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IN SITU GEOMECHANICS OF CRYSTALLINE AND SEDIMENTARY ROCKS

PART IX: PREDICTION OF FAULT SLIP IN A BRITTLE CRUST 
UNDER MULTIAXIAL LOADING CONDITIONS

Bernard Amadei, William Z. Savage, and Henri S. Swolfs
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Part XI: Prediction of Fault Slip in a Brittle Crust 
Under Multiaxial Loading Conditions

By

Bernard Amadei, William Z. Savage, and Henri S. Swolfs

ABSTRACT

Exact solutions are presented that describe the potential for slip 
reactivation on preexisting faults under a three-dimensional state of 
stress. Effects of fault cohesion and pore pressure are included in the 
general solutions to assess the extent of fault slip in crustal stress 
environments where one or several principal stress components may be tensile.

INTRODUCTION

The response of faulted rocks to three dimensional crustal loading 
depends largely on fault orientation and the anisotropy of the applied state 
of stress. Compared to intact rock, faulted rock is directional in its 
response to loading or unloading with reduced shear strength along the fault 
planes and vanishing or small tensile strength in a direction normal to the 
fault planes. These conclusions are based on laboratory triaxial and 
multiaxial tests on samples built up from blocks of model material (Brown, 
1970; Ladanyi and Archambault, 1972; Einstein and Hirschfeld, 1973; Reik and 
Zacas, 1978). Three modes of failure of the test specimens were found; 
failure by sliding along faults, intact rock fracturing, or mixed sliding- 
intact rock fracturing. Fault sliding alone was found to take place only for 
faults favorably oriented with respect to the principal stresses.

Analytical models that describe the shear strength of an isotropic rock 
cut by a continuous single fault or a fault set have been proposed by Jaeger 
(1960) and Bray (1967). The intact rock and fault strength are described by 
Mohr-Coulomb criteria with different values of cohesion and friction. The 
models require the faulted rock response to depend only on the largest and 
smallest applied principal stresses 0 lf o 3 without any contribution of the 
intermediate stress o 2 . These models are appropriate for slip reactivation 
under an axisymmetric state of stress DI, o 2   GS or when the fault strikes 
parallel to the o 2 direction with o 2 not necessarily equal to o 3 .

The influence of the intermediate principal stress on fault slip has been 
analyzed graphically by Jaeger and Cook (1976) using a three-dimensional Mohr- 
circle construction. The results of the analysis were presented 
stereographically as regions in which the normal to a fault plane must fall 
for sliding on it to be possible. The stereographic projections were 
constructed for certain values of the stress ratios o 2 /0i and Oa/Oj. More 
recently, an automated method has been developed by Savage and Swolfs (1986) 
to generate stereographic solutions numerically for stability analysis (Swolfs 
and Savage, 1987).



The three-dimensional analyses of Jaeger and Cook (1976) and Savage and 
Swolfs (1986) take o lt o 2 and o s to be compressive, thereby satisfying the 
physical constraint that the normal stress across the faults remains 
compressive. An exact solution is presented here for the bounding contours of 
the regions (in stereographic projection) in which the normal to a fault plane 
must fall for slip to be possible under a triaxial state of stress. The 
analysis allows any of the stress components o a » o 2 » o 3 to be tensile. This 
is necessary because of the range of three-dimensional stress fields in rock 
masses resulting from loading or unloading and topography (Amadei et al., 
1986; Savage et al., 1985; Savage and Swolfs, 1986). The different regions in 
the stereographic projection are obtained by combining the sterographic 
representations of the fault shear strength criterion and the positive normal 
stress condition. The influence of pore pressure on the extent of these 
regions is briefly discussed. A FORTRAN 77 program (Stereo 4. for) for the 
exact solutions is included in the Appendix. This program was used to 
generate the data for Figures 2 and 3-

