UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

FORTRAN Subroutines for VAX/VMS Block I/0

Peter J. Johnson

Open-File Report 87-641

This report is preliminary and has not been reviewed for
conformity with U.S. Geological Survey editorial standards
and stratigraphic nomenclature. Any use of trade names is
for descriptive purposes only and does not imply endorsement
by the USGS.

DEC, RSX, DCL, VAX, and VMS are trademarks of Digital
Equipment Corporation. WORD is a trademark of MicroSoft
Corporation.

Although these subroutines have been tested by the Geological
Survey, United States Department of the Interior, no
warranty, either expressed, or implied is made by the
Geological Survey, or by the author of this report, as to the
accuracy and functionality of these routines and related
material, nor shall the fact of distribution constitute any
such warranty, and no responsibility is to be assumed in
connection therewith,

Menlo Park, CA.

NN

NDNNDNDNDNDDNDNDN N

w

NNNNDNDNDDNDND

w ww w

www
NN

[e

N

b

O ~JoUid W

N -

FORTRAN Subroutines for VAX/VMS Block 1/0
Table of Contents

Introduction
QIO Block I/O Routines
QIO USEROPEN Routines

QIO_$OPEN
QIO $CREATE

User-level QIO Block I/O Routines

QIO_OPEN
SAVE_FIB
QIO_GET
QIO_PUT

QIO EXTEND
QIO TRUNCATE
QIO DELETE
QIO CLOSE

RMS Block I/0 Routines
RMS USEROPEN Routines

RMS_ SOPEN
RMS_$CREATE

User-level RMS Block I/O Routines
RMS_OPEN
RMS_GET
RMS_PUT

Conclusion

NN

N

BB WWw

FORTRAN Subroutines for VAX/VMS Block I/0
Table of Contents

APPENDICES
Appendix A. USEROPEN Routines for QIO Block I/0

QIO $OPEN
QIO $CREATE
INITIALIZE FIB

Appendix B. QIO Block I/0 Routines

QIO OPEN
SAVE FIB

QIO GET

QIO PUT

QIO EXTEND
QIO_TRUNCATE
QIO DELETE
QIO CLOSE

Appendix C. USEROPEN Routines for RMS Block I/0

RMS_$OPEN
RMS_$CLOSE

Appendix D. RMS Block I/0 Routines

RMS_OPEN
RMS_GET
GET_READ SIZE
RMS_PUT

LOAD RAB

g
=

A-2
A-3

WCUUJCUUFWCUU?
RPRERPBORWR
S Nvo

FORTRAN Subroutines for VAX/VMS Block I/0 1

1. Introduction

Several routines have been developed to provide a means of easily
accessing various VMS block I/0 facilities from FORTRAN (or any other
high-level language using the same calling conventions). All routines
were designed to execute 'synchronously'; that is, control is not
returned to the caller until the current I/0O operation has completed
(this is the way standard FORTRAN I/O works). Even though some speed
was sacrificed by doing things this way, the very large buffer sizes
allowed (as much as 65,535 bytes for some devices, cf. VAX/VMS I/0
USER'S reference manual,Part I), and the bypassing of most run-time
overhead allow speed advantages over FORTRAN unformatted I/0. These
speed advantages may be as much as one to two orders of magnitude,
depending on the size of the reads and writes. Programmers familiar
with event flag concepts may wish to gain even more speed by modifying
these routines to work asynchronously. (See the RECORD MANAGEMENT
SERVICES reference manual SYSSWAIT system service for modifying the RMS
routines; you'll also have to set RABSM ASY in the RABSL_ROP field.
See the VAX/VMS SYSTEM SERVICES reference manual SYSSSYNCH system
service for modifying the QIO routines to excute asynchronously.)

The other main advantage, besides speed, is that block I/O allows
you to directly write any block of a sequential file, without
backspacing, rewinding, etc. (this may, of course result in even more
speed advantage). These routines were written to allow the replacement
of as little as 1 word at any point in a file. This feature will be of
obvious use to those who need to zap large data files. (In order to
implement this ability, the RAB truncate-on-put bit was cleared, cf.
RECORD MANAGEMENT SERVICES reference manual.)

Individual routines are documented in the next two sections. When
reading the expositions on the various routines, note that the following
convention is followed for arguments.

* Any argument beginning with the letter 'I' is an integer (whether 'I'
is a long or a short integer is determined by the use of the /I4, or
/NOI4 switch at compile-time).

* 'L' signifies a long (4-byte) integer.

e 'C' indicates that the argument is either a literal (e.q.
'filename.type', 'other.new', etc.), or a byte-string, terminated by
a binary zero.

* All arguments must be passed by reference, as is usual in
FORTRAN.

*+ Negative values of IRES are taken to be pointers to the place within
the code of a subroutine, where an error occurred.

References :

* GUIDE TO PROGRAMMING ON VAX/VMS (FORTRAN EDITION)
*» PROGRAMMING IN VAX FORTRAN

*» VAX FORTRAN USER'S GUIDE

* RECORD MANAGEMENT SERVICES

« VAX/VMS SYSTEM SERVICES Reference Manual

* VAX/VMS I/0 USER'S Reference Manual, Part I

FORTRAN Subroutines for VAX/VMS Block I/0 2

2. QIO Block I/0O Routines
2.1 QIO USEROPEN Routines

The routines in this section are included for purposes of
completeness. They need never be called directly, if the subroutine
QIO _OPEN is used for opening files.

The QIO routines do not work over DECNET. They are included
because they are somewhat faster than the RMS routines, and because they
will be somewhat easier to modify for asynchronous I/0 (being very
similar to RSX routines).

2.1.1 QIO_$SOPEN

This routine is meant to be used as an argument for the FORTRAN
USEROPEN keyword in an OPEN statement. It must be declared EXTERNAL and
INTEGER*4 in the calling program. It is for use with the subroutines
QIO_GET, QIO_PUT, QIO OPEN, QIO CLOSE, QIO DELETE, QIO TRUNCATE, and
QIO DELETE. It is for use only when opening files as 'OLD'.

2.1.2 QIO_S$CREATE

This routine is similar to QIO_S$OPEN, and is used for opening
files 'NEW', or 'UNKNOWN',

2.2 User-level QIO Block I/O Routines
2.2.1 QIO_OPEN(I_RW_FLAG,I_UNIT,C_FILE,L_BLOCKS,I_CHANNEL, IRES)

For those who don't want to be bothered with writing their own
routines to open files, but wish to access the USEROPEN routines in
section 2.1. QIO _OPEN opens all files for shared access. Options
available are open for readonly, open a new file to write, or open an
old (or unknown) file for write access.

I_RW_FLAG is used to indicate the desired status of the file to be
opened: a value of 0 indicates readonly; 1 indicates a desire to write
an old file; 2 specifies write permission for a new file; 3 indicates
that an old version of the file should be opened for write access if
possible, otherwise, a new file is to be created. I_UNIT specifies a
FORTRAN logical unit number to be used for the file. C_FILE specifies a
file name, as either a literal, or an ASCII byte-string (not as a
variable of type CHARACTER). L BLOCKS specifies an intial size in disk
blocks for new files.

Values returned by this subroutine are as follows: I_CHANNEL is a
VMS I/0 channel number returned by the open; this value must be saved
for later use by other I/O routines. IRES contains a value indicating
success or failure; values greater than 0 indicate success.

Any files opened using this subroutine should be closed with the
subroutine QIO _CLOSE, documented below. This routine references
QIO_SCREATE and QIO $OPEN.

FORTRAN Subroutines for VAX/VMS Block I/0 3

2.2.2 SAVE FIB(I_FIB)

Since QIO operations bypass the normal RMS file-handling, you may
need to save the file information block, by calling SAVE _FIB immediately
after QIO _OPEN, with no intervening I/0 operations. This will be
necessary whenever you do not know the exact size of file you will need,
until after creating it; or, when you may have to truncate or delete the
open file under program control. Extend (cf. QIO_EXTEND, below),
truncate (cf. QIO _TRUNCATE below), and delete (cf. QIO DELETE below)
operations all require certain values to be placed in the FIB.

A contiguous array of 22 bytes is required. The address of this
array is passed to SAVE_FIB in the argument I_FIB; it need not have any
special structure (i.e. any array such as INTEGER*2 IFIB(1ll) is just
fine (one per saved FIB)). Although the FIB may contain up to 48 bytes
of information, the saved portion is always only 22 bytes.

2.2.3 QIO_GET(I_CHAN,I_WORDS,I_BUFFER,L_BASE, IRES)

This procedure is called to read a file, after opening it with
QIO _OPEN. 1I_CHAN is the channel number returned by QIO OPEN. I_WORDS
is the number of 2-byte words to be read; I_WORDS is most safely
thought of as a short integer, because of the limits for some devices on
the size of single I/O transfers (32,367 bytes is always safe for any
disk device as far as I can tell). I_BUFFER is the address of the data
buffer to be read into. L_BASE is the base word (e.g. the 'base' of the

first word in the file is 0, the base of the 257th word is 256, etc.) in
the file, after which the read operation is to start. IRES is the
return status; a value for IRES less than 0 indicates a serious error
condition; a non-negative value indicates the number of words actually
read. When interpreting the result of a read operation, be aware that
block I/0 read requests are allowed to read all the way to the end of
the last block currently allocated, ignoring such niceties as the so-
called end-of-file. (E.g.: if the DCL command DIRECTORY/SIZE=ALL were
to return a size value of 2123/2700 for a given file, end-of-file would
be 2123 but the total blocks "owned" by that file (the allocation) would
be 2700.)

