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ABSTRACT

In an analysis of seismic-energy release during 11 sequences of
earthquakes that in retrospect can be classed as foreshocks, the accelerating
rate of energy release follows, at least in part, a simple equation. This

equation (1) is g(z/g)/g§=g/(§f—§)9, where I/E is the cumulative sum until

time, t, of the square roots of individual foreshock energies computed from
reported magnitudes; C and n are constants; and §f is a limiting time at which

the rate of energy release becomes infinite. The-possible time of a major
foreshock or main shock, §f, is found by the best fit of equation (1), or its

integral, to step-like ploEs of Z/E versus time using successive estimates
of §f in linearized regressions until the maximum coefficient of

determination, z?, is obtained. Analyzed examples include sequences preceding
earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China, 2/4/75; Oaxaca,
Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In

31 estimates of main-shock time, made as the sequences developed, the errors
in 24 were less than one-half and in 10 less than one tenth the time remaining
between the time of the last data used and the main shock. Some precursory
sequences, or parts of them, yield no solution. Two sequences appear to
include in their first parts the aftershocks of a previous event; plots using
the integral of equation (1) show the sequences are easily separable into
aftershock and foreshock segments. If synthetic seismic sequences of shocks
at equal time intervals are constrained to follow equation (1) for various
values of n, the resulting distributions of magnitudes closely follow the
linear Gutenberg-Richter relation log N=a-bM, and n times b is a constant.
Rate-process theory and continuum damage mechanics appear to offer leads
toward understanding the physical bases for equation (1). 1In various forms
and for decades, equation (1) has been used successfully to predict failure
times of stressed metals and ceramics, landslides in soil and rock slopes, and
volcanic eruptions.

INTRODUCTION

Only a fraction of earthquake events have been preceded by a recognized
sequence of foreshocks; nevertheless, the study of foreshocks is an important
component in efforts directed toward earthquake prediction. As used in this
article, the term "foreshock" is not precisely defined in terms of time and
space windows because the data used for analysis are derived from published
sources and the criteria used by authors for reporting seismic events prior to
a main shock are not uniform. Publications on past foreshock sequences have
included much information on statistical distributions and probabilities in
both time and space, development of empirical relations concerning growth in
the number of shocks per unit time as the time of the main shock is
approached, and cumulative plots of radiated seismic energy during periods as
long as many decades prior to large events. Occasionally, both the numbers of
shocks per unit time and the accumulated sum of radiated seismic energy
accelerate during a foreshock sequence. The rate of shock incidence has been
found to increase with an inverse power of the time remaining until the main
shock, but little or no attention appears to have been given to defining
specific functions that relate accelerating seismic-energy release either to
time elapsed or to time remaining in the period preceding a main shock.



The purpose here is to propose a simple foreshock energy-release function
in its differential equation form, trace its relation to previous studies in
deformation kinetics, and apply it in both differential and integrated forms
to data on several foreshock and main-shock sequences of past earthquakes.
These back-analyses indicate the possibility that in some cases with
appropriate data, the time and, in some instances, the magnitude of main
shocks can be rather closely estimated far enough in advance to provide a
useful warning or prediction.

The function proposed for the rate at which seismic energy is released
during earthquake foreshock sequences is

d(IVE)/dt=C/t~t)" M

where Z/E is the accumulated sum of square roots of the energy of individual
foreshocks recorded through time, t; C and n are constants; and gf, the

fundamental unknown, is a limiting time for the process at which the rate of
energy release becomes infinite.

The integrated form of equation (1) for n=1 is
T/E-(3/E) =Le/ (1-m) 1t ~t.) 2L/ (-m) Ue m0) 2 (2)

where (Z/E)1 is observed at some time, t Because neither C nor n is known,

1
the first term on the right side is combined with (Z/E)1 into a lumped

integration constant, A, giving
B/EHA=C/(n-1) Ue,t)' D (3)
If you take logs and rearrange, equa;ion (3) becomes
lOg(gf—§)=[~1/(g-1)] log(IvVE+A)+[1/(n-1)] loglC/(n-1)] , (W)
and equat;on (1) becomes
log(t.-t)=(-1/n) log(divE/dt)+(1/n) log C . (5)
If n=1, the i;tegration of equation (1) results in
R0 (to-t)=-(I/E+A)/C
log(t :§)=—2.30258(z/g+A)/9 (44)

and
1og(§f-§)=—1og(92/g/g§)+1og c . (58)
The critical characteristic of these equations is that they describe a
process that ends catastrophically at a finite time; exponential or power-of-

time growth curves have no termination.

