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ABSTRACT

In an analysis of seismic-energy release during 11 sequences of 
earthquakes that in retrospect can be classed as foreshocks, the accelerating 
rate of energy release follows, at least in part, a simple equation. This

equation (1) is d(Z/E)/dt=C/(t -t)-, where Z/E is the cumulative sum until

time, t_, of the square roots of individual foreshock energies computed from 
reported magnitudes; C_ and ri are constants; and t is a limiting time at which

the rate of energy release becomes infinite. The possible time of a major 
foreshock or main shock, t , is found by the best fit of equation (1), or its

integral, to step-like plots of Z/E versus time using successive estimates 
of t f in linearized regressions until the maximum coefficient of

- ? determination, r., is obtained. Analyzed examples include sequences preceding
earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China, 2/M/75; Oaxaca, 
Mexico, 11/29/78; Petatlan, Mexico, 3/1^/79; and Central Chile, 3/3/85. In 
31 estimates of main-shock time, made as the sequences developed, the errors 
in 24 were less than one-half and in 10 less than one tenth the time remaining 
between the time of the last data used and the main shock. Some precursory 
sequences, or parts of them, yield no solution. Two sequences appear to 
include in their first parts the aftershocks of a previous event; plots using 
the integral of equation (1) show the sequences are easily separable into 
aftershock and foreshock segments. If synthetic seismic sequences of shocks 
at equal time intervals are constrained to follow equation (1) for various 
values of ri, the resulting distributions of magnitudes closely follow the 
linear Gutenberg-Richter relation log N=a_-bM, and n. times b_ is a constant. 
Rate-process theory and continuum damage mechanics appear to offer leads 
toward understanding the physical bases for equation (1). In various forms 
and for decades, equation (1) has been used successfully to predict failure 
times of stressed metals and ceramics, landslides in soil and rock slopes, and 
volcanic eruptions.

INTRODUCTION

Only a fraction of earthquake events have been preceded by a recognized 
sequence of foreshocks; nevertheless, the study of foreshocks is an important 
component in efforts directed toward earthquake prediction. As used in this 
article, the term "foreshock" is not precisely defined in terms of time and 
space windows because the data used for analysis are derived from published 
sources and the criteria used by authors for reporting seismic events prior to 
a main shock are not uniform. Publications on past foreshock sequences have 
included much information on statistical distributions and probabilities in 
both time and space, development of empirical relations concerning growth in 
the number of shocks per unit time as the time of the main shock is 
approached, and cumulative plots of radiated seismic energy during periods as 
long as many decades prior to large events. Occasionally, both the numbers of 
shocks per unit time and the accumulated sum of radiated seismic energy 
accelerate during a foreshock sequence. The rate of shock incidence has been 
found to increase with an inverse power of the time remaining until the main 
shock, but little or no attention appears to have been given to defining 
specific functions that relate accelerating seismic-energy release either to 
time elapsed or to time remaining in the period preceding a main shock.



The purpose here is to propose a simple foreshock energy-release function 
in its differential equation form, trace its relation to previous studies in 
deformation kinetics, and apply it in both differential and integrated forms 
to data on several foreshock and main-shock sequences of past earthquakes. 
These back-analyses indicate the possibility that in some cases with 
appropriate data, the time and, in some instances, the magnitude of main 
shocks can be rather closely estimated far enough in advance to provide a 
useful warning or prediction.

The function proposed for the rate at which seismic energy is released 
during earthquake foreshock sequences is

d(Z/E)/dt=C/tf-t)- , (1)

where Z/E is the accumulated sum of square roots of the energy of individual 
foreshocks recorded through time, t_; £ and ri are constants; and t f , the

fundamental unknown, is a limiting time for the process at which the rate of 
energy release becomes infinite.

The integrated form of equation (1) for n*1 is

~t)1 "- , (2)

where (Z/E) is observed at some time, t. . Because neither C_ nor n. is known, 

the first term on the right side is combined with (Z/E).. into a lumped 

integration constant, A, giving

Z/E+A=[C/(n-1)](tf-t) 1 ~- . (3) 

If you take logs and rearrange, equation (3) becomes 

log(t f-t)=[-1/(n-1)] log(Z/E+A)+[1/(n-1)] log[C/(n-1 ) ] , (4) 

and equation (1) becomes

log(t f-t)=(-1/n) log(dZ/E/dt)-Kl/n) log C . (5) 

If n=1 , the integration of equation (1 ) results in

log(t f-t)=-2.30258(Z/E+A)/C 

and

log(t f-t)=-log(dZ/E/dt)+log C . (5A)

The critical characteristic of these equations is that they describe a 
process that ends catastrophically at a finite time; exponential or power-of 
time growth curves have no termination.

Equations (4) and (5) are used later for analysis of actual foreshock



data. An estimate of the approximate time of main shock, t f , is made by

successive approximation and by the maximization of the correlation 
coefficient in linear regression. Numeric values for n_ and C_ are also 
determinable from the slope and the intercept of best-fit regressions. These 
two equations are relatively simple to handle and have the advantage that the 
two principal quantities involved as input data the time of events and their 
radiated seismic energy are those most commonly observed. Because only a 
time difference (t -t) appears in the equations, time zero at which the

foreshock sequence actually begins does not need to be identified. If data 
successively earlier in time can be added to the analysis, the time of 
beginning or departure from a former steady state can become clear. 
Conversely, as data later in time become available, the estimate 
of t generally becomes more accurate.