2.2.4 QIO PUT(I_CHAN,I_WORDS,I_BUFFER,L BASE, IRES)

QIO _PUT is called to write a file, after opening it with QIO _OPEN.
As above, I_CHAN is the I/O channel number; I_WORDS is the number of
words in the transfer; and I _BUFFER is the address of a data buffer
defined in the calling procedure. L_BASE is the base-word in the file
for the beginning of the write. IRES returns either a negative value,
indicating failure on the write, or a positive value equal to that
originally specified in I_WORDS, which indicates success.

This routine references QIO_GET. Again, as with QIO _GET, QIO_PUT
will successfully write to any point in the current allocation of the
file, without declaring an error.

FORTRAN Subroutines for VAX/VMS Block I/O 4

2.2.5 QIO_EXTEND (I_CHANNEL,L BLOCKS,I_FIB, IRES)

This routine is used to extend a disk file's allocation. Since
using QIO's bypasses most of the usual run-time I/0 machinery, you must
extend the file's allocation any time the end-point of a put (write)
operation is beyond the current file allocation. (You must extend the
file before calling QIO _PUT.)

It requires as input the I/0 channel (I_CHANNEL), the FIB returned
by SAVE FIB (I_FIB), and a number of blocks by which to extend the
present file allocation (L_BLOCKS). It returns a result code, IRES,
indicating success or failure. IRES is equal to 1 for success, and does
not contain any other useful information.

2.2.6 QIO_TRUNCATE (I_CHANNEL,L BLOCKS, I_FIB, IRES)

This operation requires as input, the I/0 channel (I_CHANNEL), the
total number of blocks desired in the file after truncation (L_BLOCKS),
and an array for the FIB (I_FIB). IRES contains either the value 1 upon
returning to the calling routine, or a negative number indicating
failure of the operation. The value of IL_BLOCKS must not be greater
than the current last block of the file allocation.

2.2.7 QIO_DELETE (I_CHANNEL,I_UNIT,I_FIB, IRES)

This routine takes, as input, the I/0O channel (I_CHANNEL), the
FORTRAN logical unit (I_UNIT), and the FIB (I_FIB), which must be at
least 22 bytes in length. It returns a result code (IRES), indicating
success (1) or failure (0 or negative). QIO_DELETE will close and
delete a file opened by QIO _OPEN. Its action is similar to a regular
FORTRAN CLOSE, with STATUS='DELETE'.

This routine references QIO_CLOSE.

2.2.8 QIO_CLOSE(I_CHAN,I_UNIT, IRES)

As with standard FORTRAN I/0, files should always be properly
closed. QIO _CLOSE attempts to perform a regular FORTRAN CLOSE on the
logical unit (I_UNIT) specified, and disconnects the I/0 stream from the
I/0 channnel (I_CHAN) specified. If the I/O channel cannot be
successfully deassigned, an error (-1) is returned in IRES; otherwise
IRES = 1,

FORTRAN Subroutines for VAX/VMS Block I/0 5

3. RMS Block I/0 Routines

These routines possess several advantages over the QIO routines:
they may be used with DECNET; when the RMS block I/O routines (RMS_GET,
RMS_PUT) are used, file extensions are handled automatically; and, files
may be closed using the standard FORTRAN CLOSE.

3.1 RMS USEROPEN Routines

These routines may be used to open a file for synchronous block
I/0. Since they invoke the full facilities of the RMS file system, the
read/write operations which require them are marginally slower than the
QIO routines, but probably not enough so to notice, unless critical
real-time operations are involved.

The routines in this section are included for purposes of
completeness. They need never be called directly, if the subroutine
RMS_OPEN is used for opening files.

3.1.1 RMS_SOPEN

This routine is meant to be used as an argument for the FORTRAN
USEROPEN keyword in an OPEN statement. It must be declared EXTERNAL and
INTEGER*4 in the calling program. It is for use with the subroutines
RMS_GET, RMS_PUT, RMS_OPEN. It is for use only when opening files as
'OLD'.

3.1.2 RMS_$CREATE

This routine is similar to RMS_$OPEN, and is used for opening
files 'NEW', or 'UNKNOWN'.

3.2 User-level RMS Block I/O Routines
3.2.1 RMS_OPEN(I_RW_FLAG,I_UNIT,C FILE,L BLOCKS, IRES)

For those who don't want to be bothered with writing their own
routines to open files, but wish to access the USEROPEN routines in
section 3.1. RMS_OPEN opens all files for shared access. Options
available are open for readonly, open a new file to write, or open an
old (or unknown) file for write access.

I_RW_FLAG is used to indicate the desired status of the file to be
opened: a value of 0 indicates readonly; 1 indicates a desire to write
an old file; 2 specifies write permission for a new file; 3 indicates
that an old version of the file should be opened for write access if
possible, otherwise, a new file is to be created. I_UNIT specifies a
FORTRAN logical unit number to be used for the file. C FILE specifies a
file name, as either a literal, or an ASCII byte-string (not as a
variable of type CHARACTER). L _BLOCKS specifies an intial size in disk
blocks for new files. IRES contains a value indicating success or
failure; values greater than 0 indicate success.

Any files opened using this subroutine may be closed with a
standard FORTRAN CLOSE statement. This routine references RMS_$CREATE
and RMS_$OPEN.

FORTRAN Subroutines for VAX/VMS Block I/O 6

3.2.2 RMS_GET(I_UNIT,I_WORDS,I_BUFFER,L_BASE, IRES)

This procedure is called to read a file, after opening it with
RMS_OPEN. I_UNIT is the FORTRAN logical unit for the file. I_WORDS is
the number of 2-byte words to be read; I_WORDS is most safely thought
of as a short integer, because of the limits for some devices on the
size of single I/0 transfers (32,367 bytes is always safe for any disk
device as far as I can tell). 1I_BUFFER is the address of the data
buffer to be read into. L _BASE is the base word (e.g. the 'base' of the
first word in the file is 0, the base of the 257th word is 256, etc.) in
the file, after which the read operation is to start. IRES is the
status return; a value for IRES less than 0 indicates a serious error
condition; a non-negative value indicates the number of words actually
read.

Block I/0 reads will read all the way to the end-of-file block,
rather than stopping at the end-of-file byte, so the returned number of
words read should be interpreted with care.

3.2.3 RMS_PUT(I_UNIT,I_WORDS,I_BUFFER,L BASE,IRES)

RMS_PUT is called to write a file, after opening it with RMS_OPEN.
As above, I_UNIT is the logical unit; I_WORDS is the number of words to
transfer; and I_BUFFER is the address of a data buffer defined in the
calling procedure. L BASE is the base-word in the file for the
beginning of the write. IRES returns either a negative value,
indicating failure on the write, or a positive value equal to that
originally specified in I_WORDS, which indicates success.

Unlike QIO PUT, RMS_PUT will automatically extend a file when
doing a write (put). The truncate-on-put bit in the record access block
(RAB) has been cleared by RMS_OPEN, to avoid truncating the file when
the write does not take place at the end of the file. This has the side
effect of only allowing a file to grow, and not to shrink.

This routine references RMS_GET.

4.0 Conclusion

The appendices contain commented FORTRAN source code for the block
I/0 subroutines. The code in the appendices has been edited for
publication (using MicroSoft WORD v3.0l1) and so may contain minor
typographical errors. Machine readable distribution copies of the
original, running code should be available soon.

Appendix A. USEROPEN Routines for QIO Block I/0 A-1

C ***%*x QTO $OPEN : USEROPEN FORTRAN FUNCTION FOR QIO PROCESSING

oNoNe]

C ++

C ++

C ++
910

6910

PASSES BACK DESCRIPTOR OF FIB WITH REQUIRED FIELDS
INITIALIZED FOR DIRECTORY SEARCH (OTHERWISE, JUST
DEASSIGN I/0 CHANNEL TO CLOSE)

INTEGER*4 FUNCTION QIO_S$OPEN(FA_ BLOCK, RA BLOCK, LOGICAL_UNIT)

IMPLICIT INTEGER*4 (L, S)
BYTE CTEST

INCLUDE ' ($FABDEF)'
RECORD/FABDEF/FA_BLOCK

INCLUDE ' (SRABDEF)'
RECORD/RABDEF/RA_BLOCK

COMMON/IO_CHANNEL/IO_CHANNEL) ! I/0 CHANNEL FOR

COMMON/FIB_DESCRIPTOR/FIB_LENGTH, FIB_ADDRESS ! FIB DESCRIPTOR
INTEGER*4 FIB_LENGTH, FIB_ADDRESS

INCLUDE ' ($SYSSRVNAM) '

SET UFO BIT
FA_BLOCK.FABSL _FOP = FA BLOCK.FABS$L_FOP .OR. FAB$M UFO

SET FABS$V_UPI IN SHR FIELD (CF. RELEASE NOTES V4.4 P 2-19)
FA_BLOCK.FAB$B_SHR = FA_BLOCK.FAB$B_SHR .OR. FAB$M UPI

OPEN
STATUS = SYSSOPEN (FA_BLOCK)
IER = 20
IF (.NOT.STATUS) GOTO 910

RETRIEVE CHANNEL
I0_CHANNEL = FA_BLOCK.FABSL_STV

SET UP FIB (FILE INFORMATION BLOCK) DESCRIPTOR,

. AND INITIALIZE FIELDS

CALL INITIALIZE_ FIB(%VAL(FA_BLOCK.FABSL_NAM))