Basic Equations

Consider a fault whose orientation with respect to a reference cartesian 
coordinate system xyz is shown in Figure 1a. Let x'y'z' be another coordinate 
system attached to the fault plane such that the x'-axis is along the upward 
normal and the y' and z' axes are in the fault plane. The z'-axis is in the xz 
plane and the y'-axis contains the dip direction. The orientation of the 
fault is defined by an azimuth angle & varying between 0 and^2ir and a dip 
angle ¥ ranging between 0 and ir/2. The upward unit vector n parallel to the 
x' axis has direction cosines x, y, z such that:

x = sin¥ cosB

y - cos* ( 1 )

z = sin* sinB

Let ox , oy , o z be the principal stresses in the x, y, and z directions, 
respectively. Note that no ordering with respect to magnitude is implied; 
that is, ox , Oy, and oz can have arbitrary values relative to each other. The 
state of stress across the fault can be defined by a stress vector with normal 
and shear components on , T (Figure 1b) such that:

o * o vx 2 + ay2 + (j z 2 (2a) n x y z
T 2 - o 2 x 2 + o*y 2 * o 2 z 2 - o 2 (2b) 

x y z n

The shear stress T is also the resultant of the shear stress components 
T f ,and T , , acting in the fault plane, that is,

with, for the orientation shown in Figure 1a,

T - sinY cosY (o - o cos 2 B - o sin2 B) x y y x z

TX f z f - -sinB cosB sinij; (ox - oz)

2
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Fig. 1. Geometry of the Problem: (a) Orientation angles of the fault and 
(b) state of stress across the fault.



The orientation of the shear stress T with respect to the y f , z' axes is 
defined by the angle 6 or,

i * , , ! sinB cosB (o -o )
_______ z x    )
(o -o cos 2 B - o sin 2 B A-/ y x z

Note that the positive sign convention has been used for compressive 
stresses. The positive directions of the normal and shear stress components 
are shown in Figures 1a and 1b.

The shear strength of the fault is assumed to be defined by a Coulomb 
failure criterion with friction angle *. and zero cohesion; that is,

T I - o tan *. (6)

Fault cohesion c^ and pore pressure pw can be added to the analysis presented 
below by replacing o by:

°n

where o -P is the effective normal stress. n w

Equation (6) can also be expressed in terms of the principal stress 
components ox , oy , o z by squaring eq. (6) and by substituting eqs. (2a) and 
(2b) into (6). Let Ff be equal to t 2 - o 2 tan 2 *.. Then, the fault slip 
criterion is such that:

Ff = o 2 (x 2 - x H (1 «  tan 2 * )) «  o 2 (y 2 - y~H (1 + tan 2 * )) 
ix j y j

* o 2 (z 2 - z"(1 + tan 2 *.)) - 2o o x~2 y 2 (1 + tan 2 *.) 
z j x y j

- 2o o x 2 z 2 (1 * tan 2 *.) - 2o o y~2 z 2 (1 * tan 2 *.) - 0 (8)x z j y z j
For a plane with orientation angles B and i(>, the condition F^ - 0 corresponds 
to limiting equilibrium. No slip will take place if F^ is negative. Slip 
will occur if Ff is positive. The corresponding direction of slip can be 
defined by a unit vector s with coordinates (o, cosa, sina) in the x'y'z' 
coordinate system as shown in Figure 1b. Using the value for the 
angle 6 given in eq. (5), the angle a is equal to 6 + ir if t x t y i is positive 
and 6 if T x t y i is negative. When tx i y i vanishes, a is equal to 3*/2 if 
T . , is positive or ir/2 if T . , is negative.
X Z X Z

Unlike the Mohr-Coulomb criterion for intact rock which depends only on 
the major and minor principal stresses, the present fault-slip criterion 
depends on all three applied principal stresses. The fault is also assumed to 
have zero tensile strength implying that eq. (6) is only valid if the normal 
stress o remains positive; that is, the following condition is satisfied

F = o x 2 * o y 2 * o z 2 > 0 (9) 
n x yj z



The functions F^ and Fn defined in eqs. (8) and (9) depend on the stress 
components ox , oy , o z and the fault upward normal coordinates x, y, and z. 
These two functions can be used to find, for a given state of 
stress o x , oy , oz , the fault orientations for which slip is possible and the 
corresponding slip directions. The orientations can be represented by the 
x,y,z coordinates of the Joint upward normal n or by the 
coordinates (xo, zo) of the stereographic projection of vector n on the xz 
plane following the method given by Goodman and Shi (1985). The 
coordinates Xo , zo are related to 
x, y, z by:

x 0 - -^r and z 0 - ^r 
1 +y 1 +y 

where R is the radius of the reference sphere.

y 
i

Substituting y 2 - 1-x 2-z 2 into eq. (8) with oy - mox and oz - nox 
and assuming that ox does not vanish, the fault slip criterion can be
expressed as follows:

Ff « o 2 (-x"(1 + tan 2 <fr Mm - 1) 2 - z"(1 + tan 2 <fr ) (m - n) 2 
ix j j

x 2 (m - 1)(2m(1 + tan 2 <t>.) 
J

z 2 (m - n)(2m(1 + tan 2 <fr.) 

