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INTRODUCTION

Basin Location and Size

Province 83 encompasses about one-half of Nevada (Fig. 1). To call this
province a single basin 1is obviously a misnomer. This province represents a
collage of diverse basins and basin types that evolved in response to a number
of sedimentologic and tectonic episodes along the western margin of North

America (Figs. 2,3).

QUALITATIVE EVALUATION OF HYDROCARBONS

Within Province 83 the possibility of commercial accumulations of
hydrocarbons is low. However, one area in Pershing County (Dixie Valley,
lat. 40°N. and long. 117°45'W.) has been identified as a speculative play.
This area 1is attractive enough to warrant additional field mapping and sam-
pling the potential source and reservoir facies. This play, the Dixie Valley

Play, is discussed below.

REGIONAL GEOLOGIC FRAMEWORK

This section will attempt to outline the regional structural setting and
geologic history of the Cordillera. To gain a true perspective of the geo-
iogic evolution of western Nevada, one must look beyond this man-made boundary
into eastern Nevada and California. The regional tectonics and stratigraphy
of these three Cordilleran provinces have an intimate interwoven genesis that

dates back to the Proterozoic (Figs. 2-6). Plate tectonic theory will be
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liberally used to understand the complex geologic history of the Cordillera.
This theory appears to offer unique unifying insights into the origin of the
diverse tectonic-sedimentologic regimes in the provinces of Nevada and
California.

Five tectonic events shaped the western margin of North America in the
vicinity of California and Nevada (Fige. 5). Some of these events are confined
to each respective province, but some events were of broader scale, and

affected the entire western margin of North America simultaneously.
Event 1: Proterozoic Crystalline Basement

Strontium and neodymium isotopes have been used to define Precambrian
crystalline basement of Proterozoic age. This continental crust is inferred
to extend as far west as central Nevada (Fig. 7, 1Sr = 0.706) (Kistler, 1974;
Farmer and DePaolo, 1983). Extensive metamorphism and intrusion of this base-

ment occurred between 1,650 and 1,750 Ma (King, 1969).

Event 2: Late Precambrian Through Devonian--—

Continental Rifting and Passive Margin Development

The Proterozoic continent was broken by a major rifting event near the
end of the Precambrian (Figs. 8,9) (Stewart, 1972; Stewart and Suczek,
1977). Until the end of the Devonian a passive continental margin comprised
Qestern North America from Alaska to southeastern California (Figs. 10,11)
(Churkin, 1974; Cook and Taylor, 1975). This rifting and initial development
of the Cordilleran miogeocline is not well dated directly, but stratigraphic

backstripping indicates that rifting happened between 625 and 550 ma (Bond and
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Kominz, 1984). On the basis of sedimentologic and biostratigraphic analyses
between Asia and western North America, Cook and Taylor (1975) established
that this rifting event occurred no later than about 520 ma.

This passive continental margin became the site of 5,000 m of shoal-water
carbonate platform and basinal sediments from the Cambrian through the

Devonian (Figs. 12,13) (Cook and Taylor, 1983; Cook and Taylor, 1987).

Event 3: Late Devonian Through Triassic--Terrane Accretion

Two major accretionary events occurred during the Late Devonian-Early
Missiésippian (Antler orogeny, Roberts et al., 1958; Speed, 1982,1983), and
the Permian-Triassic (Sonoma orogeny, Silberling and Roberts, 1962; Speed,
1979,1982,1983) (Figs. 4,5,12). During the Antler orogeny the Roberts Moun-
tains allochthon oceanic rocks were thrust eastward at least 100 km over the
continental slope and platform wmargin carbonates. This event formed the
Antler orogenic highlands and foreland basin (Figs. 4,12,14,15). Similarly,
during the Sonoman orogeny, oceanic rocks in the Golconda allochthon (Figs.
4,12) were thrust eastward about 50-75 km over previously deformed continen-
tal-margin sediments (Fig. 12). The Sonoman orogeny, however, involved less
crustal shortening than the Antler orogeny, and did not develop a foreland
basin, as was the case during the Antler orogeny (Fig. 16).

The tectonic model that is commonly called upon to explain the distri-
bution of lithofacies in both orogenies is that of a normal polarity arc; the
back-arc (inner-arc) basin (Fig. 14) develops as a normal-trapped marginal
basin (Fig. 17c¢). This model is basically a Japan sea-type (Mitchell and
Reading, 1969) orogen (i.e., a continent bordered by a marginal sea with a

nearby arc offshore (Dickinson, 1977).
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Beginning sometime in the Triassic, scattered plutons were being emplaced
in eastern California (Fig. 18) (Speed, 1978a,b). Simultaneously, ophiolite
complexes were developing in northern California, signaling the beginning of
major subduction systems and batholithic intrusions that were to dominate the