Equations (4) and (5) are used later for analysis of actual foreshock



data. An estimate of the approximate time of main shock, t is made by

_f"
successive approximation and by the maximization of the correlation
coefficient in linear regression. Numeric values for n and C are also
determinable from the slope and the intercept of best-fit regressions. These
two equations are relatively simple to handle and have the advantage that the
two principal quantities involved as input data--the time of events and their
radiated seismic energy--are those most commonly observed. Because only a
time difference (gf—g) appears in the equations, time zero at which the

foreshock sequence actually begins does not need to be identified. If data
successively earlier in time can be added to the analysis, the time of
beginning or departure from a former steady state can become clear.
Conversely, as data later in time become available, the estimate

of §f generally becomes more accurate.

The physical reasons for equation (1) seem obscure. In a real system
whose behavior is determined by past events and present attributes, how can
the system's current rate of energy release be closely and simply related to a
future unknown time of catastrophe? The answer might be that the true
relation is not simple and that equation (1) is actually a useful and close
approximation to something more complicated but more rational.

Although for the present equations (1), (4), and (5) must be regarded as
empirical, they have origins both in physical theory and in experiments.
These areas concern time-dependent deformation, viscous and plastic flow,
creep to rupture and rupture life, stable and critical crack propagation, and
acoustic emission in a wide variety of manufactured and natural materials. In
particular, the roots of equation (1) in its various forms where the energy
term is replaced by strain or displacement extend into a large body of work on
deformation kinetics going back more than 50 years.

THEORETICAL AND EXPERIMENTAL BACKGROUND IN DEFORMATION KINETICS

A search for the guiding principle behind foreshock energy release was
followed along four paths toward possible convergence. The first is rate-
process theory, which has been found applicable to deformation processes in a
wide variety of materials. The second path is the analysis of tertiary creep
and the use of empirical relations among stress, strain, and time in order to
estimate the time of failure of a wide variety of materials. The third
analytic area is the development of continuum damage mechanics and its use in
estimating the life of stressed-metal structural components. The fourth path
is the direct use of relations between accumulated radiated seismic energy and
the possible time of a volcanic eruption.

Rate-Process Theory

Neglecting some earlier but pertinent studies, we can begin with the work
of Eyring and his associates (Glasstone et al., 1941) in which viscosity and
plasticity are related mathematically to thermal activation and to forces and
rates of shear at atomic and molecular levels. This rate-process theory was
developed originally for liquids but was subsequently extended to quantitative
studies of the deformation of a wide variety of crystalline and amorphous
solids. Its mathematical form is usually stated as



dN kKT AF Af
a H exp(-—j) 2 sinh ﬁET . (6)

The left side of the equation expresses the net rate at which bonds are
broken, that bond repair also is possible; N is the number of bonds currently
existing per unit area, and f is an assumed constant force (due to applied
exterior load) which acts on N bonds through an average distance, A, during
the process of bond breaking. Free energy of activation for the process
is AF, kK is Boltzmann's constant, h is Planck's constant, and T is absolute
temperature. The hyperbolic sine term results from the difference in
probabilities between bond breaking and bond healing, where probabilities are
expressed by two exponential terms of opposite sign. Thus, the process is
biased toward bond breaking by the applied force, f. If this force is so high
its effect far outweighs the effect of thermal oscillation, that is,
if Af>>NKT, the healing process can be neglected, and the sinh term can be
replaced by a single exponential term:

2 sinh (Af/NKT)=exp(Af/NKT) . (7

Next, replace the Af/NKT term, which defines local stress, by a term
expressing its relation to the constant applied exterior stress,
VR
2 M/NkT=xo, . (8)

In a process resulting in ruptuFe, the bonds are progressively used up,
and as N approaches 0, the new variable x approaches infinity at the limiting
time, gf; at t=0, x=1.