2x 2 z 2 (1 + tan 2 <J> )(m - n)i

- 1 - m) 

-m-n) 

[1 - m) -i an aO = 0 (11)

Equation (10) gives the relationship that must exist between the stress 
ratios m and n and the x,z coordinates of the normal to a fault plane for slip 
to take place.

For given values of m and n, and the friction angle $.., eq. (10) can be 
used to find all the fault orientations for which the condition of limiting 
equilibrium (eq. (6)) is satisfied. The curve F^ » 0 separates the reference 
circle into two regions; a region where fault slip takes place for which Fj. >0 
and a stable region for which F^, <0. Note that for non-vanishing m and n 
value, the three principal planes always belong to the stable region.

Due to symmetry in both the x and z axes, the graph of Fj, * 0 
needs to be only constructed in the first quadrant of the stereographic 
projection. This can be done analytically by fixing x to an arbitrary value 
between 0 and 1 and rearranging eq. (10) as follows:

F - o 2 (az" + bz 2 + c) = 0 (12)
X A

with a = -(1+tan 2 $j)(m-n) a

b = (m-n)(2m(1+tan 2 4> )-m-n) + 2x 2 (1 +tan 2 <|>.) (m-n) (1-m)

c - -x"(man 2 4> )(m-1) 2 + x 2 (m-1)(2m(1+tan 2 <i> )-1-m) - m 2 tan 2 <|> 
j j j



As long as a does not vanish (that is, m is not equal to n) eq. (11) has four 
roots zi t zz t z* t z* such that;

\ -b + fib*" - *lac - \ -b - < b a - Hac Z > 'I    2^     ; Zz -\    2i     (13)

and z, - -z lf Z H - -z z . A fault plane can be associated with each real and 
positive root z, that is a solution of eq. (11), as long as 
0 < y z « 1 -x 2 -z 2 < 1 . The corresponding plane upward normal has components 
x,z,y - /1-x z -z z and its stereographic projection coordinates are given by eq. 
(10). The graph of F^ » 0 can be constructed by repeating the above procedure 
for a large number of values of x.

If m is equal to n (that is, oy is equal to oz ) the a and b coefficients
in eq. (11) vanish and Ff reduces to cox z . The function Ff vanishes for four
values of x, _____ ______________

and x, * -x,, X H * -x z where, 

a» » -(1

(1 

-m 2 tan 2 4>

(m-1)(2m(1 * tan*$.)-1-m)

.
w

The roots exist as long as m and n are not equal to unity (hydrostatic state
of stress) for which Ff is equal to -ox z tan z <J>j and fault stability always
takes place. For each real and positive root x solution of Ff - 0 that is
less than or equal to unity, a fault plane can be associated with any
arbitrary value of z such that 0 < y 2 = 1-x z -:s 2 < 1.
The corresponding plane upward normal has components x,z,y = /1-x z-z 2
and its stereographic projection coordinates are given by eq (10). The graph
of Ff = 0 can be constructed by repeating the above procedure for a large
number of values of z.

The graph of Ff - 0 is further limited to the region of the stereographic 
projection_for wh_ich_the normal stress remains positive. Using the normality 
condition y2 = 1-x z -z z , the positive normal stress condition (eq. (9)) can be 
expressed as follows:

F = ov (x z (1 - m) * z z (n - m) + m) > 0 (15)
1 1 A

The graph of Fn - 0 on the reference circle can be constructed with the same 
analytical procedure used for the graph of Ff . As long as m is not equal to n 
and for a fixed value of x ranging between 0 and 1 , the condition Fn « o has 
two roots z and -z with:

\l x z (m-1 
\ (n-m



If z is real and is such that 0 < y 2 « 1-x 2 -z 2 < 1, the fault plane with 
upward normal coordinates x,z,y - /1-x 2 -z 2 belongs to the curve Fn   0. The 
graph of Fn   0 can be constructed by repeating the procedure for 
several values of x.