The physical reasons for equation (1) seem obscure. In a real system 
whose behavior is determined by past events and present attributes, how can 
the system's current rate of energy release be closely and simply related to a 
future unknown time of catastrophe? The answer might be that the true 
relation is not simple and that equation (1) is actually a useful and close 
approximation to something more complicated but more rational.

Although for the present equations (1), (4), and (5) must be regarded as 
empirical, they have origins both in physical theory and in experiments. 
These areas concern time-dependent deformation, viscous and plastic flow, 
creep to rupture and rupture life, stable and critical crack propagation, and 
acoustic emission in a wide variety of manufactured and natural materials. In 
particular, the roots of equation (1) in its various forms where the energy 
term is replaced by strain or displacement extend into a large body of work on 
deformation kinetics going back more than 50 years.

THEORETICAL AND EXPERIMENTAL BACKGROUND IN DEFORMATION KINETICS

A search for the guiding principle behind foreshock energy release was 
followed along four paths toward possible convergence. The first is rate- 
process theory, which has been found applicable to deformation processes in a 
wide variety of materials. The second path is the analysis of tertiary creep 
and the use of empirical relations among stress, strain, and time in order to 
estimate the time of failure of a wide variety of materials. The third 
analytic area is the development of continuum damage mechanics and its use in 
estimating the life of stressed-metal structural components. The fourth path 
is the direct use of relations between accumulated radiated seismic energy and 
the possible time of a volcanic eruption.

Rate-Process Theory

Neglecting some earlier but pertinent studies, we can begin with the work 
of Eyring and his associates (Glasstone et al., 19*11) in which viscosity and 
plasticity are related mathematically to thermal activation and to forces and 
rates of shear at atomic and molecular levels. This rate-process theory was 
developed originally for liquids but was subsequently extended to quantitative 
studies of the deformation of a wide variety of crystalline and amorphous 
solids. Its mathematical form is usually stated as



dN kT AF if
=N l- exp(-) 2 sinh . (6)

The left side of the equation expresses the net rate at which bonds are 
broken, that bond repair also is possible; _N is the number of bonds currently 
existing per unit area, and f_ is an assumed constant force (due to applied 
exterior load) which acts on N_ bonds through an average distance, X, during 
the process of bond breaking. Free energy of activation for the process 
is AF, _k is Boltzmann's constant, ji is Planck's constant, and T_ is absolute 
temperature. The hyperbolic sine term results from the difference in 
probabilities between bond breaking and bond healing, where probabilities are 
expressed by two exponential terms of opposite sign. Thus, the process is 
biased toward bond breaking by the applied force, £. If this force is so high 
its effect far outweighs the effect of thermal oscillation, that is, 
if Xf»NkT, the healing process can be neglected, and the sinh term can be 
replaced by a single exponential term:

2 sinh (Xf/NkT)=exp(Xf/NkT) . (7)

Next, replace the Xf/NkT term, which defines local stress, by a term 
expressing its relation to the constant applied exterior stress, 
a : 
- *f/NkT=xa . (8)

In a process resulting in rupture, the bonds are progressively used up, 
and as N approaches 0, the new variable x approaches infinity at the limiting
time, t,,; at t=0, x = 1   r ~~

To simplify equation (6), assume that at a constant temperature the 
activation energy AF remains constant; then, let

kT AF 
A=r  exp(- )=a constant. (9)

Equation (6) can then be written as
dN x°
- =Ae -dt . (10) N

From equation (8), we have -dN/N=dx/x; so, equation (10) becomes

  n
 =Ae -dt (11)
A

and

<« ~XOo
dY=A f ---=v« f -0J -___ dX=A J dt=A(t^-t_) . (12)

t_o



Equation (12) expresses the remaining lifetime of a system in terms of an 
integral involving a constant exterior stress, a ; the variable x that

increases as the number of unbroken bonds decreases; and the constant A that 
comprises material properties, temperature, and fundamental constants.

To simplify equation (12), let

xaQ=u . (13) 

Then equation (12) becomes

-u e -
du=A(t -t ) . (U)j u -- - -f -o 

-o

The integral on the left side of equation (14) cannot be expressed by a 
finite number of elementary functions; it is known as the exponential 
integral E.(u ), and its value is tabulated for values of u . Therefore,

E^u )=A(t -t ) , (15) _ ~  ~ ~L ~-

and if one knows the value of YO =u at t=0 and the value of A, theo -o -  
time, t f , can be calculated directly. At this time, x and u. become infinite, 

the number of bonds becomes zero, and the process ends catastrophically.

The integral E,.(u) can be expressed as a series,

n n

E (u)-Y-Anu-j; ( " 1. n ," , (16) 
n=1 - -'

where Y=0.57721 . . . (Euler's constant).

For large values of u_, E (u) is given approximately by

E 1 (u)=u" 1 exp(-u) , (17) 

so that equation (15) becomes approximately

u~ 1 exp(-u)=A(t f-t) (18) 

and, taking natural logarithms,

-fcn u-u=S,n A+£n(t -t) . (19)  _ _ __



At large values of ju, fcn u becomes negligible compared to ju, and equation 
(19) becomes

(2°) 

or

(t f-t)=^e~y (21)

and, taking derivatives,
-- , u 1 -=Ae-=
dt -- t f-t 

or

HTF^t ' (22)

where u=a, the local stress.

With the use of equation (9), equation (21) can be put in the form
AF 

t f-t=B exp(  a) , (23)

where B=h/kt.