RETURN
QIO_$OPEN = STATUS
RETURN

ERROR MESSAGE
CONTINUE
QIO_$OPEN = STATUS
WRITE (6, 6910) IER, STATUS
FORMAT (' QIO_SOPEN -- ERROR --', I7, Z12.12)
RETURN
END

FILE

Appendix A. USEROPEN Routines for QIO Block I/0O A-2

Cc
o
Cc
c

C ++
910

6910

****x* OTO_$CREATE : USEROPEN FORTRAN FUNCTION FOR QIO PROCESSING

PASSES BACK DESCRIPTOR OF FIB WITH REQUIRED FIELDS
INITIALIZED FOR DIRECTORY SEARCH IF FILE IS TO BE EXTENDED,
TRUNCATED, OR DELETED ON CLOSE.
INTEGER*4 FUNCTION QIO S$CREATE(FA BLOCK, RA BLOCK, LOGICAL_UNIT)
IMPLICIT INTEGER*4 (L, S)

INCLUDE ' ($FABDEF) '
RECORD/FABDEF/FA_ BLOCK

INCLUDE ' ($RABDEF) '
RECORD/RABDEF/RA BLOCK

COMMON/IO CHANNEL/IO CHANNEL ! I/0 CHANNEL FOR FILE

COMMON/FIB_DESCRIPTOR/FIB_LENGTH, FIB_ADDRESS ! FIB DESCRIPTOR
INTEGER*4 FIB_LENGTH, FIB_ADDRESS

INCLUDE ‘' ($SYSSRVNAM) '

SET UFO BIT
FA BLOCK.FABSL_FOP = FA BLOCK.FABSL _FOP .OR. FAB$M UFO

SET FAB$V_UPI IN SHR FIELD (CF. RELEASE NOTES V4.4 P 2-19)
FA_BLOCK.FAB$B_SHR = FA BLOCK.FABSB_SHR .OR. FABS$M UPI

CREATE
STATUS = SYS$CREATE (FA BLOCK)
IER = 20
IF (.NOT.STATUS) GOTO 910

RETRIEVE CHANNEL
I0_CHANNEL = FA BLOCK.FABSL STV

SET UP FIB (FILE INFORMATION BLOCK) DESCRIPTOR,

. AND INITIALIZE FIELDS

CALL INITIALIZE FIB(%VAL(FA BLOCK.FABSL NAM))

RETURN
QIO _$CREATE = STATUS
RETURN

ERROR MESSAGE
CONTINUE
QIO S$CREATE = STATUS
WRITE (6, 6910) IER, STATUS
FORMAT (' QIO SCREATE -- ERROR --', I7, 212.12)
RETURN
END

Appendix A. USEROPEN Routines for QIO Block I/0O A-3

C ***x* INITIALIZE FIB : INITIALIZE FIB (FILE INFORMATION BLOCK)

C ++

C ++

SUBROUTINE INITIALIZE FIB(NAM BLOCK)

INCLUDE ' ($NAMDEF)'
RECORD/NAMDEF /NAM BLOCK

INCLUDE ' ($FIBDEF)'
RECORD/FIBDEF/FI_BLOCK

COMMON/FIB_DESCRIPTOR/FIB_LENGTH, FIB_ADDRESS ! FIB DESCRIPTOR
INTEGER*4 FIB_LENGTH, FIB_ADDRESS

INCLUDE ' ($SYSSRVNAM) '

SPECIFY LENGTH (FIB$W_DID IS LAST FIELD USED CF. ACP QIO MANUAL)
FIB_LENGTH = 22 ! SIZE IN BYTES

! FIBSL_ACCTL = 3
! FIBSB WSIZE = 1
! FIBSW FID = 6
! FIB$W DID = 6
! FIBSL_WCC = 4
! 2

FIB$W_NMCTL

STUFF DESCRIPTOR WITH ADDRESS OF FIB
FIB _ADDRESS = $%LOC(FI_BLOCK)

SET WRITETHRU BIT
(MARKS FILE HEADER FOR IMMEDIATE WRITE BACK TO DISK)
FI_BLOCK.FIBSL ACCTL = FI_BLOCK.FIBSL ACCTL .OR. FIB$M WRITETHRU

CLEARR DIRECTORY SEARCH CONTEXT (LONG) WORD
FI_BLOCK.FIB$L WCC = 0

SET TO FIND BY FILE ID
FI_BLOCK.FIBSW_NMCTL = FI_BLOCK.FIB$W_NMCTL .OR. FIB$M FINDFID

GET FILE ID FROM NAM BLOCK
CALL LIB$MOVC3(6, NAM BLOCK.NAM$W_FID, FI_BLOCK.FIBSW FID)

GET DIRECTORY ID FROM NAM BLOCK
CALL LIBS$MOVC3(6, NAM BLOCK.NAMSW DID, FI_ BLOCK.FIBSW_DID)

RETURN
END

Appendix B. QIO Block I/O Routines

C *hxkkkx

C ++ DO

QIO OPEN : OPEN FILE FOR BLOCK I/O, RETURN CHANNEL

SUBROUTINE QIO OPEN(I_RW_FLAG,
! 0=READ (OLD)
! 1=WRITE (OLD)
! 2=WRITE (NEW)
! 3=WRITE (UNKNOWN)
I _UNIT, ! LOGICAL UNIT
C_FILE, ! FILE NAME
L_BLOCKS, ! INITIAL BLOCKS (NEW ONLY)
I_CHANNEL, ! I/O CHANNEL
IRES) ! RESULT

(SR

PARAMETER W_P_B = 256
EXTERNAL QIO_S$OPEN

EXTERNAL QIO_S$CREATE
COMMON/IO_CHANNEL/IO_CHANNEL

! WORDS PER DISK BLOCK
! C.F. QIOUSEROPEN.FOR
! DITTO.
! DITTO.

INTEGER*4 I_BLOCKS
BYTE C_FILE (1)

OPEN (DEPENDS ON VALUE OF I_RW_FLAG, I_UNIT, C_FILE)
IRES = 0

I_SIZE = WP B/ 2 ! REALS PER BLOCK

IF (I_RW_FLAG .EQ. 0) THEN ! READ OLD FILE
IER = 10
OPEN (

1 UNIT=I_UNIT,

1 FILE=C_FILE,

1 READONLY,

1 SHARED,

1 STATUS='OLD',

1 USEROPEN=QIO_S$OPEN,

1 ERR=910)
I_CHANNEL = IO_CHANNEL ! RETURN CHANNEL
IRES = I_RW_FLAG + 1 ! RESULT

ELSE IF(I_RW_FLAG .EQ. 1) THEN ! WRITE OLD FILE
IER = 20
OPEN (

UNIT=I_UNIT,
FILE=C_FILE,

STATUS='OLD',

ORGANIZATION='SEQUENTIAL',
CARRIAGECONTROL='NONE',
FORM="UNFORMATTED ',

ACCESS='SEQUENTIAL',

RECORDTYPE='FIXED',

RECORDSIZE=I_SIZE,

USEROPEN=QIO_S$OPEN,

SHARED,

ERR=910)

I_CHANNEL = IO_CHANNEL ! RETURN CHANNEL
IRES = I_RW _FLAG + 1 ! RESULT

N e e el o N S S

Appendix B.

QIO Block I/0 Routines B-2

ELSE IF(I_RW_FLAG .EQ. 2) THEN ! WRITE NEW FILE

MR R RRRERBRERPRE PR

IER = 30

OPEN (

UNIT=I_UNIT,

FILE=C_FILE,

STATUS='NEW',
INITIALSIZE=L_BLOCKS,
ORGANIZATION="'SEQUENTIAL',
CARRIAGECONTROL='NONE',
FORM="'UNFORMATTED ',
ACCESS="'SEQUENTIAL',
RECORDTYPE='FIXED',
RECORDSIZE=I_SIZE,
USEROPEN=QIO_$CREATE,

SHARED,

ERR=910)

I_CHANNEL = IO_CHANNEL ! RETURN CHANNEL
IRES = I_RW _FLAG + 1 ! RESULT

ELSE IF(I_RW_FLAG .EQ. 3) THEN ! WRITE UNKNOWN FILE

FRERPBRERREBRERRERRERERERPPR

END IF

C ++ DONE

RETURN

IER = 40

OPEN (

UNIT=I_UNIT,

FILE=C_FILE,

STATUS='UNKNOWN ',
INITIALSIZE=L_BLOCKS,
ORGANIZATION='SEQUENTIAL',
CARRIAGECONTROL="'NONE',
FORM="UNFORMATTED ',
ACCESS="'SEQUENTIAL',
RECORDTYPE='FIXED',
RECORDSIZE=I_SIZE,
USEROPEN=QIO_$CREATE,

SHARED,

ERR=910)

I_CHANNEL = IO_CHANNEL ! RETURN CHANNEL
IRES = I_RW FLAG + 1 ! RESULT

! SUCCESS >0

C ++ ERROR ON OPEN

910

6910

CONTINUE

WRITE (6, 6910) IER

FORMAT (' QIO _OPEN -- ERROR -- ', I6)
IRES = -IER

RETURN

END

Appendix B. QIO Block I/O Routines B-3

C **x** SAVE FIB : SAVE FIB AND DESCRIPTOR,
Cc IMMEDIATELY (!!!) AFTER USEROPEN
SUBROUTINE SAVE FIB(I_FIB) ! USER F.I. BLOCK

IMPLICIT INTEGER*4 (L)
IMPLICIT BYTE (C)
IMPLICIT REAL*8 (D)

COMMON/FIB_DESCRIPTOR/ ! RETURNED BY QIO $OPEN AND QIO_$CREATE
1 FIB_LENGTH,
1 FIB_ADDRESS
INTEGER*4 FIB_LENGTH, FIB_ADDRESS ! FIB_LENGTH = 22 BYTES

C ++ SAVE FIB
CALL LIBSMOVC3(FIB_LENGTH, %VAL(FIB_ADDRESS), I_FIB)

C ++ RETURN
RETURN
END

Appendix B.