If m is equal to n, Fn - 0 reduces to ox (x"2 (1-m)+m) - 0 which has two 
roots >c - /m/(m-1) and -5c. If x~ is real, and less than or equal to unity, the 
graph of Fn « 0 can be constructed by choosing arbitrary values of 
z such that 0 £ y 2 « 1-x~2 -z 2 £ 1.

In the expressions for the fault slip criterion (eq. (8)) and the 
positive normal stress condition (eq. (9)), it is assumed that the fault has 
no cohesion and is dry. As previously mentioned, these two equations can be 
modified to include fault cohesion c^ and water pressure P.. by substituting

J
eq. (7) for the normal stress in eq. (6). For water pressure only, this 
substitution is equivalent to replacing ax , oy , and oz in eqs. (8) and (9) by the 
following effective stress components:

M - °x - v °y   °y - v aM °; - °«- p«-
If o x does not vanish, the stress ratios m and n are now equal to 
o'/o 1 and o'/o 1 , respectively.

Jr A Z X

The above substitution can be used to study for a given state of 
stress, ox »0y»oz » the influence of water pressure on the range of fault 
orientations for which slip can take place. Let mo = OY/OX and no * ° z/0x 
be the total stress ratios with ox not equal to zero. For a fixed value of 
PW , the stress ratios m and n are now equal to:

m » ' V°x "° - V°x

m -1 - p /, "' 1 - p /, (17)
W X W X

The graph of F^ = 0 and the region Fn = an = on - PW > 0 can be constructed 
for the values of m and n given in eq. (16) with the same analytical procedure 
used for the dry case.

Examples

The closed-form solution presented here gives the regions in 
stereographic projection in which the normal to a fault plane must fall for 
slip to occur under a three-dimensional state of stress and dry or wet 
conditions. Some illustrative examples are presented below. In all the 
examples, the slip regions are shown in a quadrant because of symmetry.

Figure 2, generated by using the closed-form solution, is identical to 
Figure 3.8.2 given by Jaeger and Cook (1976) which was obtained by using a 
three-dimensional Mohr circle construction and a friction coefficient tan<J>. of 
0.67. The stresses oz and ox are assumed to be positive and to be 
respectively the major and minor principal stresses o lt o 3 with 
01 - 10os (n-10). The intermediate stress oy - 02 (vertical) varies between 
03 (m » 1) in Figure 2a and t (m - 10) in Figure 2h. Cases corresponding to



(f)

Fig. 2. Regions (shaded) in which the normal to a fault plane must fall for
slip to occur.
for tan<J>j - O.oy, o»
(a)    (!!;, respectively.

Three-dimensional loading oz > oy 2 ox > 0. Figures are 
0.67, o» - 10oa and 02/03 - 1, 2, 3, **, 5, 6, 8, and 10 in



m equal to 2, 3. ^» 5, 6, and 8 for which o 2 is intermediate between 
01 and o, are shown in Figures 2b-2g.

This example shows the influence of the intermediate principal stress on 
the range of fault orientations for which slip can take place. The 
possibility of strike-slip and oblique-slip motions on preexisting faults 
predominates throughout, whereas the pattern of low-angle reverse slip changes 
to dip slip with increase in 02. The extreme ratio of stresses, 
01   10os (n   10), used to generate these patterns of fault reactivation may 
be obtained in the shallow crustal environment under special conditions such 
as waterflooding. Reporting on an experiment in earthquake control at 
Rangely, Colorado, Raleigh et al. (1976) show that reservoir pressures during 
injection reached high values of about 28 MPa. This translates to an 
effective stress ratio of n - 9.1. The predicted pattern of fault slip 
corresponds with the observed distribution of focal plane solutions (Swolfs 
and Savage, 1987).

Figure 3 shows an example of slip and stable regions when one or two of 
the applied stresses are tensile. The friction angle *. is equal to 30°. 
Assume first that ox and ozare positive with oz - 0.1ox (n - 0.1). 
The stress oy is tensile with oy - ~0.8ox (m « -0.8). The extent of the 
stable and slip regions is limited to the domain of the reference circle for 
which Fn * on > 0. This domain is located on the right hand side of the 
dashed line in Figure 3 corresponding to the condition Fn - 0. If both
ov and o  are tensile, o.. becomes compressive and the domain F_ > 0 is now A £i y n
located on the left hand side of the dashed line Fn * 0. This example shows 
that despite tensile loading in one or two directions, there are still stable 
and slip regions for which the normal stress across the faults remains 
compressive.