Equation (23) is the same as, or very similar to, equations relating 
stress to time to failure; remaining time; or lifetime of specimens of quartz 
in laboratory testing (Scholz, 1972), of rock (Kranz et al., 1982; 
Tomashevskaya, 1985), of samples of clayey soil (Murayama and Shibata, 1958), 
and of a wide variety of crystalline metallic and nonmetallic and amorphous 
materials (Zhurkov, 1965). It is remarkable that the rate-process theory, 
originally developed to give a physical explanation for viscosity at a 
molecular level, has been applied successfully in many different ways to 
vastly larger masses, thermally activated processes of creep and fracture of 
brittle materials (Krausz and Eyring, 1975), and stress corrosion and crack 
propagation in the solid earth (Anderson and Grew, 1977).

In a paper on characteristics of foreshocks, Jones and Molnar (1979) used 
a simplified version of Scholz's expression for average lifetime of quartz in 
uniaxial compression,

average(t f-t)=D exp(-aa) , (24)

to represent the average life of an asperity on a stressed fault plane. As 
asperities break, the constant exterior stress, a , is carried by fewer and

fewer asperities and a decreasing area of contact. The process accelerates 
and ends in a main shock. Jones and Molnar (1979) use equation (11) and its 
integral to graph the relations between increasing local stress, aa x> anc*

decreasing remaining time during the course of an idealized foreshock sequence 
and between these variables and the cumulative number of foreshocks.

Equation (22) gives a relation between the rate of stress increase and 
the remaining time in a progressively failing system that might be useful in



the study of the period preceding an earthquake. There are two difficulties, 
however: (1) there is the need to relate (t-t) to a quantity that is more

easily observable than o and (2) the equation has been derived under 
conditions that a be "large," but just what large means in actual conventional 
units of stress is not clear.

The increasing rate in numbers of foreshocks preceding major shocks for 
collections of data within regions has been shown by Jones and Molnar (1979), 
as well as Papazachos (1973), to be proportional to an inverse power of 
remaining time. Perhaps because there is a difficulty in recognizing a 
sequence of events as precursory to a particular earthquake or because the 
number of events is insufficient to form a definite relation between rate and 
time, the use of numbers of events alone does not seem to have led to a 
quantitative prediction of main-shock time for a particular earthquake. 
Certainly, however, in many instances, a growing number of shocks per unit 
time has greatly affected local evaluation of impending hazard.

Foreshocks generally vary irregularly in magnitude. Even though a 
general trend might exist toward more frequent shocks as time passes, the 
accumulated number of events and their increasing rate might not adequately 
define the physical process. The rate of seismic-energy release in the 
form E/E, which involves both the numbers of events and their severity, has 
increased meaning. No doubt, accumulated seismic moment would be better yet, 
but seismic moment is not often reported for individual shocks of a foreshock 
series.

Plots of cumulated seismic energy, or E/E versus time, have been 
published often since their introduction and interpretation years ago by 
Benioff (1951). These plots primarily encompass either large areas or long 
periods of time, or both. Less work appears to have been done to interpret 
actual records of the accelerating release of seismic energy in detail and 
within the limited bounds of space and time around an actual potential or past 
earthquake. For this purpose, the use of equation (12) or its approximation, 
equation (22), requires relating rising local stress, a, to accumulating E/E.

In each event, according to Benioff (1951, p. 42), ". . .if the elastic 
strain is fully relieved during fault movement, the square root of the 
radiated energy of an earthquake is proportional to the elastic strain 
(preceding the earthquake). . .." Also, if local elastic strain is 
proportional through material constants to local stress, we have for each 
event at a particular time

The growing local stress, a, at some time, _t, after JL_ events is

i=n

a =K I (/E).
- i-o ~ 

or can be shortened to

K(E/EV .



Thus, from equation (22), we get

da<_ d(Z/E).
"~   ~ ~   1 ~-v
dt - dt ~(t f-t) f

which becomes the first result in this derivation equivalent to the relation 
sought, equation (1), in the case that n_=1 .

Tertiary Creep

When subjected to sustained loads sufficient to cause ultimate failure, 
many materials follow time-deformation creep curves of the type shown in 
figure 1. The initially high strain rate decreases to a minimum that can be 
of only momentary duration and then increases to the time of failure.

Servi and Grant (1951) recognized that in a series of tests run to 
failure on the same material but at different stress levels, the minimum creep 
rate, which occurs at the point of inflection of a strain-time curve, 
multiplied by the time remaining to failure is a constant; that is,

e . (t«-t)=a constant. (26) mm -I -

After analyzing available data on the rupture life and minimum creep rate 
of a large number of pure metals and alloys, Monkman and Grant (1956) 
generalized equation (26) to the following form:

1log(t,,-t)+- log(e . )=log s , -f - r mm -

where r. and s_ are constants.

This equation can be written as
(sf-

mm , -+\t

which states that the minimum strain rate is inversely proportional to a power 
of the time remaining to failure.

In an analysis of slope failures in Japan, Saito (1969) extended the 
meaning of the Monkman-Grant expression to the whole of the tertiary creep-to- 
failure period by assuming the rate at any time in this period is proportional 
to a power of the remaining time; that is,

de C
it"    n ' (27) 

  f  

where e denotes either strain or displacement, Jt is the time of 
observation, t f is the time of failure, and C_ and n_ are constants. Saito

found that in many instances n is near or equal to 1. If so, I have



designated the relation as "pure Saito," as shown in figure 2; if n*1 , the 
expression is referred to as "generalized Saito." Equation (27) is of the 
same form as equation (1) but with Z/E replaced by e.

Saito and his colleagues have been successful in applying equation (27) 
to predicting the time of failure of landslides from time-displacement 
observations and have applied it also in laboratory tests by others on soil 
and rock. Their work was extended (Varnes, 1983) and shown to apply to a wide 
variety of materials, including some metals, and, pertinent to the current 
article, to the emission of acoustic energy in the testing of rock to failure 
reported by Wu and Thomsen (1975).