To simplify equation (6), assume that at a constant temperature the
activation energy AF remains constant; then, let

KT AF
A——— exp(———é—a constant. (9)

Equation (6) can then be written as
aN - xo,
“y-he Cdt . (10)

From equation (8), we have -dN/N=dx/x; so, equation (10) becomes

ax  xo,
—=Ae “dt (11)
y he ~dt
and
w X% L
e 0 f
Joe A=A [ dt-ACtt) (12)
XX t, - T



Equation (12) expresses the remaining lifetime of a system in terms of an
integral involving a constant exterior stress, oo; the variable x that

increases as the number of unbroken bonds decreages; and the constant A that
comprises material properties, temperature, and fundamental constants.

To simplify equation (12), let

X0,=u - (13)

Then equation (12) becomes
-t ) . (14)

The integral on the left side of equation (14) cannot be expressed by a
finite number of elementary functions; it is known as the exponential
integral §1(go), and its value is tabulated for values of u . Therefore,

B, (u)=A(tt) (15)

and if one knows the value of X0, =U, at t=0 and the value of A, the

time, t,, can be calculated directly. At this time, x and u become infinite,

the number of bonds becomes zero, and the process ends catastrophically.

The integral E1( u) can be expressed as a series,

E. (u)=-Y-%nu-} , (16)
where Y=0.57721 . . . (Euler's constant).

For large values of u, E1( u) is given approximately by
T

Jza]

(w)=u exp(-u) , (7

1

so that equation (15) becomes approximately

uexp(-u)=A(t -t) (18)

and, taking natural logarithms,

-%n u-u=fn A+n(t_-t) . (19)



At large values of u, &n u becomes negligible compared to u, and equation
(19) becomes

In(t.-t)=-u-fnA (20)

or
1. -u

(gf §)—§§ (21)
and, taking derivatives,

du !

—=Ae-=

dt = EoE
or

do |

Ef=§;:§ ’ (22)

where u=g, the local stress.

With the use of equation (9), equation (21) can be put in the form
AF
§£-§=§ exp(Eg-o) , (23)

where B=h/kt.

Equation (23) is the same as, or very similar to, equations relating
stress to time to failure; remaining time; or lifetime of specimens of quartz
in laboratory testing (Scholz, 1972), of rock (Kranz et al., 1982;
Tomashevskaya, 1985), of samples of clayey soil (Murayama and Shibata, 1958),
and of a wide variety of crystalline metallic and nonmetallic and amorphous
materials (Zhurkov, 1965). It is remarkable that the rate-process theory,
originally developed to give a physical explanation for viscosity at a
molecular level, has been applied successfully in many different ways to
vastly larger masses, thermally activated processes of creep and fracture of
brittle materials (Krausz and Eyring, 1975), and stress corrosion and crack
propagation in the solid earth (Anderson and Grew, 1977).

In a paper on characteristics of foreshocks, Jones and Molnar (1979) used
a simplified version of Scholz's expression for average lifetime of quartz in
uniaxial compression,

average(t.~t)=D exp(-ao) , (24)
to represent the average life of an asperity on a stressed fault plane. As
asperities break, the constant exterior stress, Uo’ is carried by fewer and

fewer asperities and a decreasing area of contact. The process accelerates
and ends in a main shock. Jones and Molnar (1979) use equation (11) and its
integral to graph the relations between increasing local stress, goox, and

decreasing remaining time during the course of an idealized foreshock sequence
and between these variables and the cumulative number of foreshocks.

Equation (22) gives a relation between the rate of stress increase and
the remaining time in a progressively failing system that might be useful in



the study of the period preceding an earthquake. There are two difficulties,
however: (1) there is the need to relate (gf—g) to a quantity that is more

easily observable than o and (2) the equatioﬂ has been derived under
conditions that o be "large," but just what large means in actual conventional
units of stress is not clear.

The increasing rate in numbers of foreshocks preceding major shocks for
collections of data within regions has been shown by Jones and Molnar (1979),
as well as Papazachos (1973), to be proportional to an inverse power of
remaining time. Perhaps because there is a difficulty in recognizing a
sequence of events as precursory to a particular earthquake or because the
number of events is insufficient to form a definite relation between rate and
time, the use of numbers of events alone does not seem to have led to a
quantitative prediction of main-shock time for a particular earthquake.
Certainly, however, in many instances, a growing number of shocks per unit
time has greatly affected local evaluation of impending hazard.