SUItfARY

The exact solutions presented in this paper provide a tool to better 
understand fault slip response to three dimensional crustal loading. The 
solutions presented here can be used to construct the domains in which the 
normal to a fault plane must fall for slip or stability to be possible and for 
which the fault normal stress always remains compressive. This can be done 
for a wide variety of loading conditions that can be found in shallow crustal 
environments with one or several stress components being tensile. The 
solutions also allow fault cohesion and pore pressure to be accounted for when 
assessing the extent of the slip and stable regions.



Fig. Regions (shaded) in which the normal to a fault plane must fall for
slip to take place. Three-dimensional state of stress o. 0.1 o
and oy = -0.8ox . The condition Fn - 0 is shown as a dashed line. 
Domain 1 is acceptable (on > 0) when ox is positive. Domain 2 is 
acceptable (on > 0) when ox is negative.

10
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APPENDIX

C
C AUTOMATIC GENERATION OF STEREO PLOTTING DATA FOR PREDICTION
C OF FAULT SLIP UNDER MULT I AXIAL LOADING CONDITIONS.
C

PROGRAM STEREO4
REAL M,N,M1 ,MN 

C
C CRT SCREEN IS UNIT 6, KEYBOARD IS UNIT 5, OR *. 
C

WRITE(6,40) 
C
C READ IN ANGLE OF INTERNAL FRICTION (PHI A), 
C RADIUS OF STEREO NET (R) , OUTPUT INCREMENT (XZBINC) , 
C STRESS RATIO (M) , AND STRESS RATIO (N) . 
C

READ *, PHIA,R,XZBINC,M,N
WRITE(6,50) PHIA,R,M,N
WRITE(6,4S) 

C
C INITIALIZE CONSTANTS 
C

PHI -PHIA»ATAN(1.)*4. 7180.
CS2-1./(COS(PHI)**2)
MftM-N
Ml-M-1.

B1.&*** ( 2 . *M*CS2 -M-N)
B2--2.*CS2*Nf**Ml
C1--CS2«M1«M1
C2-M1*(2.*M*CS2-1.-M)
C3--M*M*(CS2-1.)
SMINOO . 1 *XZB INC
WRITE(6,60)
IF(M.EQ.N) GOTO 27
XB-0. 

C
C * * * * * LOOP STRUCTURE * 
C

2 CONTINUE
B-B1+B2*XB*XB
C-(XB**4)*C1+XB*XB*C2+C3
DELTA-B*B-4 . *A»C
IFCDELTA.LT.O.) GOTO 3
Dl-( -B+SQRT(DELTA) ) * 0 . 5/A
IF(D1.LT.O.) GOTO 3
ZBl-SQRT(Dl)
DYB1-1 . -XB»XB-ZB1*ZB1
IF(DYB1.LT.O.) GOTO 3
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YBl-SQRT(DYBl) 
XO1-R*XB/(1.+YB1) 
ZO1-R*ZB1/(1.+YB1) 
\¥RITE(l t 10) XO1,ZO1 
DIF1-1.-DYB1 
IF(DIF1.LT.0.9) THEN

IF((XB.LE.0.1).OR.(ZB1.LE.O.D) THEN
XB-XB+SMINC 

ELSE
XB-XB+XZBINC 

END IF 
ELSE

XB-XB+SMINC 
END IF
IF(XB.LE.L) GOTO 2 

3 CONTINUE
IF(XB.LE.O.l) THEN

XB-XB+SMINC 
ELSE

XB-XB+XZBINC 
END IF
IF(XB.LE.L) GOTO 2 

C
C   «       LOOP STRUCTURE * » * * * 
C

XB-0. 
20 CONTINUE

B-B1+B2*XB*XB
O(XB**4)*C1+XB*XB*C2+C3
DELTA-B*B-4.«A*C
IF(DELTA.LT.O.) GOTO 24
D2-(-B-SQRT(DELTA))*0.5/A
IF(D2.LT.O.) GOTO 24
ZB2-SQRTCD2)
DYB2-1.-XB*XB-ZB2*ZB2
IFCDYB2.LT.O.) GOTO 24
YB2-SQRTCDYB2)
XO2-R*XB/(1.+YB2)
ZO2-R*ZB2/(1.+YB2)
WRITE(1,10) X02 t ZO2
DIF2-1.-DYB2
IF(DIF2.LT.0.9) THEN