Continuum Damage Mechanics

Relations between stress, strain, time, and an internal-state variable 
called "damage" were proposed for metals by Kachanov and modified by Rabotnov 
in Russian literature of the 1960 T s. These relations were further developed 
and generalized to multiaxial states of stress by Leckie and Hayhurst (1977) 
and to various mechanisms of creep damage by Ashby and Dyson (1986). 
Continuum damage mechanics has become a very active field of research in many 
directions, including application to anisotropic polycrystalline materials 
that develop cavities and cracks under stress. There seems no obvious reason 
to limit the concept to metals. The relations presented by Leckie and 
Hayhurst for isotropic material under uniaxial stress are

e/eo=(a/oQ ) /(1-a>) (28)

and

o)/u> =(o/o ) /(1-oj) . (29)
0 O

Equations (28) and (29) are expressions for accelerating creep in which 
to denotes the internal-state variable damage, w=0 when the material is 
initially undamaged, and w=1 at rupture. The dot indicates differentiation 
with respect to time. Just prior to the onset of accelerating tertiary creep, 
the steady-state strain rate, e , corresponds to applied stress, o , with

w=o) ; j_, k_, £, and _q are constants.

Under the assumption that the load, o, and, thus, the ratio (a/o ) remain

constant and that t=0 when u)=0 and t=t,. at u)=1 , equation (29) can be   i
integrated to yield

. (30)



TIME

FIGURE 1. Typical curves showing primary and tertiary creep; one shows a 
steady-state secondary creep part.
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This equation, combined with equation (28), gives

£o (o/0o ) *

de/dt=-

which reduces to equation (27) of the preceding subsection on tertiary creep,

de C
 

a k/(g+D
where C=e (a/a ) t,, and n=k/(q+1).o o -f - - 3

Leckie and Hayhurst emphasize that no specific physical interpretation is 
necessarily attached to the damage parameter, to, although to has been 
interpreted by some to represent the progressive decrease in the area capable 
of resisting load as a result of the formation and growth of cracks and 
voids. The same reasoning was used by Jones and Molnar (1979) in deriving the 
change in local stress as x increases from 1 to °°, where

A-o
x=r  

-u

A is the original area of unbroken load-bearing asperities in a fault plane, 

and A is the area remaining unbroken at any time, t_, during the process. 

Thus, a relation can exist between to and Xt

m 
u-Cl-(1/x)]   (3D

Although the concept of a) as an internal-state variable is more general than 
that of x» both are fundamental variables in the foreshock process.

Volcanic Seismic Activity

From extensive study of the seismic activity preceding the eruptions of 
andesitic volcano Bezymianny in Kamchatka, U.S.S.R., Tokarev (1963) developed 
the empirical equation

X/E=a+b/(T-t) , (32)

where a_ and _b are constants (a_ is negative), and ^T is the limiting time of the 
process (corresponding to my t ). That is, T_ is the expected time of a major

12



eruption, and t_ is the time counted from the first earthquake in the cycle of 
activity being analyzed. Equation (32) is of the exact form of equation 
(3). As applied to six eruptive cycles of Bezymianny, the 1964 eruption of 
Sheveluch volcano (Kamchatka), and the 1962 eruption of Tokachi-dake in Japan, 
the value of T^ differed from the actual time of eruption by less than five 
days (Tokarev, 1972, 1985). By differentiation of equation (32) to yield

d(Z/E)/dt=b/(T-t) 2 , (33)

equation (1) is recovered, and it is apparent that Tokarev's expression 
assumes that n_=2. Tokarev (1972) used the Benioff relation in which 
cumulative seismic strain is taken to be proportional to cumulative seismic 
energy. In the same article, Tokarev pointed out that earthquake energy is a 
more reliable characteristic of seismic activity than the number of events and 
that the number of events might show a sharp increase only a short time before 
an eruption.

Since the May 18, 1980, eruption of Mount St. Helens in the State of 
Washington, seismic monitoring and measurement of deformation in the crater 
area have been used extensively to predict later, smaller eruptions (Swanson 
et al., 1985). Tokarev 's work has been referenced by workers at Mount St. 
Helens (Endo et al., 1981), and plots of Z/E versus time, with an indication 
of the most likely time of the beginning of an eruption, have been published 
(Malone et al., 1983); however, neither the mathematical form of the curve 
relating energy and time nor the method of estimating eruption time was given.

INTERIM DISCUSSION
The previous subsections indicate that in many diverse physical processes 

which lead to failure, the accelerating increase in the rates of stress, 
strain, or Z/E is inversely related to a power of the remaining time. In 
actual application to foreshocks, the exponent n_ is generally in the range 
2-5; so, it is somewhat disappointing that although the development of rate- 
process theory resulted in a relation between a and (t -t), the exponent

n_=1 . This result might well have been caused by the various approximations 
that were made during the derivation. It might also be due in part to the 
assumption that the exterior (tectonic) stress on the system remains constant, 
which might not be realistic in some tectonic settings.

An attempt was made to relate (t -t) to an expression concerning stress,

as derived from rate-process theory, but without the assumption that from the 
beginning a is large and under the additional condition of external stress 
increasing linearly with time.

In equations (11) and (13), the original a is replaced by 

aQ (1+bt), giving

  =Ae - dt
X ~  

fl H .   =Ae-   dt u  

13



and
du

This equation, like the exponential integral, expresses a process that 
ends catastrophically, but it does so sooner because of the term (1+_bJ:). As 
in the exponential integral, u_ cannot be expressed by a finite number of 
functions of t^. No tables exist evaluating this integral.