C *¥*%x* QIO GET : READ WITH QIO'S

SUBROUTINE QIO GET(I_CHAN,

1 I_WORDS,
1 I_BUFFER,
1 L_BASE,

1 IRES)

IMPLICIT INTEGER*4 (L)
INTEGER*2 I_BUFFER(1), IOSB(4)
INTEGER*4 SYS$QIOW

INCLUDE ' ($SSDEF)'

INCLUDE ' ($IODEF) '

PARAMETER W _P_B = 256
INTEGER*2 I_BLOCK (W_P_B)

LBLKl = L_BASE/W P_B + 1
I_FIRST = (W_P_B*2)

IER = 10
L_STATUS = 0
L_STATUS = SYS$QIOW(
1 '
1 $VAL (I_CHAN),
1 $VAL (10$_READVBLK),
1 I0SB,
1 '
1 '
1 I_BLOCK,
1 $VAL(I_FIRST),
1 $VAL (LBLK1),
1 re)
C ++ CHECK READ ERRORS
I_MOVE = 0
ILEN = 0

IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0

CALL LIBSMOVC3(2, IOSB(l), L_STATUS)

C .. CHECK FOR PARTIAL READ
IF (I0SB (1)
I_FIRST = 0
L_STATUS = SS$_NORMAL
END IF
IER = 20
IF (.NOT.L_STATUS) GOTO 910

IF END OF FILE FOUND ON FIRST READ,
IF(I_FIRST .EQ. 0) GOTO 800

.EQ. SS$_ENDOFFILE) THEN

QIO Block I/0O Routines

e e 1= sm te te = te smm ne tem

I/0 CHANNEL

WORDS TO READ
DATA BUFFER

BASE WORD IN FILE
RESULT

WORDS PER DISK BLOCK

FIRST BLOCK TO READ
READ FIRST BLOCK

EFN

I/0 CHANNEL
FUNCTION
STATUS BLOCK
AST JUNK

" "
DATA BUFFER
LENGTH OF READ
DISK BLOCK TO
START READING
P4, P5, P6 (UNUSED)

GO TO END IMMEDIATELY

Appendix B,

C ++ SHIFT DATA TO FIRST WORD OF BUFFER

ISHFT = L_BASE - (LBLK1-1)*W P_B
I_MOVE = I _FIRST/2 - ISHFT
I_MOVE = MIN(I_WORDS, I_MOVE)

QIO Block I1I/0 Routines

! OFFSET OF USABLE DATA

CALL LIB$MOVC3(I_MOVE*2, I_BLOCK(ISHFT+1), I_BUFFER(1))

I_GET = I_MOVE + 1

C ++ GET THE REST OF THE DATA

ILEN = (I_WORDS-I_MOVE) * 2
IF(ILEN .LT. 0) ILEN = 0
IF(ILEN .LE. 0) GOTO 800

IER = 30
L_STATUS = 0
LBLK = LBLK1 + 1

L _STATUS = SYS$SQIOW(

1 p

1 $VAL (I_CHAN),

1 %VAL(IOS_READVBLK),
1 I0SB,

1 ’

1 p

1 1I_BUFFER(I_GET),
1 $VAL (ILEN),

1 $VAL (LBLK),

1 rr)

C ++ CHECK READ ERRORS

IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0
CALL LIBSMOVC3 (2, IOSB(1), L STATUS)

CHECK FOR PARTIAL READ

IF(IOSB(1l) .EQ. SS$_ENDOFFILE) THEN
ILEN = IOSB(2) ! NB

! BYTES LEFT

! ALL DONE

EFN
I/0 CHANNEL
FUNCTION
STATUS BLOCK
AST JUNK

” "
DATA BUFFER
LENGTH OF READ
DISK BLOCK TO
START READING
P4, P5, P6 (UNUSED)

et s sew tem aew sem sem em tew sem cem

COUNT RETURNED INCLUDES

! ENTIRE EOF BLOCK

L_STATUS = SS$_NORMAL
END IF
IER = 20
IF (.NOT.L_STATUS) GOTO 910
IER = 40

IF(.NOT.L_STATUS) GOTO 910

C ++ ALL DONE

800

CONTINUE
IRES = I_WORDS
RETURN

C ++ I HATE IT WHEN THAT HAPPENS

910

6910

CONTINUE

WRITE (6, 6910) IER, L_STATUS
FORMAT (' QIO_GET -- ERROR -- ', I6,
IRES = -IER

RETURN

END

210.1)

Appendix B. QIO Block I/O Routines B-6

C ****x* QIO PUT : WRITE WITH QIO'S

SUBROUTINE QIO PUT(I_CHAN, I/0 CHANNEL

]
1 I_WORDS, ! WORDS TO WRITE
1 I_BUFFER, ! DATA BUFFER
1 L_BASE, ! BASE WORD IN FILE
1 IRES) ! RESULT
IMPLICIT INTEGER*4 (L)
INTEGER*2 I_BUFFER(1), IOSB(4)
INTEGER*4 SYS$QIOW
INCLUDE ' ($IODEF) '
PARAMETER W _P_B = 256 ! WORDS PER DISK BLOCK
INTEGER*2 I_BLOCK (W_P_B) ! ONE DISK BLOCK BUFFER
LBLK1 = L_BASE/W P_B + 1 ! FIRST BLOCK TO WRITE
I_MOVE = 0 ! WORDS MOVED TO I_BLOCK
I_BYTES = (W_P_B*2) ! BYTES FOR 1 BLOCK
IF ((L_BASE/W_P_B*W_P_B) .EQ. L BASE) GOTO 50 ! WRITE STARTS ON BLOCK
! BOUNDARY
IER = 10
L_STATUS = 0
L_STATUS = SYSSQIOW(
1 / ! EFN (DEFAULT=0)
1 $VAL (I_CHAN), ! I/0 CHANNEL
1 $VAL (I0$_READVBLK) , ! FUNCTION
1 I0SB, ! STATUS BLOCK
1 ' ! AST JUNK
1 ’ ! n n
1 I_BLOCK(1), ! DATA BUFFER
1 $VAL (I_BYTES), ! LENGTH OF READ
1 $VAL (LBLK1) , ! DISK BLOCK TO READ
1 ir) ! P4,P5,P6 (UNUSED)

C ++ CHECK READ ERRORS
IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0
CALL LIBSMOVC3(2, IOSB(1l), L_STATUS)
IER = 20
IF (.NOT.L_STATUS) GOTO 910

C ++ SHIFT DATA FROM INPUT BUFFER
ISHFT = L BASE - (LBLK1-1)*W P_B ! OFFSET OF USABLE DATA
I MOVE = W P_B - ISHFT ! WORDS TO MOVE FROM I_BUFFER
I_MOVE = MIN(I_WORDS, I_MOVE)
CALL LIB$MOVC3(I_MOVE*2, I BUFFER, I BLOCK (ISHFT+1))

Appendix B.

C ++ REWRITE PARTIAL FIRST BLOCK

IER = 30

L_STATUS = 0

L_STATUS = SYS$QIOW (

1 '

1 $VAL (I_CHAN),
1 $VAL (I0$_WRITEVBLK),
1 I0SB,

1 '

1 ’

1 I_BLOCK(1),

1 $VAL (I_BYTES),
1 $VAL (LBLK1),

1 i)

C ++ CHECK WRITE ERRORS

IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0

CALL LIBSMOVC3(2, IOSB(1), L_STATUS)
IER = 40

IF (.NOT.L_STATUS) GOTO 910

C ++ WRITE MAIN BUFFER (ALL BUT LAST BLOCK)

50

LBLK1l = LBLKl + 1

CONTINUE

J_WORDS = I_WORDS -~ I_MOVE
K_WORDS = (J_WORDS/W_P_B) * W_P_B
IF (K_WORDS .EQ. 0) GOTO 70

K_BYTES = K_WORDS * 2

IER = 50

L_STATUS = 0

L_STATUS = SYS$QIOW(

1 '

1 $VAL (I_CHAN),

1 $VAL (I0$_WRITEVBLK),
1 IOSE,

1 '

1 '

1 I_BUFFER (I_MOVE+1),
1 $VAL (K_BYTES),

1 $VAL (LBLK1) ,

1 rr)

C ++ CHECK WRITE ERRORS

IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0

CALL LIBSMOVC3(2, IOSB(1l), I_STATUS)
IER = 60

IF (.NOT.L STATUS) GOTO 910

QIO Block I/0O Routines

STARTING BLOCK TO WRITE

! DON'T INCREMENT, IF YOU

SKIPPED FIRST PARTIAL BLOCK.