IF((XB.LE.0.1).OR.(ZB2.LE.O.D) THEN
XB-XB+SMINC 

ELSE
XB-XB+XZB INC 

END IF 
ELSE

XB-XB+SMINC 
END IF



IF(XB.LE.L) GOTO 20 
24 CONTINUE

IF(XB.LE.O.l) THEN
XB-XB+SMINC 

ELSE
XB-XB+XZBINC 

END IF
IF(XB.LE.L) GOTO 20 
GOTO 8 

27 CONTINUE
DELTA-C2*C2-4.*C1*C3 
IFCDELTA.LT.O.) GOTO 36 
Dl-(-C2+SQRT(DELTA))*O.S/Cl 
IF(D1.LT.O.) GOTO 32 
XBl-SQRT(Dl) 
IF(XBl.GT.L) GOTO 32 
ZB-0. 

C
C * * * * « LOOP STRUCTURE * * « * « 
C 
30 CONTINUE

YB1-SQRT( 1. -XB1 *XB1 -ZB»ZB) 
X01-R*XB1/(1.+YB1) 
ZOl-R^ZB/d.-i-YBl) 
WRITE(1,10) XO1,ZO1 
DIF1-XB1*XB1+ZB»ZB 
IFCDIF1.LT.0.9) THEN

IF((ZB.LE.0.1).OR.(XB1.LE.O.D) THEN
ZB-ZB+SMINC 

ELSE
ZB=ZB+XZBINC 

END IF 
ELSE

ZB-ZB+SMINC 
END IF
CHECK-XB1*XB1+ZB*ZB 
IFCCHECK.LE.l.) GOTO 30 

32 CONTINUE
D2-(-C2-SQRT(DELTA))*O.S/Cl 
IFCD2.LT.O.) GOTO 36 
XB2-SQRT(D2) 
IF(XB2.GT.l.) GOTO 36 
ZB-0.
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c
C » » » » » LOOP STRUCTURE           
C
35 CONTINUE

YB2-SQRT(1.-XB2*XB2-ZB*ZB) 
XO2-R*XB2/ ( 1. +YB2 ) 
ZO2-R*ZB/(1.+YB2) 
WRITE(1,10) XO2,ZO2 
DIF2-XB2*XB2+ZB*ZB 
IF(DIF2.LT.0.9) THEN

IF((ZB.LE.0.1).OR.(XB2.LE.O.D) THEN 
ZB-ZB+SMINC

ELSE
ZB-ZB+XZBINC

END IF 
ELSE

ZB-ZB+SMINC 
END IF
CHEOC-XB2»XB2+ZB»ZB 
IF(CHECK.LE.l.) GOTO 35

36 CONTINUE
WRITE(6,80) 
IF(M.EQ.N) GOTO 49 
XB-0. 

C
C * * * * * LOOP STRUCTURE * * * * * 
C 
40 CONTINUE

D3- (M-XB*XB*M1) /Ni*
IF (D3.LT.O.) GOTO 45
ZB3-SQRT(D3)
DYB3-1.-XB«XB-ZB3»ZB3
IF(DYB3.LT.O.) GOTO 45
YB3-SQRT(DYB3)
XD3-R»XB/(l.-i-YB3)
ZO3-R»ZB3/(1. +YB3)
WRITE(2,10) XO3.ZO3
DIF3-1.-DYB3
IF(DIF3.LT.0.9) THEN

IF ((XB.LE.0.1).OR.(ZB3.LE.O.D) THEN
XB«XB+SMINC 

ELSE
XB-XB+XZB INC 

END IF 
ELSE

XB-XB+SMINC 
END IF
IF(XB.LE.L) GOTO 40 

45 CONTINUE
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49

C 
C 
C

IF(XB.LE.O.l) THEN
XB-XB+SMINC 

ELSE
XB-XB+XZBINC 

END IF
IF(XB.LE.L) GOTO 40 
GOTO 100 
CONTINUE 
D3-M/M1
IF(D3.LT.O.) GOTO 100 
XB3-SQRT(D3) 
IF(XB3.GT.l.) GOTO 100 
ZB-0.