A numeric experiment was performed in which equation (34) was integrated 
numerically, assuming, as an example, that

A=.005 , 

_u=.2 at _t=0 , 

b=.03 , and

du u(1+.03t)
 =.005 ue dt

The integration was performed on a hand-held computer using a program for 
solution of differential equations by the fourth-order Runge-Kutta method. 
Step size was repeatedly halved as integration was carried out through short 
ranges. The numeric value of t was found to be close to 94.8309231. Then,

knowing t f , I made an attempt to express du_/dt_ as a function of the powers 

of (t -t). This process essentially seeks the inverse of equations (15) and 

(16), where (t -t) is expressed as a series involving u_ with the added 

complication of the (1+bt) factor.

The attempt was successful in the sense that the derived expression gives
du 

a close approximation of clu/dlb even when u_ (local stress) and -rr are small.

The approximation

-- 1 3 1( dt )= - 2407fTr47 "   75 +   3   s 1 (35) -- ( -f - ; ct f-tr 75 6(tf-tr 8
du

differs from the value of   determined by numeric integration by less than
dt , du

1 percent over the whole range in which   increases from 0.00122140 by a

14



factor of more than 2x10 and (tf-t) decreases by a factor about 1x10 . The 

true relation may be an unending asymptotic series in (t-t). The attempt was 

unsuccessful in the sense that ^u_/^t_ could not be expressed by a single term 

of the form C/(tf-t) , where n is greater than 1.

Method of Foreshock Analysis 

Return now to equations (4) and (5):

log(t,,-t)=[-1/(n-1)] log(I/E+A)+[1/(n-1)] log[C/(n-1) ] (4)  i   ~ ~

and

log(tf-t)=(-1/n) log(dI/E/dt)+(1/n) log C . (5)

The known quantities in a foreshock series, in which time and magnitude 
for each shock (above some lower limit) are reported, are I/E and t, 
the unknowns are t f , C, n, and A. The average rate, d(Z/E)/dt, can be

calculated for any interval between chosen shocks.

The procedure is to plot Z/E, or conveniently log (I/E), against time, 
yielding a steplike graph that is often referred to as a Benioff diagram, from 
early analyses of aftershock sequences (Benioff, 1951). The plot generally 
lies between upper and lower bounds, which over long periods of time can be 
approximately linear. We are concerned here with bounds that increase in 
slope with time and with the determination and test of equations which express 
this curve. A plot of log(Z/E) versus time which increases in slope indicates 
that the growth curve is supra-exponential and may be of the same form as 
equation (4). This _inverse power £f remaining _time sieismic energy release 
function will be referred to by the abbreviation INPORT SERF. The S, in 
broader context, may stand for strain or deformation.

A set of points on either the upper or lower bound that appear to best 
define a regular curve are selected for analysis. Here, judgment enters, and 
in real life as data accumulate prior to an expected shock, revisions are to 
be expected. The set or sets of selected points now define values 
of Z/E and t to be tested in equations (4) or (5). In order to make a test of 
equation (4), for example, tentative estimates of t f and A must be made. With

these initial estimates, pairs of values for log(I/E+A) and log(t f-t),

usually 4 to 9 or 10 in number, can be used, respectively, for X, Y pairs in 
linear regression. The sums of squares of residuals, or the coefficient of 
determination, r , are determined for each regression equation that is derived 
from a set of pairs of (Z/E+A), (t-t) points using initial estimates

for t f and A. The process is repeated with other estimates for t and A until

a minimum sum of squares of residuals or a maximum value for r.2 is obtained. 
The value for r_ can be 0.999 or higher because X and Y, which have fixed 
values in conventional regression, are here adjustable to some extent to 
achieve as perfect a fit as possible. The regression equation having the best

15



fit with equation (4) has a slope of -1/(n-1), which gives an estimate for n_; 
the Y_ intercept yields the last term of equation (4), so the numeric value of 
C_ can be found.

Equation (5), involving rates, has two disadvantages: (1) rates are a 
derived measure and, hence, can be less desirable than the direct measure of 
Z/E and (2) the number of X, Y pairs available for regression of rates and 
remaining time is always one less than the number of originally selected 
Z/E, t points on upper or lower bounds. This situation can result in too few 
pairs being available to form a satisfactory regression. Also, the time at 
which to plot accurately an average rate between two points on an upward- 
accelerating curve is determinable only by a complicated function. It lies 
somewhere beyond the midpoint in a time interval, and generally, I have chosen 
to place it at a time that is two-thirds the interval from the earlier to the 
later time but have used other factors, ranging from 0.6 to 0.72, to maximize 
r. Despite this complication, rates have one great advantage: They can be 
used when the equation pertaining to Z/E itself cannot be used because of 
intervals that can occur when damage, to, continues to evolve, but seismic 
energy either is not released or is below the level of detection. For this 
reason and for mutual confirmation, it is well to try both the rate equation 
(5) and its integral equation (4). Moreover, differences in results can give 
some useful information about progress of the seismic process.

EXAMPLE SOLUTION, CREMASTA LAKE EARTHQUAKE

An illustrative example is furnished by the foreshock sequence preceding 
the Cremasta Lake earthquake in Greece, M =5.9, February 5, 1966. Magnitudes

L
and times of 20 foreshocks of M ^3.^ (as well as 161 aftershocks) were

L
reported by Comninakis et al. (l"968, Table I). The sum of /E of the 20 
individual foreshocks has been plotted against time in figure 3 together with 
a graph of the progressive rise in reservoir elevation as reported by 
Comninakis et al. (1968) and supplemented by Gupta et al. (1972). In 
computations involving rates and energy, the energy in ergs was calculated 
according to the relation logAE=11.8+1.5 M . Note that the first of the

L
tabulated foreshocks occurred more than 160,000 minutes before the second. 
Figure 4 shows the rest of the series and the main shock in a log Z/E versus 
time plot. The upper and lower bounds to the plot were well defined, and sets 
of points on each bound were used to test real data against equations 
(4) and (5).