COUNT WORDS LEFT TO WRITE

! ALIGN ON BLOCK BOUNDARY

1ST = LAST = PARTIAL

BYTES FOR THIS WRITE

Appendix B. QIO Block I/0 Routines B-8

C ++ REWRITE PARTIAL LAST BLOCK IF NECESSARY

J_WORDS = J_WORDS - K_WORDS ! WORDS LEFT TO WRITE
70 CONTINUE ! GO HERE IMMEDIATELY, WHEN
! ONLY PARTIAL BLOCKS.
IER = 70
IF (J_WORDS .GT. W_P_B) GOTO 910 ! S/B <= 1 BLOCK
IF(J_WORDS .EQ. 0) GOTO 800 ! ALL DONE ... SKIP TO END
C .. GET PARTIAL LAST BLOCK
LBLK1 = (L_BASE+I_WORDS+W P _B-1) / W P B ! LAST BLOCK TO WRITE
IER = 80

L_STATUS = 0
L_STATUS = SYSSQIOW(

14

$VAL (I_CHAN),

$VAL (I0$_READVBLK) ,
I0SB,

r

14

I_BLOCK(1),
$VAL (I_BYTES),
$VAL (LBLK1),

")

RPRERBREBRRERRR

C ++ CHECK READ ERRORS
IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0
CALL LIB$MOVC3(2, IOSB(1l), L_STATUS)
IER = 90
IF (.NOT.L_STATUS) GOTO 910

C ++ SHIFT DATA FROM INPUT BUFFER
J_MOVE = I_MOVE + K_WORDS ! WORDS ALREADY WRITTEN
CALL LIB$MOVC3(J WORDS*2, I_BUFFER(J MOVE+l), I_BLOCK (1))

C ++ REWRITE PARTIAL LAST BLOCK

IER = 100

L_STATUS = 0

L_STATUS = SYSSQIOW(

1 ’

1 $VAL (I_CHAN),
1 $VAL (I0$_WRITEVBLK),
1 10SB,

1 ’

1 ’

1 I_BLOCK(1),

1 $VAL (I_BYTES),
1 $VAL (LBLK1),

1 II)

C ++ CHECK WRITE ERRORS
IF (.NOT.L_STATUS) GOTO 910
L_STATUS = 0
CALL LIB$MOVC3(2, IOSB(1), L_STATUS)
IER = 110
IF (.NOT.L_STATUS) GOTO 910

Appendix B. QIO Block I/O Routines

C ++ FEETS, DO YOUR STUFF
800 CONTINUE
IRES = I_WORDS
RETURN

C ++ I HATE IT WHEN THAT HAPPENS

910 CONTINUE
WRITE(6, 6910) IER, L_STATUS

6910 FORMAT (' QIO PUT -- ERROR —-- ', I6, 210.1)
IRES = -IER
RETURN

END

Appendix B. QIO Block I/0O Routines B-10

C ****% STUFF FOR FIB / ACP OPERATIONS

C
c

o

OO

N.B.: FIB MUST BE WORD-ALIGNED; LENGTH ALLOCATED MUST BE
AT LEAST 11 WORDS (22 BYTES).

***x%*%x QIO EXTEND : EXTEND FILE ALLOCATION WITH UFO BIT SET

SUBROUTINE QIO _EXTEND (I_CHANNEL, ! I/0 CHANNEL
1 L_BLOCKS, ! EXTEND SIZE
1 I_FIB, ! FIB

1 IRES) ! RESULT

IMPLICIT INTEGER*4 (L, S)
IMPLICIT BYTE (C)
IMPLICIT REAL*8 (D)
INCLUDE ' (SIODEF)'
INTEGER*2 IOSB(4)

INCLUDE ' ($FIBDEF)'

RECORD/FIBDEF/FI_BLOCK
COMMON/FIB_DESCRIPTOR/FIB_LENGTH, FIB_ADDRESS
INTEGER*4 FIB_LENGTH, FIB_ADDRESS

++ SET UP FIB FOR FILE EXTEND ! CF. I/O USERS PART I

TRANSFER CURRENT FIB TO COMMON
FIB_LENGTH = 22
CALL LIB$MOVC3(FIB_LENGTH, I_FIB, FI_BLOCK)
FIB_ADDRESS = $LOC (FI_BLOCK)

SET EXTEND, CONTIGUOUS (OR BEST TRY),

. ALLOCATE SPECIFIED EXTEND SIZE

FI_BLOCK.FIB$W_EXCTL = FI_BLOCK.FIB$W_EXCTL .OR. FIBS$M_EXTEND
1 .OR. FIBS$M ALCONB .OR. FIBSM ALDEF

SET EXTEND SIZE
FI_BLOCK.FIBSL EXSZ = L BLOCKS

ZERO OUT VBN OF BLOCKS ALLOCATED
FI_BLOCK.FIBSL EXVBN = 0

ZERO OUT ALLOCATION OPTIONS
FI_BLOCK.FIB$B_ALOPTS = 0

ZERO OUT ALLOCATION ALIGNMENT SPECIFICATIONS (IGNORE REST OF FIB)
FI_BLOCK.FIBS$B ALALIGN = 0

SPECIFY LENGTH OF THIS FIB
FIB_LENGTH = 44 ! 44 BYTES (FIG 1-4 I/O P I)

Appendix B,

QIO Block I/0O Routines

C ++ DO EXTEND

910

6910

L_STATUS
L_STATUS
1

0
SYSSQIOW (

, ! DEFAULT EFN
$VAL (I_CHANNEL),
$VAL (I0$_MODIFY),
108B,,,
FIB_LENGTH,,,,,)

[NER R

IER = 125

IF (.NOT.L_STATUS) GOTO 910

CALL LIB$MOVC3(2, IOSB(1l), L_STATUS)
IER = 130

IF (.NOT.L_STATUS) GOTO 910

IRES =1
RETURN

CONTINUE

WRITE (6, 6910) IER, IRES, L_STATUS

FORMAT (' QIO _EXTEND -- ERROR -- ', 2I7, 210.1)
IRES = -IER

RETURN

END

0

11

Appendix B.

C **x**x* QIO _TRUNCATE :

o

C **x**x* FATDEF :

(AND SET EOF)

SUBROUTINE QIO TRUNCATE (

1 I_CHANNEL,
1 L_BLOCKS,
1 I_FIB,

1 IRES)

IMPLICIT INTEGER*4 (L, S)
IMPLICIT BYTE (C)
IMPLICIT REAL*8 (D)
INCLUDE ‘' (SIODEF)'
INTEGER*2 IOSB(4)

INCLUDE ' ($ATRDEF) /LIST'
RECORD /ATRDEF /ATR_BLOCK
INTEGER*2 IACB(6)
INTEGER*4 LACB(2)
EQUIVALENCE (LACB,
PARAMETER W _P_B =

IACB(3))
256

QIO Block I/0O Routines

TRUNCATE FILE ALLOCATION WITH UFO BIT SET

1/0 CHANNEL
TRUNCATE SIZE
FIB

RESULT

! ATTRIBUTE CONTROL BLOCK

! BLOCK SIZE (WORDS)

STRUCTURE DEFINITION FOR ACP RECORD ATTRIBUTE VALUES

C ***** CRIBBED FROM SYSSLIBRARY:LIB.MLB VMS V4.2 (MAY CHANGE IN FUTURE)

Cc

c

c

C

..

.

ALLOWABLE VALUES FOR FATS$W_RTYPE

PARAMETER FAT$C_UNDEFINED
PARAMETER FAT$C_FIXED
PARAMETER FAT$C_VARIABLE
PARAMETER FATS$C_VFC
PARAMETER FATSC_STREAM
PARAMETER FATS$C_STREAMLF
PARAMETER FAT$C_STREAMCR

ALLOWABLE VALUES FOR FATSW _RTYPE +

[
AU W EO

FATSV_FILEORG (BIT OFFSET)

=1
=2

PARAMETER FATS$C_SEQUENTIAL= 0
PARAMETER FATSC_RELATIVE
PARAMETER FATSC_INDEXED
PARAMETER FAT$C_DIRECT

.. MASKS FOR FATS$W_RATTRIB

PARAMETER FATSM _FORTRANCC =
PARAMETER FATSM IMPLIEDCC
PARAMETER FATSM PRINTCC
PARAMETER FATSM NOSPAN

LENGTH OF FAT BLOCK

PARAMETER FATSK_LENGTH
PARAMETER FATSC_LENGTH
PARAMETER FAT$S_FATDEF

=3

]
N

32
32

Appendix B.