Foreshocks generally vary irregularly in magnitude. Even though a
general trend might exist toward more frequent shocks as time passes, the
accumulated number of events and their increasing rate might not adequately
define the physical process. The rate of seismic-energy release in the
form 2/5, which involves both the numbers of events and their severity, has
increased meaning. No doubt, accumulated seismic moment would be better yet,
but seismic moment is not often reported for individual shocks of a foreshock
series.

Plots of cumulated seismic energy, or z/g versus time, have been
published often since their introduction and interpretation years ago by
Benioff (1951). These plots primarily encompass either large areas or long
periods of time, or both. Less work appears to have been done to interpret
actual records of the accelerating release of seismic energy in detail and
within the limited bounds of space and time around an actual potential or past
earthquake. For this purpose, the use of equation (12) or its approximation,
equation (22), requires relating rising local stress, o, to accumulating Z/E.

In each event, according to Benioff (1951, p. 42), ". . .if the elastic
strain is fully relieved during fault movement, the square root of the
radiated energy of an earthquake is proportional to the elastic strain
{preceding the earthquake). . .." Also, if local elastic strain is
proportional through material constants to local stress, we have for each
event at a particular time

g, =K/ .
ie

1

The growing local stress, o, at some time, t, after i events is

i=n
oK I (VE);
- 1:9 -
or can be shortened to
K(IV/E .
K(LVE),



Thus, from equation (22), we get

do g(z/_fg),E

Ict

(25)

which becomes the first result in this derivation equivalent to the relation
sought, equation (1), in the case that n=1.

Tertiary Creep

When subjected to sustained loads sufficient to cause ultimate failure,
many materials follow time-deformation creep curves of the type shown in
figure 1. The initially high strain rate decreases to a minimum that can be
of only momentary duration and then increases to the time of failure.

Servi and Grant (1951) recognized that in a series of tests run to
failure on the same material but at different stress levels, the minimum creep
rate, which occurs at the point of inflection of a strain-time curve,
multiplied by the time remaining to failure is a constant; that is,

(t

te-t)=a constant. (26)

€
min

After analyzing available data on the rupture life and minimum creep rate
of a large number of pure metals and alloys, Monkman and Grant (1956)
generalized equation (26) to the following form:

1 .
1og(§g §)+E log(emin)-log s
where r and s are constants.

This equation can be written as

()

€ . =——
min r
(to-t)

which states that the minimum strain rate is inversely proportional to a power
of the time remaining to failure.

In an analysis of slope failures in Japan, Saito (1969) extended the
meaning of the Monkman-Grant expression to the whole of the tertiary creep-to-
failure period by assuming the rate at any time in this period is proportional
to a power of the remaining time; that is,

de C
SrE———— (27)

where € denotes either strain or displacement, t is the time of
observation, §f is the time of failure, and C and n are constants. Saito

found that in ﬁany instances n is near or equal to 1. If so, I have

8



designated the relation as "pure Saito," as shown in figure 2; if n=1, the
expression is referred to as "generalized Saito." Equation (27) is of the
same form as equation (1) but with Z/g replaced by €.

Saito and his colleagues have been successful in applying equation (27)
to predicting the time of failure of landslides from time-displacement
observations and have applied it also in laboratory tests by others on soil
and rock. Their work was extended (Varnes, 1983) and shown to apply to a wide
variety of materials, including some metals, and, pertinent to the current
article, to the emission of acoustic energy in the testing of rock to failure
reported by Wu and Thomsen (1975).