Lower-bound points at the base of lines dropped from selected 
(log Z/E,t) points were used to compute rates for use in equation (5); the 
points selected are the bases of lines dropped from points 1, 2, 5, 7, 10, 1 3, 
and 16. Rates were assigned to times at 0.6 of the intervals selected. The 
best value for t f , the predicted time of main shock, calculated by rates,

r_2 =0.993i was 21 T, 750 minutes. This time is 62 minutes before the actual time 
of main shock. The last data point used in analysis, 16 base, at time 
206,220, is 5,582 minutes, or 3.88 days before the main shock, which occurred 
at t f=211,802. Event 1 is the foreshock that took place long before the rest

of the sequence. If it is omitted from the analysis of rates, as shown in
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pfigure 5, the estimated t f , r_ =0.985, is at 208,900 minutes, which is a much 

less accurate prediction.

Upper-bound points 1, 2, 3, 6, 8, 12, 14, 15, and 18 were used to 
estimate A and t f with equation (4), which involves E/E rather than rates.

fi 1 /? The best estimate for A is -70x10 ergs , which is small relative to values

of E/E of 473.2x1O6 at point 1 and 8,961.0x1O6 at point 18. The best estimate 
for t f using values for E/E-70 at the nine named upper-bound points is

212,000 minutes (figure 6), which is 3 hours and 18 minutes later than the
actual time of main shock. The time of the last used data point, number 18,
is t=206,524, which is 5,278 minutes or 3.67 days before the main shock.

Figure 4 shows a common feature of a foreshock series a period of quiet 
or relative inactivity immediately preceding the main shock. In most of the 
foreshock series examined so far, such precursory quiescence does not appear 
to preclude the use of IMPORT SERF expressions constructed from earlier 
observations but might lead to estimates of t f that are too early and of main- 

shock magnitude that are too low. Figure 4 illustrates one of the various 
ways to make a rough estimate of the minimum magnitude of the coming main 
shock. In this instance, the upper bound is simply extended in a straight 
line through points 12 and 15 to the t f estimated by the upper-bound

analysis. For a limited time, this procedure assumes a nonterminating 
exponential, rather than a terminating supra-exponential, growth in E/E. At 
the estimated t f of 212,000, the required shock following event 20 would have

a magnitude of 5.6; the actual shock was M =5.9. Another way to estimate theLI
main-shock magnitude is to use the developed relation between log(E/E+A) 

and log(t f ~t), calculate E/E at some small remaining time, and compute the 

necessary main shock to reach this total.

Figure 7 shows a plot of log(212,000-_t) versus log(E/E-70) together with 
the line of regression through the numbered points on the upper bound.

The Cremasta Lake earthquake has been related to filling of the reservoir 
and, thus, might be regarded as a special case. Foreshock sequences preceding 
earthquakes in other geologic settings are included in analyses presented in 
the next section.
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FIGURE 7. Log(E/E-70) versus log(212,000-O, Cremasta foreshook sequence. 
The upper-bound points used for regression are numbered.
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ANALYSES OF OTHER FORESHOCK SEQUENCES

Results of 11 analyses are given in figure 8, which shows the error of 
prediction of main-shock time versus the time remaining after the last data 
used to make the prediction. Most analyses include the results of examining 
both E/E and the rate of energy release. In general, rates appear to give 
more accurate predictions. Some seismic sequences, or parts of them, although 
generally accelerating, do not follow equations (4) or (5), and predictions 
of t,, cannot be made.~£B

In most instances, the data used for analysis consist of published tables 
of times, magnitudes, and locations of foreshocks. Data for the Yenyuan- 
Ninglang earthquake and for the very early part of the Haicheng sequence were 
in the form of spike graphs showing times and magnitudes. For most series, 
I accepted the space and time windows if these were stated by the authors and, 
of course, the lower limit on magnitudes of reported events. The remarks that 
follow are in the same numeric order as the foreshock analyses shown in 
figure 8.

First is the eastern Shimane, Japan, earthquake of May 27, 1978, M=3«7 
(Yamashina and Miura, 1980). This earthquake was preceded by a M=3*9 event 
20.5 hours earlier, which had only two small foreshocks and perhaps six 
aftershocks. These aftershocks could easily be separated from the following 
15 foreshocks of the M=3«7 event by examination of a log(E/E) versus time plot 
(figure 9). The change from aftershocks to foreshocks is also well shown in
the plot of logCt,, -t) versus log(E/E-5), figure 10, in which the lower linear -ip -
bound begins after event 9. A possible, although questionable, estimate of 
main-shock magnitude might be made following event 21 by projecting in figure 
9 a line parallel to the line 17B-21B from point 20 to the vertical line at 
the estimated main-shock time. The estimated main-shock time using Z/E-5 was 
2,581; using rate of seismic-energy release, the time was 2,599; and the 
actual main-shock time was 2,596. All times are in minutes from time zero 
taken at OOhr OOmin May 26, 1978.

Second is Cremasta, which was already discussed.