C .. LENGTH OF FAT$W_RTYPE

PARAMETER FAT$S_RTYPE =

C .. BIT OFFSET OF FATS$W_RTYPE

PARAMETER FATSV_RTYPE =

C .. BIT OFFSET OF FATSV_FILEORG

QIO Block I/0 Routines

4
4

PARAMETER FATS$S_FILEORG =
PARAMETER FAT$V_FILEORG =
C .. BIT OFFSET OF MASKS FOR FATS$W_RATTRIB
PARAMETER FATSV_FORTRANCC =
PARAMETER FAT$V_IMPLIEDCC =
PARAMETER FATSV_PRINTCC =
PARAMETER FAT$V_NOSPAN =

C **xkkx

DEFINE RECORD-TYPE FATDEF (CF. IO
STRUCTURE /FATDEF/

wN = o

USER'S TABLE 1-8)

BYTE FATSB_RTYPE
BYTE FATSB_RATTRIB
INTEGER*2 FAT$SW_RSIZE
UNION
MAP
INTEGER* 4 FATSL HIBLK
END MAP
MAP
INTEGER*2 FATSW_HIBLKH
INTEGER*2 FATSW_HIBLKL
END MAP
END UNION
UNION
MAP
INTEGER*4 FATS$L EFBLK
END MAP
MAP
INTEGER*2 FATS$SW_EFBLKH
INTEGER*2 FATS$SW_EFBLKL
END MAP
END UNION
INTEGER*2 FATSW_FFBYTE
BYTE FATS$B BKTSIZE
BYTE FATS$B _VFCSIZE
INTEGER*2 FATSW_MAXREC
INTEGER*2 FATSW_DEFEXT
BYTE FATS$B _RESERVED (8)
INTEGER*2 FATSW_VERSIONS

END STRUCTURE

Appendix B.

C ++

C ++

C ++ SET UP FAT BLOCK (CF.

RECORD/FATDEF/FAT_BLOCK

INCLUDE ' (SFIBDEF)'
! FILE INFORMATION BLOCK
RECORD/FIBDEF/FI_BLOCK

QIO Block I/0 Routines

! FAT BLOCK

COMMON/FIB_DESCRIPTOR/FIB_LENGTH, FIB_ADDRESS

INTEGER*4 FIB_LENGTH, FIB_ADDRESS

TRANSFER CURRENT FIB TO COMMON
CALL LIBSMOVC3(22, I_FIB, FI_BLOCK)

FIB_LENGTH = 48
FIB_ADDRESS = $LOC (FI_BLOCK)

SET UP FIB FOR WRITE ACCESS
FI_BLOCK.FIBSL_ACCTL = 0

SET UP FILE ATTRIBUTE LIST
ATR_BLOCK.ATR$W_SIZE = 14
ATR_BLOCK.ATRSW_TYPE ATRS$SC_RECATTR
ATR_BLOCK.ATR$L_ADDR %LOC (FAT_BLOCK)

MOVE TO ATTRIBUTE CONTROL BLOCK
CALL LIBSMOVC3(14, ATR BLOCK, IACB)

TERMINATE LIST

LACB(2) = 0

ACCESS FILE
L_STATUS = 0
L_STATUS = SYS$QIOW(

1 '
$VAL (I_CHANNEL) ,

1

1 $VAL (I0$_ACCESS),
1 10SB,,,

1 FIB LENGTH,,,,

1 IACB,)

IER = 125

IF(.NOT.L STATUS) GOTO 910

CALL LIBSMOVC3(2, IOSB(1l), L_STATUS)
IER = 130

IF (.NOT.L STATUS) GOTO 910

FAT BLOCK.FATSL_EFBLK = L_BLOCKS + 1
I_WORD = 0

IO USER'S TABLE 1-8)

SAVED FIB IS
ALWAYS 22 BYTES

FULL LENGTH

LOCAL ADDRESS

READ ONLY

BYTES IN FAT BLOCK
SPECIFY FAT BLOCK
ADDRESS OF FAT BLOCK

DEFAULT EFN = 0

CALL LIB$SMOVC3(2, FAT BLOCK.FATSW_EFBLKL, I_WORD)
FAT_BLOCK.FATSW_EFBLKL = FAT BLOCK.FAT$W_EFBLKH
CALL LIB$MOVC3(2, I_WORD, FAT BLOCK.FATS$W_EFBLKH)

FAT_BLOCK.FATS$W_FFBYTE = 0

Appendix B. QIO Block I/O Routines

C ++ SET FIB FOR TRUNCATE
I_WORD = 0
FI_BLOCK.FIBSW_EXCTL = I_WORD .OR. FIB$M_TRUNC
FI_BLOCK.FIBSL_EXSZ = 0
FI_BLOCK.FIBSL_EXVBN = L BLOCKS + 1
FIB_LENGTH = 44

C ++ DO TRUNCATE
L_STATUS = 0
L_STATUS = SYS$QIOW(
. ! DEFAULT EFN
$VAL (I_CHANNEL),
$VAL (I0$_MODIFY),
I0SB,, .,
FIB_LENGTH,,,,
IACB,)

g S S

IER = 140

IF (.NOT.L STATUS) GOTO 910

CALL LIB$MOVC3(2, I0SB(1l), L_STATUS)
IER = 145

IF (.NOT.L_STATUS) GOTO 910

IRES = 1
RETURN

910 CONTINUE
WRITE (6, 6910) IER, IRES, L_STATUS
6910 FORMAT (' QIO _TRUNCATE -- ERROR -- ', 217, 210.1)
IRES = -IER
RETURN
END

0

Appendix B.

C ***** QIO DELETE

QIO Block I/0O Routines

: DELETE FILE ON CLOSE
SUBROUTINE QIO _DELETE (I_CHANNEL, !

1 I_UNIT, !
1 I_FIB, !
1 IRES)

IMPLICIT INTEGER*4 (L, S)

IMPLICIT BYTE (C)

IMPLICIT REAL*8 (D)

INCLUDE ' ($IODEF) "

INTEGER*2 IOSB(4)

COMMON/FIB_DESCRIPTOR/

1 FIB_LENGTH,

1 FIB_ADDRESS

INTEGER*4 FIB_LENGTH, FIB ADDRESS !

C 44 ISSUE ACP QIO TO DELETE FILE

FIB_LENGTH = 22

FIB_ADDRESS = $LOC(I_FIB)

L_FUNCTION = IO$ DELETE .OR. IO$M_DELETE
L_STATUS = 0

L_STATUS = SYS$QIOW(

r

$VAL (I_CHANNEL) ,
$VAL (L_FUNCTION),
I0SB,

PR EPPRP R

rr
FIB _LENGTH,,,,,) !

IER = 721

IF(.NOT.L_STATUS) GOTO 910

IER = 722

CALL LIB$MOVC3(2, IOSB(1l), L_STATUS)
IF (.NOT.L STATUS) GOTO 910

C ++ MAKE DARN SURE THIS PUP IS GONE

CALL QIO _CLOSE(I_CHANNEL, I _UNIT, IRES)
IER = 750
IF(IRES .LT. 1) GOTO 910
IRES =1

RETURN

C ++ BAD NEWS

910

6910

I/0 CHANNEL
LOGICAL UNIT
FIB

FIB_LENGTH = 22 BYTES

DEFAULT EFN = 0
I/0 CHANNEL
DELETE FUNCTION
I/0 STATUS BLOCK

FIB DESCRIPTOR

CONTINUE

WRITE (6, 6910) IER, IRES, L _STATUS

FORMAT (' QIO _DELETE -- ERROR -- ', 2I7, Z10.1)
IRES = -IER

RETURN

END

Appendix B. QIO Block I/O Routines

C **xx*% QI0 CLOSE : CLOSE FILE OPENED FOR QIO USE

SUBROUTINE QIO CLOSE(I_CHAN, ! I/O CHANNEL
1 I_UNIT, ! FORTRAN LOGICAL UNIT
1 IRES) ! RESULT

INTEGER*4 L_STATUS, SYS$DASSGN

L_STATUS
L_STATUS

0
SYS$SDASSGN ($VAL (I_CHAN))

IF(.NOT.L STATUS) GOTO 910
CLOSE(I_UNIT, ERR=800)

800 CONTINUE

IRES = 1
RETURN

910 CONTINUE
WRITE (6, 6910) L_STATUS
6910 FORMAT (' QIO CLOSE -- ERROR -- ', 210.1)
IRES = -1
RETURN
END

17

Appendix C. USEROPEN Routines for RMS Block I/O c-1

C ***x** RMS S$OPEN : USEROPEN FORTRAN FUNCTION FOR RMS BLOCK I/O

C

C ++
910

6910

(FILE STATUS = 'OLD'")
INTEGER*4 FUNCTION RMS_SOPEN(FA BLOCK, RA BLOCK, LOGICAL_UNIT)
IMPLICIT INTEGER*4 (L, S)

INCLUDE ' ($FABDEF) '
RECORD/FABDEF/FA_BLOCK

INCLUDE ' (SRABDEF) '
RECORD/RABDEF /RA_BLOCK

INCLUDE ' ($SYSSRVNAM) '
SET BLOCK I/0O BIT IN FAB

FA_BLOCK.FABS$B_FAC
FA_BLOCK.FAB$B FAC

FA_BLOCK.FABSB_FAC .OR. FAB$M BIO
FA_BLOCK.FABSB_FAC .OR. FABSM BRO

SET GET ACCESS (NEEDED FOR READONLY)
FA_BLOCK.FABSB_FAC = FA_BLOCK.FABSB_FAC .OR. FAB$M GET

SET RECORD LOCK FOR SHARED FILES IN FAB
FA BLOCK.FAB$B_SHR = FA BLOCK.FABSB SHR .OR. FABSM UPI

REMOVE TRUNCATE OPTION
FA_BLOCK.FABSB_FAC = FA_BLOCK.FAB$B_FAC .AND. (.NOT.FAB$M TRN)

OPEN
STATUS = SYS$SOPEN(FA BLOCK)
IER = 10
IF (.NOT.STATUS) GOTO 910

SET BLOCK I/0 BIT IN RAB
RA BLOCK.RABSL _ROP = RA_BLOCK.RABSL_ROP .OR. RAB$M BIO

CONNECT RECORD STREAM
STATUS = SYSSCONNECT (RA_BLOCK)
IER = 20
IF (.NOT.STATUS) GOTO 910

RETURN
RMS_$OPEN = STATUS
RETURN

ERROR MESSAGE
CONTINUE
RMS_S$OPEN = STATUS
WRITE (6, 6910) IER, STATUS
FORMAT (' RMS_$OPEN -- ERROR --', I7, 2Z12.12)
RETURN
END

Appendix C.