Cordillera later in the Mesozoics

Event 4: Cretaceous-Eocene--Andean-Type Continental Margin

In the Jurassic-Cretaceous the continental margin evolved into a setting
similar to that of the modern Andes with eastward subduction beneath the con-
tinené'(Fig. 20) (Hamilton, 1969, 1978; Allmendinger et al., 1987). The Cre-
taceous geology of northern and central California is dominated by three
coeval complexes, now considered to be synchronous responses to subduction of
the Pacific 1lithosphere beneath the North American continent (Hamilton,
1978). In the east is the Sierran magmatic arc and batholiths (Fig. 19), in
the center is the fore-arc (outer arc) basin into which the Great Valley
sequence accumulated, and to the west in thrust contact beneath the Great
Valley sequence is the chaotic Franciscan melange (Fig. 20). East of the
Sierra Nevada batholith the Basin and Range Province was undergoing fluvial
and lacustrine sedimentation and minor amounts of volcanic activity (Fig. 20).

This Andean-type subduction was responsible for numerous thrust faults
which telescoped sedimentary facies throughout much of the Cordillera. These
thrusts are especially well exposed in the Basin and Range Province. The
Sevier overthrust belt of Cretaceous to Eocene age was the largest of the
Mesozoic thrust belts, and extended from southern Nevada northward into Canada
(Fig. 4). Armstrong (1968) estimated about 100 km of eastward crustal short-

ening assoclated with the Sevier system.



OREG.

| |
12 caLIF.| NEV. het

\
? X
NN £

i
l'\

N
AW
V;‘

v
>
!.Ol

6—!

Terrane -

I
zone
-]

-

o
o

N\

N

| =3
[ ®
.Tcylornillo
- oS
Truckes N
R. \ Clan
Alpine
\ M1s,®
\

w
Soilor Volcanic Arc \ o‘o?&
ecC. \

S
hinge

. _."

\ — 40°

Gl

B
N
Triassic

A\

Peavine Mt.

.Qﬂo‘.“
SN

New Empire N g

Terrane Rowxhi/do

Singatse R.
® o Gillis
o L Pine\yut N. Wossuk o R.

»o \\ Pom.llco :
\\ Excelsior ® \.//\;"2

. N . 2 -

\ \i'."-\} ’ | pluun/ /

(7

.,’
[e)
>
¢
(]

—39°

'\.
|
|

i
) l||| 5

‘”IDI
N

°

o
-
-
P

™

' &
i

l'

[ )
orc-‘contlnem
suture

, (Early Triacssic)

i
colh
| H
na

.
. ~38°
L]
* fl)'?\-\.q\ - - -
I~

Ritter

Ponomint
o N
Inyo Mfts.
o

Figure 18, Map showing paleogeographic terranes of early Mesozolic marine
province of the western Great Basin : T

From Speed (1978 b).

-

4a



Figure 19,
Distribution of
granitic rocks in the
Sierta Nevada
Datholith. (Source:
" Geological Society
of America)
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Event 5: Oligocene-Recent—--Continental Extension

Extensional tectonics has characterized the western United States since
at least the mid-0ligocene (Fig. 21). During continental extension two dif-
ferent tectonic interactions occurred along the North American plate to the
west (Zoback et al., 198l1). The earlier extension occurred during eastward
subduction, and revived arc volcanism. This extension 1is characterized by
low-angle normal faults (Allmendinger, 1987). These faults may have been the
result of gravitational collapse of a tectonically thickened crust (Coney and
Harms, 1984). 1In contrast, the typical basin and range morphology is charac-
terized by evenly spaced mountain blocks, bounded by high-angle normal
faults. These faults were produced during east-southeast extension that
began 10 ma (Zoback et al., 1981). Several models exist to explain this
later intracontinental extension (Fig. 22) (Allmendinger, 1987).

Continental extension allowed massive volumes of siliceous ash-flow tuffs
(ignimbrites) to extrude and cover much of the Basin and Range Province to
thicknesses up to 10,000 feet (3,000 m) (Figs. 23,24,25) (Cook, 1965; Cook,
1968). These fractured, welded ash-flow tuffs (ignimbrites) form many of the
hydrocarbon reservoirs in eastern Nevada (Bortz and Murray, 1979; Bortz, 1983,
1985).

During this same period of time large masses of marine graywacke,
mudstones, and oceanic carbonate seamounts, that formed above a subduction
zone, were being tectonically accreted on the western margin of northern

California (Fig. 20) (Tarduno et al., 1986).
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CALIFORNIA

Figure 23. pietribution of 43- to 6-m.y.-0ld igneous rocks in Nevada, Utah, and parts of
adjacent states, From Stewart and others (1977).
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DIXIE VALLEY PLAY
Play Description and Type

During Middle Triassic times the Dixie Valley area (lat. 40°N. and long.
117945'W.) was the site of 2,000 feet (1,200 m) of carbonate sedimentation
within a back-arc basin (Figs. 26-28). These marine carbonates belong to the
Star Peak Group (Figs. 29-32), and manifest themselves as a shoaling-upward,
seaward-prograding (westerly) basin-plain to platform-margin complex (Fig. 33)
(Nicols and Silberling, 1977). The Star Peak Group contrasts sharply with the
unconformably underlying Lower Triassic Koipato Group, which is composed of
siliciclastics and volcanics. Likewise, the Star Peak also is much different
than the overlying Upper Triassic Auld Lang Syne Group, a sequence of

metapelitic sediments and siliciclastic rocks (Nicols and Silberling, 1977).
Reservoir Rocks