The third analysis is of the Haicheng, China, earthquake of February 4, 
1975, M=7.3, which was analyzed using data from the excellent report by Jones 
et al. (1982) and supplemented with information from the review by Raleigh 
et al. (1977). Seventy-six events were used in the analysis, although the 
Haicheng event "was preceded by over 500 foreshocks in the 4 days prior to and 
very near the epicenter of the mainshock" (Jones et al., 1982). The long 
sequence made possible some attempts to reconstruct how an analysis might 
evolve and be modified as information is accumulated. The attempts were 
difficult and not very satisfactory primarily because of the labor involved in 
testing many values of tf , A, and n for several possible sets of upper-bound

and lower-bound data points. A few of the predictions made at increasingly 
later times are shown in figure 8, set 3.
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Fourth is the Oaxaca, Mexico, earthquake of November 29, 1978, M=7.8, 
which was analyzed using data from Ponce et al. (1980a, b) and from PDE 
(Preliminary Determination of Epicenters). The area considered in Ponce 
et al. (1980a), shown by a light rectangle oriented N-S in figure 11, was 
somewhat enlarged and reoriented into a rectangle, parallel with the offshore 
trench, that included all the M£2.8 foreshocks reported by Ponce et al. 
(1980b) which were detected by the local net emplaced in early November
1978. The area also includes seven previous events, M^3«9, reported in PDE 
between January 1 and November 9, 1978. During the period from August 29 
(event F) to November 9, 1978 (no. 1 of local net), no shocks were reported in 
PDE within the area being considered. When the recording of seismicity with 
the local net was begun in November, the rate of energy release was that which 
would have been predicted by extrapolation of the rate of energy release of 
the early PDE data, although an apparent quiet period of 72 days intervened.

The value of Z/E shown by the local net in the plot of figure 11 is lower 
than would be expected by extrapolation of the Z/E curve C-E-F. This 
information suggests that damage might have continued after event F, resulting 
in a high rate when the local net began recording, but that seismicity was 
absent or at levels of M<3.9 during the interval between events F and 1. A 
similar hiatus in Z/E occurred later in the sequence between events 38 and 39 
of the local net sequence (figures 12 and 13). This hiatus clearly indicates 
that something happened between events 38 and 39 which escaped detection by a 
sensitive net but which led to high rates at the proper time. Although these 
gaps in the continuity of Z/E made it impossible to use Z/E for analysis of 
the Oaxaca sequence, rates could be used.

Figure 14 shows the relation between the log of remaining time,
(t,, -t), versus the log rate. The intervals used for computing rates are -fp -
indicated by event numbers. Rates determined from the PDE events C-E and E-F 
extrapolate well to the rate from local net events 1-14, yielding the 
projected time of main shock of 478,000 by repeated regression of equation (5) 
until the maximum r_ was obtained. Following event 14, a period of change or 
transition appeared to exist until event 26 when another set of rate 
determinations fell on a line with somewhat less slope and
yielded t,, =480,040. "IB

Figure 8, set 4, shows an early prediction using Z/E data only from PDE, 
a later one using rates from both PDE and the local net, and a still later 
prediction using rate data from the local net only.

Fifth, the foreshocks of the Petatlan, Mexico, earthquake of March 14,
1979. Ms=7.6, were analyzed using data from Gettrust et al. (1981), Hsu et al. 
(1983), and an updated computer printout furnished by Professor Hsu. The 
predictions are in two groups in figure 8; those numbered 5 were made using 
data as early as March 2, and those numbered 5a were made using data from 
March 13 and 1 4.
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Sixth, the foreshock sequence of the Oroville, California, earthquake of
August 1, 1965, M =5.7, discussed by Mantis et al. (1979), was the longest LI
such sequence then known in California. It consisted of many small shocks 
that were spaced irregularly over a period of 56 days, dominated by two
moderate shocks of M=4.5, one 233 minutes before the main shock and the otherLI
8 seconds before. Back-analysis indicated that the first M =4.5 shock,LI
numbered 6a on figure 8, could be predicted with difficulty. The main shock, 
number 6, was not predictable with satisfactory accuracy, and I regard the 
analysis of the Oroville series as a partial failure.

Seventh is the Yenyuan-Ninglang, Southwest China, earthquake of 
November 11, 1976, M=6.9, reported on by Dike (1978). This event was preceded 
by more than 40 foreshocks in a period of approximately 25 days. Essentially 
straight and nearly parallel upper and lower bounds confine the log £/E versus 
time plot until the lower bound is crossed during prolonged quiescence. The 
main shock, M=6.9, followed shortly thereafter; the magnitude was much higher 
than the M=5.4 that might be predicted from projection of the upper bound.

Eighth, an earthquake on June 14, 1978, W=5.4, in the Himachal Himalayas, 
India, was the second of two events discussed by Das Gupta (1984). It was 
preceded by 25 foreshocks over a period of approximately 151 days. Activity 
decreased markedly about 40 days prior to the main shock, which is why no 
predictions were made later.

The ninth is the earthquake of February 14, 1980, off the north coast of 
the Virgin Islands. This earthquake was preceded by 36 foreshocks, 
1.4SMS2.5, during the previous 10 months (Frankel, 1982). The sequence 
appears to have consisted of four episodes, each terminated by a short period 
of increased activity. The duration of the episodes decreased with the 
passage of time in an accurate linear relation. The last episode, or 
miniseries, was used to make the predictions shown in figure 8.