Continuum Damage Mechanics

Relations between stress, strain, time, and an internal-state variable
called "damage" were proposed for metals by Kachanov and modified by Rabotnov
in Russian literature of the 1960's. These relations were further developed
and generalized to multiaxial states of stress by Leckie and Hayhurst (1977)
and to various mechanisms of creep damage by Ashby and Dyson (1986).
Continuum damage mechanics has become a very active field of research in many
directions, including application to anisotropic polycrystalline materials
that develop cavities and cracks under stress. There seems no obvious reason
to 1imit the concept to metals. The relations presented by Leckie and
Hayhurst for isotropic material under uniaxial stress are

.. J k
e/eg—(o/og) /(1-w) (28)

and
. [ ] E g
m/w9=(0/09) /(1=w) . (29)

Equations (28) and (29) are expressions for accelerating creep in which
w denotes the internal-state variable damage, w=0 when the material is
initially undamaged, and w=1 at rupture. The dot indicates differentiation
with respect to time. Just prior to the onset of accelerating tertiary creep,
the steady-state strain rate, €1 corresponds to applied stress, oo, with

W=w 3 J, kK, p, and g are constants. -

Under the assumption that the load, ¢, and, thus, the ratio (o/oo) remain

constant and that t=0 when w=0 and t=t at w=1, equation (29) can be

f

integrated to yield

e L 1/(g+1)
(1-0)=[ (578 ] : (30)



TIME

FIGURE 1. Typical curves showing primary and tertiary creep; one shows a
steady-state secondary creep part.
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This equation, combined with equation (28), gives

. j k/(g+1)
€ (0/09) te

de/dt ~ ,
== (Ef‘E)K/(9+1)

which reduces to equation (27) of the preceding subsection on tertiary creep,
—_—— 27
where 9=€9(°/09) t

Leckie and Hayhurst emphasize that no specific physical interpretation is
necessarily attached to the damage parameter, w, although w has been
interpreted by some to represent the progressive decrease in the area capable
of resisting load as a result of the formation and growth of cracks and
voids. The same reasoning was used by Jones and Molnar (1979) in deriving the
change in local stress as x increases from 1 to «, where

éo is the original area of unbroken load-bearing asperities in a fault plane,
and gu is the area remaining unbroken at any time, £, during the process.

Thus,_a relation can exist between w and ¥,

m
w=[1-C1/)]1 . (31)

Although the concept of w as an internal-state variable is more general than
that of x, both are fundamental variables in the foreshock process.

Volcanic Seismic Activity

From extensive study of the seismic activity preceding the eruptions of
andesitic volecano Bezymianny in Kamchatka, U.S.S.R., Tokarev (1963) developed
the empirical equation

IVE=a+b/(T-t) (32)

where a and b are constants (a is negative), and T is the limiting time of the
process (corresponding to my gf). That is, T is the expected time of a major

12



eruption, and t is the time counted from the first earthquake in the cycle of
activity being analyzed. Equation (32) is of the exact form of equation

(3). As applied to six eruptive cycles of Bezymianny, the 1964 eruption of
Sheveluch volecano (Kamchatka), and the 1962 eruption of Tokachi-dake in Japan,
the value of T differed from the actual time of eruption by less than five
days (Tokarev, 1972, 1985). By differentiation of equation (32) to yield

g(z/g)/g§=p/(I-§)2 ’ (33)

equation (1) is recovered, and it is apparent that Tokarev's expression
assumes that n=2. Tokarev (1972) used the Benioff relation in which
cumulative seismic strain is taken to be proportional to cumulative seismic
energy. In the same article, Tokarev pointed out that earthquake energy is a
more reliable characteristic of seismic activity than the number of events and
that the number of events might show a sharp increase only a short time before
an eruption.

Since the May 18, 1980, eruption of Mount St. Helens in the State of
Washington, seismic monitoring and measurement of deformation in the crater
area have been used extensively to predict later, smaller eruptions (Swanson
et al., 1985). Tokarev's work has been referenced by workers at Mount St.
Helens (Endo et al., 1981), and plots of Z/E versus time, with an indication
of the most likely time of the beginning of an eruption, have been published
(Malone et al., 1983); however, neither the mathematical form of the curve
relating energy and time nor the method of estimating eruption time was given.

INTERIM DISCUSSION
The previous subsections indicate that in many diverse physical processes
which lead to failure, the accelerating increase in the rates of stress,
strain, or E/E is inversely related to a power of the remaining time. 1In
actual application to foreshocks, the exponent n is generally in the range
2-5; so, it is somewhat disappointing that although the development of rate-
process theory resulted in a relation between ¢ and (gf-g), the exponent

n=1. This result might well have been caused by the various approximations
that were made during the derivation. It might also be due in part to the
assumption that the exterior (tectonic) stress on the system remains constant,
which might not be realistic in some tectonic settings.