USEROPEN Routines for RMS Block I/0 c-2

C *%*x*x RMS $CREATE : USEROPEN FORTRAN FUNCTION FOR RMS BLOCK I/O
(FILE STATUS = 'NEW' OR 'UNKNOWN')

C

C ++
910

6910

INTEGER*4 FUNCTION RMS $CREATE (FA BLOCK, RA BLOCK, LOGICAL UNIT)

IMPLICIT INTEGER*4 (L, S)

INCLUDE ' (SFABDEF)'
RECORD/FABDEF/FA_ BLOCK

INCLUDE ' (SRABDEF)'
RECORD/RABDEF /RA_BLOCK

INCLUDE ' ($SYSSRVNAM) '

SET BLOCK I/O BIT IN FAB

FA_BLOCK.FABSB_FAC = FA BLOCK.FABSB_FAC,

FA_BLOCK.FAB$B_FAC = FA_ BLOCK.FABS$B_FAC

SET GET ACCESS (NEEDED FOR READONLY)
FA_BLOCK.FAB$B_FAC = FA_ BLOCK.FAB$B_FAC

SET RECORD LOCK FOR SHARED FILES IN FAB
FA BLOCK.FABSB SHR = FA BLOCK.FABSB_SHR

REMOVE TRUNCATE OPTION
FA BLOCK.FABSB_FAC = FA_BLOCK.FABSB_ FAC

OPEN
STATUS = SYS$CREATE (FA BLOCK)
IER = 10
IF (.NOT.STATUS) GOTO 910

SET BLOCK I/0O BIT IN RAB
RA_BLOCK.RABSL_ROP = RA_BLOCK.RAB$L_ROP

CONNECT RECORD STREAM
STATUS = SYSS$CONNECT (RA_ BLOCK)
IER = 20
IF (.NOT.STATUS) GOTO 910

RETURN
RMS_SCREATE = STATUS
RETURN

ERROR MESSAGE
CONTINUE
RMS_$CREATE = STATUS
WRITE (6, 6910) IER, STATUS

.OR. FABSM_BIO
.OR. FABS$M_BRO

.OR. FABS$M_GET

.OR. FABSM UPI

.AND. (.NOT.FAB$M_ TRN)

.OR. RABS$M_BIO

FORMAT (' RMS_SCREATE -- ERROR --', 17, 212.12)

RETURN
END

Appendix D. RMS Block I/O Routines D-1

C *kkkk

C ++ DO

RMS_OPEN : OPEN FILE FOR RMS BLOCK I/0O
SUBROUTINE RMS _OPEN(I_RW_FLAG, ! O0=READ (OLD)

! 1=WRITE (OLD)

! 2=WRITE (NEW)

! 3=WRITE (UNKNOWN)
1

!

1

1

1 I_UNIT, LOGICAL UNIT

1 C_FILE, FILE NAME

1 L_BLOCKS, INITIAL BLOCKS (NEW ONLY)
1 IRES) RESULT

PARAMETER W_P_B = 256 ! WORDS PER DISK BLOCK
EXTERNAL RMS_SOPEN ! C.F. Appendix C.
EXTERNAL RMS_$CREATE ! DITTO.

INTEGER*4 L BLOCKS
BYTE C_FILE(1)

OPEN (DEPENDS ON VALUE OF I_RW_FLAG, I_UNIT, C_FILE)
IRES = 0

I_SIZE = WP B/ 2 ! REALS PER BLOCK
IF (I_RW_FLAG .EQ. 0) THEN ! READ OLD FILE
IER = 10

OPEN (

UNIT=I_UNIT,

FILE=C FILE,

READONLY,

STATUS='0OLD',

USEROPEN=RMS_ $OPEN,

SHARED,

ERR=910)

IRES = I_RW _FLAG + 1 ! RESULT

ELSE IF(I_RW_FLAG .EQ. 1) THEN ! WRITE OLD FILE
IER = 20

OPEN (

UNIT=I_UNIT,

FILE=C_FILE,

STATUS='0LD',

ORGANIZATION="'SEQUENTIAL',
CARRIAGECONTROL='NONE',
FORM='UNFORMATTED ',

ACCESS='SEQUENTIAL',

RECORDTYPE='FIXED',

RECORDSIZE=I_SIZE,

USEROPEN=RMS_ $OPEN,

SHARED,

ERR=910)

IRES = I_RW _FLAG + 1 ! RESULT

e ol

PFRRPBPRPPEPRRPEPRBEP

Appendix D. RMS Block I/O Routines

ELSE IF(I_RW_FLAG .EQ. 2) THEN ! WRITE NEW FILE
IER = 30

OPEN (

UNIT=I_UNIT,

FILE=C_FILE,

STATUS='NEW',

INITIALSIZE=L_ BLOCKS,
ORGANIZATION="'SEQUENTIAL',
CARRIAGECONTROL='NONE',
FORM='UNFORMATTED ',
ACCESS='SEQUENTIAL',
RECORDTYPE='FIXED',
RECORDSIZE=I_SIZE,
USEROPEN=RMS_$CREATE,

SHARED,

ERR=910)

IRES = I_RW FLAG + 1 ! RESULT
ELSE IF(I_RW FLAG .EQ. 3) THEN ! WRITE UNKNOWN FILE
IER = 40

OPEN (

UNIT=I_UNIT,

FILE=C_FILE,

STATUS='UNKNOWN',
INITIALSIZE=L_BLOCKS,
ORGANIZATION='SEQUENTIAL’,
CARRIAGECONTROL='NONE',
FORM='UNFORMATTED ',
ACCESS='SEQUENTIAL',
RECORDTYPE='FIXED',
RECORDSIZE=I_SIZE,
USEROPEN=RMS_$CREATE,

SHARED,

ERR=910)

IRES = I_RW _FLAG + 1 ! RESULT

[Y e

i e e S S S e =

END IF

C ++ DONE
RETURN ! SUCCESS >0

C ++ ERROR ON OPEN

910 CONTINUE
WRITE (6, 6910) IER

6910 FORMAT (' RMS_OPEN -- ERROR -- ', I6)
IRES = -IER
RETURN

END

Appendix D. RMS Block I/0 Routines D-3
C ***** RMS_GET : READ WITH RMS SERVICE SREAD (CF. RMS MANUAL)
C NB : RETURNS A STATUS CODE OF 0 FOR EOF ... CHECK BYTE COUNTS

SUBROUTINE RMS_ GET (I UNIT, FORTRAN LUN

1
1 I_WORDS, ! WORDS TO READ
1 I_BUFFER, ! DATA BUFFER
1 L_BASE, ! BASE WORD IN FILE
1 IRES) ! RESULT (WORDS READ)
1

(OR ERROR STATUS)

IMPLICIT INTEGER*4 (L, F, S)

INTEGER*2 I_BUFFER(1)

INTEGER*4 SYSSREAD, FORSRAB

PARAMETER W P_B = 256 ! WORDS PER DISK BLOCK
INTEGER*2 I_BLOCK (W_P_B)

INCLUDE ' ($RMSDEF)'

L_UNIT = I_UNIT

L_RAB_ADDRESS = FOR$RAB(L_UNIT) ! GET RAB ADDRESS
LBLK1 = L_BASE/W P B + 1 ! FIRST BLOCK TO READ
I_FIRST = (W_P_B*2) ! READ FIRST BLOCK
I_MOVE = 0
CALL LOAD_RAB($VAL(L_RAB ADDRESS), ! LOAD RAB WITH READ
1 I_BLOCK, ! PARAMETERS
1 I_FIRST,
1 LBLK1)
STATUS = SYSS$READ (%VAL(L_RAB_ADDRESS)) ! DO READ
IF (STATUS .EQ. RMS$_EOF) THEN ! RETRIEVE
CALL GET_READ_SIZE ($VAL(L_RAB_ADDRESS), I_LEN) ! ACTUAL
! BYTES READ
STATUS = RMS$_SUC
I_NEED = L_BASE - (LBLK1-1)*W _P_B
I_NEED = I_NEED * 2

I_FIRST = MAX(0, I_LEN-I_NEED)
IF (I_FIRST .GT. 0) I_FIRST = I_LEN
I_LEN = 0

END IF

IER = 10

IF (.NOT.STATUS) GOTO 910

C ++ SHIFT DATA TO FIRST WORD OF BUFFER
IF (I_FIRST .GT. 0) THEN
ISHFT = L_BASE - (LBLK1-1)*W_P_B ! OFFSET OF USABLE DATA
I_MOVE = I_FIRST/2 - ISHFT
I_MOVE = MIN(I_MOVE, I_WORDS)
CALL LIB$MOVC3(I_MOVE*2, I_BLOCK (ISHFT+1), I_BUFFER(1))
END IF