Tenth is an earthquake on April 15, 1979, Ms=7.1, that occurred near the 
southwest coast of Yugoslavia. This earthquake was preceded by a series of 
foreshocks, which started on April 9 and had magnitudes as great as 5.4 
(Karakaisis et al., 1985). The time and magnitudes of the six foreshocks were 
reported in the publication. Of these, the first five could be used, giving a 
bare minimum for a prediction of t f using means of upper- and lower-bound

rates. Events 3, 4, and 5 were used for a prediction based on Z/E. As 
sometimes happens in regressions of this type, using only three points to
search for the best t,. resulted in r =1 .-fE

Eleventh is the great earthquake of March 3, 1985, Ms=7.8, that occurred 
along the coast of central Chile. This event was preceded by intense 
foreshock activity near the epicenter of the main shock for 11 days before the 
main shock (Comte et al., 1986). A list of foreshocks between February 10 and 
27, Mh=4.0, was kindly furnished by Professor E. Kausel and D. Comte of the

University of Chile, Santiago, for analysis. A period of relative quiescence 
began on February 23, and no foreshocks of m £4.0 occurred from late on

February 27 to the main shock late on March §  Preliminary results of 
analysis of data prior to quiescence indicate that the times of possible main
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shock could be predicted from lower-bound rates and from E/E, as shown in 
figure 8, although predicted times are significantly earlier than the time of 
the actual earthquake.

SYNTHETIC FORESHOCK SERIES CONTROLLED BY INPORT SERF

If INPORT SERF has some physical validity, it should also have 
discernible connections with other empirical but established characteristics 
of foreshock sequences. One possible test is to generate a series of 
foreshocks in which the upper bound of energy release is determined by an 
equation of the INPORT SERF form and then to examine the distribution of 
resulting magnitudes. It is also necessary to specify the distribution of the 
foreshocks in time. For the current analysis, a series of shocks spaced at 
equal time intervals is assumed; other distributions, such as shocks spaced at 
random times or shocks spaced with increasing frequency as the main shock is 
approached, are under study.

As an example, the following relation
n 

d(E/E)/dt=W(100-t) . (36)

is assumed, the first shock at t_=0 is given a /E value of 1, and each 
succeeding shock is specified to occur at equal time intervals of _t=10, 20, 
30 . . .. The resulting step-like time-E/E relation in figure 15 shows that 
the successive shocks, indicated by heavy lines, progressively increase in 
size. The magnitude of each shock can be calculated by the energy release 
necessary to make each shock reach the curve defined by the integral of 
equation 36, which is:

E/E+7=80/(100-t)°* 5 . (37)

To investigate the resulting distribution of magnitudes, a similar curve 
was generated with C=20 rather than 40, and with shocks at equal time 
intervals, _t=1, 2, 3. The size of each of the 99 shocks was calculated by 
the AE that accrued in each time interval. The AE was multiplied by 10 to 
produce numbers (in ergs) that yield familiar values for the magnitude, M. 
The resulting magnitudes were plotted in a Gutenberg-Richter diagram of log _N 
versus M_, where N_ is the number of shocks having a magnitude equal to or 
greater than the corresponding tl. Four such plots made for n_=1 , 1.5, 2, and 3 
are nearly linear, especially in the range 1O^N^99 (figure 16). The least- 
squares best-fit lines of regression in this range all have linear correlation 
coefficients of -0.9999+. The slopes of the lines yield _b values in the 
Gutenberg-Richter relation

log N=a-bM ; (38)

which, if plotted against the n. values of the corresponding graphs on double 
logarithmic scales, yield a linear relation with a slope of -1.000 given in
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equation (39):

log b=-log n-.11727 , (39) 

or _b times n=1.31, a constant.

This close relation between the Gutenberg-Richter _b and the INPORT SERF 
exponent ri, although presented here only for a synthetic series of shocks 
spaced at equal time intervals, suggests an underlying physical link between 
equation (1) and real foreshock processes.

DISCUSSION AND CONCLUSIONS

A difficulty likely to affect other users of the method is the search for 
the highest coefficient of determination, r_ , when both A and the
predicted t,, are varied in linear regression of the relation-IE 
log(E/E+A) versus log(t f -t). Much of the arithmetic drudgery can probably be

eliminated by computer programs. The critical exercise of judgment remains, 
however, in selecting the areas and time periods to investigate and, as data 
accumulate, in choosing points used to define the upper or lower bounds and 
revising the selection as time goes on. Perhaps these operations could be 
aided by standardizing procedures and criteria for decisions and by using 
interactive computer graphics. During analysis, I found that using, say, five 
or six pairs of data might yield a more accurate prediction than working with 
three or four pairs of data that have a higher r_ ; that is, use of additional 
data points perhaps should carry a greater weight than a higher coefficient of 
determination obtained using fewer pairs.

Research is needed not only to firmly establish the predictive usefulness 
of the method but also to follow up some of the unexpected relations that the 
analyses revealed. For example, several foreshock sequences seem composed of 
a succession of episodes, or miniseries, that are spaced uniformly in time 
(Yenyuan-Ninglang) or at intervals which decrease with strict linearity in 
time (Virgin Islands). The analysis of a series of earthquakes that were 
regarded as foreshocks at the time but were not followed by a large event is 
also needed. The forms of the graphs used in analysis might show some 
systematic variation with the geologic structures involved.

Connections between rate-process theory, continuum damage mechanics, and 
the progressive release of energy during precursory seismic activity need 
further development, using, for instance, the tools of thermodynamics to build 
a theoretical foundation for the current empirical relations. Meanwhile, 
INPORT SERF back-analyses yield results that warrant close attention and 
testing by other investigators.
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FIGURE 16. Gutenberg-Richter plot of log j[ versus magnitude for four
synthetic foreshock series whose energy release follows an IMPORT SERF 
relation for various values of ru The product of the Gutenberg-Richter 
b value times n is a constant.
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