An attempt was made to relate (gf—g) to an expression concerning stress,

as derived from rate-process theory, but without the assumption that from the
beginning ¢ is large and under the additional condition of external stress
increasing linearly with time.

In equations (11) and (13), the original 9, is replaced by
oo(1+9§), giving -
0 dx  xo,(1+bt)
ke T a

]

du
Totet g

13



and

u
T pue¥l1rht)

—-Aue : (34)

This equation, like the exponential integral, expresses a process that
ends catastrophically, but it does so sooner because of the term (1+9§). As
in the exponential integral, u cannot be expressed by a finite number of
functions of t. No tables exist evaluating this integral.

A numeric experiment was performed in which equation (34) was integrated
numerically, assuming, as an example, that

A=.005

b=.03 , and

du u(1+.03t)

g—§=.005 ue .

The integration was performed on a hand-held computer using a program for
solution of differential equations by the fourth-order Runge-Kutta method.
Step size was repeatedly halved as integration was carried out through short
ranges. The numeric value of gf was found to be close to 94.8309231. Then,

knowing §f, I made an attempt to express du/dt as a function of the powers
of (gf—g)T This process essentially seeks the inverse of equations (15) and
(16), where (§f—§) is expressed as a series involving u with the added

complication of the (1+bt) factor.

The attempt was successful in the sense that the derived expression gives

du
a close approximation of du/dt even when u (local stress) and it are small.
The approximation
d 1
u
- 1 03 “
(=) =. 2407 {— - + } (35)
dt (Ef t) (t -t)'75 6(t —t)’8
= _f - _-f: _-
du
differs from the value of T determined by numeric integration by less than
== du
1 percent over the whole range in which T increases from 0.00122140 by a

14



factor of more than 2x106 and (gf-g) decreases by a factor about 1x10_6. The
true relation may be an unending asymptotic series in (gf—g). The attempt was
unsuccessful in the gense that du/dt could not be expreséed by a single term

of the form g/(gf—g)', where n is greater than 1.

Method of Foreshock Analysis
Return now to equations (4) and (5):
1og(§f—§)=[—1/(g—1)] 1og(ZV/E+A)+[1/(n-1)] loglC/(n-1)] (W)
and )
log(tp~t)=(~1/n) log(dzvE/dt)+(1/n) log C . (5)

The known quantities in a foreshock series, in which time and magnitude
for each shock (above some lower limit) are reported, are Z/E and t,
the unknowns are tf, C, n, and A. The average rate, d(I/E)/dt, can be

calculated for any interval between chosen shocks.

The procedure is to plot I/E, or conveniently log (IVE), against time,
yielding a steplike graph that is often referred to as a Benioff diagram, from
early analyses of aftershock sequences (Benioff, 1951). The plot generally
lies between upper and lower bounds, which over long periods of time can be
approximately linear. We are concerned here with bounds that increase in
slope with time and with the determination and test of equations which express
this curve. A plot of 1log(IVE) versus time which increases in slope indicates
that the growth curve is supra-exponential and may be of the same form as
equation (4). This inverse power of remaining time seismic energy release
function will be referred to | by the abbreviation INPORT SERF. The S in
broader context, may stand for strain or deformation.

A set of points on either the upper or lower bound that appear to best
define a regular curve are selected for analysis. Here, judgment enters, and
in real life as data accumulate prior to an expected shock, revisions are to
be expected. The set or sets of selected points now define values
of I/E and t to be tested in equations (4) or (5). 1In order to make a test of
equation (4), for example, tentative estimates of t and A must be made. With

these initial estimates, pairs of values for 1og(Z/E+A) and log(gf—g),

usually 4 to 9 or 10 in number, can be used, respectively, for X,—Y pairs in
linear regressiog. The sums of squares of residuals, or the coefficient of
determination, r , are determined for each regression equation that is derived
from a set of pairs of (I/E+A), (gf—g) points using initial estimates

for Ef and A. The process is repeéted with other estimates for Ef and A until
a minImum sum of squares of residuals or a maximum value for g? 1; obtained.
The value for 2? can be 0.999 or higher because X and Y, which have fixed
values in conventional regression, are here adjustable to some extent to
achieve as perfect a fit as possible. The regression equation having the best
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fit with equation (4) has a slope of -1/(n-1), which gives an estimate for n;
the Y intercept yields the last term of equatlon (4), so the numeric value of
g_can be found.