Potential reservoirs in the Triassic rocks (ex. Favret Formation) could
consist of carbonate turbidites and/or debris flows. However, whether or not
significant amounts of mass-flow carbonates with good reservoir characteris-—
tics exist is not known at this time. Other potential reservoir rocks would
be in the platform-margin facies and dolomitized shelf-lagoon facies (Figs.
32,33) (i.e., Home Station and Panther Canyon members of the Augusta Mountain
formation). However, this 1is speculative as these facies have not been.
evaluated for their reservoir characteristics. Another type of potential

reservoir would be in the overlying densely welded and extensively fractured,
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welded ash-flow tuffs (ignimbrites) of Tertiary age. The ignimbrites that
occur in the mountain ranges surrounding Dixie Valley probably underly Dixie
Valley, and could be suitable as reservoir rocks. These same types of rocks
form reservoirs in the o0il fields of Railroad Valley in eastern Nevada (Bortz

and Murray, 1979).

Traps and Seals

Both structural and stratigraphic traps could be expected if the Dixie
Valley Basin has undergone similar Cenozoic structural modifications as in
other parts of the Basin and Range Province. 1In this respect, one would be
employing an Eagle Springs oil-field model (i.e., the first oil field dis-
covered in Nevada), which utilizes both structural and stratigraphic traps
(Fig. 34).

A seismic profile across the Carson Sink Valley (Fallon Basin), ten miles
(16 km) west of Dixie Valley reveals an overall structural pattern similar to
that in Railroad Valley (Figs. 35,37). It is quite probable that the struc-
ture of Dixie Valley would be similar to that of Carson Sink Valley (Fallon

Basin).
Source Rocks

The petroleum industry 1is attracted to this area because the Triassic
Sasinal sediments may be potential source rocks (Bortz, 1983, 1985). The Fos-
sil Hill member of the Middle Triassic Favret Formation is a 600-foot-thick
sequence (180 m) of dark-gray calcareous shale and lime mudstone which crops

out in the mountain ranges flanking the northern part of Dixie Valley
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36. -
Figure —Subsurface siructure conlour map of the northern Fallon basin drawn on the base of the Tertlary from reconnalssance
selsmic and gravity data.

From Hastings (1979).
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(Figs. 30,31,38). This sequence contains ammonoids which, when broken open,
commonly yield hydrocarbons (Figs. 39,40) (Nicols and Silberling, 1977,
pe 21). If the Favret Formation is a good source rock for hydrocarbons, its
presence beneath the Cenozoic fill in Dixie Valley is highly probable.
Cenozoic lacustrine sediments are also a type of potential source rock in
the Basin and Range Province (Fouch, 1979; Fouch et al., 1979; Poole et al.,
1983; Poole and Claypool, 1984; Sandberg, 1983). 1In the Carson Sink Valley
(Figs. 38,41) 5,000 feet (1,525 m) of silts and clays have excellent source-
rock potential, but temperatures and depth of burial suggest that only modest
amounts of oil have been generated from these rocks (Hastings, 1979).
éotential source rocks in the Paleozoié have been analyzed for their
thermal maturity. Data based on conodont alteration index (CAI) values
suggest that the Paleozoic sediments in western Nevada have been intensely

baked and have CAI values 4.5 (Fig. 42) (Epstein et al., 1977).
Depth of Occurrence

The depth of the reservoir targets are uncertain, but may be on the order
of 5,000-10,000 feet (1,500-3,000 m) for Tertiary ignimbrites, and 10,000-

15,000 feet (3,000-4,500 m) for Mesozoic carbonates.
Exploration Status

At least a dozen geothermal wells have been drilled in Dixie Valley which
range in depth from 3,000-12,000 feet (900-3,750 m) (Fig. 38) (Bortz, 1985).
The only well drilled as an oil and gas exploratory well is the Standard-Amoco

No. 1 S.P. Land Co. (Sec. 33, T. 24 N., R. 33 E.). This is located in the
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from Triassic Favret formation in ° of the Favret formation in the
the August Mountains - chambers of Augusta Mountains.
this ammonite contained liquid
hydrocarbons.
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adjacent Carson Sink Valley (Fallon Basin) (Fig. 38). This well penetrated
11,000 feet (3,300 m) of Tertlary playa sediments and volcanics (Fig. 41).
011 and gas shows, including free o0il in vugs at the top of a basalt core at
8,168 feet (2,490 m) were present in the well. Results of formation tests of
selected intervals showed that reservoir rocks were absent (Hastings, 1979).
As discussed above, potential lacustrine source rocks are available, but they
have not been subjected to sufficiently high temperatures to generate large

quantities of hydrocarbons.
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