
0

E

0

E

X

X

y
y

Vyx
E
y

V xy
E
x

0

0

y

X

v

E

v

E

zx ,pgh
z

zy  *pgh
z

By inversion and by using the symmetry conditions,

v v v v v v xy yx xz _ zx yz _ zy
E ~ E 5 E~E 5 E ~ E 
x y x z y z

the equations for the horizontal stress ox and ay may now be written as 
(Amadei and others, 1987):

(v + v v ) xz yz xy ,°x     T^H1- ^
1 - xy yx

(v + v v ) = _JCZ   £x_xz_
y 1 - W

Note that these equations for o and a., are independent of E , E.,, and E .Ay A y it

At a depth of h = 700 m, the vertical stress in Pierre Shale of 
density p = 2.16 gm/cm 3 is equal to az = pgh = 14.8 MPa. Using the elastic 
property values in Table 1, it follows that ox can range from 18.5 to 19.2 MPa 
and o can range from 20.3 to 20.9 MPa.



The magnitudes of both horizontal stresses depend on the degree of 
anisotropy of the rock and, in the present case, exceed the vertical stress 
component. The resultant gravity-induced stress field in thinly bedded shale 
is multiaxial. This result contrasts sharply with the case of an isotropic 
medium, where the horizontal stress components could not exceed the vertical 
stress, unless the rock mass is subjected to a tectonic compression of 
regional extent.

CONCLUSIONS

A 10-cm cube of Pierre Shale has been tested under confining pressure and 
incremental compressive loads along three principal material directions. The 
results of these deformation experiments show that the shale behaves as an 
orthotropic material. The properties measured in a direction perpendicular to 
bedding (e.g., E Z , vxz , and vyz ) deviate significantly from those measured in 
the plane of bedding. Using these measured properties and the constitutive 
behavior of Pierre Shale, it can be shown that the stress field, developed in 
place at shallow crustal depths, is itself anisotropic. In the absence of 
regional tectonic considerations, the gravity-induced stress field is 
multiaxial and the magnitudes of the horizontal stress components exceed that 
of the vertical component of stress due to the weight of overburden.
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