Equation (5), involving rates, has two disadvantages: (1) rates are a
derived measure and, hence, can be less desirable than the direct measure of
z/g and (2) the number of X, Y pairs available for regression of rates and
remaining time is always one less than the number of originally selected
£/E, t points on upper or lower bounds. This situation can result in too few
pairs being available to form a satisfactory regression. Also, the time at
which to plot accurately an average rate between two points on an upward-
accelerating curve is determinable only by a complicated function. It lies
somewhere beyond the midpoint in a time interval, and generally, I have chosen
to place it at a time that is two-thirds the interval from the earlier to the
l%ter time but have used other factors, ranging from 0.6 to 0.72, to maximize

. Despite this complication, rates have one great advantage: They can be
used when the equation pertaining to z/g itself cannot be used because of
intervals that can occur when damage, w, continues to evolve, but seismic
energy either is not released or is below the level of detection. For this
reason and for mutual confirmation, it is well to try both the rate equation
(5) and its integral equation (4). Moreover, differences in results can give
some useful information about progress of the seismic process.

EXAMPLE SOLUTION, CREMASTA LAKE EARTHQUAKE

An illustrative example is furnished by the foreshock sequence preceding
the Cremasta Lake earthquake in Greece, ML=5.9, February 5, 1966. Magnitudes

and times of 20 foreshocks of ML23.4 (as well as 161 aftershocks) were

reported by Comninakis et al. (1968, Table I). The sum of VE of the 20
individual foreshocks has been plotted against time in figure 3 together with
a graph of the progressive rise in reservoir elevation as reported by
Comninakis et al. (1968) and supplemented by Gupta et al. (1972). 1In
computations involving rates and energy, the energy in ergs was calculated
according to the relation logAE=11.8+1.5 ML' Note that the first of the

tabulated foreshocks occurred more than 166,000 minutes before the second.
Figure 4 shows the rest of the series and the main shock in a log Z/E versus
time plot. The upper and lower bounds to the plot were well defined, and sets
of points on each bound were used to test real data against equations

(4) and (5).

Lower-bound points at the base of lines dropped from selected
(log IVE,t) points were used to compute rates for use in equation (5); the
points selected are the bases of lines dropped from points 1, 2, 5, 7, 10, 13,
and 16. Rates were assigned to times at 0.6 of the intervals selected. The
best value for tfp’ the predicted time of main shock, calculated by rates,

z =0.993, was 211,750 minutes. This time is 62 minutes before the actual time
of main shock. The last data point used in analysis, 16 base, at time
206,220, is 5,582 minutes, or 3.88 days before the main shock, which occurred

at §f=211,802. Event 1 is the foreshock that took place long before the rest

of the sequence. If it is omitted from the analysis of rates, as shown in
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figure 5, the estimated t_ _, £?=0.985, is at 208,900 minutes, which is a much

fp
less accurate prediction,

Upper-bound points 1, 2, 3, 6, 8, 12, 14, 15, and 18 were used to
estimate A and Efp with equation (4), which involves I/E rather than rates.

The best estimate for A is -70x106 er‘gs”2

of I/E of 473.2x10% at point 1 and 8,961.0x10% at point 18. The best estimate
for Efp using values for 2/5—70 at the nine named upper-bound points is

212,000 minutes (figure 6), which is 3 hours and 18 minutes later than the
actual time of main shoek. The time of the last used data point, number 18,
is t=206,524, which is 5,278 minutes or 3.67 days before the main shock.

, Which is small relative to values

Figure 4 shows a common feature of a foreshock series--a period of quiet
or relative inactivity immediately preceding the main shock. In most of the
foreshock series examined so far, such precursory quiescence does not appear
to preclude the use of INPORT SERF expressions constructed from earlier
observations but might lead to estimates of §f that are too early and of main-

shock magnitude that are too low. Figure 4 illustrates one of the various
ways to make a rough estimate of the minimum magnitude of the coming main
shock. In this instance,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>