IF(I_FIRST .LT. W_P_B*2) GOTO 800 ! DONE (ECF FOQUND)

I_GET = I_MOVE + 1

Appendix D. RMS Block I/O Routines D-4

C ++ GET THE REST OF THE DATA

I_LEN = (I_WORDS-I_MOVE) * 2 ! BYTES LEFT
IF(I_LEN .LE. 0) GOTO 800 ! ALL DONE
LBLK1 = LBLKl + 1

CALL LOAD_RAB (%$VAL(L_RAB_ADDRESS), ! LOAD RAB WITH READ
1 I_BUFFER(I_GET), ! PARAMETERS

1 I_LEN,

1 LBLK1)

STATUS = SYS$READ (%VAL(L_RAB_ADDRESS)) ! DO READ

IF (STATUS .EQ. RMS$_EOF) THEN
RETRIEVE ACTUAL

CALL GET_READ_SIZE ($%VAL(L_RAB_ADDRESS), I_LEN) ! BYTES READ
STATUS = RMS$_SUC

END IF

IER = 20

IF (.NOT.STATUS) GOTO 910

C ++ ALL DONE

800 CONTINUE
IRES = I_MOVE + I_LEN/2
RETURN
C ++ I HATE IT WHEN THAT HAPPENS
910 CONTINUE
WRITE (6, 6910) IER, STATUS
6910 FORMAT(' RMS_GET -- ERROR -- ', 16, 210.1)
IRES = -IER
RETURN
END
C ***x%** GET READ SIZE : GET SIZE IN BYTES OF LAST READ

SUBROUTINE GET_READ_SIZE(RA_BLOCK, ! RAB ADDRESS
1 I_LEN) ! LENGTH IN BYTES

IMPLICIT INTEGER*4 (L)
INCLUDE ' ($RABDEF) '
RECORD/RABDEF /RA_BLOCK

I_LEN = 0
CALL LIB$MOVC3 (2, RA_BLOCK.RAB$W_RSZ, I_LEN)

RETURN
END

Appendix D. RMS Block I/0 Routines D-5

C **%*x*x RMS PUT : WRITE WITH RMS BLOCK I/O FUNCTION S$SWRITE

SUBROUTINE RMS PUT(I_UNIT, ! LUN

1 I_WORDS, ! WORDS TO WRITE

1 I_BUFFER, ! DATA BUFFER

1 L BASE, ! BASE WORD IN FILE

1 IRES) ! RESULT (WORDS WRITTEN)
1

OR ERROR STATUS

IMPLICIT INTEGER*4 (L, S, F)
INTEGER*2 I_BUFFER (1)

PARAMETER W_P_B = 256 ! WORDS PER DISK BLOCK
INTEGER*2 I_BLOCK (W_P_B) ! ONE DISK BLOCK BUFFER
LBLK1l = L BASE/W P B + 1 ! FIRST BLOCK TO WRITE
I_MOVE = 0 ! WORDS MOVED TO I_BLOCK
I_READ = W P_B ! WORDS FOR 1 BLOCK
L_UNIT = I_UNIT

1L_RAB_ADDRESS = FORSRAB(L_UNIT) ! GET RAB ADDRESS

IF ((L_BASE/W_P_B*W_P_B) .EQ. L_BASE) GOTO 50 ! WRITE STARTS ON BLOCK
! BOUNDARY

L_GO = L_BASE/W P B * WP B

CALL RMS_GET (I_UNIT, FORTRAN LUN

1
1 I_READ, ! WORDS TO READ
1 I _BLOCK, ! DATA BUFFER
1 L Go, ! BASE WORD IN FILE
1 IRES) ! RESULT (BYTES READ)
! (OR ERROR STATUS)
IER = 10

IF(IRES .LT. 0) GOTO 910

C ++ SHIFT DATA FROM INPUT BUFFER
ISHFT = L_BASE - (LBLK1-1)*W P_B ! OFFSET OF USABLE DATA
I_ MOVE = W P B - ISHFT ! WORDS TO MOVE FROM I_BUFFER
I_MOVE = MIN(I_WORDS, I_MOVE)
CALL LIB$MOVC3(I_MOVE*2, I_BUFFER, I_BLOCK (ISHFT+1))

C ++ REWRITE PARTIAL FIRST BLOCK

CALL LOAD RAB (%VAL(L_RAB ADDRESS),! LOAD RAB WITH WRITE

1 I_BLOCK, ! PARAMETERS

1 I_READ*2,

1 LBLK1)

STATUS = SYSSWRITE (%VAL(L_RAB_ADDRESS)) ! DO WRITE
IER = 20

IF (.NOT.STATUS) GOTO 910

Appendix D. RMS Block I/0 Routines D-6

C ++ WRITE MAIN BUFFER (ALL BUT LAST BLOCK)
LBLK1l = LBLKl1 + 1 ! STARTING BLOCK TO WRITE
! DON'T INCREMENT, IF YOU
! SKIPPED FIRST PARTIAL BLOCK.

50 CONTINUE
J_WORDS = I_WORDS - I_MOVE ! COUNT WORDS LEFT TO WRITE
K_WORDS = (J_WORDS/W_ P B) * W P B ! ALIGN ON BLOCK BOUNDARY
IF (K_WORDS .EQ. 6} GOTO 70 ! 1ST = LAST = PARTIAL
K _BYTES = K_WORDS * 2 ! BYTES FOR THIS WRITE
CALL LOAD_RAB (%VAL(L_RAB_ADDRESS),! LOAD RAB WITH WRITE
1 I_BUFFER(I_MOVE+1), ! PARAMETERS
1 K_BYTES,
1 LBLK1)
STATUS = SYS$WRITE ($VAL(L_RAB_ADDRESS)) ! DO WRITE
IER = 50

IF (.NOT.STATUS) GOTO 910

C ++ REWRITE PARTIAL LAST BLOCK IF NECESSARY

J_WORDS = J_WORDS - K_WORDS ! WORDS LEFT TO WRITE
70 CONTINUE ! GO HERE IMMEDIATELY, WHEN
! ONLY PARTIAL BLOCKS WRITTEN.
IER = 70
IF (J_WORDS .GT. W_P_B) GOTO 910 ! S/B <= 1 BLOCK
IF (J_WORDS .EQ. 0) GOTO 800 ! ALL DONE ... SKIP TO END

C .. GET PARTIAL LAST BLOCK
LBLK1 = (L_BASE+I_WORDS+W P _B-1) / W P B ! LAST BLOCK TO WRITE

L_GO = (LBLKl-1) * WP B

CALL RMS_GET (I_UNIT, FORTRAN LUN

1
1 I_READ, ! WORDS TO READ
1 I_BLOCK, ! DATA BUFFER
1 L_Go, ! BASE WORD IN FILE
1 IRES) ! RESULT (BYTES READ)
! (OR ERROR STATUS)
IER = 80

IF (IRES .LT. 0) GOTO 910
C ++ SHIFT DATA FROM INPUT BUFFER
J_MOVE = I_MOVE + K_WORDS ! WORDS ALREADY WRITTEN
CALL LIB$MOVC3(J_WORDS*2, I_BUFFER(J_MOVE+l), I_BLOCK(1))

CALL LOAD_RAB (%VAL(L_RAB ADDRESS),! LOAD RAB WITH WRITE

1 I_BLOCK, ! PARAMETERS

1 I_READ*2,

1 LBLK1)

STATUS = SYS$WRITE (3VAL(L_RAB_ADDRESS)) ! DO WRITE
IER = 90

IF (.NOT.STATUS) GOTO 910

Appendix D. RMS Block I/0O Routines

C ++ FEETS, DO YOUR STUFF
800 CONTINUE
IRES = I_WORDS
RETURN

C ++ I HATE IT WHEN THAT HAPPENS
910 CONTINUE
WRITE(6, 6910) IER, STATUS

6910 FORMAT (' RMS_PUT -- ERROR -- ', I6, 210.1)
IRES = -IER
RETURN
END

C ***%x*x LOAD RAB : STUFF RAB WITH VALUES NEEDED FOR $READ AND S$WRITE

SUBROUTINE LOAD_RAB(RA BLOCK, !

1 I_BUFFER, !
1 I_LEN, !
1 LBLK) !

IMPLICIT INTEGER*4 (L)
INCLUDE ' (SRABDEF) '
RECORD/RABDEF/RA_BLOCK

C ++ STUFF RAB
RA_BLOCK.RABS$L_BKT
RA_BLOCK.RABS$L_UBF
RA BLOCK.RABS$L RBF

LBLK !
$L0C (I_BUFFER) !
$10C (I_BUFFER) !

RAB ADDRESS
USER BUFFER
LENGTH IN BYTES
VBN

VBN
READ BUFFER ADDRESS
WRITE BUFFER ADDRESS

CALL LIB$MOVC3(2, I_LEN, RA_BLOCK.RAB$W_USZ) ! READ LENGTH
CALL LIB$MOVC3(2, I_LEN, RA BLOCK.RAB$W RSZ) ! WRITE LENGTH

C .. MAKE SURE TRUNCATE ON PUT BIT IS DISARMED

RA_BLOCK.RABSL_ROP = RA BLOCK.RABSL_ROP .AND. (.NOT.RABSM_TPT)

RETURN
END