LAST LOOP

51 CONTINUE
YB3-SQRT(1.-XB3*XB3-ZB«ZB) 
XD3-R»XB3/(1.+YB3) 
ZO3-R*ZB/(1.+YB3) 
WRITE(2,10) XD3,ZO3 
DIF3-XB3*XB3+ZB*ZB 
IF(DIF3.LT.0.9) THEN

IF((ZB.LE.0.1).OR.(XB3.LE.O.D) THEN
ZB-ZB+SMINC 

ELSE
ZB-ZB+XZBINC 

END IF 
ELSE

ZB-ZB+SMINC 
END IF
CHECK«XB3*XB3+ZB*ZB 
IF(CHECX.LE.l.) GOTO 51 

100 CONTINUE
C 
C 
C

* * * * FORMAT STATEMENTS * * « «

10 FORMAT(2X V F10.4 V 2X V F10.4) 
40 FORMAT(10X V V ENTER PHI,R,XZBINC,M,N »/) 
45 FORMATClOX, ' OUTPUT IS TO FILE FOR001 .DAT'/) 
50 FORMAT(/10X, ' FRICTION ANGLE V V F10.4/ 

+ 10X V V STEREO RADIUS V V F10.4/ 
+ 10X, f SIGY:SIGX »,F10.4/ 
+ 10X, f SIGZ:SIGX »,F10.4//) 

60 FORMAT(/10X V ' FAILURE CRITERION '//) 
80 FORMAT(/10X V ' POSITIVE NORMAL STRESS CONDITION 

STOP 
END
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Sample input for PHI A, R, XZBINC, M, N 

30, 10, .1, 10, 1

XO

Sample data output (FOR001.DAT)

ZO

0.0000
0.0546
0.1093
0.1639
0.2185
0.2731
0.3278
0.3824
0.4370
0.4916
0.5463
0.6009
1.1471
1.6934
2.2396
2.7859
0.0000
0.0937
0.1875
0.2812
0.3749
0.4687
0.5624
0.6561
0.7498
0.8436
0.9373
1.0310
1.1248
1.2185
1.3122
1.4060
1.4997
1.5934
1.6872
1.7809

3.0416
3.0411
3.0396
3.0371
3.0337
3.0293
3.0239
3.0174
3.0100
3.0016
2.9921
2.9816
2.8169
2.5266
2.0579
1.2206
9.3521
9.3517
9.3503
9.3479
9.3446
9.3404
9.3352
9.3291
9.3220
9.3140
9.3050
9.2951
9.2843
9.2724
9.2596
9.2458
9.2311
9.2154
9.1987
9.1810
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1.8746
1.9684
2.0621
2.1558
2.2495
2.3433
2.4370
2.5307
2.6245
2.7182
2.8119
2.9057
2.9994
3.0931
3.1869
3.2806
3.3743
3.4681
3.5618
3.6555
3.7492
3.8430
3.9367
4.0304
4.1242
4.2179
4.3116
4.4054
4.4991
4.5928
4.6866
4.7803
4.8740
4.9677
5.0615
5.1552
5.2489
5.3427
5.4364
5.5301
5.6239
5.7176
5.8113
5.9051
5.9988
6.0925
6.1863
6.2800
6.3737

9.1623
9.1426
9.1220
9.1003
9.0775
9.0538
9.0290
9.0032
8.9763
8.9484
8.9194
8.8893
8.8581
8.8258
8.7924
8.7579
8.7222
8.6853
8.6473
8.6081
8.5677
8.5261
8.4832
8.4391
8.3937
8.3470
8.2989
8.2496
8.1988
8.1467
8.0931
8.0381
7.9816
7.9236
7.8641
7.8030
7.7402
7.6758
7.6097
7.5419
7.4722
7.4008
7.3274
7.2521
7.1747
7.0953
7.0137
6.9299
6.8438
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6.4675
6.5612
6.6549
6.7486
6.8424
6.9361
7.0298
7.1236
7.2173
7.3110
7.4048
7.4985
7.5922
7.6860
7.7797
7.8734
7.9671
8.0609
8.1546
8.2483
8.3421
8.4358
8.5295
8.6233
8.7170
8.8107
8.9045
8.9982
9.0919
9.1856
9.2794

6.7553
6.6643
6.5707
6.4744
6.3753
6.2732
6.1680
6.0595
5.9475
5.8319
5.7124
5.5888
5.4608
5.3281
5.1903
5.0469
4.8976
4.7418
4.5787
4.4076
4.2276
4.0373
3.8353
3.6196
3.3877
3.1358
2.8588
2.5485
2.1907
1.7568
1.1642
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